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ABSTRACT

The ARW model was run over a small domain centered on Iowa for 9 months with 4-km grid spacing to

better understand the limits of predictability of short-term (12 h) quantitative precipitation forecasts (QPFs)

that might be used in hydrology models. Radar data assimilation was performed to reduce spinup problems.

Three grid-to-grid verification methods, as well as two spatial techniques, neighborhood and object based,

were used to compare the QPFs from the high-resolution runs with coarser operational GFS and NAMQPFs

to verify QPFs for various precipitation accumulation intervals and on two grid configurations with different

resolutions. In general, NAM had the worst performance not only for model skill but also for spatial feature

attributes as a result of the existence of large dry bias and location errors. The finer resolution of NAMdid not

offer any advantage in predicting small-scale storms compared to the coarser GFS. WRF had a large ad-

vantage for high precipitation thresholds. A greater improvement in skill was noted when the accumulation

time interval was increased, compared to an increase in the spatial neighborhood size. At the same neigh-

borhood scale, the high-resolution WRFModel was less influenced by the grid on which the verification was

done than the other twomodels. All models had the highest skill frommidnight to early morning, because the

least wet bias, location, and coverage errors were present then. The lowest skill was shown from late morning

through afternoon. The main cause of poor skill during this period was large displacement errors.

1. Introduction

Numerical weather prediction (NWP; see the appen-

dix for a list of key abbreviations and acronyms used

in this paper) has substantially improved over the past

decades because of improvements in observation datasets

and computation power. Precipitation is one of the key

forecast elements within NWP, as a variety of com-

munities such as agriculture, transportation, airlines,

etc. require accurate forecasts, and are especially in-

terested in as much detail (spatial, temporal) as possi-

ble. Skillful QPFs can provide instructive information

for hydrology forecasters and hydrological models; for

example, skillful QPFs could be input into hydrologic

models before QPE is available, thus improving the

lead time for potentially hazardous flooding situations.

Unfortunately, although the threat score in general for

QPFs has significantly increased in the past 50 years,

the skill of warm seasonQPF has only shown incremental

improvement (Barthold et al. 2015), likely because half of

the warm season precipitation is directly related to me-

soscale forcing mechanisms, and over 80% of the total

rainfall is directly or indirectly associated with thunder-

storms (Heideman and Fritsch 1988). Thus, hydrology

forecasters routinely use only quantitative precipitation

estimates and not QPFs.

Numerous studies have tried to find the limitations of

QPF and methods to improve it. However, the essential

challenge in short- and medium-range QPFs is that nu-

merical models are highly nonlinear, so the uncertainties

of the models are still poorly understood. It is very dif-

ficult to determine which parameter is responsible for a

certain deficiency (Fritsch and Heideman 1989; Cloke

and Pappenberger 2009). QPFs can be largely influ-

enced by different initializations, microphysics, and PBL

schemes (Jankov et al. 2007a,b), and the impact of dif-

ferent physical schemes depends on initialization data as

well as different cases (Jankov et al. 2007a,b). Deep,

moist convection, which can result in severe weather,

requires the accurate forecasts of convective initiation,

which is also a known challenge for both models and

humans.With grid spacings of 3–4 km, models are better
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able to predict the timing of convective initiation, al-

though errors are still common (Kain et al. 2013; Duda

and Gallus 2013; Burghardt et al. 2014). Duda and

Gallus (2013) suggest that upscale evolution is better

forecasted than the initiation.

Many studies have shown that radar data assimilation

has a very obvious positive effect on short-range (#12 h)

QPFs (Xiao et al. 2007; Moser et al. 2015). Although

model runs with radar assimilation, often called hot

starts, are generally too wet in the first 1–2 h, hot starts

show much better performance in spatial attributes and

skill scores than model runs without data assimilation

(cold starts) (Moser et al. 2015). With higher-resolution

initializations and data assimilation, the skill of QPFs

can be improved up to 8–9 h (Sun et al. 2012).

As grid resolution has been refined, an increasing

number of researchers have expressed concern about

the verificationmetrics used to evaluate the performance

of these models. Traditional verification methods, such

as equitable threat score (ETS; also known as Gilbert

skill score), critical success index (CSI), false alarm

rate (FAR), probability of detection (PODY), and fre-

quency bias (FBIAS), have been widely used in the past

several decades. However, many traditional verification

methods are grid-to-grid approaches, so they are sen-

sitive to small-scale position errors. Thus, for high-

resolution models, traditional methods may indicate

lower skill than forecasters would expect from qualita-

tive assessment, as the model improvements are hidden

by the subtle displacement errors.

To better understand the limits on the predictability

of high-resolution QPFs, a large number of new spatial

verification methods have been developed in recent

years. Gilleland et al. (2009) summarized the new veri-

fication methods into four categories: 1) neighborhood,

2) scale separation, 3) object based, and 4) field de-

formation. The first two methods both use a spatial filter

on one or both of the observation and forecast fields.

The last two methods both try to figure out how much

the forecast field needs to be corrected in order to

achieve meaningful skill.

In the present paper, in order to provide more detailed

information on shortcomings that can guide the work

of model developers, a matrix of verification methods

including traditional, neighborhood and object-based

methods is used to verify the performance of QPFs in a

hot-start convection-allowing model and to compare it

with QPFs from two operational models. Fractions skill

score (FSS) and parameters from theMethod for Object-

Based Diagnostic Evaluation (MODE), which are re-

cently proposed neighborhood and object-based methods,

respectively, are the two major approaches used in

this study. These two spatial techniques can provide

comprehensive analysis of the performance of numeri-

cal models over different scales, and for location errors,

intensity errors, structure errors, etc. Convection-allowing

ARW model simulations can help us better understand

the spatial and temporal limits of QPF as it is considered

for hydrologic use.

