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ABSTRACT 

This dissertation focuses on the theoretical and computation aspects of 

N-dimensional Laplace transformation pairs, for N>2. Laplace transforms can 

be defined either as a unilateral or a bilateral integral. We concentrate on the 

unilateral integrals. We have successfully developed a number of theorems and 

corollaries in N-dimensional Laplace transformations and inverse Laplace 

transformations. We have given numerous illustrative examples on 

applications of these results in N and particularly in two dimensions. We 

believe that these results will further enhance the use of N-dimensional 

Laplace transformation and help further development of more theoretical 

results. 

Specifically, we derive several two-dimensional Laplace transforms and 

inverse Laplace transforms in two-dimension pairs. We believe most of these 

results are new. However, we have established some of the well-known results 

for the case of commonly used special functions. 

Several initial boundary value problems (IBVPs) characterized by non-

homogenous linear partial differential equations (PDEs) are explicitly solved in 

Chapter 4 by means of results developed in Chapters 2 and 3. In the absence of 

necessitous three and N-dimensional Laplace transformation tables, we solve 

these IBVPs by the double Laplace transformations. These include non-

homogenous linear PDEs of the first order, non-homogenous second order linear 

PDEs of Hyperbolic and Parabolic types. 
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Even though multi-dimensional Laplace transformations have been 

studies extensively since the early 1920s, or so, still a table of three or N-

dimensional Laplace transforms is not available. To fill this gap much work is 

left to be done. To this end, we have established several new results on N-

dimensional Laplace transforms as well as inverse Laplace transforms and 

many more are still under our investigation. A successful completion of this 

task will be a significant endeavor, which will be extremely beneficial to the 

further research in Applied Mathematics, Engineering and Physical Sciences. 

Especially, by the use of multi-dimensional Laplace transformations a PDE 

and its associated boundary conditions can be transformed into an algebraic 

equation in n independent variables. This algebraic equation can be used to 

obtain the solution of the original PDE. 
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES 

LI literature Review 

The modern theory of the "Heaviside Operational Calculus" is almost 

universally based on the Laplacian transformation. This basis places the 

operational method on a rigorous plane and extends the generality of the type 

of problems which may be solved by operational methods. 

The historical development of operational calculus may be 

summarized briefly by stating that it can be divided into the following four 

main divisions. 

1. The formal theory of operators. This phase begins with Gottfried 

Wilhelm Leibnitz (1646-1716) in which he noticed, certain striking analogies 

between algebraic laws and the behavior of differential and integral 

operators. The work was further carried on by Joseph Louis Lagrange (1736-

1813) and his successors. 

2. The second period. This period was marked by the development of 

operational processes to the following fields: 

( i )  The theory of finite differences. 

(ii) The symbolic methods of fractional differentiation. 

(Hi) The use of symbolic methods in the calculus of finite differences 

and differential equations. 

The leaders during this period were: P.S. Laplace (1749-1827) [62], 

George Boole (ibld-1864), R. Murphy (1806-1843), R. Carmichael (1828-1861). 

Books embodying the theory were published by G. Boole and R. Carmichael 

and most of the theorems presented had their modem shape. 
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3. The Heaviside period. This movement of the theory was initiated 

through the work of Oliver Heaviside (1850-1925) who developed its earlier 

concepts and applied them successfully to problems dealing with almost 

every phase of Physics and applied mathematics. These methods which have 

been proved so useful to engineers are now collected under the name of 

Heaviside Operational Calculus [50]. In spite of his notable contributions, 

Heaviside's development of the Operational Calculus was largely empirical 

and lacking in mathematical rigor. Many electrical engineers hastened to 

explain certain of Heaviside's rules. Many papers of this explanatory 

character appeared during the period 1910-1925. Prominent workers of this 

period were Louis Cohen, E. J. Berg, H. W. March, V. Bush, W. O. Pennell, 

and J. J. Smith. 

4. The rigorous period. Operational Calculus again started attracting 

the notice of mathematicians in the early 1920s Bromwich (1875-1930) was the 

first to explain, and to a certain extent justify, Heaviside's methods. He made 

use of the theory of Functions of Complex variable [10]. 

After Bromwich, J. R. Carson contributed substantially to the theory 

[16]. He demonstrated that Heaviside's operational method can be fully 

substantiated, starting from the Laplace transformation, which expresses 

/(p) in terms of the function h{t), by means of the integral equation 

f {p)  = p^exg{~pt)hi . t )d t .  (1.1.1) 

In this relation hi t )  is called the original and f{p) the image. Carson's work 

exercised a considerable influence on subsequent studies in the field of 

establishing Operational Calculus. The credit for drawing the attention of 
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mathematicians to the Laplace transformation is essentially his. 

Van der Pol, in his exposition on operational calculus, also depended 

on the Laplace integral. Van der Pol and Bremmer [104] considered the case 

where the lower limit of the integral in (1.1.1.) is replaced by -«>. So that the 

transform becomes two-sided and admits the form 

F(p) = p exp(-(p) (1.1.2) 

Before Carson and Van der Pol, however, D. V. Doetsch had been 

using the  same idea ,  though he  mul t ip l ied  by exp(-pi )  ins tead of  pexp(-pt ) .  

In this language now customary, he applied the Laplace transformation 

f (p)  = jexp(-pt )F( t )dt ,  p>0.  (1.1.3) 

to the differential equations of his problems, including the boundary 

conditions . He also made an important change in introducing a new symbol 

in the " subsidiary equations, " as the operational equations are now 

frequently called. 

Subsequent investigations were almost completely found on the 

Laplace transformation. The theatrical side was developed by, besides 

Doetsch [45], D. V. Widder in his book. The Laplace Transform [112]. Various 

aspects of Operational Calculus are dealt with in the works of Bromowich 

and Van der Pol that appeared much later. It is also worth mentioning in 

this connection the works of Vannover, V. Bush, K. F. Niessen, P. Humbert, 

M. Harder, H. S. Carslaw [13], L. A. Pipes [75], H.T Davis [35], Ruel V. 

Churchill [19], N.W. McLachlan [68], K. W. Wagner, Parodi, Colombo, etc. 
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Various refinements of a basic nature are due to P. Levy and H. Jeffreys. 

Operational Calculus made further advances during the forties. While 

dealing with the spectral theory of linear operators, A. I. Plessner [83] 

reinforced the foundations of Operational Calculus. V. A. Ditkin [42] 

extended the results of Plessner. 

In the latter half of the forties, the researches of I. Z. Shtokalo [93], [94], 

[95] and [96] in Operational Calculus were published. These extended 

Operational Calculus to new classes of linear differential equations with 

periodic, quasi-periodic and almost-periodic coefficients. 

From the forties to the sixties much work has been done in sharpening 

the Operational Calculus for attacking concrete practical problems. For 

example, B. V. Bulgakov and I. A. Lurye have investigated the applicability of 

Operational Calculus to some problems in mechanics. The work of V. I. 

Krylov and .others deals with the digital conversion of the Laplace transform. 

The investigations of M. I. Kantorowicz are devoted to the applicability of 

operational methods in the handling of non-stationary phenomena in 

electrical circuits. 

The exploitation of the resources of Operational Calculus in the field of 

electrical technology is due to M. J. Yuriev, K. V. Krug and E. A. Mirovich; 

in radio technology to C. I. Evtyanov; in heat technology to A. V. Likov; and in 

mathematical physics to A. J. Povzner. 

The theory of automatic control repellents another avenue for the 

application of Operational Calculus. Important results in this field have 

already been realized by A. A. Andronov and his co-workers. As remarked by 

Andronov, Operational Calculus constitutes the very alphabet of modern 
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automatic and remote control technologies. The applicability of Operational 

Calculus in the theory of automatic control has expanded in various 

directions, especially in resolving the problems of combustion mechanics. So, 

0. M. Krizhanovskii has examined questions related to the use of Operational 

Calculus in the analysis of the functioning of an automatic regulator of a 

mine-lift. O. A. Zalesov has used Operational Calculus in the theory of an 

overturned mine-cage. 

Important results in the theory and application of operational methods 

are due to K. G. Valiv and his co-workers. Some of their research has been 

extended by the techniques developed by I. Z. Shtokalo. 

Essentially four methods have been used in discussing the Heaviside 

Calculus. They are: 

(i) Direct use of formal operators. 

(ii) Complex line integrals. 

(iii)The Laplacian transformation. 

(iv)The Fourier integral. 

The method of Laplacian transformation appears to be the most general and 

natural. 

In spite of the numerous applications of one-dimensional Laplace 

transformation, the idea naturally arose of generalizing the transform 

functions of two variables. According to Ditkin and Prudnikov [43] during the 

1930s short notes by P. Humbert [54], [55] and by P. Humbert and N. W. 

McLachlan [56] on the Operational Calculus in two variables based on the 

two-dimensional Laplace transformation appeared. However, T. A. Estrin 

and T. J. Higgins [48] pointed out that, "double Laplace transforms" were 
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introduced by Van der Pol and K. F. Niessen [105]. They used by P. Humbert 

[55] in his study of hyper geometric functions; by J. C. Jaeger [58] to solve 

boundary value problems in heat conduction; by N. A. Shastri [92]. In the 

works of P. Delerue [38], [39] and Voelker and Doetsch [107] the methods of 

the Operational Calculus in several variables were successfully applied to the 

solution of differential equations by the study of the properties of special 

functions. Dorothy L. Bernstein [7] wrote her Ph.D. dissertation on The 

Theory of Double Laplace Integral. A few years later G. A. Coon and D. L. 

Bernstein [18] published a paper on double Laplace transformation. Also 

there are contributions by A. Duranona Y. Vedia and C. A. Trejo [47]. 

D. A, George explored the use of the Voltera [106] series in the building 

block approach to control systems and demonstrated the usefulness of the 

multi-dimensional Laplace transform, J. K Lubbock and V. S. Bansal [64] 

applied multi-dimensional Laplace transforms for the solution of non-linear 

equations. 

In 1962, V. A. Ditkin and A. P. Prudnikov [43] discussed the 

fundamental properties of two-dimensional Laplace transformation as the 

basis of Operational Calculus in two Variables. Also the two-dimensional 

Laplace transformation of functions and its applications were considered in 

the books of H. Delavault [37] and J. Hladik [52]. The n-dimensional case is 

treated in the booklet of L. G. Smyshlyaeva [98] and the most recent book 

written by Y. A. Brychkov et al. [11]. More recently, a number of results on 

two-, three-, and n-dimensional Laplace transforms were proposed by R. S. 

Dahiya [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [32] and [33], J. 

Saberi-Nadjafi [89], J. Saberi-Nadjafi and R. S. Dahiya [90] and doubtless by 
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others. 

1.2. Ea^lanation of Dissertation Format 

This introductory chapter deals with a brief review of literature on one-, 

two- and N-dimensional Laplace transformations. Next, we state the 

objectives of the present research work and explain the notations and make a 

list of all special functions used in this work. In last two sections of this 

chapter, we recapitulate the definitions, theorems in one-, two- and N-

dimensional Laplace transformations, and rules of operational calculus . 

In Chapter 2, a number of new and useful theorems and corollaries on 

N-dimensional Laplace transformation and N-dimensional inverse Laplace 

transformation were developed. These theorems are proved according to an 

idea obtained firom papers of R.S. Dahiya [21] and [30]. Several examples are 

given to show these results can be used to obtain new two and N-dimensional 

Laplace transformation pairs. 

In Chapter 3, we established several new formulas for calculating 

Laplace transformation pairs of N-dimensions from a known one-

dimensional Laplace transform. We have given several examples on 

applications of these results in N and two-dimensions. 

Several initial boundary value problems (IBVPs) characterized by non-

homogenous linear partial differential equations (PDEs) are explicitly solved 

in Chapter 4 by means of results developed in Chapters 2 and 3. In the 

absence of necessitous three and N-dimensional Laplace transformation 

tables, we focused on two dimensions and solved these IB VPs by the double 

Laplace transformations. These include non-homogenous linear PDEs of the 



8 

first order, non-homogenous second order linear PDEs of Hyperbolic type as 

well as Parabolic type. 

Motivation and Otgectives of the Dissertation 

The Laplace transform, it can be fairly said, stands first in importance 

among all integral transforms; for which there are many specific examples 

in which other transforms prove more expedient. The Laplace transform is 

the most powerful in dealing with both initial-boundary-value problems 

(IBVPs) and transforms. 

Before we proceed to a detailed exposition of this section, it is of some 

interest to list some of the better known uses of the Laplace transformation 

theory in applied mathematics. 

1. The solution of ordinary differential equations with constant 

coefficient: 

The Laplace transform method is particularly well adapted to the 

solution of differential equations whose boundary conditions are specified at 

one point. The solution of differential equations involving functions of an 

impulsive type may be solved by the use of Laplace transformation in a very 

efficient manner. Typical fields of application are the following; 

(a) Transient and steady-state analysis of electrical circuits. [15], [20], 

[59], [68],[69], [106]. 

(b) Applications to dynamical problems (impact, mechanical 

vibrations, acoustics, etc. ) [61], [68], [69], [102], [20]. 

(c) Applications to structural problems (deflection of beams, columns, 



9 

determination of Green's functions and influence functions. [14], [68], [69], 

[102]. 

2. The solution of linear differential equations with variable coefficients 

[20], [106]. 

3. The solution of linear partial differential equations with constant 

coefficients'. 

One of the most important uses of the Laplace transformation theory is 

its use in the solution of linear partial differential equations with constant 

coefficients that have two or more independent variables. Typical physical 

problems that may be solved by the procedure of this method are the 

following: 

(a) Transient and steady-state analysis of heat conduction in solids [14], 

[59], [20]. 

(b) Vibrations of continuous mechanical systems [14], [68], [20]. 

(c) Hydrodynamics and fluid flow [14], [68], [69], [91]. 

(d) Transient analysis of electrical transmission lines and also of 

cables [15], [14], [106], [108], [68]. 

(e) Transient analysis of electrodynamics fields [61], [68]. 

(f) Transient analysis of acoustical systems [68]. 

(g) analysis of static defalcation of continuous systems (strings, beams, 

plates) [14], [20]. 

4. The solution of linear difference and difference - differential 

equations: 

The Laplace transformation theory is very useful in effecting the 

solution of linear difference or mixed linear-difFerence-differential equations 
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with constant coefficients [14], [68], [77], [106]. 

5. The solution of integral equations of the convolution, or Faltung,type: 

[15], [45], [20]. 

Q. Application of the Laplace transform to the theory of prime 

numbers. 

7. Evaluation of definite integrals, [106]. 

8. Derivation of asymptotic series [15], [58]. 

9. Derivation of power series [15], [58]. 

10. Derivation of Fourier series [58], [68]. 

11. Summation of power series [58]. 

12. The summation of Fourier series [78]. 

13. The solution of non- linear ODEs [74], [76], [79], [80], [81]. 

14. The use of multi-dimensional Laplace transformations to solve 

linear PDEs with constant coefficients'.: 

The usual operational method of solving boundary value problems in 

time and space variables transforms the PDEs and its boundary conditions 

with respect to time, the space variables being held constant; solves the 

resulting ordinary or partial differential equation by classical means, the 

transform parameter being treated as a constant; recognizes the resulting 

expression in the transform parameter as the single Laplace transform of 

the desired solution; and effects the required inversion. Apparently, the use 

of a single Laplace transformation in this manner is not as advantageous as 

it is in the solution of ODEs, because an ordinary or partial differential 

equation yet remains to be solved after the single transformation. 

By the use of multiple Laplace transformations a PDE and its 
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associated boundary conditions can be transformed into an algebraic 

equation in n independent complex variables. This algebraic equation can be 

solved for multiple transform of the solution of the original PDE. Multiple 

inversion of this transform then gives the desired solution[32], [33], [48], [58], 

[106], [107]. 

The analytical difficulty of evaluating multiple inverse transforms 

(Formula 1.6,2.1 on page 32) increases with the number of independent 

variables, to the end that a fairly comprehensive knowledge of contour 

integration may be needed to reach the desired solution. The difficulty in 

obtaining inverse Laplace transforms using the techniques of complex 

analysis lead to continued efforts in expanding the transform tables and in 

designing algorithms for generating new inverses from the known results, 

using some other techniques. 

The primary objective of this dissertation is to establish several new 

results for calculating Laplace transformation and inverse Laplace 

transformation pairs of N-dimensions from one-dimensional Laplace 

transformations. Next we applied these results to a number of commonly 

used special functions to obtain a new Laplace transformation in two and N-

dimensions. Specifically, we derived some of the well-known two-

dimensional Laplace transformation pairs, using some of our established 

results in Chapters 2 and 3. 

In Chapter 4, several IB VPs characterized by non-homogenous linear 

PDEs are explicitly solved by means of using some of the developed results in 

previous chapters. These IB VPs include non-homogenous linear PDEs of the 

first order, non-homogenous second order linear PDEs of Hyperbolic as well 
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as Parabolic types. 

Chapter 5, summarized the major contributions of this dissertation, 

and traces possible direction for future research in this area. A list of 

references is included at the end. 

1.4. Notations and Special Functions 

1.4.1. Notations 

We begin this section with the description of notations, that we will use 

in this dissertation: 

For any real n-dimensional variable jc  =  (x^,X2,. . .yX„),and for any 

complex n-dimensional variable s =(Si,S2 s„), we denote 

x*" = (Xi,X2,.'.,x^) and s" = (s^where v is any real number. 

Let Pi(x)  or  p^(s)  be the kth symmetric polynomial in the components 
or 8* of* ors  respectively. Then for x = (x^yx^  :>!:„)and s  = (si,s2,...,s„), 

we denote 

(al) Pi(x'') = xi +x^+-+x!  ̂= '^x] 
j=i 

(a2) fi(7)=s^+6^+...+g; = %6; 
J=l 

(a3) Pi(x. ") = + %/+...+%(_/ + 
Kj 

(bi) p„ (zi=-xi xi=Y)i x] 
j=i 

(b2) <=!!&; 

Also we shall write 
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n 

(i) x-s = ̂ xjsj 

(n) 9îes =Real part of a complex number s 

(uî) 9îe Real part of a complex number i-Sg +. . + sj) 

As usual we denote by N the set of natural numbers, N={i,2,...} and 

No=Nu{0}. By R" we denote the n-dimensional Euclidean space, n sN. 

Analogously, we denote unitary space by C". By subsets R+and RÎ of R" we 

mean 

Let CO he an open subsets of R". The linear space of all measurable functions 
f defined on a for which the expressions 

Rî={*;3ceR", % >0} 

R;={*: xeR", jc>0}. 

dxidx2...dxn = \\fix)f dx, pàR, p> 1, 
(Û 

are finite is denoted by Lp(co) ,  which is equipped with the norms 

i. 
p 

JL 
P 

is a complete normed space, i.e., Banach space. 

By A[ R" ; exp(-â.^)] we mean the linear space of all measurable 

function f defined onR" for which the following conditions hold; 

(V Jl/'(a:)|(ijc are finite 
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|/(J)|<Mexp(a.a:), 

for all measurable functions f on R+ where M and a are positive constants. 

Next, let us recall the space L^{(o) .  The elements f  e L^{(û)  are 

called locally integrable on o, and it consists of all functions f such that 

f e Liict}') for every a' such that o'cta. 

If u(x ,y)  be a function of two variables x and y, we denote 

1.4  ̂Special Functions 

Most of the two or N-dimensional results we have obtained are 

involving certain special functions. Following is a list of all the special 

functions used in this dissertation: 

Fresnel integrals: 

Ac " ^ " 
d^(x ,y)  _  d^u{x ,y)  

dxdy dx^ 

du(x ,y)_^_ duix ,y)  
T J r 

&(%) = —1 r'sinw^^ 

Cosine integrals: 

Ci(.x) = - r^^du 
•'* u 

c i (x)  = r 
Jx u 
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Parabolic cylinder functions: 

= (-1)" exp(^)^[exp(-^)] , n = 0,1,2,. 

Exponential integrals: 

Eii-x)  = - J exp(-u)— -ïï< argx<Ji  
* u 

Wiix) = ilEiix + ïO)+Eiix - lO)] a: > 0 

Error function: 

Erf ix)  = f^expC-w'^MM 

Complementary Error function: 

Erfc(x)  = -^J^exp(-M'^)c?M 

Error function of an imaginary argument: 

Erf i{x)  = exp(u^)du 

(n+l)th derivative of Error function: 

JB+l O 
-—Erf ix)  = (-l)''-rexp(-A:^)//„(x) 
ox 
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jn+l ~ 

-—^Erf{x)  = (-1)"—exp(-x^)//„(;c) 
ax n'-

Generalized Hypergeometric function: 

\o)p\ _ ^ (^l)m"-(^p)w JC" 

where (o^ = uj (cj + l)(ay+2)... (cy + m -1), j = 1,2,..., p, 
(Oj )o — 

nth derivative of a Hypergeometric function: 

_Ë1 p 
dx" " " J 

(°l)n- (°pI (a + n)p; 
(6 + 4,/ 

G-function ( Meijer's G function ): 

/=m+l /=«+! 

Here an empty product is interpreted as unity, 0<m<q,  0<n< p,a.nà the 

parameters a^, \ are such that no pole of r(6y-s), coincides with 

any pole of r(l-a*4-j), * = Thus -ôy) is not a positive integer. Also 
z^O. 

There are three different paths L of integration. For more details see 
[65; pages 143-152]. 

Hermit Polynomial: 

H^ix)  = (-1)"exp(;c^)^[exp(-j:^)], n = 0,1,2,... 

Struve function: 
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" 2-r(«+f)r(v+n+f) 
a=0 

Modified Bessel function: 

» /%\ v+2a 

:jrt!r(v+/z+i) 

Bessel function: 

v+2/1 

;î^rt!r(v+/z + l) 

Modified Hankel function: 

sin(Kc) 

Whittaker function: 

Legender polynomial: 

1 d 

Lommel functions: 

S,.v W = V V W + 2'"' r{^)r(iija)[sin(i? - cos(iii ;r)y, «] 

Sine integrals: 
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Jo U 
si{x)=-r^^u 

ix u 

Heaviside's Unit function: 

[0 ifjc<c 

if.>« 

Gamma function: 

rU) = exp(-M) u^~^du 

Note: We shall use the following theorem to simplify some of our results 

this work. 

Duplication Theorem 

Let z be a complex number with z ^ 0,-1,-2,..., then 

T{2z) = 7t-h^'-'T{z)T[z + ̂ . 

Also, we shall use the following , wherever it would be necessary 

r(z+1)=zr(z), z# 0,-1,-2,... 

T{Z)T{1-Z)  =  ̂ ^ , zbC 
smro 

Incomplete gamma function: 

r{a,x)  = exp{-u) ~ ̂ du 

Incomplete gamma function: 

y{a,x)  = j j^exp(-K)  u^ '^du 
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Note: We shall use the following formulas, wherever it would be necessaiy. 

r(l,A:) = exp(-x), 

7(l,jc) = 1-exp(-j:), 

= it^Erfcix), 

y{ \ ,x^)  = n^Erf ix) ,  

-^r(a,a:) = -x"'^ exp(-%), 
àx 

^  Yia,x)  = x"'^ exp(-x), 

r(o  + l ,a;)  = ar(a ,x)  + x' '  exp(-a:), 

y(a +1, jc) = ay(a, jc) - x"  exp(-x). 

Logarithmic derivative of the gamma function: 

We denote 

u(x ,Q)  = a(x) ,  u(0 ,y)  = p(y) ,  u(0,0) = cwherecisacostant 

Uy(x,0)  = â(x) ,  uJO,y)  = ô(y)  

and assume a(x),  P(y),  eix) and 8{y) are Laplace transformable. 

1.5. Recapitulations on One and Two-dimensional 
Laplace Transformations 

1.5.1. One-dimensional Laplace Transformation 

Definition of the Laplace transformation: 
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We define the Laplace transform of f i x )  to be the function F { s )  given 

by 

i^(s) = £exp(-sa:)/'(x)dîi: (1.5.1.1) 

for all complex s for which the integral converges. 

The integral on the right of (1.5.1.1) is called a Laplace integral. It is 

improper at the upper limit and may be improper at the lower limit. It is 

therefore to be understood as 

lim ex^i-sx)fix)(h, 
W-*OB 
d-^0 

where © and d-^o independent from each other. 
We denote the right hand side of (1.5.1.1) by L {/"(%); sj.Thus (1.5.1.1) 

may be written in the form 

L{/"(A!:);S}=F(S) = j^xp(-s%)/'(a;)d% (1.5.1,1') 

Defîziition 1.1: The function f(,x) is said to be sectionally continuous over the 

closed interval a < x < b  H  that interval can be divided into a finite number of 

subintervals c^x<d such that in each subinterval 

(j) f { x )  is continuous in the open interval c < x < d  

(ii) fix) approaches a limit as x  approaches each end-points from 

within the interval; that is, lim fix) and lim fix) exist. 
*-»C+ 

Note: We shall always use the term sectionally continuous in the range %>0 

only. A sectionally continuous function may have infinitely many finite 
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discontinuities in an infinite interval, but it can have only a finite number in 

any finite interval 0 < jc ^ 6 for all 6 > 0. 

