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Abstract

In this paper we address two issues common to the analysis of large spatial datasets. One is the

modeling of non-stationarity, and the other is the computational challenges in doing likelihood

based estimation and kriging prediction. We model the spatial process as a convolution of indepen-

dent Gaussian processes, with the spatially varying kernel function given by the modified Bessel

functions. This is a generalization of the process-convolution approach in Higdon et al. (1999),

which used Gaussian kernel to obtain a closed-form non-stationary covariance function. Our model

can produce processes with richer local behavior similar to the processes with the Matérn class

of covariance functions. Since the covariance function of our model does not have a closed-form

expression, direct estimation and spatial prediction using kriging is infeasible for large datasets.

Efficient algorithms are proposed and implemented for parameter estimation and spatial predic-

tion. We compare our method with method based on stationary model and moving window kriging.

Simulation results and application to a rainfall data show that our method has better prediction

performance.

KEY WORDS: kriging, local linear smoothing, Matérn covariance function, tapering, the

modified Bessel function.



1 Introduction

Spatial modelling has seen increased usage in a variety of disciplines such as geophysics, envi-

ronmental science, and ecology, where the physical process of interest are observed at irregularly

spaced locations, and the basic problem is to do spatial prediction. It is now more common to

have datasets which are large in size and have spatially varying dependence structure, both of

which present changelings to the traditional geostatistical approach which is based on stationarity

assumptions, and has difficulty dealing with datasets of size more than a few hundreds due to

computationally intensive methods for parameter estimation and prediction.

A motivating example is the precipitation dataset (Groisman, 2000), which has daily precipi-

tation observations between 1948 to 1999 from 5837 irregularly spaced stations across the United

States. Precipitation is influenced by many factors such as local geology, prevailing wind direction,

elevation, and latitude. Thus it may not be reasonable to assume that the covariance structure of

the precipitation fields are stationary in space. A scientifically interesting problem is to spatially

predict the precipitation fields on a regular grid, which can be used as input to other numerical

models for climate or air quality forecasting. A similar dataset has been analyzed in Nychka et al.

(1999) using a multi-resolution nonstationary model and Im et al. (2007) using a non-parametric

stationary model.

The need to model nonstationary spatial processes has long been recognized in the field of

statistics. Haas (1990) used a moving window kriging method to model acid deposition, which

uses only data in a local window to do both estimation and prediction. This approach alleviated

the nonstationarity problem and is computationally efficient. However, it does not produce a

coherent spatial model for the whole region, which makes it difficult to include covariates. Sampson

and Guttorp (1992) used a nonlinear geographic transformation of a stationary field to generate
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nonstationarity, and proposed to estimate the transformation using thin plate splines. Higdon

et al. (1999) and Fuentes and Smith (2001) described methods to generate nonstationarity using

integrals of simple random fields, and Paciorek and Schervish (2006); Stein (2005) and Pintore and

Holmes (2003) discussed various families of closed-form non-stationary covariance functions. All of

these methods produce coherent spatial non-stationary models, but the computational burden for

estimation can be overwhelming for large spatial data. Nychka et al. (1999) described a promising

wavelet approach to produce non-stationary models which is computationally efficient. It requires

the data to be on a grid, and irregularly spaced data has to be mapped to a fine grid before applying

this method.

In this paper we use the process convolution idea from Higdon et al. (1999) to produce non-

stationary processes. Instead of using spatially varying Gaussian kernel function which can only

produce analytical process, we use a family of spatially varying modified Bessel kernel function,

which can produce non-stationary covariance functions with richer local smoothness characteristics

that are similar to the Matérn class covariance functions. Local method in combination with local

linear smoothing (Fan and Gijbels, 1996) are used to construct efficient algorithms for model esti-

mation. Efficient spatial prediction algorithms are also developed using tapering and local kriging.

Simulation studies have shown that our method has better prediction performance compared to

kriging prediction based on stationary models and moving window kriging. This method is applied

to the aforementioned precipitation data, and cross-validation results show again that our method

has better prediction performance. A comparison of the prediction and prediction variance on a

fine grid indicates that our non-stationary model captures some features that are not present when

using stationary model.

The paper is organized as follows. Section 2 describes the process-convolution model, the
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modified Bessel kernel function and its relationship to the Matérn family of covariance function.

Section 3 gives the estimation and prediction algorithms. In Section 4 we present the simulation

results, and the precipitation data is analyzed in Section 5. We conclude with a discussion in

Section 6.

2 The Non-stationary Models

2.1 The General Process-convolution Models

Higdon et al. (1999) introduced a process-convolution approach to model nonstationary Gaussian

processes. Formally it can be described as follows: Let M be a random measure defined on R
d such

that for all disjoint measurable sets A, B ⊂ R
d, E(M(A)) = E(M(B)) = 0, E(M(A)M(B)) = 0,

and E|M(A)|2 = F (A) for some positive finite measure F . We define

Z(s) =
∫

Rd

K(s − t; θs)M(dt), (1)

where K(x; θ) is a non-random function which is square integrable, and the stochastic integral is

defined as the L2 limit. Let C(s, t) = Cov(Z(s), Z(t)) be the covariance function of the process

Z(s), then

C(s, t) =
∫

Rd

K(s − u; θs)K(t − u; θt)F (du). (2)

Higdon et al. (1999) chose K as the Gaussian kernel and M a Gaussian measure to produce nonsta-

tionary Gaussian processes. With Gaussian kernel, the integral in (2) can be evaluated explicitly,

leading to simplified computation. However, the resulting processes are infinitely differentiable,

which may not be desirable for modeling physical processes. See Stein (1999) for more detailed

discuss on this.
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2.2 Modified Bessel kernel function

In this paper we assume that M is the standard Gaussian measure, and propose the use of modified

Bessel function as the kernel function, which leads to a richer class of convoluted Gaussian processes.

