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ABSTRACT

Protein-protein interactions play a central role in the formation of protein complexes and

the biological pathways that orchestrate virtually all cellular processes. Three dimensional

structures of a complex formed by a protein with one or more of its interaction partners provide

useful information regarding the specific amino acid residues that make up the interface between

proteins. The emergence of high throughput techniques such as Yeast 2 Hybrid (Y2H) assays

has made it possible to identify putative interactions between thousands of proteins (but not the

interfaces that form the structural basis of interactions or the structures of protein complexes

that result from such interactions). Reliable identification of the specific amino acid residues

that form the interface of a protein with one or more other proteins is critical for understanding

the structural and physico-chemical basis of protein interactions and their role in key cellular

processes, for predicting protein complexes, for validating protein interactions predicted by high

throughput methods, for ranking conformations of protein complexes generated by docking, and

for identifying and prioritizing drug targets in computational drug design.

However, given the high cost of experimental determination of the structures of protein

complexes, there is an urgent need for reliable and fast computational methods for identifying

interface residues and/or predicting the structure of a complex formed by a protein of inter-

est with its interaction partners. Given the large and growing gap between the number of

known protein sequences and the number of experimentally determined structures, sequence-

based methods for predicting protein-protein interfaces are of particular interest. Against this

background, we develop HomPPI ( http://homppi.cs.iastate.edu/), a class of sequence homol-

ogy based approaches to protein interface prediction. We present two variants of HomPPI: (i)

NPS-HomPPI (non-partner-specific HomPPI), which can be used to predict interface residues

of a query protein in the absence of knowledge of the interaction partner. NPS-HomPPI is

based on the results of a systematic analysis of the conditions under which interface residues of
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a query protein are conserved among its sequence homologs (and hence can be inferred from the

known interface residues in proteins that are sequence homologs of the query protein). Our ex-

periments suggest that when sequence homologs of the query protein can be reliably identified,

NPS-HomPPI is competitive with several state-of-the-art interface prediction servers includ-

ing those that exploit the structure of the query proteins. (ii) PS-HomPPI (partner-specific

HomPPI), which can be used to predict the interface residues of a query protein with a specific

target protein. PS-HomPPI is based on a systematic analysis of the conditions under which

the interface residues that make up the interface between a query protein and its interaction

partner are preserved among their homo-interologs, i.e., complexes formed by their respective

sequence homologs. To the best of our knowledge, with the exception of protein-protein docking

(which is computationally much more expensive than PS-HomPPI), PS-HomPPI is one of the

first partner-specific protein-protein interface predictors. Our experiments with PS-HomPPI

show that when homo-interologs of a query protein and its putative interaction partner can

be reliably identified, the interface predictions generated by PS-HomPPI are significantly more

reliable than those generated by NPS-HomPPI.

Protein-Protein Docking offers a powerful approach to computational determination of the

3-dimensional conformation of protein complexes and protein-protein interfaces. However, the

reliability of conformations produced by docking is limited by the efficacy of the scoring func-

tions used to select a few near-native conformations from among tens of thousands of possible

conformations, generated by docking programs. Against this background, we introduce Dock-

Rank, a novel approach to rank docked conformations based on the degree to which the in-

terface residues inferred from the docked conformation match the interface residues predicted

by a partner-specific sequence homology based interface predictor PS-HomPPI. We compare,

on a data set of 69 docked cases with 54,000 decoys per case, the ranking of conformations

produced using DockRank’s interface similarity scoring function applied to predicted interface

residues obtained from four protein interface predictors: PS-HomPPI, and three NPS interface

predictors NPS-HomPPI, PRISE, and meta-PPISP, with the rankings produced by two state-

of-the-art energy-based scoring functions ZRank and IRAD. Our results show that DockRank

significantly outperforms these ranking methods. Our results that NPS interface predictors



xxv

(homology based and machine learning-based methods) failed to select near-native conforma-

tions that are superior to those selected by DockRank (partner-specific interface prediction

based), highlight the importance of the knowledge of the binding partners in using predicted

interfaces to rank docked models. The application of DockRank, as a third-party scoring func-

tion without access to all the original docked models, for improving ClusPro results on two

benchmark data sets of 32 and 56 test cases shows the viability of combining our scoring func-

tion with existing docking software. An online implementation of DockRank is available at

http://einstein.cs.iastate.edu/DockRank/.
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CHAPTER 1. Overview

The word protein is derived from the Greek word proteios, meaning “primary”. Proteins are

the principal catalytic agents, structural elements, signal transmitters, transporters and molecu-

lar machines in cells. Protein-protein interactions play a pivotal role in carrying out virtually all

major cellular processes, such as immune responses, cell cycle control, signal transduction, DNA

replication, transcription and translation. Proteins do not function alone. Proteins realize their

functions by (i) interacting with proteins to serve as molecular messengers, as guards in immune

system, or as building blocks; (ii) interacting with DNA to express or replicate the genetic code;

(iii) interacting with RNA to regulate the synthesis of proteins or to modify pre-mRNA; and

(iv) interacting with small molecules to strengthen inter-cellular communication signals. In this

study, we focus on the study and prediction of protein-protein interaction sites (interfaces) - the

regions where two proteins interact. The interface of a protein is composed of a set of residues

of this protein that form non-covalent contacts with the atoms or residues of other proteins.

The distortion of protein-protein interfaces often lead to various diseases. Characterization of

protein interfaces is crucial for understanding the molecular, structural, and biophysical bases of

protein interactions, for elucidating the mechanisms that underlie signal transduction cascades,

and their physiological role in networks and pathways involved in biological processes, and for

identifying promising drug targets for the therapeutic interventions [139].

The possible number of protein pairs is huge and even the highest throughput methods

are not able to provide meaningful information for such huge numbers – for example, if an

organism has 10,000 genes then there would be 100 million pair-wise interactions that need

investigating. While there are advances in high throughput methods such as yeast two-hybrid

(Y2H) experiments and protein binding microarrays, and increasing numbers of solved high

resolution protein structures, nonetheless these types of information are available for only a
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small fraction of the interacting proteins [50]. This lack of information about the protein-protein

structures places a significant barrier to progress in understanding the functioning of proteins

as well as comprehending the topology and complexity of cellular protein interaction networks.

The research described in this dissertation aims to overcome this barrier by developing novel,

accurate, and efficient computational approaches to predict the likely protein-protein interfaces

and using the predicted interfaces to select near-native interaction conformations out of the huge

numbers of docked candidate conformations.

Before introducing our work, we briefly review the experimental and computational work in

protein-protein interface identification, analysis and predictions.

1.1 Experimental Methods to Identify Protein-Protein Interface Residues

Several different genetic, biochemical, and biophysical methods have been used to identify

and characterize protein-protein interacting regions (interfaces). Widely used techniques include

High resolutions techniques:

• X-ray crystallography

• Nuclear Magnetic Resonance (NMR) spectroscopy

• Alanine scanning

Low resolution techniques (Mass spectrometry-based approaches):

• Chemical cross-linking

• Hydrogen/deuterium (H/D) exchange

Both X-ray crystallography and NMR spectroscopy can provide atomic level information of

protein structures hence the interacting sites (interfaces). Most resolved structures using X-ray

crystallography and NMR are deposited in Protein Data Bank (PDB) [14].

X-ray crystallography [46] determines the special arrangement of atoms in a crystallized

protein/protein complex by shedding X-rays beam on the crystal and studying the diffraction

pattern caused by the electrons of atoms of the crystal. X-ray crystallography provides high
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resolution information of protein structures, which allows direct visualization of the interaction

of proteins and their binding sites. However, obtaining crystals of proteins is often the most

difficult step, and limits the applications of X-ray crystallography in large scale characterization

of protein structures.

NMR Spectroscopy [23, 157] is based on the property of the nuclei of atoms being able to

absorb and re-emit electromagnetic radiation when placed in external magnetic field. Different

nuclei have different resonance frequency, which provides researchers the information of protein

structures. NMR can also study weak protein–protein interaction and protein dynamics during

molecular recognition. NMR spectroscopy is highly suited to investigate molecular interactions

at a close physiological condition and is particularly suited for the study of low-affinity, transient

complexes. NMR is limited by size constraints, and the method is best applied to proteins

smaller than 35 kDa.

Alanine scanning [96] determines the interface residues by replacing residues of a protein

with alanine and studying the change of binding affinity. The limitation of this method is

that without prior knowledge of approximate interface location, doing an exhaustive alanine

scanning on all the combination of residues of potential protein pairs can be labor-intensive and

slow.

Mass spectrometry (MS) [7] is a key technology in proteomics and was recognized in 2002

Nobel Prize in chemistry (jointly with NMR). MS determines the components in a sample by

ionizing the protein/peptide sample, measuring the number of ions at each mass-to-charge ratio,

and comparing the sample spectrum with calculated databases of known proteins/peptides. MS

has been used to determine the sequences of proteins, to detect protein interaction partners,

and to analyze protein post-translational modifications. Furthermore, the combinations of MS

with other techniques, such as chemical crosslinking [120], H/D exchange [56], are used to

characterize protein interacting regions at low resolutions.

Chemical crosslinking has been used to chemically joining two or more amino acids in the

proximity of interacting proteins by a covalent bond. The comparisons of MS spectral profiles

of the cross-linked protein-protein complex with those of individual component proteins have

allowed the detection of the interacting regions. An advantage of using crosslinking is that
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it can be used to stabilize the low binding affinity transient interacting complexes before MS

characterization.

H/D exchange is an isotope tagging technique. This method makes use of the facts that

(i) exchange of protons between solvent-exposed amide hydrogens and the solvent occurs con-

stantly while the interface regions are less likely to exchange protons; (ii) pairs of isotopes

(hydrogen/deuterium) can be differentiated by MS owing to their mass difference; (iii) the ra-

tio of signal intensities for such analyte pairs accurately indicates the abundance ratio for the

two analytes. The interacting regions can be revealed by the comparisons between the rates of

deuterium exchange of peptides from protein-protein complex and from individual component

proteins.

These experiments are extremely valuable and have contributed greatly to our knowledge

of protein-protein interfaces. However, the major bottleneck in these techniques remains the

efficient purification of protein samples, which makes these experiments labor-intensive, time-

consuming, or restricted by various technical difficulties which prevent them from being ap-

plied to large scale characterization of protein structures. Therefore, reliable computational

approaches to identify interface residues are especially needed.

1.2 Protein-Protein Interface Features

Several research groups have explored the utility of various protein sequence and structural

features [71, 73, 72, 79, 11, 17, 24, 36, 84, 118, 123, 58] in predicting protein-protein interface

residues. Such features include, but not limited to, amino acid propensities of interfaces [58],

secondary structure of interfaces [61], accessible surface area, hydrophobicity, and protrusion

[73]. Ofran and Rost [103] showed that interface residues tend to cluster together. Jones and

Thornton [73] studied six parameters of interfaces using surface patch analysis; however none

of the parameters were definitive. Yan et al. [148] found that interfaces favor hydrophobic

residues (particularly aromatic residues), the opposite charge pairs, hydrophobic pairs and Pro-

Trp pair. Tuncbag et al. [124] found that residue occlusion from solvent in the complexes

and pairwise potentials were important discriminative features in protein interface hot spot 1

1Hot spots are interfial residues that contribute more to the binding free energy.
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prediction. Chakrabarti and Janin [69, 24] found that the core of an interface patch has an

amino acid composition that differs from that of the rim. Mintseris and Weng [93] studied the

relative frequencies of the different atom–atom contacts, and used it to distinguish homodimers

and crystal contacts and to separate transient complexes from permanent oligomeric ones.

Discriminative features can be classified into two types: structure-based features and sequence-

based features. Structure-based features are extracted from the 3D conformations of proteins,

such as solvent accessible area, residue/atom propensity of surface patches and geometric at-

tributes of protein surfaces. Commonly used sequence-based features are hydrophobicity, residue

propensity in sequence windows, PSSM generated from multiple sequence alignment (MSA),

predicted solvent accessibility, and predicted structural features.

These studies show that protein-protein interacting residues indeed share some features that

are different from non-interface residues. However, no single feature can reliably discriminate

interface residues from non-interface residues. Hence, it is of interest to explore computational

interface predictors that combine these features as needed.

1.3 Computational Methods to Predict Protein-Protein Interface Residues

A large number of in silico approaches to protein-protein interface prediction have been

explored in the literature in the past decade (reviewed in [37, 52, 153]). Based on whether or

not they require the knowledge of 3D conformation of input proteins, the protein-protein inter-

face predictors can be classified into sequence-based classifiers, structure-based classifiers and

hybrid classifiers. The majority of predictors are structure-based or hybrid methods. However,

structure-based methods have several critical disadvantages: 1) limited applications. Structure-

based predictors require the knowledge of protein structures. Due to the difficulty of experimen-

tal characterization of protein structures, the vast majority of proteins, especially for transient

binding proteins and intrinsically disordered proteins, do not have experimentally determined 3D

structures; 2) limited robustness for interactions subject to substantial conformational changes.

Structural features may not hold unchanged before and after the formation of protein-protein

complexes due to the conformational changes induced by interactions. Therefore, the develop-

ment of sequence-based methods, which can reliably differentiate interface residues from non-
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interacting ones without requiring the knowledge of 3D protein structures, is of great interest.

Despite the considerable efforts dedicated to the development of sophisticated and advanced

protein-protein interface predictors, most of them ignored the fact that many proteins use

different interacting regions to interact with different binding partners (partner-specificity).

High degree of partner-specificity is especially true in the case of transient interactions [142].

Transient interactions provide a mechanism for the cell to quickly respond to extracellular

stimuli, and are essential in the regulation of many disease-related pathways [101, 5]. The

high degree of partner-specificity of transient interactions is appealing for the discovery and

development of target-specific therapeutic inhibitors. Therefore, developing reliable partner-

specific interface predictors is urgently needed.

1.4 Protein-Protein Docking

The 3D structures of complexes formed by interacting proteins are valuable sources of infor-

mation needed to understand the structural basis of interactions and their role in complexes and

pathways that orchestrate key cellular processes, to validate interactions determined using high

throughput methods such as yeast-2-hybrid assays, and to identify and prioritize drug targets in

computational drug design. Because of the expenses and efforts associated with X-ray crystal-

lography or NMR experiments to determine 3D structures of protein complexes, protein-protein

docking methods are often used to predict the 3D conformation of complexes formed by two or

more interacting proteins and hence interfaces of the component proteins. Docking programs

search through the conformation space to generate large numbers of candidate conformations,

and rank the resulting conformations based on a criteria such as the energy of the conformation

and structural or physico-chemical complementarity of the interface between the proteins that

make up the complex.

Despite the promise of protein-protein docking in predicting 3D structures of interacting

proteins, the following problems need to be solved to make its use feasible for large-scale appli-

cations: 1) Docking processes tend to be computationally expensive; 2) The existing docking

programs require experimentally solved or computationally predicted structures of the compo-

nent proteins; 3) It is challenging for existing docking programs to generate meaningful con-
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formations for proteins subject to large conformational changes upon binding; 4) The goal of

singling out near-native conformations from the vast number of candidate conformations within

a reasonable computational time is far from being satisfactorily solved.

To lower the computational cost of docking programs and to generate more near-native

conformations in the conformational sampling stage of a docking process, there is an increas-

ing effort to constrain the docking process with experimentally determined or computationally

predicted interaction sites [41, 38, 44, 132, 39, 81]. The success of these methods highlights the

importance of the knowledge of interacting sites. As we discussed earlier, experimental identi-

fication of the interface residues is not a trivial task, therefore, reliable in silico identifications

of interface residues are urgently needed.

Another direction for improving docking programs focuses on improving the reliability of

scoring functions. Scoring functions reported in the literature can be broadly classified into four

types: (1) geometric complementarity-based scoring functions, such as FFT-based methods [75]

and geometric hashing [141, 47]; (2) energy-based scoring functions designed to approximate the

binding free energy of protein-protein assemblies [133, 110, 59]; (3) Knowledge-based scoring

functions (i.e. knowledge-based pairwise potentials [95, 85, 82], knowledge-based weighted cor-

relations [63, 109], machine learning classifiers of native/non-native protein-protein assemblies

[18, 87], and predicted interface-based scoring functions [99, 64]); (4) Hybrid functions that

combine the scoring functions of the previous three types [88, 35, 76, 77]. Despite the large

number of advanced and sophisticated scoring approaches that are currently used by docking

programs, the goal of selecting near-native conformations from the large number of candidates

is far from solved [62, 128].

We are particularly insterested in the scoring functions using predicted interface residues to

rank docked conformations. This approach is based on the hypothesis that docked conformations

with interacting sites that are highly similar to predicted interfaces are more likely to be near-

native conformations. However, this type of approaches relies heavily on the reliability of

interface predictions. Li and Kihara [81] ranked conformations using interfaces predicted by

a start-of-the-art non-partner-specific interface prediction method - meta-PPISP [112]. They

concluded that “Blind PPI site predictions cannot be used for improving docking prediction with
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the post-filtering procedure. On average it will only deteriorate prediction accuracy.” However,

a natural question is whether or not the predicted partner-specific interfaces are reliable enough

to rank docked conformations?

Against this background, we focus our efforts on the design of a fast and reliable partner-

specific interface predictor, and on the incorporation of the predicted interfaces into a reliable

and computational efficient scoring function for ranking docked conformations.

1.5 Interface Residue Conservation

Although homology based approaches have been successfully applied in many areas (such as

protein structure predictions using homology modeling [57], the prediction of protein interaction

partners [134, 150], and function annotation [86]), published studies disagree on whether or not

protein-protein interfaces are more conserved than other surface residues or the rest of the

protein sequences. Grishin and Phillips [60], after examining five enzyme families, concluded

that the degree of conservation of interface residues is same as that of protein sequences as a

whole. Caffrey et al. [22], based on their study of 64 protein-protein interacting chains found

that interface residues are slightly more conserved than the rest of the protein surface residues.

Valdar and Thornton [129] concluded that interface conservation of homodimers is higher than

other surface residues after studying six homodimers families. Choi et al. [32] based on sequence

conservation analysis of 2,646 protein interfaces concluded that protein interface residues are

more conserved than other surface residues.

With the exception of the study conducted by Grishin and Phillips in 1994 [60] these studies

focused on the comparison of interface residue conservation relative to other surface residues,

and excluded the residues that are buried inside the protein surface. However, the determination

of surface residues is not a trivial task if protein structures are not available. In light that the

number of known protein sequences is much larger than the number of protein structures, it is

of interest to study the conservation of interface residues compared with non-interface residues.

Such analysis may benefit the development of reliable sequence homology based predictors of

interface residues.

Another important fact is that although the partner-specific property of protein-protein
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interactions has been long recognized, it was ignored by previous conservation studies. Many

transient protein-protein bindings serve as molecular messengers, carrying out cell signaling

among different parts of the cell. In order to carry out the complicated signaling, the catalytic

activity must be highly regulated and the interaction sites can be highly partner-specific. Besides

the factor of small datasets used in the previous studies, the controversy of previous interface

conservation studies might be due to this property that transient binding proteins tend to use

different interfaces when interacting different partners. Hence, a partner-specific analysis of

interface conservation of transient binding proteins is of interest.

1.6 Hypotheses and Overview of This Work

Against this background, we formulate the following hypotheses:

1) The interface residues of interfactions are conserved among sequence homologs or se-

quence homo-interologs (homologous interacting proteins). Specifically, (i) the interfaces of

transient interactions are highly conserved among sequence homo-interologs and are highly

Partner-Specific (PS); and (ii) the interfaces of IDPs (Intrinsically Disordered Proteins) are

highly conserved among sequence homologs and are non-partner-specific (NPS).

2) Given that transient protein interactions are highly partner-specific, it should be possible

to improve the reliability of predictors of interface residues by taking information about binding

partners into account.

3) We hypothesize that among the large number of docked conformations of protein-protein

complexes, conformations with interacting sites that agree well with the reliably predicted in-

terfaces are more likely to be near-native conformations. Therefore, predicted interface residues

can be used to rank docked conformations.

These hypotheses are explored in greater details, which form the following four chapters of

this dissertation.

Chapter 2: Conservation analysis of protein-protein interface residues. We introduce a

novel measure of interface conservation that captures the degree to which interface residues

in each protein are conserved among its sequence homologs. First, we describe the results
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of our analysis of the interface conservation among homologous sequences using several large

non-redundant datasets of protein-protein interfaces extracted from the Protein Data Bank

(PDB), including datasets that allow us to compare "obligate" versus "transient" interfaces.

To explore the extent to which interface conservation can be exploited in the prediction of

interface residues, we systematically examined the relationship between interface conservation

and multiple protein sequence similarity variables. In one set of experiments, we examined

binding interfaces in homologous proteins without specifying a specific interaction partner (i.e.,

non-partner-specific, NPS-interfaces). The results of this analysis indicated that interfaces in

obligate complexes are, in general, more highly conserved than those in transient complexes. In

a complementary set of experiments, we examined interfaces in complexes between specific pairs

of proteins (i.e., partner-specific, PS-interfaces). In contrast to the results for NPS-interfaces,

by focusing on the interface of each query protein with a specific binding partner, we discovered

a high degree of interface conservation in transient PS-interfaces. This analysis revealed that

transient interfaces tend to be highly partner-specific.

