
ParFit: a Python-based object-oriented program

for fitting molecular mechanics parameters to ab-initio data

Federico Zahariev*1, Nuwan De Silva2, Mark S. Gordon3,

 Theresa L. Windus4, and Marilu Dick-Perez5,

 Department of Chemistry and Ames Laboratory,

 Iowa State University, Ames, Iowa 50011, USA

 A newly created object-oriented program for automating the process of fitting

molecular-mechanics parameters to ab-initio data, termed ParFit, is presented. ParFit uses

a hybrid of genetic and simplex algorithms. ParFit can simultaneously handle several

molecular-mechanics parameters in multiple molecules and can also apply symmetric and

anti-symmetric constraints on the optimized parameters. The simultaneous handling of

several molecules enhances the transferability of the fitted parameters. ParFit is written in

Python, uses a rich set of standard and non-standard Python libraries and can be run in

parallel on multi-core computer systems. As an example, a series of phosphine oxides,

important for metal extraction chemistry, are parameterized using ParFit, and the

parameters are compared to manually derived parameters.

Introduction

Molecular mechanics (MM) is a method for approximating the energies and

forces of molecular systems by using the laws of classical mechanics1-17. Although the

laws of quantum mechanics govern the structure and motion of molecular systems, a

skillful choice of an MM classical Hamiltonian can reproduce the structural and relative-

energy experimental data with reasonable precision. The MM calculations are several

orders of magnitude faster than ab-initio calculations and are thus able to handle much

larger molecular systems or many more molecular systems of the same size. MM also has

better computational resource scaling with respect to molecular system size. A

straightforward implementation of MM scales as O(N2), N being the number of atoms in

the system, due to the pairwise Coulomb interaction between atoms. However, the use of

particle-mesh Ewald methods can reduce the scaling to between O(N) and O(N2)18, 19. In

comparison, the simplest post-Hartree-Fock method that can capture electronic

correlation, the second-order Moller-Plesset perturbation method (MP2)20, scales between

O(n4) and O(n5), where n is the total number of basis functions, depending on the

implementation.

 The two components of the MM method are a general functional form of the MM

1 fzahari@iastate.edu
2 ndesilva@iastate.edu
3 mark@si.msg.chem.iastate.edu
4 twindus@iastate.edu
5 marilu.dickperez@gmail.com

energy and a set of parameters corresponding to different types of interatomic energy

components. Popular versions for both are UFF21, AMBER22-24, OPLS25, MM326-28 and

MMFF29 and are, except for UFF, predominantly used for calculations of large organic

and biological molecules. However, the lack of availability and/or quality of parameters

for organometallic compounds limits the types of systems for which MM can be used.

 To obtain parameters for a given atom based MM functional form, one either

determines them manually on a trial-and-error basis, guided by experience and intuition,

or one uses the least-square method to fit to experimental30 or ab-initio data31. Another

appealing possibility is to use the coarse-grained force matching method32, 33. The manual

fitting process is not ideal because it can be time consuming. A wide range of

optimization algorithms has been used to automate the fitting process using a least-

squares method. These optimization algorithms generally fall into two categories:

deterministic and stochastic algorithms. Within the deterministic category; the Powell34,

Newton-Raphson35, and Nelder-Mead simplex (NM)36 algorithms are used; and within

the stochastic category, the Monte-Carlo simulated annealing34, 37 and the genetic

algorithm (GA)38-42 are used for the MM parameter fitting process. ForceBalance is an

example of a recent efficient program for MM parameter fitting that is written in Python

and based on either deterministic or stochastic algorithms43, 44. ForceBalance can utilize

the energy-gradient, in addition to the energy itself. A hybridization of deterministic and

stochastic algorithms was also recently shown to be effective in the implementation of

the Paramfit program45. For a review on MM parametrization methods, see the Norrby

and Brandt review46.