The modified Bessel kernel is given by

K(x; θ) =
2Γ(ν+d/2)1/2νν/4+d/8σ1/2|x|ν/2−d/4

πd/4Γ(ν/2+d/4)Γ(ν)1/2ρν/2+d/4 Kν/2−d/4

(
2ν1/2|x|

ρ

)
, (3)

where θ = (σ, ν, ρ) are parameters which are positive, and Kν is the modified Bessel function of

order ν as discussed by Abramowitz and Stegun (1965), Sec. 9.

For the rest of this paper, we focus on the more interesting case with d = 2. When θs is a

constant over R
2, the process Z(s) defined by (1) is a stationary process with the familiar Matérn

covariance function given by

Cσ,ρ,ν(u) = σ
2ν−1Γ(ν)

(
2ν1/2u

ρ

)ν

Kν

(
2ν1/2u

ρ

)
. (4)

The derivation for 4 is given in the Appendix, which is based on the results in Xia and Gelfand

(2006) for a different parametrization. Table 1 gives the corresponding kernel for some Matérn

covariance functions with different local smoothness properties (ν = {1/2, 1, 3/2, 2}). Note that

for the exponential model C1/2(u), the corresponding kernel is square integrable, and (1) is well-

defined. Nevertheless, K1/2(x) is unbounded at the origin, which may cause numerical problem

when the integral is approximated using finite sum as in Xia and Gelfand (2006).

If we fix ν and let σs and ρs be smooth functions of the location, the process Z corresponding

to such modified Bessel kernel function will have non-stationary variance as well as locally varying

correlation structure, while the local smoothness remains the same and is determined by ν. This is

considerably more flexible than the processes produced by the Gaussian kernel function, as one can

estimate ν from the data, which can in turn describe a wide range of local behavior from processes
4



Table 1: Matérn class of covariance functions and their corresponding kernel functions.

Covariance function Kernel function

C1/2(u) = σ exp{−
√

2|u|
ρ } K1/2(x) =

21/8
√

σ|x|−1/4

√
πΓ(3/4)ρ3/4 K1/4

(√
2|x|
ρ

)

C1(u) =
2σ|u|

ρ K1(
2|u|
ρ ) K1(x) =

2
√

σ√
πρ

K0(
2|x|
ρ )

C3/2(u) = σ exp{−
√

6|u|
ρ }(1 +

√
6|u|
ρ ) K3/2(x) =

215/839/8σ1/2|x|1/4

√
πΓ(1/4)ρ5/4 K1/4

(√
6|x|
ρ

)

C2(u) =
4σ|u|2

ρ2 K2

(
2
√

2|u|
ρ

)
K2(x) =

4
√

σ
Γ(1/2)ρ exp{−2

√
2|x|
ρ }

with no mean-square differentiability (ν ≤ 1) to processes which are close to mean square analytic

(ν → ∞). One can also let ν be smooth functions of the location and produce processes with

varying local smoothness. However, the estimation of spatially varying νs is considerably more

difficult, and we do not pursuit it as we believe such added flexibility is unlikely to increase the

prediction performance unless one has very densely observed data.

3 Parameter Estimation

In this section we consider the parameter estimation problem for the process Z defined in (1)

with K(x, θs) given by (3). We further assume that σs and ρs are smoothly varying functions of

location, and ν is a constant across the study region. The same methodology can be extended

to spatially varying ν with increased computation, and we do not implement it for this paper.

We use {(Zi, si) : i = 1, 2, · · · , n} to denote the observed data, where si = (xi, yi) specifies the

location of the i-th observation, Zi denotes the corresponding observed value, and n is the number

of observations. Our estimation of σ and ρ is achieved using a two-step estimation scheme similar

to Fan and Zhang (2000). For fixed ν, we first obtain raw estimates of σ and ρ by fitting stationary

Matérn class covariance functions to observations inside a local windows, then construct the function
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σs and ρs using local linear smoothing (Fan and Gijbels, 1996), with the smoothing bandwidth

chosen via cross-validation. The above procedure can be repeated for a range of ν to estimate

ν which maximizes the likelihood although we do not pursuit in this direction. Details of the

algorithm is described as follows.

3.1 Raw estimates of σ and ρ

Consider a moving window of fixed size 2d1-by-2d2 with center at an arbitrary point s = (x, y). If

σ and ρ are smooth function of the location, both σ and ρ can be thought of as constant inside

this local window for relatively small d1 and d2 and are well approximated by σs and ρs. Denote

Is = {i : |xi − x| ≤ d1, |yi − y| ≤ d2, i = 1, 2, · · · , n} and its cardinality by ns. For simplicity of

notation, we denote the index of the j-th element of Is by j(s), for j = 1, 2, · · · , ns. Denote by Vs

the covariance matrix of observations inside this local window. Hence the (j, k)-element of Vs is

given by

Cσs,ρs,ν0(d((xj(s), yj(s)), (xk(s), yk(s)))) = σsC1,ρs,ν0(d((xj(s), yj(s)), (xk(s), yk(s))))

for 1 ≤ j, k ≤ ns, where d(·, ·) corresponds to Euclidean distance. For notational convenience, we

introduce a new notation V 0
s whose (j, k)-element is given by C1,ρs,ν0(d((xj(s), yj(s)), (xk(s), yk(s))))

for 1 ≤ j, k ≤ ns. Consequently, Vs(σs, ρs) = σsV
0
s (ρs). By vectorizing the observed Zi’s with index

i ∈ Is, we denote Zs = (Z1(s), Z2(s), · · · , Zns(s))
T .