Chapter 3: The design and evaluation of our Sequence Homology based Protein-Protein

Interface Predictor - HomPPI. Based on the results of protein interface conservation analysis in

Chapter 2 we propose HomPPI, a class of sequence homology based approaches to protein in-

terface prediction. We present two variants of HomPPI: (i) NPS-HomPPI (non-partner-specific

HomPPI), which can be used to predict interface residues of a query protein in the absence of

knowledge of the interaction partner; and (ii) PS-HomPPI (partner-specific HomPPI), which

can be used to predict the interface residues of a query protein with a specific target protein. The

performance of both HomPPI methods was evaluated on several benchmark datasets, including

a large non-redundant set of transient complexes. Due to the increasing importance of intrinsi-

cally disordered proteins in understanding molecular recognition mechanics and in rational drug

design and discovery [53, 92, 121, 127], we also tested NPS-HomPPI on two datasets of intrinsi-

cally disordered proteins. The HomPPI web server is available at http://homppi.cs.iastate.edu/

Chapter 4: DockRank- ranking docked models using partner-specific sequence homology

based protein interface prediction. We introduce a novel method DockRank for ranking docked

conformations based on the degree of similarity between the interface residues of a docked
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conformation formed by a receptor and a ligand with the set of interface residues predicted by

our partner-specific interface predictor. DockRank utilizes PS-HomPPI (described in Chapter

3), a sequence homology based method that, given a query protein and its putative interacting

partner (target protein), predicts the residues of the query protein that are likely to interact with

the target protein. Our experiments with several benchmark decoy sets show that the quality of

the ranking of docked conformations using DockRank is consistently superior to several state-

of-the-art scoring functions. Our results also show that NPS (Non-Partner-Specific) interface

predictors (homology-based and machine learning-based methods), cannot reliably select near-

native conformations for transient interactions. Besides, our results on a set of ClusPro decoys

show that DockRank, as a third party scoring function without accessing to all the docked

conformations, significantly improved the rankings of pre-filtered top conformations ranked by

ClusPro energy scoring functions in terms of Success Rate and Hit Rate. DockRank webserver

is available at: http://einstein.cs.iastate.edu/DockRank/.

Chapter 5: Conclusions and future work. We review and discuss the major results and

conclusions derived in the previous chapters. We discuss some directions for future work. Also

we discuss the limitations of homology-based interface prediction methods, and propose several

possible ways to improve the prediction coverage.

1.7 Main Contributions of This Work

The main contributions of this work are:

1. A novel partner-specific measure of conservation of residues at the interface between a pair

of interacting proteins among their homo-interologs [142]. Analysis of conservation of residues

in transient interfaces using this partner-specific measure shows that transient interfaces are

in fact highly conserved. On the contrary, another set of conservation analysis on the same

set of transient complexes using a non-partner-specific measure can only detect weak interface

conservation. The contrast of the results obtained from these two sets of experiments highlight

the importance of taking into account of the information of binding partners for the conservation

analysis of transient interfaces, and it might explain the previous controversy on the degree of

interface conservations.
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2. Application of the preceding observation to develop PS-HomPPI, the first sequence based

partner-specific interface predictor, which in our preliminary studies has been shown to provide

among the most reliable predictors of interface residues of a hypothetical transient complex

formed by a protein A with its putative interaction partner B whenever the homo-interologs of

A-B can be reliably identified. PS-HomPPI, unlike most existing computational approaches to

prediction of protein-protein interface residues (with the exception of protein-protein docking

which is computationally far more expensive and hence infeasible to use on thousands of proteins

and their interaction partners) can differentiate between the interfaces formed by a protein with

different interacting partners.

3. A novel use of predicted interfaces to rank docked conformations based on the agreement

between the interfaces of a docked conformation and the PS-HomPPI predicted PS -interfaces.

Our results show that the PS-HomPPI predicted interfaces significantly and consistently im-

prove the likelihood of singling out near-native conformations out of the large number of can-

didate conformations.

Collectively, our results suggest the possibility of developing purely sequence-based methods

for reliably predicting protein-protein interfaces. Currently the coverage of interface prediction

methods is limited to those cases where the interface of query proteins can be inferred from their

sequence homologs with experimentally determined interfaces. However, this limitation may be

partially alleviated with the expected increase in the number of structures in PDB. In addition,

development of hybrid approaches that combine homology based predictors with their machine

learning based trained counterparts can be expected to further improve the coverage of the

resulting predictors. In the case of transient interactions, which tend to be partner-specific, the

resulting improvement in the reliability and coverage of interface predictions can be expected to

yield substantial improvements in ranking docked conformations. Additional advances can be

expected in validating protein-protein interaction networks, in guiding the mutagenesis experi-

ments with multi-faced hub proteins, and in developing target-specific therapeutic interventions.
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CHAPTER 2. Conservation Analysis of Protein-Protein Interface Residues

A paper titled "HomPPI: a class of sequence homology based protein-protein interface

prediction methods", BMC Bioinformatics 2011, 12:244

Li C. Xue, Drena Dobbs and Vasant Honavar

Abstract Although evolutionary conservation of protein-protein interfaces have been in-

vestigated on different datasets in the past decades, no agreed-upon conclusions were drawn

on whether and to what degree interface residues are more conserved than the rest of the

residues. The previous studies were conducted in a non-partner-specific (NPS) way (the con-

servation of interfaces were examined without specifying a specific interaction partner), and

only on surface residues, which requires the knowledge of protein structures. However, on one

hand, many biological pivotal protein-protein interactions, such as transient interactions, are

highly regulated and partner-specific (PS). Detecting the conservation of interfaces that are

highly partner-specific requires a PS interface conservation analysis that takes the knowledge

of binding partners into account. On the other hand, to make use of the interface conservation

results in inferring interface residues from protein primary sequences, a rule of interface con-

servation relative to the rest of residues (both surface and interior residues) is needed. To this

end, we studied more than 300,000 pair-wise alignments of protein sequences from structurally

characterized protein complexes, including both obligate and transient complexes, in both NPS

and PS way. We identified sequence similarity criteria required for accurate sequence homology

based inference of interface residues in a query protein sequence.
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2.1 Introduction

The relation between sequence conservation and various aspects of protein structure, in-

teraction, expression, and function has been the focus of many studies over the past decades.

Because proteins with similar sequences often have similar structures and similar functions

sequence homology based methods have been used, among other things, for structure predic-

tion, homology modelling, and function prediction. Sander and Schneider [117] defined the

HSSP curve to describe the relationship between sequence identity and alignment length. Rost

[115]demonstrated the relationship between alignment length and the extent of protein structure

similarity. Several authors have used methods that use the amino acid sequence of the target

protein and the 3D structure of a homologous protein to model a 3D structure of the target

protein (homology modelling) [57]. Homologs are also widely used for protein function anno-

tation [4, 10, 86, 130]. Nair and Rost [98] have identified conserved sequence signatures that

can be used to predict subcellular localization of proteins. Several authors have used conserved

structure and sequence features to predict protein-protein interacting partners [89, 134, 150].

Thus, it is natural to ask whether protein-protein interface residues can be reliably identified

using sequence homology based methods. Published studies disagree on whether protein-protein

interfaces are more conserved than the rest of the protein sequences. Grishin and Phillips [60],

after examining five enzyme families, concluded that the degree of conservation of interfaces is

same as that of protein sequences as a whole. The studies by Caffrey et al. [22] as well as Reddy

and Kaznessis [113], found that the interacting surface-patches are not significantly more con-

served than other surface-patches. Caffrey et al. [22], based on their study of 64 protein-protein

interacting chains, found that interface residues are slightly more conserved than the rest of the

protein surface residues. Reddy and Kaznessis [113], based on their study of 28 hetero transient

and non-transient complexes, found that the fraction of highly conserved interface residues is

greater than that of highly conserved non-interface surface residues. They suggested that the

number of conserved residue positions is more predictive of protein-protein binding sites than

the average conservation index of residues in the target patch. Choi et al. [32] analyzed 2,646

protein interfaces based on a conservation score that measures the position-specific evolutionary
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rate estimated using a phylogenetic tree, and concluded that protein interface residues are more

conserved than non-interface surface residues.

All these protein-protein interface conservation studies share several features, first two of

which might explain their conflicted results. First, these studies were conducted in a non-

partner-specific way, i.e., the interface conservation of a protein was studied without taking into

account a specific interaction partner. However, many proteins use different interfaces to interact

different binding partners. Ignoring the partner-specific property of interfaces may result in

accurate estimation of interface conservations. Second, small datasets were used. All studies

but Choi 2009 [32] have used small datasets, which may not be large enough to draw a general

applicable conclusion of interface conservation. Third, these studies except Grishin and Phillips

[60] have been focused on the comparison of conservation degrees of interface residues relative to

other surface residues, which requires the knowledge of protein structures. To make the interface

conservation applicable for sequence-based protein-protein interface predictions (which take the

whole protein sequence as input and without the knowledge of protein structures, hence surface

residues), we need to identify the relation of interface conservation and the sequence similarity

(without differentiating the surface and the interior residues).

Against this background, we introduce a novel measure of interface conservation that cap-

tures the degree to which interface residues in each protein are conserved among its sequence

homologs. First, we describe the results of our analysis of the interface conservation among

homologous sequences using several large non-redundant datasets of protein-protein interfaces

extracted from the Protein Data Bank (PDB) [14], including datasets that allow us to compare

"obligate" versus "transient" interfaces. To explore the extent to which interface conservation

can be exploited in the prediction of interface residues, we systematically examined the relation-

ship between interface conservation and six sequence-based variables. In one set of experiments,

we examined binding interfaces in homologous proteins without specifying a specific interaction

partner (i.e., non-partner specific, NPS-interfaces). The results of this analysis indicated that

interfaces in obligate complexes are, in general, more highly conserved than those in transient

complexes. In a complementary set of experiments, we examined interfaces in complexes be-

tween specific pairs of proteins (i.e., partner-specific, PS-interfaces). In contrast to the results
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for NPS-interfaces, by focusing on the interface of each query protein with a specific binding

partner, we discovered a high degree of sequence conservation in transient PS-interfaces. This

analysis revealed that transient interfaces tend to be highly partner-specific.

2.2 Results

To define conditions under which it should be possible to infer protein-protein interface (PPI)

residues using conservation of interfaces in homologous proteins and/or complexes, we systemat-

ically examined the relationship between interface residue conservation and sequence similarity

(based on BLAST alignments). Our analyses are based on the following datasets: Nr6505 (a

large non-redundant dataset of protein chains extracted from PDB), Oblig94 and Trans135 (a

non-redundant obligate/transient binding dataset taken from [94]), and nr_pdbaa_s2c (BLAST

database) (see Methods for additional details).

2.2.1 Conservation of PPIs in Non-Partner Specific (NPS) Interfaces

First, we examined the conservation of PPI residues in the absence of knowledge of interac-

tion partners. For this study, we analyzed interfaces in putative homologs (hereafter, we refer

to putative homologs as "homologs" for simplicity) of each protein in a large non-redundant

dataset, Nr6505. After removing chains with interfaces containing fewer than 3 amino acids,

we were left with 5853 chains. For each of the 5853 remaining proteins, we extracted homologs

from the nr_pdbaa_s2c database using BLASTP [9] with expectation value (EVal)  10 from

the resulting set of homologs, we eliminated those that were nearly identical to the query se-

quence (to ensure an accurate estimate of conservation). To ensure that the interface residues

of the homologs could be reliably determined, we retained only those homologs that were part

of complexes with resolution 3.5 Å or better. For each query-homolog pair in sequence align-

ments generated by BLASTP, we used the interface residues of the homolog(s) to predict the

interface residues of the query protein. We calculated the correlation coefficient (CC) between

the predicted and actual interface residues of the query protein, and refer to this value as the

interface conservation (IC) score, i.e., the degree of conservation of interface residues between

the query protein and its homologs (see Methods for details).
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We examined the dependence of the interface conservation score on six NCBI BLAST align-

ment statistics: Expectation value (EVal), Identity Score, Positive Score, Local Alignment

Length (LAL) and two Alignment Length Fractions (LAL/Query Length) and (LAL/Homolog

Length). The EVal is a statistic that estimates the number of hits expected by chance when

searching database of a particular size; the lower the EVal value, the more significant the score.

The Identity Score is a measure of the degree of sequence identity between two amino acid

sequences. The Positive Score returned by BLASTP is the number of positive-scoring matches

in an alignment. It takes into account observed substitutions that preserve the physicochemical

properties of the original residue. The LAL is the length of the local alignment; Alignment

Length Fractions are LAL normalized by the length of the query or the length of the identi-

fied homologous sequence. We represent each query-homolog pair as a six dimensional vector

defined by these six variables.

2.2.1.1 Principal Components Analysis of NPS-interface conservation space

As a first exploratory step, PCA (Principal Component Analysis) was applied to visualize

the relationships between the interface conservation (IC) scores and the six BLAST alignment

statistics. PCA, which is a dimensionality reduction technique, is typically used to represent

dimensions that explain maximum variability and provide a simple and parsimonious description

of the covariance structure [70].

Figure 2.1 shows a PCA biplot in which each data point, representing a query-homolog

pair, is projected from the original 6-dimensional space to a 2-dimensional space defined by

the first and second principal components (PC1 and PC2). A large fraction (88.58%) of the

variance is explained by the first two principal components (48.75% + 39.83%). Based on IC

scores, the PCA biplot can be subdivided into three regions that correspond to: (i) Dark Zone:

containing query-homolog pairs with poorly conserved interface residues (blue and green data

points), corresponding to low values of the CC between predicted and actual interfaces and thus

low IC scores; (ii) Twilight Zone: containing pairs with moderately conserved interfaces (yellow

and orange data points); and (iii) Safe Zone: containing pairs with highly conserved interfaces

(red data points).
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Figure 2.1 Principal Component Analysis of Interface Conservation Scores and Sequence
Alignment Statistics. Proteins in the Nr6505 and their homologs were analyzed.
The data points in the biplot correspond to the projection of a 6-dimensional vector
representing each protein-homolog onto a 2-dimensional space defined by the first
and second principal components (PC1 and PC2). Blue lines with red circles at
their tips represent the axes of the original 6-dimensional space for the 6 variables
used in PCA analysis: -log(EVal), Identity Score, Positive Score, log(LAL), align-
ment length fractions (LAL/query length) and (LAL/homolog length). Each data
point is colored according to its computed interface conservation (IC) score, with
higher IC scores (red/orange) indicating higher interface conservation and lower
IC scores (blue/green) indicating lower interface conservation (see text for details).
The large gray arrow indicates the direction of increasing degree of interface con-
servation, from Dark to Twilight to Safe Zone.
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The PCA analysis allows us to identify highly correlated explanatory variables. In Figure

2.1, the axes of the original 6 dimensional space are represented as blue vectors with red circles

at their tips in the 2-dimensional space defined by PC1 and PC2. Highly correlated vectors

(variables) have small angles between them. This type of analysis reveals, for example, that

the two Alignment Length Fractions are highly correlated with each other, as are the Positive

Score and Identity Score. Explanatory variables that are highly correlated with each other make

similar contributions to the IC score.

2.2.1.2 BLAST EVal is a strong indicator of NPS-interface conservation

We studied the relationship of each individual variable with interface conservation. A scatter

plot in which the IC score for each query-homolog pair is plotted against log(EVal) is shown

in Figure 2.2. One can see that log(EVal) is a good indicator of protein interface conservation.

When log(EVal) > -50 the median values of IC scores cluster around 0 (low conservation). In

the region of log(EVal) -50 (that is, EVal  1.9287E-022) the medians of IC scores increase as

the log (EVal) decreases. When log(EVal) < -100 the medians of IC scores tend to be greater

than 0.5 (strong conservation).

2.2.1.3 NPS-interface conservation in Twilight/Safe Zone is strongly positively

correlated with log(LAL)

Figure 2.3 is a scatter plot showing the IC score for each query-homolog pair plotted against

the log of its LAL value. We can clearly see that when log(LAL) is larger than 4, the medians

of IC score show a strong positive correlation with log(LAL). When the LAL is shorter than

55 residues (log(LAL) <4), the probability that interface is conserved in these homologs is low

(the medians of the IC scores are ~0). We define this region as the Dark Zone. When the LAL

is longer than 700 residues (log(LAL)>6.55), interface conservation is high (the medians of IC

scores are usually > 0.7). We define this region as the Safe Zone.
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Figure 2.2 EVal is a Good Indicator of Interface Conservation. Each blue dot in the scatter
plot corresponds to a query-homolog pair. Red dots are the median values of IC
scores for a specific EVal. To avoid log(0), we set log(EVal) = -450 when EVal =
0.



21

Figure 2.3 Interface Conservation (IC) Scores are Linearly Related to the Log of the Lo-
cal Alignment Score (LAL). Each blue dot in the scatter plot corresponds to a
query-homolog pair. Red dots are the median values of IC scores for a specific
LAL. Note the trend of increasing median IC score with log(LAL) observed with
the transitions from Dark to Twilight to Safe Zone.
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2.2.1.4 A high BLAST Positive Score reflects NPS-interface conservation

The relationship between IC scores and the Positive Scores of query-homolog alignments is

shown in Figure 2.4. The median values of the IC scores begin to increase at a BLAST Positive

Score of ~ 90%.

We also studied the relationship of IC score with the Identity Score, and the Local Alignment

Length Fractions (LAL/Query Length) and (LAL/Homolog Length). As expected, the Identity

Score results were similar to those for the Positive Score. The IC score was not as strongly

linearly related to LAL fraction as it was to the log(LAL) (data not shown). Taken together,

these results provide guidelines for choosing sequence similarity thresholds that reflect the degree

of conservation in NPS interfaces.

2.2.1.5 NPS-Interface conservation as a function of sequence alignment

We built a linear model for NPS-interface conservation based on the most important sequence

alignment statistics identified in the PCA analysis: logEVal, Positive Score, logLAL.

The model is

IC Score = �0 + �1log(EV al) + �2PositiveS + �3log(LAL) (2.2.1.5)

Variables, parameter estimates and coefficients are shown in Table 2.1. All the coefficients

are significant.

Table 2.1 Variables, Parameter Estimates and Significance Values for the Linear Model for
NPS-Interface Conservation.

Variable Parameter Estimate Standard Error tValue Pr > |t|
�0 -0.5655 0.0080 -70.66 <.0001
�1 -0.0004 0.0000 -23.3 <.0001
�2 0.0037 0.0000 54.44 <.0001
�3 0.1057 0.0011 94.62 <.0001
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Figure 2.4 A High BLAST Positive Score Reflects NPS-Interface Conservation. Each blue dot
in the scatter plot corresponds to a query-homolog pair. Red dots are the median
values of IC scores for a specific Positive Score. Note that medians of IC scores are
near zero until Positive Scores become larger than 90 %.
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2.2.1.6 NPS-Interface conservation in transient versus obligate binding pro-

teins

In light of reports that protein interfaces in transient complexes are not as conserved as those

in obligate (permanent) complexes [32], it is interesting to ask whether the query-homolog pairs

with near-zero IC scores (Figures 2.2 and 2.3) tend to involve proteins that participate in

transient interactions. To address this question, we further studied the differences in protein

interface conservation among proteins that participate in transient versus obligate interactions.

To compare protein interfaces in transient and obligate complexes, we used the Trans135 and

Oblig94 dataset obtained from [94], which includes a total of 270 chains from transient and 188

chains from obligate complexes. We extracted the homologs of each chain from nr_pdbaa_s2c

using BLASTP with EVal  10. Query and homolog proteins with interfaces containing fewer

than 3 amino acids were removed, as were homologs that were nearly identical to the query pro-

teins. We extracted 43,115 query-homolog pairs containing chains that participate in transient

interactions and 24,212 pairs containing chains that participate in obligate interactions.

In agreement with previous studies [32], our analyses showed that PPIs are conserved in both

obligate and transient binding proteins. As before, we performed PCA to examine the conser-

vation of interfaces as a function of log(EVal), Identity Score, Positive Score, log(LAL), and

alignment length fractions (LAL/Query Length) and (LAL/Homolog Length). The PCA biplots

in Figure 2.5 show that data points corresponding to different IC scores (different colors) are

partially segregated, indicating that the six alignment statistics can distinguish query-homolog

pairs with highly conserved interface residues (red) from those in which interface residues are

not conserved (blue or green).

The results in Figure 2.5 also reveal that interface residues in proteins from obligate com-

plexes (left panel) are more conserved among their sequence homologs than those from transient

complexes (right panel). Figure 2.6 further illustrates differences in interface conservation in

obligate (left) versus transient complexes (right). The median values of IC scores plotted as a

function of log (LAL) are more frequently above 0 for pairs that involve obligate binding proteins

(Figure 2.6a) than for those that involve transient binding proteins (Figure 2.6b). Regression



25

analysis of these data confirms that log(LAL) for the obligate dataset has a larger coefficient

(0.095) than that for the transient dataset (0.052), which confirms that protein interfaces are

more conserved in the obligate complexes than in transient complexes analyzed in this study.

Figure 2.6 c reveals an obvious pattern of interface conservation in obligate binding proteins:

a strong trend of increasing median IC score with decreasing log(EVal). In contrast, Figure 2.6 d

shows that for transient binding proteins, more of the median values of IC scores cluster around

0, indicating that log(EVal) has little relation to interface conservation in transient complexes.

Also, comparison of Figure 2.6 e and f reveals that the Positive Score is a good indicator of

interface conservation in the case of proteins from obligate complexes; however, this is not the

case for proteins from transient complexes. For obligate binding proteins, when the Positive

Score exceeds 45%, the medians of IC scores begin to show an increasing trend (Figure 2.6

e). In contrast, in the case of transient binding proteins, medians of IC scores do not begin to

increase until the Positive Score approaches 70% (Figure 2.6 f).

It is important to emphasize that all of the interfaces analyzed above are what we refer to

as "non partner-specific" (NPS). That is, the interface residues of a query protein represent the

complete set of its interface residues with all of its partners. However, a given query protein

can interact with different binding partners through different interfaces. A possible explanation

for the low IC scores for NPS-transient interfaces is that the union of all interface residues of a

transient binding protein are not highly conserved across its homologs. This does not preclude

the possibility that such interfaces are conserved in the context of partner-specific interactions.

