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Abstract

Understanding stress-strain behavior of asphalt pavement under repetitive traf-

fic loading is of critical importance to predict pavement performance and service

life. For viscoelastic materials, the stress-strain relationship can be represented

by the dynamic modulus. The dynamic modulus test in indirect tension mode

can be used to measure the modulus of each specific layer of asphalt pavements

using representative samples.

Dynamic modulus is a function of material properties, loading, and envi-

ronmental conditions. Developing predictive models for dynamic modulus is

efficient and cost effective. This article focuses on developing an accurate Finite

Element (FE) model using mixture elastic modulus and asphalt binder proper-

ties to predict dynamic modulus of asphalt mix in indirect tension mode. An

Artificial Neural Network (ANN) is used to back-calculate the elastic modulus

of asphalt mixtures. The developed FE model was verified against experimental

results of field cores from nine different pavement sections from five districts in

the State of Minnesota. It is demonstrated that the ANN modeling is a powerful

tool to back-calculate the elastic modulus and FE model is capable of accurately

predicting dynamic modulus.
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1. Introduction

In order to predict pavement performance and service life, stress-strain be-

havior of asphalt pavement under repetitive traffic loading should be studied.

One of the fundamental material properties of viscoelastic materials is the dy-

namic modulus which relates stress to strain [1, 2, 3, 4, 5]. Dynamic modulus is

accepted by most pavement engineers as a critical parameter for flexible pave-

ment design. As a stiffness indicator parameter, dynamic modulus is used in

the Mechanistic-Empirical Pavement Design procedure [6, 7, 8].

The dynamic modulus test can be performed in two different test configu-

rations, the uniaxial and indirect tension mode configurations. Both of these

tests can be used in performance evaluation of the existing pavements. The

uniaxial test configuration has the benefit of being simpler and less time con-

suming, while the indirect tension mode of testing is performed on a specific

layer of a pavement section when the performance evaluation of a specific layer

is of importance. Due to the multi-layer structure of the pavements, uniaxial

text configuration is unable to evaluate each layer performance separately. An-

other issue with the uniaxial test configuration is the geometry requirement of

the specimen. The test requires 6 inch tall specimens. Obtaining field cores

with this dimension may not be possible in some cases with less than 6 inch

thick Hot Mix Asphalt (HMA). Although indirect tension mode of testing can

overcome this barrier, it is time consuming due to the manual tuning procedure

and also the higher likelihood of damaging the specimens especially at higher

temperatures.

Developing predictive models for dynamic modulus is always important and

several predictive models are currently being used widely [9]. The basic concept

of these models is predicting dynamic modulus value based on material compo-

nents’ properties including binder, aggregate, and mixture volumetric properties

[9, 10, 11, 12, 13]. FE analysis is one way to develop such predictive models.
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Finite element analysis has been used in modeling asphalt mixture with

both elastic and viscoelatic assumptions [14, 15, 16, 17, 18]. Researchers have

developed two-dimensional and three-dimensional FE programs to simulate as-

phalt mixture behavior [9, 19]. Finite element analysis is used to compare the

material response with elastic and viscoelastic assumptions. Results indicate

that the viscoelatsic assumption provides a more accurate estimation of pave-

ment response [20, 21]. Although it has been shown that the finite element

method is a powerful tool to simulate the viscoelastic behavior of asphalt mix-

tures [22, 23, 24], there has been a limited effort to use the application of FE

modeling to simulate and further the understanding of the dynamic modulus

test in the indirect tension mode.

In order to perform FE analysis, component properties of the pavement is

required. Modeling viscoelastic behavior of asphalt mixtures requires defining

both viscous and elastic properties of the material [22]. Elastic modulus can

be used to describe the elastic behavior of the pavement as an input in FE

analysis. In the absence of the test results this property can be back-calculated

using pattern recognition techniques. Modern pattern recognition techniques

can learn and recognize trends in data contributing to their current widespread

use [25, 26]. These techniques learn the pattern from experimental data and

design the computational models. One such approach, Artificial Neural Network

(ANN), is an interconnected network of many simple processors [27, 28, 26, 29,

30]. Figure 1 presents the schematic architecture of a network with three layers.

