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INTRODUCTION 

Among the extended or 3 configurations of fibrous proteins and poly

peptides, one may distinguish between parallel and antiparallel 3 struc

ture, depending upon whether the adjacent polar chains are oriented in 

the same or opposite direction, and between the normal and cross-3 struc

ture, depending upon whether the chains are oriented parallel or perpen

dicular to the long axis of the fiber. The principal concern of this 

thesis is with the formation and characterization of cross-3 structures 

of parallel or antiparallel habit. 

The cross-3 structure naturally occurs in the silk of green lace-

wing fly, Chrysopa flava (Parker and Rudall 1957, Geddes et 1968) 

and possibly also in bacterial flagella (Astbury et 1955). It is gen

erally found in fibrillar structures and consists of a parallel or anti-

parallel 3 structure having protein chains oriented perpendicular to the 

long axis of the fibrils which compose the fibrillar structure. Although 

this structure is somewhat rare in nature, it is quite common in denatured 

proteins and many polypeptides when shear stress by extrusion or stretching 

is applied. Astbury et (1935) first found it in the proteins of poached 

and stretched egg-albumin. It is also found in casein, hemoglobulin, zein, 

edestin (Senti et 1943) and insulin fibrils (Rudall 1950, Ambrose and 

Elliott 1951). Normal 3 structure proteins occur when a similar treatment 

is applied to ovalbumin (Senti et al. 1943, Palmer and Galvin 1943), 

3-lactoglobulin (Senti et 1943), myosin (Astbury and Dickinson 1935), 

edestin (Astbury et 1935) and arachin (Astbury 1945). 

The original interest in 3 structure protein fibrils was generated 
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by the textile industry but with the advent of commerically available syn

thetic polypeptides like nylon and other synthetic polymers this interest 

abated. The only successful fabric to come out of this research was Ar-

dil from the peanut globulin, arachin (Astbury 1945). Interest in cross-3 

structure insulin fibrilr remained because of insulin's physiological and 

medical importance. The most significant finding involving insulin fibrils 

was that the process generating them could be reversed by moderate varia

tion of pH, and biologically active crystalline insulin could be obtained 

(Waugh 1957). 

The cross-B structure in polypeptides is discussed in some detail by 

Bradbury et (1960). In general, they found that polypeptides of low 

molecular weight, when stretched, formed cross-3 structures. Polypeptides 

working best had a degree of polymerization of approximately 20 residues 

per molecule. 

The purpose of this study was to determine in detail the structure 

of two fibrillar structures which are generated from two distinctly differ

ent proteins, insulin and soluble feather keratin. Fibrillar insulin was 

known to contain significant amounts of cross-B structure. The structure 

of feather keratin fibrils was unknown. It was thought that if these two 

distinctly different proteins could generate similar fibrillar structures, 

this process might be generalized to many other dissimilar proteins. The 

biological and physiological implications arising from a large number of 

proteins capable of reversibly forming fibrils in environments similar to 

those in the cell are unlimited. 

The chemical and physical properties of fibrillar feather keratin 
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and fibrillar insulin will be discussed later. First it will be necessary 

to describe in some detail the infrared and ultraviolet optical properties 

of the peptide group for they were used extensively in this study. 

Infrared absorption spectroscopy is one of the more useful diagnostic 

tools for the elucidation of the secondary structure of proteins and poly

peptides. The most sensitive absorption band for this purpose appears to 

be the amide I band of the peptide group. The position and shape of this 

band is significantly different in the a-helix, 3 structure and random 

coil conformations and is useful to detect their presence ( Bamford et al. 

1956)(Table 1). Miyazawa (1960) predicted that the parallel and antiparal-

lel e structures could also be distinguished using this method. He pro

posed that the weak band observed at 1690 cm"^ in the antiparallel 3 

structures of silk and polyglycine I was a component of the amide I band. 

He treated this predicted splitting of the amide I band as arising from 

first order perturbations in a weakly coupled oscillator model. The 

vibrations causing the absorption band were assumed localized and only 

nearest neighbor interactions were considered. The general relationship 

he derived is given as equation 1. Here v(93') and are the observed 

v(38') =VQ + Z cos(k3) + Z cos(l3') (Eq. 1) 

frequency and unperturbed frequency respectively. The second and third 

terms are due to intra- and interchain vibrational interactions respec

tively, 9 is the phase angle between adjacent group motions in the chain 

and the coefficients D|^ involve the potential arid kinetic energy interac

tions between the kth neighbors in the chain; 3' and D] pertgin to the 

interactions through interchain hydrogen bonds and have meanings similar 
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Table 1. The infrared absorption spectra of the amide I band of basic 
protein structures 

Structure v(max) Dichroism Intensity 

random coil 1656 cm"^ none strong 

a-helix 1650 cm"^ // strong 
1652 cm-i medium 

3 structure 1685 cm"^ // weak 
1632 cm-i jL strong 

to those of 3 and respectively. 

The antiparallel 3 structure has a unit cell which contains four 

peptide groups, two groups in one chain and two groups in the adjacent 

chain. Group theory predicts that each absorption band associated with the 

amide chromophobe will be split into four bands, one of which is inactive. 

The phase angles 3 and 3' of the motions in the various groups must be 

either'0 or ir . The frequencies of the four bands must therefore be 

those given by equations 2,3,4 and 5. Here vj^ and Vu indicate bands 

v,j (00) = VQ + + Dj inactive (Eq. 2) 

(TTO) = VQ + - Dj active (Eq. 3) 

VH (On) = VQ - active (Eq. 4) 

VJ, (TTTT) = \)Q - active (Eq. 5) 

active for light polarized so that the electric vector is perpendicular 

and parallel to the chain direction respectively. 

The parallel 3 structure has a unit cell which contains two peptide 

groups, both in the same chain. Group theory predicts that each absorp

tion band of the amide chromophores will be split into two bands. The 
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phase angle 3 must be 0 or IT . The phase angle 3' involving the rela

tive motions of vibrations in nearest neighbor groups in different unit 

cells must be 0. The frequencies of the two bands must then be those 

given by equations 6 and 7. 

v„ (00) = VQ + + Dj (Eq. 6) 

Vj^ (uO) = VQ - D-j + (Eq. 7) 

For nylon 66 which is a 3-1 ike structure where the chromophores are 

separated by five carbon atoms, the frequency of absorption of the amide 

I band is expected to depend only on interactions of groups in adjacent 

chains. The phase angle 3 must be 0. The frequency of the absorption 

ba id must then be given by equation 8. 

v(nylon 66) = + Dj (Eq. 8) 

Miyazawa and Blout (1961) assumed that the 1685 cm"^ band and the 

1632 cm"^ band in the spectra of the antiparallel 3 structures of silk 

and polyglycine I were the Vj| (On) and the Vj^(irO) bands respectively. 

They also determined the absorption maximum for nylon 66 to be at 1640 cm"^. 

Using equations 4, 3 and 8 and frequencies assigned to the v,^ (pn), 

VJ^(ttO) and v(nylon 66), they solved for v^, and Dj. Then using equa

tions 6 and 7, they predicted the absorption spectrum of the parallel B 

structure. By this procedure they showed that the 1690 cm~^ band observed 

in 3 structures is due to antiparallel 3 structure only. This conclusion 

was further supported by Bradbury and Elliott (1963), who showed that 

V|| (Oir) progressively shifted to lower frequencies in the series from 

polyglycine (nylon 2) to nylon 10. Dj is expected to remain uncharged 

in this series of compounds and D-j is expected to become smaller (table 

! 
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2.) In nylon 10, D, is equal to 0 and correctly predict the ab

sorption maximum of (On). This is all consistent with Miyazawa's 

treatment. 

Table 2. Infrared spectral properties of a series of nylon compounds 

Polymer VJ^ (TTO) v„ (OTT) V •^1 

nylon 2 1632 cm-i 1686 cm-i 1659 cm"! 16 cm-i 

nylon 4 1640 crn-i 1670 cm-i 1655 cm-i 4 cm-i 

nylon 6 1641 cm-i 1667 cm-i 1654. 5 cm"^ 1. 5 cm"^ 

nylon 8 1641 crn-i 1663 cm-i 1652 cm"! 0 cm"! 

nylon 10 1642 cm-i 1664 cm-i 1653 cm"^ 0 cm~^ 

was assumed to be equal to -11 cm~^. 

In practice no 3 structures other than the antiparallel 3 structured 

silk have been shown to possess either pure parallel or pure antiparallel 

3 structure (Marsh, Corey and Pauling 1955). A weak band near 1690 cm"^ 

is present in the infrared spectra of many synthetic polypeptides and in

dicates the presence of at least a fractional amount of antiparallel 3 

structure. Because this 1690 cm"^ band is weak and close to strong bands 

from random coil at 1660 cm"^ and from 3 structure at 1632 cm"^, it is 

sometimes difficult to uncover and its absence can not be construed to 

imply the presence of pure parallel 3 structure. 

Ultraviolet absorption and dispersion depend in an additive fashion 

on the properties of the chromophores comprising any molecule. There 
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is some dependence of these properties on molecular geometry; however, 

it is an effect of secondary importance. ORD and CD of chromophores having 

planes or centers of inversion are not intrinsic in a chromophore but are 

extrinsically induced in chromophores by local asymmetric molecular en

vironments. From this it is evident that optical properties fall into 

two classes, in one they depend on the chromophore itself and in the other 

they depend on the chromophore's environment and, therefore, on molecular 

geometry. This discussion will concern the latter class. 

The macroscopic properties molar rotation ([m']) and molar dichroism 

(Ae ) are directly related to the molecular optical parameter rotational 

strength (R^) which is in turn related to the molecular electronic and 

magnetic transition dipole moments, and respectively (Equation 9). 

"a " "OA""AO (GQ g, 

Here m and e are the electron mass and charge, c is the velocity of light, 

NQ is Avogadro's number and v is frequency. The subscripts A and OA 

designate the 0 A molecular transition. Im signifies imaginary part. 

In molecules with points or planes of symmetry, it is necessary that the 

dot product of and vanish. Because of this, these molecules are 

not optically active even though and my^g might have finite values. 

In many asymmetric molecules having symmetric chromophores optical activ-
! 

ity is observed. In order to explain this observation, it is necessary 

to devise a method for the asymmetric molecule to perturb the symmetric 

chromophore in such a way that ygy^ is not perpendicular to m^g and their 
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dot products will not vanish. The amide chromophore will be discussed 

before discussing methods of perturbation. 

There are a number of absorption bands of the amide chromophore in 

polypeptides which will be of interest here. The characteristics of the 

amide group absorption spectrum above 150 nm are summarized in Figure 1 

(Gratzer 1967). These are : one n ^ IT* transition at approximately 210 nm, 

two TT ir* transitions near 190 nm and 165 nm and one n a* transition 

near 150 nm. For each transition in an isolated group with a point or 

plane of inversion the transition must either be electrically allowed and 

magnetically forbidden ^ 0 or m^^ =0) or be magnetically allowed 

and electrically forbidden = 0 and m^g f 0)(Eyring et 1944). 

The lower case subscripts indicate the group transition o + a in group 

i as opposed to molecular transitions discussed previously. Of these 

transitions the n + n* transition is experimentally magnetically allowed, 

while the IR^ •* N* and + IT* transitions are electrically allowed. 

Tinoco (1962) used first order perturbation theory to derive a 

general equation for optical activity in polymers. For magnetically 

allowed transitions like the n -»• IT* transition, the general equation 

reduces to equation 10. Here is the rotational strength of molecular 

transition A in a molecule with N identical groups. The u's and m's 

are as defined previously. The states of the groups are labelled with 

subscript o (ground state) and a,b,— (excited states). Thus, 

would be the electric dipole moment for the transition o ->• a in group 

i, while is the permanent electric dipole moment of the ith group 

in the excited state a. The factors V._ . . etc. are the coulombic ioa;job 
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Figure 1. The electronic transitions above 150 nm in the absorption 
spectrum of the amide chromophore 
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N 
Rn = -E [ 2 E E 

1=1 jVi b?^a 

+ E E .  
b^a 

+ E E 
J7i bfa 

^ioa;job ^^ob'^ioa ^b 

h(Vb -

^iab;joo ^iob*"'iao 

h(Vb -

^iob;joo ^lab ^iao 

(b) 

(a) (Eq. 10) 

(c) 

J (d) 
jfi 

potential energies due to the interactions of transition charge densities 

in residue i with those in residue j, while refers to the inter

action of the transition charge density in group i with the permanent 

charge density in residue j. The frequencies v and v, are respectively 
a D 

the frequencies of the transitions o -> a and o •> b. The b, c and d terms 

in equation 10 comprise the Condon or one electron mechanism for the 

generation of optical activity (Condon et 1937). In the Condon mechan

ism, two transitions on the same chromophore, one magnetic, the other 

electric are mixed by the perturbing field of the remaining asymmetric 

molecule. In effect this perturbing field partially breaks down the 

symmetry of the chromophore. The potential energies (V's) in these terms 

depend on the symmetry of the chromophore group itself (Schellman 1968, 

Schellman and Oriel 1962, Schellman 1966, Litman and Schellman 1964). 