The verification methods were performed over

9 months during 2013 and covered Iowa and immedi-

ately adjacent areas of other states. The QPFs of the

upper Midwest including Iowa, generally have lower

PODY andCSI values and higher false alarm ratios than

the values in the western and northeastern parts of the

continental United States (CONUS) because there is

less influence from small-scale convective storms in

those areas (Sukovich et al. 2014). Hence, more in-

formation about howQPF skill compares amongmodels

in the central United States, where skill can be especially

poor, can assist forecasters andmodel developers. In this

paper, section 2 describes the model configuration and

verification methodology. Section 3 is the analysis of

model performance via various verification methods. A

discussion and conclusions follow in section 4.

2. Data and methodology

a. Model setup and data description

Version 3.5 of ARW (Skamarock et al. 2008) was run

every 6h (0000, 0600, 1200, and 1800 UTC) in order to

have a better understanding about the limits of pre-

dictability of short-term (12h) high-resolution QPFs

that might be used in hydrology models. The model runs

were initialized using the Advanced Regional Prediction

System three-dimensional variational data assimilation

system (ARPS 3DVAR) and the ARPS Data Analysis

System (ADAS), which are parts of the ARPS (Xue

et al. 1995, 2000, 2003), a regional to storm-scale atmo-

spheric modeling system. Both the 12-km grid-spacing

NCEP NAM (Janjić 2003) and 0.58 3 0.58 NCEP GFS

(EnvironmentalModelingCenter 2003) 0-h analyses from

each model cycle archived from the NOAA’s National

Operational Model Archive and Distribution System

(NOMADS) were used as the first-guess field, and the

NAM and GFS 3-h forecasts were used as lateral

boundary conditions in the ARPS. Note that radar data

were only assimilated at the initialization time, as would

be the case for real-time forecasts. In the present study,

in order to reduce spinup problems normally encountered

in model simulations that simply use output from other

models for initialization, the ARPS 3DVAR and ADAS

assimilated NEXRAD level II radar data from nine

sites located within the domain region were used to ad-

just the initial NAM or GFS background fields. The radar

1364 WEATHER AND FORECAST ING VOLUME 31



reflectivity data were used by a complex cloud analysis

procedure, which is a component of both ADAS and

ARPS 3DVAR, to adjust hydrometeors and cloud fields,

and radial velocity data were analyzed via the three-

dimensional variational scheme. The three-dimensional

cloud and precipitation fields were constructed based on

radar data (Hu et al. 2006; Moser et al. 2015). The nine

sites (Fig. 1) were Aberdeen, South Dakota (KABR);

Lacrosse, Wisconsin (KARX); Des Moines, Iowa

(KDMX); Davenport, Iowa (KDVN); Kansas City,

Missouri (KEAX); Sioux Falls, South Dakota (KFSD);

St. Louis, Missouri (KLSX); Minneapolis, Minnesota

(KMPX); and Omaha, Nebraska (KOAX). The input

radar data covered the entire simulated domain.

The initial conditions created in the ARPS 3DVAR

were then integrated into WRF (hereafter WRF and

WRFGFS for NAM and GFS initializations, respec-

tively). The model domain (Fig. 1) was centered at

41.9168N and 93.3428W with 200 3 200 horizontal grid

points and 4-km cell spacing on a Lambert conformal

map projection. The model top pressure was around

60hPa. The physics parameterizations used in this study

included the two-moment Thompsonmicrophysics scheme

(Thompson et al. 2008), the localMYJ PBL scheme (Janjić

1994) and the New Goddard longwave and shortwave ra-

diation schemes (Chou and Suarez 1994).

The two operational models used for WRF initiali-

zation, NAM and GFS, were also examined using QPF

verification to establish a benchmark to which the WRF

runs could be compared. The NAM differs from the

explicit 4-km WRF simulations in that it includes the

Nonhydrostatic Multiscale Model as the major dynamic

component and also includes the Betts–Miller–Janjić

(BMJ) shallow–deep convection parameterization.

Hourly observed precipitation over the CONUS is as-

similated in NAM (Rogers et al. 2009). The GFS simu-

lates the shallow/deep convection based on the

simplified Arakawa–Schubert scheme. The GFS also

uses a hybrid variational ensemble assimilation system.

NCEP stage IV precipitation data (Lin and Mitchell

2005) were used to represent ground truth in the verifi-

cation process. To be consistent with the WRF simula-

tions, only the first 12 h of the NAM and GFS output

were considered in the present study and compared with

Stage IV data at the corresponding times. The QPFs in

all of the verified models and the Stage IV data were

interpolated into the same domain configuration as the

WRF (Hres) through the Unified Postprocessor using

the budget method, which is able to more accurately

conserve the total precipitation magnitude. In addition,

in order to study the possible effects of interpolation on

various verification metrics, all four types of data were

also interpolated using the budget method as well to a

latitude–longitude map projection with 0.58 3 0.58 GFS

(Lres) resolution, which is roughly around 55km in the

meridional direction and 42.5 km in the zonal direction.

The domain region used for the Lres verification was the

portion of the GFS grid for which data were also available

from theWRF simulations. Note that this 0.58 3 0.58GFS

grid had already been regridded before dissemination to

the public. The native resolution ofGFS is T574 (;27km),

which is finer than 0.58 3 0.5, but it is common to use these

gridded data for research purposes.

b. Verification methods

In this study, five approaches were used to verify the

models including three traditional metrics: ETS, FAR,

and FBIAS, as well as two spatial methods: FSS and

MODE. All of these methods are included in a NWP

verification software package developed by the Develop-

mental Testbed Center (DTC; http://www.dtcenter.org/),

known collectively as Model Evaluation Tools (MET).

The two spatial methods will be particularly emphasized

in the present study. Hourly WRF and stage IV data,

3-hourly NAMandGFS data, and 6-hourly Stage IV data

were summed to 3-, 6-, and 12-h periods as necessary

using the Pcp-combine tool in MET. The verification

techniques were applied to the precipitation accumula-

tion intervals of 1, 3, 6, and 12h.