Up to a constant, the log-likelihood of Zs is given by

l(σs, ρs;Zs) ∝ −1
2 log(

∣∣σsV
0
s (ρs)

∣∣) − 1
2Z

T
s (σsV

0
s (ρs))−1Zs

= −1
2

(
1
σs

ZT
s (V 0

s (ρs))−1Zs + ns log σs + log(
∣∣V 0

s (ρs)
∣∣)) . (5)

6



Maximizing l(σs, ρs;Zs) with respect to σs, we get

σ̃s =
ZT

s (V 0
s (ρs))−1Zs

ns
. (6)

Plugging (6) into (5), we get

−1
2
{
ns + log(

∣∣V 0
s (ρs)

∣∣) + ns

[
log(ZT

s (V 0
s (ρs))−1Zs) − log(ns)

]}
. (7)

At location s, we first obtain an estimate ρ̃s by maximizing (7), then plug it into (6) to get the

estimate σ̃s.

3.2 Smoothing raw estimates

In principle we can obtain estimates σ̃s and ρ̃s at any location s. This is both computationally

intensive and unnecessary, as the estimates from very close locations will be highly correlated and

redundant. To reduce the computational burden, we choose a uniform grid {Xi : i = 1, 2, · · · , nX}×

{Yi : i = 1, 2, · · · , nY } and obtain raw estimates σ̃(Xi,Yj) and ρ̃(Xi,Yj) for i = 1, 2, · · · , nX and j =

1, 2, · · · , nY . Local linear smoothing technique is then used to smooth these raw estimates. The

local linear smoothing estimator of σs is obtained by minimizing

nX∑
i=1

nY∑
j=1

κ(Xi−x
h1

,
Yj−y

h2
)(σ̃(Xi,Yj) − b0 − b11(Xi − x) − b12(Yi − y))2 (8)

with respect to b0, b11, and b12 and setting the local linear smoothing estimator to be σ̂s = b̂0,

where κ(·, ·) is a bivariate kernel function and h1 and h2 are the smoothing bandwidths. Define

alm =
nX∑
i=1

nY∑
j=1

wij(Xi − x)l(Yj − y)m (9)

clm =
nX∑
i=1

nY∑
j=1

wij σ̃(Xi,Yj)(Xi − x)l(Yj − y)m (10)
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for l, m = 0, 1, 2, where wij = 1
nXnY h1h2

κ(Xi−x
h1

,
Yj−y

h2
). Denote c = (c00, c10, c01)T and A to be a

matrix given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a00 a10 a01

a10 a20 a11

a01 a11 a02

⎞
⎟⎟⎟⎟⎟⎟⎠

. (11)

Then the minimizer (̂b0, b̂11, b̂12)T is given by A−1c. Similarly, we can define local linear smoothing

estimator ρ̂s.

3.3 Bandwidth selection using cross-validation

Let hσ = (hσ
1 , hσ

2 ) and hρ = (hρ
1, h

ρ
2) be the bandwidths for σ and ρ respectively. From

the above derivation we can see that the local linear smoothing estimator at any loca-

tion s, σ̂s can be rewritten as
∑nX

i=1

∑nY
j=1 �(Xi,Yj , s, hσ)σ̃(Xi,Yj). Likewise, one can write

ρ̂s =
∑nX

i=1

∑nY
j=1 �(Xi,Yj , s, hρ)ρ̃(Xi,Yj). For the purpose of spatial prediction, one only need to

compute the σ̂s and ρ̂s at locations where one has observation or wants to make prediction. Let

I = {s1, s2, . . . , sN} be the set of such locations, and denote S(h) to be the N -by-(nXnY ) smooth-

ing matrix whose (k, (j − 1)nX + i)-element is �(Xi,Yj , sk, h), where 1 ≤ i ≤ nX , 1 ≤ j ≤ nY and

1 ≤ k ≤ N . Let σ̂ = (σ̂s1 , . . . , σ̂sN )′, σ̃ be the column vector whose ((j − 1)nX + i)-th element is

σ̃(Xi,Yj). S(hρ), ρ̂, and ρ̃ can be defined in the same way, and we have

σ̂ = S(hσ)σ̃, ρ̂ = S(hρ)ρ̃. (12)

We use leave-one-out cross-validation to select the smoothing bandwidths. More explicitly, for each

pair of smoothing bandwidths hσ and hρ, we compute the leave-one-out cross-validation score

CV (hσ, hρ) =
n∑

i=1

(Zi − Ẑ(i)(hσ, hρ))2, (13)
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where Ẑ(i) is the spatial predictor computed using the rest of the observations and σ̂ = S(hσ)σ̃,

ρ̂ = S(hρ)ρ̃. The prediction method is described in detail in Section4. The cross-validation score

function is minimized over a grid of the smoothing bandwidths to choose the optimal pair of

smoothing bandwidths.

The smoothing bandwidths for smoothing σ and ρ can be different. To save computational

burden, we choose the same smoothing bandwidth for σ and ρ throughout our numerical examples.

4 Spatial Prediction

Let Y = (Y (s1), . . . , Y (sn))′ be the observation vector such that

Y = Xβ + Z, (14)

where X is the matrix of known covariates, and Z = (Z(s1), . . . , Z(sn))′ with process Z(s) defined

in (1) with K(x, θs) given by (3). We are interested in predicting Y0 = x0β + Z(s0) at a new

location s0. Y and Y0 have joint Gaussian distribution of the form⎛
⎜⎜⎝ Y

Y0

⎞
⎟⎟⎠ ∼ N

⎡
⎢⎢⎣
⎛
⎜⎜⎝ Xβ

x0β

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝ V (θ) wT (θ)

w(θ) v0(θ)

⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (15)

If θ is known, the Best Linear Unbiased Predictor (BLUP) of Y0 is given by Ŷ0 = λTY, where

λ = V −1w + V −1X(XT V −1X)−1(x0 − XT V −1w), (16)

and the corresponding prediction error is given by

σ0 = v0 − wT V −1w + (xT
0 − wT V −1X)(XT V −1X)−1(x0 − XT V −1w). (17)

Equation (16) and (17) are also known as universal kriging formula in geostatistics.
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Once we have estimator σ̂ and ρ̂, we can in principal compute all elements in V (θ̂) and w(θ̂)

using (2), and in turn compute the empirical BLUP (EBLUP) of Ŷ0. Direct implementation of the

above approach is often computationally difficult for large spatial data because of two reasons. For

one, it is very time consuming to evaluate (2) for every pair of sites in the data, which in general

can only be evaluated through numerical integration. For another, the kriging formular involves

computing V −1, which is difficult to compute for large datasets. Next we describe methods to

reduce computation for both.