The peptide group is a quadripole with Cg^ symmetry having the axis of 

rotation along the C=0 direction. The potential energy for the interac

tion of the quadripole chromophore with monopole perturbing atoms has the 

form in equation 11. Here X^, Y.,- and R. are the x, y and radial coor-
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iob;joo 
V. 
ioa;joo, 

F (Eq. n) 

dinates of the perturbing atom i with the charge q.. Because of the na

ture of this potential energy term, three requirements are necessary to 

generate optical activity from the Condon mechanism: 1) The quadripole 

must be rigid with respect to the nearest perturbing atoms, 2) there must 

be a low effective dielectric constant between the chromophore and the 

perturbing atoms and 3) the perturbing atoms must give an asymmetric field 

(Litman and Schellman 1964). The charge on any perturbing atom is weight

ed by R"®, and therefore, only atoms near the chromophore contribute to 

the rotational strength. The first term in equation 10 is not included 

in the Condon mechanism although its contribution to the rotational 

strength might be significant. This term is the m-p mechanism and is 

discussed by Schellman (1968) and Woody and Tinoco (1967). It involves 

the mixing of two transitions, one magnetic on one group and the other 

electric on another group by the perturbing field of the asymmetric molecule. 

Before discussing the electrically allowed transitions in polymers 

like the TTJ ir* transition, the phenomenon of exciton splitting must be 

discussed. When electrically allowed transitions in a polymer or crystal 

are degenerate, a phenomen known as exciton splitting occurs. In cry

stals Davydav (1962) showed that light is not absorbed by a single degen

erate group, but that the excitation is distributed over many degenerate 
i 

groups in a crystal. By first order perturbation theory it can be shown 

that N polymer energy levels occur, each level corresponding to one of the 
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N groups of the polymer. The relative intensity of each of the energy 

levels is determined by the geometry of the degenerate groups in the 

polymer (Tinoco et 1963). The frequency and oscillator strength 

calculated for the exciton bands of a number of polypeptide structures 

are given in Figure 2. 

The general equation of Tinoco (1962) reduces to equation 12 for 

electrically allowed transitions. In this equation the primes indicate 

N VI . uV'v'(R. - R.)-ii' xpV (Eq.l2) 
R, = - z [ 2TT/C Z S L O A-.Job a b J  i job loa . j 
^ i=l j^i b^a h(v^^ -

j/1 b^a" h(\)'^ - v'%) 
D a 

that the groups considered are in the static field of the polymer and not 

isolated as were the groups considered previously. The a term in equation 

12 comprises the Kirkwood dipole-coupling mechanism (Kirkwood 1937). 

It involves the interactions between electrically allowed transitions in 

different groups i and j separated by the vector (Rj - R^). The potential 

energy (V) in this term is due to the interactions of dipoles and takes 

the form in equation 13 (Schellman 1968). The b term in equation 12 is 

V. . , - - "i" ) (E,. 13) 
Toa;job — / 

similar to the a term in equation 10 which was discussed previously. 

The rotational strengths for the TIJ -»• IT* and n -»• ir* transitions of 

the amide chromophore of polypeptides can and have been calculated using 

considerations similar to these. Calculations of this type generally 

suffer from lack of detailed knowledge concerning the wave functions 
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Figure 2. The frequency and oscillator strength calculated for the 
exciton bands of a number of polypeptide structures ' 



and are therefore most useful in predicting sign and approximate position 

of cotton effects. The predictions of rotational strength should be re

liable within an order of magnitude. Calculations of rotational strength 

have been made for the right and left handed a-helix as well as the 3^^ 

helix by Woody and Tinoco (1967), Schellman and Oriel (1962) and Vaur-

nakis et (1968), for the poly-L-proline I and II helices by Pysh 

(1967) and for the parallel and antiparallel B structure by Pysh (1966) 

(Table 3). It is easily seen from this data that it would be difficult to 

distinguish between a-helix and 3^^ helix or between parallel and anti-

parallel 3 structure on the basis of the theoretical predictions. How

ever, with this information distinction between right and left handed 

a-helix or 3^^ helix can be made as well as between the I and II forms 

of poly-L-proline. 



Table 3. Rotational strengths in Debye-Bohr magnetons calculated for the n n* and TT^ -yn* tran
sitions in polypeptides 

Structure Transitions calculated Transitions observed 

Rn _ TT* X(nm) R^ ^ X(nm) R^^ ^ X(nm) 

-0.028* 220 -5.230* 186.1 -0.160d 222 0.870d 198 
-0.031b 220 6.400* 188.4 -0.310° 205 
-0.140C 220 -1.170* 197.5 
0.003* 220 
0.03lb 220 

-0.017 220 -8.830 185.1 

a-helix right handed 

a-helix left handed 

3io helix right handed® 
9.460 186.1 

-0.630 197.6 
3io helix left handed* 0.006. 220 . 
poly-L-proline I -0.022* 220 -1.7205 204 -0.018® 232 -0.190e 200 

1.720° 216 -0.300® 216 
poly-L-proline II 0.000° 220 -0.410" 201 0.000® — -0.360® 206 

- 0.020° 215 0.054® 221 
e structure parallel -0.023? 220 0.230? 181 

3 structure antiparallel -0.035^ 220 -o!o27f 175 -0.1609 218 0.2109 195 
0.057? 195 & 197 -0-160* 218 

^Woody and Tinoco (1967). 
"Schellman and Oriel (1962). 
^Vaurnakis et al. (1968). 
dpysh. (19671" ~~ 
®Bovey and Hood (1967). 
Tysh (1966). 
9lizuka and Yang (1966), Sarkar and Doty (1966), Yang (1967). 
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MATERIALS AND METHODS 

Feather Keratin Fibrils 

The feathers used in this study were the mature primary flight 

and tail feathers obtained from turkeys. The feathers were washed 

with water to remove dirt and debris and allowed to dry. The calamus 

(quill) of the dried feather was scraped to remove the disoriented outer 

layer and the tip and the blade of the feather trimmed from the calamus. 

The resulting portion was split open and the interior scraped to remove 

the pulp caps. The scraped feather was then extracted with hot ben

zene in soxhlet apparatus for 24 hours and then allowed to dry at 

room temperature. 

Peracetic acid used for the oxidation of the feather was prepared 

by the method of Greenspan (1947), modified for the use of 30% hydro

gen peroxide. The pH of the peracetic acid was adjusted in the cold 

to 4.5 by the addition of concentrated sodium hydroxide. The proce-

durë used for oxidation of the keratin is similar to that used by 

Hail (1964). The feather was oxidized in the above sçlution for between 

15 and 24 hours at 4°C. At the completion of the oxidation period, the 

remaining oxidizing agent was removed by washing the feather parts 

exhaustively using distilled water. The feather was then dispersed 

in solution by placing the oxidized feather in distilled water and ele

vating the pH to 10.5 with sodium hydroxide. The solution was main

tained at pH 10.5 for up to two hours and then dialysed 24 hours against 

distilled water to remove inorganic compounds and small peptides. 

The oxidized feather keratin (OxFK) solution was then centrifuged for 
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four hours at 144,000 % g to remove any large or insoluble protein. 

The procedure used for reduction and alkylation of feather was 

similar to that used by Harrap and Woods (1964 a). The feather was 

reduced in a 0.2 molar mercaptoethanol solution at pH 11.0. The feath

er composed about 1% of the weight of the solution. The reaction 

proceeded under an atomsphere of nitrogen at 4°C for between 24 and 

48 hours. At the completion of the reduction period, the solution 

was clarified by centrifugation and the supernatant obtained was ti

trated with a 0.6 to 1.0 molar iodoacetic acid which had been adjusted 

to pH 6. During the titration, the pH of the solution was maintained 

at pH 9.5, and the titration was continued until the nitroprusside test 

was negative. The reaction was always completed in 15 minutes. Sodium 

sulphite was then added to destroy the excess of iodoacetate, and the 

reaction products were removed by dialysis against distilled water at 

4°C. The S-carboxy-methylated feather keratin (SCMFK) was then concen

trated by pressure filtration and centrifuged for four hours at 144,000 

X g to remove any large or insoluble protein. 

Fibril formation occurred under numerous conditions of tempera

ture, concentration, pH and ionic strength. It occurred most rapidly 

at or near room temperature in concentrated solutions (1 or 2%) when 

the pH was slightly higher than that at which precipitation occurred. 

The pH's generally used were pH 4.5 for OxFK and pH 6.0 for SCMFK. 
I 

The SCMFK preparations gelled readily while a period of several days 

was required for gel formation in OxFK. The fibrils were separated 

from the solution by centrifugation at 105,000 x g for four hours. 
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suspended in distilled water and recentrifuged. Repeating this final 

suspension and centrifugation several times produced pure feather kera

tin fibrils as evidenced by the lack of slow sedimenting components in 

the fibril solutions. 

Insulin Fibrils 

Samples of crystalline insulin were obtained from Calbiochem. A 

method suggested by Waugh (1944) Was used for the conversion of native 

to fibrillar insulin. The pH of a 1% solution of insulin was adjusted 

to between pH 1.5 and 2.0 with hydrochloric acid and about 10 ml was 

placed in a sealed glass test tube. The tubes were heated in a water-

bath to between 80® and 100°C until a clear gel was formed. The time 

required for gelling was between 2 and 10 minutes depending on the exact 

temperature and pH. The sample was then cooled and frozen rapidly by 

immersion in a dry ice-acetone solution, thawed under running tap water, 

and reheated (80° to 100°C) for approximately two minutes. The pro

cess of freezing and reheating was repeated until a firm gel formed 

which was usually after three or four times. Total conversion of native 

to fibrillar insulin was possible by this procedure and sedimentation 

velocity experiments with the fibrillar solution showed no slow sedi

menting components. 

Di ami dçs 

Samples of crystalline acetyl-glycine-N-methyl amide (AGMA), acetyl-

L-alanine-N-methyl amide (AAMA), acetyl-L-leucine-N-methyl amide (ALMA) 

and noncrystalline acetyl-L-lysine-N-methyl amide (ALyMA) were obtained 
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from the Cyclo Chemical Corp. and were used without further purification. 

Other Materials 

All other chemicals were analytical grade reagents and were not 

further purified. 

Electron Microscopy 

Copper grids, 200 or 400 mesh, were coated with formvar films and 

subsequently coated with carbon by vacuum evaporation. A dilute solu

tion of the fibrils in distilled water was deposited on the above grids 

with a fine-bore pipette and allowed to stand several seconds before 

removal of the liquid with the edge of a strip of filter paper. This 

process sometimes was repeated several times. As the drop receded, fib

rils remained on the grid surface. 

For negatively stained specimens, the above staining procedure 

was performed before the grids had completely dried. Uranyl formate 

at a concentration of 1% in distilled water was used. The staining 

procedure was always repeated several times. 

For shadowed specimens, the shadowing was performed by evaporating 

platinum carbon pellets (Ladd Research Industries) in a vacuum evapora

tor (mini Consultants) in which a prepared grid was placed. Evapora

tion was usually done at a distance of 10 cm from thé grid and the tan

gent of the angle between the plane of the grid and the trajectory of 

the vaporized platinum was either 0.10 or 0.25. 

Specimen grids were examined with an RCA-EMU-3F electron microscope. 

The objective aperture was operated at an accelerating voltage of 100 KV 

for negatively stained samples and 50 KV for shadowed samples. The 
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instrumental magnification was always near 30,000X as determined by 

periodic calabrati on. All measurements quoted were made on the original 

plates with a Nikon Profile Projector Model 6-C. 

X-ray Diffraction 

Feather keratin and insulin fibrils were studied as rod and disc 

specimens. Rod specimens were prepared by suspending a drop of an aqueous 

fibril solution between the end of two approximately 1 mm diameter glass 

rods separated by from 1 to 3 mm. The ends of the rods were fire polished. 

After allowing several hours for drying rod specimens 1 to 3 mm long 

and 0.1 mm in diameter were obtained. The fibrils were oriented parallel 

to the main axis of the rod. These specimens were generally mounted 

perpendicular to the x-ray beam; however, whenever particular meridional 

diffractions were to be studied, the rod was tilted away from this per

pendicular position by the Bragg angle of the diffraction involved. 

Disc specimens were prepared in cylindrical capillary tubes, of about 

1 mm diameter, by filling a short segment of the capillary with an aqueous 

fibril solution and allowing several days for drying. After the drying 

period, thin cylindrical discs 0.1 mm thick and 1 mm in diameter were 

obtained. The fibrils were oriented in the plane of the discs. They 

were always mounted with the x-ray beam in their plane. 

Bundles of fine needle-like diamide crystals were made by numerous 

mechanical techniques and mounted in the same way as rod specimens. 

Nickel filtered copper Ka radiation from a General Electric XRD-S 

x-ray unit was used throughout this study. Flat film cameras which 

could be evacuated or could be maintained in a helium atmosphere were 
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used at specimen to film distances near 3, 5 or 10 cm. 