Traditional grid-to-grid verification methods such as

ETS, FAR, and FBIAS are calculated based on a contin-

gency table (Table 1). Of the total T forecast–observation

pairs, whether or not accumulated precipitation (APCP)

FIG. 1. Domain configuration and the location of nine radar sites

used for data assimilation.
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exceeds a specified threshold is used to determine if an

event is a hit, false alarm, miss, or correct negative. The

ETS is calculated based on the number of points where the

events are correctly forecasted to occur relative to the total

number of points where they are either forecasted or ob-

served. ETS is further corrected by the chance forecasts

(ref), which are the product of forecasted events and ob-

served events, divided by the total counts. The value of

ETS ranges from 21/3 to 1. The FAR represents the frac-

tion of the forecasted events that were not observed. The

FBIAS compares the total number of forecasts and the

number of observations. A perfect forecast would have an

ETSof 1, FARof 0, andFBIASof 1. The formulas of ETS,

FAR, and FBIAS are defined as

ETS5
N

H
2 ref

N
H
1N

FA
1N

M
2 ref

, (1)

ref5
(N

H
1N

FA
)(N

H
1N

M
)

T
, (2)

FAR5
N

FA

N
H
1N

FA

, and (3)

FBIAS5
N

H
1N

FA

N
H
1N

M

, (4)

where the different subscripts forN represent the counts

of hitsNH , false alarmsNFA, or missesNM (Table 1). For

FBIAS, it is possible that the count of a forecast event is

hundreds of times larger than the number of occurrences

that may be a very small value, yielding an enormous

FBIAS that would inflate the mean FBIAS in a mis-

leading way. Hence, the counts of events used in the

formula above are the total counts of the 9 months

rather than the counts of each 3-h run. To maintain

consistency with FBIAS, ETS and FAR are both cal-

culated by the total counts of hits, false alarms, and

misses during the 9-month period. The traditional scores

(shown later; see Fig. 5) were calculated using these

summed contingency tables based on Eqs. (1)–(4). Note

that the ETS, FAR, and FBIAS results are related to

each other based on the contingency table.

The thresholds used to generate binary fields in tradi-

tional methods as well as to define events in FSS and

MODEwere 0.254mm(0.01 in.), 2.54mm(0.1 in.), 6.35mm

(0.25 in.), and 12.7mm (0.5 in.), so the verification methods

cover a range from light to relatively heavy intensity.

FSS is a neighborhood verification method developed

by Roberts and Lean (2008) and further discussed by

Roberts (2008) and Mittermaier and Roberts (2010). It

is normalized based on fractions Brier score and is able

to show how forecast skill varies with different spatial

scales and thresholds. FSS is calculated in the following

three steps. First, both forecast F and observation O

fields are transformed into binary fields. A grid box will

have the value of 1 if APCP exceeds a specified

threshold; otherwise, it will have a value of 0. Although

APCP is the only variable that will be verified forQPF in

this research, other variables such as wind speed and

radar reflectivity can also be verified using FSS. Second,

the fraction of each grid point (i, j) in the binary obser-

vation field O(i, j) [or forecast field F(i, j)] is generated

from the neighborhood square centered in (i, j). The

fraction (PO(L)
or PF(L)

) is calculated by the number of

grid boxes having the value of 1 over the number of all

grid boxes within the neighborhood square. For exam-

ple, as shown in Fig. 2, the fraction of (i, j) in the ob-

served field is PO(5)(i, j)5 5/25, and the fraction of (i, j)

in the forecast field is PF(5)(i, j)5 6/25. Third, FSS is

calculated using the following formula:

FSS
(L)

5 12

1

N
(L)

�
N(L)

(P
O(L)

2P
F(L)

)2

1

N
(L)

"
�
N(L)

(P
O(L)

)2 1 �
N(L)

(P
F(L)

)2
# , (5)

TABLE 1. The 2 3 2 contingency table of four possible outcomes of a forecast of accumulated precipitation.

Total events

T 5 NH 1NFA 1NM 1NCN

Observation

Yes No

Forecast Yes Hit (NH) False alarm (NFA)

No Miss (NM) Correct negative (NCN)

FIG. 2. A visual illustration of how the fraction is computed at the

neighborhood scale of five grid lengths (see text). The grid boxes

shaded in gray are those where the APCP of the grid box exceeds

the specified threshold.

1366 WEATHER AND FORECAST ING VOLUME 31



where N(L) is the number of valid neighborhoods at the

neighborhood scale of L. The forecasts can be regarded

as reasonably skillful when FSS reaches up to 0:51 f0/2

according to Roberts and Lean (2008). The f0 is a sample

climatology variable known as base rate (BR), which

represents the fraction of event occurrences over the

whole domain in the binary raw observation field without

smoothing; in other words, f0 is the climatological chance

of precipitation happening, so it is also used to represent

random skill. Because FSS is calculated through a fuzzy

box, some displacement errors considered as misses or

false alarms in a traditional contingency table can be

considered hits as long as the displacement happened

within the neighborhood square.

In this study, in order to show how skill varies with

scale, an arithmetic sequence of neighborhood sizes, 5,

9, 13, . . . , 101, was used for smoothing. Fractions were

not calculated if part of a neighborhood square was

outside of the domain boundaries. It is acknowledged

that hydrology applications are more concerned with

smaller scales rather than a fuzzy box containing 101 3
101 pixels, which was around a quarter of the whole

domain. However, the spatial scale is an essential pa-

rameter determining the variation of FSS, so the ex-

tension of neighborhoods to these larger sizes can

provide more information about the trend of FSS curves

and give some guidance about the choice of a reasonable

scale interval for hydrology applications.

MODE is a feature-based verification methodology

based on Davis et al. (2006a,b) and Davis et al. (2009).

Many features of matched pairs between model simula-

tions and observations can be investigated using MODE,

such as centroid distance (CD), boundary distance, in-

tensity sum (IS; total rain volume), angle orientation,

areal coverage, etc. The raw forecast and observation data

are convolved using a circular filter with a specified radius.

Because a five-gridpoint radius was recommended by

Davis et al. (2006a) for practical use, in order to avoid too

much smoothing, this specified radius was applied to

generate convolved fields in the present study. Then, the

APCP falling within the circular region is averaged to get

the convolved field. The filtered regions used for feature

comparisons can be obtained after the threshold of

2.54mm, which is a moderate threshold for 3-h QPFs, is

applied on the convolved field. The raw data within fil-

tered regions is restored to get simple objects that are

individual objects without matching or merging into

cluster objects. Figure 3 provides an illustration of the

MODEoutput and howMODEgenerates simple objects.