Definition 1.2; The function f i x )  is said to be of exponential order as j: —> «> if 

there exist constants M and a and a fixed x-valueXq such that 

l/Cx)! < M exp(a%), for x > x„. (1,5.1.2) 

If a is to be emphasized, we say that f(.x) is of the order of exp(flx) as 

We also write 

f i x )  =  0 { e x p ( a x ) ) ,  

to mean that f i x )  is of exponential order, the exponential being exp(m;), as 

A consequence of (1.5.1.2) is lim|exp(a'x)/(a:)|=0, (a >a). In particular, 

when f i x )  is of exponential order exp(ax) then it is also of exponential order 

e x p ( a ' j r ) ,  i d > a ) .  

The familiar functions sinXz, jc",and exp(fcc) are examples of functions 

of exponential order; but the function exp(z^) is not of exponential order. 

1.5.1.1. The Original Space G 

The Laplace transformation is a mapping of a set of functions 

defined on the [0,<») onto a set of functions F,G,... of a complex variable. The 

domain of definition of the Laplace transformation is called the original 

space and is denoted by Q. The range L.Q of the transformation is called the 

image space. The members of Q are called original functions, and those of 

LQ. image functions. 
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In the present work, the original space Q( or class iQ) is taken to 

consist of all complex valued functions f that satisfy the conditions that are 

given in definitions (1.1) and (1.2). 

Remark I; The fact that a function f { x )  is sectionally continuous or of 

exponential order is not alone suffocate to insure that it has a Laplace 

transformation, for example expac^ is a continuous function but not of 

exponential order, does not have a Laplace transformation and f{x) = is of 

exponential order but the integral fails to exists because of the behavior of the 

functioning a neighborhood of * = 0, 

These two examples show that neither sectional continuity nor 

exponential order alone is sufficient to insure that fix) has a Laplace 

transform. However, both conditions taken together do suffice. 

Theorem 1.1. If f { x )  is a function of class Q, then (1.5.1.1') exists for Sîes>a. 

In fact, L{|/'(a;)|;s} = exp(-s%)|/"(%)|(i% exists; that is, j^xp(-s%)/'(%)(f% is 

absolutely convergent, for SRg j>a. 

Remark 2: The above conditions for the existence of the transform are 

sufficient rather than necessary conditions. The function f may have an 

infinite discontinuity at * = 0 for instance, that is ^ as x -> 0, provided 

that positive numbers m,N and T exist where m< l, such that [/(z)} < when 

0<x<T.  Then if f  otherwise satisfies the above conditions, its transform still 

exists, because of the existence of the integral 
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For example, when f { x )  =  x ~ ^ ,  its transform can be written, after the 

substitution of u for (m)^, in the form 

ex-p(-sx)dx = -^ f exp(-M^ )du, 9îe s>0. JO gt Jo 

The last integral has value — ; hence 

s| = , 9îe s >0. 

Theorem 1.2. If f { x )  is a function of class O, and L{/'(z);s} = F { s ) ,  then 

limF(s)=0* 

From Theorem 1.2, we conclude that, polynomials in s, sinj, cosj, exp(j) and 

log5 can not be Laplace transforms. On the other hand, a rational function is 

a Laplace transform if the degree of the numerator is less then that of the 

denominator. 

Theorem 1.3. (Fundamental Theorem). If the Laplace integral 

j^xp(-s%)/'(a:)ck , 

converges for s = Sq, then it converges in the open half-plane 9îe ^ > 9îe 

where it can be expressed by the absolutely converging integral 

(s- So)£exp[-(s - S o)](p{x)dx 
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(s- So )^xp[-(s-SQ)](pix)dx 

with 

f(%) = |exp(-SoT)/(T)<iT. 

Remark 3: The same conclusion is valid for a Laplace integral which does not 

converge at Sq (that is, the limit of ç{x) asx-^oo does not exist), provided 

q>{x) is bounded: \(p(x)\ < M, fbr%> 0. 

1.5 .̂ Two-dimensional Laplace and Laplace-Carson Transformations 

Let f i x , y )  be a real or complex valued function of two variables, defined 

on the region A={(*,y):0^x<«>,0^y<«}and integrable in the sense of Lebsgue 

over an arbitrary finite rectangle R^ ,, = {(*,y):0^x^a,0^y<b} . 

We shall consider the expression 

F(.Si,S2',a,b) = j^^expi-six-s2y)fix,y)dxdy (1.5.2.1) 

where Si = or+i7i and S2 = r+iv are complex parameters determining a point 

(8i,%) in the plane of two complex dimensions. Let Ogbe the class of all 

functions such that the following conditions are satisfied for at least 

one point (si.sg): 

(i) The integral (1.5.2.1) is bounded at the point (si.gg) with respect to 

the variables a and 6; i.e., 

|^'(Si,S2;a,6)|<M(Si,S2) 

for all a > 0 and 6 > 0, where MCsi.sg) is a positive constant independent of a and b. 
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(ii) At the point (s^sg) 

lim , «2 ; Û, 6) = ^(Sj, Sg ) 
a—>®* 
6-$oa 

exists. We denote this limit by 

=L2{/(%,y);Si,S2} = jj j^xpC-s^x - j/)ckc(y (1.5.2.2) 

Definition 1.3: The integral (1.5.2.1) is called the two-dimensional Laplace 

t r a n s f o r m a t i o n  o f  t h e  f u n c t i o n  f { x , y ) .  

Remark 1: If the conditions (i) and (ii) are satisfied simultaneously, we will 

say that the integral (1.5.2.2) converges boundedly in at least one point (Sj.Sg). 

Thus the class Dg consists of functions for which the integral (1.5.2.2) 

converges boundedly for at least one point (s^sj). When the integral (1.5.2.2) 

converges boundedly, we will call f(x,y) the original function and ^(«^,§2) 

the image function. 

Remark 2: If the function f ( x , y )  satisfies the condition 

|/(*,3')| <Mexp{hx+ky), 

for all X > Q , y  >  0 (where M,h,k are positive constants), then it is not difficult 

to verify that f{x,y) belongs to the class O2 at all points (Si,^^) for which 

9k > h and Sfesj > A. 

Remark 3: If the function f { x , y )  = f i { x ) f ^ { y )  and the integrals 

^1(^1 ) = J^xp(-six)/i(x)rfa:, fg (% ) = j^exp(-S2y)/'2(j')ci[y 
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exist, then f i x ,  y )  belongs to the class 0% and («1)^2(52). 

Theorem 1.4. If the integral (1.5.2.2) converges boundedly at the point 

(Sio»^o)» then it converges boundedly at all points (SijSg) for which 

9le(Si-Sio)>0, %(s2-S2o)>0. 

Definition 1.4: We shall denote by D the set of all points (si.gg), for which the 

integral (1.5.2.2) is boundedly convergent, we call this the region of 

convergence of the Laplace integral. We remark here that the convergence or 

divergence of the integral (1.5.2.2) for all real values (si.sa) implies the 

convergence or divergence for all complex values 

Definition 1.5; The integral (1.5.2.2) is said to be absolutely convergent if 

Hm J°J^|exp(-Si:*; - S2y)fix, y)\dxdy = exp(-Si:c - Sgj )\fix,y)\dxdy 
6—>00 

where = a, 'Sies^ = r. 

Theorem 1.5. If the integral (1.5.2.2) converges absolutely at the point (sio,s2o) > 

then it converges absolutely at all points (sj.sj) for which 9îe(si-Sio)>0 and 

9îe(s2-S2o)>0-

Theorem 1.6. If the function f { x , y )  satisfies the inequality (1.5.2.3), then the 

integral (1.5.2.2) is absolutely convergent at ali points (si.sg) for which 

SResj > h and SResg > k. Also 
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jFCsi.Sg)! < ^—— where 9îeSi = crand Stesg = 
{.<y~ n){t-k) 

Remark 4: Absolute convergence of the integral (1.5.2.1) at the point (sio.«20) 

implies bounded convergence at this point, and also at all point (si.sa) for 

which 9îe(si-Sio)àOand9îe(s2-S2o)^0-

Remark 5; The complete analysis of the convergence of the double Laplace 

transformation using the theory of Lebesgue integration is given in Ditkin 

and Prudnikov [ 43] and Coon and Bernstein [18] in great detail. 

Theorem 1.7. The fxmction F(81,82) is analytic in the region D. Moreover, 

—FC81,82) = expi-six-S2y)x"'y''fix,y)dxdy, (1.5.2.4) Jo Jo 

and the function x'"y"f(x,y) belongs to the class Qg-

Theorem 1.8. In order that f i x , y )  shall belong to the class Og, it is necessary 

and sufficient that the inequality 

exp(-aa - ( x ,  y ) d x d y  

holds for one pair of values (a,)3), a>0,p> 0. 

<M (a>0,ô>0) (1.5.2.5) 

Theorem 1.9. If the function f ( x , y )  belongs to the class Og, then the function 

0 otherwise 
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also belongs to the class and 

£* exp(-six)(ix£exp(-s2y)/„,„(*,3')clb' 

= exp(-u*- exp(-Si*)<icJ~exp(-S2y)/"(*,>')a!y. 

Remark 6: The existence of the transform of a function in two variables does 

not imply the existence of transforms of its derivatives. However, if these 

transforms exist, then they can be fovmd in the same way as in the one 

dimensional case. We list the following formulas for use in Chapter 4. 

Remark 7: If 

u{x,0) = fix), u(Q,y) = g(y), 

= ^ y ( X ' 0 )  =  f i ( x ) ,  =  u J O , y )  =  g , ( y )  

and if their one-dimensional Laplace transformations are F(si),G(s2),Fi(si) 

and GiCsg), respectively, then 

exp(-Si* -  SzyMx, y)dxdy = I7(si, Sg ) 

L2{«x;Si.S2} = Sit/(Si,S2)- GCSg) 

t'2t«re'.Sl»S2) = Si^l/CSi.Sa) - SiG(S2)-GjCSj) 

L2 [Uy ; Si, «2 ) = SgC/CSi, «2 ) - F{s{) 

~ ®2 U{.81,82) — 82FiSi) — Fi(Si) 

L2{U:q,;Si,S2} = SiS2Ï7(Si,S2)-Sii^(Si)- S2G(S2)+ «(0,0) 

(1.5.2.8) 

(1.5.2.9) 

(1.5.2.10) 

(1.5.2.11) 

(1.5.2.7) 

The Inversion Theorem; Suppose that f ( x , y )  has first order partial 
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derivatives fx{x,y),fyix,y) and mixed second order partial derivatives 

and that we can find positive constants Q,ki,k2 , such that for all 

0 < jc < oo,0 < y < oo 

\fix,y)\<Q&xç>^kyX^-k2y), \f^{x,y)\<Qex-g{kiX-{-k^y) (1.5.2.12) 

Then, if 

i^Csi.Sg) = ^e-x.^{-s^x- S2y)f{x,y)dxdy 

we have 
1 Aa+*o)j ff+(ù)2 

f ( x , y ) = l i m — ^ \  , . exp(s^x + S2y)Fis^,S2)ds^ds2 (1.5.2.13) 

where and T>A2. 

Definition 1.6: We define the following integral as Laplace-Carson transform 

^(81,%) = %jo /o Q^v(-SiX-S2y)fCx,y)dxdy (1.5.2.14) 

and we shall write 

)=/(%,}') 

by analogy with one-dimensional symbolism 

F { s ) = f ( x )  

The function F{81,82) is called the image, and the function f{x,y) the 

original. 

Remark 8: Because the Laplace-Carson transform differs from the Laplace 

transform only in the factor it is clear that all the theorems and 

properties of the Laplace transform can be reformulated for the Laplace -
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Carson transform. 

Some additional operational properties of the double Laplace 

transformation (1.5.2.2) are listed below for further reference in Chapter 4. 

Suppose that is the image of the function f ( x , y )  and let 

Then 

L2{-a/(x,3');si,S2} = 

i'2{*3'/"(*,3');Si,S2} = (61,82) etc. 

I'2{ A*.3');Si,S2} = J exp[-(A - Si)F{X,S2)dX 

I'2|^J^^A*,^);Si,S2| = ĵ FU,S2+X-Si')dl 

= ^ F { X ,S2)dk 

I'2|^A*.>'):Si,S2| = J ^F{l,n)dXdn 

^2 jg/'( a, y); Si, Sg j = , % ), a > 0-

L2{exp(a*)f (3i;,3');Si,S2} = f(si -0,82) 

•LglAjy,*);»!,S2} = FCsa.sj) 

i'2j^At,i);Sl,S2} = -P'(aSi,6S2), 0,6 >0 

L2{exp( yx -  py)f{x ,  3'): Si, «2} = F{sy + y, Sg + p)  

^^2 j 81, g2 j = -^ f (si, S2 ) 

(1.5.2.15) 

(1.5.2.16) 

(1.5.2.17) 

(1.5.2.18) 

(1.5.2.19) 

(1.5.2.20) 

(1.5.2.21) 

(1.5.2.22) 

(1.5.2.23) 

(1.5.2.24) 

(1.5.2.25) 

(1.5.2.26) 

(1.5.2.27) 
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Let g { x , y )  =  

i f  y  < x  

, then 

L2{g(%,y);8i,82} = -^-^F(si,s2). 

y + ̂ )d^;si,s2 
S1-S2 

F{Si,S2) 

Let g ( x , y )  =  

y > ^ x  . 

^j^exp(-^T])f(x-fT],y-T])dT] if y<^x 
, then 

1 F(Si,S2), ->0. 
a s i  +  6s2 +  y a  

XiGt — 
f(x,y)-j^fy(.x-4,y-^)d^ if y>* 

,then 

(1.5.2.28) 

(1.5.2.29) 

(1.5.2.30) 

j^fx(x-^,y-4)d^ ifj'<* 

^2{g(.X,yy, 81,82}= F(Si,S2 ). 
Si + 82 

7?)rf^d77;si,s2| = -^FCsi.Sa) 

'7)sin^rf$;si,s2| = (g + 

Jo^^cos^d^;si,821 = '%) 

For details we refer to Ditkin and Prudnikov [43] and Voelker and Doetsch 

[107]. 

(1.5.2.31) 

(1.5.2.32) 

(1.5.2.33) 

(1.5.2.34) 

1.6. Recapitulations on N-dimensional Laplace Transformations 

1.6.1. Definition and Basic Properties 

As original functions, shortly called originals , of the Laplace 

transformation consider the elements of the following space of functions: 

Definition 1.7: Let -^0. o be the set of functions from R" into C with the 
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following properties: 

There exists a point ôeR"such that f eLiCR";exp(-a. J)] and 

/'Û) = 0, (1.6.1.1) 

That is, if at least one component Xj of x is negative. 

& is equipped with the norm 

Remark 1; Because of property (1.6.1.1) the originals are sometimes written 

by means of the n-dimensional Heaviside function 0„in the form 

f(.x) = 0„(.x)fi(x), aceR" 

we usually omit the factor and we assume that originals f have the 

property (1.6.1.1). 

Definition 1.8: The n-dimensional Laplace transform of a function from 

R;into C is defined by means of 

jF(s)=L„[/"(a;);s| = ...^exp[.-s.x]f{x)dx.^dx2...dx^ 

= jexp[-s.%]/'(%)da: (1.6.1.2) 
r; 

The domain of definition of F is the set of all points s eC"such that the 

integral in (1.6.1.2) is convergent. 

Theorem 1.10. Let/• e Sj and /f- = {s:seC", 9îes>ô}, Fs = {s:seC", 9îes>â}. Then 

the Laplace integral (1.6.1.2) is absolutely and uniformly convergent on Ha. F 

y 
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is an analytic function on H- and it holds 

D'^FG) = (-l)^<*'L„{xV(^);s} (1.6.1.3) 

where Â = (Ai,A^,...,^)eNo. 

Corollary 1.1. Let / e JSj and let the Laplace transform F of/ be convergent at a 

point e if-. Then it also converges at = {s:s eC 9îes > 5Ke% = CTq} • 

Theorem 1.11. Let f,g&E^ and a,p eC. Then cf+pgeE^ and 

+Pg',s] = aLn[f:s)+fiL„lg:s}. 

Remarks: 

1. Instead of one sometimes considers a space of functions of 

Li^(R") with the property (1.6.1.1) and that there exists a point c eR^and a 

positive number M such that 

!/"(%){<Mexp(o.%), x > X  

Then for every ëeR" obviously É^tzE-^-. Therefore the statements of Theorem 

1.7 remains true, if Hz is replaced by Hz+e, êe R1, arbitrary. The image 

F =L^{f:s} are again analytic on H-. 

2. Even less restrictive conditions for originals are; 

(a) There exists a point 5" eC " such that Jexp(-a.x)dx is 
r;(v) 

convergent for every v e r; , 

(b) These integrals are uniformly bounded with respect to veR+, i.e. 

j e x p ( - a . x ) f ( x ) d x  < M ( a ) ,  
R?(v) 
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where M{d) is independent of v, and 

(c) There exists Urn - a . x ) f ( x ) d x .  
y-*#» 

This convergence is called bounded convergence of the Laplace integral 

(1.6.1.2). Then one can prove H~ to be a domain of absolute convergence of the 

Laplace integral (1.6.1.2) and again the Laplace transform is an analytic 

function on this domain. For details we refer to Voelker and Doetsch [107] 

and Ditkin and Prudnikov [43]. Obviously from f eE-it follows that L„{/';s) is 

boundedly convergent on Hz and from / e Ê- it follows that L„ {/is} is 

bounded ly  convergen t  on  H-,  

3. Instead of the N-dimensional Laplace transform (1.6.1.2) one is 

sometimes calculating the so - called N-dimensional Laplace-Carson 

transform: 

Symbolically we denote the pair F i s )  a n d  f i x )  with the operational relation 

F G )  =  P n ( s )  Jexp(-s.ïc)/'(ï)dx 

R? 
(1.6.1.4) 

n 
F i s ) = f i x )  or f i x ) = F i s ) .  

n n 

In this notation some formulas become more simple. 

Theorem 1.12.Let f eE- and i^(s)=L„|/'(ji:);s|. Then 

lim Fis)  = 0, j=l ,2  n ,0) =% Sj.  (1.6.1.5) 
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From (1.6.1.5) we get immediately 

Corollary 1.2. If s e H-, and |s| tends to +<» such that at least one of the 

quantities o) e {1,2,...,%} tends to +<», then 

_lim F { s )  =  Q ,  
|s|—>+00 

uniformly with respect to Ims = t. 

Remark 4: Condition (1.6.1.5) is a necessary condition for a function F, 

analytic in H-, to be the Laplace transform of an original from S-. So, for 

example, the functions sins and s", â e R'* \ R+can not be Laplace 

transforms. 

As T = Ims tends to ±<», the asymptotic behavior is given by 

Theorem 1.13. If / e ,then 

limf(ô)+i^)= 0, â>â, j (1.6.1.6) 

So for example exp(-pi(s)) can not be a Laplace transform, though it 

tends to zero, if %Sy tends to ±<», since it does not tends to zero, if Im tends 

to ±«>(9fesj >0,fixed). 

Theorem 1.14. If a function F, analytic on should be an (absolutely 

convergent) Laplace transform, then it must necessarily be 

lim F(s) = 0, J = 1,2,...,71, 
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if every Sj tends to infinity within , Gj > aj, the other variables s^, k*j 

being fixed (9îe (g* ) > a* ). 

In the above explanation we derived some necessary conditions for a 

function f to be an (absolutely convergent) Laplace transform. Sufficient 

conditions are difficult to formulate. For details we refer to Brychkov et al. 

[11, ch. 2]. 

1.6.2. The Inversion of the Laplace Transformation 

Theorem 1.15. Let eR; and let there exist —/" = D/, ; = 1,2 n,  
dxj 

D ^ f =  ̂  ̂ and Z),/'eC(R"), D ^ f e E ^ .  Then at each point of continuity of f  
OXjl 

the so called complex inversion formula holds 

V{re);x} = /(x) = (2;B)-" Jexp(s.x)F(s)ds, âeR:, â > a. (1.6.2.1) 
(5) 

Here the integral has to be understood in the sense of the principal value of 

Cauchy, i.e. 

f...(is= lim f(1.6.2.2) 
,i, PH- •'«i-'A K-iPn 1 2 » 

Definition 1.9: The integral at the right-side of (1.6.2.1)) is called the n-

dimensional inverse Laplace transformation of F. 
n 

Remark 1; In particular, if F i s )  = ]^Fy(8y), then from (1.6.2.1) we obtain 
j=i 

;=i 
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where 

Theorem 1.16. Let f e E ^  and F i s )  =L„{/'(jc);s}. Then at each point of 

continuity of f we have (1.6.2.1), (1.6.2.2), where the limit has to be 

understood in the sense of distributions of the space Z)'(R"). For details we 

refer to Brychkov et al. [11; secs. 1.3.1 and 2.3.1]. 

Theorem 1.17. Let f e E - ,  c ë > ï ï .  In addition, if F(ci+ir)=L^{f(xy,cc+ir] 

belongs to Lj with respect to f, then inversion formula (1.6.2.1) holds (a.e). 

Theorem 1.18. Let F  he analytic on and lim F i s )  = 0, if 9îes, > a, > a, , 
ISjl-»"> J J J 

j= 1,2 n, uniformly with respect to argisj). Furthermore, let ||F(s)|cJs 
(a) 

exists for every â > â ,  i.e. F e Lyioi). Then is a Laplace transform of a 

function f eE-^^, s sR", arbitrary, which is a.e. continuous and fis defined 

by the complex inversion formula (2.1). 

Remark 2: The inversion formula of the Laplace transform is of more or less 

theoretical interest. The complex inversion formula (1.6.2.1) may be of 

interest if the integral can be calculated by the method of residues in the one-

dimensional case. 

In proving theorems in Chapters 2 and 3, we use the process of the 

change in the order of integration of multiple integrals and their conversion 

to repeated integrals. For the justification of this process we use the following 

theorem due to Fubini as, given by Brychkov et al. [11, p. 8]. 
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Theorem 1.19. (Fubini). If f ( . x , y )  e LjCR" xR"), then for a.e. x  eR" we have 

f i x , - )  e LiCR") and for a.e. y  eR"*, f ( - , y )  e Li(R"). Furthermore, there exist 

the integrals j fix, y )(^ e )and j fix, y)dx e L^iR"*) and we have 
K" R" 

J f i x , y ) d x d y =  J j f i x , y ) d x  d y = j  j f i x , y ) ( ^  
8"*+" B" VR* R'VR" 

d x .  
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CHAPTER 2. THEOREMS EEGARDINGN-DIMENSIONAL LAPLACE 

TRANSFORMATIONS AND THEIR APPLICATIONS 

In this chapter, we will derive a number of theorems and corollaries for 

calculating Laplace transform and inverse Laplace transform pairs of 

N-dimensions from known one-dimensional Laplace transformations. 

Regarding their application, we provide several examples demonstrating 

ways of obtaining new N-dimensional transformation pairs. 

This chapter consists of five theorems in two sections. Section one is 

divided in two parts. Part one deals with original functions of the form 

F[2pj( x'^ )] and describes our formulation of a theorem the involving the 

Laplace transform of ftinctions of the form 

Pn(*~^) Fj[2pi( x-^ )], where j = 0,1, 2. 

Part two is concerned with image functions with arguments [pj^( )]2. In 

this part, we have formulated theorems involving the inverse Laplace 

transforms of functions of the form 

The next section contains theorems which deal with the inverse Laplace 

transforms of fiinctions in the form 

y[(Piy)r^] A [ ( p i ( s h r ^ ]  
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The theorems in this chapter are developed according to an idea obtained 

from papers of R. S. Dahiya[21 ] and [30 ]. 

2.1. Theorems, Corollaries and Applications Regarding N-dimensional 

Laplace Transformations 

2.1.1. The Image ofFunctions with the Argument of 2pi(x"') (Theorem 2.1.1 

and Theorem 2.1.2) 

This section begins with Theorem 2.1.1, which has three parts. We 

present the proof of only the first part in detail; the proofs of two other parts 

are provided in brief because all three are based upon similar ideas. 

Theorem 2.1.1. 

Let (i)L{/îat);s} = 0(s), and 

(w) L[x s) = Fjjs) for J = 0,1, 2, 

assuming that f(,x^) is a function of class O. 

(a) If 

(al) L(x"^0(-);s) = §(s), 
X  

(a2) L[x =  
x  

where x and x are also functions of class Q, and x '  exp(-sx-—)f(u)  
^ X ^ 

-A -i Oj. ' 
and % * exp(-sa:--—)/•(«) belong to Li[(0,oo)x(0,oo)]. 
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Then 

n-2 

lJ-~F,[2pi(7^)];Û= / - niiPiishf], (1.1.1) 

where n = 2, 3,..., N and 9le[pj^(s^)] > c and c is a constant. It is assumed that 

the integrals involved exist. The existence conditions for two-dimensions are 

given in Ditkin and Pnidnikov [ 43; p. 4] and similar conditions hold for 

N-dimensions, we refer to Brychkov et al. [ll;ch.2]. 