We investigate this possibility in the following section.

2.2.2 Conservation of PPIs in Partner-Specific (PS) Interfaces

To examine the conservation of partner-specific (PS) interfaces in transient protein com-

plexes, we again used the Trans135 dataset of protein pairs that participate in transient in-

teractions. For each of the proteins in an interacting pair, we separately extracted the corre-

sponding homologs, using BLASTP with expectation value EVal10 against the nr_pdbaa_s2c

database. We removed homologs that are part of complexes with resolution worse than 3.5 Å.

If query proteins A and B form a complex A-B, and have homologs A’ and B’ that interact in a
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complex A’-B’, we consider A’-B’ as a homo-interolog of A-B. To ensure an accurate estimate

of conservation, from the resulting set of homo-interologs, we eliminated those that were within

the same PDB complex as the query proteins, and those that were nearly identical to the query

pairs (see Methods for additional details). For each protein chain in a query pair, we use the

interface residues of its homolog in a homo-interolog to infer the PS interface residues of the

query protein chain. Thus, we use the interface residues of A’ in the homo-interolog (A’-B’) of

query pair A-B to infer the interfaces of A with B, based on the sequence alignment between

A and A’ obtained using BLASTP. We measure the similarity between a pair of interacting

proteins A-B and its homo-interolog A’-B’, in terms of the metrics for the quality of sequence

alignment between A and A’ and between B and B’, using the six BLAST alignment statistics

described above.

We used PCA of 3, 456 candidate homo-interologs to explore the relationship between

interface conservation (IC score) and the six alignment statistics computed from the predicted

PS interfaces, e.g., of chain A when it interacts with B, using known interfaces of A’ with B’.

This analysis revealed that much of the observed variance in IC scores is explained by three

factors: (i) the average log (EVal); (ii) the average Positive Score of the homo-interolog and

(iii) the alignment fractions FracA, FracA’, FracB, and FracB’ computed from the alignments

of constituent chains (A with A’ and B with B’) (see Methods for additional details).

The results in Figure 2.7 show that transient interfaces are highly conserved in homo-

interologs. The trend of increasing median IC scores, as a function of decreasing logEval (Figure

2.7 a) or increasing Positive Score (Figure 2.7 b) or the combination of Positive Score and FracA

× FracA’ is clear (Figure 2.7 d). The trend of increasing IC scores as a function of FracB ×

FracB’ is similar to that as a function of FracA × FracA’ (data not shown). In contrast, the,

logLAL, which is the average of alignment length between A and A’, and between B and B’, is

not strongly correlated with interface conservation for PS-interfaces (Figure 2.7 c).

A comparison of the results for PS-interface conservation in transient complexes here (Figure

2.7 a and b) with those obtained for NPS-interface conservation in transient complexes above

(Figure 2.6 d and f), reveals that the conservation of transient interfaces can be detected easily

when the binding partner sequence information is utilized. The seemingly weak conservation
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of interfaces in transient complexes shown in Figure 2.6 is thus a consequence of the specificity

of transient interfaces for different partners. Therefore, we conclude that interfaces in transient

complexes are both highly partner-specific and highly conserved, when their partner-specificity

is taken into account.

2.2.2.1 PS-Interface conservation as a function of sequence alignment

We built a linear model for PS-interface conservation based on the important sequence align-

ment statistics identified in the PCA analysis: logEVal, Positive Score, FracAA’ and FracBB’,

where

logEV al = log(EV alAA0 )+log(EV alBB0 )
2

PositiveS = PositiveSAA0+PositiveSBB0
2
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BB

0are

the EV al between A and A’, and between B and B’. positiveS
AA

0and positiveS
BB

0 are the

BLAST Positive Score between A and A’, between B and B’. The model is

IC Score = �0 + �1logEV al + �2PositiveS + �3Frac
AA

0 + �4Frac
BB

0(2.2.2.1)

Variables, parameter estimates and coefficients are shown in Table 2.2. All the coefficients

are significant.

Table 2.2 Variables, Parameter Estimates and Significance Values for the Linear Model for
PS-Interface Conservation.

Variable Parameter Estimate Standard Error tValue Pr > |t|
�0 -0.505 0.040 -12.62 <.0001
�1 0.001 0.000 6.16 <.0001
�2 0.009 0.001 14.6 <.0001
�3 0.341 0.027 12.54 <.0001
�4 0.205 0.028 7.4 <.0001
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2.3 Discussion

2.3.1 Protein Interface Conservation across Structure Space

The study of protein interface conservation among proteins with similar structures has re-

ceived considerable attention in recent years. By analyzing the structural similarity of repre-

sentative protein-protein interfaces in dimeric proteins, Gao and Skolnick [55] showed that the

vast majority of native interfaces have a close structural neighbor with similar backbone C↵

geometry and interface contact pattern.

In a related study, Zhang et al. [152] explored the conservation of interface residues among

structural neighbors of a query protein (i.e., proteins that share the same SCOP family, super-

family or fold, or a high degree of structural similarity regardless of their SCOP classification).

They showed that: (i) interfaces are indeed conserved among structural neighbors; (ii) the

degree of interface conservation is most significant among proteins that have a clear evolution-

ary relationship. They further showed that conservation of interface residues among structural

neighbors can be successfully exploited to predict protein-protein interfaces based on protein

structure information.

To investigate the extent to which conservation of interface residues can be used to improve

the prediction of protein-protein interfaces based on protein sequence information, we system-

atically studied interface conservation across sequence space. Our results demonstrate that

protein interfaces from different binding types are conserved among proteins with homologous

sequences. We further showed that the degree of conservation of interfaces is even greater when

putative interaction partners are taken into account. The IC score, our measure of interface

conservation, unlike those used in previous studies [32] (e.g., residue conservation in sequence

alignments), makes direct use of experimentally determined interface residues to measure the

degree of interface conservation. Specifically, the IC score directly measures the extent to which

the interface residues of sequence homologs of a query protein are predictive of the interface

residues of a query protein. Hence, the IC score provides the basis for setting the parameters

of our sequence homology based interface prediction methods.
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2.3.2 Distance Functions for Identifying Putative Homologs with Conserved In-

terfaces

Because we do not know the IC score for a query sequence with unknown interface residues,

we identified several statistics associated with the BLASTP alignment of a query sequence with

its homologs that are correlated with the IC score. We found that interface residues of a query

protein can be reliably predicted from the known interfaces of its homologs (and in the case of

partner-specific predictions, the homologs of its interaction partner as well) when the homologs

are selected taking into account measures of quality of sequence alignment, specifically NCBI

BLAST sequence alignment statistics. The HomPPI methods presented here use simple linear

combinations of BLAST sequence alignment statistics, determined using PCA analysis of the

relationship between the statistics and the IC score. It would be interesting to explore optimal,

perhaps non-linear, combinations of parameters to maximize the desired performance criteria

(e.g., sensitivity, specificity, or some combination thereof).

2.3.3 Conservation of Interfaces in Obligate and Transient Complexes

We found interface residues to be more highly conserved than non-interface residues, in both

obligate and transient complexes. We also found that when information regarding the specific

binding partner of a query protein is not taken into account in estimating the conservation

score, interfaces in transient complexes appear to be less highly conserved than those in obligate

complexes. Our results further show that transient interfaces are highly partner-specific, and

that the partner-specific interfaces in transient complexes are, in fact, highly conserved.

2.3.4 Interface Residue Conservation and Interface Position Conservation

Two different but related methods can be used to measure protein interface conservations:

interface residue conservation and interface position conservation. Each one has its advantages

and disadvantages.

Most, if not all, previous interface conservation analyses were conducted in the former

way -interface residue conservation. Specifically, for each protein sequence, a multiple se-
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quence/structure alignment (MSA) is constructed. The conservation score of a residue in a

specific position in the alignment can be calculated by counting the frequency of the same or

similar residues in the aligned sequences/structures appear in the same position 1. The advan-

tage of this method is that a query protein sequence is aligned with a large database of protein

sequences, which can be relatively easily determined. However, this method has two potential

challenges when applying to protein-protein interface predictions. 1) For each query protein

sequence, it requires a number of quality homologs aligned in order to reasonably estimate

residue conservation scores of residues of a protein. 2) A residue that has a high conservation

score defined by this method is not necessarily a protein-protein interface residue, since other

functional residues and residues in the protein core can also be highly conserved. Therefore, the

conservation score derived from this method may not be used alone to infer protein interface

residues out of the whole protein sequence.

Different from the above interface residue conservation analysis method, the latter method –

interface position conservation method - is used in this study. For each query-homolog alignment

pair, we calculate a Interface Conservation score (i.e. the similarity of their interface vectors ,

which essentially estimate whether a specific position in the alignment is conserved as an inter-

face position in putative sequence homologs 2). Tens of thousands of IC scores are calculated

for each protein with experimentally determined interfaces in a large non-redundant dataset

against each of the putative sequence homologs with experimentally determined interfaces. A

regression model built on these IC scores and the sequence similarities of query-homologs can

be later used to predict IC score (the confidence using the experimentally determined interface

residues of a putative sequence homolog to infer interfaces of a query protein sequence). One

advantage is that when using the regression model to predict IC score, it only requires one pro-

tein with experimentally determined interfaces aligned with the query protein sequence, in that

the conservation score of the set of interfaces of a protein is calculated for each query-homolog

alignment pair. Another advantage is that as the experimentally determined interface residues
1Usually the conservation scores are not explicitly calculated in the form of frequency, but using other finer

measurements in the same spirit, for example, the Shannon Entropy.
2The interface residues of both query protein and the homolog protein are determined using their solved 3D

structures. Interface vector is a binary vector with one for interface residues and zero for non-interface residues.
Residues aligned with gaps and residues that are not aligned with the other protein are ignored.
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of putative sequence homologs are used to calculate the conservation score, the differentiation

of surface residues and interior residues, a problem that the first method faces, is naturally

solved. Besides, the conservation conclusion of this method is more closely related to the design

of a homology-based interface predictor in that the conservation score itself is essentially the

evaluation of a prediction using the interface of one homolog as predictions.

However, interface position conservation is limited by the availability of experimentally

solved structures when applying to protein interface predictions. Some query proteins may not

even find one putative sequence homologs with experimentally determined interfaces and with

satisfactory predicted IC score. We estimate this limitation of interface position conservation

analysis in applying to predictions and discuss possible ways for improvement in Chapter 3.

2.4 Conclusions

We studied a large number of sequence alignments between protein pairs with known in-

terfaces to explore the conditions under which conservation of protein interface residues, as

determined by the alignment of a query sequence against its homologs/homo-interologs, can be

used to reliably predict protein-protein interfaces. We showed that the PCA biplot is a conve-

nient tool to visualize the multivariate relation between the interface conservation score and the

sequence similarity measures. We proposed a novel method to study partner-specific protein

interface conservations, and detected that transient interfaces are highly partner-specifically

conserved.

2.5 Methods

2.5.1 Datasets

Three datasets were used in our conservation analysis in this chapter:

• Nr6505 - For analyzing the protein interface conservation.

• Oblig94 and Trans135 - For comparing the degree of conservation of protein interfaces in

transient/obligate binding proteins.

• nr_pdbaa_s2c - For BLASTP searching for close sequence homologs
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Nr6505

We extracted a maximal non-redundant set of known protein-protein interacting chains from

the Protein Data Bank (PDB) [14] available on 2/4/2010. We used the following steps to build

Nr6505 to eliminate the influence of over-represented protein families in PDB:

1. Extract all the X-ray derived protein structures with resolution 3.5 Å or better in PDB.

Remove proteins with less than 40 residues. We obtained 102,853 protein chains.

2. Remove redundancy of the resulting dataset in step 1 using PISCES [137]. All the

remaining sequences have less than or equal to 30% sequence similarity. We obtained 6505

chains.

Oblig94 and Trans135

This dataset of 94 obligate protein-protein dimer complexes and the dataset of 135 transient

dimer complexes was obtained from a large non-redundant dataset of 115 obligate complexes and

212 transient complexes (3.25 Å or better resolution, determined using X-ray crystallography)

previously generated by Mintseris and Weng [94] to study the conservation of protein-protein

interfaces. In ordered to exclude the influence of other types of interfaces, we extracted 94 obli-

gate dimers and 135 transient dimers from the original dataset and get Oblig94 and Trans135.

In Oblig94, 1QLA has been superseded by 2BS2. In Trans135, 1DN1 and 1IIS have been su-

perseded by 3C98 and 1T83, respectively, and 1F83, 1DF9, 4CPA and 1JCH have since been

deemed as obsolete and hence discarded from PDB.

BLAST nr_pdbaa_s2c

This dataset is used for BLASTP searches. We used the fasta files from S2C database

[136] to generate our BLAST database nr_pdbaa_s2c. We removed proteins with resolution

worse than 3.5 Å from S2C fasta formatted database. We built a non-redundant database for

BLAST queries from the S2C fasta formatted database. To generate the non-redundant BLAST

database, we grouped proteins with identical sequences into one entry. We used the resulting

database to search for homologs of a query sequence using BLASTP 2.2.22+ [9]. There are
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36,352 sequences and 9,549,671 total residues in nb_pdbaa_s2c.

2.5.2 Interface Definition

This paper adopts a stringent definition of protein-protein interfaces. Surface residues are

defined as residues that have the relative solvent accessible area (RASA) at least 5% [111].

Interface residues are defined as surface residues with at least one atom that is within a distance

of 4 Å from any of the atoms of residues in the chain. The ratios of interface residues versus

the total number of residues for the datasets used in this work are summarized in Table 2.3.

Interface information was extracted from the ProtInDB server http://protInDB.cs.iastate.edu .

Table 2.3 The Proportion of Interface Residues in Datasets Used in Interface Conservation
Analysis.

Dataset Number of
Interface Residuesa

Total Number of
Residuesb

% Interface Residues

Nr 6505 145,498 1,377,630 10.6%
Oblig94 10,273 55,400 18.5%
Trans135 6,460 55,217 11.7%

aWhen a chain interacts with more than one other chain, the interfaces are counted separately. For example,
for protein complex 2phe C:AB, the interface of C with A and the interface of C with B are regarded as two
interfaces.

bResidues that missing from PDB structures are not counted.

2.5.3 Mapping Interfaces in Structures to Sequences

We label the protein sequences as interface or non-interface residues (according to the def-

inition of interface residues given above) as follows: We first calculate the relevant distances

between atoms using the atom coordinates in ATOM section in PDB files. Then, by associating

the ATOM section to residues in the SEQRES section, we can map the corresponding residues

to protein sequences. However, various errors in PDB files make this a non-trivial task. Hence,

we used the mapping files from S2C database, which offers corrected mapping information from

ATOM section to residues in the SEQRES section of PDB files, to map interfaces determined

in structures to full sequences.
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2.5.4 NCBI BLAST Parameters

The amino acid substitution matrix and gap cost are essential parameters that need to be

specified in BLAST searches. In this study, we used the substitution matrices and gap costs

recommended for the different query lengths [1] (See Table 2.4).

Table 2.4 BLAST Substitution Matrices and Gap Costs used for BLASTP searches.

Query Length Substitution Matrix Gap Costs
<35 PAM-30 (9,1)
35-50 PAM-70 (10,1)
50-85 BLOSUM-80 (10,1)

85 BLOSUM-62 (10,1)

2.5.5 Interface Conservation (IC) Scores

In protein interface conservation analysis, we used the Matthews correlation coefficient (CC)

as a measure of the extent to which the interface residues in query protein are similar to those

in a putative homolog. We treat a query protein as a test protein, and the aligned interface

residues of its putative homolog is the prediction. For clarity, we refer this measure as the

Interface Conservation (IC) score.

IC score = CC = TP⇥TN�FP⇥FNp
(TP+FN)⇥(TP+FP )⇥(TN+FP )⇥(TN+FN)

where TP , FP , TN and FN are respectively the number of interface residues of a test

protein that are correctly predicted to be interface residues, the number of residues of the test

protein that are incorrectly predicted to be interface residues, the number of residues of the test

protein that are correctly predicted to be non-interface residues, and the number of residues of

the test protein that are incorrectly predicted to be non-interface residues.

Note that the part of the query protein that is not aligned with the putative homolog is not

used in calculating IC score.



35

2.6 Acknowledgements

This work was funded in part by the National Institutes of Health grant GM066387 to

Vasant Honavar and Drena Dobbs and in part by a research assistantship funded by the Center

for Computational Intelligence, Learning, and Discovery.



36

Figure 2.5 Principal Component Analysis of Interface Conservation Scores and Sequence
Alignment Statistics for Obligate versus Transient Complexes. The PCA biplots
shown are for (a) proteins from obligate complexes and (b) proteins from transient
complexes. See Figure 2.1 legend for additional details.
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Figure 2.6 Comparison of Interface Conservation in Proteins from Obligate versus Transient
Complexes. Proteins from obligate complexes are analyzed in a, c and e (left
panels); proteins from transient complexes are analyzed in b, d, and e (right panels).
Scatter plots show IC scores plotted as a function of: (a, b) log (local alignment
length); (c, d) log (EVal); and (e, f) Positive Score. Red dots are median values of
IC scores for a specific value on the x-axis.
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Figure 2.7 PS-Interface Conservation in Transient Complexes. Homo-interologs corresponding
to complexes in the Trans135 dataset were analyzed (see text for details). (a-c)
Scatter plots show IC scores (blue dots) plotted as a function of: (a) log EVal; (b)
Positive Score; (c) log LAL. Red dots are median values of IC scores for a specific
value on the x-axis. (d) Scatter plot of Positive Score as a function of FracA ⇥
FracA’. Each data point (in d only) is colored using according to its IC score.
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CHAPTER 3. HomPPI: A class of Sequence Homology Based

Protein-Protein Interface Prediction Methods

A paper titled "HomPPI: a class of sequence homology based protein-protein interface

prediction methods", BMC Bioinformatics 2011, 12:244

Li C. Xue, Drena Dobbs and Vasant Honavar

Abstract Although homology-based methods are among the most widely used methods for

predicting the structure and function of proteins, the question as to whether interface sequence

conservation can be effectively exploited in predicting protein-protein interfaces has been a

subject of debate. In Chapter 2, we systematically studied the interface conservation in sequence

homologs, and we identified sequence similarity criteria required for accurate homology-based

inference of interface residues in a query protein sequence. Based on these analyses, we developed

HomPPI, a class of sequence homology based methods for predicting protein-protein interface

residues. We present two variants of HomPPI: (i) NPS-HomPPI (Non partner-specific HomPPI),

which can be used to predict interface residues of a query protein in the absence of knowledge

of the interaction partner; and (ii) PS-HomPPI (Partner-specific HomPPI), which can be used

to predict the interface residues of a query protein with a specific target protein.

Our experiments on a benchmark dataset of obligate homodimeric complexes show that

NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with

an average correlation coefficient (CC) of 0.76, sensitivity of 0.83, and specificity of 0.78, when

sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably

predicts the interface residues of intrinsically disordered proteins. Our experiments suggest

that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers in-

cluding those that exploit the structure of the query proteins. The partner-specific classifier,
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PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a

query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of

0.70, when homologs of both the query and the target can be reliably identified. The HomPPI

web server is available at http://homppi.cs.iastate.edu/.

Our results show that sequence homology based methods offer a class of computationally

efficient and reliable approaches for predicting the protein-protein interface residues that par-

ticipate in either obligate or transient interactions. For query proteins involved in transient

interactions, the reliability of interface residue prediction can be improved by exploiting knowl-

edge of putative interaction partners.

3.1 Introduction

Protein-protein interactions are central to protein function; they constitute the physical basis

for formation of complexes and pathways that carry out virtually all major cellular processes.

These interactions can be relatively permanent or "obligate" (e.g., in subunits of an RNA

polymerase complex) or "transient" (e.g., kinase-substrate interactions in a signalling network).

Both the distortion of protein interfaces in obligate complexes and aberrant recognition in

transient complexes can lead to disease.

With the increasing availability of high throughput experimental data, two related problems

have come to the forefront of research on protein interactions: i) prediction of protein-protein

interaction partners; and ii) prediction of protein binding sites or protein-protein interfaces

(PPIs). Although most effort to date has focused on one or the other of these problems,

it is possible to use information from predicted protein-protein interaction networks as input

for interface prediction methods, and predicted interface residues can be used as input for

interaction partner predictions, a concept explored in a recent study of Yip et al. [149]. In the

current study, we focus on the prediction of protein-protein interfaces, specifically, the use of

sequence homology based methods to predict which residues of a query protein participate in

its physical interaction with a partner protein or proteins.
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Computational Prediction of Protein-Protein Interfaces

Several different genetic, biochemical, and biophysical methods have been used to identify

and characterize protein interfaces [16, 42, 46, 23, 157, 7, 56, 120, 96]. These experiments are very

valuable and have contributed greatly to our knowledge of protein-protein interfaces. However,

the high cost in time and resources required for these experiments call for reliable computational

approaches to identify interface residues. In addition to providing important clues to biological

function of novel proteins, computational predictions can reduce the searching space required

for docking two polypeptides [41, 38, 81, 122].

To distinguish interface residues from non-interface surface residues, a wide range of se-

quence, physicochemical and structural features have been investigated [71, 73, 72, 79, 11, 17, 24,

36, 84, 118, 123, 58], and many in silico approaches to protein-protein interface prediction have

been explored in the literature (reviewed in [37, 52, 153]). Protein-protein interface prediction al-

gorithms can be classified into three categories: (i) sequence-based methods, which use only the

primary amino acid sequence of the query protein as input [114, 119, 108, 97, 146, 147, 29, 28];

(ii) structure-based methods, which make use of information derived from the structure of the

query protein [99, 68]; and (iii) methods that use both sequence and structure derived informa-

tion in making predictions [111, 26, 83].