MODE can show location and structure errors of

precipitation objects. The same thresholds were applied

to MODE as was done with FSS to convolved fields to

determine the boundaries of filtered regions. Many

spatial features were collected to define a single number

called the total interest. The value of total interest

ranges from 0 (least agreement) to 1 (perfect agree-

ment) to compare the similarity of two objects, and it

was a weighted average of the following attributes: the

centroid distance, the boundary distance, the convex

hull distance, the orientation angle difference, the object

area ratio, the intersection divided by the union area

ratio, the complexity ratio, and the intensity ratio. In the

present study, the relative weight of each attribute used

the default setting in MET (Halley-Gotway et al. 2014).

The displacement errors including centroid distance and

boundary distance were weighted the greatest in the

calculation of total interest. Two simple objects of

forecast and observation fields had the chance to be

defined asmatched pairs only whenCDwas smaller than

50 grid points. Furthermore, object pairs would be

matched when their total interest values were above 0.7.

The normalized differences of IS and areal coverage are

used to link the feature attributes in forecast and obser-

vation fields for the MODE analysis. The IS difference of

the whole domain (ISD) is presented in the following as

an example to show the form of normalization:

ISD5
IS

F
2 IS

O

1

2
(IS

F
1 IS

O
)

, (6)

where ISF and ISO represent the total IS (in mm) over

the whole domain in the forecast and observation fields,

respectively. Besides the ISD, IS differences for matched

pairs (ISDPs), areal coverage difference (in grid squares) of

the whole domain (AD), and areal coverage difference for

matchedpairs (ADP) are also normalized using the formof

the formula above.

Statistical significance t tests of pairwise differencing

were performed at the 95% confidence level for all the

means in the FSS and MODE analyses. The means of

two models can be regarded as statistically significantly

different if 0 is not included in the confidence interval

(CI) of pairwise differencing (i.e., p value # 0.05).

3. Analysis and results

a. Climatology distribution

Before presenting results from various skill metrics,

some general rainfall characteristics of the forecasts will

be discussed. A climatological frequency distribution of

domain-averaged 12-h APCP (Fig. 4) suggests that

WRF underpredicted and NAM overpredicted the

number of null precipitation cases; these errors reduce

the skill scores. The underprediction and overprediction

of null precipitation can partly explain the wet bias of
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WRF and dry bias of NAM, respectively. The over-

prediction of NAM may be caused by the triggering

function of the BMJ cumulus scheme. Studies have

shown that the BMJ scheme may trigger insufficiently

often during the warm season (Xue et al. 2001). For

heavy precipitation cases, WRF was the only model to

suggest the true magnitude of heavy rain even though it

still underpredicted the frequency of the heavy rainfall

cases; NAM and GFS largely underestimated the rain-

fall amount and especially greatly underestimated the

potential for more substantial rainfall amounts ranging

from moderate to sufficient to cause severe flash floods

[defined here to be the rightmost part (.6.35mm) of

each plot in Fig. 4]. The underestimation of the pre-

cipitation amount for heavy precipitation cases could be

the result of the coarse effective resolution of NAM and

GFS, because the coarse-resolution models cannot re-

solve well small-scale features and that fact, combined

with deficiencies in the convective parameterizations,

might prevent the production of higher precipitation

amounts. The dry bias of NAM, which likely resulted in

the low skill at moderate and high thresholds, was the

most outstanding issue seen in the climatology.

b. Traditional verification methods

Traditional point-to-point verification methods are

widely used to determine whether simulations can be

regarded as ‘‘good’’ forecasts. Although traditional

methods are sensitive to subtle displacements and de-

formations, they are applied on the raw fields without

smoothing or convolving, so fewer tunable parameters

influence the results. Because a 3-h accumulation in-

terval is the minimum common temporal resolution for

the three models, it is the primary accumulation interval

that will be used in the following analysis. Diurnal var-

iations of ETS [Eq. (1)], FAR [Eq. (3)], and FBIAS

FIG. 3. An example of MODE output of (from left to right) WRF, NAM,GFS, and Stage IV valid for the period 1200–1500UTC 9Mar

2013, with model runs initialized at 1200 UTC 9 Mar 2013. (top) The forecasted and observed raw precipitation fields. (middle) The

identified simple objects and (bottom) the denoted object index. The objects and index in the same color between different model fields

indicate that these objects are matched, while the objects that are colored royal blue are unmatched.
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[Eq. (4)] using a low threshold of 0.254mm and a high

threshold of 6.35mm are documented in Fig. 5. The

oscillation of ETS for WRF indicates model skill

changing with lead time, because all peaks occurred

during the 0–3- and 6–9-h periods of each simulation,

with lower scores in the 3–6- and 9–12-h periods. Moser

et al. (2015) noted that the skill of hot runs decreased

from a high value during the first 3 h and became steady

during 6–12h, a result that explains the periodic oscil-

lation evident every 6 h in the 3-h verification methods

(since WRF was run every 6 h in the present study).

Ignoring the peak values in the first 3 h when the data

assimilation in the WRF runs substantially increased

scores,WRF did not show large advantages over the two

operational models.

ETSs for NAM did not shown any advantage com-

pared with GFS, even though the NAM output is from a

much finer grid, suggesting that the interpolation from

the NAM grid to the 4-km WRF grid might not be the

major reason for the low skill. For GFS, the interpola-

tion to Hres results in the extension of light precipita-

tion near objects’ boundaries, potentially explaining

the much higher values of FAR (Fig. 5) and hit rate (not

shown here) at the lowest threshold. In general, models

had the higher ETSs during the early morning (0300–

1500 UTC) and the lower skill during the late afternoon

(1500–0000 UTC), but the portion of the false alarm

became larger from morning to afternoon, resulting in

the decrease of model skill. At the low threshold, WRF

had the lowest value of FAR, but the FAR of WRF was

the greatest at the high threshold. FBIAS ofWRF at the

high threshold also showed a similar result with a value

much higher than the two other models and also much

higher than 1.0. Thus, for large thresholds, WRF

FIG. 4. Frequency distribution of domain-averaged 12-h accumulated precipitation (mm) from March to No-

vember. The leftmost bin represents cases with no precipitation. The numbers above each bar in the plots of WRF,

NAM, and GFS refer to the differences in bin counts from that for the Stage IV data.
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forecast precipitation too frequently, especially in the

afternoon. In addition, the difference in FBIAS between

WRF and the operational models was even larger than

the difference in FAR, indicating that besides false

alarms,WRF also might have a higher proportion of hits

and a lower proportion of misses at the large threshold.