We first approach the numerical integration problem by resorting to the pre-computation tech-

nique commonly used in the area of applied mathematics. Note first that the kernel function is

linear in the square root of the variance parameter and C(s, t) depends on s and t only through

their distance. Hence it is enough to pre-compute the following three dimensional function

C(r, ρ1, ρ2) =
∫

Rd

K(u; ρ1)K(r + u; ρ2)du (18)

for a three dimensional grid over [0, R]×[ρ, ρ]×[ρ, ρ], where R, ρ, and ρ are chosen properly to cover

as interior points all possible (r, ρ1, ρ2) which will be used later. When we need to compute the

covariance for any two sites s and t with parameter ρs and ρt, we can interpolate using r = d(s, t),

ρs, ρt to get the correlation between these two sites first, and multiply it by
√

σsσt to get the

covariance. Our limited experience shown that this interpolation scheme works very effectively and

gives good approximation to the corresponding true pairwise covariance. In the simulation studies,

for ρ we chose ρ = 0.2, ρ = 9.8 with step size 0.4, and for distance we chose R = 24 with step

size 0.1. The maximum approximation error is less than 0.003 when compared with numerical

integration with precision 10−6.

To reduce the computational complexity of inverting V , we consider two approaches. One is

the local window kriging approach, and the other is the tapering approach.
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The idea behind the local window kriging prediction is very simple. Instead of using all obser-

vations to predict Y0, we define a local window centered at s0 and use only observations inside this

local window to predict Y0. This method has been used by Haas (1990) and others to reduce the

computation burden in spatial kriging prediction. The rational behind the local window approach

is that conditional on observations near s0, the other observations are nearly independent to Y0 and

contribute very little to the prediction of Y0. This is called screening effect in spatial statistics and a

theoretical justification was given in Stein (2002), who showed that screening effect generally exists

for random fields which are not too smooth. In Haas (1990), the window for prediction is limited

by the size of window for parameter estimation. Our method does not have such restriction as our

model defines a coherent covariance function for the whole region. Thus we can choose the window

size for prediction solely based on computation requirements and accuracy of the approximation.

In our simulation studies, the local windows of the same size as used in the local estimation are

used to make prediction for all the methods considered so that our comparisons are not biased by

the prediction window.

An alternative approach to reduce the computation in inverting V is to introduce tapering of

the kernel. Let Kt be a covariance function which has bounded support, the tapered kernel is the

direct product of K and Kt:

K∗
t (x) = K(x)Kt(x).

It is clear from the definition that both K∗ and the corresponding covariance function C∗ have

bounded support. Thus the kriging predictor based on a tapered kernel function is a function of

the neighboring data determined by the range of the tapering function, which dramatically reduces

the computation for spatial prediction of large spatial data. Furrer et al. (2006) studied tapering

of covariance function and show that appropriate tapering of the covariance function produces
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asymptotically optimal spatial prediction for stationary GRF (Theorem 2.3 in Furrer et al. (2006)).

The same result holds for tapering of the kernel function, and next we give the kernel function

version of the Taper Theorem.

Theorem 1

Let ft(ω) be the spectral density of the taper kernel function Kt with taper range δ. If for some

ε > 0 and M(δ) < ∞,

0 < ft(ω) < M(δ)

(1+ω2)ν/2+d/4+ε , (19)

and s0 satisfies the infill condition, then

lim
n→∞

MSE(s0,C∗)
MSE(s0,C) = 1, (20)

lim
n→∞

�(s0,C∗)
MSE(s0,C) = γ, (21)

where 0 < γ < ∞.

The proof of Theorem 1 is given in Appendix. For nonstationary GRF defined by (1) and (3)

with constant ν, one can use a common kernel tapering function satisfying (19). If νs changes in

space, one can still use a common kernel tapering function satisfying (19) with ν = lim infs νs. The

tapering function can also be chosen to vary in space, though we have not considered it in this

paper.

In the simulation studies, we implemented both the local window approach and the kernel

tapering approach and compared their performance.

5 Simulation Studies

In this section, we compare the prediction performance of our model with local window kriging

(kernel local) and kernel tapering (kernel taper) with that of the existing ones, in particular,
12



universal kriging using stationary model (stationary) and local moving window krigging (moving

window) proposed by Haas (1995).

Our simulation is based on a square domain of size n × n for n = 16 or 32. The site for

each observation is (x, y) for x = 1, 2, · · · , n and y = 1, 2, · · · , n. Throughout our simulation,

data is generated using (1) with K2(x) =
4
√

σs

Γ(1/2)ρs
exp{−2

√
2|x|
ρs

}. Maximum likelihood method is

used to estimate parameters for both stationary model and local moving window krigging when

computationally feasible. For data on 32 × 32 grids, we divide the region into four equal size

subregions and use the sum of the likelihood for the four subregions to approximate the true

likelihood when using stationary model for parameter estimation. For parameter estimation using

our model, we use leave-one-out cross validation to choose the smoothing bandwidth h. The same

9x9 local window are used for local parameter estimation as well as prediction for the local kriging

and moving window methods. For kernel tapering, we chose the taper range to be 12 with taper

function given by

Kt(x; R) = (1 − h/R)6+
(
1 + 6h/R + 35h2/(3R2)

)
.

Three stationary models (Example 5.1) and nine nonstationary models (Example 5.2) are used

to simulate the data. For each simulated data set, a certain number of observations are withheld

to be predicted, while the remaining observations are used to do model estimation. The number of

withheld sites to be predicted is chosen to be 20 and 50 for 16× 16 and 32× 32 grids, respectively.