Several sequence-based protein-protein interface prediction methods have been explored in

the literature [114, 119, 108, 97, 146, 147, 29]. Most, if not all, of these methods, extract for

each residue in the query protein, a fixed length window that includes the target residue and a

fixed number of its sequence neighbours. Each residue is classified as an interface residue or a

non-interface residue based on features of the amino acids in the corresponding window. Various

methods differ both in the specific machine learning algorithms or statistical methods employed

and in terms of the specific features of the amino acids used. Commonly used features include

the identity of the amino acids in the window [147], the amino acid composition of interfaces

[103] , the physicochemical properties of the amino acids [29], and the degree of conservation

of the amino acids (obtained by aligning the query sequence with homologous sequences) [104].

Some studies report substantial improvements in interface residue prediction when predicted
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structural properties, e.g., solvent surface accessibility and secondary structure of the residues

are utilized [37].

A number of structure-based methods [99, 68] or hybrid methods that combine both sequence

and structure-derived information [111, 26, 83] have been proposed for predicting protein inter-

faces. The performance of the best-performing sequence-based methods is generally lower than

that of structure-based methods (see [37] for a comparison). A possible explanation for the

difference in the performance of sequence-based and structure-based protein interface residue

predictors is that the latter can trivially eliminate non-surface residues from the set of candidate

interface residues and potentially exploit a rich set of features derived from the 3D structures.

The use of structure-based methods, however, is limited to proteins for which the structure

of the query protein is available, and the number of solved structures significantly lags behind

the number of protein sequences [29]. Even when the structure of a query protein is available,

the application of structure-based prediction methods is complicated by conformational changes

that take place when some proteins bind to their partners. Structure-based methods rely on

structural features extracted from the structure in the unbound state or from a bound complex

that has been separated into constituent proteins. It is unclear whether such structural features

are indeed reliable predictors of interfaces for proteins that undergo significant conformational

changes upon binding [153, 140]. Moreover, higher organisms have a large number of intrinsically

disordered proteins/regions (IDPs/IDRs) that undergo induced folding only after binding to

their partners [49]. Such disordered regions - for which experimental structure information

is, by definition, lacking - participate in many important cellular recognition events, and are

believed to contribute to the ability of some hub proteins to interact with multiple partners

in protein-protein interaction networks [48]. Hence, there is an urgent need for sequence-based

methods for reliable prediction of protein-protein interfaces.

Overview of the Chapter

Based on the results of protein interface conservation analysis in chapter 2 we propose

HomPPI, a class of sequence homology based approaches to protein interface prediction. We

present two variants of HomPPI: (i) NPS-HomPPI (non partner-specific HomPPI), which can
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be used to predict interface residues of a query protein in the absence of knowledge of the

interaction partner; and (ii) PS-HomPPI (partner-specific HomPPI), which can be used to

predict the interface residues of a query protein with a specific target protein. The perfor-

mance of both HomPPI methods was evaluated on several benchmark datasets, including a

large non-redundant set of transient complexes. Due to the increasing importance of intrin-

sically disordered proteins in understanding molecular recognition mechanics and in rational

drug design and discovery [121, 92, 53, 127], we also tested NPS-HomPPI on two datasets of

intrinsically disordered proteins.

We compare the performance of HomPPI with that of other web-based servers for interface

residue prediction, using several performance measures that assess the reliability of correctly

predicting, on average, interface and non-interface residues in a given protein. We discuss the

relative advantages and limitations of homology-based methods for interface residue prediction.

3.2 Results

3.2.1 HomPPI - Homologous Sequence-Based Protein-Protein Interface Predic-

tion

Based on the results of our analysis of protein interface conservation described in Chapter

2, we developed HomPPI, a family of sequence homology based algorithms for protein interface

prediction. We implemented two variants of HomPPI:

1. NPS-HomPPI - Given a query protein sequence, NPS-HomPPI searches the nr_pdbaa_s2c

database (for details see Methods in Chapter 2) to identify homologous proteins that are compo-

nents of experimentally determined complexes with one or more other proteins. NPS-HomPPI

labels a residue of the query sequence as an "interface" residue if a majority of residues in a

selected subset of homologs in alignment of the query sequence with its homologs are interface

residues, and as "non-interface" residue otherwise. Specifically, given a query protein, we first

use NPS-HomPPI to search for sequence homologs within the Safe Zone. If at least one ho-

molog in the Safe Zone is found, NPS-HomPPI uses the Safe homolog(s) to infer the interfaces

of the query protein. Otherwise, the process is repeated to search for homologs in the Twilight
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Zone or the Dark Zone. If no homologs of the query protein can be identified in any of the

three zones, NPS-HomPPI does not provide any predictions. The Safe, Twilight, and Dark

Zone homologs of the query protein sequence to be used for interface prediction are identified

by searching the nr_pdb_s2c database using BLASTP with thresholds based on the interface

conservation analysis (see Methods Section for details) (after removing the query sequence and

any highly similar sequences from the same species as the query sequence, in order to allow

unbiased evaluation of the performance of NPS-HomPPI).

2. PS-HomPPI - Given the sequences of a query protein A and its putative binding partner

B, PS-HomPPI searches the nr_pdbaa_s2c database to identify homologous complexes i.e.,

the homo-interologs of A-B. PS-HomPPI labels a residue of the query sequence as an "inter-

face" residue (with respect to its putative binding partner) if a majority of the residues in the

corresponding position in homologous complexes are interface residues, and as "non-interface"

residues otherwise. PS-HomPPI uses homo-interologs in Safe and Twilight Zones to make pre-

dictions. The PS-HomPPI prediction process is thus analogous to that for NPS-HomPPI, using

thresholds for "close homo-interologs" based on the results of interface conservation analysis of

PS-interface conservation (see Methods Section for additional details).

3.2.2 Performance Evaluation of HomPPI Methods

We report several performance measures that provide estimates of the reliability of interface

(and non-interface) residue predictions obtained using the HomPPI family of predictors. We

compare the performance of HomPPI predictors with several state-of-the-art interface prediction

methods on a benchmark dataset. We evaluate the effectiveness of HomPPI in predicting the

interface residues of disordered proteins. Finally, we compare the partner-specific and non-

partner-specific versions of HomPPI.

We focus our discussion on results using several performance measures that assess the ef-

fectiveness of the methods in reliably predicting, on average, the interface and non-interface

residues of any given protein (See Methods for details). However, because several of the pub-

lished studies report performance measures that assess the effectiveness of the methods in reli-

ably assigning interface versus non-interface labels, on average, to any given protein residue, we
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also include results using "residue-based" performance measures in Supplementary Materials

(See http://homppi.cs.iastate.edu/supplementaryData.html).

(i) NPS-HomPPI Performance on the Benchmark180 Dataset

Among the 180 protein sequences in the Benchmark180 dataset (taken from [20]), 125 se-

quences had at least one homolog that met the thresholds for the Safe or Twilight Zones, based

on zone boundaries determined using Trans135 (Table 3.4). We examined the performance

of NPS-HomPPI in predicting interface residues on each of the four different protein complex

types in Benchmark180. As shown in Table 3.1, NPS-HomPPI performed best on obligate

homodimers, in terms of CC (0.76), sensitivity (0.83), specificity (0.78) and accuracy (0.94).

Performance on obligate heterodimers was comparable, although slightly lower. NPS-HomPPI

performance on transient interfaces was substantially lower than on obligate interfaces. For

transient enzyme inhibitor complexes, the accuracy was 0.86, with a CC of 0.53; for transient

non enzyme-inhibitor complexes, the accuracy was 0.83, with a CC of 0.45. These results

are consistent with the finding from our statistical analyses in Chapter 2 that NPS-obligate

interfaces are more conserved than NPS-transient interfaces in their homologs.

We also evaluated the prediction performance of NPS-HomPPI using homologs with different

degrees of sequence homology. In Table 3.2, the prediction performance is shown separately for

sets of test proteins for which HomPPI can identify at least one homolog in Safe, Twilight, or

Dark Zones. As expected, Safe Zone homologs consistently gave the most reliable prediction

performance for all four types of complexes (CC values ranged from 0.55 to 0.84). Both obligate

and transient interfaces were predicted with moderate to high reliability (CC values ranged from

0.12 to 0.67) even using only distant homologs from the Twilight or Dark Zones.

(ii) Comparison of NPS-HomPPI with other PPI Prediction Servers

Direct comparison of NPS-HomPPI with other methods described in the literature is compli-

cated by the limited availability of implementations of the underlying methods (many of which

are available only in the form of servers), and differences in the choice of training and evaluation

datasets, evaluation procedures and evaluation measures [21]. Hence, we limit our comparisons
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of HomPPI with five state-of-the-art methods available as web-based servers: Promate [99],

Cons-PPISP [26, 155], meta-PPISP [112], PIER [78] and PSIVER [97]. All of these methods

except PSIVER take advantage of both sequence and experimentally determined protein struc-

ture of the query proteins. They have been reported to be among the best performing methods

currently available for predicting PPIs (see [153][37] for reviews). PSIVER is one of the most re-

cently published methods for interface residue prediction that only uses protein sequence-derived

information. Although direct comparisons of the data representation and the algorithms used

by PSIVER with those used by other sequence-based interface residue predictors are currently

not available, PSIVER has been reported to outperform two other sequence-based servers: ISIS

[104] and the sequence-based variant (made available as an experimental version in 2008) of

SPPIDER [111].

Promate samples the protein surface using circular patches around a set of anchoring dots

and estimates the probability that each surface dot belongs to an interface, based on the

distribution of various physicochemical properties within interface and non-interface patches.

Cons-PPISP is a consensus method that combines six neural networks trained on six datasets.

Meta-PPISP is a consensus method that combines the output from cons-PPISP, Promate, and

PINUP [83]. PIER relies on partial least squares (PLS) regression of surface patch properties

of the query protein. PSIVER uses PSSM profiles and predicted solvent accessibility as input

features, and uses a Naïve Bayes classifier with parameters obtained using kernel density esti-

mation. Because NPS-HomPPI does not take structural information into account, to compare

its performance with the structure-based servers, we mapped the interfaces predicted by each

server onto the full sequence of each query protein in order to evaluate prediction performance

on the entire protein sequence.

We compared the performance of NPS-HomPPI with all five PPI servers on a subset of

the Benchmark180 dataset, specifically, 125 out of 180 proteins for which NPS-HomPPI was

able to identify homologs in the Safe or Twilight zones. The sensitivity-specificity plots (also

called precision-recall plots) are shown in Figure 3.1. Each data point corresponds to a different

classification threshold value. The prediction score of NPS-HomPPI is simply the normalized

vote (for each residue total votes for interfaces from homologs are normalized by the number
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of homologs) from 10 (or fewer available) homologs. Thus, NPS-HomPPI produces a limited

number of distinct prediction scores.

For the two transient complex types, enzyme-inhibitors (Figure 3.1a) and transient non-

enzyme-inhibitors, transient (Figure 3.1b), NPS-HomPPI consistently outperforms Promate,

PIER, meta-PPISP, cons-PPISP, and PSIVER except for sensitivity values lower than 0.2

(which is very low to be useful in practice). On both obligate heterodimers (Figure 3.1c) and

homodimers (Figure 3.1d), NPS-HomPPI outperforms all five servers across the full range of sen-

sitivity and specificity values for which it can generate homology-based predictions. It should

be noted that structure-based methods predict which surface residues are interface residues.

In contrast, sequence-based methods have the more challenging task of identifying interface

residues from the set of all residues. In other words, structure-based methods can trivially

eliminate all non-surface residues from the set of candidate interface residues. Viewed in this

light, the observed predictive performance of NPS-HomPPI, a purely sequence-based method,

suggests that it is possible to make reliable non-partner-specific interface residue predictions

using only the sequences of a protein by taking advantage of the conservation of interfaces in

the context of non-partner-specific interactions.

(iii) Performance of NPS-HomPPI on Intrinsically Disordered Proteins

Intrinsically disordered proteins (IDPs) and proteins containing intrinsically disordered re-

gions (IDRs) are attractive targets for drug discovery [92]. The lack of defined tertiary struc-

ture in IDPs/IDRs poses a major challenge to structure-based interface prediction methods.

Hence, we compared the performance of NPS-HomPPI with ANCHOR [45], a recently published

method for the prediction of binding regions in disordered proteins. For this comparison, we

used two non-redundant disordered protein datasets, S1 and S2, recently collected by Meszaros

et al. [91]. Some of the test proteins are based on data from NMR structures. In order to com-

pare NPS-HomPPI with ANCHOR on the largest possible number of cases available to us, we

extracted interface residues from these NMR cases; however, we used only sequence homologs

with interface residues determined from X-ray structures to make predictions.

Figure 3.2 shows the performance comparison of NPS-HomPPI with ANCHOR on the pre-
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Figure 3.1 Performance of NPS-HomPPI Compared with Web-based PPI Servers. Perfor-
mance was evaluated on four different protein complex types from Benchmark180:
(a) Enzyme-inhibitors, transient. (b) Non-enzyme-inhibitors (NEIT), transient.
(c) Hetero-dimers, obligate. (d) Homo-dimers, obligate. Servers compared were:
NPS-HomPPI: red circles; Meta-PPISP: green squares; Cons-PPISP: blue triangles;
Promate: brown stars; PIER: purple stars; PSIVER: yellow stars.
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diction of interface residues in disordered proteins. NPS-HomPPI significantly outperforms

ANCHOR over a broad range of sensitivity and specificity for both short as well as long disor-

dered proteins for which sequence homologs are available in Safe, Twilight or Dark Zones (Figure

3.2 a and b respectively). For example, as shown in Figure 3.2 b, on the S2 dataset, at a predic-

tion sensitivity value of 0.70, ANCHOR achieves a specificity of ~0.40, whereas NPS-HomPPI

achieves a specificity of ~0.64.

At present, NPS-HomPPI has relatively high prediction coverage for long disordered proteins

(78%; 31 out of 40 interfaces of disordered proteins), but lower coverage for short disordered

proteins (50%; 28 out of 56 interfaces of disordered proteins). This is in part due to that

fact that many disordered proteins available in the PDB (Protein Data Bank) [14] have only

NMR structures, which were excluded from the current study. Incorporation of data from NMR

structures in the future can be expected to increase the coverage of NPS-HomPPI for disordered

proteins.

(iv) Performance of NPS-HomPPI versus PS-HomPPI

Our analysis of the conservation of PS-transient interfaces described in Chapter 2 sug-

gests that many interfaces in transient protein complexes are highly partner-specific. Thus,

we implemented a variant of HomPPI, designated PS-HomPPI, to evaluate the possibility that

prediction of interface residues, especially in transient complexes, can be improved by using

sequence information about specific binding partners, when available.

We first evaluated the performance of PS-HomPPI on a transient complex dataset, Trans135

(dimers from the dataset in [94]). PS-HomPPI found at least one homo-interolog that meets

the Safe or Twilight similarity thresholds for 60% (162/270) proteins in the Trans135 dataset.

Overall, PS-HomPPI had an average CC of 0.65, sensitivity of 0.69, specificity of 0.70 and

accuracy of 0.92.

To investigate whether the partner information is, in fact, helpful in predicting interfaces we

directly compared the performance of PS-HomPPI with NPS-HomPPI on the Trans135 dataset.

In Trans135, there were 139 out of 270 chains that for which predictions could be generated by

both NPS-HomPPI (using homologs) and PS-HomPPI (using homo-interologs) from the Safe
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or Twilight zones (see Methods for details).

The results shown in Figure 3.3 indicate that, at least for transient interfaces in the Trans135

dataset, PS-HomPPI outperforms NPS-HomPPI. Although the average values over proteins

(green dots) for CC, sensitivity and specificity are similar, the median values (the red bar in

the box) for PS predictions (left panel) are much higher than that for NPS predictions (right

panel). Also, the observed variance (length of the box) of PS predictions (left panel) is much

smaller than that of NPS predictions (right panel). These results suggest that the reliability

of interface residue predictions can be improved by exploiting the knowledge of the binding

partner of a query protein.

3.3 Discussion

3.3.1 Performance of HomPPI Compared with Published Methods

Our results show that whenever the interfaces of the close sequence homologs of a query

protein are available, NPS-HomPPI outperforms several state-of-the-art protein interface pre-

diction servers (many of which take advantage of the structure of the query protein), over a

broad range of sensitivity and specificity values. In the case of transient complexes (Figure 3.1 a

and b), NPS-HomPPI consistently outperforms Promate, PIER, meta-PPISP, cons-PPISP, and

PSIVER except for sensitivity values lower than 0.2. On obligate dimers (Figure 3.1 c and d),

NPS-HomPPI significantly outperforms all five servers across the full range of sensitivity and

specificity values for which it can generate homology-based predictions. These results strongly

suggest that it is possible to reliably predict protein interface residues using only sequence in-

formation whenever the interface residues of sequence homologs of the query protein are known.

Each of the webbased PPI servers with which we compared our NPS-HomPPI server, except

PSIVER, take advantage of the structure of the query proteins to determine surface residues,

and restrict the predicted interface residues to a subset of the surface residues. This trivially

reduces the number of false positive interface residue predictions (relative to the total number

of residues in the query protein) which, in turn, yields a substantial increase in the specificity

of interface predictions produced by structure-based servers. Consequently, purely sequence-
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Figure 3.2 Performance of NPS-HomPPI Compared with ANCHOR in Predicting Interface
Residues in Disordered Proteins. Two datasets of disordered proteins were used:
(a) S1: short disordered proteins. (b) S2: long disordered proteins. NPS-HomPPI:
red circles; ANCHOR: green squares.

Figure 3.3 Performance Comparison of PS-HomPPI and NPS-HomPPI. Only proteins for
which predictions could be generated by both PS-HomPPI and NPS-HomPPI (139
out of 270 chains from Trans135) were used in this evaluation. The lower (Q1),
middle (Q2) and upper (Q3) quartiles of each box are 25th, 50th and 75th per-
centile. Interquartile range IQR is Q3-Q1. Any data value that lies more than 1.5
⇥ IQR lower than the first quartile or 1.5 ⇥ IQR higher than the third quartile is
considered an outlier, which is labelled with a red cross. The whiskers extend to
the largest and smallest value that is not an outlier. Averages are marked by green
dots.
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based protein interface prediction servers have a handicap relative to structure-based prediction

servers. When viewed in this light, performance of NPS-HomPPI relative to the state-of-the-art

protein interface prediction methods is especially impressive.

The HomPPI methods for interface residue prediction do have an important limitation,

however, in that they rely on the availability putative homologs for which experimentally-

determined structures of bound complexes are available in the PDB. One may ask whether the

coverage of the HomPPI family of protein-protein interface prediction methods is broad enough

to be sufficiently useful in practice. We address this question below.

3.3.2 Prediction Coverage of HomPPI Methods

The current coverage of HomPPI protein interface prediction methods can be assessed from

our results as follows:

NPS-HomPPI

• Benchmark180 dataset: NPS-HomPPI found at least one homolog that meets the similarity

thresholds for Safe or Twilight Zones for 73% (83/114) of the obligate binding chains (homo and

hetero-dimers). Among these, 82% (68/83) were predicted with both sensitivity and specificity

�0.50, simultaneously. Similarly, at least one homolog was found for 62% (42/66) of transient

binding chains (enzyme-inhibitors and non-enzyme inhibitors) in this dataset. Among these

55% (23/42) were predicted with both sensitivity and specificity �0.5.

• Trans135 dataset: In the case of transient query proteins in the Trans135 dataset, NPS-

HomPPI found at least one homolog that meets the similarity thresholds for Safe or Twilight

Zones for 75% (202/270) of chains. Among these, 37% (74/202) were predicted with both

sensitivity and specificity �0.5.

• Disordered protein datasets S1 and S2: In the case of disordered proteins, NPS-HomPPI

found at least one homolog that meets the similarity thresholds for Safe or Twilight or Dark

Zones for 50% (26/52) of interfaces of disordered proteins in S1, the short disordered protein

set, and 75% (30/40) of interfaces of disordered proteins in S2.

PS-HomPPI

• Trans135 dataset: PS-HomPPI found at least one homo-interolog that meets the Safe
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or Twilight similarity thresholds for 60% (162/270) proteins in the Trans135 dataset. Among

these, 80% (130/162) where predicted with sensitivity and specificity �0.5, simultaneously.

Based on these results, we estimate that, at present, the coverage of the HomPPI protein

interface prediction methods is in the range of 60-70% of all query proteins. As the structural

genomics projects currently underway generate increasing numbers of structures of protein-

protein complexes [25], we can expect corresponding increases in the coverage of HomPPI family

of protein interface prediction methods. In the meantime, one can envision hybrid methods

that combine HomPPI with one or more machine learning based methods that do not require

the availability of putative homologs for which experimentally determined structures of bound

complexes are available in the PDB.

3.3.3 Parameters for HomPPI Can Be Relaxed for Obligate Interactions

The current default parameters for HomPPI are intentionally rather stringently set based on

the results of our statistical analysis of interface conservation using Trans135, which is a dataset

of transient binding proteins. Our analyses suggest that NPS-HomPPI has wider Safe and

Twilight Zones for obligate binding proteins than for transient binding proteins. Furthermore,

even Dark Zone homologs yield interface predictions that are accurate enough to be useful

in practice, with average specificity of 0.47 and sensitivity of 0.66 for hetero-obligate dimers,

average specificity of 0.44 and sensitivity of 0.47 for homo-obligate dimers (see Table 3.2).

Therefore, for obligate interactions, if a query protein has little sequence similarity with proteins

in the PDB, the thresholds of NPS-HomPPI can be relaxed to allow identification of more distant

homologs with potentially conserved interfaces that still provide reliable interface predictions.