Infrared Measurements 

Infrared (IR) and infrared dichroism (IRD) spectra were obtained 

at room temperature on a Beckman IR4 recording spectrophotometer which 

was modified for dichroism measurements with a beam condenser and polari

zer. Some IR measurements were also made with a Beckman IR12 recording 

spectrophotometer. Solid samples of feather keratin fibrils, insulin 

fibrils and crystalline diamides were oriented by stroking viscous fibril 

solutions or Nujol suspended diamide crystals on calcium fluoride windows 

with a fine brush. The fibrils and crystals oriented with their long 

axis parallel to the direction of stroking. The IR spectra of diamide 

solutions were made in Beckman standard liquid cells with sodium chloride 

windows and path lengths of 0.1 mm and 1.0 mm or in IR quartz cuvettes 

having path lengths of 1 mm and 10 mm. The spectrophotometer was always 

used in the double beam mode and standard Beckman liquid cells were used 

in matched pairs. 

Near IR spectra were obtained at room temperature with a Gary 14 

recording spectrophotometer using a matched pair of 5 cm path length 

quartz cuvettes. 

Optical Activity 

Optical rotatory dispersion (ORD) and circular dichroism (CD) spectra 

were obtained at room temperature on either a Jasco recording dichro-

graph (CD-0RD-UV5) or a Jasco recording polarimeter which had been modi

fied for the measurement of CD (model 0RD/UV5). Some CD measurements 

were also made with a modified Roussel-Jouan dichrograph (Foss and McCar-
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ville 1965). Most of the ORD and CD spectra of proteins were made with 

a 1 mm path length quartz cuvette which showed no strain birefringence. 

Because of interference with ORD and CD measurements by the strong flow 

induced birefringence normal insulin fibrils produced, fibrils were 

frozen and thawed prior to the. recording of these data. The.freezing 

technique was found to reduce fibril length thus eliminating the bire

fringence, but had no effect on the ORD at 230 nm. The CD and ORD spec

tra of diami des were made in a number of quartz cuvettes and in teflon 

cells having quartz end windows attached by silicone grease. Path lengths 

between 0.05 and 10 mm were used. 

Ultraviolet Measurements 

Absorption determinations and spectra were obtained at room tempera

ture with a Cary 15 recording spectrophotometer. For recording spectra 

in the far ultraviolet several special precautions were necessary. The 

instrument which was flushed with nitrogen was operated in the double 

beam mode using two carefully matched cuvettes having 1 mm path lengths. 

In fibrillar insulin solutions, some hydrochloric acid was present; how

ever, its absorbance was never larger than 20% of that of the fibrils 

and should have cancelled with the same concentration of hydrochloric 

acid in the solvent. Oust was eliminated from the solutions by centri-

fugation. Even though dust is eliminated from solutions and solvents, 

light scattering due to protein occurs. This was corrected by plotting 

the logarithm of the absorption spectra of the protein and fitting it 

to the logarithm of K/X® (K is a constant and X is wavelength) at wave

lengths removed from absorption bands. This curve is then extrapolated 
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under the protein absorption spectra and subtracted from it. This cor

rection never accounted for more than 5% of the absorbance at 200 nm. 

Hydrodynamic Measurements 

Viscosity measurements were made using a Cannon-Ubbelohde semi-

micro dilution viscometer size 150. The viscometer was immersed in a 

constant temperature bath at 25°C and flow times were measured with an 

auto viscometer (Hewlett and Packard Models 5901B and 5901A respectively). 

The solution and solvent densities were determined with a 10 ml specific 

gravity bottle. 

Sedimentation velocity measurements were made with a Spinco Model 

E analytical ultracentrifuge using an An-D rotor and double sector synthe

tic boundary cell. The centrifuge was operated at 60,000 rpm and the 

temperature was regulated near 20°C. The data were recorded on Kodak 

Metallographic Plates using the schlieren optical system. The photo

graphic data were measured with a Nikon Profile Projector Model 6-C. 

Diffusion coefficients were measured with a Spinco Model E analy

tical ultracentrifuge using an An-J rotor and a double sector synthetic 

boundary cell. The centrifuge was operated at 4000 rpm or slower and 

the temperature was regulated near 20°C. The data were recorded on Kodak 

Type II G spectroscopic plates using the Rayleigh interference optical 

system. 

Concentration and Error Determination 

Concentrations were generally determined by dry weight measurement. 

Exceptions to this were in the absorption study on native insulin and 

insulin fibrils in which concentrations were compared using biuret color. 
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and in the sedimentation velocity and diffusion studies where concentra

tions were determined by schlieren peak area and interference fringe 

numbers respectively. 

Error bars in spectra represent instrumental noise and are not 

related to the ability to reproduce spectra. All other errors are given 

as probable error. 
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RESULTS AND DISCUSSION 

Feather Kerati n 

Low molecular weight derivatives 

OxFK and SCMFK preparations contain four fractions. Each fraction 

has different elution properties with respect to Sephadex G-lOO column 

chromatography (Figures 3 and 4). In the order of their elution, the 

four fractions are polymer, trimer, dimer and monomer. Monomer is in 

the greatest abundance and is presumably the basic constituent of native 

feather keratin. It has a molecular weight of 10** g/mole and from hydro-

dynamic and optical rotation studies appears to be a random coil in 

aqueous solution (Rougvie 1954, Woodin 1954, Schor and Krimm 1961, Har-

rap and Woods 1964 o). The ORO of aqueous monomer above 200 nm has a 

single rotational trough at 210 nm (Figure 5). This is expected for the 

random coil in aqueous solution. It is interesting that the ORD's of 

feather keratin monomer and soluble aqueous silk, both of which are, 

thought to be random coils, are similar (lizuka and Yang 1966). The 

ORD of random coil synthetic polypeptides has a much peeper trough at 

210 nm than silk or feather keratin monomer (Blout et aj[. 1962, Sarkar 

and Doty 1966, Holzwarth and Doty 1965). 

The dimer and trimer fractions are abundant in OxFK preparations. 

The dimer is presumably composed of two monomers which have one or more 

cystines in common. It has a molecular weight of 2 x lo** g/mole, and 

on the basis of hydrodynamic investigation appears to be a random coil 

in aqueous solution (Hail 1964). The ORD of aqueous dimer is, within 

experimental error, identical to that of monomer (Figure 5). This also 



Figure 3. The Sephadex G-lOO column chromatography of a S-carboxy-
methylated preparation of feather keratin 

Sephadex columns (2 X 100 cm) were prepared. The columns 
were equilibrated and eluted with pH 7.0 phosphate buffer 
having an ionic strength of 0.15. Ten ml samples were applied. 

Figure 4. The Sephadex 6-100 column chromatography of an oxidized pre
paration of feather keratin 

See Figure 3 for details. 

! 
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indicates random coil conformation. 

The trimer fraction has not been completely characterized. The 

trimer molecule is presumably composed of three covalently associated 

monomeric molecules. Its elution properties on G-lOO Sephadex indicate 

that it is more similar to a 3 x 10"* molecular weight random coil than 

a globular structure of the same molecular weight. The ORD of aqueous 

trimer has a broad trough centered at approximately 230 nm (Figure 5). 

The presence of a rotational trough near 230 nm indicates an n ^ IT* 

electronic transition in the peptide group and is sufficient evidence 

for nonrandom coil protein conformations in aqueous solvents. Because 

the crossover point of the trimer ORD is not above 220 nm, it is expected 

that the trimer is predominately random coil with some regions of struc

tured protein. Another possibility is that the trimer molecule is to

tally random coil and is mixed with polymer impurities not separable 

with G-lOO Sephadex chromatography. The polymer fraction is present 

in SCMFK and OxFK preparations. It consists of a continuum of high 

molecular weight derivatives. Electron microscopic investigation of the 

polymer fraction has revealed no distinct repeating structures. The 

ORD of aqueous polymer has only a single rotational trough above 200 nm 

which is centered at 232 nm and has a crossover at 225 nm. Based on 

ORD, it appears that the polymer fraction consists primarily of struc

tured protein. 

The preparation and electron microscopy of fibrillar feather keratin 

At the proper conditions of pH and ionic strength, the aqueous 

mixture of the fractions of OxFK or SCMFK preparations form a gel. 
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Gelation is due to the formation of a fibrillar derivative from any of 

the soluble fractions or a combination thereof. The fibril formation 

which accompanies gelation does not occur in solutions of purified mono

mer fraction. The SCMFK fractions gel more readily than the OxFK frac

tions which show gel formation only after a period of several days. 

The polymerization process is reversed by urea and guanidine hydrochloride 

as well as concentrated formic acid. The fibrils are easily separated 

from the low molecular weight fractions by centrifugation. 

Under investigation with the electron microscope, the fibrils appear 

to be long rod-like structures which have uniform cross sections (Figure 6). 

The width and height of the fibrils were experimentally measured using 

negative staining with uranyl formate for the width and shadowing with 

platinum carbon for height. Negative staining experiments with samples 

of both OxFK and SCMFK preparations of fibrils indicated a fibril width 
O 

which was between 70 and 100 A (Figure 6). The width was difficult 

to determine due to the absence of clearly defined fibril boundaries 

produced by the uranyl formate. Close inspection of the negatively 

stained fibrils showed faintly stained cross striations separated by 

about 50 Â (Figure 8). Platinum carbon shadowing experiments on sam

ples of the fibrils indicated a somewhat smaller fibril height of 60 Â 

(Figure 7). The height was computed by comparing the shadows cast by 

tobacco mosaic virus with those cast by;the fibrils. The results of 

these experiments indicate that the fibrils might have somewhat ellip

tical or rectangular cross sections. 

Filshie et a^. (1964) reported finding fibrils formed from feather 

keratin which were composed of two or three filaments twisted around 



Figure 6. Oxidized feather keratin fibrils negatively stained with 
uranyl formate 

Figure 7. Oxidized feather keratin fibrils shadowed with platinum 
carbon 

O 
A distance of 1000 A is represented in the lower left hand 
corner by a bar. The tangent of the shadowing angle was 0.1. 
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each other which appeared as twisted ribbons. Examples of this phenome

non clearly indicate the presence of two fibrils për ribbon (Figure 9). 

The occurrence of ribbon-like structure, although common, was not the 

norm. Filshie e^ (1964) suggested that the fibrils might be similar 

to the microfibrils found in native feather keratih. From the.data 

which follows their suggestion is not plausible. 

X-ray diffraction studies of feather keratin fibrils 

The rod and disc methods of x-ray specimen preparation have been 

described in a previous section. To make clear the interpretation of the 

x-ray results, a brief discussion of the orientation of fibrils in such 

specimens and the resulting nature of the diffraction pattern is provided 

here. 

In rod specimens the fibrils are positioned so that their longitu

dinal axes are parallel to the long axis of the rod. The x-ray diffraction 

pattern generated by the specimens are rotation patterns where the axis 

of rotation is the longitudinal axis of the fibrils. Along the vertical 

axis of such a pattern will be found diffractions related to axial peri

odicities of the fibril. Diffractions on the horizontal axis will be 

related to lateral structure. 

In disc specimens the fibrils are positioned so that their longi

tudinal axes are in the plane of the disc. For convenience, all patterns 

of disc preparations are presented so that axial diffractions of fibrils 

are again vertical. The nature of specimen orientation is now such 

that all in-plane periodicities, axial as well as transverse, will provide 

intensity along this pattern direction. Diffractions related to peri-



Figure 8. Oxidized feather keratin fibrils negatively stained with 
uranyl formate 

Figure 9. S-carboxy-methylated feather keratin fibrils 

In the upper micrograph two fibrils which are twisted around 
each other appear as a twisted ribbon. 
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odicities perpendicular to the plane of the disc will be found along 

the horizontal axis of the pattern and will concern only transverse fi

brillar structure. 

The low angle x-ray diffraction pattern of a disc specimen of oxi

dized fibrils is shown in Figure 10. In the rod specimen (not shown), three 

discrete low angle diffractions are on the equator and none are on the 

meridian. The equatorial diffractions represent spacings of 69, 35±5 

and 23±3 A. These spacings which must involve the transverse dimensions 

of the fibrils are the first, second and third orders of 69 A. The 
O 

69 A spacing probably represents the average separations between fibril 

centers in the rod preparation. The diffuseness of the diffractions 

indicates poor fibril packing. 

In the disc specimens, there are three discrete low angle diffrac

tions on the equator and one on the meridian. The equatorial diffrac-
O 

tions represent spacings of 58, 36 and 23 A. The meridional diffrac-
O 

tion represents a spacing of 90 A. In the disc specimens, equatorial 

diffractions must involve the transverse dimensions of the fibrils. 

The cross sectional dimensions obtained are in fair agreement with 

those for rod-specimens. As pointed out earlier, fibril meridional dif

fractions in disc specimens may be related to either axial or transverse 

fibrillar periodicities. Evidence for axial periodicities should be 

found also on the meridian of rod patterns. Since this is not true for 
O 

the 90 A diffraction, one must conclude, that it refers to a transverse 

spacing and that this transverse dimension of the fibrils is preferably 

^riented in the plane of the disc. 

The conclusion then reached is that the fibril centers are separated 



by 90 A in one direction and 58 A in the other. Again the diffuseness 

of these low angle diffractions indicates poor fibril packing. The 69.Â 

spacing observed in rod specimens is probably a composite or an average 
O 

of the 58 and 90 A spacings. 