The much larger FBIAS of GFS at the low threshold

indicated that the GFS forecasted too frequently at low

thresholds, which can also be explained by the large area

of light precipitation resulting from the coarse resolu-

tion. However, for large thresholds, precipitating grid

points in NAM and GFS were not forecasted frequently

enough (FBIAS, 1). The ETS and FBIAS computed in

the present study are comparable with the values found

inWolff et al. (2014), and several studies (Yang 2012a,b;

Wolff et al. 2014) also found that the NAM had a sig-

nificantly lower ETS and higher FBIAS than GFS.

Because of the likelihood that interpolation impacted

the model skill scores, ETS, FAR, and FBIAS of

3-hourly aggregated QPFs were also computed on Lres

using the threshold of 2.54mm (Fig. 6), which is a

moderate threshold for 3-h QPFs. In general, when all

models were verified on the coarser-resolution grid,

WRF showed a larger advantage for ETS even though

GFSwas now being verified on its own grid. This result is

likely because the small-scale systems simulated by

WRF were more realistic than those shown in the

coarser-resolution operational models, and is also partly

because the parameterized NAM and GFS could not

resolve meteorological features explicitly. NAM and

GFS differed little no matter which verification grid was

used. For FAR and FBIAS, both NAM and GFS

showed slightly higher values on Hres than Lres, but

WRF had higher FARs on Hres than Lres, while the

opposite was true for FBIAS. This suggests that the

portion of hits increased while the portion of misses

decreased on Lres. In general, models evaluated on Lres

showed higher skill than on Hres. With traditional

grid-to-grid metrics, it is often more difficult for high-

resolution simulations to reach the same level of accu-

racy as low-resolution model runs because smooth

features tend to be rewarded, and finescale details are

penalized if spatial or temporal errors exist. Thus, it

FIG. 5. Diurnal variations (UTC, along the x axis) of 3-h ETS, FAR,

and FBIAS for the thresholds of 0.254 and 6.35mm.

FIG. 6. Diurnal variation (UTC, along the x axis) of ETS, FAR,

and FBIAS for the threshold of 2.54mm on the WRF (Hres) and

GFS (Lres) grids.
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makes sense that Lres generally was more skillful than

Hres considering the combined analysis of ETS and

FAR, especially for WRF.

c. FSS analysis

To examine model performance with the increased

horizontal and temporal scales, the mean FSS was

computed, aggregated to various accumulation intervals

over the whole 12-h simulation period (Fig. 7), using

different thresholds. The mean BRs of 3-, 6-, and 12-h

QPFs at 0.254mm and 12-h QPFs at 2.54mm are also

shown in Fig. 7. The useful skill is given by 0:51 f0/2. For

other temporal accumulations and thresholds, useful

skill can be approximated to be 0.5 because of the low

mean BR over the 9 months. However, for larger

thresholds such as 6.35 and 12.7mm, almost none of the

accumulation intervals and scales were as high as 0.5,

and for moderate thresholds such as 2.54mm, only

12-hourly QPFs of WRF at scales over 80 grid spacings

could reach this useful skill value.

The FSS curves spanning 9 months (Fig. 7) show that,

in general, the high-resolution WRF Model performed

better than NAM and GFS, but the coarser GFS had

better performance than NAM, partly as a result of the

dry bias of the NAM. For low and moderate thresholds

such as 0.254 and 2.54mm, the superiority of WRF was

not obvious and the skill of GFS was comparable with

WRF for the threshold of 2.54mm and the 12-h time

accumulation, and this phenomenon was true particu-

larly for the smaller neighborhoods. However, WRF

FIG. 7. Mean FSSs of 1-, 3-, 6-, and 12-h (01, 03, 06 and 12 in the legend) accumulation intervals for the three

models (colored curves) as a function of neighborhood size (in grid units) for four rainfall thresholds. The yellow,

blue, and green dotted lines represent the BRs of 12-, 6-, and 3-h accumulation intervals.
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showed an advantage for higher thresholds, and the

improvements of the scores compared with other

models were as large as 0.05–0.1. Because of the better

performance of GFS, WRFGFS was also evaluated in

the experiment in order to check whether a better ini-

tialization applied to WRF would improve the QPF

skill. However, skill scores for WRFGFS did not differ

much compared with WRF (not shown here), so these

different initializations did not have large effects on the

high-resolution model QPF of this 9-month period

making use of radar data assimilation.

Comparedwith NAMandGFS,WRF showed a larger

improvement when increasing the horizontal scales,

suggesting that the main issue for high-resolution

models is that they are challenged at small spatial

scales, especially for larger thresholds. Moreover, the

improvement of FSS from 5 to 101 fuzzy lengths did not

have much difference for 3-, 6-, and 12-h accumulation

intervals. For example, the increase in FSS with spatial

scales at a 3-h interval was similar to the increase with

scales at a 12-h interval. In addition, doubling the time

intervals led to a larger skill improvement than doubling

the neighborhood scales regardless of the model exam-

ined. With the increased neighborhood sizes, more and

more grid cells affect the calculation so that each cell

has a smaller impact in the calculation than it would in

smaller neighborhoods. However, with the increase in

time intervals, no such diminishing of the importance

of a cell occurs, since the threshold is fixed. Thus, the

increase of FSS with increasing spatial scales at the same

time interval was smaller than the increase of FSS with

increasing time intervals at the same neighborhood size.

For the purpose of increasing simulation QPF skill, an

increased accumulation time interval is more important

than increased spatial scales.