All networks consist of a set of processing units or neurons classified as input,

hidden, and output neurons. Input neurons receive inputs from external sources

and transfer it to the rest of the network. Hidden neurons receive input and

transmit their computed output to the processing units within the network

without any outside contact. Output neurons receive the input from the rest of

the network and transform and send it to external receivers. The network can

be trained by adjusting the network’s weights and biases. Once the network

learns the inputs/output(s) relationship, it can be used for further predictions

[27].
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Figure 1: Schematic architecture of a network with three layers

This manuscript is organized as follows: the database creation procedure is

presented in Section 2. Section 3 covers the model development. Results and

discussion are presented in Section 4, followed by conclusions and recommenda-

tions in Section 5.

2. Database creation

Two separate databases are created for this research. The first one, database

(a), is created using dynamic modulus values, complex shear modulus values,

aggregate gradation, and mixture volumetric properties of twenty-seven field

cores from nine different asphalt mixtures collected from five districts in the

State of Minnesota. The summary information for each of these nine pavement

sections is presented in Table 1.

The field samples for dynamic modulus testing are 6 inches (152.4-mm) in

diameter and about 1.5 inches (38.1-mm) in thickness. The dynamic modulus

test in indirect tension mode is performed at three temperatures (0.4, 17.1, and

33.8 ◦C) and nine loading frequencies (25, 20, 10, 5, 2, 1, 0.5, 0.2, 0.1 Hz)[1, 31].

Figure 2 illustrates the dynamic modulus test configuration in indirect tension

mode of testing.

In order to obtain binder properties for each pavement group, binder ex-

traction is done according to ASTM D7906(2014). The extracted binder then

is recovered for testing following ASTM D2172(2011). A random number gen-

erator is used to select one sample from each pavement section for the binder
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Figure 2: IDT dynamic modulus test setup

extraction and recovery. The binder dynamic shear test is performed at the

same test temperatures and loading frequencies as the mixture dynamic mod-

ulus test. It should be mentioned that unlike the modified Witczak model, in

the present research a consistent definition of frequency is used [32], that in

order to predict the dynamic modulus value of an asphalt mix for example at

4 ◦C and 25 Hz, one should input in the model the complex shear modulus of

asphalt binder, |G∗|, at 4 ◦C and 25 Hz. Using the laboratory test results on

27 specimens, a database of 243 data points is created for subsequent use in the

FE analysis. The calculations are based on a linear viscoelastic solution for the

IDT dynamic modulus test. All of the calculations are done based on the last

five loading cycles. The applied sinusoidal loading can be expressed as shown

in Eq. 1

P = P0(cosωt+ isin(ωt)) (1)

where P0 is the amplitude of the sinusoidal load and ω is the loading frequency.

Due to the load, a specimen will have a vertical and horizontal displacement

which can be obtained from Eq. 2 and Eq. 3, respectively

V (t) = V0sin(ωt− φ) (2)

U(t) = U0sin(ωt− φ) (3)
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where V0 and U0 are the constant amplitudes of vertical and horizontal displace-

ment, respectively. The dynamic modulus can be obtained from Eq. 4

|E∗(ω)| = 2|P0|(β1γ2 − β2γ1)

(πad)(γ2|V̄0| − β2|Ū0|)
(4)

where β1, β2, γ1 and γ2 are geometric coefficients which depend on the specimen

size and gage length and are obtained from Eq. 5 to Eq. 8 [33].

β1 = −
∫ l

−l
n(y)dy −

∫ l

−l
m(y)dy (5)

β2 =

∫ l

−l
n(y)dy −

∫ l

−l
m(y)dy (6)

γ1 =

∫ l

−l
f(x)dx−

∫ l

−l
g(x)dx (7)

γ2 =

∫ l

−l
f(x)dx+

∫ l

−l
g(x)dx (8)

where,

n(y) = tan−1

(
1 + y2

R2

1− y2

R2

tanα

)
(9)

m(y) =
(1− y2

R2 )sin2α

1− 2( y
2

R2 )cos2α+ y4

R4

(10)

f(x) =
(1− x2

R2 )sin2α

1− 2( x
2

R2 )cos2α+ x4

R4

(11)

g(x) = tan−1

(
1− x2

R2

1 + x2

R2

tanα

)
(12)

where y and x are the vertical and horizontal distances from the specimen center

respectively, R is the specimen radius, α is the radial angle, and l is half of the

gage length.