A low angle x-ray diffraction investigation of the SCMFK fibrils 

was not undertaken in detail. Electron microscopic investigation of 

the SCMFK fibrils showed no difference between the SCMFK and OxFk fibrils. 

Because fibrillar dimensions are not necessarily related to intra-

fibrillar spacings, the low angle x-ray diffraction pattern need not 

be related to the wide angle pattern. In this treatment the low and 

wide angle diffraction patterns are treated independently. The wide 

angle x-ray diffraction patterns of disc and rod specimens of OxFK and 

SCMFK fibrils are shown in Figures 11 and 12. The rod and disc diffrac

tion patterns showed no significant differences. 

The most striking feature of the x-ray diffraction patterns of the 

OxFK and SCMFK fibrils is a strong sharp meridional diffraction repre-
o * o 

senting approximately a 4.7 A spacing. Typically the 4.7 A spacing is 

the separation between hydrogen bonded chains in the 3 structure. When 
O 

the 4.7 A spacing is on the meridian, as it is here, it indicates a 6 

structure where the protein backbone chains lie normal to the long axis 

of the fibrils. Configurations of this type are referred to as cross-6 

structures. Table 4 contains a list of the other spacings and Miller 

indices assigned to them. These spacings are indexed to an orthogonal 

pseudo unit cell having the dimensions given in Table 5. All of the 

equatorial diffractions were diffuse and therefore, their interpretation 
O 

is subject to error. Furthermore, the 14 and 10 A spacings. indicated 



Figure 10. The low angle x-ray diffraction pattern of a disc specimen 
of oxidized feather keratin fibrils 

The intermediate angle diffractions are shown best on the 
left pattern. The Tow angle diffractions are shown on the 
right pattern. 

Figure 11. The wide angle x-ray diffraction pattern of a disc specimen 
of oxidized feather keratin fibrils 

Figure 12. The wide angle x-ray diffraction pattern of a rod specimen 
of S-carboxy-methylated feather keratin fibrils 
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Table 4. The wide angle x-ray diffraction data for S-carboxy-methylated 
and oxidized feather keratin fibrils oriented by the rod and 
disc methods 

Miller indices Spacingsoobserved® SpacingSoCaTculated 
h k 1 (A) (A) 

S-carboxy-methylated fibrils 

0 1 0 13.8 m 13.8 
0 0 2 9.74±0.09 vs 9.74 
0 1 2 7.95±0.10 m 7.95 
0 1 4 4.52+0.10 w 4.59 
0 2 4 3.85±0.03 w . 3.98 
0 4 3 3.05 m 3.05 
1 0 0 4.70 vs 4.70 
1 1 

0 
0 
1 

4.48 s 4.45 
4.57 

1 0 4 
3.59 

3.38 
1 0 3 3.59 m 3.81 
2 0 0 2.349 m 2.350 

Oxidized fibrils 

0 1 0 14.4 m 14.4 
0 0 1 9.9 vs 9.9 
0 
0 

1 
2 

1 
0 7.53 md 

8.16 
7.20 

1 0 0 4.67 vs 4.67 
1 
1 

0 
1 

1 
0 4.51 s 4.55 

4.45 
2 0 0 2.364 m 2.335 
2 0 2 2.178 w 2.133 

*The intensity is indicated after the spacing by vs = very strong, 
s = strong, m = medium, w = weak and d = diffuse. 

by the intermediate angle diffractions are subject to error because of 

possible contributions to them by lattice related to the fibril dimen-
O 

sions. It is interesting that the fifth order of the 69 A fibril dimen-
o o 

sion is near 14 A and that the seventh order is near 10 A. For these 
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Table 5. The dimensions of the orthogonal pseudo unit cell of S-carboxy-
methylated and oxidized feather keratin fibrils 

Side Dimension 

S-carboxy-methy1 ated Oxi di zedofi bri1s 
fibrils (Â) (A) 

a 4.70 4.67 

b 13.8 14.4 

c 19.5 9.9 

reasons, the b and c dimensions of the pseudo unit cell of Table 5 might 

be off by as much as 1 A. 

Two 3 structures were proposed by Pauling and Corey (1951) after 

a systematic survey of proteins in which the arrangement of the amide 

groups were restricted to certain orientations. The structures were 

the parallel and antiparallel chain pleated sheets. The fiber axis 
O 

identity distance calculated for the parallel 3 structure was 6.5 A 
O 

and that for the antiparallel 3 structure was 7.0 A. The lateral dis

placement in the hydrogen bond direction between equivalent parallel 
O 

chains was 4.85 A in the parallel g structure and between equivalent 

chains of the antiparallel 3 structure was 9.50 A. 

Several antiparallel cross-3 structures have been subjected to 

detailed x-ray diffraction analysis (Arnott et 1967, Geddes et al. 

1968). All of these structures with the exception of poly-L-alanine 

have diffraction patterns which agree with the antiparallel 3 structure 

proposed by Pauling and Corey (1951). In poly-L-alanine there is no 



diffraction requiring a 9.5 A spacing in the hydrogen bond direction; 

however, the diffraction pattern fits in all other respects to the anti-
o 

parallel g structures. Arnott suggested that the absence of a 9.5 A 

spacing in the hydrogen bond direction was due to a statistical displace

ment of peptide chains in which nearest neighbor chains in the side 
o 

chain direction are displaced randomly by ± one half of the 4.7 A spacing 

in the hydrogen bond direction. This explanation cannot be invoked 

with the fibrils. 3 structures which are predominately parallel chain 

pleated sheets have not been reported. 

In the orthogonal pseudo unit cell proposed for the fibrils, the 
o o 

14 A spacing is twice the fiber axis identity period. The 14 A spacing 

is not reliable in the feather keratin fibrils, and therefore, cannot be 

used to distinguish between parallel and antiparallel 3 structure. 
O 

The 10 A spacing is the side chain identity period and is not relevant 

to this discussion. This leaves the lateral displacement identity period 

with which to make distinction between g structures. This hydrogen 

bond spacing indicates that the OxFK and SCMFK fibrils have parallel 

cross-B structures. 

It is difficult to relate the low and wide angle x-ray diffraction 

data with the available diffraction patterns. However, the evidence 
O o 

available indicates that the 90 A fibril width and the 10 A side chain 

identity period are in the same direction. In specimens oriented by 

the disc method the low angle meridional diffractions, which correspond 
o 

to the spacings in the same direction as the 90 A spacing, should be 

ring-like with greatest intensity on the equator. The equatorial dif-



fraction corresponding to the 58 A spacing and the higher angle diffrac

tions corresponding to spacings in that same direction should have little 

or no meridional intensity. The reflection corresponding to the 10 A 

side chain spacing appears most ring-like and therefore, is most likely 
o 

to be in the same direction as the 90 A spacing. The 14 A chain spacing 

likewise appears to be in the same direction as the 58 Â spacing. 

Infrared studies of feather keratin fibrils 

The amide I IR absorption band of the peptide group in polypeptides 

is quite sensitive to secondary structure. This absorption originates 

from molecular vibrations of the four atoms of the carbonyl stretching 

vibration. Various perturbations due to hydrogen bonding and other 

interactions split this absorption band in a predictable fashion enabling 

the distinction between the parallel and antiparallel 3 structure (Mi-

yazawa 1960, Bradbury and Elliott 1963). The amide I band of the parallel 

and antiparallel g structure is at 1632 cm'^. In the antiparallel 3 

structure a component of the amide I band is predicted at or near 1690 cm" 

IRD spectra were made on solid samples of OxFK and SCMFK fibrils. 

Polarized IR radiation was passed normal and parallel to the oriented 

fibrils and their absorption spectrum was recorded as Aj_ and A|, respec

tively (Figure 13). Table 6 lists the amide I and II frequencies of the 

fibrils and those theoretically predicted and experimentally observed 

with synthetic polypeptides. Although 3 structure is clearly indicated 

by the fibril absorption at 1632 cm'i for the amide I. band, no component 

at 1690 cm"^could be detected. The presence of the overlapping absorp

tion centered at 1660 cm"^ might obscure any weak band near 1690 cm"\ 
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Figure 13. The infrared dichroism spectra and infrared spectra of oxi
dized feather keratin fibrils and partially dauterated oxi
dized feather keratin fibrils 
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Table 6. The amide I and II absorption bands for the feather keratin 
fibrils and synthetic polypeptides 

Material Ami de I® (cm-M Ami de II® (cm-': 

OxFk fibrils 1632 
1660 

s II 
m 

1543 S X 

SCMFK fibrils 1632 s II 1540 s X 
1660 m 1650 

a-helix theoretical 1650 (0) , 
VJ. (2IT/n) 

1516 V II (o) 
1647 

(0) , 
VJ. (2IT/n) 1546 VX(2TR/N) 

a-helix experimental 1650 s II 1516 m TI 
1652 MX 1546 s X 

Antiparallel 3 structure 1685 v„ (Oir) 1530 V II (On) 
theoreticalb 1668 vx (UTT) 1550 Vi. (iTir) 

1632 (TTO) 1540 V t (irO) 
Parallel 3 structure 1648 v„ (00) 1530 V|, (00) 

theoreticalb 1632 VjL (TTO) 1550 (irO) 
3 structure experimental 

Silkd 

(irO) 
3 structure experimental 

Silkd 1701 m II 
m 

1525 VS u 
1657 

m II 
m 1540 vw 

1632 VSj. 
Poly-L-alanylglycine" 1702 VWj. 1535 s J. 

1630 VS|, 

Poly-3-n-propyl-L-asparate® 1700 w 1530 m X 
1632 vs,i 1532 

Poly-Y-benzyl-L-glutamate® 1692 w J. 1525 m A 
1623 s II 

Poly-S-carbobenzoxy-L-cysteine' 1678 VWJ. 1503 m 1 
1641 VS (f 1547 w 1 

Poly-S-carboxymethyl-L- cysteine^ 1690 vw 1527 m 
1624 VS 

Random coil theoretical . 1658 1535 
Random coil experimental 1656 S 1535 s 

"The intensity and the dichroism of the absorption band appear af
ter the absorption band; s, m and w indicate strong, medium and weak 
intensity and // andindicate parallel and perpendicular dichroism. 

bMiyazawa and Blout 1961. 
CBamford et al. 1956. 
"Fraser et al. 1965. 
^Bradbury et al. 1960. 
^Elliott et 1964. 
9lkeda 1967. 
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In order to determine the origin of the 1660 cm"^ absorbance, and 

to check the spectrum at 1690 cm"^, vapor phase deuterium exchange experi

ments were performed (Figure 13). After treatment with deuterium vapor, 

the 1660 cm"^ absorbance shifted to lower frequencies leaving the other 

amide I absorption bands unaffected. This indicated the incorporation 

of deuterium into those peptide groups responsible for the 1660 cm"^ 

absorption. The rapidity with which the deuterium exchange took place 

suggests that random coil must be present in the preparation. This 

interpretation is in accord with the absorption at 1660 cm"^ by random 

coil synthetic polypeptides. Even with the shifting of the 1660 cm"^ 

band, a 1690 cm"^ amide I absorption could not be detected. Although 

this data cannot be used to show that a weak 1690 cm"^ absorption band 

does not exist, it can be used to show that a 1690 cm"' band of moderate 

strength is nonexistent. If the 1690 cm"' component of the amide I 

band of the fibrils were as strong as it is in the antiparallel 3 struc

ture of silk, this IR technique would have uncovered it without diffi

culty. Because of the absence of a 1690 cm"^ band, it appears that the 

OxFK and SCMFK fibrils are parallel 3 structures. 

The dichroism of the amide I and amide II absorption indicates that 

the hydrogen bonds are parallel to the long axis of the fibrils. This 

implies that the peptide chains are normal to the long axis of the fib

rils and therefore, in a cross-3 structure. These IR results are satis

fied by parallel cross-3 structured fibrils which have incorporated 

with them finite amounts of random coil protein. 
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Circular dichroism and optical rotatory dispersion of feather keratin 

fibrils 

In order to further establish the secondary structure of the fib

rils and to examine their structure in solution, the ORD and CD of an 

aqueous solution of fibrils were measured (Figure 14 and 15). These 

two UV optical properties, related by the Kronig-Kramer transform, are 

powerful tools in the elucidation of secondary protein structure. Ex

perimental evidence indicates that the a-helix, random coil and 3 struc

ture conformation of synthetic polypeptides can be distinguished by 

their optical properties. The CD of experimentally observed 3 structures 

has a negative dichroic band at 218 nm and a positive band at approxi

mately 195 nm (Table 7). The ORD of 3 structures has a trough with mini

mum at 230 nm (Table 8). 