 Each of the above three optimization strategies has certain advantages and

disadvantages. ParFit47, presented here, takes advantage of all three strategies: the

stochastic GA, the deterministic Powel or NM simplex algorithms, and a sequential

hybridization of these two types of algorithms. ParFit is primarily aimed at being a

platform for quick prototyping of new MM parameter fitting strategies and additionally

having the possibility to be combined with different ab-initio and MM programs. To this

end, ParFit is written in Python using a flexible object-oriented design and parallelized

for an order of magnitude faster performance with respect to serial execution on modern

multi-core computer systems. In addition, ParFit can apply symmetric and anti-symmetric

constraints on the optimized MM parameters, i.e. two MM parameters might be

constrained to have the same absolute value and either the same (symmetric constraint) or

opposite (anti-symmetric constraint) sign during the optimization process.

 ParFit currently uses GAMESS (General Atomic and Molecular Electronic

Structure System)48, 49 or NWChem50 for ab-initio calculations and the SerenaSoft MM

Engine for the MM3 and MMFF parameters51. ParFit can easily be extended to other ab-

initio programs, MM force fields, and MM engines. The SerenaSoft MM Engine was

chosen as a basis for ParFit, because the MM3 force-field form is among the most

accurate ones for small organic molecules52.

 The accuracy and applicability of the MM method largely depends, to a large

extent, on the transferability of the MM parameters. Transferability of MM parameters

means that the parameters obtained by fitting one group of molecules can be successfully

used on molecules outside of this initial group. The ability of ParFit to simultaneously

handle several molecules during the MM parameter fitting process greatly enhances the

transferability of the fitted parameters.

Workflow and file structure

Figure 1. A schematic representation of the ParFit workflow.

 The overall MM-parameter fitting process workflow in ParFit can be broken

down into four steps outlined in Figure 1. Figure 1A, a fully optimized molecular

geometry is stored in a template GAMESS (or NWChem) input file which can be created

using a visualization program such as MacMolPl53. The Ginp.py script uses the geometry

from the template input file to generate a series of input files each containing molecular

coordinates where a user specified geometric parameter, such as bond length, bond angle,

or dihedral angle, is varied stepwise for a range of values.

Next, consider Figure 1B. The generated input files must be transferred from

~/ParFit/Data/Gamess (or ~/ParFit/Data/Nwchem) to a computational cluster and used

for a sequence of ab-initio calculations. A sample utility file ~/ParFit/Utility/submit.py

illustrates how one may automate the submission process on a computational cluster.

Each geometry is then optimized while keeping the specified geometric parameter fixed.

D) Fit MM ParametersD) Fit MM Parameters

Create ParFit.py control file manually or by
using Utility/PFinp.py

Run ParFit.py to fit MM PES to ab-initio PES

C) Data SetupC) Data Setup

Optional: use Gout.py to compile ab-initio data
into a single comp-type file

Transfer ab-initio caclulation output file(s) to
the ParFit file data type

B) Ab-initio PES GenerationB) Ab-initio PES Generation

Transfer ab-initio input files to computational
cluster

Run ab-initio calculations

A) Ab-initio SetupA) Ab-initio Setup

Create a single ab-initio template input file for
each molecule in the training set.

Use Ginp.py to generate a series of ab-initio
input files with fixed geometric parameters for

the creation of a PES

After the computations are completed, Figure 1C, the resultant ab-initio calculation

output files are transferred back to the appropriate directories, ~/ParFit/Data/Gamess or

~/ParFit/Data/Nwchem. ParFit uses the energy of the optimized geometries for each

fixed geometric parameter to build a potential energy curve. To simplify the fitting

process, Gout.py may then optionally be used to generate a single file, referred to as a

comp file in the ParFit program, containing resulting pertinent information from the

series of ab-initio calculations.

 Lastly, as shown in Figure 1D, a ParFit.py control file containing the molecular

and parameter information is generated manually or in an interactive session using the

standalone utility program ~/ParFit/Utility/PFinp.py. ParFit.py, the fitting control

software, is invoked with the generated control file and the fitting process starts. Ginp.py,

Gout.py and ParFit.py are the three driver programs that use the ParFit library of classes

as described in the next section.

 In addition to PFinp.py, the ~/ParFit/Utility subdirectory contains utility scripts,

such as clean.py for the cleanup of temporary subdirectories and files and

QM_vs_MM_energies.py for visualization of the fitting by the matplotlib Python library.

Object-oriented design and code structure

Figure 2. A schematic representation of ParFit class hierarchy.