(b) Assume the conditions (i), (ii) and (al), and replace (a2) by 

(bl) L(*""|(4-);s) = f(s). 
X  

Then 

L  f  — ( 1 . 1 . 2 )  
J  ̂ Pn(s') 

where %e[p^^ i s  )] > d , a constant, provided the integrals involved exist for 

n  =  2 , 3 , N .  

(c) Suppose that the conditions (i) and (ii) hold. If 

(cl) L [ x  );s) = 0(s), 
X  

(c2) L(x~^e(-i-);s} = 5(s). 
X  

Then 
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n-2 

LJ—i^F2[2pi(?^)];il= S[(pi(shf], (1.1.3) 

~î "T 1 provided that 9le[p^(s )] > e, where e is a constant and where * ffC-j) is a 
X  

function of class Ci. Assume that the integrals involved exist for n = 2, 3,..., 

N. 

Proof (a); From (i), we obtain 0(s) = exp(-s t ) f ( t )d t  for 9îe s>Cq, where cq is a 

constant, so that 

x^<l>( .—) =  x^\  exp(-—)f( .u)du.  (1.1.4) 
X  J O  X  

Multiplying both sides of (1.1.4) by exp(-sa:) and integrating from 0 to <», we 

obtain 

f exp(-s*)a:~^^(—)d* = f [f ac~^ exp(-sa: - —)/"(u)rfu]£ic. 
JO X ^ 0  J O  X  

M The integrand x expi-sx-- ) f (u)  belongs to Li[(0,«>)x(0,o<»)], that, by Fubini's 

Theorem, interchanging the order of the integral on the right of (1.1.4) is 

permissible. By using (al) on the left and interchanging the order of 

integration on the right side of (1.1.4), we obtain 

|(s) = A«)[Jq * ^ exp{-sx-^dx\du, where 9îe s > and is a constant. (1.1.5) 
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A result in Roberts and Kaufman [87 ] regarding the inner integral in (1.1.5) 

be used to evaluate this integral as 

f x~^ expi-sx - —)dx = f x~^ expi-sx - ^ )dx 
JO X •'0 4x 

= exp(-2u^s^). 

Therefore, (1.1.5) can be written as 

|(s) = ;r^|^ u ^ exp(-2u^s^)fCu)du. (1.1.6) 

Using (1.1.6) in (a2), we arrive at 

f OQ 1 
7 7 ( s )  =  J  X  2  e x p ( - s x ) ( ^ ( - ^ ) d x  

JO a; 

=  JQ e x p ( - s x ) x  2 [ J ^  u  e x p ( - ^ ^ ) f ( u ) d u ] d x  (1.1.7) 

=  j r 2  [  [ f  x  2 t t  e x p ( - s x - ^ ^ ) f ( u ) d u ] d x ,  
J O  J O  X  

where SRe s > for some constant Ag. 

Again, because * 'u  '  exp(-sx-^^)f(u)  belongs to Lx[(0,oo)x(0,<»)], by Fubini's 

Theorem, we can interchange the order of integration on the right side of 

(1.1.7) to obtain 

- - 2 

7 ] ( s ) = n : ' ' f  u  2/(u)[[ X  e x p ( - s x - ^ ^  ^  ^  ) d x ] d u .  (1.1.8) 
JO JO 4x 

Using the previously mentioned result in Roberts and Kaufman [87 ] on the 

inner integral in (1.1.5), we can evaluate the integral inside the brackets. 

Consequently, equation (1.1,8) becomes 



r/(s) = 2 2 ;rj^ u *f{u)expi-2'^u*s^)du. (1.1.9) 

By substituting m = \)^ in (1.1.9), we obtain 

T](s)  =  2^7cj^ V ^fCv'^)exp(-2'v^s' )dv .  (1.1.10) 

Replacing S by [pi(s^)f and multiplying both sides of (1.1.10) by p„(s^), we 

arrive at 

)77[(Pi(s^]  =  2^;rv  ̂ f (v^)p„(s^)exp(-2^v^pi(s^))dv .  (1.1.11) 

Now we use the operational relation given in Ditkin and Prudnikov [43 ]: 

Si2 exp(-asi2 )=(rocj)"2 exp(-^) for i = 1, 2,..., n (1.1.12) 
4 X i  

Equation (1.1,11) can be rewritten as 

P r a ( s ' ^ ) n [ ( P i ( s ® ) ) ^ ] = — i >  ' ' f ( v ^ ) e x p ( - 2 v p i ( x ~ ^ ) ) d v ( 1 . 1 . 1 3 )  
" j r ~ p ^ ( x ^ )  

Using (ii) forj = 0 from (1.1.13), we obtain 

P j x ' )  

Hence, 

«=2 

J 2 ' p „ ( s ' )  
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where n = 2, 3, N. 

Proof (b): By our using (1.1.6) and (bl), it follows that 

C(s) = 7r^J^ [j^ X ^  exp(-sx-^^)f(u)du]dx. ,  where 3îe  s  > (1.1.14) 

_JL ' 

Clearly, x 'u  '  exp(-sx-^^)  belongs [(0,<»)x(0,oo)]; therefore, according to 

Fubini's Theorem, (1.1.14) can be rewritten as 

f i 2 
C(s)  =  71^ f  u  X ^exp(-sx-^^ " ^ )cbc\du, where 9îe s > JO JO 4x 1 

From the tables of Roberts and Kaufinan [87 ], we obtain 

s'C(s) = ffJ^ u ^f{u)ex.p{-2^ u  s^)du.  (1.1.15) 

Next, we substitute u = in (1.1.15) to obtain 

sV(s) = 2;rJ^ s v^)f{v^)dv. (1.1.16) 

"T 2 ~ 
Replacing s by [pi(s )] , multiplying both sides of (1.1.16) by and using 

(1.1.12), equation (1.1.16) reads as follows 

Pn(s^)Pi(s^)C[(Pi(s' '))^] = ^ — Jq exp^-2upi(3c~^)y(u^)du(1.1.17) 

Applying (») for J = 1 in (1.1.17), we arrive at 

Pn(s2)Pl(s2)a(Pl(s2))2] = ^ Fi[2pi(^)]. 
n .2=6 1 

I t  2  p^(%2)  
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Therefore, 

LPa(^^) J Pn(s^) 

where n = 2, 3,..., N. 

Proof (c): Following the same procedure as in parts (a) and (b), from (cl) and 

(c2), we obtain 

5(s) = u *f(u)exp(,-2^u*s^)du, where 3ie s > 

Now, we substitute « = "u^ on the right side to obtain 

6(.s) = 2^7cj^ uV(u^)exp(-2^u^s^)rfu, where 9îe s > Xg. (1.1.18) 

T 2 T 
replacing s by [pi(s )] , multiplying both sides of (1.1.18) by p„(s ), and using 

(1.1.12), we can arrive at 

Pn(s2)5[(pi(s2))2] = ——— L v2/(u^)exp(-2Dpi(j:"^))dD.(1.1.19) 

If we plug H i )  for J = 2 in (1.1.19), we obtain 

P„(s^)5[(pi(s^))2] = F2[2pi(^)]. 
n , -i. 

Tt 2 p^(%2) 
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Hence, 

. 2^ 
^^Ji'2[2pi(i->)];ï [ = -Y g[pi(s^)], 
Ak») J 2'P.(«=) 

where n = 2,3,..., N. 

Therefore, the theorem is proved. 

2.1.1.1. Applications of Theorem 2.1.1 

To show the applicability of Theorem 2.1,1, we will construct certain 

functions with n variables and calculate their Laplace transformation. 

Example 1.1. L e t f ( x ) = x \  Then 

r(-?-+i) 
^ ( s )  =  — ,  9 î e  s  >  0 ,  9 î e  u  >  - 4 ;  

s*  

Fj(s) = ^ forj = 0,1, 2; 
s  

rj) J. 
|(s) = + + %D> -2, 9îes > 0, and 

,„„nïim|i«3ii,3teu>-l,9îes>0. 
s  

Therefore, 

(a) 
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By the Duplication Theorem 

= ;r r(|+i)— , (1.1) 

J. 
where 9te t) > -1, 9îe [pi(s2)]>0, and/i = 2, 3, - , N. 

Also, 

^,,,„nïlin|i)n$),3,ev>-2,9î.s>o. 

Hence 

db) 

r r 1 -1 i)r(j+j)r(-!^) L_)  =^—r; s[  =  * 2 - .  

By the Duplication Theorem 

= ;r^r(f+f) . (1.2) 
Pn(S )[Pl(s )] 

1 

where 9leu>-2, % [pi(s'^)]>0, andn = 2, 3, , N. 

Furthermore, 

rf—+ 
d( .s )=—-—, 9îe "U > -4,9îe s > 0, and 

5(,),£a±zad>nïtE, % « > -3.9fe s > 0 
s 

so that 

y " = ^ \ (1.3) 

where S ^ e v > - 3 ,  S i e  [ p ] . ( s ^ ) ] > 0 ,  and ^ = 2, 3,- -, N. 
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Remark 2.1.1.1: Actually, the formulas (1.2) and (1.3) can be derived from 

formula (1.1) by replacing d with D + 1 and i) + 2, respectively. However, for 

many other examples these three formulas are different. The validity of the 

claim is illustrated by the following examples. 

Example 1.2. Assume that /(%)=sin(a%^). Then 

i _3 2 
0(s) = -^-s ^expC--^), 9îes>0, and 

2 4s 

Fj(s)= ^ sin [^^^tan for J = 0,1, 2 and 9îe 5 > I Ima I. 
, 2 2 V 4 s 
{s +a ) 

i 2 
Çis) = -^^,3{es>-'3{e^. (2.] 

4s+a 

•qis) = —/ S,(—), % a > 0, Se S > 0. (2.5 
a a 

Cis)=^s^ S (^), 9îe a > 0,9te S > 0. (2.3) 

(4s+a ) (4s+a ) 

where 9îe a > 0,9îe s > 0. (2.4) 

Hence, 

(a) From (2.1) forjr = 0 and (2.2), we obtain 

L i n 

sin[|tan — 
2Pi(z ) 
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where 9îe a > 0, 9îe [pi i s  )] > 0. 

(b) Using (2.1) for ji = 1 and (2.3), we arrive at 

-1 

sin[ftan — 
2Pi(x ) 

. Pnix^)i4pi^(.X b + 
; S 

2/1 , i, a Pn(s ) 
(2.6) 

where SRe a > 0, 9îe [pi(s^)] > 0; and 

(c) From (2.1) for j = 2 and (2.4), we arrive at 

V 

sin[|-tan ^—W] 
2Pi(» ) 

•; s > _ 

1 Ajl 
_(f)^f / 16 

%(8') 3c' ^ 

-T* A[f; ^[2; |, _[&#]), 

where 9îea>0, 9îe [pi(s^)]>0. (2.7) 

This Theorem can also be used to evaluate N-dimensional Laplace 

transformations involving generalized hypergeometric functions. 

"(a), 
Example 1.3. Consider f i x )  =  p F ^  (6). 

'P. ; kx Then 

<t>is)  =  
r(r+l) 

f+l f+l^ 9 F„ 
ia)p,T+l;k 
(6)q :7 

fO if/7 < g 
where p 5îe t > -1 and 9îe s > ^ 
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Fj(s)  = 2 '  p 
4t-ty-fi p+2^ q 

(a)^,iliZ±i iliM. 
Q>)a 

'P' 4 > 4 » 4t (3.1) 

where 9k T>—fory = 0, 3, 2; 9tes> 0 < q-V, and 

9îe (s + 2^ cos Ttr) > 0 (r = 0,1) if = q-1. 

(o).,T+l,T+ 
(6), ;7 

1 fOifp<9 
where p^q-l, 9te %> -- and % g > ifp = ^ • 

(c)p,T+l,T + j,T + j,T+|;^ 
(6). : (3.2) 

where p^q-Z, %e T>-^; 9îe s>0ifp<g-4; and % (s + 2A COS TCr) > 0 (r = 0, 1) ifp 

= q-Z.  

2T+| 
•(c)p,T+l,T+i T + |,T + f ;4A» 
(6). . a » < 

(3.3) 

where p<q-Z,  9îe T>-—; 5Rc s>0 ifp<(7-4; and 9îe (s + 2^ COS Ttr) > 0 (r = 0,1) ifp 

= g-3. 

0(s) = r(T+i)r(T+f) ^ 
T+l P+2^9 

(a)p,T+l,T+|;^ 
ib)a ; s 

3 fO, ifp <g-l 
wherep i <,-1, Ste t > -- and % s > jf ^ , ,.i 

5(s) = r(T+i)r(T+|)r(2T+|) „ 
2t+4 P+4^9 

•(a)p,T+l,r+f,T+f,T+-| 
(6). (3.4) 

where p<g-3, SRe T>-—; %e s> 0 ifp<ç-4; and 9îe (s + 2^ COS Tcr) > 0 (r = 0, 1) ifp 
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Therefore, 

(a) In(3.1)setj = 0 with (3.2), we have 

1 P+2^? 

;r^r(2T+l) 
— -J p+i^q 

Pn(s2)[Pi(s2)]4^+l 

(6). ; ; s 

( )p,T+1,T.+ ̂ , T+-|-,T+^, ; 
( ). ; 4k 

(3.5) 

where p<q-3,  % T>-^; 9îe [pi(s'')]>0 ifp<q'-4; and % [pi(8') + 2A cos ;rr]>0 

(r = 0, l)ifp = g-3. 

(b) From (3.1) forj = 1 and (3.3), we obtain 

1 

P«(«^)[Pl(« )] 
f:—1 9 

ff : r(2T+|)-

fj^\ 4r+2 4T4-4 .  
P' 4 > 4 > 

(6). ; s 

p+A^q 
(  ) p , T + l , T  +  - i , T  +  - | , T  +  | - ,  ;  
( ). ; 4À 

(3.6) 

Sa -L 
where /7<g-3, 9îe t>-~; 9îe [p^Cs )]>0 ifp<g-4; and % [pi(s^) + 2A cos 7tr]>Q 

(r = 0, l)ifp = ç-3. 

(c) Using (3.1) forj = 2 with (3.4), we arrive at 

1 —T 2T+1 ^ 
Pn(^^)[Pl(^ )] ^ 

( r,\ 4t+3 4t+5 
'•"•'p» 4 » 4 
(6)« 
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PnishiPiisht^"-^ 
p+i^q 

( )p, T+1, T+2 , T + ̂ , T + -J, ; 
( )« ; 4 k  

PiHs^), 

(3.7) 

where p^q-3,  9le t>-1; 9îe [pi(s^)]>0 if/?<g-4; and %e [pi(s^) + 2Aî cos w]>0 

(r = 0, 1) ifp =q-3.  

Example 1.4. Suppose that/"U) ='j^ Then 
[0 if 

1"" exof—-î^r) yÇ'^t" -S-) 
( j i is)  —, Fj (s) = ^ for J = 0, 1, 2 and where 9îe s > -<». 

s s 2 
(4.1) 

Also, we obtain 

^(s) = (—)^[l- exp(—^)], 9îe s > 0, 

Tjis) = -^[1- exp(-s^)], 9îe s > 0, 
s 

C(s) = -^[l-(l+s')exp(-s'')], %s>0, 
2s 

(4.2) 

(4.3) 

i  i  i  
0(s) = -^[l-(l+^)exp(—^)], 9îes>0, 

2s 

S (s)  = [4 - (s^ + 2) exp(-s^ )], % s > 0. 
8s 

(4.4) 

Therefore using Theorem 2.1.1, we obtain the following results: 

(a) In (4.1) set J = 0 with (4.2), we obtain 



Lp«(a:^)[fi(% ^)]2 
Erf 
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; s 
2 

n—1 
= ==- [l-exp(-pi(s2))], 

P„(s^)Pi(s2) 

where % [pi(s'')]>0, n= 2, 3,N. 

(b) Settings = 1 into (4.1) and using (4.3), we obtain 

1 [l-exp(.^a(p)]; 
— 4 

[Pnix^)Plix-^) 
» —1 

n 2 
Y" [l-(l+Pi(s2))exp(-pi(s2))], 

_ 2p„(s2)pi(s2) 

where % [pi(s')]>0, n = 2, 3 N. 

(c) We know 

y( | - ,* )  =  ̂ y (^ ,%)-X exp(-x)  =  in 'Erfx '  -x '  expi -x) .  

Setting jr = 2 into (4.1) and using (4.7) and (4.3) we arrive at 

2 4 4 4 

-1^,1 

(4.5) 

(4.6) 

(4.7) 

,-1^ 

B-l 
11 

J — [4-(2 + pi(s2))2exp(-pi(s2))], 
22.8p„(s2)pj3(s2) 

(4.8) 

where %e [/Ji(s')]>0, n= 2, 3, ..., N. 

2.1.1.2. Corollaries 

On choosing n = 2, we obtain certain corollaries from Theorem 2.1.1, namely: 
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Corollary 1. Assume the hypotheses of Theorem 2.1.1(a) except for condition 

(«), which is replaced by 

(ii)(a) L2{/W);J=FQ(8). 

Then 

l J  — =  1 ^ . nlisyi SRe [Si^ + S2^]> 0. 
I (zy) * ^ J 2 (sisg) 

Corollary 2. Suppose that the hypotheses of Theorem 2.1.1 (b) except for 

condition (ii) which is replaced by 

(w)(b) ):sj =i^j(s). 

Then 

L g f  — ^ [ ( S i ' + S g ' ) ' ' ] ,  9 î e  [ S i » + S 2 " ] > 0 .  
{(.xy) * ^ J 2(siS2) 

Corollary 3. Assume the hypotheses (i), {Hi) and {iv) of Theorem 2.1.1 (c) and 

replace condition (ii) by 

mo 4{zW);s}=F«(8). 

Then 

= 1 ^ 1 y[(si^ + s2^)^]. 9îe [Si^+S2^]>0. 
Ua:^') * ^ i 2 (SjSa) 

2.1.1 .̂ Examples Based Upon Corollaries 1,2, and 3 

Example 1.1.1. Let n-2, from Example 1.1, the following results are yielded 

(a') 
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or 

where 3le u > -1, %e [s^^+«2^ ] > 0. 

m 
I" 1 1 i^.v 3, 1 

sr>si»«21 = JT n—+-) — 
« y 

or (1.2') 

where 3le w > -2, %e [si^ + Sg^] > 0. 

id) 

—r-^——.suSg] = ffV(-^+2) 

or (1.3') 

5,1=^(^+2) r ' 
».(* + y)~^ J ^ (SiS2)''(Si^ + S2^)''^^ 

where 9iev> -3, %e [si?+sg^l > 0. 

Remark 2.1.1.2: If we let v = 0 in (1.1'), we obtain 

i  

"J r.^i.szl -
[ ( x + y f  J  (SIS2)'(SJ+S2^) 

From (1.1") and the following relations 

L2{xF(a:,>');Si,S2} =—^/"(Si.Sg), 

Lg{)'F(z,)');Si,S2} where /(si,Sg) = Lg{f(%,)');,Sg} 

(1.1") 
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We conclude that 

2iSiS2f (Si^+Szh 
(1.1"') 

Example 1.2.1. In Example 1.2, if ;i = 2, the following results can be obtained 

(a') 

[4(* + y) +a (xy)  ] J ais i s^)  

where % o > 0, 9îe [si^ + sg^l > 0. 

(b') 

(2.5') 

5 )  2  2  2  i  ' 1 »  2  
|^ [4(%+)' )  +a  ixy)  

where SRe a > 0, 9îe [sj? + sg^l > 0. 

(C) 

[4(%+y) +a (xy)  ]  (sisg) Sa'  o .  

9ÎA /I î» 0 Fs-i 4- fl 

2= 

(2.6') 

+;r ^ 

where SRe a > 0, 9îe [sj^+«2^1 > 0-

.=©!4 
(S1S2) Sa" 0 

_ _ » ,  1 1,4 

(2.7') 

Example 1.3.1. On choosing re = 2, we obtain the following formulas from 

Example 1.3, namely: 

(a') 

(xy) 
.2T 

(%+y) 
2T+j P+2^ <7 :si,s2 
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= 7t r(2T+i)-
(SlS2)''(Si^+S2^) 

4T+1 P+4'9 
(a)p,T + l,T+f,T + |,T + |; 4k 

(bh 

where p<q- z ,'3tex>-^', 9W + %^]>0 ifpgg-4; and3îe [sj^ + + 2A cos «r]>0 

(r = 0, 1) ifp = g-3. 

(b) 

(3.5') 

i. ixy) 
2T+-J 

'21 / ,2T+1 P+2-^9 
[ix + y) 

(n\ 4T+2 4T+4 . o 
^«•'p » -4^ ' ' if-SLr 
(6), ; ;si,s2 

= ABr.|). / , ,wP. 
(SiSg) (g;' +62') 

(a)p,T + l,T+i,T+f,T+|; ^ 
(6)0 . , 1 1.4 >(Sl2+fia2) 

where p ^ q - 3 ,  9îe T>-—; % [sj» + v]> 0 ifp^ç-4; and9îe [si' + gg' + 26 cos 7rr]>0 

(r = 0, l)ifp = g-3. 

(C) 

(3.6) 

r,JJ2) 
I (%+y) 

2t+1 

2t+| f+2^? 
Y„\ 4T+3 4T+5 . 2 
&' ' • ' ;si.s2 i 

= a r(2T+2)-
(«182)^(81^ + 52^)"*"^ 

J. J. 

(a)p,T+l,T + '^,T + -j,T + -x; 4k 

(b)q «(«li+gji/ 

where p < q - 3 ,  9îe t>-1; % [Si» + s2»]>0 if/j<q'-4; and % [gj» fgg' + 2 k  cos ;ir] > 0  

(r = 0, 1) lfp = g-3. (3.7') 

Example 1.4.1. Let us choose ;i = 2 in Example 1.4, we arrive at the following 

results in two-dimensions. 

(a') 

i x + y )  
Elf 

(Sigg) (gi^+ggt 
[l-exp[-(gi  ̂+82^)]], where 9?e [si  ̂+ s2^]>0. (4.5') 
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(b') 

i 7t 

2(5182)" (Sj^ +82^) 

(b") Because 

-[l-d+Si»+s2»)exp[-(si2+s2»)]], where 9le [si' + ggz]>0. (4.6') 

Ujc+>') 

then (4.60 also can be written as 

i n 
1 ;si,&2 L - X 

(SiS2)''(Si^ + S2^) 

i n 
Hi 1 4T+3 

2(8182) (Si* +82^) 

where % [si^ + 82^] > 0. 

(c') If we choose n = 2 in (4.8), we obtain 

: + .y\il ra:+vii 

|l+(l+Si2+s22)exp[-(si2 +82^)]], 

(ay) 2 4xy Axy 4:Xy :S| 

= (£)*. 

^ 8(sis2)'{s,i+ «2^)'' 

where 9îe [si^ + ] > 0. 

[4 - (2 + Si2 + Sg') exp[-(si2 + 82')]], 

(4.6") 

(4.8') 

Remark 2.1.1.3: The results that are established in Examples 1.2.1,1.3.1 and 

1.4.1 are all new formulas in two-dimensions as well as the corresponding 

results in n-dimensions. 
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2.1 .̂ The Original ofFunctioiis with the Argument [pi(s^)]  ̂

The goals of this part of Section One are to obtain the inverse Laplace 

transformations of Amotions of the form jyCCpiCs^))^], 

_ _ Pn(s^) 

[pi(s^l ^[(p^(g2 ))2]^ and ^ and establish several new 

Pn(s') 

formulas for calculating inverse Laplace transform pairs of N-dimensions 

from known one-dimensional Laplace transform. Regarding the application 

of these formulas, we will consider several examples demonstrating ways of 

obtaining new N-dimensional transform pairs. 

Theorem 2.1.2. 

Suppose that (i) L|/(x); s) = ^(s) and that 

(«) L[x^f(x^);s] = H^(s) foTk= 1,2,3. 
-I -1 

Let f(x^), X and* ^(-y) belong to the class Q. 
X 

(a) If 

(al) L^x = %(s) and 

(a2) ^5(-4-);s| =11(5), 

i 
Let X exp(-sa:-^)/'(u) and x expi-sx-^^)f(.u) belong to Li[(0,<»)x(0,00)]. 

Then 

I Pn(s') J 
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= — {H^[2pi(x-^)] + 4p^(x-^)H2[2p^ix-^)]]. (1.2.1) 
n 2 Pnix^) 

It is assumed that the integrals involved exist. The existence conditions for 

two-dimensions are given in Ditkin and Prudnikov [ 43; p. 32]. Similar 

conditions are also true for N-dimensions . For details we refer to Brychkov et 

al. [11; ch.2]. 

(b) Assume that the conditions (0, (ii), and (al) hold. If 

(bl) = ^(s), 

. 9 ^ suppose that x expC-sx—belongs to Li(0,oo)x(0,«»)]. 

Then 

-J 1 

L/'i '"''"-J-' C[(pi(s^))^];z 
n  

L 

^ —{|iîi[2A(?ï)] + 4pi(?ï)iÎ2[2A(ï^)] 2=2 i '2 
% 2 Pn{x^) 

+8[pi(a:-^)f^3[2pi(%-^)]}, (1.2.2) 

provided the integrals involved exist. 