The negative circular dichroism band at 218 nm obtained with OxFK 

and SCMFK fibrils indicates the presence of 3 structure. The magnitude 

of the ORD trough at 232 nm backs up this conclusion. Although these 

results indicate 3 structure, the particular type of 3 structure present 

is difficult to extract from ORD and CD measurements. Extensive theore

tical studies involving a quantum mechanical analysis of the UV optical 

properties indicate that the parallel and antiparallel 3 structures 

should have significantly different ORD and CD (Pysh 1966, Rosenheck 

and Summer 1967 ). Unfortunately, attempts to predict the form of struc

turée experimently observed using the theoretical approach lead to some 

ambiguities that render structure characterization questionable. In 

general, it can be said that if the dichroic bands at 218 nm and 196 nm, 

that are experiinently observed in synthetic polypeptides, represent the 
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Table 7. The circular dichroism of 3 structures and feather keratin fibrils 

Material Negative bands Positive bands 

X(nm) Ae \(nm) Ae 

Feather keratin 218 -5.7±0.7 

Poly-L-lysine in HgO^ 217 -5.85±0.85 195 8.5±1.2 

Poly-L-lysine in HgO^ 218 -7.30 

Poly-L-lysine in SDS^ 217 -3.5 197 12 

Poly-L-lysine in SDS^ 217 1 ro
 

Silk fibroin in 93% methanol^ 218 -3.0 197 10 

PTownend et al. 1966. 
Sarkar and Doty 1966. 

STimasheff et al. 1967. 
"lizuka and"Tang 1966. 

antiparallel 3 structure, the parallel 3 structure will have dichroic 

bands at approximately the same frequency but of larger magnitudes than 

in the antiparallel 3 structure. If on the other hand, the experimentally 

observed bands represent the parallel 3 structure then the antiparallel 3 

structure will have dichroic bands of smaller magnitudes. It appears 

that most 3 structure synthetic polypeptides, experimentally observed, 

have a mixture of parallel and antiparallel 3 structure. It can not be 

shown in these structures that either parallel or antiparallel 3 struc

ture predominates. 

In interpreting the magnitude of the CD bands at 218 nm and 195 nm, 

caution must be exercised. The rotational strengths of these two cotton 



51 

T'hle 8. The optical rotatory dispersion of 3 structures and feather 
keratin fibrils 

Ma ten" al Trough Peak 

X(ntn) [m'] x(nm) [m'] 

Feather keratin 232 -6190 

Poly-L-lysine® 230 -6300 204-5 +23000 

Co-poly-L-lysi ne-L-tyrosine^ 230 -6500 205 +21500 

Poly-L-lysineb 230 -6220 205 +29200 

Silk fibroin^ 229-30 -5000 205 +24000 

^Sarkar and Doty 1966. 
"Davidson et 1966. 
ciizuka anT"Yang 1966. 

effects in polypeptides depend strongly on the presence of sodium dodecyl 

sulfate (SDS) in the polypeptide solutions (Timasheff e;t 1967, Sar-

kar and Doty 1966). The effect of SDS is to reduce the rotational strength 

at 218 nm and increase it at 195 nm by a factor of two. This detergent 

presumably provides a nonpolar environment somewhat resembling that with

in globular proteins. These pleated sheets of synthetic polypeptides 

are assumed exposed to water when SDS is not present. This strong depen

dence of the optical properties of 3 structures on their environment 

makes the application of the theoretical results of Rosenheck and Summer 

(1967) and Pysh (1966) of no value in determining the type of structure 

present in the fibrils. 

Simple comparison of the optical properties of the presumed anti-

parallel g structure of synthetic polypeptides and reconstituted silk 
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with the 3 structure of the fibrils shows many similarities. However, 

due to the uncertainity of the extent of 3 structure in all of these 

materials along with the effect that different 3 structure environments 

have, it does not necessarily follow that the fibril g structure is 

antiparallel. 

Hydrodynamic properties of the feather keratin fibrils in guanidine 

hydrochloride 

The fibril fraction forms from a solution containing a number of 

components, and therefore, the makeup of the fibrils is unknown. In 

order to determine the makeup of the fibrils, a detailed hydrodynamic 

investigation of the OxFK fibrils dissolved in guanidine hydrochloride 

was undertaken. This investigation involved the evaluation of sedi

mentation coefficient, diffusion coefficient and intrinsic viscosity (Fig

ures 16, 17 and 18). 

Extensive evidence presented by Tanford ^ al_. (1967) shows that 

native globular proteins when dissolved in concentrated guanidine hydro

chloride have the hydrodynamic properties of random coils. With random 

coils, hydrodynamic parameters such as intrinsic viscosity ([n]) and 

frictional coefficient (f) can be related directly to the number of amino 

acid residues per protein chain (a) by equations 14 and 15 (Figures 

" 0.34a®-®® (Eq. 14) 

[n] = O.SOa"-®- (Eq. 15) 

19 and 20). The viscosity of the solvent is represented by rio- In or

der to use these equations, it is necessary to establish that the fib-



Figure 16. The sedimentation velocity of oxidized keather keratin fibrils dissolved in 6 molar 
guanidine hydrochloride 

The centrifugations were performed in double sector synthetic boundary cells. The 
concentration was determined by the area of the schlieren peaks. 
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Figure 17. The diffusion coefficient of oxidized feather keratin fibrils dissolved in 6 
molar guanidine hydrochloride 
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Figure 18. The intrinsic viscosity of oxidized feather keratin fibrils dissolved in 
molar guanidine hydrochloride 



Figure 19. The frictional coefficient as a function of protein chain 
length in 6 molar guanidine hydrochloride 

This data was recalculated from sedimentation coefficients 
g i v e n  b y  T a n f o r d  e t ( 1 9 6 7 ) .  

Figure 20. The intrinsic viscosity as a function of protein chain length 
in 6 molar guanidine hydrochloride 

This data was taken directly from Tanford e^ (1967). 
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ril components are random coils in guanidine hydrochloride. 

The random coil characteristics were established using the combined 

Flory-Fox (1951) and Mandelkern-Flory (1952) equations (Equation 16). 

(Eq. 16) $i^p-
U^THl-Tp), 

Here is Avogadro's number, R is the universal gas constant, T is 

the absolute temperature, V is the partial specific volume, p is the 

density of the solvent and is a universal constant. For random 

coils the theoretically predicted value for is 2.45 x 10*. The 

value obtained for the fibrillar component is 2.50 x lo®, well within 

the experimental range found for random coils (Scheraga 1961). There

fore, equations 14 and 15 are valid for the fibrillar components. 

The sedimentation velocity and diffusion coefficient are related 

to the frictional coefficient by equations 17 and 18. M, the molecular 

s = M(l-Tp)/NQf (Eq. 17) 

D = RT/N^f (Eq. 18) 

weight, is related to the number of amino acid residues per chain (a)  

and mean residue molecular weight (MQ) by equation 19. By combining 

M = aM^ (Eq. iq) 

equations 14, 17 and 19 with the sedimentation coefficient of Figure 16, 

the number of residues in the fibrillar components can be determined. 

The number of amino acid residues per component molecule is 93. Equa-
1 

tions 14 and 18 and the diffusion coefficient of Figure 17 indicate 

84 residues per molecule. The intrinsic viscosity indicates 130 residues 

per molecule. Based on the Svedberg equation (Equation 20), the diffu-

s/D = M(l-Vp)/RT (Eq. 20) 
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sion coefficient and the sedimentation velocity, the molecular weight of 

the fibrillar components is 9500 g/mole. These results clearly indicate 

that the fibrils are composed of the monomer component which has approxi

mately 100 residues per molecule and a molecular weight of 10** g/mole. 

Proposed structures for feather keratin fibrils 

Electron microscopy and low angle x-ray diffraction indicate that 
O 

the fibrils have uniform transverse dimensions of 60 and 90 A. The 

wide angle x-ray diffraction pattern and IRD of the fibrils show them 

to have a cross-3 structure probably with the parallel chain pleated 

sheet of Pauling and Corey. These studies are in apparent disagreement with 

the optical properties of the fibrils which are similar to those of 

synthetic polypeptides reported to have the antiparallel chain pleated 

sheet. However, at this time little is known with regards to the opti

cal properties of these two structures, and therefore, the significance 

of these properties must be left for future investigations. Relating 

the low and wide angle x-ray diffraction data, it appears that the pro-
O 

tein chains are parallel to the 60 A side of the fibrils. 

The fact that all the feather keratin fibrils have the same trans

verse dimensions deserves some comment. In order for the fibrils to 

have a uniform cross section, it is necessary that their constituent 

monomer molecules be allowed by molecular constraints to fold in one and 

only one fashion. It is possible that the random coil monomer is solely 

responsible for these molecular constraints; however, the inability 

to obtain fibrils from pure monomer suggests that an initiating unit 

must be present. Once a fibril has been initiated its growth probably 
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involves the fibril end which duplicates the initiating unit. 

Incorporating what is known of the fibril structure, two limiting 

methods of fibril growth from the initiator sight will be discussed. 

In the first method eight monomer molecules line up on the template which 
o 

is 60 by 90 A. The random coil portions of the remaining monomer mole

cules fold back onto themselves to give rise to an antiparallel 3 struc

ture. Upon completion of the folding, the eight monomer molecules form 

a template identical to that to which they are associated. By repeating 

this process a fibril is formed (Figure 21). Only antiparallel 3 struc

tures could be generated by this process. 

In the second method of fibril growth, two monomer molecules become 
O 

associated with the template. Both molecules then occupy one 4.7 A 

thick layer. These two molecules regenerate the template and the pro

cess recycles (Figure 21). By this method either parallel or antiparal

lel chain pleated sheets can be generated. 

Initiation may involve any one of the soluble products larger than 

monomer which may serve to increase the probability of formation of a 

stable nucleus for fibril growth. 

Insulin Fibrils 

Introduction 

The globular protein insulin undergoes a reversible linear polymeri

zation under favorable conditions to form submicroscopic fibrils. The 

chemistry of this transition has been studied extensively by Waugh (1957). 

There are two proposals for the structure of the fibrils. Koltun et al. 

1 



4-8A 

FIBRIL 
AXIS 

(A) 

FIBRIL 
AXIS 

CTï ro 

Figure 21. Two possible models of the fibrillar structure of feather keratin fibrils 
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(1954) on the basis of a detailed x-ray diffraction analysis of the fib

rils proposed that the fibrils are composed of a linear array of slightly 

distorted globular insulin molecules. On the other hand, Ambrose and 

Elliott (1951) proposed on the basis of IRD and a preliminary x-ray 

diffraction analysis of the fibrils, that the fibrils are composed of 

polypeptide chains in the 3 configuration laying perpendicular to the 

fibril axis. Based on evidence from electron microscopy, x-ray diffrac

tion, IRD, optical activity and optical density, a more precisely defined 

structure is proposed. This structure is similar to that proposed by 

Ambrose and Elliott. 

Electron microscopy of fibrillar insulin 

As seen in the electron microscope, insulin fibrils are long having 

irregular diameters (Farrant and Mercer 1952, Kung and Tsao 1964). 

Investigations of fibrils which were negatively stained with uranyl 

formate show that the insulin fibrils observed are composed of bundles 

of smaller laterally aggregated fibrils. These smaller fibrils which 
O 

have a cross sectional dimension of approximately 40 A were more fre

quently observed in fibril preparations which had been frozen prior to 

negative staining (Figures 22 and 23). Freezing and thawing of insulin 

fibrils caufis partial disruption of the fibrils inducing drastic changes 

in the viscosity of the fibril solution. Kung and Tsao (l964) who also 
O 

have found 40 A diameter fibrils report that they are composed of two 
O 

25 to 30 A diamter fibrils laterally.associated. The micrographs on 

which the Kung and Tsao proposal is based do not clearly show small 

fibrillar components. In any case, they concluded that the ^tructure 



Figure 22. Insulin fibrils negatively stained with uranyl formate 

The laterally aggregated fibrils have widely varying diam
eters, the smallest of which are 40 A in diameter. 

Figure 23. Insulin fibrils negatively stained with uranyl formate 
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proposed by Ambrose and Elliott can not be accommodated by, the smaller 

fibrils they observed. 

X-ray diffraction studies of insulin fibrils 

Two methods of specimen orientation have been found suitable for 

x-ray investigation of fibrils. They are the rod and disc methods de

scribed previously. 

In this treatment of the x-ray diffraction pattern of insulin fibrils, 

the low and wide angle diffractions are treated independently. The low 

angle x-ray diffraction patterns of the rod and disc specimens of insulin 

fibrils are not significantly different, and therefore, only the diffrac

tion pattern of the rod specimens will be described (Figure 24). In 

the rod specimen there are two discrete low angle diffractions on the 

equator and one on the meridian. The equatorial diffractions represent 
O 

spacings of 30 and 15.3 A. These spaclngs which probably involve the 

cross sectional dimensions of the insulin fibrils are the first and 
o O 

second orders of 30 A. The 30 A spacing probably is the average separa-
! 

tion between fibril centers. The diffuseness of the diffractions indi

cates poor fibril packing. 