3.3.4 Prediction of Binding Partners vs. Prediction of Interface Residues

Protein interface (binding site) predictions and protein interaction (partner) predictions

answer closely related, but different questions. Non partner-specific protein interface predictors

are designed to identify the residues in a query protein that are likely to make contact with

the residues of one or more unspecified interaction partner proteins. Partner-specific protein

interface predictors are designed to identify the residues in a query protein that are likely
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to make contact with residues of a putative interaction partner protein. In contrast, protein

interaction predictors are designed to predict whether or not a given pair of proteins is likely

to interact [106, 65, 31, 131]. Although our study does not directly address the latter question,

it is possible to use PS-HomPPI predictions to determine whether or not two query proteins

interact: Given a pair of protein sequences, say A and B, we can first use PS-HomPPI to predict

the interface residues of A with its putative partner B; and the interface residues of B with its

putative partner A. If, in both cases, some number of interface residues are predicted, we can

infer that proteins A and B are likely to interact with each other. Conversely, it is possible to use

information from predicted protein-protein interactions to refine interface predictions. Yip et

al. [149] have proposed an approach to utilize residue level information to improve the accuracy

of protein level predictions, and vice versa. They have shown that a two-level machine learning

framework that allows information flow between the two levels through shared features yields

predictions that are more accurate than those obtained independently at each of the levels.

3.3.5 Using Interface Predictions to Steer Docking and to Rank Docked Confor-

mations

Reliable partner-specific interface predictions can be used to restrict the search space for

protein-protein docking by specifying the contacts that need to be preserved in the docked

conformation. It is also possible to rank the conformations produced by docking, based on the

degree of overlap between the interface of a query protein and its binding partner in the docked

conformation with the interface generated by a partner-specific interface prediction method, e.g.

PS-HomPPI. In related work [143], we have shown that PS-HomPPI provides reliable interface

predictions on a large subset of a Docking Benchmark Dataset, and is both fast and robust in

the face of conformational changes induced by complex formation. The quality of the ranking

of docked conformations by PS-HomPPI interface prediction is consistently superior to that

produced using ClusPro cluster-size-based and energy-based criteria for 61 out of 64 docking

complexes for which PS-HomPPI produces interface predictions [143].
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3.4 Conclusions

Based on the results of our interface conservation analyses, we developed HomPPI, a simple

sequence-based method for predicting interface residues based on the known interface residues

in homologous sequences. HomPPI has two variants: NPS-HomPPI (for predicting interface

residues of a query protein with unspecified interaction partners) and PS-HomPPI (for predict-

ing interface residues of query proteins with a specified putative interaction partner).

Our systematic evaluation of NPS-HomPPI showed that, when close homologs can be iden-

tified, NPS-HomPPI can reliably predict interface residues in both obligate and transient com-

plexes, with a performance that rivals several state-of-the-art structure-based interface predic-

tion servers. NPS-HomPPI can also be used as a reliable tool for identifying disordered binding

regions. In this regard, NPS-HomPPI has an advantage over structure-based interface predic-

tors, which cannot be used to predict binding sites in disordered regions of proteins because

they do not form stable structures in their unbound state. In addition, the HomPPI family of

interface prediction methods are fast enough for proteome-wide analyses.

Many studies on in silico identification of protein interfaces have been published in the past

decade. However, despite the fact that many proteins are very specific in their choice of binding

partners, the majority of studies focus on only one side of the bound complex. In this study, we

implemented a novel partner-specific protein interface prediction method, PS-HomPPI, which

infers interface residues based on known interfaces in the homo-interologs, i.e., complexes formed

by homologs of the query protein and its putative interaction partner. When homo-interologs

can be identified, PS-HomPPI can reliably predict highly partner-specific transient interfaces.

Although our focus in this study was on prediction of protein-protein interfaces, these meth-

ods could be useful in other settings, such as sequence-based prediction of protein-DNA, protein-

RNA, and protein-ligand interfaces, and the prediction of B and T cell epitopes.

Both NPS-HomPPI and PS-HomPPI have been implemented in a server available at: http :

//homppi.cs.iastate.edu/.
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3.5 Methods

3.5.1 Datasets

Three datasets were used in this chapter:

• Benchmark180 - For evaluating the prediction performance of HomPPI.

• S1 and S2 - For evaluating the performance of NPS-HomPPI on interfaces of disordered

proteins.

• Trans135 - For comparing the perfomrance of NPS-HomPPI and PS-HomPPI on the highly

partner-specific interfaces of transient interactions.

Benchmark180

We tested NPS-HomPPI on a benchmark dataset manually collected and used as evaluation

dataset by Bradford and Westhead [20]. This dataset consists of 180 protein chains taken from

149 complexes; 36 of these are involved in enzyme-inhibitor interactions, 27 in hetero-obligate

interactions, 87 in homo-obligate interactions, and 30 in non-enzyme-inhibitor transient (NEIT)

interactions.

Disordered protein datasets S1 and S2

We evaluated the performance of NPS-HomPPI on a non-redundant disordered dataset

that has been recently collected by Meszaros et al. [91]. S1 consists of 46 complexes of short

disordered and long globular proteins. S2 consists of 28 complexes of long disordered and long

globular proteins. Note that a protein complex e.g., 1fv1 C:AB formed by a disordered protein C

with two ordered proteins A and B, yields two sets of interface residues for C (corresponding to

interfaces between C with A and C with B). As a result, 46 complexes in S1 and 28 complexes

in S2 (respectively) correspond to 56 and 40 interfaces of disordered proteins. We focused

on cases in which NPS-HomPPI is able to identify Safe/Twilight/Dark zone homologs for the

query proteins resulting in NPS-HomPPI interface predictions for 28 out of 56 and 31 out of 40

interfaces of disordered proteins in S1 and S2 respectively.
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Trans135

This dataset of 135 transient dimer complexes was obtained from a large non-redundant

dataset of 212 transient complexes (3.25 Å or better resolution, determined using X-ray crys-

tallography) previously generated by Mintseris and Weng [94] to study the conservation of

protein-protein interfaces. In ordered to exclude the influence of other types of interfaces, we

extracted 135 transient dimers from the original dataset and get Trans135. In Trans135, 1DN1

and 1IIS have been superseded by 3C98 and 1T83, respectively, and 1F83, 1DF9, 4CPA and

1JCH have since been deemed as obsolete and hence discarded from the PDB.

3.5.2 Interface Definition

This paper adopts a stringent definition of protein-protein interfaces. Surface residues are

defined as residues that have the relative solvent accessible area (RASA) at least 5% [111].

Interface residues are defined as surface residues with at least one atom that is within a distance

of 4 Å from any of the atoms of residues in the chain. The ratios of interface residues versus the

total number of residues for the datasets used in this work are summarized in Table 3.3. Interface

information was extracted from the ProtInDB server http : //protInDB.cs.iastate.edu.

Table 3.3 The Proportion of Interface Residues in Datasets Used in The Evaluation of
HomPPI.

Dataset Number of Interface
Residuesa

Total Number of Residuesb % Interface Residues

Benchmark180 6,401 43,013 14.90%
Trans135 6,460 55,217 11.70%

Disordered S1c 585 1,171 50.00%
Disordered S2 1,797 11,400 15.80%

aWhen a chain interacts with more than one other chain, the interfaces are counted separately. For example,
for protein complex 2phe C:AB, the interface of C with A and the interface of C with B are regarded as two
disordered interfaces.

bResidues that missing from PDB structures are not counted.
cFor disordered interface datasets S1 and S2, only interfaces of IDPs are counted. Interfaces of IDPs’ binding

parnters are not counted.
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3.5.3 Mapping Interfaces in Structures to Sequences

We label the protein sequences as interface or non-interface residues (according to the def-

inition of interface residues given above) as follows: We first calculate the relevant distances

between atoms using the atom coordinates in ATOM section in PDB files. Then, by associating

the ATOM section to residues in the SEQRES section, we can map the corresponding residues

to protein sequences. However, various errors in PDB files make this a non-trivial task. Hence,

we used the mapping files from S2C database, which offers corrected mapping information from

ATOM section to residues in the SEQRES section of PDB files, to map interfaces determined

in structures to full sequences.

3.5.4 NCBI BLAST Parameters

In this study, we used the substitution matrices and gap costs recommended for the different

query lengths (See Table 2.4).

3.5.5 Performance Evaluation

To evaluate the extent to which protein interfaces are conserved in query-homolog pairs

and to estimate the performance of HomPPI and other predictors that we compare with in

predicting the interface residues of a novel protein (i.e., one not used to train the predictor),

we consider several standard performance measures including sensitivity (recall), specificity

(precision), accuracy and Matthews correlation coefficient (CC) [12]. Specifically, for each test

protein i, we calculate the corresponding performance measures for each protein i as follows:

sensitivity
i

= TPi
TPi+FNi

specificity
i

= TPi
TPi+FPi

accuracy
i

= TPi+TNi
TPi+FPi+FNi+TNi

CC
i

= TPi⇥TNi�FPi⇥FNip
(TPi+FNi)(TPi+FPi)

where TP
i

, FP
i

, TN
i

, and FN
i

are respectively the number of interface residues of protein

i that are correctly predicted to be interface residues, the number of residues of protein i that
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are incorrectly predicted to be interface residues, the number of residues of protein i that are

correctly predicted to be non-interface residues, and the number of residues of protein i that

are incorrectly predicted to be non-interface residues.

We calculate the protein-based overall performance measures as follows:

sensitivityP =
PN

i=1 sensitivityi

N

specificityP =
PN

i=1 specificityi

N

accuracyP =
PN

i=1 accuracyi

N

CCP =
PN

i=1 CCi

N

where N is the total number of test proteins.

These measures describe different aspects of predictor performance. The overall sensitivity

is the probability, on average, of correctly predicting the interface residues of a given protein.

The overall specificity is the probability, on average, that a predicted interface residue in any

given protein is in fact an interface residue. The overall accuracy corresponds to the fraction of

residues in any given protein, on average, that are correctly predicted. The overall Matthews

correlation coefficient measures of how predictions correlate, on average, with true interfaces

and non-interfaces.

Often it is possible to trade off one performance measure (e.g., specificity) against another

(e.g., sensitivity) by varying the threshold that is applied to the prediction score to generate

the binary (interface versus non-interface) predictions. Hence, we include of the overall sensi-

tivity against overall specificity for different choices of the threshold. The resulting specificity-

sensitivity plots or precision-recall plots show the trade-off between sensitivity and specificity

and hence provide a much more complete picture of predictive performance.

The performance measures described above provide an estimate of the reliability of the

predictor in predicting interface residues of a novel protein. It is worth noting that most

of the papers in the literature on interface residue prediction report performance measures

by averaging over residues (as opposed to proteins). The residue-based overall performance

measures are calculated as follows:

sensitivityR =
PN

i=1 TPiPN
i=1(TPi+FNi)
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specificityR =
PN

i=1 TPiPN
i=1(TPi+FPi)

accuracyR =
PN

i=1(TPi+TNi)PN
i=1(TPi+FPi+FNi+TNi)

CCR =
PN

i=1 TPi⇥
PN

i=1 TNi�
PN

i=1 FPi⇥
PN

i=1 FNipPN
i=1(TPi+FNi)⇥

PN
i=1(TPi+FPi)⇥

PN
i=1(TNi+FPi)⇥

PN
i=1(TNi+FNi)

Residue-based specificity-sensitivity plots in this case show how the trade-off between speci-

ficityR and specificityR is obtained by varying the threshold applied to the prediction score.

The residue-based performance measures provide an estimate of the reliability of the predic-

tor in correctly labelling a given residue. However, in practice, it is useful to know how well

a predictor can be expected to perform on a given protein sequence as opposed to a residue.

sensitivityP , specificityP , accuracyP , and CCP are more informative than their residue-based

counterparts. Hence, in this paper, we report results based on the protein-based measures al-

though, for the purpose of comparison with other published methods, we include the results

based on the residue-based measures in Supplementary Materials in HomPPI website.

3.5.6 NPS-HomPPI

NPS-HomPPI is a Non-Partner-Specific Homologous Sequence-Based Protein-Protein Inter-

face Prediction algorithm. NPS-HomPPI is based on the conclusion from statistical analysis of

protein interface conservation on several non-redundant large datesets - Nr6505, Trans135 and

Oblig94 (for details of these datasets see Methods in Chapter 2), i.e., that protein interfaces are

conserved across close sequence homologs.

As illustrated in Figure 3.4, NPS-HomPPI predicts interface residues in a query protein

based on the known interface residues of a selected subset of homologs in a sequence alignment.

Homologs of the query protein sequence are identified by searching the nr_pdb_s2c database

using BLASTP. Note that, in our experiments, in order to allow unbiased evaluation of the

performance of NPS-HomPPI, the query sequence itself and sequences that share a high degree

(�95%) of amino acid sequence identity with, and are from the same species as the query

sequence are deleted from the set of putative homologs.

If at least one homolog in the Safe Zone is found by the BLASTP search, NPS-HomPPI uses

the Safe Zone homolog(s) to infer the interfaces of the query protein. Otherwise, the search is
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Figure 3.4 An Example of Interface Residue Prediction using NPS-HomPPI. The sequence of
the query protein 1byf chain A is BLASTed against nr_pdbaa_s2c database. In
this case, 3 sequences meet the thresholds set by NPS-HomPPI for "close homolog"
in Safe Zone or Twilight Zone defined in Table 3.4 . If there are more than K =
10 homologs met the zone thresholds in Table 3.4, regression equation 2.2.1.5 is
used to determine the nearest K homologs for final prediction. For each position
in the alignment, an amino acid residue in the query sequence is predicted to be
an interface residue if the majority of the amino acid residues in the alignment are
interface residues. Otherwise, it is predicted to be a non-interface residue. Interface
residues are denoted by red 1’s; Non-interface residues are denoted by black 0’s.
Question marks denote residues for which coordinates are missing from PDB files.
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repeated for homologs in the Twilight and Dark Zones. If NPS-HomPPI cannot find homologs

in any of the three zones, it does not provide any predictions. The default zone boundaries

used by NPS-HomPPI (and hence the parameters used in NPS-HomPPI search for homologs

of a query sequence) is based on our interface conservation analysis on the dataset of transient

dimers Trans135 (Table 3.4). The choice of these default parameter thresholds for NPS-HomPPI

is intentionally rather conservative; the thresholds can be relaxed if additional information is

available (e.g., if we know that the query protein is an obligate binding protein). The IC score

of each of the homologs of a query sequence in the alignment returned by BLASTP is predicted

using the regression model for the IC score (see eq. 2.2.1.5) from the BLASTP statistics for the

alignment of each homolog with the query sequence. For a given query sequence, at most K

closest (Safe, Twilight, or Dark Zone homologs, as the case may be, in that order) are selected

from the alignment of the query sequence with its homologs to be used to infer the interface

residues of the query sequence. In our experiments, K, the maximum number of homologs used

in the prediction was set equal to 10. At most K homologs of the query sequence are determined

by ranking the homologs in the alignment in decreasing order of their predicted IC scores and

choosing (at most) K Safe zone homologs (or Twilight zone homologs if no Safe zone homologs

exist or Dark zone homologs if neither Safe nor Twilight zone homologs exist). Once the (at

most) K closest homologs to be used for predicting the interface residues of the query sequence

are chosen, each residue in the query sequence is labelled as an interface or non-interface residue

based on the majority (over the set of at most K closest homologs of the query sequence) of

the labels associated with the corresponding position in the alignment. More specifically, each

of the at most K homologs provides a positive vote for a given position in the query sequence

if the corresponding residue of the homolog is an interface residue; and a negative vote if it is

a non-interface residue. The prediction score of NPS-HomPPI for that position in the query

sequence is simply the number of positive votes divided by the total number of votes. A query

sequence residue with a HomPPI score � 0.5 is predicted to be an interface residue (See Figure

3.4 for an example); otherwise, it is predicted to be a non-interface residue. This procedure can

be seen as an application of the (at most) K nearest neighbor classifier at each residue of the

query sequence.



65

3.5.7 PS-HomPPI

PS-HomPPI predicts the interface residues in a protein chain based on the known interface

residues of its closest homo-interologs. Given a query protein A and its interaction partner

B, PS-HomPPI first identifies the set homo-interologs of A-B using BLASTP to identify the

homologs of A and homologs of B. From the BLASTP results, we identify a set of homo-

interologs that meet sequence similarity thresholds (determined based on the results of our

partner-specific interface conservation analysis, as described in the Results Section). We discard

the whole PDB complex that contains A-B, to ensure an objective assessment of the reliability

of our prediction procedure. For query A-B and its homologous interacting pair A’-B’, we also

discard the interacting protein pair A’-B’ if A and A’ or B and B’ share �95% sequence identity

and belong to the same species.

PS-HomPPI uses homo-interologs in the Safe and Twilight Zones to make predictions. The

zone boundaries were determined using Trans135 and are shown in Table 3.5. The PS-HomPPI

prediction process is similar to that of NPS-HomPPI in that it progressively searches for ho-

mointerologs from higher, then lower, homology zones: i.e., if PS-HomPPI cannot find at least

one homo-interolog in the Safe Zone, it next looks for homo-interologs in the Twilight Zone.

PS-HomPPI predicts whether an amino acid in query sequence A is an interface residue or

not based on the corresponding position in its alignment with (at most) K of the closest homo-

interologs of A-B (based on their predicted IC scores). In our experiments, K was set equal to 10.

Given a query-partner pair A-B, we label each position in the amino acid sequence of protein

A as an interface or non-interface based on whether or not a majority of the corresponding

positions of the homologs of A within the homo-interologs of A-B are interface residues. More

specifically, each of the at most K homo-interologs provides a positive vote for a given position in

the query protein sequence A if the corresponding residue of its homolog A’ in its homo-interolog

is an interface residue; and a negative vote if it is a non-interface residue. The prediction score

of PS-HomPPI for that position in the query sequence is simply the number of positive votes

divided by the total number of votes. A residue in the query protein A with a prediction score

�0.5, is predicted as interface, otherwise, it is predicted as non-interface.
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Table 3.4 Boundaries of Safe, Twilight and Dark Zones used by NPS-HomPPI.

Zones Sequence Similarity Thresholdsa

Safe Zone
log(EV al)  �100

Positive Score � 80%
log(LAL) � 5.2

Twilight Zone 1b
log(EV al)  �50

Positive Score � 65%
log(LAL) � 4

Twilight Zone 2
log(EV al)  1

Positive Score � 60%
log(LAL) � 4

Dark Zone
log(EV al)  1

Positive Score � 0
log(LAL) � 0

aThresholds were chosen based on interface conservation analysis of proteins in Trans135.
bTwilight Zone is divided into two sub-zones: Twilight Zone 1 with stricter thresholds, and Twilight Zone 2

with looser thresholds.

Table 3.5 Boundaries of Safe, Twilight and Dark Zones used by PS-HomPPI.

Zones Sequence Similarity Thresholds

Safe Zone

logEV al  �100
PositiveS � 70%
Frac

AA

0 � 80%
Frac

BB

0 � 80%

Twilight Zone 1

logEV al  �50
PositiveS � 60%
Frac

AA

0 � 60%
Frac

BB

0 � 60%

Twilight Zone 2

logEV al  1
PositiveS � 55%
Frac

AA

0 � 40%
Frac

BB

0 � 40%

Dark Zone

logEV al  1
PositiveS � 0
Frac

AA

0 � 0
Frac

BB

0 � 0
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3.6 Availability

HomPPI family of protein-protein interface predictors: NPS-HomPPI and PS-HomPPI are

available as webservers at http : //homppi.cs.iastate.edu/
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CHAPTER 4. DockRank: Ranking Docked Models Using

Partner-Specific Sequence Homology Based Protein Interface

Predictions

A paper titled "DockRank: Ranking Docked Models Using Partner-Specific Sequence

Homology Based Protein Interface Predictions", to be submitted to PloS Computational

Biology

Li C. Xue, Rafael Jordan, Yasser El-Manzalawy, Drena Dobbs and Vasant Honavar

Abstract Docking programs offer a valuable approach to computational determination of

the 3-dimensional conformation of protein complexes and protein-protein interfaces. However,

selecting near-native conformations from the immense number of possible conformations gen-

erated by docking programs within reasonable time presents a significant challenge in practice.

We introduce DockRank, a novel approach to rank docked conformations based on the degree to

which the interface residues inferred from the docked conformation match the interface residues

predicted by a partner-specific sequence homology based interface predictor PS-HomPPI.

We compare, on a data set of 69 docked cases with 54,000 decoys per case, the ranking of

conformations produced using DockRank’s interface similarity scoring function applied to pre-

dicted interface residues obtained from four protein interface predictors: PS-HomPPI, and Non-

Partner-Specific (NPS) interface predictors NPS-HomPPI, PRISE, and meta-PPISP, with the

rankings produced by two state-of-the-art energy-based scoring functions (ZRank and IRAD).

Our results show that DockRank significantly outperforms these ranking methods. Our results

that NPS interface predictors (homology based and machine learning-based methods) failed

to select near-native conformations that are superior to those selected by DockRank (partner-

specific interface prediction based), highlight the importance of the knowledge of the binding
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partners in using predicted interfaces to rank docked conformations. The application of Dock-

Rank, as a third-party scoring function without access to all the original docked models, for

improving ClusPro results on two benchmark data sets of 32 and 56 test cases shows the viabil-

ity of combining our scoring function with existing docking software. An online implementation

of DockRank is available at http://einstein.cs.iastate.edu/DockRank/.