Because 3-hmean FSS failed tomeet the threshold for

useful skill, an appropriate criterion is needed to select a

reasonable neighborhood scale for further analysis. For

the threshold of 2.54mm, FSS had a higher rate of in-

crease within 25 smoothing scales than it did for larger

scales, and this higher rate also existed for other time

intervals and thresholds. This behavior is consistent with

Wolff et al. (2014) and Mittermaier et al. (2013). Fur-

thermore, at the scale of around 25 grid lengths, FSS

reached half of the total FSS augmentation within the

neighborhood scales used in this study [i.e., FSS(25) ’
0:5(FSS(5) 1FSS(101))]. Moreover, this neighborhood

scale did not cause too much smoothing and, thus, was

used in the QPF skill analysis to be discussed next.

Diurnal cycles of QPF skill using a 3-h time interval

and a 2.54-mm threshold are shown in Fig. 8. Hourly

FSS of WRF is also shown in order to provide addi-

tional detail on variations with lead time. Similar to the

point-to-point verification methods, FSS for NAM and

GFS did not exhibit statistically significantly obvious

variations with lead time. The FSS results of NAM and

GFS in the present study are about 0.05–0.1 lower than

the FSS for the CONUS suggested byWolff et al. (2014).

This difference seems reasonable because many factors

can influence FSS; for example, it is challenging to ac-

curately predict strong convection in the central plains,

and Wolff et al. (2014) only examined 0000 UTC ini-

tializations. The dry bias of NAM existed all day long

except for a short period in the afternoon, while the wet

bias of WRF and GFS existed for the entire day except

during the early morning according to the 9-month ac-

cumulated domain-averaged APCP (DAP). The lowest

skill happened when the rain volume did not show large

bias errors (late morning, 1500–1800 UTC), so dis-

placement or area/shape errors are likely the main

cause. In the afternoon (1800–2400 UTC), the largest

diurnal wet biases were found inWRF and GFS, but the

FSS results for GFS and NAM had increased compared

to the previous 3h. Compared with night and morning,

both the 3-h FSS of all models and the 1-h FSS of WRF

showed that WRF did not lose skill during 2100–

0000 UTC as might be expected because of the variation

with lead time indicated by hourly WRF FSS. However,

ETS (Fig. 5) suggested a lower level of skill compared

with late morning, so whether the intensity error was the

FIG. 8. Diurnal variation (UTC, along the x axis) of DAP (mm),

and 3-h FSSs of three models as well as 1-h FSS of WRF at

a threshold of 2.54mm and a 25-grid-space neighborhood size. The

x–y curves in the middle plot show the results of statistic tests of

pairwise differencing between WRF, NAM, and GFS.
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main barrier for skill improvement and why FSS and

ETS showed conflicting results needs to be studied

further.

Higher scores for Lres (Fig. 6) may be due to the

larger amount of smoothing, which increases model skill

as indicated by Fig. 7. Hence, FSS of Lres at the neigh-

borhood scale of 5 grid lengths, which is 275km in the

meridional direction and 212.5 km in the zonal direction,

was compared with Hres at the scale of 69 grid spacings,

which is 276 km in both directions. The FSS ofmodels on

the Lres grid (Fig. 9) was about 0.02–0.04 higher than the

FSS on the Lres grid. The neighborhood scale of Lres is

slightly smaller than that of Hres, so the higher skill of

Lres than Hres is even more noteworthy than if the two

neighborhoods had exactly the same scale. In addition,

the model interpolated from the finest resolution, the

WRF, showed a smaller difference between Lres and

Hres, implying it was less influenced by the choice of the

interpolation grid. FSS of GFS on the Lres was statisti-

cally significantly different from the FSS on the Hres.

WRF and NAM had comparable time periods when the

FSS were not statistically significantly different between

Hres and Lres. However, at 0000–0300 and 0300–

0600 UTC, WRF FSS differences were 0.005 while

NAMwas 0.03 and GFS was 0.025. The FSS of GFS was

much increased on its own coarse grid, but the NAM still

had the worst performance on both of the two grids.

However, forWRF at the same neighborhood scale, FSS

was not influenced as much as traditional methods were

by the grid on which verification was done.

d. MODE

1) INTENSITY SUM

Intensity is often the item of most interest related to

QPF, particularly for potential flood events. The

3-hourly QPF periods were also used to obtain feature

attributes from MODE. More than 4000 forecasts of

each model were used to study the attributes of IS dif-

ference, location errors, and areal coverage. The diurnal

variations of mean normalized 3-h ISD [Eq. (6); Fig. 10]

of WRF and NAM showed the same characteristics as

DAP (Fig. 8), with WRF having the smallest wet bias

during 0600–1500 UTC and NAM having the smallest

dry bias during 1500–0000 UTC.WRF had an increasing

wet bias during 1500–0000 UTC and reached a peak

FIG. 9. Diurnal variation (UTC, along the x axis) of 3-h mean

FSSs for Hres (red) and Lres (blue) verification grids at the

smoothing sizes of 69 (Hres) and 5 (Lres) grid spacings, re-

spectively, for the threshold of 2.54mm. The bottom plot shows the

statistic tests of pairwise differing between the skill scores on the

Hres and Lres.

FIG. 10. Diurnal variation (UTC, along the x axis) of normalized

ISD, and ISDP of 3- hourly QPFs. The bottom of each plot shows

statistical tests of pairwise differencing.
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value during 2100–0000 UTC. DAP of GFS also

showed a wet bias for most times, which was even

comparable to WRF, but the ISD of GFS was statisti-

cally significantly smaller than the ISD of WRF all day.

Even though the wet bias of DAP became larger during

1500–0000 UTC, ISD still showed a negative value (or

close to 0) because GFS had largely overpredicted the

number of light and moderate cases indicated by the

rainfall frequency distribution (Fig. 4). Hence, in gen-

eral, GFS underpredicted the IS for 3-hourly QPF, de-

spite the wet bias shown in DAP.