The second database, database (b), is created using field cores taken from

20 different pavement sections in the States of Iowa, Wisconsin, and Minnesota.
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Table 1: Pavement sections information (* M/O = Mill and Overlay; ** O/L = Overlay)

Group No. Section MnDOT District Construction Year Construction Type

1 TH 220 2 2012 3” M/O*

2 CSAH 10 1 2012 1.5” O/L** on old AC

3 TH27 3 2010 3” M/O

4 TH 9 2 2011 3” O/L on reclaimed AC

5 TH 28 4 2012 4.5” M/O

6 TH 6 2 2010 1.5” M/O

7 TH 10 4 2013 3.5” M/O

8 CSAH 30 Metro 2012 6” M/O

9 TH 10 3 2005 4” M/O (sealed cracks)

10 TH 10 3 2005 4” M/O (cracks not sealed)

This database is used to back-calculate the elastic modulus based on the mate-

rial components’ properties. Dynamic modulus testing was performed on these

specimens at four different temperatures and five loading frequencies. The in-

terconversion method between linear viscoelastic material properties [34] is used

and presented in Eq. 13

E′ = |E∗|cos(φ) (13)

where E′ is the storage modulus, |E∗| is the dynamic modulus, and φ is the phase

angle. The storage modulus is an indicator of elastic behavior of the material and

is used as an estimation of the elastic modulus. Aggregate gradation, asphalt

binder shear properties, and volumetric properties of the mixture are retrieved

from historical documents and a total of 240 data points for elastic modulus,

aggregate, asphalt binder, and mixture properties are developed.

3. Model Development

3.1. Back-calculation of the asphalt mixture elastic modulus in database (b)

An ANN is an interconnected collection of processing elements [35] and can

be trained to approximate a complex, nonlinear function through repeated ex-

posure to produce meaningful solutions to the problem [28, 36, 37, 38]. The

multi-layer structure of the network ensures non-linear mapping of inputs to

outputs.
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A useful application of neural networks is in back-calculation procedures

where it can be trained to approximate the inverse function by repeatedly show-

ing it forward problem solutions. Once a network has learned the pattern of

inputs/output(s) relationship, it can predict new conditions [27].

Using database (b), a three-layer feed-forward error-back propagation net-

work is trained. The network is composed of an input layer, an output layer

and one hidden layer and developed using the MATLAB program [39]. Figure 3

presents the schematic architecture of the network having eight neurons (nodes)

in the input layer, 10 neurons in the hidden layer and one neuron in the output

layer. Selection of the number of hidden neurons is based on a trial-and-error

optimization procedure balancing between the cost function and computational

time. Selection of the input variables is based on the existing literature. There

are several predictive models for dyanmic modulus that can predict the mod-

ulus value using material components’ properties [6, 11, 10, 32]. Researchers

developed a network which is able to predict the value of dynamic modulus

more accurate than modified Witczak model [32]. Their predictive models use

the same input variables as modified Witczak model. The input variables are

including aggregate gradation, binder shear properties, binder content, and air

void. In the present study, same input variables are used with an additional

step of converting dynamic modulus to the elastic modulus.

Database (b) is randomly divided into three categories. Seventy percent of

the data points is presented to the network during the training procedure. The

Levenberg-Marquardt method is used as the training algorithm [40]. Fifteen

percent of the data points is used for the validation of the fitting, and the rest

of the data is used for testing. The training procedure starts with adjusting the

initial values of the network’s weights and biases to obtain a reasonable output

and continue to modify the network by minimizing the mean squared residuals

(MSE). The input of each processing element (xi) is multiplied by an adjustable

connection weight (wij). At each processing element, the weighted input signals

are summed and a threshold value (B0) is added. This combined input is then

passed through a non-linear transfer function (f (.)) to produce the output of
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Figure 3: Schematic architecture of a network with three layers
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the first layer (νj), forming the input to the next layer. The network adjusts its

weights on the presentation of a training dataset and uses a learning rule to find

a set of weights that will produce the input/output mapping that results in the

smallest possible error. This process is called “learning” or “training”. In order

to prevent overfitting, supervised learning procedure is used by means of having

a validation subset. Once the training phase of the model has been successfully

accomplished, the performance of the trained model must be validated using an

independent validation set. After applying modifications and adjustments to the

network’s weights and biases the performance of the network will be examined

by an independent testing set [27, 41, 42].