4.1 Introduction

The 3-D structures of complexes formed by interacting proteins are valuable sources of in-

formation needed to understand the structural basis of interactions and their role in complexes

and pathways that orchestrate key cellular processes. High-throughput methods such as Yeast-

2-Hybrid (Y2H) assays provide a source of information about possible pairwise interactions

between proteins, but not the structures of the corresponding complexes. Because of the ex-

pense and effort associated with X-ray crystallography or NMR experiments to determine 3D

structures of protein complexes, the gap between the number of possible interactions (e.g., de-

termined using Y2H assays) and the number of experimentally determined structures is rapidly

expanding. Hence, there is considerable interest in computational methods for determining

the structures of complexes formed by proteins. When the structures of individual proteins

are known or can be predicted with sufficiently high accuracy, docking methods can be used

to predict the 3D conformation of complexes formed by two or more interacting proteins, to

identify and prioritize drug targets in computational drug design, and to potentially validate

interactions determined using high throughput methods such as Yeast-2-Hybrid (Y2H) assays.

In general, solving the docking problem computationally includes [62, 80, 128, 90]: 1) The

initial sampling of the conformational space stage. At this stage, the proteins to be docked are

rotated and translated with intervals. Usually a vast number of (thousands to tens of thousands)

putative conformations are generated. Less computationally intensive ways of ranking these

models are usually used at this stage, for example, the FFT (Fast Fourier Transformation) for

geometric complementarity; 2) Refinement stage. The structures of the filtered decoys in step 1)

are further refined and re-ranked using a higher resolution and more computational demanding

scoring functions; 3) Cluster stage. Usually at the final stage of a docking procedure, top ranked
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conformations (hundreds) are clustered, and often ranked by the cluster sizes: the cluster with

the most members is ranked highest.

Substantial efforts have been dedicated to the design of scoring (ranking) functions for

docking programs. Scoring functions in the literature can be broadly classified into four types:

1) geometric complementarity-based scoring functions; 2) energy-based scoring functions; 3)

Knowledge-based scoring functions. 4) Hybrid functions that combine the scoring functions of

the first three types [88, 35, 76, 77].

Geometric complementarity based scoring functions represent an early generation of scoring

functions used in docking programs. Vakser and coworkers [75] introduced FFT to calculate the

geometric fit between the receptor and ligand. The fast processing speed of FFT made the full

conformational space search possible. This type of scoring functions were successfully applied on

bound protein-protein docking but could not perform well for unbound protein-protein docking

because of the conformational changes upon binding.

Energy-based scoring functions [133, 110, 59] are designed to approximate the binding free

energy of protein-protein assemblies. They usually consist of the weighted energy terms of the

van der Waals interaction, electrostatic interactions and solvation energies.

Knowledge-based functions can be grouped into three sub-types. a) Knowledge-based weighted

correlations [63, 109]. This type of scoring functions takes into consideration of the comple-

mentarity of chemico-physical properties to overcome the limitations of scoring functions that

rely on geometric complementarity alone. b) Knowledge-based pairwise potentials [95, 85, 82].

Pairwise potentials are derived from observed statistical frequency of amino acid/atom contacts

in databases of solved protein structures. c) Machine-learning based methods: c1) Classifiers for

directly predicting whether a query docked model as near-native or non-native. The classifiers

are trained using protein complexes that are labeled as native or near-native and non-native

conformations [18, 87]. c2) Classifiers that first predict protein interacting residues and then use

predicted interacting residues to rank docked models [64]. First, protein-protein interface pre-

dictors are trained using protein sequences and/or structures with experimentally determined

interface residues. The resulting classifiers are used to predict interface residues of the complex

formed by the interacting proteins. Then the conformations are ranked using the predicted
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interface residues [99, 64]. c3) Consensus scoring methods [19, 15] that combine the output of

several scoring functions to give a final score.

Despite the large number of advanced and sophisticated scoring approaches that are cur-

rently used by docking programs, the goal of selecting near-native conformations from the large

number of candidates is far from being solved [62]. Existing docking scoring functions often fail

to rank near-native conformations higher than the rest of the conformations; and the prohibitive

computational cost of existing high-resolution atom-based and structure-based scoring functions

imposes practical limitations on their use in practice. Thus, selecting near-native conformations

from the large number of poses generated by a docking program within a reasonable computa-

tion time presents a major obstacle for the applications of docking programs. Hence, there is a

need for computationally efficient scoring functions for reliable ranking of docked conformations.

Against this background, we propose DockRank, a novel approach to rank docked conforma-

tions based on the degree to which the interface residues inferred from the docked conformation

match the interface residues predicted by a partner-specific interface predictor, PS-HomPPI.

Given a docking case, i.e., a pair of proteins A and B that are to be docked against each

other, we use PS-HomPPI to predict the interface residues between A and B. We compare

the binary vectors of interface residues between A and B predicted by PS-HomPPI with the

interface residues between A and B in each of the conformations of the complex A-B produced

by the docking program (See Methods for details). The greater the similarity of the interface

of docked conformation with the predicted interface between A and B, the higher the rank of

the corresponding conformation among the docked conformations of A with B. A novel aspect

of DockRank is the partner-specific nature of the interface residue predictions. While a broad

range of computational methods for prediction of protein-protein interfaces have been proposed

in the literature ( reviewed in [153, 51, 125]), barring a few exceptions [138, 33, 8], the vast

majority of such methods focus on predicting the protein-protein interface residues of a query

protein, without taking into account its specific interacting partner(s). To take into consider-

ation the partner-specific nature of protein-protein interactions [100], DockRank makes use of

PS-HomPPI [142], a sequence homology based predictor of interface residues between a given

pair of potentially interacting proteins. PS-HomPPI has been shown to be able to reliably
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predict the interface residues between a pair of interacting proteins whenever a homo-interolog,

i.e., complex structure formed by the respective sequence homologs of the given pair of proteins.

PS-HomPPI has been shown to be effective at predicting interface residues in transient com-

plexes associated with relatively weak and reversible, often highly specific, interactions. This

is especially interesting in light of the widely held belief that although transient interactions

play important roles in cellular function [6, 102], transient interfaces are more difficult to pre-

dict than permanent interfaces [107, 102]. Hence, PS-HomPPI offers an especially attractive

protein-protein interface prediction method for ranking docked conformations, including those

that represent transient interactions.

We compare, on a data set of 69 docking cases (protein complexes) with 54,000 decoys

(docked conformations) per case generated by ZDock 3.0 [67], the ranking of conformations

produced using DockRank with the rankings produced by two state-of-the-art energy-based

scoring functions (ZRank [67, 110] and IRAD [133]). Our results show that DockRank applied to

protein interface residues predicted by PS-HomPPI, a sequence homology based partner-specific

(PS) interface prediction method, significantly outperforms ZRank and IRAD. Also, to assess

the importance of the knowledge of binding partners in using predicted interfaces to rank docked

models, we compare and discuss the ranking results of our scoring function using PS interfaces

predicted by PS-HomPPI and NPS (non-partner-specific) interfaces predicted by three state-of-

the-art NPS interface predictors. Besides, we show that DockRank, when used as a third-party

scoring function to rank the docked models returned by ClusPro, improves upon the the results

of ClusPro obtained using three different ClusPro scoring functions on two benchmark data

sets of 32 and 56 test cases generated by Cluspro 2.0 webserver [34, 35, 77, 76]. We examine

the performance of DockRank on protein complexes with different degrees of conformational

change upon binding; and complexes on which interfaces are predicted with different degrees of

prediction confidence by PS-HomPPI. An online implementation of DockRank is available at

http://einstein.cs.iastate.edu/DockRank/.
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4.2 Results

4.2.1 DockRank Outperforms Energy-based Scoring Functions

We report the comparison of DockRank with two energy-based docked model scoring func-

tions ZRank and IRAD on 69 cases obtained from ZDock3-BM3 decoy set (see Methods for

the description of this decoy set). In this data set, each case has 54,000 decoys generated by

ZDOCK3 program and at least one near-native structure (i.e., a hit). Figure 4.1 summarizes the

distribution of the number of hits for each case. In this experiment, we used the hit definition

by the IRAD 2011 paper [133]: A hit is a docked model with interface C↵ atom Root Mean

Square Deviation I�RMSD  2.5 angstroms. ZRank and IRAD are two energy-based scoring

functions developed by ZDOCK group. ZRANK is a linear combination of atom-based poten-

tials, and it has been proven to be one of top scoring functions in several studies [67, 38, 85].

IRAD is a recent improved version of ZRANK by adding residue-based potentials into ZRANK

scoring functions [133].

Figure 4.2 shows the Success Rate plot for DockRank and other scoring functions on ZDock3-

BM3 decoy set. DockRank consistently has a higher Success Rate than IRAD and ZRank over

top ranks from 1 to 1000. If we limit our comparison to the top 1 ranked models, the Success

Rate for DockRank is 40% while the Success Rate for ZRank and IRAD scoring functions is 9%

and 12%, respectively. Considering the top 10 models of each scoring approach, DockRank has

a 56% Success Rate against 19% and 30% Success Rates for ZRank and IRAD, respectively.

Considering this decoy set is not clustered and has highly redundant conformations, this perfor-

mance of DockRank in top 10 models is very encouraging. And for most cases DockRank (red)

is able to rank a large proportion of total hits generated by ZDock to top 1000 ranks1 (Figure

4.3) .

4.2.2 Partner-specific Interface Prediction Improves Ranking

Given the reliance of PS-HomPPI on the availability of homo-interologs for interface predic-

tion, a natural question that arises is whether the general approach to ranking docking models
1We used such a high number of top ranks (1000) because this decoy set is not clustered and highly redundant.
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Figure 4.1 The distribution of the number of actual hits in each case of ZDock3-BM3 decoy
set. Docked model with I-RMSD  2.5 angstroms is considered a hit. 54,000
docked models are generated by ZDock 3.0 for each case. The 69 cases that have
at least one hit generated by ZDock 3.0 and can be ranked by DockRank using
homo-interologs (homologous interacting proteins) in Safe, Twilight or Dark Zone
are shown here.

based on the similarity of predicted interface residues with the interface residues of the cor-

responding docked models is applicable in cases where homo-interologs are not available. To

address this question, we further investigated how well the interface predictions from the state-

of-the-art machine learning based protein-protein interface predictors rank the docked models

in combination with our scoring function. We compared our proposed scoring function using

PS-HomPPI predictions, DockRank, with variants of our proposed scoring function using three

state-of-the-art protein-protein interface residue predictors: i) NPS-HomPPI [142], a sequence

homology based method for predicting protein-protein interfaces ; ii) PRISE [74], a structure
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homology based method for predicting protein-protein interfaces; iii) meta-PPISP [112], consen-

sus method that takes the scores of three other structure-based predictors cons-PPISP [156, 27],

PINUP [83], and Promate [99] as input. The three predictors represent different approaches

for predicting protein-protein interface residues. However, a common feature among the three

predictors is that information of the interacting partner protein is not used for predicting the

interfaces. Our results show that, with the same scoring function, the ranking of docked models

using PS-HomPPI predicted PS-interfaces is significantly more reliable than scores based on

the predicted NPS-interfaces by NPS-HomPPI, meta-PPISP and PRISE in terms of Success

Rate and Hit Rate (Figure 4.2 and Figure 4.3). We conclude that incorporating knowledge of

binding partners into interface predictors dramatically improves the rankings of docked models.

Clearly the performance of our proposed scoring function depends on the reliability of the

predicted partner-specific protein-protein interfaces. In order to estimate an upper-limit for the

performance of our scoring function, we tested the ranking performance of our scoring function

by using the actual partner-specific interfaces calculated from the bound complexes (referred as

PS-Actual interfaces) to rule out the effect of the uncertainty of interface predictions. Figure

4.2 shows that PS-Actual interface based ranking can identify at least one hit in top 10 models

for about 90% cases while DockRank identifies at least one hit in top 10 models for almost 60%

cases. Figure 4.3 shows that PS-Actual interface based ranking (green stem plot) is able to rank

>50% total hits generated by ZDock to top 1000 for most cases. These results show that our

scoring function indeed can reliably rank near native conformations to top when it is provided

with reliable PS interface information, which can come from various sources, such as predictions

from a PS interface predictor or experimental data. Furthermore, the gap between PS-Actual

interface based ranking (green dash line) and PS-HomPPI based ranking (DockRank, red line)

suggest that there is still more room for improving our ranking performance using more reliable

partner-specific protein-protein interface prediction methods.

4.2.3 DockRank Has Lower I-RMSDs of Top Models

Besides using the Success Rate and Hit Rate to evaluate and compare different scoring

schemes on ZDock3-BM3 decoy set, we also studied the I-RMSDs of top ranked models selected



76

by these scoring schemes [43]. Specifically, we treated each of the 69 docked cases as a data set;

The performance of each scoring function over each case is reported as the I-RMSD of the top

scored model. For each case, the different scoring functions are ranked based on their observed

I-RMSD (i.e., lower ranks corresponds to lower I-RMSDs). Our analysis shows that the null

hypothesis that the top 1 models selected by different scoring functions have the same means

of I-RMSDs can be rejected with high confidence (p-value < 0.0001). We further applied the

Nemenyi test to determine whether the means of I-RMSDs of top 1 models selected by any given

pair of ranking schemes are significantly different. The critical difference determined by Nemenyi

test at significance level 0.05 is 1.08. Hence, the difference between any pair of docking scoring

methods is statistically significant provided the difference between their corresponding average

ranks is more than 1.08. Figure 4.4 summarizes the results of our ad hoc test which indicates

that there is no significant difference between our scoring function using real PS-interfaces and

using PS-HomPPI predicted interfaces. And the performance of these two scoring functions

is significantly better than the performance of the other scoring functions. Furthermore, no

statistically significant difference is observed among the variants of our scoring function using

three NPS predictors NPS-HomPPI, PRISE, meta-PPISP and the two energy-based scoring

functions, IRAD and ZRank.

4.2.4 DockRank Improves ClusPro Rankings

Existing docking programs have their own embedded scoring functions. Here, we evaluated

whether and to what degree DockRank, as a third party scoring function, can improve the

original rankings of pre-filtered docked conformations output by a docking program, ClusPro

2.0 [34, 35, 77, 76]. Our choice of ClusPro is motivated by its superior performance reported

in CAPRI competitions [77]. Briefly, ClusPro is built on top of a FFT-based rigid docking

program PIPER. PIPER rotates and translates the ligand with about 109positions relative

to the receptor. PIPER’s scoring function, which contains terms of shape complementarity,

electrostatic and pairwise potentials, is applied to these candidate conformations, and returns

top 1000 conformations to Cluspro’s clustering algorithm. Cluspro ranks the conformations

(models) by cluster size.
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DockRank improves the Success Rate and the average Hit Rate of rankings of ClusPro ranking

schemes. We applied ClusPro to the 119 cases in Docking Benchmark 3.0. For 47 out of the 119

cases, ClusPro 2.0 generated at least one hit (e.g., a model with L�RMSD  10 angstroms).

Among these 47 cases, PS-HomPPI returns predictions for 32 cases. Thus, our experiment is

limited to only these 32 cases, referred to as ClusPro2-BM3 decoy set. Figure 4.5 summarizes

the distribution of the number of hits for each case.

For each case, ClusPro returned about 30 decoys ranked. We re-ranked ClusPro output

using DockRank and compared our new ranking with the original ClusPro rankings provided

using three different scoring schemes: ClusPro, Lowest Energy, and Center Energy. Figure 4.6

compares the Success Rates of our scoring function based on actual partner-specific interfaces

(PS-Actual Interface curve, green dash with circles) and PS-HomPPI predictions (DockRank,

red curve) with three ClusPro supported scoring schemes: ClusPro, Lowest Energy, and Center

Energy. For each scoring scheme, we plot the Success Rate against the number of top models

considered. We had to limit the number of top models to 9 models, since ClusPro returned only 9

models for one of the docked cases, 1PPE. Figure 4.6 shows that the DockRank curve dominates

the three curves representing ClusPro scoring schemes. In addition, DockRank improves the

average Hit Rate in top 1 models selected by ClusPro scoring functions from 0.21(ClusPro Rank-

ing), 0.28 (ClusPro Lowest Energy Ranking), and 0.14 (ClusPro Center Energy Ranking) to

0.40 (Figure 4.7). It worth noting that this result should not interpreted as a direct comparison

between DockRank and ClusPro because ClusPro scoring functions have access to 109decoys,

generated by PIPER [76], while DockRank has access only to a very small representative set (~

30 decoys) of these 109 decoys.

DockRank improves the L-RMSDs of top models filtered by ClusPro scoring schemes. We

applied the Friedman test to determine whether top 1 models selected by DockRank and other

ranking schemes have the same mean L-RMSDs. Our analysis shows that the null hypothesis

that the mean L-RMSDs of top 1 models selected by different scoring functions are the same

is rejected with high confidence (p-value < 1.8667e-005). We also applied the Nemenyi test to

determine whether the differences of L-RMSDs of top 1 models selected by any given pair of

ranking schemes are statistically significant. The critical difference determined by Nemenyi test
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at significance level of 0.05 is 1.13, which determines whether the difference between the mean

L-RMSDs of top 1 models selected by two scoring schemes are statistically significant or not.

The results (Figure 4.8) suggest at significance level of 0.05, the L-RMSDs of top models selected

by DockRank are significantly smaller than those selected by ClusPro Center Energy. Although

DockRank has a lower average L-RMSD of top 1 models, it is not significantly different from

those of ClusPro Rank, ClusPro Lowest Energy Rank. This result indicates that to achieve a

significant lower L-RMSD DockRank should be directly applied on the original large number of

docked models instead of on the filtered docked models. On the other hand, this “not significant”

result may be due to the limited power of the non-parametric test that is undermined by the

small number of cases (32) and the small number of docked models (~ 9-25) that DockRank

has access to.

Improving the ranking of a set of small number (~ 9-25) of clustered and pre-filtered docked

models by a docking program imposes a big challenge on the third party scoring function, in

that the power of the third party ranking program is limited by the ability of the embedded

scoring function of the docking program to select near-native conformations in the first place.

ClusPro generated at least one near-native model with L-RMSD  10 angstroms for only a

small proportion of testing cases (47 out of 119). A natural question is when these is no hit

returned by ClusPro, how well can a third party scoring function still rank reasonably good

models to the top ranks? Also, ClusPro decoy set are the representative models from clustered

docked models with similar 3D conformations. When a case has no hit models (L-RMSD  10

angstroms ) returned by ClusPro, if L-RMSD of a representative model is small enough, there

might be some hits in the cluster where it is chosen from. Considering that ligands in docked

models with L-RMSD  20 angstroms usually spatially overlap with the native ligands, we

therefore extend our study to any cases that have at least one docked model with the L-RMSD

 20 angstroms in order to study DockRank’s ability to select potential good clusters which

might contain actual hits but are not selected out by ClusPro in the first place.

Out of the 119 cases in Docking Benchmark 3.0, there are 76 cases that have at least one

docked model with L-RMSD  20 angstroms in the decoy set generated using ClusPro programs.

Out of these 76 cases, PS-HomPPI returned interface predictions for only 56 cases. We focus on
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these 56 cases in the following experiment. For each case, we calculate the average of weighted

L-RMSD of top models selected by a scoring function using:

ave_L�RMSD
j

=
1

N
j

NjX

i=1

weighted_L�RMSD
i

weighted_L�RMSD
i

= L�RMSD
i

⇥Rank
i

= L�RMSD
i

⇥ i

where ave_L � RMSD
j

is the average of weighted L-RMSD of top models for case j, N
j

is the total number of models with L-RMSD  20 angstroms for case j, L � RMSD
i

is the

L-RMSD of the ith ranked model by a scoring function, Rank
i

is the rank of ith model and it

is equal to i. In this way, L-RMSD of a model is weighted by its rank, because we are more

interested in top ranked models than the models ranked at the tail.

Figure 4.9 shows the difference between the average of weighted L-RMSDs of top models be-

tween DockRank and ClusPro Rank on each case. Positive numbers are cases where DockRank

has a lower average L-RMSD of top models than ClusPro Rank. For 40 out of 56 (71.4%) cases,

top models selected by DockRank have lower weighted L-RMSD than ClusPro. A pair-wise

Wilcoxon signed rank test shows that top models selected by DockRank have significantly lower

weighted L-RMSD than those selected by ClusPro (p-value = 7.5475e-004).

4.2.4.1 Error analysis on case 1RLB

From Figure 4.9, we observed that for case number 37 (PDB ID 1RLB), the top models se-

lected by ClusPro have a much lower average L-RMSD than those by DockRank. By examining

the top 1 models ranked by ClusPro (left panel) and DockRank (right panel) scoring functions

(See Figure 4.10), we can see that the docked ligand position of the top 1 model selected by

DockRank (white ribbon in the right panel) is totally “wrong”, and it is on the opposite side

of bound (correct) ligand position (pink mesh) relative to the receptor (red cartoon). However,

the interface predictions of PS-HomPPI used by DockRank are Safe Zone interface predictions,

which means high interface prediction confidence, for all receptor-ligand protein chain pairs of

1RLB case (for Zone boundaries of PS-HomPPI see [142] ). And we noticed that the structure
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of the receptor (red cartoon in Figure 4.10) is symmetric. So the natural question is whether

it is possible that the ligand might be able to bind on both sides of the symmetric receptor

instead of on only one side?

We looked into the PDB file of 1RLB downloaded from PDB(the Protein Data Bank) [13].

We realized that in fact 1RLB bound complex has two identical ligands (chain E and chain

F), which bind on both sides of the receptor. It turns out that the authors of BM3 (Docking

Benchmark 3.0) only included chain E into their benchmark dataset as bound ligand and ex-

cluded chain F, and PS-HomPPI is able to reliably predict the interface sites on both sides of

the receptor as shown in Figure 4.11. Figure 4.11 shows the two bound ligands and the top 1

selected model by DockRank, from which we can see that the ligand of the top 1 model selected

by DockRank is right beside the other bound ligand (chain F).