The most common measure for prediction is the mean square prediction error E(Ŷi − Yi)2

(MSPE) and the relative MSPE (RMSPE) E(Ŷi−Yi)
2

Var(Yi|Y ) = 1 + E(Ŷi−E[Yi|Y ])2

Var(Yi|Y ) , where Ŷi is the predictor

using one of the four methods. We report the median and interquartile range of 100× E(Ŷi−E[Yi|Y ])2

Var(Yi|Y )

across different withheld sites, where the expectation in the numerator is approximated by sample

mean over 100 simulations, and the conditional mean and variance at those locations are computed
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using the true parameters. Mean and standard deviation (in parenthesis) over 100 independent

simulations are shown in the corresponding table for each case. The results for MSPE is similar

and we do not report them for brevity. To measure the error in estimated MSPE, we also report the

absolute log ratio between the estimated MSPE and the true MSPE, | log(V̂ar(Yi|Y )/E(Ŷi −Yi)2)|,

where the true MSPE is computed using average over the 100 simulations.

Example 5.1 Stationary models

We first simulate stationary GRF, for which both σs and ρs are constant in space. Three different

range parameters 1.055, 2.110 and 4.220 are chosen such that the correlation between two points

drop to below 5% when the distance is a) 2x min distance b) 4x min dist c) 8x min distance. The

simulated stationary GRF are used as a baseline to compare the prediction performance of the four

methods. A summary of the results are reported in Table 2.

When the spatial range parameter is small to medium, the stationary method is significantly

better than the other three methods in terms of both prediction error and error in estimating

MSPE. This is not surprising as the data are simulated from stationary model. However, the

gain of efficiency in prediction is relatively small when compared with kernel local or kernel taper

methods: for the best case the improvement is about 0.2% of the optimal prediction variance,

and about 1% for IQR. The reduction of error in estimated MSPE is more substantial, with the

difference between the estimated MSPE and the true MSPE about 4%-9% for stationary models

and 12%-17% for kernel local method. When the range parameter is large, we find no significant

difference among all four methods. The performance of kernel local and kernel taper is similar, with

kernel local having smaller prediction error while the kernel taper having smaller error in estimating

MSPE. Both are better than the moving window method in terms of estimating MSPE. In terms

of prediction error, kernel local is also better than moving window when the sample size is large.
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Stationary Moving window Kernel local Kernel taper

n Case median IQR median IQR median IQR median IQR

100 × E(Ŷi − E[Yi|Y ])2/Var(Yi|Y )

1 0.24 (0.33) 0.57 (0.83) 0.47 (0.49) 2.06 (1.81) 0.43 (0.44) 1.69 (1.42) 0.43 (0.44) 1.67 (1.44)

16 2 0.18 (0.18) 0.45 (0.41) 0.24 (0.16) 0.78 (0.50) 0.26 (0.19) 0.73 (0.52) 0.33 (0.22) 0.96 (0.64)

3 5.32 (2.59) 13.56 (6.06) 5.14 (2.43) 13.17 (5.90) 5.31 (2.37) 13.24 (5.91) 6.21 (2.71) 16.11 (7.36)

1 0.06 (0.09) 0.16 (0.21) 0.32 (0.19) 1.54 (0.73) 0.22 (0.13) 0.95 (0.44) 0.22 (0.14) 0.94 (0.46)

32 2 0.14 (0.07) 0.37 (0.17) 0.21 (0.09) 0.64 (0.23) 0.20 (0.07) 0.56 (0.20) 0.27 (0.10) 0.77 (0.26)

3 5.56 (1.89) 13.94 (3.85) 5.53 (1.88) 13.87 (3.90) 5.37 (1.82) 13.88 (3.80) 6.25 (2.17) 16.46 (4.60)

| log(V̂ar(Yi|Y )/E(Ŷi − Yi))|

1 0.0798 0.0079 0.1872 0.0432 0.1480 0.0491 0.1431 0.0492

16 2 0.0938 0.0121 0.2084 0.0479 0.1662 0.0535 0.1551 0.0470

3 0.3148 0.1366 0.3780 0.0845 0.3633 0.1067 0.2972 0.0864

1 0.0439 0.0003 0.1703 0.0383 0.1227 0.0427 0.1171 0.0415

32 2 0.0558 0.0035 0.1845 0.0447 0.1303 0.0513 0.1235 0.0402

3 0.3237 0.0628 0.3785 0.0492 0.3396 0.0505 0.2687 0.0538

Table 2: Summary of simulation results for Example 5.1. Cases 1, 2, 3 correspond to ρ =

1.055, 2.110, 4.220, respectively. Results are based on 100 simulations. The median and inter

quantile range (IQR) of 100× E(Ŷi − E[Yi|Y ])2/Var(Yi|Y ) and | log(V̂ar(Yi|Y )/E(Ŷi − Yi))| among

all prediction sites are reported, and the standard deviations for 100×E(Ŷi −E[Yi|Y ])2/Var(Yi|Y )

are shown in parenthesis. Each simulation consists of 256 (n = 16) or 1024 (n = 32) observations.

15



This is due to the fact that moving window kriging only uses the data within the local window to

estimate the parameters, while both kernel methods used smoothing to borrow information from

data outside the local window, leading to more accurate estimators of the parameters.

Example 5.2 Non-stationary models

Next we generate nonstationary GRF using convolution with varying kernel parameter. For the case

of n = 16, three different varying range parameters are generated with ρ1([x, y]) = 1 + (x − 1)/12,

ρ2([x, y]) = 1+((x−8.5)2+(y−8.5)2)/90, and ρ3([x, y]) = 1+I(x > 8.5), where I(·) is the indicator

function taking value 1 if its argument is true and 0 otherwise, and three different varying variance

parameters are generated with σ1([x, y]) = 2+(x−1)/6, σ2([x, y]) = 2+((x−8.5)2 +(y−8.5)2)/45,

and ρ3([x, y]) = 2 + 2I(x > 8.5). They are shown in Figure 1. For the case n = 32, the same range

parameter and variance parameter are concatenated appropriately to cover the whole domain as

depicted in Figure 2. Among them ρ3 and σ3 are discontinuous indicator functions, and we use

them to check how well our method work when the ρs and σs are not smooth functions of location.