Proof (a): First, we apply the definition of Laplace transform to (i) to obtain 

0(s) = e\-p(.-st)f{t)dt, 9(e s > Co, such that 

f :k "(/>(—)exp(-sx)c?a:= I" [f a: ^exp(-sj:-—)/'(u)du]rfa:. (1.2.3) 
jo X JO JO X 
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-4 „ 
The integerand x  exp(-s*-—)/"(«) belongs Li[(0,oo)x(0,oo)], and thus applying 

Fubini's Theorem on the right hand side of (1.2.3) and using (al) on the left 

side of (1.2.3) yields 

' expi-sx-^dx^du, 9le s > Cj, where ci is a constant. (1.2.4) 

From the tables by Roberts and Kaufman [ 87], we obtain 

|(s)=;r^s^J^ exp(-2u^s^)/'(u)d«, 9?es>Ci. (1.2.5) 

Using (1.2.5) in (a2), we arrive at 

7j(s) = [j^ X ex^{-sx-^^)f{.u)du\dx, 9îe s>Cg, where C2 is a constant. (1.2.6) 

Because x exp(-sx--^^)/'(u) belongs to L i[(0,oo)x(0,<»)], we can apply Fubini's 

Theorem on the right of (1.2.6) to interchange the order of integration to 

obtain 

Tj(s)=;r^|^ /'(a)[j^ exp(-s% - (1.2.7) 

Again, we use Roberts and Kaufman [87] results on the inner integral in 

(1.2.7), which brings us to 

s^7?(s) = -^J^ /(u)[l+2^u''s^]exp(-2^u''s^)du. (1.2.8) 

By substituting u = \? into (1.2.8) and then replacing s with [pi(s^ )f  and 

multiplying by p„(s'), we obtain 
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P n ( s ^ ) [ A ( 8 ^ ) ) ^ ]  =  t f ( u ^ ) [ l + 2 ^ u ^ p i ( s ^ ) ] - p „ ( s ^ ) e x p ( - 2 ^ y ^ p i ( s ^ ) ) r f u ,  ( 1 . 2 . 9 )  

Using following two operational results given in Ditkin and Prudnikov [43 ] 

4 2 
s,' exp(-cs{^)=(ffici) exp(—for i = 1, 2,..., n and 

2 

s,exp(-as,-^)=-^a:i"^exp(—for i = 1, 2, ..., n, 
'2%' 

equation (1.2.9) can be rewritten as 

^[(Pi(s2))^] = ^ — {[ vf{v^)exg{-2vpi{.x~^))dv, n 2=  ̂ . •'0 
It 2 p^(%2) 

+4pi(x~^)J^ v^f{v^)exg{-2vpi{x~^))dv], (1.2.10) 

From (ii) for k = l ,2, equation (1.2.10) reads 

= -77-^--Y-{-^i[2Pi(ï^)] + 4pi(ï^)iÏ2[2pi(i^)]; 

therefore, 

I p,(s') 

= ^ ̂  — [iyi[2pi(3c~^)] + 4pi(a;"^)g2[2pi(3:~^)]}, 

^ ^ Pn(^^) 

where /i = 2, 3 N. 

Proof (b): From (1.2.5) and (bl), we find 
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f(s) = ;r^J^ [exp(-s% - (1,2.11) 

i i 
where 9k s > Cg. By the assumption *' exp(-s*-^^)/'(u) belongs to 

Li[(0,oo)x(0,<%»)], apply Fubini's Theorem, the order of the integral on the right 

side of (1.2.11) can be interchanged to obtain 

i  
Cis) = 7i X ^exp(-sx--^^)rf;c]c?u. (1.2.12) 

By using the result from Roberts and Kaufman [87 ], we can evaluate the 

inner integral in (1.2.12) and obtain 

s'C(s) = -^[[ [3 + 6-2'u''s'+8u's]/"(u)exp(-2'«*s')rfu]. (1.2.13) 
4 ^0 

• 2 ^ 2 Now, we substitute u = '\i into (1.2.13) and then we replace s with [piis )] and 

multiplying both sides of (1.2.13) by p„(s^) to find 

)[j3i(a^)]^C[(f 1 (s^))^] = ^{3vf(v^)p„(.s^)exp(-2^v^pi(.s^))dv 

^  fo» T 2 ^  ^  .  T  ^  " i v  
+6-2 V f(v )pi(s )p„is )exp(-2 v Pi(s ))dv 

+ Sj^ t)^/'(u^)[pi(s^)]^;)„(s^)exp(-2^u^Pi(sS)du}. (1.2.14) 

If we let -2' v'for Î = 1, 2,..., n then (1,2.14) can be written 

/'b(s^)[Pi(s')]®C[(pi(s^))'^] = -^{3J^iy(u'^)-Si^exp(Ai)-S2^exp(^)s„^exp(A„)du 

+ 6-2^uY(u^){[siexp(Ai)-S2^exp(i42)... s„^exp(4,)] + ... 

+ [s„ exp(4,)-Si^exp(Ai)... s„_i^ exp(4,_i)])rft; + 8[J^v^fiv^) 

{[siïexp(Ai)s2^exp(^) ... s„^exp(^)]+ ... +[s„îexp(A„)-Si^exp(Ai) 

... s„_i^exp(4,_i)]}du + 2j^uV(u'^){[siexp(Ai)-S2exp(A2) 
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•Sa^expCAg)... )]+[&iexpCA^)-expCA^)-Sg^expCAg) 

... s„2exp(4,)]+ ... +[siexp(Ai)-s„exp(4,)-S22exp(i42)... s„»exp(4,)]} 

+{[s2 expC^lg) % exp(^).si^ exp(Ai)... sj exp(vl^)] 

+[s2exp(^)-S4exp{iit)-Si^exp(Ai)... s„»exp(A„)]+ ... 

+[s2exp(Aj)-s„exp(A„)-Sia exp(Ai)... s„_i» exp(A;,_i)]+ ... 

+[s„_iexp(4;,_i)-s„exp(4,)-Si»exp(Ai) ... s„_2» exp(A„_2)]}}du. (1.2.14') 

Now we use operational results given in Ditkin and Prudnikov [43 ]: 

-1 2 

exp(-asi^)=(«,-) ' exp(—for i  = 1, 2 ,  n ,  
• 4xi 

2 

Si exp(-as{^)=-^*f» exp(-^) for i = 1, 2, ..., n, 
r 
2 _ 2 

S f ï e x p ( - a 8 ( i ) = - — e x p ( — ^ )  f o r  i  =  1 ,  2 ,  n .  

Equation (1.2.14') can be evaluated as 

=^ L vf(v^)exp(-2vpi(x~^))dv 

+ 4pi(x v^f(v^)exp(-2vpi(x~^))dv 

+ 8[pi(j£:"^)]^ J uV(t^^)exp(-2t>Pi(:*:~^))<ii>}. (1.2.15) 

Using (w) for ^ = 1, 2, 3, equation (1.2.15) can be written as 

i?«(s^)[A(5^)]®C[(Pi(s2))2]=^-^^^{|fl'i[2pi(?ï)] 
" ;r 2 p^(j(:2) 

+ 4pi(x-^)Il2[2pi(^)]+ 8[pi(^)fff3[2pi(^)]}. 

Hence, 
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PnCs^) 

^  .  _ / r o  » .  M 7  r o » ,  Jfi[2pi(%-")] + 4pi(%-")g^2[2pi(%-")] 

+8[pi(%-bf^3[2pi(%-")] -Il 

2.1.2.1. Applications of Theorem 2.1.2 

Next we will provide examples of the applications of Theorem 2,1.2. 

Example 2.1. Suppose that/•(x) = cosh(a*S: then 

i 2 
(pis) = expi^)Eif{-^)+-, 9îe s > 0. 

2s' 2s* " 
^ n ^ [(s - a) +(s+a) ] for & = I, 2, 3, and % s > |%o|, and 

g. . ir 1 1 1 _ [0 if9îea>0 
|(s)- n [  ̂  ^ ], 9îes>if%a<0' 

l(s) = -i|^2 'tl-|<f)"s*expAw^,j(f)],|arg<.|< J, 

f(s) = |(|r exp(i)W^,j(^)],|arga| 9i4l " < 0 ' 

Hence, 

(a) l/ 
a,v2 . t.x2 

12 

5;r Pnix ) 

J 2" " _ 
)-a] ̂  + [2pi(* ^ + a] ^] + Ap^{x S{[2Pi(z ^)-a]~^ + [2pi(j: b + 

where |arga|<;r, %[m(sS]> SjViS°<0'" = ^ ' "• d-D 



67 

0)) L -1 

n 
—^[l-:^(-y[f>,(s')fexp[MÎ>L] .w_̂ ,[2(2i(2V]].; 

i2__{|{[2p.b-')-af+[2,.fa-')+ar) + 4p,(<"'){[2ftto'')-<.f 42p,fa-V«r), 
lOSff p„(* ) 

+ 24 [pi(% {[2pi(% ^)-c]'^ + [2/?i(* ^) + o]"^}}, 
~ fO ifSRga^O 

where \arga\<n, 9îe[pi(s )]: max[0, Sîe^) if 9îe a < 0' (1.2) 

Example 2.2. Replacing /"with the following 

(i) /(%) = Jo(a%S or 

(io 

in Theorem 2.1.2, we arrive at the following N-dimensional inverse Laplace 

transformation pairs: 

_/>„(« ) a a ^ 

a a® ^ 4 4 4 4 g 

= ^ ^ -r ([(2/>ifa"')f+a^r' 2FI[1,-|;1; ^ 
/r Pn(x ) [2Pi(x )] +a 

+32pi(* ^)[(2pi(ac +/] ' =£— -]}, 
^ [2p,ix~')}\a 

where 9le a > 0, 9îe [pi(s^)] >jlm o|. (2.1) 

(b)(£) £^^-l{[Pi(sy {^U(7)]'^ i, 
P„(/) ° ° 

+£l(2)'^(_3 |) 
a c t  4 4  4 4 4  
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a a 4 4  4 4 4  g  

° .ji ' t V+»^r' 2Fi[J,-|:1: =-^— 

+ 8pi(* ^)[(2/?i(* ^)f +a] '  -] 
^ [2p,(%-V+a 

+ 48[pi(a: ^)f[(2pi(3c ^ 2^i[2,-l;l; ==-^ -]}, 
[2pi(* )] +£I 

where SRe a >0, 9îe [pi(8^)]>|Im a|. (2.2) 

(a)(ii) L "H 
" . T.r . }.•,*"+* ' 

Pjs )[Pl(S )J 

(o)p,«+41 

(bL 
:ï} 

{p+2-^9 
2ff '  r(2a+j)p„(xh[pi(x 

( )p,a + f,a + f ; ^ 
( ). - 1 2  '[PlC* )] 

+8(a+1) p+2^<7 ( )p,a+j,a+j ; ^ 
( ). -1 3 »[Pi(* )] 

). 

where/»5g-3, 9lea>-l, 9(e[pi(s^)]>0 ifp^g -4, andSRe [pi(s^) + 2/ cos sr]>0 

(r = 0, 1) ifp = g-3. (2.3) 

(b)(w) L "M (o)p,a + j,a + j,a+j,a+-^; ^ 
(6). '[Pl(s')l' 

;*} 

L. f3 F 
V o, , ^,2a+2 ^2 ' 

r(2a+|)p„(* )[pi(* )] 

( )p,a+|-,a+-| ; i_ 
( )a -1 2 '[Pl(x )] 

+4(«+l) p+2^q ( )p,a+f,a + f; ^ 
( ). -1 ,j '[pi(* )] 

+4(a + 1)(20! + 3) p+2^q 
( )p,a+'|,a+'| ; I _  
( ). 

wherep<g-3, SRe a>-x 9îe[pi(s^)]>0 ifp<ç-4, andSRe [p,(s') + 2Z cos sr]>0 

( r  =  0 ,  1 )  i f p  =  g - 3 .  (2.4) 
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2.1.2 .̂ Corollaries 

A number of corollaries can be derived from Theorem 2.1.2 in two 

dimensions: 

Corollary 1. Suppose that the assumptions of Theorem 2.1.2(a) hold except for 

condition Hi) which holds for k = 1, 2. Then 

2 I aW J ^xy) * ^ ^ ^ 

where 9îe [si' +S2^]>0. 

Corollary 2. Assume the hypotheses of Theorem 2.1.2(b). Then 

^{|ffi[-+-]+4(i+-)H2[-+-] + 8(i+i.)'jf3[^+l]), 
i  2 X y X y X y x y x y 

(*y) 

where 9îe [siHs2^]>0. 

2.1.2.3. Example Based Upon Corollaries 1 and 2 

Example 2.2.1. Suppose that, in Corollaries 1 and 2 f{x)  = x* pF^ 

the results in Example 2.2(ii) read 

( )p ; 
( ).; Ix . Then 

-1 

. 81^2^(.Sji +S2^) 
a+1 p+4'̂ q 

(n\ g+6 a+7 a+9 . 

(Wç î(*|i+sji) 
• .x ,y  

ixy)  

L 271 n^){x+y) 
I f+2^ <7 

a+2 a+3 , («)p,T,-2 
(6). + 8(a+l) p+2p'q (6), 
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where p<9-3, 9îe «>-1, 9îe [Si»+S2']>0ifp5(7-4, andSîe [sj» + S2» + 2/cos;Er]>0 

(r = 0, 1) ifp = g-3. 

-1/ L 
I. 81^82^(81^ + «2^) 

a+1 P+4  ̂ 1 CW(j t (jji+»ji ) 
;x 

(xy) 

2A(-S^)(x+y) ' I 

+4(a+l)(2a+3) ^+2^, 

^ 12 (6). ; 

(6). 

+ 4(a+D p+2^q 

, where p<q-3, 9îea>-l, 

% [Si^ + S2^]>0 ifp<g-4, andSîe [sj^+ «2^ + 2/cosr;r]>0 (r = 0, l)ifp = ç-3. 

Theorem 2.1,3. Assume that f (x  ) ,s  and x are functions of 

class O. 

Let (i) L{/(%); s) = ^(s), 

iii) L[x~^<i)(.^);s] = ̂ (s), 

(in) Llx ^|(-V);s) = ®(s), 
X 

(iv)Uxf(x\s]=ms), 

where* exp(-s*-j)/'(u) and x exp(-sx-'^)/'(u) belong to Li[(0,<») x(0,00)]. 

Then 

-1 

I P n ( s )  
^ II [2p i(x~')] .  

, i, n p„(* ) 
(1.3.1) 

It is assumed that the integrals involved exist for n = 2, 3,..., N, 

Proof; First we apply the definition of Laplace transform to (i) and we obtain 

0(s) = J^exp(-si)fU)(it, 9îes>Co where cq is a constant. 
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So that 

^ exp(-sx)0(^)cte = [£ X ^ exp(-sx- j ) f (u)du]dx (1.3.2) 

The integrand x exp(-sx-f)f(u)  belongs to Li[(0,=«)x(0,=o)], so, by Fubini's 

Theorem, interchanging the order of the integral on the right side of (1.3.2) is 

permissible. By using (ii) on the left side and interchanging the order of 

integration on the right side of (1.3.2), we obtain 

|(s) = £ X '  exp(-sx- j )dx]du,  where 9îes>Ci and ci is a constant, (1.3.3) 

From the tables by Roberts and Kaufman [ 87 ], (1.3.3) reads 

|(s) = (7)^Jj j  f (u)exp(-2uK^)du.  (1.3.4) 

Plugging (1.3.4) in ( i i i ) ,  we arrive at 

i r* r- ~i i û(s)  =  fr  [j^ X f(«)exp(-s*—9le s > % and eg is a constant. (1.3.5) 

By hypothesis, x  V(«)exp(-s*--^) belongs to Li[(0,«>)x(0,«>)]. Using Fubini's 

Theorem, we interchange the order of integration on the right side of (1.3..5). 

We then use a well known result in Roberts and Kaufman [87] on the 

resulting integral on the right hand side of this relation to obtain 

0(8) s'^f(u)exp(-2'u*s^)du, 3{es>C2. (1.3.6) 

By substituting u = v^ in  (1.3.6), we obtain 

s^0(s) = 2/rj^ vf(v  )exp(-2^v^s^)du,  % s > Cg. (1.3.7) 
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Next, we replace s with [/Ji(s^)f and we multiply both sides of (1.3.7) by p„(s^),  

we arrive at 

pi(s^)p„(s^)0[(pi(s^))^] = 2;rj^ vf(v^)pn(s^)exp(-2^v^pi(.s^))dv. (1.3.8) 

Using the following known result from Ditkin and Prudnikov [43]: 
2 

4Xi-

Equation (1.3.8) can be rewritten as 

exp(-as,-^) = (mr,) 'exp(-^) fori = 1, 2, ..., n. 

^  ̂ — jT vf{v^)expi-2vpi{x ^))dv.  (1.3.9) 
K 2 p„(x2) 

Using iiv) in (1.3.9), we obtain 

Pi(s')pj8')^[(pi(g'))^]= ^ -J a-[2pi(?ï)]. 
"-JC ^ Pn(x^) 

Therefore, 

=^e[(Pi(s^))^];^^= -  H[2p,(x-^)]. 
. P n i s ^ )  J  7 1  ^  p ^ i x ^ )  

2.1.3.1. Applications of Theorem 2.1.3 

Regarding the application of Theorem 2.1.3, we provide a few examples 

demonstrating ways of obtaining new N-dimensional transform pairs. 

Example 3.1. Suppose that f {x)  =  {7 jx)  ^cos[-z^]. Then 
a 

-1  
( l> is )  = s exp(—5"), 9îe s > 0. 
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| ( s )  =  — 9 î e s > —  
s + 4  a 

2 i , 
0(s) = S  (as) ,  9le a > 0,5Re s > 0. 

2 -1, J 

g(s)= 2 ^ 2 '  3 î c s > 2 | l m i | .  
s +0 

Using (1.3.1), we arrive at 

S [a(pi(sSf ];* 
p. (A"-* 

-1. 
2p^(x ) 

7 t ^ p ^ ( x ) [ a  p ^ ( x  b + 1 ]  

where 9?e a> 0, 9îe [piCs^)] >0, n = 2,3, --iV. 

Example3^. Let f(x)=x''G^'^(.x\']}'"'''h'), where 

h+k<2(m+n) ,  % a>9îe6j + l,y= (The same formula is valid if 

h < k  (or A = A and 9k s> 1) and 5Re a<9îe bj  + l,y = 1,2 m.)  

Then 

^(s) = s° |args| <(m + n—^h-^k)7i. 
i / j  )  .  . .  9 C/^ 

|(s) = s ''Gf"+2.A'^(-i|"~2'«'®i'-'°A), |args| < ( m  +  n — ^ h - j k + - ^ ) 7 r .  
"l > • • • > "A 

0(s) = ;r"^2""s''"^Gr;l7(4-l "" ̂  '«'2 > "2 
» "1,- ,0* 

where 9îe (l-a)+2min 3{ebj>0  ( j=  1,2,...,A), 3îes>0. 

iffc) = where 

9k (2-2a)+ 2 m in Hebj  >0 (j= 1,2 k), 9les>0. 

Now we apply Theorem 2.1.3, to obtain 
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-1 [pi(s ^ 

pjs^) '  ^ 

K p„ix ) 
(2.1) 

where 9îe a< l+2inin SRebj (.j=l,2 k), 5Re [pi(s )]>0. 

Corollary 1. Let n = 2 and assume the hypotheses of Theorem 2.1.3. Then 

L  Y = — +  %  ( S i = + S 2 ^ ) > 0 .  
I J frvf 

2.1.3.2. Examples Based Upon Corollary 1 

Example 3.1' 
~i 2 Assume that fix) = {Tcx) cos(2%'). Then from Corollary 1 and Example 

3.1, we obtain 

-ij Miabl s J .ÊfWkM, (1.1) 
[ (sisg) J (A: + 3') +JC J 

where %e (si^ + ) > 0. 

Example 3.2' 

In Example 3.2 the Inverse Laplace transform (2.1) in two dimensions 

reads 



75 

J j. 1 (Si'+S2') 
"^A+4,A V-(s,ï+sjï) b^,. . . ,big 

(2.1') 
(ay)* ^ ^ 

where 3îe a<l+2niin Siebj  0' = 1,2 A), 9te (sj»+S2»)>0. 

Remark 2.1.2.1: The formulas (l.l')and (2.1') both are new formulas for 

calculating the Inverse Laplace transformations in two dimensions. 

2.2. The Original of Functions with the Argument )]  ̂

Our considerations in this section will center on the inverse Laplace 

transformations of functions of the form ^ and 

The results obtained in Theorems 2.2.1 and 2.2.2, are easily adaptable for 

obtaining two dimensional inverse Laplace transform pairs. We have, 

therefore, given several new inverse Laplace transformations. 

Theorem 2.2.1. Suppose that fis a function of class Q. 

If 

(i) L {f(x);s] = (t>(s), 

(ii) -^{s V;^)} = r(s)» 

(in) L(3c^f{2xy,s} = G{.s), 

(iv) L [x^f(2x^);s} = H(.s), 
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d and suppose that — {s 0(^)} exists for 9îe (s)>Co, where Cq is a constant. 

Then 

I '];jcl= {(ra+^)G[pifa ^]-2/?i(a: ^)H[pi(x ')]}, (1.1) 
Ufttf)]' J 

where n = 2, 3,..., N. It is assumed that the integrals involved on the left 

exist. The conditions for two dimensions are given in Ditkin and Prudnikov 

[43; p. 32]. In general, for n variables, we have the same result under 

analogous assumptions. 

Proof: First we apply the definition of Laplace transform to (i), to obtain 

^(s) = £ exp(-gf)/(f)df, SKe s > Co, (1.2) 

From (1.2) and iii),  we obtain 

®^7(s)=t^(-)+-—^<>(-)= f (~-)exp(--)/"(u)du. (1.3) 
2 s s (f(-) s  Jo 2  s  s  

s  

Replacing s with [pi ( )]"1 and multiplying both sides of (1.3) by Pn(s), we 

obtain 

Pn (s) [pi ( )] y[(pi ( )) \^pn (s )- upi ( )pn (s)j 

• exp (-upK )) f{u)du. (1.4) 

Next we use the following two well-known operational results in Ditkin and 

Prudnikov [ 43 ] 
. 1. n -1 r 

, fori= 1,2, . . . ,71, Si exp(-asf ) = Xi ^ exp 
2;r' I 
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sf exp(-as? ) = -—^ 2 
2 \ 

a'-2xi -| f a — H -4X, 4®' 
, fori= 

«/ 

to obtain 

(1.5) [Pl( a' )] " y[(Pi ( s" )) ^ 

|(l+2n)£ m" exp^--^Pi(a:~^)j/"(M)c?M-Pi(5:~^)£ exp|^--^p,(a:"')j/(u)(iuj 

u 
Substituting V = — and using (Hi)  and ( iu)  into (1.5), we arrive at 

4 

P„p) Pi(s^)  K n Pi(s^ ) J  

Hence 

. 1  
"n ( T-

-1" 

. CPiCs )f 
V J . 

-2pi(x' ')H 

where n = 2, 3,..., N. 

22.1. Applications of Theorem 2 .̂1 

We now present some direct applications of the Theorem 2.2.1, Initially 

we consider applications on some functions of n variables and obtain their 

inverse Laplace transforms in n variables. As these functions and their 

transform functions are usually very complex in nature, we will also 
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consider functions having only two variables and their corresponding 

transforms. 

Example 2.2.1. The functions used for f{x) in this example are 

exp(-a*), 9{e a>-1, Ina:, and* pFg . Then using Theorem 

2.2.1, the inverse Laplace transformations obtained are given in 

N-dimensions in the respective order. 

1 
iw-l 

l+o(pi(s )) 

•a-2 

;*i 

a-n+l 
^ 2 2 r(«+«+l)p,(% z) ( a^_ ) 

1 . 

(n+-i) D 2a 
2 —ot—fi—1 

Ui(^)J 

( « + n +  l ) ( a  +  n + 2 )  
D —CK—f%—3 

f  2 1 

-<1
0» 

2a IS 
1 

(1.1) 

where 5Re a>-n-l, 9îea>0, 9?e [p^Cs )]>-3îea, n = 2, 3, ..., N. 

In %?i(sS-2 

2r(^) 

p ^ i x )  p y i x  ') 

n+1 
-1. 

where SRe [pi(s )]>0, n = 2, 3, ..., N. 

l n [ p i ( a :  ) ] - l n 2 k  

PiW) 
2^0 -71,1; 8n 

[pi(s^)} 
"2^0 -n + l;2; 

— ^+1 
fr^Pn(x^)[pi(x ^)] ^ 

(/l+1)2^1 -n 
1 2 

ji+2 • 
' 2 ' ±_ 

'Pi(* ) .  

[piW)? 