ParFit is written in an object-oriented fashion and as a result, extensions can be

quickly and easily made. For example, although ParFit currently works only with the

MM Engine51 and GAMESS48, 49 or NWChem50, for the MM and ab-initio data

respectively, the software can easily be extended to work with virtually any other MM

and ab-initio programs.

The backbone of ParFit consists of a relatively small hierarchy of classes: Atom,

Molecule, ScanElem, Scan, BondScan, AngleScan, DihAScan, and RunCmd, as

schematically depicted in Fig. 2. (The important class attributes and methods are listed in

Fig. SI.1 from the Supplementary Information section.) The Atom and Molecule classes

are contained in the GeomStr.py file. GeomStr.py also contains four Python dictionaries:

the default_charge, default_mm3_type, default_mmff94_type, and cov_radii, that store

the charge, mm3 type, mmff94 type, and covalent radii of atoms, respectively. The Atom

and Molecule classes use geometric functions defined in the helper file _GeomCalc.py.

The ScanElem, Scan, BondScan, AngleScan and DihAScan classes are contained in the

Scan.py file. The RunCmd class is contained in the helper file _Engine.py. _Engine.py

also contains several functions pertinent to running the MM Engine. Another helper file,

_IO.py, contains helper functions that read and write the MM parameter file and read the

ParFit input file. The Ga.py file contains a few GA related functions.

 The class Atom encapsulates the atomic data that is relevant in the present context

such as the atomic symbol, charge, Cartesian coordinate, and MM type for a particular

atom. The MM type can currently be mm3 or mmff94 but the code can be extended to

other MM types.

 The class Molecule is constructed by a tuple of Atoms and has several member

functions. Here tuple is used in the Python context and is essentially a sequence of

immutable Python objects. Given a tuple of indices that correspond to atoms in a

molecule, the member functions calc_dist(), calc_angle(), and calc_dihedral() compute a

distance, angle, and dihedral angle, respectively. The member functions bond_chng(),

angl_chng(), and diha_chng() change the bond length, bond angle, and dihedral angle,

given a tuple of indices and a value of the respective change. The member function

set_conn() determines interatomic distances and forms the molecular connectivity

structure based only on atomic coordinates. A molecular bond is declared to exist

between atom1 and atom2 if the interatomic distance between them is smaller than

cov_radii(atom1)+cov_radii(atom2)+wdv_dist_tol, where cov_radii(atomN) is the

covalent radius of an atom type corresponding to “atomN” and the constant wdv_dist_tol

is chosen to be 0.45 Å. The member function bond_ord() automatically detects the bond

order, i.e. whether a bond is single, double, or triple in character based on data in the

Python dictionary bond_ords that contains the corresponding cutoff distances. The

member function benz_ring() automatically detects benzene rings based on the

established molecular connectivity.

The class ScanElem extends the class Molecule mainly by defining new member

functions responsible for reading and writing GAMESS (or NWChem) and MM-engine

input or output files.

The class Scan contains an extendable array that is filled by some of the member

functions with instances of ScanElem. The read and write member functions of Scan

delegate the read and write operations on individual ScanElems to read and write member

functions of the respective ScanElems. For example, read_gamess_outputs() reads in data

from a sequence of GAMESS (or NWChem) output files corresponding to a bond, angle,

or dihedral angle scan. For each GAMESS (or NWChem) output file there is an

associated instance of ScanElem. read_gouts_data() reads in data corresponding to a

bond, angle, or dihedral angle scan from a single comp-type file. On the basis of the scan

information stored in an array of ScanElem’s, the member function write_engine_inputs()

creates a sequence of MM engine input files and the member function run_scan()

initiates MM engine runs with these input files. run_scan() distributes the scan element

runs across multiple cores on a given machine by the use of Pool.map() from the standard

Python library multiprocessing. Each individual scan element run is initiated by

run_elem(). run_elem() subsequently uses the Run member function of the RunCmd class

from the helper file Engine.py. run_elem() also uses the read_add() and write_add()

functions from the helper file _IO.py. read_add() reads the current MM parameters that

are being fitted, while write_add() writes these parameters back after an update by the

fitting algorithm. The MM engine output files corresponding to one bond, angle, or

dihedral angle scan are read back to Scan by the member function read_engine_outputs()

and the root mean square error (RMSE) of the MM energies with respect to the relative

ab-initio energies is calculated by the member function calc_rmse(). The zero of the ab-

initio energy is shifted to the minimum or maximum of the MM energy or any other

convenient reference energy.