The results are summarized in Table 3 and Table 4.

Table 3 summarizes the results for prediction error. The stationary method is worse than the

other three in both median and IQR for all cases and sample sizes due to the fact that the data

are generated from non-stationary models. The cost of not using a non-stationary model can be

substantial. For example, for case 7 with 1024 observations, the stationary method is 2.7% worse

than the kernel local method in terms of median relative MSPE, and the IQR is about 6.2% larger.

The kernel local method is slightly better than the kernel taper method for most of the cases,

though the differences are not significant. The kernel local method is better than the moving

window kriging for case one through six when ρ is a smooth function of the location, while it is

worse than the moving window kriging for case seven through nine, for which ρ is a discontinuous
16



Stationary Moving window Kernel local Kernel taper

n Case median IQR median IQR median IQR median IQR

100 × E(Ŷi − E[Yi|Y ])2/Var(Yi|Y )

1 0.87 (0.57) 3.95 (2.37) 0.35 (0.27) 1.49 (1.49) 0.25 (0.27) 1.20 (1.39) 0.27 (0.30) 1.30 (1.49)

2 1.26 (0.85) 4.31 (2.17) 0.52 (0.45) 1.83 (1.42) 0.32 (0.32) 1.25 (1.14) 0.37 (0.38) 1.29 (1.23)

3 1.15 (0.58) 3.83 (2.27) 0.52 (0.34) 1.85 (1.35) 0.35 (0.29) 1.41 (1.21) 0.40 (0.33) 1.49 (1.37)

4 0.82 (0.46) 2.68 (1.47) 0.91 (0.58) 3.15 (2.04) 0.55 (0.35) 1.87 (1.18) 0.63 (0.45) 2.10 (1.32)

16 5 0.51 (0.29) 1.85 (1.03) 0.57 (0.61) 2.06 (2.34) 0.43 (0.36) 1.57 (1.13) 0.45 (0.36) 1.66 (1.17)

6 0.89 (0.54) 2.86 (2.13) 0.84 (0.44) 2.79 (1.66) 0.63 (0.50) 2.06 (1.39) 0.67 (0.46) 2.30 (1.61)

7 2.92 (1.57) 8.47 (3.96) 0.48 (0.39) 2.33 (2.04) 0.62 (0.44) 2.49 (1.93) 0.62 (0.43) 2.53 (1.93)

8 3.07 (1.69) 9.41 (5.41) 0.63 (0.49) 2.54 (1.97) 0.75 (0.48) 2.85 (1.92) 0.77 (0.49) 2.94 (2.06)

9 2.87 (1.63) 7.72 (3.86) 0.45 (0.34) 2.36 (1.91) 0.56 (0.41) 2.47 (1.81) 0.59 (0.45) 2.48 (1.77)

1 0.56 (0.22) 2.11 (0.73) 0.25 (0.12) 0.96 (0.45) 0.13 (0.07) 0.61 (0.34) 0.15 (0.07) 0.60 (0.34)

2 0.76 (0.26) 2.43 (0.70) 0.34 (0.11) 1.20 (0.52) 0.15 (0.07) 0.55 (0.31) 0.16 (0.08) 0.61 (0.34)

3 1.08 (0.42) 3.74 (1.51) 0.56 (0.26) 2.02 (0.83) 0.37 (0.17) 1.56 (0.69) 0.39 (0.19) 1.64 (0.68)

4 0.72 (0.23) 2.19 (0.62) 0.66 (0.29) 2.23 (0.87) 0.40 (0.21) 1.48 (0.66) 0.41 (0.20) 1.52 (0.78)

32 5 0.52 (0.15) 1.87 (0.57) 0.45 (0.18) 1.59 (0.64) 0.33 (0.15) 1.28 (0.60) 0.33 (0.16) 1.32 (0.68)

6 0.74 (0.25) 2.42 (0.74) 0.78 (0.29) 2.65 (0.96) 0.53 (0.19) 1.92 (0.65) 0.51 (0.20) 2.00 (0.73)

7 3.66 (1.21) 10.58 (3.07) 0.79 (0.43) 4.27 (2.15) 0.96 (0.45) 4.08 (1.79) 0.95 (0.45) 4.29 (1.98)

8 3.61 (1.21) 10.30 (3.77) 0.71 (0.35) 3.85 (1.61) 0.93 (0.36) 3.90 (1.54) 0.94 (0.39) 4.14 (1.73)

9 2.99 (0.96) 8.35 (2.41) 0.64 (0.31) 3.82 (1.47) 0.81 (0.34) 3.83 (1.46) 0.83 (0.36) 3.88 (1.49)

Table 3: Summary of simulation results on prediction error for Example 5.2. Cases 1, 2, · · · , 9

correspond to nine possible combinations of ρs and σs in the following order: Case1: (ρ1, σ1); Case

2: (ρ1, σ2); Case 3: (ρ1, σ3); Case4: (ρ2, σ1); Case 5: (ρ2, σ2); Case 6: (ρ2, σ3); Case7: (ρ3, σ1); Case

8: (ρ3, σ2); Case 9: (ρ3, σ3). Results are based on 100 simulations. The median and inter quantile

range (IQR) of 100 × E(Ŷi − E[Yi|Y ])2/Var(Yi|Y ) among all prediction sites are reported, and the

standard deviations are shown in parenthesis. Each simulation consists of 256 (n = 16) or 1024

(n = 32) observations.
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| log(V̂ar(Yi|Y )/E(Ŷi − Yi))|