- (n + -j) 2-^1 4 
1 2 • Pl(x ) 

(1.2) 

(1.3) 
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where % [pi(s )] > 4, w = 2, 3, N. 

i«.-|o+i 
[/>i(s )] (61 

2 ' 2 

:[pi(/)r 

2k (a + l)(a + 2) jja„ 
msl 1 

n», 
j=i 

2»r(ii±f±l)p„(7«) 
" "Zf at«±l 

7t r(a+l)[pi(ic )] 

Pl(/) 
P+2^9 

fatl)..£±i.£±l; 
' '  2 '  2  ' •  •,x 

(n + a +1) p+-^q 
a>). 'Piix s 

- ( « + — )  p + i f .  fa)„£±^;^ 
% Pl(* 

where p ̂  g -1,9îe a > -l, n = 2,3,N, 

SRe [pi(s^)]> 0 i fp<q-2 ,3 ie  [pi(s')+2kcospr]>0 (r = 0,1), i fp  =  q - l  

9îe[pi(s')] > 9îe (4A^) ifp = g. (1.4) 

Example 2.2.1'. We consider the case n = 2 in this example. 

Substituting n = 2, a = - ^ and a = 1 in (1.1), we obtain 

h'l-
I l+(Si» +%') 

— 1.3 

il j, i exp 
2* (xy)* ix+yy  

xy  
l^2(*+:y)j 

D 4 
'  2xy  V  

"8^-1 Y  .x+y) 

where 9îe > -1 (1.1') 

Equation (1.2) in two dimensions reduces to the following result. 

], 1 ^ , In r(si^ + 82^ ):3:,y [ 
[(s,5- + V) J 
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Tt^ix + yY 2 xy 
, where [sj^ + > 0. (1.2') 

If we take n = 2, then (1.3) leads to the following result. 

(Si^ + S2^) 
0^2 -2,1; 

(Sl»+S2»)''_ 
16 

1 iSi^+Sz^) 
-1,2; 

(Sj»+S2»)'' 
;x,y] 

2 ,  >2 ;r (x+^) 
6 2-P'l 

-2,?; 4jy 
2 :*+>' 

-5 2-P'l -2,f ; 4xy 
i  \x + y 

S where 9îe [siHs2^]>4. (1.3') 

Taking n = 2, a = ^ and ̂  ^ in (1.4), we arrive at 

Lt\ p+Z^q ; L 
L»), ;(si^+s2^)^ 

15 fto. 
+ 21=1 i F ' 1 

8^6, 
j=i 

;x 

BixyY 

4ff r(-|-)(*+3')" I 

(g)n.^; ay 
(6)ç ;*+y ® p+1^9 

(0)0,-^; ^ 
(6), ;* + >-

where 9îe [s^a + S2']> 0 ifp<q-2, SRe [sj" + S2» + cosro*]>0 (r = 0,1)ifp =q-l, 9îe [sj^ + Sg']> 1 

ifp = q. (1.4') 

Remark 2.2.1: All results which we have derived in Example 2.2.1', are new 
formulas for calculating two dimensional inverse Laplace transforms of 
corresponding functions. 

The following Theorem is a generalization of the Theorem 2.2.1. 

Theorem 2.2.2. Suppose that /is function of class D. 

If 
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(i) L{/(3c);s} = (̂s), 

(in) L ^ /•(2 j;2);s} = G(s), 
f i . 

(iv) L (jc ^ f(2x'^);s} = H{s), 

and assume that ^{s V(^)} exists for 9îe (s)>Co, where cq is a constant. 

Then 

.-1 
a[(pi(S^)) ^];Ï 

n 3 
2  /  2 -

(v+ra)G[pi(* ^]-2pi(a: ^)H[/7i(a: S]k 

provided the integrals involved on the left side of (2.1) exist for n = 2, 3, ..., N. 

The proof of this Theorem is similar to that of Theorem 2.2.1, so that, we 

prove Theorem 2.2.2 in brief. 

Proof: Using (i) and (ii), we arrive at 

s'"'\(s) = j [v-f]exp(-i)/(u)du (2.2) 

Replace s with [pi ( )]'! and multiply both sides of (2.2) by Pn(s), then 

using the two known operational results from Ditkin and Prudnikov [ 43] 

which we have used in the proof of Theorem 2.2.1, and then making a change 
u^ 

of variable t) = we obtain 

Pn(s)[Pi(s^)] " 'a[(PI(S^)) ^{(-r+re) 
ft J 

n 

V exp(-vpi(x ))f(2v )dv-2pi(x )j^ v' exp(-vpi(x ))f(2v )dv]. (2.3) 
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Hence by using (Hi )  and { iu) ,  we arrive at 

.-1 

-'ra 

/ —Y \-i 
Pi is') ;x (v+n)G Pi(x -2pi(x Pi( 

2J2J2. Applications of Theorem 2^^ 

We can now conveniently apply Theorem 2.2.2 to derive the 

N-dimensional inverse Laplace transforms for some functions with 

n-variables. These results are discussed as follows: 

Example 2.2.2. Consider f ix )  = Jo(a%), then 

^(s) —5-,3le s  > | lma|.  

A(s) = ^ 3{es>|Ima|. 
3 

2 2 ? 

/t+3 
2 

S (1+a s ) 

r(^) 
^ 1^1 

^ 2 

r(^) 
SÎ3 1^1 

S 

n + S .  a 
—'"-T 

, 9îc s > 0. 

, 9îe s > 0. 

Plugging in (2.1), we obtain 

.-1 

"n "~r n »* 
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Kill!) 

3 n+1 
2 \r , -1.1 2 « Pnix^Wx-')] 

(v+n)iFi 
PiU ) 

— (n +1) iFi n + 3 ,  a 

where n = 2, 3, 4, ..., N, 3îe [pi(s^)]>|Ima|. (2.1.1) 

Example 2.2.3. Let fix) = xJiiax), then 

^(s) —3-,9îe s  > | lma|.  

(s^+a^)2 

A(s) = 08"*'^^[(w-3)+ va^s^] 

(l+cV)2 
, 9îes>|Ima|. 

G(s) = -
2ar(2±5) 

n+3 1^1 

ms)=-
2ar(^) 

"^Ï5 1^1 

— ;_=1 

2^ ; « 

5±5 ; a' 
2 ; s 

, 9îe s > 0. 

Hence from (2.1), we arrive at 

(v-3)pi'^(s^)+m =? : Î* 

[pi^(s')+<•'] 

2r(2±i) 

n 3 n+3 

2 /• 2 \r , -1,1 2 

where SRe [pi(s^ )] > |Ima|. 

«+3 

2^ ; pi(x"\ 

n + 3 
iFi 

Z1±G; a' 

2^ : Pi(x"') 

(2.1.2) 

Example 2.2.4. Assume that/(x) = 0^*2[i [(|)^]. Then 
"S*» ^ > 
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(pis) = -exp(s ^),9îe s > 0. 
s 

A(s) = [(v- Ds"'' -2s~'''*'^]exp(s^), 9îe s> 0. 
r(—) -n 

g(s)=-^iF2[/ 
s~ 

r(—) piLta • 1T 
™ = :jl9les>0. 

-7- 2 * ^ y 

Using (2.1), we obtain 

2/„^ 
4,'i f 

?.'(»") p,'(s) J 

r(^) 
3 n+l 

2 / 2 \r , -l.T 2 

, n+3 .  
(l/ + «) _(„+!) '_L^] -, where 

)[A(z )] 
1 

9îe[pi(s')]>0. (2.1.3) 

From Theorem 2.2.2 we easily obtain the following formula for two 

dimensions. 

Corollary 1. If zz = 2, then formula (2.1) in Theorem 2.2.2 reduces to the 

following result. 

= ^-T-{(v+2)G[i+^]-2(l+l)H[-i + -i]}, 3ie[s,^ + s,i]>0. 
^ % J/ % j' 

2.2,3 Examples Based Upon Corollary I 

We provide several examples concerning Corollary 1 and using 
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examples given in (2.2.2). We will use these new results in Chapter 4 

to solve the corresponding partial differential equations. 

Example 2.2.2'. 

(i) If we choose a = v = 1 in Example 2.2.2 and then using Corollary 1, we 

obtain 

1 
1 J 3 » x,y\  

2n {x+y) 
T1 1^1 

Because 

ifi -ifi [1; %+y 

the right side simplifies as 

1 1 Zxy 

xy 
-1^1 Li; x+y\ 1; x + yj  

xy '  ^ x y  [#; xy 1 
x + y_ x+y ^ ^ 1.2; x + y_ 

1 1 •;*,y I =• T M 1 2 
xy 

[2; x+y_ 
, [si^+«2^] > 0. (2.2.i) 

Similarly in three dimensions, we have the following new result. 

1[G 

3; xyz 
1; yz-^-zx + xy 

where 9îe [si* + +83» ]> 0. 

Remark 2.2.2: Using (2.2.i) and the following operational relation 
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where 

fisi,S2)= Lg (FCz.j;),81,82). 

We derive the following well known formula 

where 9îe > 0. 

(.xy) 
x+y 

exp 
'  xy ^ 

(2.2.i') 

(ii) If we choose a =1 and v = 2 in Example 2.2.2 and making use of (2.2.i), we 

arrive at 

, where 9îe [sj» + sg» ] > 0. (2.2.ii) ^ J 1 1 1 - I 3 1^1 
2 I 2jt'(x + yf 

f ; ^ 
.1;  x + y_ 

(Hi) Taking v = 0 and a = 1 in the same example, yields 

where 9îe [si^ + s2^]>0. 

> = X 6 
2 n ( x  +  y ) '  

[5 1 [5 1] 
• (a:+y) jFj 2 ' -  T -2xy iFi V- " • (a:+y) jFj 

. 1 ;  
-2xy iFi 

. 1 ;  

(2.2.iii) 

Example 2.2.3*. 

(i) We choose v = 3 in Corollary 1 and a = 1. Then we use the result in 

Example 2.2.3, to obtain the following new result 

where % + sz^] > 0. 

rixy ifi 
.3; x + yj  

+ (jc+y) jFi 2 
xy 

}• 2 ;  x+y}\ 

(2.3.i) 
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(ii) Similarly, with v = g and a = 1, we obtain 

l-sGi'+sg)' 
11 5. 

, _ 15(ay) 

2;r'(*+y)* 
-1^1 

7 
2'--^ 
3; ' + y 

, % [si^ + «2^] > 0. (2.3.ii) 

dii) From (i) and (ii) we derive 

1 1 

1 1 ••,x,y 
xy 

4nHx+y)' 
-?-4(a: + y)iFi xy 

x + y 
•5xy iFi 

where % W + 82^]>o. 

xy 
x + y 

(2.3.iii) 

Remark 2.2.3: I have given only six new results in Examples 2.2.2' and 2.2.3' 

but it is possible to obtain several new results by using Examples 2.2.2 and 

2.2.3 One needs to take different values of v and a in these examples. 

Example 2.2.4*. 

(i) In Example 2.2.4 take v = 1 and then use Corollary 1, to obtain 

1 

because 

1 1 -expL J ];x,y 
/ 2 2 Y / 2 2\2 ASi+SaJ Isi +% J 

"5 

4;r ix + y) 
T 1^2 

2 •> xy 
X + y - iFi 2 ; xy 

1^2 
xy 

-1^2 
xy = -2 xy 

x + y 1^2 
! :  xy 
\ ,2-,x + y 

we arrive at 
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—j-i-j—exp[-—pî-j—];%,)'! 

(sf+sfy Gf+s:)' j 

3xy 

2k ix + y) 
t 1^2 
2 

f '  xy 
h^'X+y 12 

where 9îe [si^+s2^]>0. (2.4.i) 

(a) Now if we take v = -2 in Example 2.2.4 and then making use of Corollary 

1, we arrive at 

f Ï 2\3 / 2 â\2 
KSi+Sz) Ksi + sz) 

7 r 1^2 
271 (x + y)' 

xy 
^,l- ,x + y 

where 9lg W + S2^]>0. (2.4.ii) 

(Hi) On substituting (2,4.i) into (2.4.ii) it follows that 

-1 
^ ^ 1 exp[ 1 ^ 

27^ ix-¥yf 
(j: + y) jFg 2 :_5y_ -2xy ifg I : xy 

^,2;x + y 

where %e [sj^ + sg^] > 0. (2.4.iii) 

Remark 2.2.4: The results established in Example 2.2.4' all are new results 

in two dimensions as well as the corresponding results in n-dimensions. 

Several other new results can be obtained from these examples and corollary 

1, by taking different values of v and b. 
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CHAPTER 3. FURTHER NEW RESULTS ON N-DEMENSIONAL 

LAPLACE AND INVERSE LAPLACE TRANSFORMATIONS 

3.1. Introduction 

In Chapter 3 we established several new formulas for calculating Laplace 

transform and inverse Laplace transform pairs of N-dimensions from known 

one-dimensional Laplace transforms. The method we have employed for 

developing these results is similar to that used in Chapter 2. 

This chapter consists of five theorems presented in four sections. We have 

given several examples on applications of these results in N and two 

dimensions. 

3.2. The Image of Functions with the Argument Pi(x~S 

In this section, first we prove two theorems and derive a corollary from 

Theorem 3.2.1. These results are used to compute the image of some special 

functions with the argument Piix or (% S in N or two-dimensions 

respectively. 

Theorem 3.2.1. Suppose that and ^(2x^) are of class O. 

Let 

(i) L[f{x);s] = (f){s),  

(ii) 

(Hi) L{x~"~^f(j);s} = 77(s), 

(iv) L[x ^(p(2x^y,s]  = Fis),  

(v) L {x^(l>(.2xh;s] = G(s),  
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and let exist for 9îe s > Cq, where cq is a constant. 

Then 

4 (u-l)F[pi(* b]+2pi(* ^)G[pi(* 

Pn^xh 
•  =  — ) ] ,  w h e r e  % e  [ p j C s '  ) ]  >  

Pn(S ) 

for some constant ci and n = 2, 3,..., N and provided the integral involved 

exists. The existence conditions are given in Brychkov et al. [11; ch. 2]. 

Proof: Applying the definition of Laplace transform to (i) yields 

0(s) = J" expi-st)f(t)dt  where SRe s > cq, cq is a constant. (1.1) 

From (1.1) and (ii), we obtain 

f(s) = —^{s "^(1))= us (1.2) 

Now, replacing s by ̂  in (2.1) and then multiplying the resulting equation by % 

and taking the Laplace transform in (o, <») we obtain 

7}(s)= vL{(^(3:);s)+L{a:(^'(*);s) 

Using formula (30) on page (6) (for n = 1) in Roberts and Kaufman [87], we 

obtain 

7j(s) = (u- l)L(0(*);s]-s-^I/{0(a:);s) = (u-l)f exp(-sa:)0(*)ctc + sfjcexp(-sa:)0(*)cJa: (1.3) 
as •'o Jo 

Replacing s by [pi(s^)] and multiplying both sides of (1.3) by p„(s^), we arrive 

atPn (s^)7?[/7i(s^)] = (l> -1)£ p„ (s^) exp(-zpi(s^))<l)(x)dx 

+Pn(.s^)Pi(s^)j^ exp(-xpiis^))x<p(x)dx. (1.4) 
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Next, we use the following results in Ditkin and Prudnikov [43] 

S£^exp(-aSi^)=(;n:£~^)exp(—^), s£exp(-asj^)=-^a:f^exp(—^)fori = 1, 2, n. 
27t^ 

Equation (1.4) can be rewritten as 

i.n" (v-l) Pn(s )»?[pi(s )3= -T f exp(—^Pi(* ^))(t)(x)dx R 4 -k 'fO 
rt  Pn(x ) 

+ j~°x^<l)(.x)exp(-^piix~^))dx 
2n^p^{x^) " 

(1.5) 

Now we substitute u. = — for integrands in (1.5) to obtain 
4 

r [(v-Dj^ exp(-upi(x ^))u ^(l)(.2u)du 
f . 

i X 

+2pi(.x )J^ exp(-Kpi(* ))u <l>(2u')du 

Now we use (iv) and (v) in (1.6) to obtain 

•{(t)-l)F[pi(* ^]+2pi(x ^)G[pi(x ^)]} , ̂ \l'* 1 f. _r , ~l."i _ . ~1. —r , ~1. Pn(s )n[Pn(s )] 
n Pnix ) 

Hence 

(v-l)F[pj(* ^] + 2pi(jc ^)G[p,(x S].T 
,5 

P»(acS P«(s ) 

where n = 2, 3, .... N, 3îe[pi(s )]>ei. 

3.2.1. Applications of Theorem 3.2.1 

(1.6) 

(1.7) 

As few examples of the use of Theorem 3.2,1, we shall construct certain 

functions with n variables, and calculate their Laplace transforms. 
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Example 3.2.1. Suppose that/^x) = Jo(%) in Theorem 3.2.1. Then 

0(s) = , where9îes>0, 

C(s) = t» +(i)-l) 

/(/ + !)' 

Tl(s) = L 

= L 

u+Cv-D* 

(/ + lf 
•IS 

(u-1) •:s 
(x +ir 

1 
T',S 

ix +lf  , 

= J)»[H^(s)-y„(s)]-|s[g_i(s)-Y_i(s)], where9îes>0. 

Also, 

f(s) = %L-|——r;si = -^exp(§)^o(T), 9îea:>0, 9îes>0, 
2  j  2 - 8 - 8 '  

;s 

Using the result in Theorem 3.2.1, leads to the result 

[4<v-l)-p.(,-')]exp(£l^k,(£l^)^.p.<«-')exp{£»^k,(£l%i); 

n+2 . 
4;r 2 r 

^](u-ltoo(pi(s2))-Fo(pi(s2))]-pi(s2)[fZ_i(pi(s2))-7_i(pi(s2))] 
P«(s=)I J 

where 9le [iJi(s^)]>0, n = 2, 3, ..., N. 

Remark 3.2.1. Let v = 1 and n = 2 in (2.1) we obtain 

(2.1) 

x + y 
I ] 

K, 
8xy J ""1, 8xy 

K, ̂ x + y^ 
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° (2.1') 

where 9îe [sj^ + S2» ] > 0. 

We derive the following corollary from Theorem 3,2.1, by choosing v = 1. 

Corollary 3.2.1. Assume the hypotheses ofTheorem 3.2.1 for v = 1. Then 

•C'n 
-1. 

P„(* ) 

n 

2p„(sS 
7?[pi(s')]. 

Theorem 3.2.2. Suppose / and* 0(7) belong to class £2, where (j) is the one-

dimensional Laplace transform off. 

Let 

(i) ùj* ' *' /'(a;);s| = 2î'j(s) for j = 0,1, 2, and let ^|s exist for 9îe 

Co, where cq is a constant. 

s > 

(a) If X exp(-s*-f) belongs to Li[(0,<»)x(0,oo)] and the following conditions hold: 

(al) lI* ̂ 0(-^);sl=f(s), 

(a2) f(4)|=J?(s). 

Then 

Ln" 
uFo[p,(x ^]-2pi(x ^Fi[p,(a: 

I 
^ ' î?[(Pi(s^)) ^], 
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where 9îe [pi(s^)]>c, c is a constant. It is assumed that the integrals involved 

exist for n=2,3,...,N. 

(b) Assume the condition (i), and replace (al) and (a2) by 

(bl) l|x~^0(-^);s| = y(s), 

(b2) "7(^)1 = Ç(s), 

and suppose that ̂  y(^)} exist for 9îe s > ci, where ci is a constant. 

Then 

(u-l)(^[pi(x ^)]-2pi(x ^)F2[pi(x 
;s ——=—ç[(pi(s')) ^], 

where 9îe [pi(s )]> d, a constant, n = 2, 3,..., N. It is assumed that the integral 

on the left exists. 

Proof (a): By the hypothesis and (al) we get 

C(s) = X ^0(-j)exp(-sa:)da; = £ * ̂ exp(-sa:)j^fiu)exp{-j)du 

some constant cq which leads to 

dx, where 9îe s > Co for 

C(s) =J:[I - -I 
X exp(-sx-f)f(u)<iu dx (2.1) 

Next we wish to interchange the order of the integral on the right side of (2.1). 

The integrand * exp(-sx-^)/'(w) eLi[(0,<»)x(0,oo)]. according to Fubini's Theorem 

this process is permissible. 
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Therefore 

f(s) = J^ f i .u) X &-xçi-sx-^)dx du, where 9le s > Cg. (2.2) 

A result in Roberts and Kaufman [ 87] regarding the inner integral in (2.2) is 

used to evaluate this integral as 

^ ^ —g "2 ^ 
X exp(-s%-^)ck = ;r u exp(~2iz s ). 

Jo  *  

Hence, (2.2) can be rewritten as 

^ «DO —J i ^ 
C(s) = 7r £ u /'(u)exp(-2u s )du (2.3) 

Equation (2.3) together with (a2) shows that 

w f -o ^ „ i 1 
77(s) = -^js n j^u /(u)exp(-^)<itt 

-u-l = n s exp(-^)(fu- 2s fiu)exi)(-^)du 

SO that 

u+i , . i 
S T}(S) = 7T vjo u V(«)exp(-^)du-2s f{u)Qxç{-^)du 

where 9le s > CQ. 

(2.4) 

Next, we replace s by [pi(s^)] ^ and then multiply both sides of (2.4) by p„(sS, to 

get 

Pn(s')[pi(s^)] T7[(Pi(s^)) u V„(s^)/ '(u)exp[-2u^pi(s^)]£iw s )) i  = 7t v] u p„(s Jo 

-2;:'Pn (s' )Pi(s' )/"(«) exp[-2w'p;(s' )]du (2.5) 
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Now, we use the following operational relations given in Ditkin and Prudnikov 

[43 ]: 

s,«exp(-as,a)=(ra:,) exp(—fori = 1,2,n, 
-i 

s,exp(-as,-^)='|ff 'arfîexpC—fori = 1, 2, n. 

4*i' 
2 

a 
4Xf' 

Equation (2.5) can be rewritten as 

Pn(s^)[pi(s^)] " \[(Pi(sS) ']= ^ — j u ^f(u)exp[-2u^pi(x 

—f u'f(u)exp[-2u'Pi(x b]rfu. 
JT p„(x ) 

(2.6) 

Equation (2.6) with (i) for j = 0,1, yields to 

Pn(sS[Pl(s^)] " \[(Pl(s^)) ^]= ^ vF„[pi(x b]-2(pi(% bfi[pi(% b]|-. 

Thus 

vFoCpiC* ^)]-2pi(x 

where SRe [pi(s^)]>c and n = 2, 3, ..., N. 

-1. ¥ 
r?[(Pi(/))"'] (2.7) 

Proof (b): A similar method to part (a) can be used to prove part (b). The 

outline of the proof is as follows. 

Making use of the hypothesis and (bl) yields 
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7(s) = ;r £ £* exi)i-sx-^)f(u)du dx, whereSRes>Ci. (2.8) 

Using Fubini's Theorem to interchange the order of the integral on the right 

side of (2.8) and applying a result in Roberts and Kaufman [87] we obtain 

Y(s) = f f{u)^ eixp{-2u s )du (2.9) 
Jo 

Taking into account the condition (b2) we see that the equation (2.9) implies 

that 

s ç(s) = 7i\v-l)j^ f(u)expi-^)du-27:^s f{u)exp{=^j-)du, where9îes>Ci. (2.10) 

Now, replacing s by [pi(s')] ^ and then multiplying both sides of (2.10) by p„(s") 

and then making use of the same two operational relations in part (a), equation 

(2.10) reads 

Pn(s^)[Pi(s^)] "ç[(i3i(s2)) ^]= „ . ^ -T [(u-l)j f(^u)exç[-upiix ^)]&; 

-2pi(x~^)j^ uf{u)exp[-upi{x~^)]du. (2.11) 

Equation (2.11) with (i) for i = 2 and the definition of one-dimensional Laplace 

transform, leads to 

P«(s^)[Pi(s2)] ''ç[(Pi(s2)) 

= ^ ̂  — ((u-l)<^[pi(^ ^)]-2pi(% ^)F2[pi(x ^)]| 
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Therefore, 

Lni 
{v-D(l)[pi(x ^)]-2pi(% ^)F2[piU ^)].-

a= 

Pnixh 

7C 2 
ç[(Pi(s2)ri], (1.12) 

where 9îe [pi(s^)]>d for some constant d, n = 2, 3 N. 

3.2.2. Laplace Transforms of some Elementary and Special Functions 

with n Variables 

The following examples will illustrate the applications of Theorem 3.2.2. 

We shall consider the function/to be an elementary or some special function to 

construct certain functions with n variables, and we calculate their Laplace 

transforms using Theorem 3.2.2. We will use the two dimensional case of these 

examples in Chapter 4 to solve certain types of partial differential equations. 

Example 3.2.2. Let /(%) = Then 

0(s) = -exp(--), 9îe s > 0, 
5 s 

• j  +6J+2 

s * 

for J = 0,1, 2, 9ïe s > 0. 

Now 
a 

C(s) = ——T' 5îes>0, 
(8+1) 

so that 
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=  9 l e « > 0 .  

Hence, 

Ln 
ff^uexpC Lj-] iFi 

Pt(' ) 
2'^- -^exp[ iFi 

Pi(* ) 
2 ' — i =  

Pi(* "). 1 ; -

Thus 

[Pl(* Pn(x^) 

_ + u- l][pi(s')]" 

;s 

'n" 

exp[ Kw iFj 
Pi(' ) [ 

1. 1. 1 
? '  1 -iFi - J ,  1  -iFi 1 ;d,(*•')_ 

;s 

j!-i -r 
_ ;r [t)+(u-Dpi^(s )] m i\ 

where SRe p„(s )> 0. 