The output νj from the jth hidden nodes is given by

νj = f(xi,Wij), i = 1, ..., 8 and j = 1, ..., 10 (14)

and the single output ŷ is:

ŷ = f2 (f1(ν,Wj)) . (15)

Then the expression of ŷ as a function of x becomes a complicated nonlinear

regression function with the j sets of weights, as parameters. and for each j,

νj = f1(BHj +Wijxi). (16)

So a general form of the feed forward neural network is described in Eq. 17:

ŷ = f2

B0 +

n∑
j=1

[
Wj · f1

(
BHj

+

m∑
i=1

Wijxi

)] (17)

where B0 is bias at output layer (just one neuron at this layer), Wj is weight

of connection between neuron j of the hidden layer and output layer neuron,

BHj is bias at neuron j of the hidden layer (for j = 1 to 10), Wij is weight of

connection between input variable i (for i = 1 to 8) and neuron j of the hidden

layer, xi is input parameter i, f1 (t) is transfer function of the hidden layer, and

f2 (t) is transfer function of the output layer.
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Both transfer functions f1 (t) and f2(t) used in this research are sigmoid

functions as defined by Eq 18:

fk(t) =
1

1 + e−t
for k = 1, 2. (18)

For the training set, the training procedure starts with adjusting the initial

values of the network’s weights and biases to obtain a reasonable output and

continue to modify the network by minimizing the value of the MSE. The iter-

ation continues until the convergence criterion is met as previously described.

Once the network is trained and learns the pattern, it will be used to predict

the elastic modulus values using database (a). The predicted elastic modulus

will be used as an input in the finite element analysis.

3.2. Finite element analysis

Finite element analysis is performed using a multi-purpose FE software,

ABAQUS [43]. ABAQUS has a module for viscoelastic materials which can be

used for modeling asphalt mixture. A disk-shape geometry with the same di-

mensions as the laboratory HMA samples is created. The specimen is restricted

at the bottom from movement and rotation in all directions and a sinusoidal

uniform pressure is applied on top of the specimen via a loading strip. In

order to determine the load magnitude, different load amplitudes are studied

and adjusted so that the observed horizontal and vertical strains in the center

area of the specimen remain between 60 and 80 micro-strain and below 100

micro-strain, respectively [1]. The mesh element type used for this model was

from a 3D stress family, an eight-node linear brick, with reduced integration

and hourglass control (C3D8R). Figure 4 shows the model geometry, boundary

conditions, and mesh.

There are several methods to define material properties in ABAQUS. Asphalt

binder complex shear modulus test results are used in this paper. ABAQUS has

a built-in function which transforms the shear modulus into a Prony series. The

Prony series is an exponential expansion often used to describe the relaxation
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Figure 4: Geometry, load, and boundary conditions (on the left), and mesh (on the right)

used in FE analysis.

modulus of a viscoelastic material [44]. The data is normalized as the ratio of

the modulus at individual times to the long-term modulus.

The material temperature dependency should be defined in the model. Tem-

perature dependency is defined using the shift factors obtained from Williams-

Landel-Ferry (WLF) equation [14, 44, 45] which is presented by Eq. 19.