 The classes BondScan, AngleScan, and DihAScan, simple extensions of the base

class Scan, set a member variable self._styp of the parent class Scan to Bond, Angle, or

DihA, respectively. The member variable self._styp tunes the behavior of the Scan

member functions to the respective scan type, i.e. depending on whether self._styp is

Bond, Angle, or DihA. The base Scan member function acts as a member function of the

BondScan, AngleScan, or DihAScan classes.

Fitting algorithms

In the MM parameter fitting process, the RMSE is viewed as a function of the

MM parameters; the fitting algorithm searches for a minimum in the MM parameter

space. Three types of search algorithms are used in ParFit: the stochastic genetic

algorithm (GA), the deterministic Powell or NM simplex algorithms (P/NM), and a

hybrid algorithm that sequentially combines GA and P/NM algorithms (HYBR).

A limitation of the traditional deterministic optimization algorithms is that
there is a high likelihood of the algorithms being trapped in a local minimum,
because these algorithms utilize only local geometric information pertaining to the
basin of the initial conditions.

The stochastic optimization methods in general, and the GA algorithm are
particularly capable of avoiding the local-minima traps and they also do not rely on
assumptions about the behavior of the target. An entire population of candidate
solutions is considered at any given GA step and only one of these solutions happens
to be the best. Nevertheless, the other members of the population sample the
configuration space outside of the basin, where the current best solution belongs,
and thus a better global solution may be found throughout the next GA steps. To
make the next GA step, some of the members randomly crossover and mutate.
Ultimately, a selection process, in which the fittest members survive, forms the next
population.

The rationale behind the hybridization is that while GA is better than P/NM in

avoiding the traps of false local minima, GA might nevertheless face a very slow

convergence rate once the search is relatively close to the global minimum. At this stage,

P/NM is usually able to find the “global minimum” faster than GA. In practice, it is rarely

known if the found minimum is a unique global minimum. The typical RMSE function

has numerous shallow local minima and much deeper quasi-degenerate global minima.

The Powell and NM simplex algorithms are implemented respectively by the fmin

and fmin_powell functions from the optimize part of the SciPy library, while the GA

algorithm is implemented based on the Deap library54-56. In the GA algorithm, the

roulette wheel selection is used to form a new generation from an old one. The population

size is chosen to be 50, the crossover probability is 35% and the mutation probability is

5% per the recommendations in ref. 44; however, the ParFit code can easily be modified

for other GA algorithm variations. In the HYBR algorithm, the switchover between GA

and P/NM occurs when the best fitness doesn’t change for five generations45

 The existence of multiple quasi-degenerate minima is the main reason behind the

difficulty of obtaining MM parameters that are suitable for simultaneously describing

different molecules. If, on the other hand, the MM parameters are applicable to molecules

beyond those used in the fitting process, the MM parameters are transferable. Because

ParFit allows multiple molecules to be simultaneously used in the parameter fit, the

transferability of the fitted MM parameters is enhanced as compared to manual fitting. In

addition, the optimized MM parameters are constrained to lie within reasonable upper

and lower limits to avoid unphysical MM parameter minima.

 Conclusion

This article describes the object-oriented design, file and code structures, algorithms and

functionality of a new object-oriented Python program called ParFit. The program

automates the MM fitting process to recreate the ab-initio energy profile. ParFit is aimed

at quickly prototyping new parameter fitting algorithms. The fitting process is currently

based on the minimization of RMSE, either by the Nelder-Mead simplex method, genetic

algorithm, or by a hybrid of the two. ParFit can simultaneously handle MM parameters

corresponding to several geometric variables in several molecules, a capability that

enables a faster development of transferable MM parameters. ParFit is about an order of

magnitude faster when run in parallel on modern multi-core computer systems. In

addition, ParFit can apply symmetric and anti-symmetric constraints on the optimized

MM parameters.