We recalculated the L-RMSD for all the docked models of case 1RLB by regarding either

of the two identical bound ligands as native ligand positions. The smaller value of L-RMSDs

between a docked ligand and two bound ligands is used as final L-RMSD for this model. After

the recalculation, we found that two models have L-RMSD  10 angstroms (with DockRank’s

rank of 3 and 4 compared with ClusPro’s rank of 3 and 13), and four models have L-RMSD

 20 angstroms (with DockRank’s rank of 3 , 4 , 9, 11, compared with ClusPro’s rank of 3, 7,

11, 13).

Figure 4.12 shows the top 5 models selected by ClusPro and DockRank for case 1RLB.

DockRank improves the rankings of ClusPro by selecting models with ligands binding on either

side of the receptor.

To facilitate comparisons with future developed scoring functions, we made the ClusPro de-

coy set available to the community at http://einstein.cs.iastate.edu/DockRank/supplementaryData.html,

including Docked models generated using four different ClusPro energy functions, L-RMSD for

each docked model, DockRank scores, ClusPro scores and the recalculated L-RMSDs of models

of 1RLB after including both identical bound ligand chains.
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4.3 Discussion

Selecting near-native conformations from thousands of decoys generated by a docking pro-

gram remains a challenging problem in computational molecular docking [62]. In this study,

we presented DockRank - a novel predicted interface based scoring method for protein-protein

docking. The proposed scoring function relies on a measure of similarity between interfaces of

docked models and predicted interfaces by a PS interface predictor PS-HomPPI.

Comparisons of DockRank with two state-of-the-art energy based docking scoring functions,

ZRank and IRAD, demonstrated an impressive superior performance of DockRank over ZRank

and IRAD on a decoy set of 69 cases with 54,000 decoys per case. These results suggest the

viability of predicted interface based scoring functions as an alternative to complicated and

computationally expensive energy based scoring functions. The observation that our scoring

function using PS-HomPPI significantly outperforms three variants of our scoring functions

using three state-of-the-art non-partner specific protein-protein interface predictors underscores

the importance of partner-specific protein-protein interface prediction methods for providing

reliable interface predictions in general and for providing reliable protein-protein docking scoring

functions.

The reason why NPS interface predictors do not perform as well as PS interface predictors in

selecting near-native conformations to top ranks for a large portion of the test complexes in our

study might be as follows. The complexes in our study that are used to generate the decoys are

transient binding proteins, the interfaces of which are mostly highly partner-specific. Suppose

that we have a perfect NPS-interface predictor that can correctly predict the union of all the

actual interface residues of one query protein with all its possible interacting partners. Many

proteins tend to use different residues to interact with different partners, which is especially

true for transient bindings (see Xue et al. [142] for the comparison of obligate and transient

interface conservations, and the comparison of PS-interface and NPS-interface conservations

of transient interactions). Therefore, the prediction of the perfect NPS-predictor not only

includes the actual interface between receptor A and ligand B that we are interested in, but

also other interface residues that may be far away from the interface between A and B. And
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these “false positive interface residues” may falsely give top ranks to the docked models that have

docked interfaces near these “false positive interacting areas”. Therefore, to reliably select near

native conformations for transient interactions using predicted interfaces, a reliable PS-interface

predictor is needed.

DockRank is insensitive to conformational changes upon binding. Large conformational

changes upon binding impose big challenges onto the predicted interface based scoring schemes,

in that it is challenging for docking programs to generate detectable numbers of near native con-

formations, and it is challenging to make reliable interface predictions for the interface predictor

used by the scoring function. Therefore, it is of great interest to evaluate the performance of scor-

ing functions on complexes with different conformational change levels. Although BM3 dataset

classified each complex into three conformational change upon binding groups, to systemati-

cally study the differences of ranking performances with respect to conformational changes upon

binding is difficult in practice because of the limited capability of docking programs to generated

at least one hit for complexes with large conformational changes. Therefore, we studied the

interface prediction performance of our underlying interface predictor PS-HomPPI with respect

to different conformational change levels to indirectly study the performance of DockRank in

ranking docked models of cases with different conformational changes. For each interface pre-

diction, PS-HomPPI also provides an interface prediction confidence zone (Safe/Twilight/Dark

Zone) where the homo-interologs used for interface inferences lie. The effects of conforma-

tional changes and the prediction confidence zones on the performance of PS-HomPPI may be

confounded. So we summarized the interface prediction performance of PS-HomPPI into 9 sub-

groups of three levels of conformational changes and three prediction confidence zones (Table

4.1). From Table 4.1, we can see that the performance of PS-HomPPI is insensitive to confor-

mational changes upon binding and it is clearly correlated with the prediction confidence zones:

the higher confidence the more reliable the interface predictions are. Hence, one can expect

the performance of DockRank in ranking docked models is insensitive to the conformational

changes, because both the interface prediction of PS-HomPPI and the calculation of ranking

scores are insensitive to the conformational changes.

Since DockRank is insensitive to conformational changes (discussed above), we are able to
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investigate the performance of DockRank on different confidence zones independent of the con-

formational change factor. There are 66 cases that have only Safe Zone interface predictions,

of which 53 cases have at least one hit. There are 16 cases that have only Twilight interface

predictions, of which 12 cases have at least one hit. There are 3 cases that have only Dark

interface predictions, of which 2 cases have at least one hit. When a case has more than two

protein chains (hence more than one pair of query proteins), it may have the predicted interfaces

by PS-HomPPI from different confidence zones. When a case has different confidence zones,

it is not further analyzed. We studied the Success Rates and Hit Rates of DockRank on cases

with only Safe, Twilight, and Dark Zone interface predictions, respectively. As we expected,

DockRank performs best with Safe Zone interface predictions relative to other confidence zones.

In Twilight Zone, the Success Rate and average Hit Rate of DockRank declines, but still out-

performs other scoring functions that we compared with. In Dark Zone (2 cases), DockRank is

able to rank a hit at the rank of 100 out of 54,000 models for one case, but fails to find any hits

for the other case in top 1000 models. The average Hit Rate of top 1000 models of DockRank

(0.01) in Dark Zone is lower than IRAD (0.09) and ZRank (0.07). See Figure 4.13 for the

Success Rate plots and Table 4.2 for the average Hit Rates of top 1000 models of DockRank

and other scoring functions in different confidence zones.

Different weights can be assigned to predicted interfaces with different prediction confidences

when calculating the scores for each docked model. For a docked model with more than two

protein chains, it is possible that the interface predictions for these proteins are from different

interface prediction confidence zones. It is reasonable to set different weights for interface

predictions from different prediction confidence zones. In our study here, we used weights 1, 1,

and 0.001 for the Safe, Twilight, and Dark Zone interface predictions, respectively. Our web

server allows the users to set different weights for interface predictions from PS-HomPPI when

ranking docked models: higher weight for Safe Zone predicted interfaces and lower weight for

Dark Zone predicted interfaces.

Like any homology based method, an important limitation of our scoring method DockRank

is that the current implementation of DockRank using PS-HomPPI might fail to score some

cases when homologs for inferring partner-specific interfaces are not available. For example,
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Table 4.2 Average Hit Rates in top 1000 models of different scoring functions on ZDock3-BM3
decoy set in different interface prediction confidence zones. Cases with more than one
receptor-ligand chain pairs may have predicted interface from different confidence
zones. Cases with solo confidence zones are studied here. 66 cases that have only
Safe Zone interface predictions, of which 53 cases have at least one hit. 16 cases
have only Twilight interface predictions, of which 12 cases have at least one hit. 3
cases have only Dark interface predictions, of which 2 cases have at least one hit.
DockRank has the most reliable performance in terms of Hit Rates for cases with
interface prediction confidence in Safe Zone. The average Hit Rate of DockRank
Cases with Twilight Zone confidence declined but still outperformed other scoring
functions.

Zones Num of
Cases

PS-Act
Int

DockRank NPS-
HomPPI

PRISE Meta-
PPISP

IRAD ZRank

Safe 53 0.85 0.72 0.32 0.15 0.08 0.15 0.12
Twilight 12 0.84 0.56 0.25 0.12 0.15 0.15 0.1

Dark 2 0.76 0.01 0.49 0.04 0.00 0.09 0.07

PS-HomPPI returns interface predictions for 87 out 119 cases comprising Docking Benchmark

3.0 (coverage is 73.1%). Hence, current implementation of DockRank using PS-HomPPI might

fail to score some cases when homologs for inferring partner-specific interfaces are not available.

We expect that the coverage of DockRank will increase as more complexes are deposited in

PDB. Also, to improve the coverage of DockRank, one might use a hybrid interface prediction

method that combines the interface predictor PS-HomPPI with machine learning based PS-

interface prediction methods that do not require the availability of putative homo-interologs

with experimentally determined interfaces. Our previous and current study shows that taking

into account the information of binding partner is very important for reliably predicting the

interfaces of transient binding cases [142] and in ranking docked models of such cases (Figures

4.2 and 4.3). The development of machine learning based protein-protein interface predictors

that exploit the information of both the query protein and its binding partner is urgently needed.

Lastly, PS-HomPPI interface prediction can be used as constraints for docking. Because of

the high computational cost of exploring the large conformational space of complexes formed

by several protein chains, there has been increasing interest in utilizing knowledge of the actual

or predicted interface residues between a pair of proteins to constrain the exploration of docked
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configurations to those that are consistent with the predicted interfaces (thus improving the

computational efficiency of docking and the accuracy of docking [39, 40, 44, 38, 80]). Our

analysis shows that our interface predictor PS-HomPPI can reliably identify the interfaces

between receptors and ligands when the homo-interologs of the receptor-ligand protein pair

can be reliably identified (Table 4.1). Also, another advantage of the interface predictions of

PS-HomPPI is that it is not affected by the conformational changes upon binding (as shown in

Table 4.1), because the input of PS-HomPPI is protein sequences. Therefore, one may expect

that using the predicted interfaces from PS-HomPPI as constraints to the docking process might

help docking procedures to generate hits for complexes even with large conformational changes

upon binding.

4.4 Materials and Methods

4.4.1 Decoy sets

In this study, for different purposes we used two decoys sets : ZDock3-BM3 [66] and

ClusPro2-BM3. ZDock3-BM3 decoys are used to compare DockRank with other scoring func-

tions, and ClusPro2-BM3 decoys are used to evaluate whether and how well DockRank can

improve the pre-filtered docked models. These two decoy sets represent different aspects of two

different state-of-the-art docking programs. ZDock3-BM3 decoy set faithfully reflects the initial

population of decoys generated by ZDock 3.0 [67] before clustering. ClusPro2-BM3 decoys are

representative decoys of top ~30 clustered decoys generated by ClusPro 2.0 [34, 35, 77], which

represent the common clustered outputs of a docking program.

1) ZDock3-BM3 decoy set

Docking Benchmark 3.0 (BM3) consists of a set of non-redundant transient complexes (3.25

Å or better resolution, determined using X-ray crystallography) from three biochemical cat-

egories: enzyme-inhibitor, antibody-antigen, and “others”. This data set includes complexes

that are categorized into three difficulty groups for benchmarking docking algorithms: Rigid-

body (88 complexes), Medium (19), and Difficult (17), based on the conformational change
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upon binding. Obligate complexes are filtered out manually. BM3 originally had 124 cases.

2VIS (rigid-body), 1K4C (rigid-body), 1FC2 (rigid-body), 1N8o (rigid-body) were deleted be-

cause the bound complexes and the corresponding unbound complexes have different number of

chains. 1K74 (rigid-body) was deleted because the sequence of chain D in the bound complex is

different from the corresponding unbound chain 1ZGY_B. There are finally 119 docking com-

plexes: Rigid-body (83 complexes), Medium (19), and Difficult (17). A set of 54,000 decoys for

each case was generated using ZDock 3.0 . Despite the large number of generated decoys, there

are only 97 cases that have at least one near-native structure (e.g., a decoy with interface C↵

atom Root Mean Square Deviation I � RMSD  2.5 angstroms). Out of these 97 cases, our

homology based protein-protein interface predictor, PS-HomPPI, returned interface predictions

for only 69 cases. Therefore, our final decoy set consists of decoys generated for these 69 cases.

2) ClusPro-BM3 decoy sets

This decoy set was also generated from the 119 cases in BM3 using ClusPro 2.0 program. For

each case ClusPro returned 9-25 decoys. ClusPro-BM3_32 decoy set of 32 cases were generated

using the following selection criteria: i) each case should have at least one hit (i.e., a decoy with

L-RMSD  10 angstroms ); ii) PS-HomPPI interface predictions are available for the proteins

in that complex. Another decoy set of 56 cases, ClusPro-BM3_56 was generated by relaxing

the definition of a hit to include decoys  20 angstroms .

4.4.2 PS-HomPPI (Partner-Specific Homology based Protein-Protein Interface

predictor)

DockRank uses the predicted interfaces by PS-HomPPI to rank docked models. PS-HomPPI

is a sequence homology based method for partner-specific (PS) protein-protein interface residue

prediction [142, 144]. PS-HomPPI uses the experimentally determined interfaces of homo-

interologs (homologous interacting proteins) to infer those of a query protein pair. PS-HomPPI

is described in details in [142], and we briefly summarize it here.

PS-HomPPI consists of two major components: PS-interface conservation and PS-interface

prediction.
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PS-interface conservation

The prediction of PS-HomPPI is based on our PS-interface conservation analysis on a large

non-redundant transient interacting proteins dataset Trans135 (a non-redundant transient bind-

ing dataset taken from [94]), the interfaces of which are experimentally determined. For a query,

i.e., a protein A and its interaction partner B in Trans135, we identify their homo-interologs (ho-

mologous interacting proteins) using BLASTP [9] to identify the homologs of A and homologs

of B in the PDB with E�V alue  10 and PositiveS  100. Because the interfaces of both the

query protein pair and of their homo-interologs are known, we can calculate IC � score (Inter-

face Conservation Score) for each query - homo-interolog pair. Each query - homo-interolog pair

can be represented as a 10⇥ 1 vector with 9 sequence alignment measures and one IC � score.

We explored the functional relation between IC � score and 9 sequence alignment measures

in the first two PCs (Principal Components) space. As we can see from the PCA biplot in

Figure 4.14, the degree of PS-interface conservation is correlated with the 9 sequence alignment

measures (blue lines with red circles on the tip). Based on the color trend of IC � score, we

can divide the conservation space into Safe, Twilight and Dark Zones, hence we established the

alignment quality criteria that must be met for a certain protein-protein interface prediction

confidence.

PS-interface prediction

The prediction of PS-HomPPI is based on the alignment quality criteria established in PS-

interface conservation analysis. Figure 4.14 illustrates the prediction process of PS-HomPPI.

Given a query protein A and its interaction partner B, PS-HomPPI first identifies the set of

homo-interologs (homologous interacting protein pairs) of A-B using BLASTP to identify the

homologs A’ of A and homologs B’ of B in the PDB. Based on the alignment quality between

the query A-B and a homo-interolog A’-B’, we can know which zone this homo-interolog lies.

PS-HomPPI ranks the homo-interologs based on their sequence similarity to the query protein

pair. PS-HomPPI uses K = 10 (or fewer if 10 homo-interologs meeting the similarity thresholds

are not available) nearest homo-interologs to infer the interfaces of the query protein pair. PS-
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HomPPI predicts interface residues in a protein chain based on the known interface residues

of its closest homo-interologs. Specifically, a residue in query sequence A is predicted to be

an interface residue with respect to an interaction partner B, if a majority of the residues in

the corresponding position in its alignment with K of the closest homo-interologs of A-B are

interface residues. If at least one homo-interolog in the Safe Zone is found by the BLASTP

search, PS-HomPPI uses the Safe Zone homo-interolog(s) to infer the interfaces of the query

protein. Otherwise, the search is repeated for homo-interologs in the Twilight and Dark Zones.

The zone area of homo-interologs used in predictions provides the prediction confidence level.

To objectively evaluate the performance of PS-HomPPI in ranking docked models, highly

similar homo-interologs were removed. Specifically, for query A-B and its homologous interact-

ing pair A’-B’, we also discard the interacting protein pair A’-B’ if A and A’ or B and B’ share

� 95% sequence identity and belong to the same species. Each case in the decoy sets have

bound and unbound proteins. Unbound proteins were used by docking programs to generated

docked models and their sequences were used by PS-HomPPI to predict interfaces. The bound

complexes were used to evaluate the ranking schemes of docked models. The bound complex

of each case (although most bound complexes are probably removed in the first filter of highly

similar homologs) was also explicitly deleted from the homo-interolog list, and was not used in

later prediction.

The default parameters of PS-HomPPI were used in this study. For detailed parameter

settings please refer to Xue et al. 2011 [142].

4.4.3 Databases Used by PS-HomPPI

Four databases are used by PS-HomPPI to make interface predictions.

ProtInDB [2] (version Aug 2011) and S2C DB [3](version Sep 23rd, 2011): Used by PS-

HomPPI to calculate the interface residues of homo-interologs. ProtInDB is a protein-protein

interface residues database. It only contains the protein complexes with at least one pair of

interacting chains in PDB. ProtInDB web server is at http://einstein.cs.iastate.edu/protInDb/.

S2C DB is used to map the calculated interface residues based on ProtInDB to the whole protein

sequences.
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BLAST nr_pdbaa_s2c: For BLASTP 2.2.25+ searching for close sequence homologs. It

is built based on ProtInDB in Aug 2011 and S2C DB on Sep 23rd 2011. Only protein chains

existing in ProtInDB are included into nr_pdbaa_s2c. We built a non-redundant database for

BLAST queries from the S2C fasta formatted database. To generate the non-redundant BLAST

database, we grouped proteins with identical sequences into one entry. Now nr_pdbaa_s2c

contains 31,527 sequences and 7,854,391 total letters.

SIFTS taxonomy file (version Sep 23rd, 2011): Used to determine the species of a protein

chain in a PDB entry when we remove highly similar homologs and homo-interologs. Some

protein chains are missing from SIFTS taxonomy file. If a homolog is missing from SIFTS

taxonomy file, we assume it is from the same species as the query protein to keep a stringent

criteria of highly similar homologs.

Interface Definition

Interface residues are defined as residues with at least one atom that is within a distance of

5 angstroms from any of the atoms of residues in the interaction partner chain.

4.4.4 DockRank: Our Scoring Function for Ranking Docked Conformations

Given a pair of proteins A and B that are to be docked against each other by a docking

program, we use PS-HomPPI to predict the interface residues between A and B. We represent

predicted/docked interfaces as binary vectors with 1s meaning interface residues and 0s non-

interface residues. We then compare the binary vectors of interface residues between A and B

predicted by PS-HomPPI with the interface residues between A and B in each of the confor-

mations of the complex A-B produced by the docking program. The docked conformation with

the greatest similarity of interface vectors with the predicted interface residues is assigned the

top rank.

Many similarity measures for binary vectors have been proposed (See [151] for a review).

Among these, only Russell-Rao, SoKal-Michener and Rogers-Tanmoto(-a) measures are defined

in the case when both sequences consist of all 0 elements (which is the case when there are

no interface residues between the corresponding protein chains and both PS-HomPPI and the
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docking model correctly predict no interface residues). Because the numbers of interface and

non-interface residues are highly unbalanced, we used weighted SoKal-Michener metric to mea-

sure the similarity between the interface and non-interface residues in a protein chain A (with

chain B) encoded in the form of binary sequences ~v
A

and ~v
B

based on PS-HomPPI predictions

and the docked conformation, respectively,

S( ~v
A

, ~v
B

) =
S11 + �S00

N

where S11 and S00 are the numbers of positions where the two sequences match with respect

to interface residues and non-interface residues, respectively, and � is a weighting factor, 0 <

� < 1 , that is used to balance the number of matching interface residues against the number

of matching non-interface residues.

The weighting factor � is defined as a PS-interface residue ratio. For example, for docking a

protein consisting of a single ligand chain A with a receptor protein consisting of chains B and

C,

� =
#int A|A : B

length(A)
+

#int A|A : C

length(A)
+

#int B|B : A

length(B)
+

#int C|C : A

length(C)

where “#int A|A : B” denotes the number of interface residues of protein chain A with

respect to its binding partner B.

In this study, we set � = 0.08, which is calculated using a set of transient interaction proteins

with experimentally determined interfaces.

Only the interface residues between the receptor and the ligand are used to rank docked

models. When predicted interface vector is a zero vector, it is NOT used in ranking docked

models. When actual interface vector is a zero vector, it is USED in ranking docked models.

For each docked conformation we calculate one score using our scoring function. When a

protein complex consists of multiple chains, multiple interface similarities were calculated, and

they were weighted based on the prediction confidence zones of PS-HomPPI (The weight of

the interface similarity is 1 if the predicted interface is from Safe Zone of PS-HomPPI, 1 for

Twilight Zone, and 0.001 for Dark Zone), and averaged by pairing each chain of the receptor
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with each chain of the ligand.

4.4.5 Evaluation of Scoring Functions

We used Root Mean Square Deviations (RMSDs) to measure the difference of structures

between each decoy and the corresponding bound complex (target complex): L-RMSD (Ligand-

RMSD) is the backbone RMSD between the ligand in the docked decoy and the bound ligand

after superimposing the receptor of the decoy and that of bound complex; I-RMSD (Interface-

RMSD) is the backbone RMSD calculated by superimposing the backbone of the docked inter-

face and the bound interface.

We also used Success Rate and Hit Rate to evaluate different ranking schemes. Success Rate

is defined as the percentage of cases that have at least one hit (near-native conformation) in

top n ranks. Hit Rate is defined as the percentage of hits that are detected in the top n ranks.