Stationary Moving window Kernel local Kernel taper

n Case median IQR median IQR median IQR median IQR

1 0.3224 0.1810 0.1969 0.0373 0.1624 0.0458 0.1598 0.0518

2 0.5524 0.3486 0.2154 0.0473 0.1983 0.0663 0.2093 0.0780

3 0.2718 0.2777 0.2375 0.0713 0.2043 0.0968 0.2137 0.1387

4 0.2835 0.2476 0.2294 0.0821 0.1942 0.1393 0.1891 0.1326

16 5 0.1529 0.1390 0.2108 0.0304 0.1858 0.0364 0.1712 0.0438

6 0.3781 0.3805 0.2697 0.1329 0.2417 0.1593 0.2431 0.1639

7 0.5423 0.2931 0.2700 0.1570 0.2734 0.2073 0.2426 0.2443

8 0.5867 0.3978 0.2765 0.1868 0.2714 0.2695 0.2492 0.2864

9 0.3933 0.1005 0.2107 0.0495 0.2010 0.0492 0.1974 0.0720

1 0.2904 0.2374 0.1892 0.0321 0.1439 0.0506 0.1508 0.0470

2 0.5845 0.4610 0.2145 0.0417 0.1918 0.0622 0.2136 0.0921

3 0.4263 0.4969 0.2457 0.0739 0.2072 0.0901 0.1952 0.1149

4 0.3529 0.3870 0.2344 0.0530 0.2317 0.0717 0.2226 0.0891

32 5 0.1722 0.1329 0.1960 0.0262 0.1699 0.0233 0.1603 0.0401

6 0.4302 0.3877 0.2515 0.1168 0.2407 0.1929 0.2297 0.2012

7 0.6791 0.4808 0.3057 0.3049 0.3754 0.3032 0.3937 0.3433

8 0.6923 0.4985 0.3350 0.2957 0.3683 0.4049 0.3972 0.4498

9 0.3717 0.1571 0.2156 0.0836 0.2297 0.0835 0.2281 0.0987

Table 4: Summary of simulation results of error in estimating MSPE for Example 5.2. Cases

1, 2, · · · , 9 correspond to nine possible combinations of ρs and σs in the following order: Case1:

(ρ1, σ1); Case 2: (ρ1, σ2); Case 3: (ρ1, σ3); Case4: (ρ2, σ1); Case 5: (ρ2, σ2); Case 6: (ρ2, σ3); Case7:

(ρ3, σ1); Case 8: (ρ3, σ2); Case 9: (ρ3, σ3). Results are based on 100 simulations. The median and

inter quantile range (IQR) of | log(V̂ar(Yi|Y )/E(Ŷi − Yi))| among all prediction sites are reported.

Each simulation consists of 256 (n = 16) or 1024 (n = 32) observations.
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piece-wise linear function of the location. It appears that the discontinuity in ρ has a larger impact

on the performance of the kernel methods than the discontinuity in σ (which corresponds to case3,

6, and 9), though under both types of discontinuities kernel methods are still significantly better

than the stationary method.

Table 4 summarizes the results for error in estimating the MSPE. For most of the cases the

stationary method is much worse than the other three in estimating the MSPE. For example, the

difference between the estimated and true MSPE is about 38% (e0.3224−1) for case one with sample

size 256 for stationary method, which is twice as large as that for kernel local method. The only

exception is for case five, sample size 256, for which the median of absolute log MSPE ratio for

stationary method is smaller. But this is reversed when the sample size is 1024, and for both sample

sizes the IQR for the stationary method is much larger. The rest of the comparisons are similar

to Table 3, with kernel local and kernel taper having similar performance, kernel local better than

moving window for case 1-6, and similar or worse than moving window for case 7-9.

Figure 3 shown the contour plots of the correlation function at an 4x4 sub-grid for case 2 and

4. It is evident in the plots that the correlation structure is not stationary in space. For example,

for case 2, the spatial correlation is stronger in the middle and weaker near the left and right edges.

The correlation function is also locally anisotropic.

6 Rainfall Data Example

In this section we use the rainfall data over a section of central America as an example to illustrate

the advantage of our method and algorithms. We first use cross validation to compare the prediction

performance using stationary model, moving window kriging, and our kernel convolution model.

Next we compare the map of spatial prediction and estimated MSPE on a 121x131 grid constructed
19



using a stationary model and our non-stationary kernel convolution model to demonstrate the

advantage of using a non-stationary model.

The rainfall data are from 2082 stations irregularly spaced between latitude 27.1 to 49.0 and

longitude -100.5 to -80.2. The time period of the data is between 1960 and 1999. Detailed doc-

umentation of the complete dataset can be found in Groisman (2000). For each station data we

subtracted the mean over the 40 years and model the difference as a Gaussian random process.

A look at the normal quantile plots shows that the data are mostly consistent with the Gaussian

assumption, with less than 0.5% possible outliers. We use robust measures to compare different

prediction methods, which reduce the influence of the outliers. Though the data is collected in

both space and time, we will focus on the spatial aspect of the data and treat the forty year data

as forty replications without modeling the temporal correlation.

In the first comparison, we randomly partition the location of the data into six parts of ap-

proximately equal size, estimate the parameters of the covariance function using 5/6 observations,

and predict at the remaining 1/6 locations for validation. A separate covariance model is fitted

to the observations on the 5/6 locations for each year, and the bandwidth for smoothing σ and ρ

are selected using five-fold cross-validation. The MSPE for each of the 1/6 locations are computed

using the average over forty years, and we report the median and IQR of the MSPE for all predic-

tion locations in Table 5. Our method is better than the other two in terms of both the median

and IQR of the MSPE. The median MSPE of the kernel local method is 5% smaller than that of

the stationary method, and 1% better than that of the moving window method. The IQR of our

method is also smaller than the other two.