Acknowledgments

The authors thank Benjamin Hay for useful discussions. This work is supported

by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S.

Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced

Manufacturing Office.

 Supporting Information

Illustrative examples of MM3 parameter fitting with ParFit are shown in the

Supplementary Information section. Some of these examples demonstrate the enhanced

transferability of the optimized MM3 parameters, when ParFit simultaneously optimizes

several molecules.

References

1. Burkert, U.; Allinger, N.L. Molecular Mechanics, Am. Chem. Soc. Monograph No.

177, American Chemical Society, Washington, DC, 1982.

2. Kollman, P. A.; Merz, K. M. Computer Modeling of the Interaction of Complex

Molecules, Acc. Chem. Res. 1990, 23, 246-252.

3. McCammon, J. A.; Harvey, S. C. Dynamics of Proteins and Nucleic Acids, Cambridge

University Press, New York, 1987.

4. Kollman, P. A. Free Energy Calculations: Applications to Chemical and Biochemical

Phenomena, Chem. Rev. 1993, 93, 2395-2417.

5. Beveridge, D. I.; Dicapua, F. M. Free Energy via Molecular Simulations: Applications

to Chemical and Biomolecular Systems, Annu. Rev. Biophys. Biophys. Chem. 1989, 18,

431-492.

6. Van Gunsteren, W. F.; Berendsen, H. J. C. Computer Simulation of Molecular

Dynamics, Angew. Chem. Int. Ed. Engl. 1990, 29, 992-1023.

7. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.

Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys.

1983, 79, 926-935.

8. Miller, K. J.; Hinde, R. J.; Anderson, J. First and Second Derivative Matrix Elements

for the Stretching, Bending, and Torsional Energy, J. Comput. Chem. 1989, 10, 63-76.

9. Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield,

C.; Chang, G.; Hendrickson, T.; Still, W. C. Macromodel—an Integrated Software

System for Modeling Organic and Bioorganic Molecules Using Molecular Mechanics, J.

Comput. Chem. 1990, 11, 440-467.

10. Wang, W.; Wang, L.; Kollman, P. A. What Determines the Van Der Waals

Coefficient β in the LIE (Linear Interaction Energy) Method to Estimate Binding Free

Energies using Molecular Dynamics Simulations?, Prot. Struct. Funct. Genet. 1999, 34,

395-402.

11. Srinivasan, J.; Miller, J.; Kollman, P. A.; Case, D. A. Continuum Solvent Studies of

the Stability of RNA Hairpin Loops and Helices, J. Biol. Struct. Dyn. 1998, 16, 671-681.

12. Chong, L. T.; Duan, Y.; Wang, L.; Massova, I.; Kollman, P. A.; Molecular Dynamics

and Free-Energy Calculations Applied to Affinity Maturation in Antibody 48G7, Proc.

Natl. Acad. Sci. USA 1999, 96, 14330-14335.

13. Massova, I.; Kollman, P. A. Combined Molecular Mechanical and Continuum

Solvent Approach (MM-PBSA/GBSA) to Predict Ligand Binding, Perspect. Drug

Discov. Des. 2000, 18, 113-135.

14. Massova, I.; Kollman, P. A. Computational Alanine Scanning to Probe Protein-

Protein Interactions: a Novel Approach to Evaluate Binding Free Energies, J. Am. Chem.

Soc. 1999, 121, 8133-8143.  

15. Lee, M. R.; Duan, Y.; Kollman, P. A. Use of MM-PB/SA in Estimating the Free

Energies of Proteins: Application to Native, Intermediates, and Unfolded Villin

Headpiece, Prot. Struct. Funct. Genet. 2000, 39, 309-316.  

16. Reyes, C. M.; Kollman, P. A. Investigating the Binding Specificity of U1A-RNA by

Computational Mutagenesis, J. Mol. Biol. 2000, 295, 1-6. 

17. Radmer, R. J.; Kollman, P. A. The Application of Three Approximate Free Energy

Calculations Methods to Structure Based Ligand Design: Trypsin and its Complex with

Inhibitors, J. Comput.-Aided Mol. Des. 1998, 12, 215-227.  

18. Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N-log(N) Method for

Ewald Sums in Large Systems, J. Chem. Phys. 1993, 98, 10089-10093.

19. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. A

Smooth Particle Mesh Ewald Method, J. Chem. Phys. 1995, 103, 8577-8593.

20. Moller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron

Systems, Phys. Rev. 1934, 46, 618-622.

21. Rapper, A. K.; Colwell, K. S.; Casewit, C. J. Application of a Universal Force Field

to Metal Complexes, Inorg. Chem, 1993, 32, 3438-3450.

22. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, Jr., K. M.; Ferguson, D.

M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation

Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, J. Am.

Chem. Soc. 1995, 117, 5179-5197.

23. Wang, J.; Cieplak, P.; Kollman, P. A. How Well Does a Restrained Electrostatic

Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and

Biological Molecules?, J. Comput. Chem. 2000, 21, 1049-1074.

24. Dixon, R. W.; Kollman, P. A. Advancing Beyond the Atom-Centered Model in

Additive and Nonadditive Molecular Mechanics, J. Comput. Chem. 1997, 18, 1632-1646.

25. Jorgensen, W. L.; Tirado-Rives, J. The OPLS [Optimized Potentials for Liquid

Simulations] Potential Functions for Proteins, Energy Minimizations for Crystals of

Cyclic Peptides and Crambin, J. Am. Chem. Soc. 1988, 110, 1657-1666 .

26. Allinger, N. L.; Yuh, Y. H.; Lii, J. H. Molecular Mechanics. The MM3 Force Field

for Hydrocarbons. 1, J. Am. Chem. Soc, 1989, 111, 8551-8566.

27. Lii, J. H.; Allinger, N. L. Molecular Mechanics. The MM3 Force Field for

Hydrocarbons. 2, J. Am. Chem. Soc. 1989, 111, 8566-8575.

28. Lii, J. H.; Allinger, N. L. Molecular Mechanics. The MM3 Force Field for

Hydrocarbons. 3, J. Am. Chem. Soc. 1989, 111, 8576-8582.

29. Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization,

and Performance of MMFF94, J. Comput. Chem. 1996, 17, 490-519.

30. Justin, A. L.; Huang, J.; Roux, B.; MacKerell, Jr., A. D. An Empirical Polarizable

Force Field Based on the Classical Drude Oscillator Model: Development History and

Recent Applications, Chem. Rev. 2016, 116, 4983-5013.

31. Palmo, K.; Mannfors, B.; Mirkin, N. G.; Krimm, S. Potential Energy Functions: from

Consistent Force Fields to Spectroscopically Determined Polarizable Force Fields,

Biopolymers 2003, 68, 383-394.

32. Izvekov, S.; Parrinello, M.; Burnham, C. J.; Voth, G. A. Effective Force Fields for

Condensed Phase Systems from Ab Initio Molecular Dynamics Simulation: a New

Method for Force-Matching, J. Chem. Phys. 2004, 120, 10896-10913.

33. Izvekov, S.; Voth, G. A. Multiscale Coarse Graining of Liquid-State Systems, J.

Chem. Phys. 2005, 123, 134105-1-1341015-13.

34. Brommer, P.; Gahler, F. Potfit: Effective Potentials from Ab-Initio Data, Model.

Simul. Mater. Sci. Eng. 2007, 15, 295-304.

35. Norrby, P. O.; Liljefors, T. Automated Molecular Mechanics Parameterization with

Simultaneous Utilization of Experimental and Quantum Mechanical Data, J. Comput.

Chem. 1998, 19, 1146-1166.

36. Faller, R.; Schmitz, H.; Biermann, O.; Muller-Plathe, F. Automatic Parameterization

of Force Fields for Liquids by Simplex Optimization, J. Comput. Chem. 1999, 20, 1009-

1017.

37. Guvench, O.; MacKerell, Jr., A. D. Automated Conformational Energy Fitting for

Force-Field Development, J. Mol. Model. 2008, 14, 667-679.

38. Wang, J. M.; Kollman, P. A. Automatic Parameterization of Force Field by

Systematic Search and Genetic Algorithms, J. Comput. Chem. 2001, 22, 1219-1228.