These low angle results are in serious disagreement with those 

reported by Koltun et (1954). In that study the fibrils were ori

ented by stroking a film of the Insulin gel. Their method of specimen 

orientation is expected to give results similar to the disc method de

scribed previously. In the Koltun diffraction pattern there were four 

low and intermediate angle diffractions on the equator and three inter

mediate angle diffractions on the meridian. The equatorial diffractions 



Figure 24. The x-ray diffraction pattern of a rod specimen of insulin 
fibrils 
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Figure 24. The x-ray diffraction pattern of a rod specimen of insulin 
fibrils 



represented spacings of 55, 30.8, 14.0 and 11.8 A. The meridional dif-
O 

fractions represented spacings of 16.1, 12.0 and 8.2 A. In the Koltun 

specimens, equatorial diffractions must have involved the transverse di

mensions of the fibrils. Two of these diffractions, those representing 
O 

the 30.8 and 14.0 A spacings, are in fair agreement with the results 

from rod specimens. The other two equatorial diffractions have escaped 

detection in experiments specifically designed for their detection and, 

therefore, were probably artifacts. As pointed out earlier, fibril 

meridional diffractions in the disc or Koltun specimens may be related 

to either axial or transverse fibrillar periodicities. Evidence for 

axial periodicities should be found also on the meridian of rod speci

mens. Since this is not true, the intermediate angle meridional diffrac

tions must refer to transverse spacings with this transverse direction 

preferably oriented in the plane of the specimen. It is possible that 
o 

the meridional diffractions representing the 16.1 and 8.2 A spacings 

are on the equator of rod specimens. No evidence for a diffraction 
o 

representing a 12.0 A spacing can be found in rod specimens (Table 9). 

Koltun et ç^. (1954) proposed that the insulin fibrils were composed 

of a linear array of slightly distorted globular insulin molecules. 
O 

His proposal depended on a 55 A cross sectional spacing and the three 
o o 

longitudinal spacings of 16.1, 12.0 and 8.2 A which order to 48 A. 

In the low and intermediate angle x-ray diffraction patterns of rod and 

disc specimens, no evidence for these spacings was found on the meridian. 

The wide angle x-ray diffraction pattern obtained with rod speci

mens of insulin fibrils is shown in Figure 24. The rod and disc diffrac-
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Table 9. The x-ray diffraction data for insulin fibrils 

o 
Longitudinal spacings (A) 

O 

Lateral spacings (A) 

Ko1tun® This study Koltun® This study 

16.1 55 

12.0 30.8 30 

8.2 14.0 15.3 

4.79 4.73 11.8 

4.12 9.5 9.58 

3.80 3.92 8.0 7.75 

3.54 3.48 6.9 6.90 

2.40 2.387 5.5 5.53 

2.25 2.230 4.73 

4.07 

3.08 2.883 

2.77 

*Koltun et al. 1954. 

tion patterns show no significant differences, and therefore, the diffrac

tion patterns of only rod specimens will be discussed. The most striking 

feature of the x-ray diffraction patterns of insulin fibrils is the strong 
I O 

sharp meridional diffraction representing a 4.7 A spacing. When the 
o ' 

4.7 A spacing is on the meridian as it is here, it indicates a cross-g 

structure. Table 10 contains a list of the other spacings and Miller 

indices assigned to them. Comparison of these spacings with those for 
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Table 10. The wide angle x-ray diffraction data for insulin fibrils 
oriented by the rod and disc methods 

Miller 
h k 

indices 
1 

Spaci ngsoobserved® 
(A) 

Spacingsocal culated 
(A) 

0 0 1 9.58 m 9.58 

0 1 1 7.75 md 7.87 

0 2 0 6.90 wd 6.90 

0 2 1 5.53 m 5.64 

0 0 2 4.79 
4.73 w 

0 3 0 4.60 

0 2 2 4.07 m 3.90 

0 4 2 2.883 w 2.788 

1 0 0 4.73 vs 4.73 

1 1 1 4.04 

1 2 0 3.92 s 3.90 

1 2 1 3.60 

1 0 2 3.59 
3.48 w 

1 2 1 3.35 

2 0 0 2.387 m 2.365 

2 i 2 0 2.256 
2.230 m 

2 2 1 2.192 

®The intensity is Indicated after the spacing by vs = very strong, 
s = strong, m = medium, w = weak and d = diffuse. 
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feather keratin fibrils shows much in common. These spacings are indexed 

to an orthogonal pseudo unit cell having the dimensions given in Table 

11. All the equatorial diffractions were diffuse and therefore, their 

interpretation is subject to error. 

Two C structures were proposed by Pauling and Corey (1951), the 

parallel and antiparallel chain pleated sheets. In the orthogonal pseudo 

unit cell proposed for the insulin fibrils, the 13.8 A spacing is twice 

the fibril axis identity period. This spacing is probably reliable only 

to about 0.5 A and therefore, is not accurately enough determined to 

warrant its use in distinguishing between the parallel and antiparallel 

pleated sheets. The 9.58 A spacing is the side chain identity period 

and can not be used to distinguish between the two 3 structures. This 

leaves the lateral displacement identity period with which to make the 

distinction between g structures. This hydrogen bond spacing indicates 

that insulin fibrils have parallel cross-B structure. 

Table 11. The dimensions of the orthogonal pseudo unit cell of insulin 

o 

o 

o 

fibrils 

O 
Side Dimension (A) 

a 4.73 

b 13.8 

c 9.58 



72 

Infrared studies of insulin fibrils 

The amide I IR absorption band of the peptide group in polypeptides 

has been discussed in a previous section. IRD spectra were made on 

solid samples of the insulin fibrils and native insulin. Polarized IR 

radiation was passed normal and parallel to the oriented fibrils and 

their absorption spectrum was recorded as and A„ respectively (Fig

ure 25). Table 6 and 12 list the amide I and II frequencies of the 

fibrils and those theoretically predicted and experimentally observed 

for synthetic polypeptides. Although 3 structure is clearly indicated 

by the fibril absorption at 1632 cm"^ for the amide I band, no component 

at 1690 cm"i could be detected. The presence of an overlapping shoulder 

centered at 1740 cm~^ might obscure any weak band near 1690 cm"^. This 

shoulder which is also present in the IR spectrum of native insulin 

films, probably originates from the many primary amides present in insulin. 

The weak shoulder at 1660 cm"^ could originate from 3 structure or non-

hydrogen bound insulin in the fibrils or from native insulin. Although 

this data cannot be used to show that a weak 1690 cm~^ absorption band 

does not exist, it can be used to show that a 1690 cm"^ band of moderate 

strength is nonexistent. If the 1690 cm"^ component of the amide I 

band of the fibrils were nearly as strong as it is in the antiparallel 

3 structure of silk, this IR spectra would have uncovered it without 

difficulty. Because of the absence of a 1690 cm"^ band, it appears that 

the insulin fibrils have a parallel 3 structure. 

The dichroism of the amide I and II absorption bands indicate that 

the hydrogen bonds are parallel to the long axis of the fibrils. This 

implies that the peptide chains are normal to the long axis of the fib-



Figure 25. The infrared dichroism spectra of fibrous insulin and the 
infrared spectra of native insulin 

The spectra labelled If and J. represent the absorption spec
tra of light having its electric vector parallel and per
pendicular respectively to the long axis of the fibrils. 
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Table 12. The amide I and II absorption bands for insulin fibrils and 
native insulin 

Material Amide I® (cnT^) Amide II® (cm"M 

Insulin fibrils 1633 s // 1545 m i 
1730 w // 

Native Insulin 1660 s 1545 m 
1730 w 

The intensity and the dichroism of the absorption band appears 
after the absorption band; s, m and w indicate strong, medium and weak 
intensity and // andJL indicate parallel and perpendicular dichroism. 

rils and therefore, in a cross-g structure. These IR results are sat

isfied by a relatively pure parallel cross-g structure fibril. 

Ambrose and Elliott (1951) on the basis of IRD experiments similar 

to those above proposed that a structure globular insulin is converted 

to cross-3 structure insulin fibrils. In their mechanism the native 

globular insulin molecule attaches to the fibril end, and the a struc

ture in the native insulin is unfolded to 3 structure by being stretched 

across the fibril surface (Figure 26). 

UV optical properties of insulin fibrils 

In order to further establish the secondary structure of the fib

rils and to examine their structure in solution, the CRD, CD and OD 

of aqueous solutions of the fibrils were measured. Experimental evidence 

indicates that the a-helix, random coil and 3 structure conformations 

of synthetic polypeptides can be distinguished by their optical properties. 

The CD of experimentally observed 3 structures has a negative dichroic 
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Figure 26. The Ambrose and Elliott (1951) mechanism for the conversion 
of a structure native insulin to cross-6 structure insulin 
fibrils 
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band at 218 nm and a positive band at approximately 195 nm (Table 7). 

Thr.' ORU of (' structures has a trough with a minimum at 230 nm (Table 

8). The strongest band in the absorption spectrum of 3 structures is 

centered at 195 nm with an extinction coefficient that is larger than 

those found with the a-helix or random coil. There are large side chain 

contributions to this extinction coefficient (Gratzer 1967). Side 

chains have virtually no effect on the CD and ORD of polypeptides and 

proteins. 

The negative CD band at 218 nm and the positive band at 195 nm 

obtained with insulin fibrils indicate the presence of 3 structure 

(Figure 27). The differences in the CD spectra of fibrillar and native 

insulin indicate that major conformational changes have taken place in 

the conversion of native to fibrous insulin. The ORD of the insulin 

fibrils also shows 3 structure; however, it is not significantly differ

ent than the ORD of native insulin (Figure 28). This insensitivity of 

ORD to major conformational alterations is expected from the CD of native 

and fibrous insulin. The extinction coefficient of the insulin fibrils 

at 195 nm is greater than with native insulin (Figure 29). This also 

shows a major structural alteration in the conversion of globular insu

lin to 3 structure fibrils. These results conclusively show that a major 

conformational change occurs in insulin when the globular form is con

verted to the fibril form. They also show that the insulin fibrils have 

3 structure. The particular type of 3 structure present is difficult 

to extract from ORD and CD measurements. Extensive theoretical studies 

involving a quantum mechanical analysis of the UV optical properties 

have been discussed previously. Unfortunately, attempts to predict 
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Figure 27. The circular dichroism of insulin fibrils and native insulin 
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Figure 28. The optical rotatory dispersion of insulin fibrils and native 
insulin 
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Figure 29. The absorption of insulin fibrils and native insulin 



the form of 3 structure experimentally observed, using the theoretical 

approach, leads to some ambiguities that render 3 structure characteriza

tion questionable. Simple comparison of the optical properties of the 

antiparallel 3 structures of synthetic polypeptides and silk with the 

structure of the fibrils show many similarities. However, due to the 

uncertainty of the extent of antiparallel 3 structure in silk and poly

peptides along with the effect that different 3 structure environments 

have on optical activity, it does not necessarily follow that the fibril 

structure of insulin is antiparallel. 

Proposed structure for insulin fibrils 

The electron microscopy and low and intermediate angle x-ray diffrac

tion results of this study indicate that the fibrils have uniform cross 

sectional dimensions of approximately 30 to 40 A. The wide angle x-ray 

diffraction pattern and IRD of the fibrils show them to have a cross-3 

structure probably with the parallel chain pleated sheet of Pauling and 

Corey. This evidence is almost identical with that obtained with OxFK 

and SCMFK fibrils. The optical activity of the fibrils is similar to 

that of synthetic polypeptides suggested to have the antiparallel chain 

pleated sheet of Pauling and Corey. However, at this time little is 

known of the optical properties of the parallel and antiparallel chain 

pleated sheets, and therefore, the significance of these properties must 

be left for future Investigation. The optical properties including 

UV optical density show that rather drastic alterations of the structure 

of insulin accompany the conversion of the native to the fibrillar form. 

Although there is some question as to whether the insulin fibrils 
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have parallel or antiparallel cross-3 structure, there can be no doubt 

that the insulin and feather keratin fibrils have the same type of 

cross-B structure. In terms of the x-ray diffraction, IRD and ultra

violet optical activity, feather keratin and insulin fibrils are iden

tical . 

The primary structure of insulin was established by Sanger and 

coworkers more than 15 years ago (Sanger and Tuppy 1951, Sanger and 

Thompson 1953, Ryle et 1955). This primary structure which is not 

disrupted during fibril formation severely limits the number of possible 

ways in which insulin could form cross-3 structure fibrils. There are 

two chains in insulin, one the A chain composed of 21 amino acid resi

dues and the B chain composed of 30 amino acid residues. Two disulfide 

bridges connect the A and B chains and a third closes a small loop in 

the A chain (Figure 30). The restrictions induced in the insulin mole

cule by its disulfide bridges leave only several ways of arranging insulin 

in the cross-3 structure fibrils. 

In all of the arrangements that can generate cross-3 structure 

fibrils, the insulin molecule lies in a plane normal to the fibril axis. 

Other arrangements of the insulin molecule do not allow the formation 

of significant amounts of 3 structure. Intermolecular hydrogen bonds 

between planes form 3 structure. Depending on the way in which the 

planes are oriented with respect to their neighbors, they generate either 

a mixture of parallel and antiparallel 3 structure with a significant 

amount of nonhydrogen bound insulin or all parallel 3 structure. Several 

examples of the combinations are given in Figure 31. From the point of 

view of molecular model studies and the experimental data, the most 
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satisfactory structure is that where the planes are oriented so as to 

generate a parallel cross-3 structure. The parallel cross-6 structure 

insulin fits very nicely into a fibril with cross sectional dimensions 

between 30 and 40 A. Assuming the fibrils have a density of 1.4 g/cc, 
O 

it is possible to show that one insulin molecule will fill one 4.7 A 
O 

thick layer which is 38 by 38 A. The fibril probably has a structure 

similar to that in Figure 32. 