MODE produced a large number of attributes for

matched pairs linking the model and observation fields,

and these attributes can be used for more detailed

comparisons of single storms. The ISDP [Eq. (6)] curves

(Fig. 10) showed the normalized bias for each matched

pair in the forecast–observation fields. The statistically

significantly largest ISDP for GFS and the positive value

for NAM suggest the coarse-resolution models did not

have the capability to simulate localized storms, so the

smaller objects in the observation field were matched

with large forecast rain regions, which will be more

comprehensively discussed in the section 3d(3). Even

though the ISD ofWRF kept increasing during the 1500–

0000 UTC period, the ISDP curve did not show the

same increasing trend and even decreased during this

period. In other words, during the afternoon (1800–

0000 UTC), WRF still performed well for the matched

objects. However, those unmatched objects could con-

tribute to the wet bias shown in ISD and DAP. The un-

matched objects may be caused by the overprediction/

underprediction of storms, which is also supported by

Burghardt et al. (2014), and the possible existence of

substantial location errors, because CD is the pre-

condition and a necessary parameter for matching. It is

also possible that other factors may also contribute to the

low skill. During 0600–0900UTC,GFS andWRF had the

least ISDP bias, consistent with the high model skill

shown for both models in FSS and ETS at this time.

2) LOCATION ERRORS

The feature attributes from MODE are analyzed

based on simple objects from the convolved fields. WRF

had the largest number of objects (Fig. 11), likely be-

cause the finer resolution is able to simulate objects of

smaller scales. Compared with the Stage IV data, WRF

performed very well before 1300 central daylight time

(CDT; 1800 UTC). However, in the afternoon, the

number of objects predicted byWRFwas almost double

that of the observations. It should be noted that the GFS

produced a few more objects than NAM. Although

NAM was run at a finer resolution, it did not show an

advantage in producing small-scale storms.

The maximum CD, used to determine whether the

objects in the model and observation fields could be

matched, was set to be 50 grid spacings, which was a

quarter of the length of the entire domain, so the po-

tential for substantial location errors may be one pos-

sible reason for the unmatched objects. The bottom plot

in Fig. 11 is the percentage of unmatched forecast and

observed simple objects. Both the WRF and GFS

reached a peak value between 1500 and 1800 UTC, in-

dicating that many forecasted and observed objects

might be unable to be matched because of location er-

rors; however, the NAM simulations behaved differ-

ently. The NAM had the highest percentage of

unmatched objects, but the percentage reached a rela-

tive minimum during 1800–2100 UTC.

Even though the percentage of unmatched objects in

WRF kept decreasing from 1800 to 0000 UTC, there

were still a large number of objects that could not be

matched because of the large counts of simple objects.

An examination of the magnitude of matched pairs

shows that the magnitude of IS of an individual object

predicted by WRF was highly accurate, but the over-

prediction of storms, especially for those storms that

were far away from the observations, resulted in the wet

bias of DAP and ISD.

The diurnal curves of the distance of the highest in-

tensity (HID) and the mean of CD of matched simple

FIG. 11. Diurnal variation (UTC, along the x axis) of the number

of simple objects of Stage IV, WRF, NAM, and GFS fromMODE

and the percentage of unmatched objects. The percentage is cal-

culated as the sum of simple unmatched objects in the forecast and

observation fields over the total number of objects in the forecast

and observation fields.
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objects are also shown in Fig. 12. HID was calculated

using the locations of the grid points that had the highest

intensity over the whole model and observation do-

mains. If there was more than one grid point sharing the

same highest intensity, the distance used was the mean

distance of all the combinations of model–observation

grid pairs. The highest intensity of QPF is an indicator of

the location of the most intense part of the convective

systems, which would be the region with an increased

probability of flash floods or severe thunderstorms.

While CD can be greatly influenced by a large region of

light precipitation, HIDwas not restricted within 50 grid

spacings, so it is necessary to compare HID to CD. In

Fig. 7, the increased rate of FSS began to plateau around

25 grid spacings (;100km). The CD also suggested a

baseline of predictive skill around the scale of 100 km.

Although WRF had a large mean CD, the HID showed

that the location errors of WRF were not statistically

significantly larger than NAM and GFS. From the

curves of HID and CD, the location errors of all three

models increased during 1500–0000 UTC, which was the

main reason for the low ETS during that period, and

the FSS had not kept decreasing with lead time during

1800–0000 UTC. The displacement can be corrected

when the verified box is upscaled but the displacement

reduces the skill scores for grid-to-grid verification

methods. Both plots in Fig. 12 showed that displacement

errors of WRF had an obvious variation with lead time,

which was possibly an artifact of the radar data assimi-

lation. In general, from midnight to early morning

(0600–1500 UTC), the models tended to have smaller

displacement errors.

3) AREAL COVERAGE

The diurnal mean normalized AD and ADP [Eq. (6);

Fig. 13] showed a strong correlation with ISD

(Fig. 10), with higher AD during 1500–0000 UTC and

lower AD during 0600–1500 UTC. Though the WRF

generally overpredicted ISDP, ADP showed that the

FIG. 12. Diurnal variation (UTC, along the x axis) of HID and

CD (km). The bottom of each plot shows statistical tests of pairwise

differencing.

FIG. 13. Diurnal variation (UTC, along the x axis) of AD and

ADP (grid squares). The bottom of each plot shows statistical tests

of pairwise differencing.

AUGUST 2016 YAN AND GALLUS 1375



WRF had a very small coverage bias, suggesting that

objects from WRF were much more intense. As with

IS, especially in the local afternoon hours, the phe-

nomenon of high AD with low ADP for WRF was

contributed to by the existence of unmatched model

objects and the overpredicted storm counts. The

statistically significantly higher ADP for the NAM

and GFS simulations was a result of the coarser res-

olution not being able to produce small-scale objects,

which is consistent with the higher ISDP for NAM

and GFS.

