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 A newly created object-oriented program for automating the process of fitting 

molecular-mechanics parameters to ab-initio data, termed ParFit, is presented. ParFit uses 

a hybrid of genetic and simplex algorithms. ParFit can simultaneously handle several 

molecular-mechanics parameters in multiple molecules and can also apply symmetric and 

anti-symmetric constraints on the optimized parameters. The simultaneous handling of 

several molecules enhances the transferability of the fitted parameters. ParFit is written in 

Python, uses a rich set of standard and non-standard Python libraries and can be run in 

parallel on multi-core computer systems. As an example, a series of phosphine oxides, 

important for metal extraction chemistry, are parameterized using ParFit, and the 

parameters are compared to manually derived parameters. 

 

 

Introduction 

 

Molecular mechanics (MM) is a method for approximating the energies and 

forces of molecular systems by using the laws of classical mechanics1-17. Although the 

laws of quantum mechanics govern the structure and motion of molecular systems, a 

skillful choice of an MM classical Hamiltonian can reproduce the structural and relative-

energy experimental data with reasonable precision. The MM calculations are several 

orders of magnitude faster than ab-initio calculations and are thus able to handle much 

larger molecular systems or many more molecular systems of the same size. MM also has 

better computational resource scaling with respect to molecular system size. A 

straightforward implementation of MM scales as O(N2), N being the number of atoms in 

the system, due to the pairwise Coulomb interaction between atoms. However, the use of 

particle-mesh Ewald methods can reduce the scaling to between O(N) and O(N2)18, 19. In 

comparison, the simplest post-Hartree-Fock method that can capture electronic 

correlation, the second-order Moller-Plesset perturbation method (MP2)20, scales between 

O(n4) and O(n5), where n is the total number of basis functions, depending on the 

implementation. 

  The two components of the MM method are a general functional form of the MM 

                                                        
1 fzahari@iastate.edu 
2 ndesilva@iastate.edu 
3 mark@si.msg.chem.iastate.edu 
4 twindus@iastate.edu 
5 marilu.dickperez@gmail.com 



energy and a set of parameters corresponding to different types of interatomic energy 

components. Popular versions for both are UFF21, AMBER22-24, OPLS25, MM326-28 and 

MMFF29 and are, except for UFF, predominantly used for calculations of large organic 

and biological molecules. However, the lack of availability and/or quality of parameters 

for organometallic compounds limits the types of systems for which MM can be used.  

  To obtain parameters for a given atom based MM functional form, one either 

determines them manually on a trial-and-error basis, guided by experience and intuition, 

or one uses the least-square method to fit to experimental30 or ab-initio data31. Another 

appealing possibility is to use the coarse-grained force matching method32, 33. The manual 

fitting process is not ideal because it can be time consuming. A wide range of 

optimization algorithms has been used to automate the fitting process using a least-

squares method. These optimization algorithms generally fall into two categories: 

deterministic and stochastic algorithms. Within the deterministic category; the Powell34, 

Newton-Raphson35, and Nelder-Mead simplex (NM)36 algorithms are used; and within 

the stochastic category, the Monte-Carlo simulated annealing34, 37 and the genetic 

algorithm (GA)38-42 are used for the MM parameter fitting process. ForceBalance is an 

example of a recent efficient program for MM parameter fitting that is written in Python 

and based on either deterministic or stochastic algorithms43, 44. ForceBalance can utilize 

the energy-gradient, in addition to the energy itself. A hybridization of deterministic and 

stochastic algorithms was also recently shown to be effective in the implementation of 

the Paramfit program45. For a review on MM parametrization methods, see the Norrby 

and Brandt review46. 

  Each of the above three optimization strategies has certain advantages and 

disadvantages. ParFit47, presented here, takes advantage of all three strategies: the 

stochastic GA, the deterministic Powel or NM simplex algorithms, and a sequential 

hybridization of these two types of algorithms. ParFit is primarily aimed at being a 

platform for quick prototyping of new MM parameter fitting strategies and additionally 

having the possibility to be combined with different ab-initio and MM programs. To this 

end, ParFit is written in Python using a flexible object-oriented design and parallelized 

for an order of magnitude faster performance with respect to serial execution on modern 

multi-core computer systems. In addition, ParFit can apply symmetric and anti-symmetric 

constraints on the optimized MM parameters, i.e. two MM parameters might be 

constrained to have the same absolute value and either the same (symmetric constraint) or 

opposite (anti-symmetric constraint) sign during the optimization process. 