log(αT ) =
C1(T − Ts)
C2 + T − Ts

(19)

where αT is the WLF shift factor, T is the temperature of each individual test,

C1 and C2 are the constants and Ts is the reference temperature which is 17.1

◦C in this research (Shear modulus values at 0.4 ◦C and 33.8 ◦C are shifted

according to the reference temperature). For each individual temperature after

determining C1 and C2 and shifting all of the complex modulus data according

to the reference temperature, the value of these two constants at the reference

temperature are used in the model as inputs. Poisson’s ratio is assumed to be

0.25. The selection of this value is based on material behavior at 17.1 ◦C. A

sensitivity analysis on the Poisson’s ratio impact on the dynamic modulus value

was conducted and the results demonstrated a very negligible effect exists. As

described earlier in the previous section, the elastic modulus of the material is

predicted using the trained neural network. The predicted elastic modulus is

used in the model as an input.
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Figure 5: Complex shear modulus master curves obtained from extracted and recovered as-

phalt binders of nine pavement sections

4. Results and discussion

Results of the laboratory tests, elastic modulus back-calculation, and finite

element analysis are presented in this section. The capability and accuracy of

the developed model in predicting dynamic modulus values is also evaluated.

4.1. Laboratory testing

The results of complex shear modulus test, dynamic modulus test, aggregate

gradation, and mixture volumetric measurements are presented in this section.

Complex shear modulus values are determined and are used to create master

curves. The master curves for the nine groups are presented in Fig. 5.

To calculate dynamic modulus test results geometric coefficients, β1, β2, γ1,

γ2, are calculated for specimen diameter of 152.4 mm (6”) and gage length of

65 mm (2.56”) and presented in Table 2. The average dynamic modulus values

for three specimens per group for the nine pavement groups are presented in

Table 3.

As described earlier, the results of dynamic modulus testing, complex shear

modulus testing, aggregate gradation, and volumetric properties are used to

develop database (a). Mixture volumetric properties are presented in Table 4.
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Table 2: Geometric coefficients

Specimen Diameter (mm) Gauge Length (mm) β1 β2 γ1 γ2

152.4 65 0.0262 -0.0078 0.0063 0.0206

Table 3: Average dynamic modulus values for nine pavement groups of database (a)

Group No. Temp. 25 Hz 20 Hz 10 Hz 5 Hz 2 Hz 1 Hz 0.5 Hz 0.2 Hz 0.1 Hz

1 0.4 20425 20252 22008 18619 17501 16210 14836 13512 11995

1 17.1 12573 12510 11315 9360 7537 6399 5081 3928 3104

1 33.8 4798 4718 3462 2495 1680 1193 1000 656 502

2 0.4 14822 17293 18841 17532 15858 14445 13132 11527 10191

2 17.1 9768 9528 8905 7362 5751 4768 3934 2958 2386

2 33.8 3157 2629 2077 1691 1203 982 779 631 593

3 0.4 20128 19719 19727 18427 16927 15917 14710 13495 12285

3 17.1 15137 15679 14442 12439 10730 9330 7999 6584 5652

3 33.8 5769 5424 4419 3379 2353 1813 1394 1010 832

4 0.4 21585 20264 19523 18049 16166 14767 13283 11639 10277

4 17.1 13191 12485 11481 10044 7754 6457 5244 4008 3281

4 33.8 5083 4877 3591 2718 1897 1443 1145 820 664

5 0.4 22738 16279 16353 14882 13157 11970 10627 9074 7931

5 17.1 9634 8889 7820 6369 4802 3875 3032 2244 1638

5 33.8 3172 2882 2180 1621 1183 1005 950 750 607

6 0.4 22324 23397 21829 20659 18753 17531 16515 14680 13266

6 17.1 14264 13526 13312 11314 8720 7472 6167 4887 3921

6 33.8 5512 5241 4146 3028 1995 1520 1138 766 557

7 0.4 26413 22774 22624 21734 20130 18938 17544 15723 14373

7 17.1 13950 13122 12836 10514 8153 6782 5470 4310 3459

7 33.8 4486 4161 3377 2440 1658 1256 976 710 519

8 0.4 24299 22946 22938 21377 20027 18331 16929 15092 13813

8 17.1 12588 12151 10727 8796 7034 5822 4758 3653 2935

8 33.8 4627 4006 3347 2695 1906 4886 1320 1171 1061

9 0.4 20954 19559 20433 18470 16892 15498 14046 12499 11149

9 17.1 11719 11584 10429 8377 6339 5194 4020 2965 2147

9 33.8 4832 4195 3067 2171 1539 1198 919 614 468
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Table 4: Mixture volumetric propeeties for nine pavement groups of database (a)