Hit Rate measures the enrichment of hits in top ranked models.

Upper bounds of Success Rate and Hit Rate: We used actual PS-interfaces to rank the

decoys to obtain the upper bounds of Success Rate and Hit Rate.

Lower bounds of Success Rate and Hit Rate: The number of hits X in the top K random

picks from total N generated decoys with total M hits follows Hypergeometric distributions:

X ⇠ HG(N,M,K). We calculated the expectations and variances of the Success Rate and Hit

Rate of a random pick as the lower bound of scoring functions (see Appendix 1 for details).
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Figure 4.2 The Success Rates of DockRank and other scoring functions on ZDock3-BM3 decoy
set. The Success Rates of DockRank (red solid line) are compared with those of
two energy-based scoring functions: IRAD (black) and ZRank (yellow), and with
three other rankings of docked models by combining our scoring fucntion with the
predicted NPS-interface from: NPS-HomPPI (purple), PRISE (light green solid),
and meta-PPISP (blue). NPS-HomPPI, PRISE and meta-PPISP are NPS-interface
predictors, which do not consider the information of the query protein’s binding
partner when predicting interface residues. DockRank consistently has significantly
higher Success Rates than IRAD, ZRank, NPS-HomPPI, PRISE, meta-PPISP. The
Success Rates of the ranking of docked models by PS-actual interface residues (dark
green dash line) combined with our scoring function and the expectations of the
Success Rates of a random pick (dash red line) are plotted to defined the upper
and lower bound. Studied here are 69 out of 97 cases that have at least one hit
(I-RMSD  2.5 angstroms) and can be ranked by DockRank using homo-interologs
in Safe, Twilight and Dark Zone.
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Figure 4.3 The Hit Rates of DockRank and other scoring functions on ZDock3-BM3 decoy
set. The hit rates of top 1000 ranked models selected by DockRank (red) are
compared with those of two energy-based scoring functions: IRAD (black) and
ZRank (yellow), and with three other rankings of docked models by combining our
scoring function with the predicted NPS-interface from: NPS-HomPPI (purple),
PRISE (light green solid), and meta-PPISP (brown). NPS-HomPPI, PRISE and
meta-PPISP are NPS-interface predictors, which do not consider the information of
the query protein’s binding partner when predicting interface residues. DockRank
consistently has higher Hit Rates than other scoring functions. The Hit Rates of
the ranking of docked models by PS-actual interface residues combined with our
scoring function (dark green stem dash line) and the expectations of Hit Rates of
a random pick (dash red stem dash line) are plotted to define the upper and lower
bound. Studied here are 69 out of 97 cases that have at least one hit (I-RMSD
 2.5 angstroms) and can be ranked by DockRank using homo-interologs in Safe,
Twilight and Dark Zone.
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Figure 4.4 Pair-wise comparisons of the mean of I-RMSDs of top 1 models selected by different
docking scoring methods on ZDock3-BM3 decoy set using the Nemenyi test. Meth-
ods that are not significantly different (at significance level ) are grouped together
(via connecting lines). The average "rank" of each method over docking cases is
shown in the table (and also on the x-axis of the plot). The mean of I-RMSDs
of top 1 models selected by DockRank is significantly smaller than those selected
by IRAD, ZRank, NPS-HomPPI, PRISE, and meta-PPISP. The mean of I-RMSDs
of top 1 models selected by DockRank is not significantly different from actual
partner-specific interface-based method (PS-Act Int).
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Figure 4.5 The distribution of the number of actual hits in each case of Cluspro decoy set.
Docked model with L-RMSD  10 angstroms is considered a hit. 54,000 docked
models are generated by ZDock 3.0 for each case. The 32 cases that have at
least one hit generated by ClusPro 2.0 and can be ranked by DockRank using
homo-interologs (homologous interacting proteins) in Safe, Twilight or Dark Zone
are shown here.
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Figure 4.6 The Success Rates of DockRank and ClusPro scoring functions on ClusPro2-BM3
decoy set. ClusPro scoring functions (Default Cluser-size based, Center Ener-
gy-based, Lowest Energy-based) were applied on the original docked models gener-
ated by ClusPro’s underlying docking program PIPER. DockRank was applied on
the filtered docked models by ClusPro scoring functions. The Success Rates of three
ClusPro scoring functions are significantly improved. DockRank (PS-HomPPI in-
terface prediction based) is able to select at least one hit in top 8 ranked models for
more than 95 % cases tested here. The Success Rate of PS-actual interface based
ranking and the expectation of Success Rate of random rankings are also plotted
to show the upper and lower bound of Success Rates. 32 cases that have at least
one hit and whose interface can be predicted by PS-HomPPI using Safe, Twilight,
or Dark Zone homo-interologs are studied here. Case 1PPE has only 9 models, so
the Success Rates of up to top 9 rankings are studied here.
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Figure 4.7 The Hit Rates in top 1 docked models ranked by DockRank and ClusPro scoring
functions on ClusPro2-BM3 decoy set. The average Hit Rates of scoring functions
over cases are shown in the table. DockRank improved the average Hit Rates of
top 1 docked models from 0.21 of ClusPro, 0.28 of Lowest Energy, and 0.14 of
Center Energy, to 0.40. The Hit Rates of PS-Actual interface-based ranking and
the expectation of Hit Rates of random rankings (see Appendix for the derivation of
the expectation and variance of the random Hit Rate) are calculated to define the
upper and lower bound. 32 cases that have at least one hit and whose interacting
residues can be predicted by PS-HomPPI using homo-interologs in Safe, Twilight,
or Dark Zone are studied here.
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Figure 4.8 Pair-wise comparisons of different docking scoring methods on ClusPro2-BM3 de-
coys using the Nemenyi test. Methods that are not significantly different (at signif-
icance level alpha = 0.05) are grouped together (via connecting lines). The average
"rank" of each method over docking cases is shown in the table (and also on the
x-axis of the plot). Pairwise Nemenyi test shows that the average L-RMSDs of top
models selected by DockRank are significantly smaller than those selected by Clus-
Pro Center Energies. However, the average L-RMSDs of top models selected by
ClusPro, Lowest Energy and DockRank are not significantly different, which indi-
cates that DockRank has limited improvement on top 1 model in term of L-RMSDs
when applied to the filtered docked models by ClusPro scoring functions under the
definition of a hit as a docked decoy with L-RMSD  10 angstroms. 32 cases that
have at least one hit and whose interface can be predicted by PS-HomPPI using
Safe, Twilight, or Dark Zone homo-interologs are studied here.
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Figure 4.9 The difference between the weighted averages L-RMSDs of top models between
DockRank and ClusPro Rank on each case of ClusPro2-BM3 decoy set. L-RMSD
of each top model is weighted by its ranks. 56 cases with at least one docked model
with L-RMSD  20 angstroms and can be ranked by DockRank using homo-in-
terologs in Safe, Twilight or Dark zones are studied here. A positive dot means
the top models ranked by DockRank for the specific case have a lower weighted
L-RMSD than those ranked by ClusPro. For 40 out of 56 (71.4%) cases, top models
ranked by DockRank have lower weighted L-RMSD than ClusPro.
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Figure 4.10 The comparison of top 1 models ranked by ClusPro and DockRank for case 1RLB.
The red cartoon is the receptor in the top 1 docked model (the bound and docked
receptors are superimposed, and bound receptor is not shown here). The ligand
of the top 1 model ranked by ClusPro default cluster-size based method (blue
ribbon in the left panel) is near the bound ligand position (pink mesh), however,
the ligand of top 1 model selected by DockRank (white ribbon in the right panel)
is totally wrong and is on the opposite side of bound ligand position (pink mesh)
relative to the receptor (red ribbon). Note that the structure of the receptor is
symmetric. So the natural question is that whether it is possible that the ligand
might be able to bind on both sides of the symmetric receptor instead of on only
one side?
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Figure 4.11 The top 1 model ranked by DockRank and two bound (native) ligands of case
1RLB. PDB entry 1RLB in fact has two bound ligands - chain E and F (purple
ribbons). Chain E is included in BM3 dataset (purple ribbon in the left top corner,
also shown as mesh in Figure ) but chain F (purple ribbon on the lower right side)
is arbitrarily left out of BM3 dataset. The ligand of the top 1 model selected by
DockRank (blue ribbon) is right beside the left-out bound ligand.
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Figure 4.12 The top 5 models ranked by DockRank and ClusPro for case 1RLB. Both bound
ligands (pink mesh) in the PDB entry 1RLB are shown here. DockRank (right
panel) is able to give top ranks to the models with ligands that are near the native
ligand positions (pink mesh) on both binding sides of the receptor (red ribbon).
However, ClusPro (left panel) gives top ranks to not only the models with ligands
on the two binding sides of the receptor, but also models with irrelevant ligand
positions.
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Figure 4.14 PS-HomPPI: Partner-specific sequence homology based protein-protein interface
predictor. PS-HomPPI has two components: PS-interface conservation analy-
sis and PS-interface prediction. PS-interface conservation analysis (shown as the
PCA biplot on the left) is based on a dataset of 135 transient dimers with exper-
imentally determined interface residues. For each dimer A-B, sequence homologs
with known interfaces are retrieved. Each dot in the PCA biplot represents two
sequence alignments: query A - its sequence homolog A’, and query’s partner B -
its sequence homolog B’. Complex A’-B’ is called a homo-interolog of A-B. 9 se-
quence alignment measures (blue lines with a red circle at the end) are calculated.
An interface conservation score (IC-score) is calculated based on the similarity of
the interfaces of A-B and those of A’-B’. The higher IC-score the more similar the
interfaces of A-B and A’-B’ are. IC-scores are represented using different colors:
red for a high degree of interface conservation, and blue for low conservation. The
original interface conservation space with 9 alignment measures and 1 IC-score
was mapped to two dimensional PC1-PC2 space, where the relation of IC-score
and the sequence alignment measures can be easily observed. Based on the color
change (IC-score), three interface conservation zones are identified: Safe Zone for
high level of interface conservation, Twilight Zone for medium level, and Dark
Zone for low level. A regression model of IC-score with the sequence alignment
measures is built. When making an interface prediction of a pair of proteins, a list
of homo-interologs with known interfaces is searched. Sequence alignment mea-
sures are calculated for each query - homo-interolog. The regression model is used
to rank the homo-interologs. Top K homo-interologs are used to make interface
transfer, and their conservation zone provides a prediction confidence.



106

CHAPTER 5. Conclusions and Future Work

Our dissertation is guided by three hypotheses: 1) The interface residues are conserved

among sequence homologs; 2) The conservation of interfaces among sequence homologs can be

utilized to infer interfaces of interacting proteins; and 3) The predicted partner-specific interface

residues can be used to reliably rank docked conformations.

To investigate these hypotheses, initially we conduct a systematic analysis of interface

conservations of different types of protein-protein interactions, which indicates that interface

residues are highly conserved among sequence homologs. Based on this result, we design and

implement a family of reliable and computationally efficient predictors of protein-protein in-

terface residues - HomPPI. One variant of this family predicts interface residues of a protein

without specifying the binding partners, and the other variant predicts interface residues con-

sidering the information of potential binding partners. Our results show that the performance

of the HomPPI family of predictors is superior to or compete with that of several state-of-the-

art methods. Based on the success of our interface predictors, we design a scoring scheme to

rank conformations generated by docking programs. This approach is based on the similarity

between the predicted partner-specific interface residues and the interfaces formed in the docked

conformations. Several experiments show that this ranking scheme selects a greater number of

near-native conformations than several state-of-the-art energy-based scoring functions.

The results of this work will contribute to a better understanding of the physical and struc-

tural basis of protein interactions, and will facilitate the discovery and design of target-specific

inhibitive drugs.
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5.1 Conclusions

5.1.1 Protein-Protein Interface Positions Are Highly Conserved in Sequence Align-

ments

We conducted a large scale conservation analysis of experimentally determined interface

residues. We studied more than 300,000 pair-wise alignments of protein sequences. These

sequences include proteins that form obligate as well as transient interactions. We identified

sequence similarity criteria for three interface conservation zones: Safe zone (interfaces are

highly conserved among homologs), Twilight zone (medium level conservation) and Dark zone

(low level conservation), which correspond to three interface prediction confidence zones.

Our main conclusions regarding protein-protein interface conservations are as follows:

1) Interfaces of transient interacting proteins are highly conserved and partner-specific. We

studied the conservation of both non-partner-specific (NPS) and partner-specific (PS) interface

of transient complexes. NPS-interface residues of a protein correspond to the union of the sets

of its residues that make up its interfaces with all its known binding partners. PS-interface

residues of a protein correspond to its residues that interact with a specific binding partner.

Our results show that the PS-interface of transient complexes are clearly more conserved than

the NPS-interface, indicating that transient interfaces are highly partner-specific, and that the

partner-specific interfaces in transient complexes are, in fact, highly conserved.

2) Interfaces of intrinsically disordered proteins (IDPs) are highly conserved and non-partner-

specific. The fact that intrinsically disordered interfaces can be reliably inferred by NPS-

HomPPI (Figure 3.2) indicates that disordered interfaces are highly conserved and are non-

partner-specific 1. This conclusion about the interface of IDPs is consistent with findings that

IDPs are able to bind a broad range of ligands through common binding regions [105, 116].

The high degree of conservation of interface (binding) regions in IDPs is consistent with their

many important biological functions. Our finding is also consistent with the hypothesis that

the flexibility of disordered binding regions may facilitate the binding of IDPs using the same
1Note that this result only applies to the interface residues of IDPs not their binding partners. The interfaces

of IDPs’ binding partners might/might not be partner-specific. We did not test NPS-HomPPI on the interface
residues of IDP’s binding partner, so no such conclusions can be extended to them.
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set of binding residues to different binding partners (at different times) [54].

5.1.2 A Family of Sequence Homology based Protein-Protein Interface Predictors

We developed two variants of HomPPI, a family of sequence-based methods for predicting

interface residues based on the experimentally determined interface residues in homologous

sequences: NPS-HomPPI ( Non-Partner-Specific HomPPI) and PS-HomPPI (Partner-Specific).

• NPS-HomPPI is a non-partner-specific sequence homology based protein-protein interface

predictor. It predicts interface residues of a query protein without specified binding partner.

Based on our evaluation results on two IDPs datasets in Chapter 3, NPS-HomPPI can be

used to reliably predict the interfaces of IDPs (Intrinsically Disordered Proteins, which do not

form structures in their unbound state, and render the structure-based interface predictors

inoperable). IDPs have been implicated in cancer, cardiovascular disease, neurodegenerative

disease, and diabetes [92, 126], and have become important drug targets [30, 92].

• PS-HomPPI predicts protein interface residues of a protein with respect to a specific

putative binding partner. This is especially useful in the case of transient protein-protein

interfaces, which tend to be highly partner-specific. Reliable partner-specific interface residue

predictions have important implications in guiding site-directed mutagenesis of multi-faced hub

proteins, in scoring docked conformations and guiding protein-protein docking process, and in

designing inhibitors of interactions of specific proteins involved in disease pathways.

The results of HomPPI predictors show that:

1) HomPPI outperforms several state-of-the-art machine learning-based interface predictors.

As shown by our comparison of NPS-HomPPI with five state-of-the-art protein interface predic-

tion servers, including four servers that take advantage of the structures of the query proteins,

NPS-HomPPI outperforms other methods, when the sequence homologs with experimentally

determined interfaces of a query protein can be reliably identified. And PS-HomPPI further

improves the prediction reliability on a transient dataset.

2) Unlike structure-based methods, HomPPI is insensitive to conformational changes upon

binding. Medium to large conformational changes upon binding commonly exist in protein-

protein interactions, and impose serious challenge upon in-silico prediction of interface residues
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[154] and protein-protein dockings [140]. Whenever sequence homologs are available, HomPPI is

able to provide reliable interface information for proteins regardless their conformational changes

(Table 4.1), and we expect such information will efficiently reduce docking sampling space, and

dramatically save computational time for further flexible refinement of docked conformations.

However, the HomPPI methods for interface residue prediction do have an important limita-

tion, in that they rely on the availability putative homologs for which experimentally-determined

structures of bound complexes are available in PDB. We report and discuss the prediction cov-

erage of the HomPPI family of protein-protein interface prediction methods in “Directions for

Future Research” section.

HomPPI is available as a set of freely accessible webservers at http://homppi.cs.iastate.edu/.

5.1.3 Partner-Specific Sequence Homology based Interface Prediction Significantly

Improves The Ranking of Docked Conformations

Selecting near-native conformations from thousands of decoys generated by a docking pro-

gram remains a challenging problem in computational molecular docking [62]. In this study,

we presented DockRank - a novel predicted interface based scoring method for protein-protein

docking. The proposed scoring function relies on a measure of similarity between interfaces of

docked models and predicted interfaces by a PS interface predictor PS-HomPPI.

We evaluate DockRank on several representative docking decoys generated by different state-

of-the-art docking programs. Our results show that:

1) DockRank significantly and consistently outperforms several energy-based scoring functions

in selecting near-native conformations when putative sequence homo-interologs can be reliably

identified. Comparisons of DockRank with two state-of-the-art energy based docking scoring

functions, ZRank and IRAD, show that DockRank consistently outperforms ZRank and IRAD

on a decoy set of 69 docking cases (with 54,000 decoys per case) in which PS-HomPPI can

return predictions for the interfaces between the receptor and the ligand. These results suggest

the viability of DockRank as an alternative to complex and computationally expensive energy

based scoring functions in cases where it is possible to obtain reliable partner-specific interface

predictions.
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2) Partner-specific interface prediction is significantly better than non-partner-specific in-

terface predictions in ranking docked conformations. We compared the performance of Dock-

Rank using PS-HomPPI predicted interface residues, with variants of DockRank using interface

residues predicted by three state-of-the-art non-partner-specific protein interface residue pre-

dictors, including our sequence homology based method NPS-HomPPI [142], a local structural

homology based method PRISE [74], a machine learning based consensus method meta-PPISP

[112]. Our results show that, DockRank using interface residues predicted by the non-partner-

specific interface predictors cannot compete with DockRank using interface residues predicted

by PS-HomPPI and energy-based scoring functions IRAD and ZRank. This result is consis-

tent with the observation made by Li and Kihara [81] that NPS interface predictors cannot

efficiently rank docked conformations. However, the performance of DockRank using partner-

specific interface predictions suggests that predicted interfaces can indeed be used to rank docked

conformations more reliably than other state-of-the-art scoring functions.

DockRank is available as a freely accessible webserver at: http://einstein.cs.iastate.edu/DockRank/

.

5.2 Directions for Future Research

5.2.1 Improve the Prediction Coverage of HomPPI family

As any homology-based methods, HomPPI family of protein-protein interface predictors

has an important limitation in that they rely on the availability of the sequence homologs with

experimentally determined interfaces. The current prediction coverage of HomPPI accessed from

our results on several non-redundant datasets are in the range of 60-70% of all query proteins

(Different binding types have slightly different coverage, for example, obligate interactions and

IDPs have better coverage than transient interactions (See “Prediction Coverage of HomPPI

Methods” in the Discussion section of Chapter 3 for more details.).

One might improve the prediction coverage of HomPPI by combining HomPPI with sequence

or structure based machine learning methods. Some preliminary evidence in support of this

possibility is offered by our recent study of hybrid methods that combines a NPS sequence
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homology based RNA-binding interface predictor and another machine learning classifier (Naive

Bayes in [145] and SVMs in [135]) with extracted sequence features. Our hybrid methods of

RNA-binding interface predictors not only solved the prediction coverage limitation of our

homology-based method, but also are more reliable than some state-of-the-art structure-based

predictors.

A particular interest is the design of partner-specific machine learning based interface pre-

dictors. Such methods that can efficiently make use of the information of binding partners

could significantly advance the state-of-the-art interface predictions and their applications in

protein-protein docking.

5.2.2 Incorporate More Binding Partners Into Predictions

The assumption of PS-HomPPI that the interfaces of protein interactions are independent

and additive may not always hold. Currently our predictor PS-HomPPI predicts protein-protein

interface residues for a protein with a specific putative binding partner. For an interaction that

involves at least three proteins, suppose protein A, B and C are known to form one interaction

complex, the user may input three query pairs A:B, A:C and B:C into PS-HomPPI. PS-HomPPI

provides predictions for each of these three pairs assuming these queries pairs are not related.

However, in nature, the interface of two proteins (or domains) may be affected by the presence

of another nearby proteins (or domains), and some domains may compete with another domain

on the same interfaces. Hence, methods that can take into account the information of multiple

binding partners are of interest.

5.2.3 Constraining Docking with Partner-Specific Predictions

In protein-protein docking, there is an increasing interest in utilizing the information of

interface residues to limit the search space of docked conformations around the known binding

site [39, 40, 41, 38, 132, 81]. Constrained docking seeks to improve the quality of docked

conformations and to lower the expensive computational cost of docking programs spent on

globally sampling protein surfaces and on the scoring/ranking of the formidable large number

of docked models.
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Information about interface residues for constrained docking can be obtained from experi-

mental data (e.g., alanine scanning and Mass Spectrometry) or from interface residue prediction

methods. The quality of the resultant docked conformations relies on the reliability of the pro-

vided interface residues [DataDriveDocking05]. For interactions that are highly partner-specific

(especially transient interactions), taking the interacting partner into account provides more

accurate predictions than non-partner-specific predictions [142, 8], and hence one may expect

predicted interfaces by such methods are more reliable for constraining data-driven docking

programs.
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APPENDIX A. THE EXPECTATION AND VARIANCE OF RANDOM

SUCCESS RATE AND HIT RATE IN RANKING DOCKED MODELS IN

CHAPTER 4
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i
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