The initiation of fibril growth which occurs only at elevated tem

peratures must involve first the disruption of the secondary structure 

of globular insulin. Waugh (1957) has shown on the basis of kinetic 

studies that the chance collision of at least three such molecules can 

generate a fibril initiating unit. Once a fibril has been initiated, 

its growth must involve the fibril end and the disrupted insulin mole

cules in solution. Ambrose and Elliott (1951) suggested that once an 

insulin molecule is in contact with the fibril end, the a structure 

or globular structure of the disrupted insulin molecule is stretched 

by hydrogen bond formation across the fibril surface. 

Diamides 

Introduction 

There is some uncertainity about the type of 3 structure in feather 

keratin and insulin fibrils. The fibrils have UV optical properties simi

lar to those of polypeptides interpreted to have antiparallel 3 struc

ture while the x-ray diffraction and IRD studies on the fibrils indicate 

that they have parallel cross-3 structure. This difficulty, which is 

related to the interpretation of UV optical activity, has been discussed 
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in the previous sections. Based on theoretical considerations, signifi

cant differences in the optical properties of parallel and antiparallel 

chain pleated sheets are anticipated; however, it has not been possible 

to correlate these differences with experimental data because of the 

lack of demonstrably pure model systems of these types. To the contrary, 

there is evidence that 3 polypeptides contain mixtures of parallel and 

antiparallel 3 structure (Kosenheck and Summer 1967, Bradbury and Elliott 

1963). In hopes of resolving the question of how the two types of g 

structure are related to optical activity observed in polypeptides, a 

detailed study of the optical activity of several model compounds was 

undertaken. 

In order to be a valid structural and optical model for this study, 

the compound used must aggregate through hydrogen bonding to generate 

a parallel or antiparallel 3 structure. Also, the model compound must 

have peptide groups which have essentially the same molecular environment 

as peptide groups in 3 structure polypeptides. One group of compounds 

meeting these requirements is the diamide group. The diami des used 

in this study are acetyl-L-leucine-N-methyl amide (ALMA), acetyl-L-ala-

nine-N-methyl amide (AAMA), acetyl-glycine-N-methy1 amide (AGMA) and 

acetyl-L-lysine-N-methyl amide (ALyMA)(Figure 33). 

Diami des have received a great deal of attention in the recent past. 

The reason for this attention is that diamides, like polypeptides, have 

two degrees of rotational freedom in their backbone. These are rota

tions about the bonds between the amide nitrogen and the a-carbon (if;) 

and between the carbonyl group and the a-carbon ((J)). and ^ have been 

described as a function of potential energy for various nonhydrogen 
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hountl rliiiniidos and polypeptides (Leach e^ 1966, Ramachandran et al. 

I 'J63 and 19Gb, Brant 1967). The calculations show that for di-

amides such as those above less than 20% of the values are energet

ically reasonable. Three conformational types exist for diami des and 

polypeptides; they are the right handed a-helix (ij^ = 100-140, ^ = 20-100), 

the left handed a-helix (\p = 210-320, (j) = 220-260) and the g structure 

(\p = 240-360, $ = 0-150). IR spectra of some diamide solutions suggest 

the existence of a fourth diamide conformation which involves the forma

tion of an intramolecular hydrogen bond (Figure 34)(Tsuboi et 1959). 

The considerations involving the conformational calculations do not take 

hydrogen bonding into account. It has been suggested that the diamide 

molecules associate through hydrogen bonding to make a 3 structure-like 

aggregate (Mizushima e^^. 1954)(Figure 34). Although the diamide g 

structure is unlike the polypeptide structure in the direction of the 

peptide chain, it is similar in the hydrogen bond direction. 

The ORD of di ami des having fixed as well as variable ij; and ^ angles 

was investigated by Schellman and Nielsen (1967). They found that the 

rotatory properties of the diamides, especially acetyl-L-alanine amide, 

were similar to those of polypeptides and proteins. In an analysis 

of the optical rotatory properties of acetyl-L-proline amide, they found 

that that diamide in dioxane formed an intramolecular hydrogen bond. 

This is in agreement with previous IR studies of Tsuboi et (1959). 

Detailed analyses of the rotatory properties of other diami des were 

unsuccessful. 



Figure 33. The structure of acetyl-L-leucine-N-methyl amide (ALMA), 
acetyl-L-alanine-M-methyl amide (AAMA), acetyl-glycine-N-
methyl amide (AGMA) and acetyl-L-lysine-N-methyl amide 
(ALyMA) 

Figure 34. Four diamide conformations all of which allow the formation 
of inter- or intramolecular hydrogen bonds , 
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Solid state properties 

AGMA, ALMA and AAMA are crystalline in the solid state. The A6MA 

crystals are tabular and an analysis of their x-ray diffraction pattern 
O 

shows them to have a triclinic unit cell having dimensions a = 17.6 A, 
o o 

b = 4.8 A and c = 4.8 A and angles a = 60, 3 =90 and y - 90 (Moriwaki 

et 1959). Two AGMA molecules are required to fill the unit cell 

which is oriented with its long axis nearly perpendicular to the plane 
O 

of the tabular crystals. The 4.8 A spacings are related to the hydrogen 
O 

bond and the side chain dimensions. The 17.6 A spacing is related to 

the backbone dimension. The IR spectrum of unoriented crystalline AGMA 

has absorption bands near 1645 cm"^ (Amide I), 1560 cm"^ (Amide II) 

and 3300 cm"^ (NH stretching)(Figure 35)(Table 13). IRD of the crystals 

was not possible. From this data the conformation of the AGMA in the 

crystalline state can nôt be ascertained;'however, it can be said that 

intramolecular hydrogen bonding is not present. AGMA having an intra

molecular hydrogen bond can not be arranged within the above unit cell. 

The ALMA crystals are needle-like when crystallized from all the 

organic solvents used and water. An analysis of the x-ray diffraction 

pattern of ALMA crystallized from chloroform shows it to have a mono-
O O o 

clinic unit cell with dimensions a = 11.7 A, b = 9.92 A and c = 4.81 A 

and angles a = 90, g = 90 and y = 88.9. Two ALMA molecules are required 
O 

to fill this unit cell which is oriented with the 4.81 A dimension paral

lel to the long axis of the needle-like crystals. The x-ray diffraction 

pattern of ALMA crystallized from water indicates a significantly dif

ferent unit cell (Figure 37). The crystals appear to be polymorphic 
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Table 13. The most prominent infrared absorption bands of the peptide 
group in crystalline A6MA, ALMA and AAMA 

Absorption band AGMA (cm"M ALMA® (cm-M AAMA® (cm-M 

Amide I 1645 1635 // 1670 1 
(carbonyl stretching) 1640 // 

Amide II 1560 1565 1 1575 JL 
(NH bending) 1540 JL 1560 i-

NH stretching 3300 3300 // 3300 // 

V/ andJL indicate parallel and perpendicular respectively. 

and their unit cell dimensions are not easily obtained; however, one 
O 

thing the polymorphs have in common is a 4.80 A dimension parallel to 

thé long axis of the crystals. Also the unit cells of the various poly

morphs are monoclinic or orthogonal. The IR spectrum of the crystalline 

ALMA has absorption bands near 1635 cm"^ (Amide I), 1540 and 1565 cm"^ 

(Amide II) and 3300 cm"^ (NH stretching)(Table 13). The positions of 

these IR absorption bands are not dependent on the method of crystalli-

zallion. IRD of the crystals shows the amide I and NH stretching vibra

tions have parallel dichroism while the amide II bending vibration has 

perpendicular dichroism (Figure 36). Therefore, it appears that the 

hydrogen bonds are parallel to the long axis of the crystals and the 
o 

4.8 A dimension is the hydrogen bond spacing. In order to place two 

ALMA molecules in the unit cell of the chloroform crystals, it is neces-
! 

sary that the ALMA molecules in the crystal be arranged in either a 

3-like structure or an a-helix-like structure (Figure 34). The sugges-



Figure 35. The amide I and II infrared absorption bands of unoriented 
crystalline A6MA 

Figure 36. The infrared dichroism of the amide I and II absorption 
bands of oriented crystalline ALMA 

The spectra labelled A^ and Aj_ represent the absorption 
spectra of light having its electric vector parallel and 
perpendicular respectively to the long axis of the crystals. 
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Figure 37. The x-ray diffraction pattern of acetyl-L-leucine-N-methyl 
amide (ALMA) crystallized from water 

O 
The layer lines in the diffraction pattern indicate a 4.8 A 
dimension parallel to the long axis of the crystals. 
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m 

Figure 37. The x-ray diffraction pattern of acetyl-L-leucine-N-methy! 
amide (ALMA) crystallized from water 

O 
The layer lines in the diffraction pattern indicate a 4.8 A 
dimension parallel to the long axis of the crystals. 
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tion of parallel 3 structure conformation is particularly appealing due 

to similarities in the amide I bands of the crystalline ALMA and 3 struc

ture polypeptides. Also from theoretical evidence the 3-1 ike structure 

diamide is energetically more favorable than the a-helix-like diamide 

in solution (Leach et 1966). 

The AAMA crystals are needle-like when crystallized from all the 

organic solvents used and water. An analysis of the x-ray diffraction 

patterns (powder patterns) of AAMA showed no dependence on the method 

of crystallization. From this data the dimensions of the unit cell 

could not be ascertained. The IR spectrum of crystalline AAMA has ab

sorption bands near 1670 and 1640 cm"^ (Amide I), 1575 and 1560 cm"^ 

(Amide II) and 3300 cm"^ (NH stretching)(Table 13). The relative strength 

of these absorption bands is strongly dependent on the rate of crystalli

zation. In material crystallized rapidly, the amide I absorption maximum 

Is at 1640 cm"^ with a shoulder at 1670 cm"^. When crystallized slowly 

the amide I absorption maximum is at 1670 cm~^ with a shoulder at 1640 cm"^ 

(Figure 38). The IRD of the AAMA crystals shows the bands at 1640 cm"^, 

1560 cm~^ and 3300 cm"^ exhibit parallel dichroism while the bands at 

1671 and 1575 cm"^ exhibit perpendicular dichroism (Figure 39). These 

IR results indicate that two significantly different forms of the AAMA 

are present. We have not been able to distinguish x-ray diffraction pat

terns of two crystalline forms indicating that one of the forms is not 

stable under the conditions of the x-ray diffraction experiemnt. The 

AAMA crystalline form having its amide I absorption at 1670 cmTi must 

have a structural conformation radically different from those of the 

other diamides. The form absorbing at 1640 cm"^ probably has a struc-



Figure 38. The dependence of the infrared absorption spectrum of the 
amide I and II bands of AAMA on rate of crystallization 

Figure 39. The infrared dichroism of the amide I and II bands of oriented 
crystalline AAMA 

The spectrum labelled An and A^represent the absorption 
spectra of light having its electric vector parallel and 
perpendicular respectively to the long axis of the crystals. 
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tural conformation similar to that of the crystalline ALMA and AGMA. 

Solution studies 

The IR absorption spectrum and UV optical rotation were measured 

for AGMA, ALMA, AAMA and ALyMA. These properties are surprisingly simi

l a r  f r o m  o n e  d i a m i d e  t o  t h e  n e x t .  A G M A  w h e n  d i s s o l v e d  i n  d i m e t h y l  s u l 

foxide (DMSO) exhibits IR absorption bands at 1670 cm"^ (Amide I), 1554 

cm-i (Amide II) and 3320 and 3480 cm"^ (NH stretching)(Figure 40) (Table 

14). The amide I band at 1670 cm"^ indicates that the carbonyl group 

is weakly or nonhydrogen bound as expected in DMSO. The NH stretching 

vibrations at 3320 and 3480 cm"^ indicate the presence of hydrogen bound 

and free amide hydrogens respectively. It is probable that DMSO forms 

hydrogen bonds with amide hydrogens. AGMA solutions are not optically 

active. 

ALMA when dissolved in DMSO exhibits IR absorption bands at 1670, 

1550, 3300 and 3500 cm"^ (Figure 40)(Table 14). The interpretation of 

these four absorption bands is identical to the interpretation for the 

similar bands in the AGMA-DMSO solution. The IR absorption spectrum 

of ALMA was investigated in a number of other organic solvents (Table 14). 