  ParFit currently uses GAMESS (General Atomic and Molecular Electronic 

Structure System)48, 49 or NWChem50 for ab-initio calculations and the SerenaSoft MM 

Engine for the MM3 and MMFF parameters51. ParFit can easily be extended to other ab-

initio programs, MM force fields, and MM engines. The SerenaSoft MM Engine was 

chosen as a basis for ParFit, because the MM3 force-field form is among the most 

accurate ones for small organic molecules52.   

  The accuracy and applicability of the MM method largely depends, to a large 

extent, on the transferability of the MM parameters. Transferability of MM parameters 

means that the parameters obtained by fitting one group of molecules can be successfully 

used on molecules outside of this initial group. The ability of ParFit to simultaneously 

handle several molecules during the MM parameter fitting process greatly enhances the 

transferability of the fitted parameters. 



 

 

 

 

Workflow and file structure 

 

 
 

Figure 1. A schematic representation of the ParFit workflow. 

 

 The overall MM-parameter fitting process workflow in ParFit can be broken 

down into four steps outlined in Figure 1. Figure 1A, a fully optimized molecular 

geometry is stored in a template GAMESS (or NWChem) input file which can be created 

using a visualization program such as MacMolPl53. The Ginp.py script uses the geometry 

from the template input file to generate a series of input files each containing molecular 

coordinates where a user specified geometric parameter, such as bond length, bond angle, 

or dihedral angle, is varied stepwise for a range of values.  

Next, consider Figure 1B. The generated input files must be transferred from 

~/ParFit/Data/Gamess (or ~/ParFit/Data/Nwchem) to a computational cluster and used 

for a sequence of ab-initio calculations. A sample utility file ~/ParFit/Utility/submit.py 

illustrates how one may automate the submission process on a computational cluster.  

Each geometry is then optimized while keeping the specified geometric parameter fixed. 

D) Fit MM ParametersD) Fit MM Parameters

Create ParFit.py control file manually or by 
using Utility/PFinp.py

Run ParFit.py to fit MM PES to ab-initio PES

C)  Data SetupC)  Data Setup

Optional: use Gout.py to compile ab-initio data 
into a single comp-type file

Transfer ab-initio caclulation output file(s) to 
the ParFit file data type

B) Ab-initio PES GenerationB) Ab-initio PES Generation

Transfer ab-initio input files to computational 
cluster

Run ab-initio calculations

A) Ab-initio SetupA) Ab-initio Setup

Create a single ab-initio template input file for 
each molecule in the training set.

Use Ginp.py to generate a series of ab-initio 
input files with fixed geometric parameters for 

the creation of a  PES 



After the computations are completed, Figure 1C, the resultant ab-initio calculation 

output files are transferred back to the appropriate directories, ~/ParFit/Data/Gamess or 

~/ParFit/Data/Nwchem. ParFit uses the energy of the optimized geometries for each 

fixed geometric parameter to build a potential energy curve. To simplify the fitting 

process, Gout.py may then optionally be used to generate a single file, referred to as a 

comp file in the ParFit program, containing resulting pertinent information from the 

series of ab-initio calculations.  

  Lastly, as shown in Figure 1D, a ParFit.py control file containing the molecular 

and parameter information is generated manually or in an interactive session using the 

standalone utility program ~/ParFit/Utility/PFinp.py. ParFit.py, the fitting control 

software, is invoked with the generated control file and the fitting process starts. Ginp.py, 

Gout.py and ParFit.py are the three driver programs that use the ParFit library of classes 

as described in the next section. 

 In addition to PFinp.py, the ~/ParFit/Utility subdirectory contains utility scripts, 

such as clean.py for the cleanup of temporary subdirectories and files and 

QM_vs_MM_energies.py for visualization of the fitting by the matplotlib Python library.  

 

Object-oriented design and code structure 

 

 

 
 

Figure 2. A schematic representation of ParFit class hierarchy. 

 

ParFit is written in an object-oriented fashion and as a result, extensions can be 

quickly and easily made. For example, although ParFit currently works only with the 

MM Engine51 and GAMESS48, 49 or NWChem50, for the MM and ab-initio data 

respectively, the software can easily be extended to work with virtually any other MM 

and ab-initio programs. 