Next, with the help of part (b), we have 

r(s)= 

Thus 

ffi 
3-, SRes> 1 

2(54-1)' 

çM = ^îiH!±£^,9îe.>l. 
2s''"2(1+S^)2 

Therefore 

—=—=r®*p 
PiC* ^)p„(x'^) 

(u-l)-2iFi 
-1 

1 :pi(x~') 

(2.2) 
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Remark 3.2.2: Equation (2.1) in the two-dimensional case for v = 0 or v = 1 

reduces to the following new results, respectively. 

(i) L2 
exp[-^] iFi -j'JSL 

1 

(x + y) 

where 9le [sj» +S2»] > 0. 

exp[-^] j ifi 
(ii) L2i 

i:jsL 
ir+y 

(SiS2)^[l+(Si^+S2^)''r 

1 

(x+y) 

TT 

(2.1) 

(SiS2)'[l+ (Si'+Sg'f] 

using the following result 

1 r 1. 1 
- iFi ~2 :_2L = -2L,F, 2'JSL 

. 1 x+y 1 1 2; *+3' 

The last formula can be simplified as 

L2-|exp[-^]zy(a:+j/) J'SL >^l>®2 f — 
;r 

(Sisa/Cl+Csi»+S2»)^]^ 

where SRe [si^ +S2^] > 0. 

Using the following version of Fj 

(2.1") 

+G j+2 \ 

-J *6j*2 
4 

'J +5;+2 . 1 
4 > 
1 : s 

for J = 0,1, 2. 

The Formula (2.1) turns out to be 

UiFi 
r 1. r 3. 1 2 '_J_ - ,F, Z' 1 
[l; fij 1 1 

Pi(* ;r^[D + (T;-l)Pi^(s^)] 

p„(sS[l+pi^(s^)/ 
(2.3) 
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where 9îe [pi(s^)] > 0. 

Special cases of (2.3) for n = 2, v = 0 or v = 1 turn out to be 

Lz 
( x + y )  

-if] 
xy 

1; x + y  
;si,S2 

7t ,9le[siUs2»] >0. (2.3') 2 IT 

\ L2Uy(x + y) 1^1 2 x y  
2 ;  x  +  y  

jSii®2 r -

(SiSj) [l+(Si^+S2^) ] 

i K 
2 if ,9îe[si^ + s2»]>0. (2.3") 

Remark 3.2.3: If we let n = 2 and v = 1 or v = 3, from the equation (2.2) we 

deduce the following results, respectively 

A 
(i) L2{ ( x y )  

•exi :p(._ï>L) 
( * + > » )  x + y  

-1; x y  
.  ̂  ' X + y ,  

_ + S2^)[2(SI^ 4-%^) - l] 

4(SiS2)^[1+ (Si^ + 
(2.2') 

where 9le [sj^+«2^] > 1. 

(ii) 1/2 -1; x y  
1  ' X  +  y  } ^19^2 

37t(Si'+S2') 

2(SiS2)^[l+(Sii+S2^) ] 
2i$' (2.2") 

where 9le [si» +«2»] > 1. 

Notice, with the help of (2.2') from (2.2") we arrive at the following result 

L2 
( x y )  f  x y  

- e x  
( x  +  y )  x  +  y  

_ £  +  

^ (SiS2)^[l+(Sl^ +^2^/]^ 
(2.2"') 

This is the same as the result (2.109) in Ditkin and Prudnikov [43; p. 140]. 

Furthermore, with the help of (2.2"') and the operational relation (47) in 

Voelker and Doetsch [107; p. 159], we derive the following new results. 
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\i 1 
•'nji 

7C 

(2.2'V) 

(2.2^) 
Sl2[l+(Sl2+S22n2 

where 9îe[si2 fsgi] > 1 

Example 3.2.3. If we let fix) to be qF^ 
1; 

, or cos2%^ then using 

Theorem 3.2.2 we derive the following results 

(a) (i) L„ -r' Tr'^' 
i; 1 

-1^1 \h 1 L 
.1; PiC*"^) 

-1^1 
Li; Pi(«-')J .1; PiC*"^) Li; Pi(«-')J 

;r^ (v—1)2^1 h'2) 1 ^ F "2,1: 1 j 
Pi(s^)P/i(«^) 

(v—1)2^1 
- ^ '  Pi^ish^ - ^ 'Pl'^(S^)J 

(3.1) 

where 9îe[pi(s^)] > l and n = 2,3,...,iNr, 

(b) (i) L„ 
Pi (*)?«(*") 

(v-DiFj 
1; 1 

ijpiU"^) 2Pi^(% )p»(%') 
T-i^i 

•f: 
.2:Pi(jc 

Ks 

(V-3)2^1 
\i; 1 

^ F 
2,f; 1 

2p„(s^)p(s») 

(V-3)2^1 
[1 ; Pi"(%-')J .2 •,p^Hx-^)] 

(3.2) 

where 9îe[pi(s^)]>l, « = 1,2 N. 

(a) <ii) L. —^ 
Pl(* )P«(*') 

"1; 1 -2,F, 
"2; 1 lil 

! • '  .2' Pi(a:"^). 
-2,F, 

Pi(*"'). ri 
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n' v+(v-2)pi''(s^) _ 
—=—2 ' 95e[pi(s^)]>0, « = 2,3,...,iV. 

2p„(s')[l+pi''(sbj 

(b) (Ui) L„ 

(3.3) 

pi^(ac"^)p„(*^) 

/ \ 
]_ 8;r' .4 

•IPI 
3; ^ 

Li; Pi(%-') 
:s 

(V -2)+(v+2)pi^(s^) 

Pn(sh 
, 9îe [pi(s^)]>0, n = l,2,...,iV. (3.4) 

(a) (in) L„ 
Pi'(%-^)Pn(%h 

2 + (i/-l)pi(a:~^)exp 
Pi(* ) 

:s 

P„(s^) 

(v+l) + (v-l)Pi'(s') 

( l+Pi'kbT 
, 9îe[pi(s^)]> 0, » = 2,3, . . . ,N. (3.5) 

Example 3.2.3*. (Two-dimensions) 

CO Upon substituting n=2 and v = 1 in (3.1) we arrive at a new result as 

follows 

ixy) ^ ri; 1 
2;*+^ 

J 
r ~ (Sl%)^(Si^ + S2») 

2,f; 1 

. 2 
(3.1') 

where 9îe[si^+s2^]>L. 

(ii) On substitution n=2 and v=2 or v= 

results, respectively 

0 in (3.3), we obtain the following 
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2; xy 
Lf; x + y r ~ 

371 

4(SiS2)'[l+(Si'i +«2^)^] 
-, 9îe[Si^ + S2^]>0. (3.3') 

2; xy 
L#; x+y 

;8l,S2f = g(Sl' +S2O [s i+s2^]>0. (3.3") 
J 2(gA)^[l+(8i*+%i)f 

(in) If we let n=2, v = 1 in (3.5), we obtain 

1. 1 

Furthermore if we substitute v = 3  and with the help of (3.5'), we arrive at 

i-exp[—— 
x+y L x+y 

;Si,S2| = g (si'+^O ,%[& i + s i]>o. (3.5") 

The operational relations (3.5') and (3.5") both are well-known results. 

Similarly many more double Laplace transforms can be derived by 

taking different values of v in (3.1), (3.2), (3,3), (3.4) and (3.5). 

Example 3.2.4. Suppose fix) = x" exp(-6%). Then 

9îea>-l, 9îes>-9îe6, 

§(«)=(f)"^'r(a + l)r(a+^)exp(^)D.2„_i[(^)], 9ko >- }  

For v=0, 

, exp(— 
77(s) = -(f)"^»r(a + l)r(a+|)(2a+1) p-D_2._2[(^)'j], 
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where SKea>-4,SRes>Oandlarg-i|<7r. 

Next, 

r(a+f) ^i(s) = 9îcs>-9îe6,9îea>-|. 
(a+bM 

Therefore, from (2.7) for v=0, we obtain 

P. (%*)[& 
r'.s 

Pn(s') 
(4.1) 

where 9îea>—9îe[pi(s^)]>0andn = 2,3,...,2V, 

Furthermore, 

r(s) = r(a + l)r(a+f )s-^ exp(*)D_2«_2 [(f j], 9îe a > -1, 

for v=X 

C(s) = 
-(|)a+2 ^ + |)(2a+2) 1 

[(f 7], 

where 9îea>-l,9lcs>0andlarg4l<;r. 

Also, 

^"2(5) = ̂ ^^—^, 9ks>-9k6, %a>-2. 

Hence, from (2.12) for v/= l, we arrive at 
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'2' _ 

:^-jl(2ja.2 . H» + exp[^Pi^W)]D_2._3[(^)^Pi(sb], (4.2) 
P„(S^) 

where 9îea>-l, 9îe[/7i(s^)]>0 and/i = 2,3,...,i\/^. 

Notice, (4.1) can be deduced from (4.2) by replacing «by a-j. But this is not 

always true. 

Remark 3.2.4: If we let n=2 in (4.1) we obtain the following new result 

=— ^ r(a+l)(Si +% \xp[^(Si^ + S2^)^]D_2„_2[(f)» (Si^ + S2^)]. (4.1') 
(.SIS2P 

One can develop many other operational relations from given functions f  in 

Example (3.2.4) via using (2.7) or (2.12) for different values of v. 

3.3. The Original of Functioiis with the Argument [pi(s^)]"^ 

In this section we will establish Theorem 3.3.1 in two parts. The proof of 

part (b) is similar to that employed for developing the result in part (a), so that 

we give the proof of part (a) in detail and state the result in part (b) without 

proof Regarding their applications, we used these results to compute the 

original of a few special functions with the argument [pi(s^)r^ or (s^' +82^)"^ in 

N or two-dimensions, respectively. 
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Theorem 3.3.1. Let /"and x ^f(.x) be of class £2 and let <l>(x) be a one-dimensional 

Laplace transform of f .  

Suppose 

(i) L 
3j*-22+46+22j-72 

48 [  = Gjis) forj  = 0,1,2,3,4. 

(a) If 

^ r.-ve/ 1 • 

ds s~ 
(a2) --^{s-''|(^)) = 0(s). 

—4 ., 1 » » f 1 — , cL f Assuming is of class £2 and exists for 5Re s > Cq for some fixed Cq. 

Furthermore, a;~^exp(-s*-'^)/'(u)belongstoLi[(0,«>)x(0,<»)]. Then 

-0[(Pi(s^))~^];a: 

=  ^  +(^+  DPi [P i (*"^ ) ] -2 [p i (*"^ ) ]®Ga[p i (*"^ ) ] | ,  

provided that the integral involved in the left-side exists for n = 2,3, . . . ,N. 

(b) Assume that the condition (i) holds and let be of class £2, and 

replace (al) and (a2) by the following 

(bl) L|x^0('i);s|= y(s). 

Then 
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-Il i-Pi(s') :s 

= -n-^^|-^0[Pi(^)]+(v-2)Pi(F)G3[/>i(]F)]-2[pi(pi)]2G4[pi(F)]|, 
7r^p„ixh ^ 2 J 

where n = 2,3, . . . ,N and provided that -^{«""yC-r)) exists for 9îes>ci for some 
as '  

fixed q. Moreover, exp(-sx - •J)/'(u) belongs to Li[(0,oo)x(0,<»)] and the integral 

involved in the left-side exists. The existence conditions for two as well as n-

dimensional inverse Laplace transformations are given in Brychkov et al. 

[11; ch. 21 

Proof; We know that 

0(*) = J^exp(-s<)df where Sîe s > Cg, for some fixed Cg (3.1) 

Prom (3.1) and (al), we obtain 

^(s) = [jo * ̂ ^^p(-sx-j)f(u)du dx. (3.2) 

The integrand *~^exp(-s*--^)/^(M) belongs toi:,i[(0,<»)x(0,~)], so, by Fubini's 

Theorem, interchanging the order of the integration on the right-side of (3.2) 

is permissible. Hence 

^(*) = J^ x'''  exp(-sx-^)dx]du, 9îes>Co. (3.2') 

A result in Roberts and Kaufinan[87] regarding the inner integral in (3.2') is 

used to evaluate tliia integral as 

^ix) = /•(u)[u~^ + 2u"^s^]exp(-2u^s^)du 
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A little calculus yields the result that 

s*''^'e(s) = -2^[v£ «"Y(«)exp(-=^)<ia+2v«~^J^ u'^fiu)exp(^^f^)du 

u"^/'(u)exp('=2^)du], 9îes>Co. (3.3) 

Replacing s by [/?i(s^)]"^ and multiplying both sides of (3.3) by j9„(s^), we arrive 

at 

[Pi(s^)r^-V„(s^)0 =-^ u~V(«)/'n(s^)exp[-2pi(s^)]du 

+2 vĵ  f(.u)pi (s^ )p„ (s^ ) exp[-2u^pi (s^ )]rfu - 4[Pi (shf Pn (s^ )u~^fiu)du 

(3.4) 

Next, using the following well-known operational relations 

Si^ exp(-as,-^)=ff~^*,"i exp(—^), 
• 4Xi 

Si exp(-asi^)=f exp(—^), 

Sfî exp(-asi^) = ° exp(-^) for i= l,2,..,,n. 
• 4 4Z( 

into (3.4) yields the result that 

p«(s^)[pi(8^)r"'e vf ^:-=^u~^/"(u)exp[-upi(a:"^)]du 
^^pjsh 

+2vf ^ u^Xi'^exp(—^)exp[-upi(x~^)]u~Y(u)du 
TT^pJx-^) 

+. . .+  T ^^exp (—^)exp f -up i (*"^ ) ]u  ^f{u)du 
•'o 4,. 2\ «1 J 
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{Au-2x0 -i {4u-2x„) 
—J xi l - . - . t* J  xf^ 

Pn-l(Xl') Pn-ï(x„') 
expC-M^PiCo: ^)]u~^f(.u)du 

, , UXi"^Xn"^ 
I  • •  •  " t  '  

+2 r 

Pn-2(Xl2^) Pn(XiJ) 

K«2~'*3~» . . UX2''X„-^ =i=-^+... + -==-
P„_2(*^23) Pn-2(X2n^l 

expl-u^pi (x~^ y]u~^f(.u)du 

exp[-u^pi(x"^)]u ^fiu)du 

+... +2 [ I exp[-u^pi)'\u~^f{u)du i 
° Pn-2(*n-la^) J 

(3.5) 

A little algebra yields the result that 

P„(s^)[Pi(s^)]"""'e 

^yidu 

+(v+l)pi(jc"^)J^ u~/'(u)exp[-upi(Ar"^)]du-2[pi(a:~^)]^J^ uV(«)exp[-upi(j:"^)]du| (3.6) 

Using (i) for > = 0,1, and 2, we obtain 

-1 
•0  

.Pn(s^)iPl(s^)} v+1 
;x 

= ^ ̂  ^)] + (v+l)pi(x 1)GJPi(z-^)j 

-2[pi(.x~^)fG2^Pi(x~'^)j, (3.7) 

where n = 2,3,...,N. 
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3.3.1. Examples Based Upon Theorem 3.3.1 

Example 3.3.1. Suppose that f[.x)=x'Ji(.2xh. Then 

I(s) = 

0(s) = 

G J is)-. 

7C' 
(s + 1)^ * 

g"^(vg' + \/-l) 

3J* -  22 f + - 22 j + 24 ' 
48 

|'3j*-22/+45/-22j-l-24l 

3j* - 22 f + 45 f - 22 j + 24. 
48 
2 : ® 

fory = 0,1,2,3,4 , 

where 9îes > 0. A little algebra yields the result that 

[v-^v-X)Pi (s^)] 

iifi i; L 
[2; 

i: L_ 
[2; Piix-^) 

-iifi 
.2; 

where 9îe[pi(s»)]>0, n = 2,Z,...,N. 

Next, we use part (b) to find that 

y(s) = ,, %8>0, 
8(s+l)' 

a(s) = i5îW±v^7) 
8s "-«(!+8^)' 

Thus, 
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j^^-i|Pi''(s')[v+(v-7W(s')].-| 

p„{shi+PiHsh¥ 

ISn^Pnixhpiix'^) 
v-3 exp 1_ + 2(v—2)iJ?'i 3; ]_ 

.2; 
-12iFi 

4; ]_ 
.2; 

, (3.1) 

where 9îe[pi(s^)]>0, ra = 2,3,. 

Example 3.3.1'. (Two dimensions) 

If we let n  =  2  and v=-4 in (3.1), we obtain 

r -11(«1^ + Sa^)^[4 + IKs,^ + . 1 
I (aA)^[l+(»i*+ %*):]* ' ' j 

_ 8(xy)^ 
ISMx+y)^ 

3; x y  
. 2 ;  x  +  y  

-if, 
4; x^ 

.2; *+3^ 

Using the following results, 

j_W Wr^expl--^ ^\(x + yf x  +  y j  

and 

ifi rtL _ÎZ_ - i F i  
"4; x y  "4; x y  

.2; x + y  - i F i  .2;' x  +  y  3; x  +  y _  

we obtain 

-I f 6(s,^ + Sg [1+8(s,i + 7(si^ +%^). 
' I (aA)^[l+(A + S2^)V 

_32 ( x y )  
" (%+)') 

4; x y  
3;  x  +  y  

•I 1-, , 5Re[si2 +S2']>0- (3.1') 
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Example 3.3.2. Consider fix) = lQ{2xh. Then 

0(s) = -J-exp(-i), 
Ga (s) = ̂ [1+ j]exp(j), 

3;i G^(.s)—-^yF 1 
Is 

, 9îes>0. 

y i s )  =  •  
4(s-l)^' 

Therefore using (3.7) yields to the following result 

-1 

(f \  
3v—7^ v—2 

Pi(x  Lv 
exp[——] -4iFi 

Pi(x-') 

37C^Pn(x^)p^ix b 

3; 1 

.1; Pi(,x~^) 

where 9îe[pi(s2)]>0, n = 2,3,...,iV. 

(3.2) 

Example 3.3.4'. (Two-dimensions) 

Assuming n=2 in (3.4), we obtain 

-1 (V-5)(Si2+S22)^-V 

(SiS2 )^[(Si2 + f -  1]2 
;x,y 

^(3v-7)(a: + 3^) + 2(v-2)a:3>'^ ^ ^ 
x + y 

exp 
xy 

x+y -4iFi 

2(xy)'^ 
37r(x + y) 

3; xy 
l;x+y^ 

(3.2) 
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3.4. The Image of Functions with the Argument 2pj(x"^) 

In this section we derive Theorem 3.4.1 involving four different parts. 

However, we give only the proofs of parts (a) and (b) in detail; the proofs of two 

other parts are based upon similar ideas, that will not be discussed. 

Next we present some direct applications of this theorems. Initially we 

consider applications on some functions of n variables and obtain their Laplace 

transformations in n variables. As these functions and their Laplace 

transforms are usually very complex in nature, we will also consider functions 

having only two variables and their corresponding Laplace transformations. 

Theorem 3.4.1. Let fix'^) andx~'f(.x) be of class £2 and let ^(s) be a one-

dimensional Laplace transform of f. Suppose that *"^0(7) is also of class £2. 

Assume that 

(a) If 

(al) = |(s), 

(a2) L = aCs), 

( a 3 )  — =  

Let of class £2 and -^ [s  ^a(^)) exist for 9îes > Cq for some fixed Cq. Moreover, 

belong to Lj [(0,«)x(0,~)]. \f{u) axià. f{u)x~^ exp -sx 

Then 
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vFo[2pi(xi)]-4pi(x-i)F2[2pi(x-i)].-
. - - — ,s 

It 

I 
2:[Pi(a')] v+l 

f ~J \-l 
Pl(s2) , 9le[i9i(s'^)] > Aj for some fixed Al, (4.1) 

provided that the integrals involved exist forn = 2,3 N.  

(b) Let us assume the conditions (i) and (al) and keep to be of 

class £2, furthermore assume that x"^exp(-sa:-^)tt"Y(ii) belongs toLi[(0,oo)x(0,~)] 

and replace (a2) and (a3) by (bl) and (b2) as follows: 

(bl) l|*̂ |(̂ );s|= t(s), 

(b2) 

Suppose that exists for 9les>Ci for some fixed Ci. Then 

( V- l)Fi [2jJi (:c-^)]-4A(a;-')Fa[2A (%-')].-| 

Pnix-^) 
n-2 

JL ^ 

2p„(s^)[pi(s2)]'' 
-T._ ^ 

— \-i 
Piis^) , 9îe[pi(s2 )] > Ag for some fixed Ag. (4.2) 

(c) Now assume the condition (i) and replace (al), (a2) and (a3) by the 

following conditions: 

(cl) L ^ x  ^^(g);sj = y ( s ) ,  

(c2) L|a:"^y(-j^);s| = K-(s), 
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(c3) -A{s-V(^)} = 0(s). 

Furthermore, let us assume that is of class Q and &x^{-sx-^)f{u) belongs 

to Li[(0,<»)x(0,c»)]. Then 

L, 
vF2[2p-^ix h']-Ap-^{x ^)F^[2pi(,x ^ ) ]  - |  

== 

Pn(^') 
0=2. 

7t  
• e  

f — yi 

22p„(s2)[pj(s2)]^+i 

provided that the integral involved exists for n = 2,3,...,iV. 

, 9îe[pi(s2 )] > Ag for some fixed A3,(4.3) 

(d) Next suppose the conditions (i) and (cl) remain true, and thatx 

is of class Q andx~^ exp(-sx-^)f(u) belongs toLi[(0,oo)x(0,«>)]. Assume 

exists and replace (c2) and (c3) by the following; 

(dl)L{:c-^r(^);s} = 5(s), 

ds 
(d2) -A|s-5(X)| = ^(s). 

Then 

(V- l)F3[2pi(?^)]-4pi(P^)F5[2p^(P^)]  

n=2 
n 

T-f Pi^sh 
v-l 

, 5te[pi(s^)]> A4 for some fixed A4, (4.4) 
2p„(s2)[pi(s^)]'' 

provided that the integral involved exists and where « = 2,3 N. For the 

existence conditions of n-dimensional Laplace transformations we refer to 

Brychkov et al. [11; ch. 2]. 

Proof (a): Form the hypothesis and (al), we obtain 
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^(s)= [ [f x~'^exp{-sx-^)fiu.)du\dx. (4.5) Jo Jo * 

The integrand a:"'exp(-s%-^)/(u) belongs to Li[(0,oo)x(0,co)], so, byFubini's 

Theorem, we interchange the order of integration on the right-side of (4.5). 

Hence 

5(s) = /•(«)[x~^exp{-sx-'^)dx\du, 9îes>eo. (4.5') 

Next we evaluate the inner integral on the right of (4.5') by using a result from 

Roberts and Kaufman [87], to get 

|(s) = ;r'[ u~V(")exp(--2|^)dtt. (4.6) Jo * 

Now we use (4.6) and (a2), to obtain 

a(s) = ff^J^ [|^ x~^exp{-sx-^)u~^f{u)du\dx. (4.7) 

Again we evaluate the inner integral on the right side of (4.7) by using a result 

from Roberts and Kaufman [87], to obtain 

a(s) = -T f u~*/'(u)exp(-2"a<s^)rf« (4.8) 
2* "0 

Using (4.8) in (a3), we arrive at 

s^'^^Pis) = u"^/'(K)exp(-2^u^8"^)(fw-2^s"'u~V(w)exp(-2^«^s~^)cf"|i %s>Cq. (4.9) 

Now we replace s by [pi(s")]~^ and multiply both sides of (4.9) by Piish, to 

obtain 

Pn(shpi(sbr-'P ^Pi(s^)j u"V(«)Pn(s^)exp[-2^u«Pi(s^)Wu 

-2'jru V('̂ )Pn(s')Pi(s')exp[-2^u^Pi(s')c?u|. 

(4.10) 

Next we use the following well-known operational results 

s,-2 exp(-aSj2)=(roc, )"^ exp(-^), 

s,exp(-asj2)=-|;r~^xi » exp(--^) for i = 1,2,...,re. 
(*) 
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The relation (4.10) reads as 

Pnis^)\.Pi(s')r'-'^P 

1 

Piish 
V-l 

1 92 f •oo _a, J. —r 
=—-7 vf u *fiu)expl-2u^pi(.x ^)]du 

-4pi(a:"^)J^ u~^f{u)exp[-2u^piix~^)'\du}^ 

Let us substitute u = and use (i) for j = Q and 2 in (4.11) to obtain 

p„(s2)[pi(s^)r^-^i8 Pi(s2) 

n 22 
j--|vFo[2pi(x ^)] 

-4Pi(% ^)f2[2Pi(a: ^)]| 

Thus 

vFq[2P-^{X ^)]-4pi(% ^)F2[2pl(a; ^)]_% 
; 

22p^(s2)[pi(s2)]^+^ 

This completes the proof of part (a). 