The IR spectrum in "dioxane and DMSO are similar. In ethanol, octanol 

and hexane-octanol mixtures a shift in the amide I band to lower fre

quency indicates the formation of hydrogen bonds with the carbonyl group 

of the diamide. In these solvents the NH stretching vibration can not 

be observed. In chloroform and carbon tetrachloride a similar shift in 

the amide I band is observed, which can not be accounted for by hydro

gen bonding to solvent. It must therefore, be attributed to inter- or 
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Figure 40. The infrared absorption of ALyMA, AAMA, ALMA and AGMA in 
dimethyl sulfoxide 
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Table 14. The most prominent infrared absorption bands of the peptide 
groups of AGMA, ALMA, AAMA and ALyMA in solution 

Solute and solvent Amide I' 
(cm-i) 

Amide 11^ 
(cm-i) 

NH stretching® 
(cm-i) 

AGMA in 
DMSO 1670 s 

ALMA in 
DMSO 1670 s 
1-4 Dioxane 1674 s 
Ethanol (100%) 1662 s 
n-Octanol 1664 s 
n-Octanol and Hexane 1664 s 
Chloroform 

High concentration 
Low concentration 1665 s 

Carbon tetrachloride 
High concentration 
Low concentration 1650 s 

AAMA in 
DMSO 1668 s 
n-Octanol 1665 s 
Deuterochloroform 

High concentration 
Low concentration 1665 s 

ALyMA in 
DMSO 1670 s 
Ethanol (100%) 1660 s 

1554 m 

1550 m 
1540 m 
1565 m 
1550 m 
1560 m 

1550 m 
1555 m 

1555 m 
1560 m 

3480 m 3320 m 

3500 m. 3300 m. 
6660 w®6350 s° 

3450 w 3350 m 
3450 m 3350 w 

3320 m 
3450 m 3350 m 

3500 m 3320 m 

3450 w 3350 m 
3450 m 3350 w 

3480 m 3330 m 

®The symbols s, m and w indicate strong, medium and weak intensity. 
"The first overtone of the NH stretching vibration. 

intramolecular, hydrogen bonds involving only the ALMA molecules. The 

NH stretching vibration at 3350 cm"^ in chloroform at 3320 cm"^ in car

bon tetrachloride also indicate the presence of inter- or intramolçcularly 

hydrogen bound ALMA. In order to distinguish between inter- and intra

molecular bonding in the ALMA carbon tetrachloride and ALMA chloroform 
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solutions, the concentration dependence of hydrogen bonding was deter

mined. In these two solvents the most sensitive IR absorption band 

to hydrogen bonding between amide groups is thé NH stretching vibration. 

Absorption near 3350 cm"^ is from hydrogen bound amide hydrogens and 

near 3450 cm"^ is from free amide hydrogens. The specific absorption 

of these bands is strongly dependent on concentration (Figures 41 and 

42), demonstrating formation of intermolecularly associated diami des. 

Diie to the absorbance of dioxane and alcohols near 3300 cm"^ and the 

relative insensitivity of the amide I band to hydrogen bonding, similar 

experiments could not be carried out in the other solvents. 

The ORD and CD of ALMA was determined in a number of organic solvents 

and water (Table 15)(Figure 43). The position and magnitude of the 

rotational trough is dependent upon the dielectric constant of the sol

vent. In low dielectric solvents like dioxane, the trough is at 238 

nm with a molar rotation at the minimum Mjag of greater than 6650 

while in 95% ethanol, it is at 230 nm with a minimum of 4000. This 

wavelength dependence is expected for an n ir* transition although this 

is not the only possible explanation. There is little or no concentra

tion dependence exhibited by optical rotation in ethanol, dioxane or 

chloroform (Figures 44 and 45). 

AAMA when dissolved in DMSO exhibits IR absorption bands at 1668, 

1550, 3320 and 3500 cm"^ (Figure 40)(Table 14). The interpretation of 

these four bands is identical to the interpretation for the similar 

bands in AGMA-DMSO and ALMA-DMSO solutions. The IR absorption spectrum 

of AAMA was also investigated in octanol and deuterochloroform (Table 14). 
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Figure 41. The concentration dependence of the infrared absorption bands near 3350 
and 3450 cm"^ 

Absorption at 3350 and 3450 cm'' are due to hydrogen bound and free amide 
hydrogens respectively. Absorption at 2960 cm-' was found to be a linear 
function of concentration. 
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See Figure 41 for further details. 
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Figure 43. The optical rotatory dispersion of ALMA in a number of solvents 



Figure 44. The concentration dependence of the minimum optical rotation 
of ALMA in dioxane and ethanol 

Figure 45. The concentration dependence of the minimum optical rotation 
of ALMA in chloroform 

The absorbance at 2960 cm"^ is a linear function of concentra
tion. 
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Table 15. The optical rotatory dispersion and circular dichroism of 
ALMA, AAMA and ALyMA in solution 

Solute and solvent ORD CD Solute and solvent 

Trough [m]* Crossover Minimum Ae^ 

ALMA in 
1-4 Dioxane 235 nm 6650 220 nm 215 nm 
Chloroform 237 nm 
n-Octanol 230 nm 4500 220 nm 218 nm 
Ethanol-Hexane 230 nm 220 nm 217 nm 1.47 
Ethanol (95%) 230 nm 4000 210 nm 214 nm 
Water 210 nm 200 nm 

AAMA in 
n-Octanol 230 nm 5400 220 nm 
Deuterochloroform 236 nm 7500 222 nm 
Water 210 nm 

ALyMA in 
n-Octanol 230 nm 2940 
Ethanol (95%) 230 nm 210 nm 

®Molar rotation and molar dichroism are not corrected for refractive 
index. 

In octanol a slight shift of the amide I band to a lower frequency indi

cates the formation of weak hydrogen bonds probably between the solvent 

and the carbonyl groups of the diamide. In deuterochloroform a similar 

shift in the amide I band is observed. Hydrogen bonds between deutero

chloroform and AAMA can not account for this shift, therefore, it must 

be attributed to intra- or intemiolecular hydrogen bonds involving only 

AAMA. The NH stretching vibration at 3350 cm"^ also indicates the pre

sence of inter- or intramolecular hydrogen bound AAMA. In order to 

distinguish between inter- and intramolecular hydrogen bonding in the 

AAMA deuterochloroform solution, the concentration dependence of hydro-
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gen bonding was determined. Molar absorbance near 3350 cm"^ and near 

3450 cm"! are strongly dependent on concentration (Figures 46 and 47), 

demonstrating as in the case of ALMA that the hydrogen bonding involves 

intermolecularly associated diami des. 

The ORD of AAMA in organic solvents is also similar to the ORD of 

ALMA (Table 15). The dependence of the ORD in deuterochloroform upon 

intermolecular hydrogen bonding between,diami des is shown in Figure 48. 

Over a concentration range in which AAMA went from primarily monomer 

to trimer, no significant change occurred in the near UV ORD. 

ALyMA when dissolved in DMSO exhibits IR absorption bands at 1670, 

1600 (NH, absorption), 1555, 3330 and 3480 cm'^ (Figure 40)(Table 14). 

The interpretation of four of these bands is identical to the interpre

tation for the similar bands in AGMA-DMSO, ALMA-DMSO and AAMA-DMSO solu

tions. The absorption band near 1600 cm"^ is due to the primary amino 

group in the lysine side chain. The IR absorption spectrum was also in

vestigated in ethanol. In ethanol a slight shift of the amide I band 

to lower frequency indicates the formation of weak hydrogen bonds between 

the solvent and the carbonyl groups of the diamide. The ORD of the 

ALyMA was determined :in n-octanol.(Table 15). 

Discussion of diamides 

When ALMA aggregates and then crystallizes, it forms a hydrogen 

bonded structure which resembles the parallel or antiparallel 3 structure 

of polypeptides. In the x-ray diffraction pattern of ALMA the absence 
O 

of a 9.5 A spacing, which when present indicates antiparallel B struc-

ture.might be explained by reasoning similar to that used by Arnott 
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Figure 46. The concentration dependence of the infrared absorption bands near 3350 and 3450 cm -1 

The absorption at 3350 and 3450 ctn"^ are due to hydrogen bound and free amide hydro
gens respectively, e.is the molar absorbance. 



Figure 47. The concentration dependence of the infrared absorption 
bands near 3350 and 3450 cm"^ 

Absorption at 3350 and 3450 cm~^ is due to hydrogen bound 
and free amide hydrogens respectively, e is the molar ab-
sorbance. 

Figure 48. The concentration dependence of the minimum optical rotation 
in deuterochloroform 
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^ (1967) to explain the diffraction pattern of poly-L-alanine. This 

was discussed in a previous section. A complete crystal!ographic analy

sis of ALMA was attempted; however, suitable single crystals were not 

available. Crystalline A6MA and one of the crystalline forms of AAMA 

are probably arranged in a similar fashion. In solution, depending 

on solvent and concentration, the d1ami des aggregate due to hydrogen 

bonding. The intermolecular hydrogen bond formation is easily followed 

by infrared absorption spectroscopy. It is reasonable to assume that 

the diamide molecules aggregated in solution are associated through hy

drogen bonding in a manner similar to their association in the crystal

line form. Based on this assumption the diamides fulfill the require

ments of structural models for 3 polypeptides. 

The optical properties of the diami des above 210 nm are surprisingly 

similar to those of B polypeptides. Although the molar rotation and 

dichroism of the diamide solutions are smaller in magnitude than in the 

comparable polypeptide solutions, the sign and position of the cotton 

effects are similar. Therefore, on the surface, the diami des appear 

to be excellent models for polypeptide optical properties. One question 

arises; the ORD seems to depend only on the dielectric constant of sol

vent and not on the state of aggregation of the diami des. From the con

centration dependent ORD experiments, it appears that the monomer and 

trimer di ami des have nearly identical ORD's. There are two possible 

explanations for the optical activity of monomer. One is th^t a small 

fraction (less than 10%) of the monomer is intramolecularly hydrogen 

bound. Acetyl-L-proline amide which has this configuration has a large 

rotational trough at 240 nm in dioxane. If the intramolecularly hydro
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gen bound monomer has similar rotational properties to the acetyl-L-

proline amide, this might explain the optical activity of the monomer. 

A more likely explanation is that nonhydrogen bound monomer is optically 

active with a cotton effect near 220 nm, a result of conformational 

restrictions discussed by Leach et al_. (1966) and Ramachandran et al. 

(1965). If this latter explanation is correct, the optical activity of 

the peptide group in diami des does not significantly depend on interac

tions across hydrogen bonds. If these results can be extrapolated to 

polypeptides or to the peptide group buried in a hydrophobic interior 

of a protein molecule, it would seem that ORD or CD above 210 or 220 nm 

would have little value in structural evaluation. It would appear that 

the magnitude of this dichroic band is more sensitive to local dielec

tric constant than to structure. 
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SUMMARY 

The purpose of this study was to determine the structure of fibril

lar proteins which originate from two distinctly different types of 

protein, soluble feather keratin and native insulin. It was thought 

that if these proteins could generate similar fibrillar structures, this 

process might be generalized to many other dissimilar proteins. In this 

study it was shown that the physical properties of the fibrillar systems 

were nearly identical. 

When solution.- of oxidized or reduced and S-carboxy-methylated 

feather keratin are maintained under unfavorable conditions of pH and 

ionic strength, or when insulin in acidic solution is heat denatured, 

fibril formation occurs which does not involve the formation or disrup

tion of covalent bonds. Electron microscopy and low angle x-ray diffrac

tion indicate that the feather keratin fibrils have cross sectional di-
o 

mensions of 60 and 90 A and the insulin fibrils have them between 30 and 
O 

40 A. Wide angle x-ray diffraction and infrared dichroism studies of 

the fibrils show that they have cross-6 structures in which individual 
O 

molecules are probably confined to single 4.7 A thick layers (one mole

cule per layer in insulin fibrils and two molecules per layer in feath

er keratin fibrils). These data also suggest that the interlayer inter

actions are most likely to be of the parallel rather than the antiparal

lel type. Steric considerations with respect to the internally disulfide 

bonded, and therefore conformationally restricted, insulin molecules also 

support the parallel structure. Ultraviolet absorption and rotatory 

characteristics of the fibrils are consistent with a cross-3 structure. 
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but are similar to those of synthetic polypeptides reported to have the 

antiparallel structure. Extensive studies using diamides as model com

pounds for the cross-3 interaction suggest, in fact, that these optical 

properties are more characteristic of the dielectric constant of the amide 

environment than on the nature of the hydrogen bond interactions. For 

this reason, and since it is difficult to demonstrate that the synthetic 

polypeptide systems are indeed purely antiparallel in nature, the appar

ent conflict in results may not be real. 

The conclusions derived from these studies concerning the structure 

of insulin fibrils have clearly resolved the conflicting reports of Ambrose 

and Elliott (1951) and of Koltun et al_. (1954) in favor of the foimer. 

Since the conclusion of this work, two more fibrillar systems having 

the cross-3 structure have been uncovered in this laboratory. These 

systems originate from the protein glucagon (RougvieM and the g chain 

of insulin (Rougvie and Shriver^). 

^Rougvie, M. A., Department of Biochemistry and Biophysics, Iowa 
State University, Ames, Iowa. An investigation of the cross-3 structure 
of glucagon. Private communication. 1969. 

^Rougvie, M. A. and C. N. Shriver, Department of Biochemistry and 
Biophysics, Iowa State University, Ames, Iowa. An investigation of 
the cross-3 structure of the 3 chain of insulin. Private communication. 
1969. 
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