The backbone of ParFit consists of a relatively small hierarchy of classes: Atom, 

Molecule, ScanElem, Scan, BondScan, AngleScan, DihAScan, and RunCmd, as 

schematically depicted in Fig. 2. (The important class attributes and methods are listed in 

Fig. SI.1 from the Supplementary Information section.) The Atom and Molecule classes 

are contained in the GeomStr.py file. GeomStr.py also contains four Python dictionaries: 

the default_charge, default_mm3_type, default_mmff94_type, and cov_radii, that store 

the charge, mm3 type, mmff94 type, and covalent radii of atoms, respectively. The Atom 

and Molecule classes use geometric functions defined in the helper file _GeomCalc.py. 

The ScanElem, Scan, BondScan, AngleScan and DihAScan classes are contained in the 

Scan.py file. The RunCmd class is contained in the helper file _Engine.py. _Engine.py 



also contains several functions pertinent to running the MM Engine. Another helper file, 

_IO.py, contains helper functions that read and write the MM parameter file and read the 

ParFit input file. The Ga.py file contains a few GA related functions. 

 The class Atom encapsulates the atomic data that is relevant in the present context 

such as the atomic symbol, charge, Cartesian coordinate, and MM type for a particular 

atom. The MM type can currently be mm3 or mmff94 but the code can be extended to 

other MM types.  

 The class Molecule is constructed by a tuple of Atoms and has several member 

functions. Here tuple is used in the Python context and is essentially a sequence of 

immutable Python objects. Given a tuple of indices that correspond to atoms in a 

molecule, the member functions calc_dist(), calc_angle(), and calc_dihedral() compute a 

distance, angle, and dihedral angle, respectively. The member functions bond_chng(), 

angl_chng(), and diha_chng() change the bond length, bond angle, and dihedral angle, 

given a tuple of indices and a value of the respective change. The member function 

set_conn() determines interatomic distances and forms the molecular connectivity 

structure based only on atomic coordinates. A molecular bond is declared to exist 

between atom1 and atom2 if the interatomic distance between them is smaller than 

cov_radii(atom1)+cov_radii(atom2)+wdv_dist_tol, where cov_radii(atomN) is the 

covalent radius of an atom type corresponding to “atomN” and the constant wdv_dist_tol 

is chosen to be 0.45 Å. The member function bond_ord() automatically detects the bond 

order, i.e. whether a bond is single, double, or triple in character based on data in the 

Python dictionary bond_ords that contains the corresponding cutoff distances. The 

member function benz_ring() automatically detects benzene rings based on the 

established molecular connectivity.  

The class ScanElem extends the class Molecule mainly by defining new member 

functions responsible for reading and writing GAMESS (or NWChem) and MM-engine 

input or output files. 

The class Scan contains an extendable array that is filled by some of the member 

functions with instances of ScanElem. The read and write member functions of Scan 

delegate the read and write operations on individual ScanElems to read and write member 

functions of the respective ScanElems. For example, read_gamess_outputs() reads in data 

from a sequence of GAMESS (or NWChem) output files corresponding to a bond, angle, 

or dihedral angle scan. For each GAMESS (or NWChem) output file there is an 

associated instance of ScanElem. read_gouts_data() reads in data corresponding to a 

bond, angle, or dihedral angle scan from a single comp-type file. On the basis of the scan 

information stored in an array of ScanElem’s, the member function write_engine_inputs() 

creates a sequence of MM engine input files  and the member function run_scan() 

initiates MM engine runs with these input files. run_scan() distributes the scan element 

runs across multiple cores on a given machine by the use of Pool.map() from the standard 

Python library multiprocessing. Each individual scan element run is initiated by 

run_elem(). run_elem() subsequently uses the Run member function of the RunCmd class 

from the helper file Engine.py. run_elem() also uses the read_add() and write_add() 

functions from the helper file _IO.py. read_add() reads the current MM parameters that 

are being fitted, while write_add() writes these parameters back after an update by the 

fitting algorithm. The MM engine output files corresponding to one bond, angle, or 

dihedral angle scan are read back to Scan by the member function read_engine_outputs() 



and the root mean square error (RMSE) of the MM energies with respect to the relative 

ab-initio energies is calculated by the member function calc_rmse(). The zero of the ab-

initio energy is shifted to the minimum or maximum of the MM energy or any other 

convenient reference energy. 