In practice, it is often necessary to make prediction of the random field on a fine grid. For

example, such prediction of rainfall can be used as input to other numerical models for climate
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Stationary Moving window Kernel local

median IQR median IQR median IQR

MSPE 3.78 11.11 3.64 10.65 3.60 10.42

Table 5: Median and IQR of mean square prediction error (MSPE) for stationary model, moving

window kriging, and kernel local kriging computed using forty years of the precipitation data.

or air quality forecasting. Next we compute spatial prediction of annual rainfall and MSPE on a

121x131 grid using both the stationary method and the kernel local method. As an example we

include the map of the predicted value and estimated MSPE for the year 1960 using both stationary

model (Figure 4) and non-stationary model (Figure 5). The maps of predicted rainfall have similar

general pattern for both methods, with the stationary method giving somewhat higher prediction in

the south (Tennessee, Mississippi, and Alabama) and slightly lower prediction over lake Michigan.

The difference between estimated MSPE is more dramatic: the nonstationary model gives lower

MSPE in the north and higher MSPE in the south, a reflection of lower variation of the process in

the northern area compared to the south. This characteristic can not be captured using a stationary

model. In Figure 6, we show the image plots of the estimated ρ and σ for the year 1960. For σ

there is a clear increasing trend from north to south, while the variation in ρ is smaller, with the

north-west corner having relatively smaller range.

7 Summary and Discussion

In this paper we use a class of kernel convolution models with the modified Bessel kernel function

to model large spatial non-stationary processes, and propose new methods for estimating the non-

stationary covariance function using local likelihood estimation and local linear smoothing. Two
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methods, local kriging and kernel tapering, are used to reduce computation in spatial prediction,

and the condition for theoretical optimality for kernel tapering is established. Simulation studies

show that our method gives better prediction performance in terms of both MSPE and the error

in estimation of MSPE when the process is non-stationary compared to universal kriging based

on stationary model and moving window kriging, and the loss of efficiency in prediction is small

when the process is stationary. This method is applied to a large precipitation data. A comparison

with stationary method and moving window kriging using cross-validation show that our method

has superior prediction performance, and a comparison of prediction and MSPE on a fine grid

indicates that our non-stationary model captured some feature in the data that is not present using

stationary model.

Throughout the paper we only considered isotropic modified Bessel kernel function with fixed

order to generate non-stationary process, while our method can be applied to more general classes of

models. One generalization we will consider in a future work is to include local geometric anisotropy

in the kernel function. One can also explore the use of other classes of kernel function models, such

as those that imply long range dependence.

Appendix

Derivation of (4)

Under Lebesgue measure, when θs ≡ θ is a constant, we have

C(u) = Cov(Z(s), Z(s + u)) =
∫

Rd

K(u + t)K(t)dt.

Denote the spectral density of the covariance function C(u) by

fC(w) = 1
(2π)d

∫
Rd

C(u) exp(−iwT u)du,
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it is easy to derive that (see, i.e., Xia and Gelfand (2006))

fC(w) = (2π)df2
K(w), (22)

where fK(w) = (2π)−d
∫

Rd K(x) exp(−iwT x)dx denotes the spectral density of the kernel function

K.

Let us consider a re-parameterizations of Cσ,ρ,ν(r) in (4) given by

C(1)
ϕ,α,ν(u) = πd/2ϕ

2ν−1Γ(ν+d
2)α2ν

(α ‖ u ‖)νKν(α ‖ u ‖), (23)

where ⎧⎪⎪⎨
⎪⎪⎩

α = 2ν1/2/ρ

ϕ =
Γ(ν+d

2)22ννν

πd/2Γ(ν)ρ2ν σ,

(24)

The spectral density of C(1)(u) is given by

f
(1)
C (w) = ϕ

(α2+‖w‖2)d/2+ν .

Due to this special form, it is easy to see that the spectral density of the kernel function f
(1)
K given

by Equation (22) belongs to the same Matérn family with ϕ∗ =
√

ϕ, α∗ = α, and ν∗ = ν/2 − d/4,

i.e., the corresponding kernel of C
(1)
ϕ,α,ν(u) is given by

K(x) = (2π)−d/2C
(1)
√

ϕ,α,
ν
2−

d
4

(x). (25)

From (24), we have ⎧⎪⎪⎨
⎪⎪⎩

ρ = 2
√

ν/α

σ = (Γ(ν)πd/2ϕ)/(Γ(ν + d
2)α2ν).

(26)

Applying (26) and (24) to (25), we have that the covariance function Cσ,ρ,ν(u) corresponds to kernel

function K(x) = (2π)−d/2Cσ∗,ρ∗,ν∗(x), with σ∗ = (Γ(ν
2 − d

4)πd/42d/2νd/4)/(Γ(ν
2 + d

4)ρd/2)
√

σΓ(ν + d
2)/Γ(ν),

ρ∗ = ρ
√

1/2 − d/(4ν), and ν∗ = ν/2 − d/4.
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Proof of Theorem 1

Let f∗
c ,f∗

k ,fc,fk, and fT be the Fourier transform of C∗, K∗, C, K, and KT respectively. Since

f∗
k (w) =

∫
fk(w − v)fT (v)dv, by Proposition 2.2 in Furrer et al. (2006), (19) implies that there

exists γ ∈ (0,∞) such that limw→∞
f∗

k (w)

fk(w) =
√

γ. Noting that fc(w) = (2π)df2
k (w) and f∗

c (w) =

(2π)df∗
k

2(w), we have limw→∞
f∗

c (w)
fc(w) = γ, and the kernel taper theorem follows from Theorem 2.3

in Furrer et al. (2006).
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Figure 1: Plots of ρi and σi as functions of the location for 16x16 grids.
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Figure 2: Plot of ρ and σ as functions of the location for 32x32 grids.
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Figure 3: Contour plots of the correlation function at selected points. Left: case 2, Right: case 4.

Contour lines are drawn at the levels 0.9, 0.6, 0.3, 0.2, and 0.1.
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Figure 4: The map of predicted annual precipitation and its MSPE using stationary method.
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Figure 5: The map of predicted annual precipitation and its MSPE using kernel local method.
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Figure 6: The map of estimated ρ and σ functions.
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