(4.11) 

Pn^x^) 

, 9îe[pi(s2 )] > Al for some constant A] 

Proof (b): From (4.6) and (bl) it follows that 

t(s) = ;r̂  f [ f ur^f{u)x~^ exp(-sx - ̂)du]dx. (4.12) 
Jo Jo 

The integrand %"'«"'/(«)exp(-s%-^) belongs to L i[(0,o=)x(o,«')], so, by Fubini's 

Theorem, interchanging the order of the integral on the right of (4.12) is 
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permissible. Next we evaluate the inner integral by using a result from Roberts 

and Kaufman [87], to obtain 

T(s) = ;rs~^f u~^fiu)exp(-2^u*shdu. (4.13) 
Jo 

Plugging (4.13) into (b2), we arrive at 

s^7/(s) = ;r|j^ [(v-l)-2^u<s~^]u~V(u)exp(—9îes>Ci. (4.14) 

Replacing s by [piCs^)]"^ and multipling byPnish both sides of (4.14), and 

then making use of the operational relations given in (*) from part (a) and 

using (i) for j=l,3 we arrive at 

Hence, 

/ — ̂ 

n-2 1 
Pl(s')_ _ _ 

TC ^ Pn(x^) 

{(v-l)ifi[2pi(x-i)]-4pi(pï)F3[2pi(P^)]|. 

( V- l)fi[2pi(z-i)]-4fi(%-^)F3[2pi(%-^)]. 
IS 

2p„(s^)[pi(s2)]'' 

-N-1 
Pl(s2) 

(4.15) 

, 9îe[pi(s2 )] > ^2 for some fixed Ag. 

This completes the proof of part (b). 

3.4.1 Applications of Theorem 3.4.1 

Example 3.4.1. Consider fix)=^Fj -x  . Then 

0(s) = |cos(2s '), 

^(s) = (f)^ expf--\ 
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T(s) = -4-s~''"^exp 
2^ 

77(g) = expl 
2» 

s')n_^ 
,2»s2 

where 9îes>0. 

Next, we get 

s 2 

where 9îe [s + 2 exp(mr)] > 0 (r = 0,1) andy = 1 and 3. 

Now using (4.2), we arrive at 

Pn(*')Pi(* ) 

P„(s^) 
exp Pi 

(v- Dgfg 
2,1; Pi^(x~^) 

-^2^2 
j.i; Pi''(x~^) 

;s 

Pi '(s^) 
2) Pi'(g') 

2' 
-3D li Pi' '(s^) 

2' 
-, Sîe[pi(sh]>0. (4.2') 

Example 3.4.1'. If we let « = 2, v = 3 in (4.2'), we obtain the following new result 

in two-dimensions 

/ \2 xy 
^x+y 

;si,S2 >= 

(SlSg)' 
(S;^+S2^)'* 

•8 

• 2* r (s;̂ +s2̂ )̂  

2» 
- D  

(Sl^ +S2^)^ 
2' 

L (4.2") 

Example 3.4.2. Assume /"(%)= 
1,2 >î 

Then 
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^(s) = ]-iF3 
1,1; ' 

1 ; -1 

T(S) =—ï'4-F3 
2s» 

M'hh_(2]' 
1,1,1 ; UJ 

For v= 1, we obtain 

T }(s) = ~ 
4 ^4^3 

ri 11-
2 '  4 '  4 '  ^ ,2 

I,;# ; 
-4s': + 5s%F3 

where,  9îes>0,  

2,f'T.f; .2 
2,2.1 ; 

-4s^ I-, SRes>0. 

Also, 

= 9ks>0. 

Now for v = 1 from (4.2), we arrive at 

2 
J5i(ac"^) 

;s 

n 

8p^{s^)piish 
44^3 

l»2>f»fî  4_ 

i , i , f  ;  Pi( .s^)  

+54F3 
2»'2 '2>2»_ 4 

2,2,1 ; 

where 9îe[pi(s^)]>0, n =  2 ,3 , . . . ,N .  

(4.2.1) 

Remark 3.4.1: If we choose n=2, then we deduce the following new result in 

two-dimensions. 

x*y  f ~ 8[(si%)(si^+%^)f 

44^3 
4 

1,1,1 ; + 
+84^3 

o 2 7 
•^ '2 '4 '4 '  4 

2,2,1 ; («1^ + 52^)2 
(4.2.2) 

3.5. The Original of Functions with the Argument [/?i(s^)]^ 

This section begins with Theorem 3.5.1 that involves two parts. The 
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proof of part (a) that is more complicated than that of part (b) is given in 

detail, so that part (b) is stated without proof. However, this part can be proved 

by an analogous process to that employed for developing the result in part (a). 

Next, some new inversions formula have been obtained by applying the 

results of this Theorem to the most commonly used special functions. Initially 

we consider applications on some special functions of n variables. As these 

functions and their inverse Laplace transformations are usually very complex 

in nature, we will provide also two-dimensional inverse Laplace 

transformations having only two variables. Moreover, we will use some of these 

two-dimensional inversion formulas in Chapter 4 for solving a certain type of 

non-homogenous linear partial differential equations. 

Theorem 3.5.1. Suppose that f(x^) is of class n and let <t>(s) be a one-dimensional 

Laplace transform of f. Assume thatx^(p{j) is also of class n. Let 

(i) L[x^f{x^y,s^ = Hj(s) forj = 1,2,3. 

Moreover, let be of class £2 and x^ exp[-s* - ̂ ]f(u) belongs to Li[(0,>») x (0,<»)]. 

(a) Assume that 

(al) L|a:^0(-i);s| = |(s), 

(a2) = 7(s). 

Let x~^ exp[-sx-^]u~^f(u) belong to Li[(0,oo)x(0,«>)]. Then 

L-'„-

1 

to
 

;x 

. Pn(sh » — 

.{|iïi[2pi(:c-i)] + Pi(x-')F2[2pi(x-i)] + 4pi==(:c-i)/f3[2pi(x-i)]}, (5.1) 
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provided that the integrals involved on the left side of (5.1) exist for 

T i  —  2 , 3 , . ,  

(b) Assume the conditions (i) and (al), and replace (a2) by 

(bl) JD|*~^^(^);s|= 7/(s). 

-1 
Keep on the hypotheses that x ^^(-y) is of class Q. and 

belongs to Li[(0,oo)x(0,oo)]. Then 

f -1 

.Pn(s') V J _ a=2 jl 
It 2 Pnix^) 

•{/fi[2pi(ic-i)] + 2pi(:c-i)/f2[2pi(:c-i)]}. 

It is assumed that the integrals involved exist for n = 2,3, ...,2V. 

(5.2) 

Proof (a); We begin with using the definition of one-dimensional Laplace 

transform for f and making use of (al), to obtain 

<t>{s)= 1 expC-su)^")^". 
Jo 

dx, 9?es > Cq for some fixed Cq i5(s) = J°* J expi-sx-^)f(.u)du 
(5.3) 

Next we wish to interchange the order of integrations, (an operation which is 

valid,by Fubini's Theorem because exp[-s*-|-]/(u)eLi[(0,oo)x(0,«)]. 

Thus 

exp{-sx-f)dx f{u)du, 9îes>Co. (5.4) 

Making use of an operational relation from Roberts and Kaufman [87] in (5.4) 

yields 

^(s) = -^s"'^[ /(«)[!+2^2s^]exp(-2u^s^)d«. (5.5) 
Jo 
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If we substitute (5.5) into (a2) a little algebra leads to 

7(s) ' exp(-8% - ̂ )f(u)du 

-rt-' 

dx 

exp{-s* - ̂ )u » fiu)du dxl (5.6) 

In a similar manner, which is discussed to change (5.3) to (5.5) yields 

s^7(s) = "îjj" 2^u*s^]exp(-2^u'<s^)/'(u)du 

+4J sexp(.-2^u^s»)uV(")c?"j- (5.7) 

Now, we replace s by [pi(s^)f and multiply both sides of (5.7) by p„{sh. It follows 

that 

^Pi(s^)j J /•(«)p„(s^)exp(-2^tt^s^)d« + 2^J f(u)u*Pn(sh 

pi(s')exp(-2^«*s^)daj+;rj fiu)u^exp(-2'u's')du. (5.8) 

Next, a tedious calculation as we did in the proof of Theorem 3,3.1, leads to 

PiishÎ 

~ ~ {r/(")exp[-2K^;7i(j; ^)]du 
" TV 2 p„(s2) 

+2p-^(x~^)j uf(u)exp[-2u^pi(.x~^)]du (5.9) 

Upon substituting u=v'^ into (5.9) and then using (i) for j = 1,2,3, we arrive at 

Pn(s2)[Pl(s2)f y Pi^sh 

.[iHi[2p^(x-^)] + p^(x-^)H2[2piix-^)] + 4pi^(x-^)H3[2p,(x-^)]y 

Therefore 
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-1 [Pl(s^)f 
~r / k J 

;a:S = 
11=2 i, 

;r 2 p^(x^) 

.liffi[2pi(x-^)] + Pi(x-^)ff2[2pi(x-^)] + 4pi^(x-^)IÏ3l2Pi(x-^)]j, . (5.1') 

where « = 2,3,...,iV 

3.5.1. Example Based Upon Theorem 3.5.1 

rWp; Example 3.5.1. Assume that f(x)=gFp 
(6).: 

cx Then 

' />(s)=igFp 

4s^ 

y(s)= 45g „ 
32si'*' ' 

(b)g ; s 

(<ï)p» j c 

(6), ; s 

, whereq>p, ^Hes>ISiecl, 

, where 3îes>0 ifp+ l<g,3les>9îec ifp+ l=g. 

(bL 

where p+4< q+ l, 9îes> 0 ifp+4 ̂ g, 9îe[s+2cexp(;rir)]> 0(r = 0,1) ifp + 4 = g+ l 

Now, we calculate 

gj+l P+2^'q (6), ; a' 
for7 = 1,2,3 , 

and where p + 2<g +1,9îes>0 ifp+2<q, 9îe[s+2jexp(sir)]>0(r = 0,l) ifp + 2 = q + L 

Therefore, using (5.1) we arrive at 

p+i^q 
' p/(s^) 

;x 
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— p+4^q 

9n:^PnixhLPi(x~^)f 

PnishlPiis^l* 

(o)pAi; ^ 
(6), ; 

(a)p,l,f £ 
(b) ;x 

"kp+i^q '^p+2^q 

9 > p*(sh 

(o)p,f,2; c 
(6), ; Pi(3c-1) 

(a)_,2,f; e 
(5.1a) 

(b)g ; 

where /7 + 4<ç+l, 9îe[jDi(s^)]>0ifp + 4<7, 9îe[pi(s^) + 2cexp(ror)]>0 (r = 0,l) if p + 3 = q 

and n = 2,3,...,JV. 

Similarly, if we use (5.2) we obtain the following result 

L 
P„(s')[Pi(s^)]' 

4 

>+4-^9 
' Pl'*(s") 

' , x  

I P+2^9 
(a)».3,f; c 

(6)g ;Pi^(*"') 
+2p+2^. 

(a)p,i,2; 
(6), ;pi=(%-') 

(5.1b) 

Remark 3.5.1: Choosing n=2 and c=l in (5.3.b), it follows that 

_ 4(a:y)^ 

(a)pil»2»f»i! 4 

2 iP+z-^g 

(6), ; (Si? +52^)4 

^a)p>Xh( xy y 
(6), ;U + 3'J +2p+2-^i; 

>2/ 
(6), :U+>'/ 

(5.1b') 
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CHAPTER 4. THE SOLUTION OF INITIAL-BOUNDARY-VALUE 

PROBLEMS (IBVP'S) BY DOUBLE LAPLACE TRANSFORMATIONS 

4.1. Introduction 

One of the basic properties of the Laplace transform is that it transforms 

the operation of taking a derivative into the operation of mere multiplication by 

a variable. It thus replaces some of the derivatives in a partial differential 

equation (PDE) (depending on which variables are involved in the transform) 

by multiples of the function, and therefore (hopefully) reduces the equation to 

an easier equation to solve. For example, a PDE in two independent variables 

will sometimes, after application of the Laplace transform, become an ordinary 

differential equation (ODE). The Laplace transform is not capable of 

simplifying most PDEs, but it does help in some cases. 

Basically, the idea behind any transform (not just the Laplace 

transformation) is this. We have a difiBcult problem to solve. We apply a 

transform to it and produce an easier problem. We solve this easier problem. 

Then we have to transform the solution of the easier problem back into the 

solution of the original harder problem. This last step is one where most of the 

difficulty arises. Inverting the transform may be quite difficult. For the Laplace 

transformation it usually requires the use of contour integration in the complex 

plane. However there are many problems whose solution may be found in terms 

of Laplace transforms for which the inversion using the techniques of complex 

analysis is too complicated. 
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By the use of multiple Laplace transformations a PDE and its associated 

boundary conditions can be transformed into an algebraic equation in N 

independent complex variables. This algebraic equation can be solved for the 

multiple transform of the solution of the original PDE. The multiple inversion 

of this transform then gives the desired solution. The analytic difficulty of 

evaluating multiple inverse transforms increases with the number of 

independent variables. This still requires a significant amount of effective 

techniques of contour integration for deriving the final solution. With the help 

of tables given in Voelker and Doetsch [107] Ditkin and Prudnikov [43] Hlaidk 

[52] Dahiya [21], [23], [27], [28], [29] and [30] and our results in Chapters 2 

and 3, the actual evaluation of the inversion integral is alleviated. 

Several IB VPs characterized by non-homogenous PDEs are explicitly 

solved in this chapter by means of some of our results developed in Chapters 2 

and 3. We shall confine ourselves to the case that the transform is taken with 

respect to two variables. In the absence of necessitous three and N-

dimensional Laplace transformation tables, several IB VPs characterized by 

PDEs are explicitly solved by double Laplace transformations. These include 

non-homogenous linear PDEs of the first order, non-homogenous second order 

PDEs of Hyperbolic type and non-homogenous second order linear PDEs of 

Parabolic type. 

We would like to remark that calculations made in this chapter are 

formal. However, we are given the conditions for which the transform 

equations and the inverse transform equations exist. At the end one can verify 

that all the Laplace transform equations performed are valid. Indeed, it can be 

checked the original function u(x,y) is such that all previously used operations 
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are permissible. We denote «2} = î^(si,s2)andL2'{C/(si,S2);a:,3'} = «(*,>') 

through this chapter. 

4.2. Non-homogenous Linear Partial Differential Equations (PDEs) of 

the First Order 

4.2.1. Partial Differential Equations of Type 

Example 4.2.1.1. Determination of a solutions = u(x,y) of (4.2.1.1) and (4.2.1.2) 

for 

U^+Uy= f(x,y), 0 < X < o o ,  Q<y<o<, (4.2.1.1) 

under boundary conditions 

uix,Q) = a(xX 

u(0,y) = p(y). 
(4.2.1.2) 

(a) f{x,y) = (% + y)^, 0<z<«, 0<3'<<» and 

a(x) = exp(-x) and p(y) = exp(-}). 

(b)/(x,y) = (x + y)"^, 0<x<0°, 0<}<oo and 

a(x) = x^ and p(y) = y^. 

XV (c) f(x,y) = r. 0<%<00, 0<y<o° and 
/ 'vo- lAî (j: + y) 

ccix) = 0 = P{y). 

(d) f(x,y) = (% + y)^-(x^ + y^), 0<z<«», 0<y<«, and 

a(x) = exp(-x) and /3(y) = exp(-y) . 

(e) fix,y) = — ^ 3  ,  n e N a n d  0 < 3 c < 0 0 ,  0 < 3 ' < o o  a n d  
Cvj. (* + ><)' 

aix) = 0 = piy). 
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We first present the solutions of parts (a) and (e) in detail, and next the 

outline of the solutions of other parts will be provided. 

(a) Taking the two-dimensional Laplace transform from (4.2.1.1a) and 

(4.2.1.2a) with the aid of (1.5.2.7), (1.5.2.9) and Remark 2.1.1.2 Equation (1.1"'), 

yields 

and so, 

UiSi,S2) — 
(Jl +l)(52 + l)(jl +^2) 2(^1^2)'(^i^+^2^)(^i +^2) 

(1.1) 

Now, the inversion of (1.1) can be obtained by using (1.5.2.28) 

uix,y) = exp[-(z + y)] + 2-
JJexp[-(x+y) + 2^]rf^ ify>x 

j J e x p [ - ( % + y )  +  2 ^ M ^  i f y < %  

j^ix+y-2^)^d^ ify>x 
.(1.2) 

j^(x + y-2^)^d^ ify<z 

After evaluating the integrals and doing the elementary calculation it is found 

that 

u(x,y) = exp[-(y - a:)] 4-^[(y- x)^ - (x+y)^] ify>x 

exp[-(j: - y)]+^[(x - y)'-(% + y)'] if y <;c 

(e) Applying the two-dimensional Laplace transformation to (4.2.1.le) 

and (4.2.1.2e) with the help of (1.5.2.7), (1.5.2.9), and formula 181 in Brychkov 

et al. [11; p.300], we obtain 
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(5i+52)C/(5I,52) = 
TtYjln + l)  1 

2'T(n + |) 

Hence, 

2'T(n+i) 

Making use of (1,5.2.28), we obtain that 

- d |  i f y < x  

uix,y) = (x + y-20"*^ 

(z+y-2gM 

Evaluating the integrals after tedious calculation the solution uix,y) turns out 

to be 

u(x,y) = 

.kj Jix-yf^ix+y)"-^'-^- iy-x)"-^] ify>x 
k=Q C / i — J  

Now, with the aid of correspondence results given in Chapters 2 and 3 

the similar procedure we have followed, we get the following transform 

equations, for parts (b), (c) and (d) 

(b) UiSi,S2) = -^ 

(c) U(Si,S2) = 1 

1 

(JIJ2)^(^1^+^2^)^ (51+^2)' 

(d) uis„s,)=-— -+ 3K^ 
(^1 +1)(^2 + 1X^1 +J2) 4(^152)^(^1^ +^2^)(5i +^2)' 

where Sie [s,^ + > 0. 
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Therefore, 

(b) mU,>') = U + 3')^. 

ify>% 
/^r  4-  V W (x + yy (c) u(x,y) = • 

i(x-y)'-i(x + y)^-i-^^—^ i{y<x 
(y 4. v ix+y) 

(d) u{x,y) = I 5exp[-(}' - %)] + [(y -xf + (z + y)^ - 2(x^ + 3'^)] if 3» > jc 

5exp[-(x-y)] + [{x-y)^ + (%+y)^-2{x^ + if)'<x 

Example 4.2.1.2. Determination of a solution u = uix,y) of (4.2.1.1) and (4.2.1.2) 
for 

(a) fix,y) = 0<j:<oo, 0<3'<oo, 9îeT>0 and 
(z+y) ^ 

aix) = 0 = P(y). 

(b) f(x,y) = 0<j:<oo, 0<3'<oo, 9let>0 and 
(x+y) ^ 

a(x) = 0 = p(y). 

We discuss only the solution of part (a) in detail; the solution of part (b) 

is provided in brief because these parts are based upon similar techniques. 

(a) Taking the two-dimensional Laplace transformation of each term of 

(4.2.1.1a) and (4.2.1.2a) by the use of (1.5.2.7), (1.5.2.9), Example 1.1.1 equation 

(1.1') and formula (1.5.2.20), we get 

(5,+^2)f/(^„J2) = ïï-¥(T+l) • 
*2' •'Jl 

Evaluating the integral, yields 
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(5i+S2)I7(^I,S2) = 
;rr(T+l) 

, 5îe T>0. 

Hence, 

UiSi,S2) — 
/r 'r(T+l) 

_(^I (f; +f2)(^l^2)'(fl' + V)' ,2t+1 

where 9îe +^2^]>0, 9îe r > 0. 

Now, making use of (1.5.2.31), we obtain the following inverse transform 

- $)(} - +(y-$)^]-(%-0<.y-0} 

u{x,y) = -

ix + y) 

tixyY 

{x + y-2^)~^~^d^ if}/<% 
,9îg T>0. 

(%+)/) 
- Tj^[(% - !)(>- - -0^+(.y-0^'i-ix-my-o] 

.(x + y-2^)~''~^d^ ify>x 

(2.1) 

Remark 4.2.1.1: If we let? = 1 in (4.2.1.1a), we obtain 

a(x) = 0 = piy). 

Hence, from (2.1) we get 

u(x,y) = • (x + j) 
xy 

(;( + }') 

y - - y)'+- .:)(y -  0%;:+y -  if y > % 

r ~ +  ( ^ - 0 ( y - ^ ) ] i x  +  y - 2 ^ y ^ d ^  i f y < x  

Evaluating the integrals, we arrive at 
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u{x,y) = + y)a 4 i j 

• |f (* - - (* - J')'^ (* + y)~ ' - (*+^) ' I if J' < *. 
(* + 3') 

xy 
(z+y)' 

(b) By an analogous argument, we arrive at the following transform 

equation 

U(s„s,) = ' SRg[^,* + ̂ 2^]>0, 9%gT>0. (2.2) 

The inverse transform of (2.2) can be obtained using Formula (1.5.2.31) 

and the well known result in Brychkov et al. [11] 

ii(.x,y)-

- TC[(% -0(y- or' mx -1)2 + (y -1)=^ ] 
(x+yf^ 

-3(a:-|)(>'-|))(x+y-2|)"*"»)rf| i f y > x  
-  $ ) ( y - +  ( 3 '  - 1 ) ^ ]  '  

(*+:y) * ° 
-3(* - DCj' - |))(x+y - 2|)""~^)rf| i f y < x .  

where 9îe r > 0. 

Example 4.2.1.3. Determination of a solution» = «(%,);) of (4.2.1.1) and (4.2.1.2) 

for 
1 XV fix,y) = rexp( —), 0<x<oo, Q<y<oo and 

ix+yy x + y 

a(x) = sinhx and P(y) = sinhy. 

We begin to solve part (b) completely, and next we give the outline of the 

solution of part (a). • 
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We apply the two-dimensional Laplace transformation to (4.2.1.1b) and 

(4.2.1.2.b) with the aid of (1.5.2.7) and (1.5.2.9) and Remark 3.2.3 Equation 

(2.2"') with (1.5.2.20), to get 

4 An 

Evaluating the integrals and simplfying, we arrive at 

2(SiS2 + 1) 
(Sj — !)(% —1) (s^ — 1)(S2 — !)(&! +62) 

+ 9k[Sii + %i]>0.(3.1) 
(Si + S2)(SiS2)^[(l+(Si» +S2») ] 

The inverse of (3.1) can be obtained using Remark 3.2.3 Equation (2.2"') 

with (1.5.2.20) and Example 3.2.3' Equation (3.5") and Formula (1.49) and 

(1.59) in Ditkin and Prudnikov [43; pages, 106 and 107] 

u{x ,  y )  = sinh(* -  y) -2-

f'cosh(* + y - J\d^ if y 
Jo + x + y-2^ 

|Jcosh(jc + y - 2|)rf| - jjjj 

>x 

1 
x  +  y -2ç  {x + y-2^)^ 

Example 4.2.1.4. Determination of a solutions = u{x,y) of (4.2.1.1) and 

(4.2.1.2) for 

1 f ix ,y )  =  -
ix  +  y )  

Fi 1; x+y  

«(%) = sin% and j8(j) = siny. (4.1) 

Taking the two-dimensional Laplace transformation of each term of (4.1), 

using (1.5.2.7), (1.5.2.9) and Remark 3.2.2 Equation (2.3'), we obtain 
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(Si+S2)Î7(SI,S2)-
82̂  + 1 sj + l (sis2)%+(si+s2)2]̂ ' 

9îe [Si^ + Sg^] > 0. 

Hence, 

V +S2'+2 [/(Sl,%)= , Y " + T 
(Si^ +1) + (%* + l)(si + %) (s^sa) [1+(Si^ + + %) 

Now, using formula (1.4.8) and (1.5.8) in Ditkin and Prudnikov [43; p. 106] and 

Formula (2.3') in Remark 3.2.2 with the aid of (1.5.2.28), we arrive at the 

following solution 

«(*. y) = sin(*+J/) - 2-

J^cos(*+ y - 2 x ) d x  +  p 
(jc+y-2*)2 

J^cosC* + J» - 2x)cir + p 1^1 
i x + y - 2 x ) ^  

4 ;  ( . x - x ) { y - x )  

1 ;  ( x  +  y - 2 x )  

4 ;  ( x - x ) ( y - x )  

1 ;  { x  +  y - 2 x )  

d x  i f y > x  

d x  i f  y  <  X .  

Substituting *+y - 2| = <, we obtain 

u i x , y )  =  -

sin(>'-*)+̂ r 

sin(a:-y) + r̂ 
"^Jx+y 

h t^-(x-yf 
.1;" t 

f ;  t ^ - ( x - y f  

1;" i  

d t  i { y > x  

d t  i f y < x .  