4. Conclusions and discussion

Multiple verification metrics were applied in this

study to examine the skill of QPF obtained from

convection-allowing ARW runs and to compare it with

the skill of two coarser-grid operational NWP models

for a small domain centered over Iowa. The ARW was

run fromMarch through November 2013 with 4-km grid

spacing to better understand the limits of predictability

of short-term (12h) QPFs that might be used in hy-

drology models. WRF runs used both NAM and GFS

output as the first-guess fields in the ARPS 3DVAR

system, and then radar data were assimilated. Several

verification methods were used to compare the QPFs

from the three models. NCEP Stage IV precipitation

data were used to represent ground truth in the verifi-

cation process. WRF, NAM, GFS, and Stage IV output

were interpolated using a water budget preservation

approach to both the 4-km WRF grid and the roughly

55-km GFS grid. Additional diagnostic information was

obtained from the relatively newly developed neigh-

borhood and object-based techniques of FSS and

MODE, respectively. These two spatial methods pro-

vided some additional guidance on specific issues of in-

terest such as horizontal and temporal scales, intensity

and location errors, coverage errors, and hit rates, among

others, for the precipitation systems.

QPF skill was rather poor, using standard definitions

for FSS, in all three models tested. Only the 12-h QPF of

WRF at or smaller than the threshold of 2.54mm was

able to reach the uniform skill threshold. For the

threshold of 2.54mm, 12-h QPFs could be reliable at the

scale of 320km. However, the threshold of 2.54mm is

too light for hydrology concerns for 12-h QPFs, and the

scale of 320 km causes more smoothing than desired. At

the scale of 100 km (25 grid squares), FSS began to

plateau, and the FSS here was roughly half of the total

FSS augmentation, so this scale was used formore detailed

skill evaluation. Itwas found thatQPF skill increasedmore

as the accumulation time interval increased than for in-

creased spatial scale.

In general, NAM performed the worst among the

three models evaluated in this study, not only for model

skill over the full domain but also for characteristics of

spatial features. A large DAP dry bias and substantial

location errors existed for almost the entire forecast

period. Besides the insufficient trigging of the BMJ

scheme (Xue et al. 2001), Wang et al. (2009) also found

the NAM to underpredict the rainfall amount and in-

dicated that the NAM is unable to generate atmospheric

moisture sufficiently over the central CONUS, which

results in too weak convergence of the water vapor flux.

In addition, the finer resolution of NAM did not show

any advantages in predicting small-scale storms than the

GFS. The high-resolution WRF model had a much

higher skill for larger thresholds, and this was not only

indicated by the neighborhood method but also was

suggested by traditional techniques, which usually fa-

vor the smoother forecast fields of coarser-resolution

models. In addition,WRFhad the smallest displacement

errors and was able to most correctly forecast the in-

tensity magnitude of simple objects. The better perfor-

mance of WRF in these aspects may show the

importance of running convection-allowing models to

obtain the most accurate QPFs. WRF was able to

simulate localized storms, but the WRF was generally

too widespread with precipitation in the afternoon,

resulting from an overprediction of storm counts.

Besides better skill scores, WRF also performed bet-

ter with object intensity magnitude, areal coverage,

and the location of most intense part of the systems.

Considering the possibility that the high skill of

GFS was an artifact related to the large amount of

smoothing to get its output onto the WRF grid, the

verification was also performed on a low-resolution

grid. However, the NAM still showed the lowest skill

on the Lres grid. The scores for the high-resolution

WRF model were less influenced by the grid on which

the verification was done.

Overall, the models had the highest skill from mid-

night to early morning. Because this period had the

smallest bias, location, and coverage errors, all three

models were able to correctly forecast the frequency of

events and had fewer false alarms, resulting in the most

reliable QPF over the entire day during this period. One

possible reason is that convective systems are larger

scale and more organized at night, while initiation is

a known difficulty in models, and that is more likely

in the afternoon. The lowest skill occurred from late

morning to afternoon, but at the same time, the NAM

and GFS had the least dry bias and areal coverage er-

rors while the WRF had small intensity and coverage

errors in the afternoon. For hydrological use, in order

to obtain skillful QPFs during this period, besides the
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overprediction/underprediction of storm numbers, more

attention should be paid to the large location errors. The

displacement errors started to grow in late morning and

reached a peak value during the late afternoon. Because

the displacement errors can be partly corrected with the

increasing of scales, FSS did not keep decreasing in the

late afternoon.

The present study is a preliminary exploration of the

evaluation of QPF from models using multiple verifi-

cation methods, and additional work is needed. Future

work should be performed using a much larger domain.

Additional analysis is needed to determine why all of the

models have large displacement errors in late morning

and afternoon over the Iowa region and how to fix the

errors. Are these predicted storms displaced behind

(possibly because they formed too slowly) or ahead of

(formed too rapidly) the observations? Moreover, ap-

proaches that would reduce the overprediction of the

number of convective systems in WRF should be in-

vestigated. These approaches could also help to fix the

overestimation of DAP.
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APPENDIX

Key Abbreviations and Acronyms Used in This
Paper

AD The normalized areal coverage difference

(in grid squares) of the whole domain

between the observed field and the fore-

casted field

ADP The normalized areal coverage difference

of the two simple objects had beenmatched

between the observed field and the fore-

casted field

APCP Accumulated precipitation (mm)

BR Base rate

CD Centroid distance (km) of two matched sim-

ple objects

CI Confidence interval

CSI Critical success index

DAP Domain-averaged APCP accumulated over

9 months

ETS Equitable threat score (also known as Gilbert

skill score)

FAR False alarm rate

FBIAS Frequency bias

FSS Fractions skill score

HID Distance between the highest intensity

point in the observed and forecasted

fields

Hres High-resolution model simulation, using

the same domain configuration as in

WRF

IS Intensity sum, also known as total rain

volume (mm)

ISD Normalized IS difference of the whole do-

main between the observed field and the

forecasted field

ISDP Normalized IS difference of the two sim-

ple objects had been matched between

the observed field and the forecasted

field

Lres Low-resolution model simulation, using the

same domain configuration as in GFS

MET Model Evaluation Tools

MODE Method for Object-Based Diagnostic

Evaluation

NWP Numerical weather prediction

PODY Probability of detection

QPF Quantitative precipitation forecast

WRFGFS QPFs using the initializations and lateral

boundary conditions as in GFS
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