39. Pahari, P.; Chaturvedi, S. Determination of Best-Fit Potential Parameters for a

Reactive Force Field using a Genetic Algorithm, J. Mol. Model. 2012, 18, 1049-1061.

40. Okur, A.; Strockbine, B.; Hornak, V.; Simmerling, C. Using PC Clusters to Evaluate

the Transferability of Molecular Mechanics Force Fields for Proteins, J. Comput. Chem.

2003, 24, 21-31.

41. Strassner, T.; Busold, M.; Hermann, W. A. MM3 Parametrization of Four- and Five-

Coordinated Rhenium Complexes by a Genetic Algorithm—Which Factors Influence the

Optimization Performance?, J. Comput. Chem. 2002, 23, 282-290.

42. Tafipolsky, M.; Schmid, R. Systematic First Principles Parameterization of Force

Fields for Metal−Organic Frameworks using a Genetic Algorithm Approach, J. Phys.

Chem. B 2009, 113, 1341-1352.

43. Wang, L.-P.; Chen, L.; Van Voorhis, T. Systematic Parametrization of Polarizable

Force Fields from Quantum Chemistry Data, J. Chem Theory Comput. 2013, 9, 452-460.

44. Wang, L.-P.; Martinez, T. J.; Pande, V. S. Building Force Fields: An Automatic,

Systematic, and Reproducible Approach, J. Phys Chem. Lett. 2014, 5, 1885-1891.

45. Betz, R. M.; Walker, R. C. Paramfit: Automated Optimization of Force Field

Parameters for Molecular Dynamics Simulations, J. Comput. Chem. 2015, 36, 79-87.

46. Norrby, P. O.; Brandt, P. Deriving Force Field Parameters for Coordination

Complexes, Coord. Chem. Rev. 2001, 212, 79-109. 

47. http://github.com/fzahari/ParFit (Last Accessed: Jan. 1, 2017).

48. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen,

J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.;

Montgomery, J. A. General Atomic and Molecular Electronic Structure System, J.

Comput. Chem. 1993, 14, 1347-1363.

49. Gordon, M. S.; Schmidt, M. W. Advances in Electronic Structure Theory: GAMESS a

Decade Later, In “Theory and Applications of Computational Chemistry: the First Forty

Years" by C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria (editors), Elsevier,

Amsterdam, 2005; pp. 1167-1189.

50. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; van Dam, H.

J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. NWChem: A

Comprehensive and Scalable Open-Source Solution for Large Scale Molecular

Simulations, Comput. Phys. Commun. 2010, 181, 1477-1489.

51. Gilbert, K. MM Engine of PCModel, Version 9.2, Serena Software, Bloomington,

Indiana,http://www.serenasoft.com/ (Last Accessed: Dec. 20, 2016).

52. Gundertofte, K.; Liljefors, T.; Norrby, P. O. A Comparison of Conformational

Energies Calculated by Several Molecular Mechanics Methods, J. Comput. Chem. 1996,

17, 429-449.

53. Bode, B. M.; Gordon, M. S. MacMolPlt: A Graphical User Interface for GAMESS, J.

Mol. Graphics and Modeling 1999, 16, 133.

54. Distributed Evolutionary Algorithms in Python, http://deap.gel.ulaval.ca (Last

Accessed: Dec. 20, 2016)

55. F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, C. Gagne, Deap:

Evolutionary Algorithms Made Easy, J. Mach. Learn. Res. 2012, 13, 2171-2175.

http://github.com/fzahari/ParFit
http://deap.gel.ulaval.ca/

56. Rainville, F.-M. D.; Fortin, F.-A.; Gardner, M.-A.; Parizeau, M.; Gagne, C. DEAP: a

Python Framework for Evolutionary Algorithms, In “Companion Proceedings of the

Genetic and Evolutionary Computational Conference”, ACM, New York, 2012; , pp. 85-

92.

57. De Silva, N.; Zahariev, F.; Hay, B. P.; Gordon, M. S.; Windus, T. L. Conformations

of Organophosphine Oxides, J. Phys. Chem. A 2015, 119, 8765-8773.