 The classes BondScan, AngleScan, and DihAScan, simple extensions of the base 

class Scan, set a member variable self._styp of the parent class Scan to Bond, Angle, or 

DihA, respectively. The member variable self._styp tunes the behavior of the Scan 

member functions to the respective scan type, i.e. depending on whether self._styp is 

Bond, Angle, or DihA. The base Scan member function acts as a member function of the 

BondScan, AngleScan, or DihAScan classes. 

   

 

 

Fitting algorithms 

  
In the MM parameter fitting process, the RMSE is viewed as a function of the 

MM parameters; the fitting algorithm searches for a minimum in the MM parameter 

space. Three types of search algorithms are used in ParFit: the stochastic genetic 

algorithm (GA), the deterministic Powell or NM simplex algorithms (P/NM), and a 

hybrid algorithm that sequentially combines GA and P/NM algorithms (HYBR).   

A limitation of the traditional deterministic optimization algorithms is that 
there is a high likelihood of the algorithms being trapped in a local minimum, 
because these algorithms utilize only local geometric information pertaining to the 
basin of the initial conditions.   

The stochastic optimization methods in general, and the GA algorithm are 
particularly capable of avoiding the local-minima traps and they also do not rely on 
assumptions about the behavior of the target. An entire population of candidate 
solutions is considered at any given GA step and only one of these solutions happens 
to be the best. Nevertheless, the other members of the population sample the 
configuration space outside of the basin, where the current best solution belongs, 
and thus a better global solution may be found throughout the next GA steps. To 
make the next GA step, some of the members randomly crossover and mutate. 
Ultimately, a selection process, in which the fittest members survive, forms the next 
population.    

The rationale behind the hybridization is that while GA is better than P/NM in 

avoiding the traps of false local minima, GA might nevertheless face a very slow 

convergence rate once the search is relatively close to the global minimum. At this stage, 

P/NM is usually able to find the “global minimum” faster than GA. In practice, it is rarely 

known if the found minimum is a unique global minimum. The typical RMSE function 

has numerous shallow local minima and much deeper quasi-degenerate global minima. 

The Powell and NM simplex algorithms are implemented respectively by the fmin 

and fmin_powell functions from the optimize part of the SciPy library, while the GA 

algorithm is implemented based on the Deap library54-56. In the GA algorithm, the 

roulette wheel selection is used to form a new generation from an old one. The population 

size is chosen to be 50, the crossover probability is 35% and the mutation probability is 

5% per the recommendations in ref. 44; however, the ParFit code can easily be modified 



for other GA algorithm variations. In the HYBR algorithm, the switchover between GA 

and P/NM occurs when the best fitness doesn’t change for five generations45  

 The existence of multiple quasi-degenerate minima is the main reason behind the 

difficulty of obtaining MM parameters that are suitable for simultaneously describing 

different molecules. If, on the other hand, the MM parameters are applicable to molecules 

beyond those used in the fitting process, the MM parameters are transferable. Because 

ParFit allows multiple molecules to be simultaneously used in the parameter fit, the 

transferability of the fitted MM parameters is enhanced as compared to manual fitting. In 

addition, the optimized MM parameters are constrained to lie within reasonable upper 

and lower limits to avoid unphysical MM parameter minima. 

 

     Conclusion 

 

This article describes the object-oriented design, file and code structures, algorithms and 

functionality of a new object-oriented Python program called ParFit. The program 

automates the MM fitting process to recreate the ab-initio energy profile. ParFit is aimed 

at quickly prototyping new parameter fitting algorithms. The fitting process is currently 

based on the minimization of RMSE, either by the Nelder-Mead simplex method, genetic 

algorithm, or by a hybrid of the two. ParFit can simultaneously handle MM parameters 

corresponding to several geometric variables in several molecules, a capability that 

enables a faster development of transferable MM parameters. ParFit is about an order of 

magnitude faster when run in parallel on modern multi-core computer systems. In 

addition, ParFit can apply symmetric and anti-symmetric constraints on the optimized 

MM parameters.  
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    Supporting Information 

 

Illustrative examples of MM3 parameter fitting with ParFit are shown in the 

Supplementary Information section. Some of these examples demonstrate the enhanced 

transferability of the optimized MM3 parameters, when ParFit simultaneously optimizes 

several molecules. 
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