4.2.2. Partial Differential Equations of Type 

aux + buy+a:u = f(.x,y), 0<*<oo, Q<y<oo 

where a, b and c are constants, such that o 0 and — > 0 and e = ±l 

(4.2.2.1) 

Subject to boundary conditions 
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u(x,0) = a(x), u ( 0 , y )  =  P ( y )  (4.2.2.2) 

Example 4.2.2.1. Determination of a solution u  =  u ( x , y )  of (4.2.2.1) and (4.2.2.2) 

for 

(a) and 

a ( x )  =  0 = p ( . y ) ,  

where e = +l. 

(b) f ( x , y )  =  ( x + y ) ~ ^  and 

a i x )  =  0  =  p { y ) ,  

where e = +1 

We discuss the solution of part (a) in detail; the solution of part (b) is 

provided in brief because the two parts are based upon similar techniques. 

(a) Applying the two-dimensional Laplace transformation to (4.2.2.1a) 

and (4.2.2.2a) with the help of (1.5.2.7), (1.5.2.9) and Remark 2.1.1.2 Equation 

(1.1"), we obtain 

U{Si,S2)-- 7t' 
(S1S2 (s,^ + S2^ )(asi + ÔS2 + c) 

, 9îe [Si^ +S2^]>0 (1.1) 

With the aid of formula (1.5.2.30) and Remark 2.1.1.2 Equation (1.1"), we 

get 

u { x , y )  =  
"'°[(x + j)-(l+-|)^F 

° [(x + 3')-(l+|-)7j]" 

Evaluating the integrals, we arrive at the following solution 
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u{x,y) = -
exp[ E r f i [ )  -  E r f i !  

c ia  +  b)  a  +  b  [  { ,  a  +  b  J  \  a(a  +  b)  
? ̂  ify>% 

b [  , ^ exp[ E r f i ( -  E r f { |  ) •  <  % ,  
a  +  b  b{a + b) c ia  +  b)  a  +  b  

where a>0, 6>0 andc>0. 

(b) Similarly, with the help of Formula 181 in Brychkov et al. [11], we 

arrive at the following transform equation 

UiSi,S2) — • 
(asi +6S2 + c)(si2 + sgi) 

Using Formula (1.5.2.30), we obtain 

—, %e [si^+ S2^]>0 

ii(x,y) = 

2a  
a + b 

exp 
'c(% + )/)' If a 1 i exp -ciay-bx)' 
_ a + b _ Uaj'-6xJ 

i 
exp 

aia + b) 

exp 
-c(x + y) 

a + b 

-Erf  

2b  
a  +  b  

a + b ) 

c(x+y) 
a + b 

m 
a + b 

\Erf  ( c(oy-6%)Y 
I aia + b) J 

Y 6 _ 
[bx-ay, 

-c(jbx-ay) 
b{a + b) 

ix + yr 
-exp 

-c {x  +  y )  
a  +  b  

ttc 

-Erf  
c ix  +  y )  
a + b 

a + b 
Erf  

c jbx-ay)  
^ b ia  +  b)  y 

(1.2) 

where a>0, 6>0, andc>0. 

Remark 4.2.2.1: 

(a) If we let a  =  b  =  c = l  in part (a), in fact for the following boundary 

value problem 

1 
ux + uy+u = 

(%+)') 
,  0<X<oo, 0<3'<oo 
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a( .x )  =  0  =  p iy ) ,  

we obtain a solution as follows 

Erfi '[¥!' -Er / î  i f y > x  

[/• \4-1 r, .11 
Erfi [m] -Erf i  

ÎS 1 
<N 

H i { y < x  

(b) Substituting a  =  b  =  c = l  and e = -1 in the equation (4.2.2.1), yields 

1 
U x + U y ~ U  =  -, 0<JC<M, 0 < jy < oo and 

aix)  =  0=P(y) .  

SO that, 

uix,y) = ex.-ç{^^^) + 

-exp 
iy-xY 

(y-jc) 

{y~xY 
-exp 

{x -yV 
-exp 

+(f)' E/f 

2 

(%-y) 

-Erf  
x  +  y  

ix -yY  
-exp 

-Erf  

x + y 
2 

I"  i f y>x  

x  +  y '  
2 

i ify<x 

4.3. Non-homogenous Second order Linear Partial Differential 
Equations of Hyperbolic Type 

4.3.1. Partial Differential Equations of Type 

u^=f{x ,y ) ,  0<x<oo, o<y<«> and (4.3.1.1) 

u{.x,Qi) = a{x) ,  u{ .0 ,y )  =  p( .y ) ,  «(0,0) = c, where cis a constant (4.3.1.2) 
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Example 4.3.1.1. Determination of a solution u = u(x,y) of (4.3.1.1) and (4.3.1.2) 

for 

(a) = + 0<Z<™, 0<_y<ooand 

aix) = x'^, Piy) = y^ andc = 0. 

(b) f{x,y) = ix+y)~\ 0 <*<«>, 0 < )" < oo and 

aix) = x'^, Piy) = y^ and c = 0. 

First we begin to solve the part (a) of the problem. Due to similarity of 

the procedure, the details of the solution of the EVP in part (b) are omitted. 

(a) We apply the two-dimensional Laplace transform to (4.3.1.1a) and 

(4.3.1.2a) using (1.5.2.11) and Formula (1.1') in Example 1.1.1 for v = 0 with 

the aid of Operational relation (35) in Voelker and Doetsch [107; p. 185] we 

obtain the following transform equation 

X 

= + , f W+%i]>0. 
SiSa^ (V + V) 

Now, using (1.5.2.32), yields 

u{x,y) = x'^ + y" +4\.x^ + y^-{x + y)^], %g (ju,v)>-L 

(b) With the similar process as employed in part (a), we arrive at the 

following transform equation 

1 

Next, we apply Relation (1.5.2.32), to obtain 
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uix ,y)  =  x'^ +  -^[{x  +  yy  -y^-^xy^-x^X 9îe (/i, v)>-L 

Example 4.3.1.2. Determination of a solution u = u(x ,y)  (4.3.1.1) and (4.3.1.2) 

for 

(a) f (x ,y )  =  — » , ,  0<x<co,  o<y<oo and 
(x + y)~^ 

1= v/' a(x)  =  x'^ ,  P(y)=y^,  andc=0. 

(b) f ix ,y )  =  ^  , 0<x<<=o,  0<y<oo and 
(x + y)-^ 

a(x)  =  x' ' ,  /3 (y)  =  y^,  andc = 0. 

We solve the boundary value problem given in part (a) completely, the 

solution of part (b) is similarly direct. 

(a) Making use of the double Laplace transformation on each term of 

(4.3.1.1a) and (4.3.1.2a), yields the following transform equation 

by virtue of relation (1.5.2.11) and the result of Example 1.1.1 Equation (1.1'). 

Hence, 

ucsi.sg) = +1) ^ 9îc[si^ + s2^]>0, 3îe(fi,T,v)>-l 
Si % Sl®2 (S1S2) (Si+Sg)""*"^ 

Further, if we apply the Relation (1.5.2.32) to the transform equation, we find 

that 

uix ,y)  =  x'^ +  y '^+l  (1.1) 
Jo Jo (^ + 7j)T-
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where, 9îe /i > -l, 9îe t > -1, and 9îe v > -L 

Remark 4.3.1.1: If we letv be a fixed even number, say 2n, then we can reduce 

the solution (1.1) to the form 

where, 5Re /x > -l, %re t > -L 

Evaluating the integrals, after tedious calculation the solution (1.1) in this case 

may be written in the following form 

u{x ,y )  =  x ' ^+y ' ' -¥4 , ^  
k=0 

(-»* 
2A-1 

n 
{k j  j-i'* +1 (2-1) 

where, SRe /i > 0, 9îe t > 0. 

(b) The solution of part (b) can be derived in a similar fashion, using the 

Formula 181 in Brychkov et al. [11], yields the transform equation 

1 U(S  ^ j-H/i+l) r(T+l) ;rr(v+l) , % [sj^ + «2^1 > 0, 9îe (jii, r, v) > -1 

Hence, 

Jo Jo (£ + „)T-(4+1)' 

where, 9îe > -l, 3îe t > -L 

Indeed, putting v=2(n-1), a tedious calculation, yields 

(1.3) 

/l—l 
u(x,y) = x'^+y^ + 4:^ 

k=0 \ k / 2k+l  

tt—4 

p=0 

^n + k-l^ 
K P 

where, 9îeT>-L (1.4) 
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Example 4.3.1.1'. If we let v=2n = O in parts (a) and (b) of Example 4.3.1.1, 

respectively the problem reduces to 

aix) = x'^, p(.y) = y*, c = 0. 

(b') u •xy 
(x + y)^ 

aix) = , Piy) = y*, c = 0. 

Then, we obtain the following solutions for each part, respectively 

u.(.x,y) = *'' + 3»* + fK* + -{x^ + 3»^)]. 

ii(x,y) = jc'* + y* + + y^ +-(x + 3»)^]. 

Furthermore, for v=2(n -1) = 2, the problem in part (b) reduces to the following 

aix) = ,Piy) = y^,c>Q. 

which has a solution 

uix,y) = x'^ +y' + — - *>0,3'>0. 

Example 4.3.1.2. Determination of a solution a = u{x,y) of (4.3.1.1) and (4.3,1.2) 

for 

fix,y) = -^iFi 
(x + y)^ 2; x + y 

,0 <z<00,0< y < o o and 
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a(x) = ,l3(y) = y'^,c = 0, 9le(/z,T)>0. (1.1) 

We apply the two-dimensional Laplace transformation on each term of 

(1.1), to get the following transform equation 

by virtue of Relation (1.5.2.11) and the Result (2.2.i) of Example 2.2.2'. 

Therefore 

s/ «2 S1S2 2SiS2[1 + (SI?+S2^)]> 

9le[Si^ +V]>0, 9îc(/i,T)>-L 

Furthermore, if we apply the Relation (1.5.2.32) to the transform equation, we 

find that 

u(x,y) = x'^ + y^+ e x p f * > 0 ,  ̂ > 0  a n d % e ( / / , ? ) > - !  
x + y + 

4.3.2. The Wave Equation 

To illustrate the use of some of our results which are derived in Chapters 

2 and 3 in wave mechanics, we shall consider the one-dimensional wave 

equation in a normalized form 

U^-Uyy=f{x,y), 0<*<oo,0<jf<oo, (4.3.2.1) 

The initial and boundary conditions are 

w(z,0) = aW, u( .0 , y )=p( . y )  

(4.3.2.2) 
Uy (%,0) = 9(x ) ,  u ^{0 , y )  = 5(j'),and 
a(0) = ^(0), 
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subject to the following condition of compatibility; 

T/C a: - T, x)dx+ J W - =  0 .  ( 4 . 3 . 2 . 3 )  
•'O dx 

Example 4.3.2.1. Determination of a solution u = u{x ,y)  of (4.3.2.1) and (4.3.2.2) 

for 

(a) f (x ,y )  =  o  

a ix)  =  x^,  P( .y )  =  y^ 

e(x) = jx-^Bind5(y) = ̂ y-K 

Ob) f ix ,y )  =  y ' ' -x ' '  

a (x)  =  x^, f i iy )  =  y^ 

d{x)  =  -^x'^  and Siy)  =  •^y'^ .  

(c)/"(at, y) = * * V V > 1 

a(x)  =  x^,P(y)  =  y^ 

eix) = -^x~^ and5(y) = ̂ y"^. 

We provide the solution for part (c). By an argument similar to that 

employed in part (c) the solution for the two other parts are established in 

brief. 

(c) Taking the two-dimensional Laplace transformation from each term 

of (4.3.2.1a) and (4.3.2.2a) with the aid of (1.5.2.8) and (1.5.2.10), yields the 

following transform equation 

V «1 V 
r(v- i )r(v+i)  r(v- i )r(v+i)  

Ç "-Iç "+1 Q "-1 J5l 02 ^1 ^2 

or, equivalently 
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[/(si,%)=r(#) 
s,^+sJ 

_ (S1S2)' SiSgCsi'+Sg'). 
+ 9îe[SiUs2^]> 0.(1.1) 

®1 ®2 

For the inversion of (1.1) we combine Remark 2.1.1.2 Equation (1.1"') with 

Formula 87 in Voelker and Doetsch [107; p. 236]. Finally, we obtain the solution 

in the form 

u(x ,y )  =  (x  +  y ) '  +  ^ ^ 9îev>l. 
v(v-l) 

(1.2) 

Proceeding in the same way as in the establishment of solution (1.2), we can 

then show that the transform equations for parts (a) and (b) are as follow, 

respectively 

U (Sj, $2 ) 
_ r(f)(s,Us,^) 

(SA)* SiS2(Si^ + S2^) 

C7(s^,s^) = ni2(£L±^ + -

/I—!• 

^(Si^ + Sg^) (SiS2)"^^(SI + S2) 

Therefore, 

u(x ,y)  =  (x  +  y)K 

u ix ,y )  =  ( .x  +  yy  +•  

xy ,n+l 

r(i)r(n) 2^ 1 
1,-1; 2 
n+2- ,x  

x^y" 
r(2)r(n-l) 2^1 

I I F 
r(n)r(i)' 3 : ;c 

1,-2; 2 
n+1;* 

y>x 

r(n)r(i) 
iPy X-n-, £ 

3 ; J/ 

, I p 
rw)r(i)^ ' 

r(re-i)r(2) 

1,-1; £ 
n + 2-,y 

\l-n\x_ 
4 ; y 

i f y<x ,  



147 

by virtue of the Results in Remark 2.1.1.2 Equation (1.1"') and the following 

inversion formula given in the unpublished monograph by R. S. Dahiya 

r(.n-k)riv+i) 2^ 1 

nn+Dnv-k) 2^ 1 

k , k - I X \ ^  

y+ l;z 

k,k-v;^  

i fy>* 

i { y < x ,  

H,v>-1 

Example 4.3.2.2. Determination of a solution u = u(x ,y)  of (4.3.2.1) and (4.3.2.2) 

for 

ia) and 
(%+}') ' 

a(x)  =  0  =  p{y) ,  

0(*) = and 5(>')=~^. 

(b) and 
(%+)') ^ 

a(x)  =  0  =  P(y) ,  

d (x)  =  x~^ and S(y)  =  y~^.  

We only present the solution of part (b) completely, the solution of part 

(a) is similar to that of part (b), hence the details of that have been omitted. 

(b) Applying the double Laplace transform to the terms of (4.3.2.1b) and 

(4.3.2.2b) with the aid of (1.5.2.8), (1.5.2.10), (1.5.2.20) and Formula 181 in 

Brychkov et al. [11; p. 300], finally we arrive at 

/ irr/ \ ;rr(2v+l) [ f~ c?A f" dX ] 

Evaluating the integrals and simplifying, we get 
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U(Si ,S2)  — n' ;rr(2v+l) Sl^-S2^ 
(SiS2)^(Si^ + S2^)(Si+S2) v2'^Tiv+^) (Si^ + S2^)(Si + S2) ' 

(2.1) 

where SRcEsi^ +S2^]> 0, 

The inversion of (2.1) will be accomplished from (1.5.28), and Relations 

(1.1') in Example 1.1.1 and Formula 181 in Brychkov et al. 

u(x,y)  = ~  

Mx + y -2^y'' + [ (x -0 (y -0r 

yv(x+y-20''*^ + [(.x-0(y -Q]' 
(.x + y-2^r^ 

if y<x.  

(2.2) 

Substituting x+y-2^ = t  in (2.2), we obtain 

u(x ,y)  =  -
+  r  - ix-y) '^Yr'"^dt  i {y>x 

Jx+y 

ix  +  y) '  - (x-y) '— ;sïrf - ix-y)^yt  d t  i^y<x,  9lgv>0. Jx+v 

(3.2) 

(a) Similarly, the transform equation for part (a) is as follows 

U(.Si,S2) — 
(SiS2)^(SIT + S2'Î)(SI +S2) V(SiS2)'(Si^ +S2^)(Si +S2) 

, % [s,i + S2^]> 0. 

The inversion of [/(s^sg) will be accomplished from (1.5.28) and Relation (1.1') 

in Example 1.1.1 

rv (x+y-2^y+:(x -^ ) (y -^ ) r  
i 0 (« + y-2f)'^ 

yv(x  +  y -2^y  +  [ . (x-0(y-4) l  

' (x + y-2^y*^ 

•rf| if y > * 

if )/ < z, 

Remark 4.3.2.1: One may easily check that'the condition of compatibility 

(4.3.2.3) holds true for all IB VP s given in Example 4.3.2.1. 
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Remark 4.3.2.2: If we let V = 1, in part (a) and part (b), we obtain the 

following solutions, respectively 

u( .x ,y )  =  

(x  +  y)*  -  (y  -  *)»  -—{{y-  x) '  - (% + ;y)»  ]  

-(* + y)~] if }'>x 

( *  +  -  y ) ' - ]  

-  %(% -  :y)'^[(3c -  y)~ -(% + )))":] if y<x.  

u{x ,y)  =  
+ + >')"'] if y<3c. 

Example 4.3.2.3. Determination of a solution w = K(z,)') of (4.3.2.1) and (4.3.2.2) 

for 

(a) ;.fe,j,)=(a&:^expf-^], 
(x+y) i  {  x  +  y j  

a(x)  = exp(-5c), /3 (y)  = exp(-y) 
6(x)  = 0 = S(y) .  

and 

(b)  f (x ,y )  = x - y  
1 

i ;  xy  
2; x +  y  

and 
(x+y)^  

aix)  =  0=Piy)  
Q(x)  = expC-x), S( .y )  = exp(-y). 

Let US begin to solve the IB VP in part (a). Taking the two-dimensional 

Laplace transformation of each term of (4.3.2.1a) and (4.3.2.2.a), with the help 

of (1.5.2.8) and (1.5.2.10), and also using the Relation (3.5') in Example 3.2.3' 

and with the aid of (1.5.2.20), we arrive at 

or, equivalently 

i+sji) (1+^2)2 •dt 
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I7(Si,§2)— - +  
K 

(Si + 1)(S2 + 1) (Si + 1)(S2 + l)(Si + 82) 2(SiS2)^(SI» + S2')[1+ (Sj» + S2')](Si + S2) 

Making use of Relations (1.2) in Ditkin and Pmdnikov[43; p.lOO, (201)] 

together with Relation (201) in Brychkov et al. [11; p. 303]. Finally with the aid 

of (1.5.2.28), we obtain the following solution 

uix ,  y )  =  exp[-(* - 3»)]+ 

Hence, 

u{x ,y)  =  ̂ -
exp[-(j'-x)]+exp[-(a: + 3')]-Wy(l,-—)dt i f y > ï  

J(x+y) At 

exp[-(a;-j')] + exp[-(%4-^)]- [ ^ ^if }< < %. 
J(*+y) 4( 

(b) Similarly, the transform equation for part (b) can be obtained 

1 Atc^ 1/(81182) — 
(Sj + 1)(82 + l)(si + %) ' 3[1+ (g^i + ' 

by virtue of Relation (2.2.i) in Example 2.2.2*. 

Next, we combine Relations (1.2) in Ditkin and Prudnikov [43; p. 100] 

and (2.2.ii) in Remark 2.2.2, we obtain the solution in the form 

"(*,3') = 1-

[exp[-(^ - %)] + exp[-(z + 3/)]) -1 2^*1 «"(z+y) 
j .  t ' - i .x -yf  
1; 4( 

{exp[-(x - 3*)] + exp[-(% + _y)]) - f [' ^ 2^1 J(.x+y) 
t-'-i.x-y? 

1; 

d t  i f y > x  

d t  i f  y < x .  
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Remark 4.3.2.3: It is easy to check that the condition of compatibility (4.3.2.3) 

holds true for the IB VPs in Example 4.3.2.3. 

4.4. Non-homogenous Second order Partial Differential Equations of 

Parabolic Type 

4.4.1. Partial Differential Equations of Type 

U^+2Uyy+Uyy+ KU =  f {X ,y ) ,  0  < X <  <>0,  Q  <  y  <  OO ̂  

where jc = 0 or 1. 

Under the initial and boundary conditions 

ui.x,Q) = u(Si,y) = U y (.x,0) = u^(0,y) = u(0,0) = 0 (4.4.1) 

Example 4.4.1.1. Determination of a solution u = u(x ,y)  of (4.4.1) where = 1 

and K(*,0) = K(0,j') = «y(*,0) = Uj(0,j') = u(0,0) = 0, for 

(a) f (x ,y )  =  (x  +  y)^  

(b) 
ix+y}-^ 

(C) f {x ,y )=  
( .x+y)~^ 

(d) f ( .x ,y )  =  ^^exp[——] 
(x+y)" x+y  

(a) Applying the double Laplace transform to (4.4.1a) with the aid of 

(1.5.2.8), (1.5.2.10), (1.5.2.11) and Relation (1.1"') in Remark 2.1.1.2, we arrive 

at the following transform equation 
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ms^,s^) = - 9k[8ii + %i]>0. (1.1a) 
(«!+%)''+ 1 2(SiS2)^(SIUS2^) 

The inverse transform of (1.1a) can be obtained from (1.5.2.33) via 

Relation (1.1"') in Remark 2.1.1.2 

u(x,  y) = (x + y - 2|)^ sin I (1.2a) 

By a simple change of variable x+y-2^ = 2t^ in.  (1.2), we obtain 

u{x,y)  = i î  y  >x.  

Expanding the sine and making some simplification, we arrive at 

u{x,y)  = 2~^[cos(^i^ i sin t^dt  - sin^^ i cos t^dtt l .Za) 

Using Formula 5 in Prudnikov et al. [84; p. 240], we obtain the solution in the 

form 

K(%,y)=% 

x + y 
2 

c|2z£]_cf^^-

2 > 
s|Z^]_sf^ 

i f  y > z .  

Similarly, to obtain the transform equation for parts (b)-(d), respectively. We 

replace relation (1.1') in Example 1.1.1 which is used in part (a), Relations 

(1.1") in Remark 2.1.1.2 for part (b). Formula 181 in Brychkov et al. [11; p. 300] 

for part (c) and (3.5") in Example 3.2.3' for part (d), we arrive at. 

UiSi ,S2)  — 

+ 1) 

[(Si + Sg)'^ + l](SiS2)'(Sj^ + 
(1.1b) 
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Uis i fS^ )  — 

U(.Si,S2) — 

;rr(v/+1) 
2 

njsii + S2^) 

V+1 

[(Si + S2)^ + l][l+(Sl^ +S2^)]^ 
where % [si» + Sa* 3 > 0. 

Therefore, we obtain the following solutions, respectively 

2 Jx+1 ' sin dt if )! > %, %e V > -1 

J'y-% _i. t ' exp 
a JX'¥y  4t 

if^ >x .  

(1.1c) 

(l.ld) 

Remark 4.4.1.1: Substituting v= O in parts (b) and (c), leads to 

1 
U ^  +  2 U ^ + U y y + U  =  

U ^ + 2 U ^ + U y y + U  =  

(x+y)^  

( x  +  y)^  

Next, using (1.2b) and (1.2c), we arrive at the following solutions, respectively 

ify >*. 

u(x ,  y )  cos(a: + 3') cos y - i cosf 
(x+yr  I V 2 

sin 

{y -xy  
x  +  y  C|lz£Lc "J-
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

5.1. Conclusions 

The main theme of this dissertation concerns the theoretical and 

computational aspects of N-dimensional Laplace transformation pairs, for N>2. 

This was mainly done in Chapters 2 and 3. Laplace transforms can be defined 

either as a unilateral integral or a bilateral integral. We concentrated on the 

unilateral integrals. We have successfully developed a number of theorems and 

corollaries in N-dimensional Laplace transformations and inverse Laplace 

transformations. We have given numerous illustrative examples on 

applications of these results in N and two dimensions. We believe that these 

results will fiirther enhance the use of N-dimensional Laplace transformation 

and help further development of more theoretical results. 

Specifically, we established several two-dimensional Laplace transforms 

and inverse Laplace transforms in two-dimension pairs. These are in 

agreement with the results in Ditkin and Prudnikov [43], Voelker and Doetch 

[107] and Brychkov et al. [11], by taking the function to be the commonly used 

special functions. 

Several initial boundary value problems (IBVPs) characterized by non-

homogenous linear partial differential equations (PDEs) are explicitly solved in 

Chapter 4 by means of results established in Chapters 2 and 3. In the absence 

of necessitous three and N-dimensional Laplace transformation tables, we 

solved these IB VPs by the double Laplace transformations. These include 
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non-homogenous linear PDEs of the first order, non-homogenous second order 

linear PDEs of Hyperbolic and Parabolic types. 

5.2. Future Directions 

Even though multi-dimensional Laplace transformations have been 

studied extensively since the early 1920s, or so, still a table of three or N-

dimensional Laplace transforms is not available. To fill this gap much work is 

left to be done. To this end, we have developed several new results on N-

dimensional Laplace transformations as well as inverse Laplace 

transformations and many more are still under our investigation. A successful 

completion of this task will be a significant endeavor, which will be extremely 

beneficial to the fiirther research in Applied Mathematics, Engineering and 

Physical Sciences. Specifically, by the use of multi-dimensional Laplace 

transformations a PDE and its associated boundary conditions can be 

transformed into an algebraic equation in n independent variables, this 

algebraic equation can be solved to obtain the desired solution. 
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