Group

No.
1 2 3 4 5 6 7 8 9

% RAP 23.8 23.3 37.2 26.2 23.8 36.4 23.3 11.4 45.3

% AC 4.5 5.2 5.6 4.8 4.8 4.9 5.6 5.3 5.0

% Vbeff 4.2 4.1 4.1 3.9 3.5 4.3 4.2 4.0 4.6

%VMA 13.5 13.5 13.6 13.1 12.5 13.9 13.7 13.4 14.4

% VFA 70.3 70.4 70.6 69.6 68.1 71.2 70.8 70.2 72.3

Gmb 2.315 2.315 2.315 2.315 2.315 2.315 2.315 2.315 2.315

Gmm 2.406 2.458 2.510 2.479 2.635 2.458 2.479 2.510 2.437

% VA 4.010 3.996 3.998 3.982 3.988 4.003 4.000 3.993 3.989

Table 5: Network’s input variables information

Variable
Values in the database

Maximum Minimum Average Std. Dev

Complex Modulus (Mpa) 1065.6 0 45.4 117.2

Phase angle (degree) 79.2 28.2 52.9 11.5

Vbeff% 5.6 4.5 5.1 0.4

Va% 4.0 4.0 4.0 0

% Passing 1/2” 96.4 87.2 93.9 2.6

% Passing 3/8” 87.3 73.7 81 4.1

% Passing #4 63.8 48.2 54.1 5.3

% Passing #200 6.2 3.1 3.8 0.9

4.2. Back-calculation of the asphalt mixture elastic modulus in database (b)

The database (b) is created using elastic modulus (converted from dynamic

modulus), asphalt binder properties, aggregate gradation, and mixture volumet-

ric properties. The database is used to develop a neural network. A summary of

the input variables used in the network and a descriptive measurement of them

is presented in Table 5.

As mentioned previously, the successfully trained three-layer ANN can be

presented as in Eq. 17. For ease of use and wider reproduction, the connection

weights and biases are presented using the following matrices:
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Wij =



2.029 0.694 −0.925 1.324 0.813 2.011 −2.524 −3.292

−1.204 1.141 1.162 2.611 3.966 1.076 −3.257 3.474

2.135 −1.270 −0.277 0.179 0.683 −1.184 1.174 −3.481

−0.549 −4.837 −2.383 0.794 −2.491 −1.766 1.930 5.408

−0.777 1.006 2.255 0.436 −1.330 1.137 −2.658 4.933

−0.757 1.685 −1.889 1.674 −3.114 −2.335 −6.051 3.408

1.902 −4.753 2.162 −1.423 3.355 3.591 −3.999 −4.170

−0.908 1.131 1.281 2.445 1.158 0.550 4.798 −1.167

2.171 0.007 −0.669 −1.475 1.944 −0.571 −4.329 −2.316

−0.684 1.626 0.741 0.582 0.041 −1.464 1.508 −0.188



WT
j =



0.518

−0.076

0.614

0.236

0.082

−0.244

−0.280

−1.012

0.821

2.000



, BHj =



−4.851

5.433

−0.647

3.163

−1.864

−6.336

4.520

−5.244

4.0312

−2.220



, B0 = [0.603]

Accuracy of the network is evaluated and the results are presented in this section.

The performance evaluation is based on the rfit which is defined in Eq. 20

rfit =
n
∑n
i=1EiÊi − (

∑n
i=1Ei)(

∑n
i=1 Êi)√

n
∑n
i=1E

2
i − (

∑n
i=1Ei)

2

√
n
∑n
i=1 Ê

2
i − (

∑n
i=1 Êi)

2
(20)

where rfit is the correlation coefficient, E is the elastic modulus, and Ê is the

predicted elastic modulus. Figure 6 presents the performance of the network

for training, validation and testing subsets in terms of rfit. The rfit of 0.99

for testing, validation and testing subsets indicates that the ANN is capable
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Figure 6: Performance evaluation of the network. The top-left graph indicates performance

of the network in fitting to the training subset with rfitof 0.99. The top-right graph indicates

performance of the network for validation subset with rfit= 0.99. The bottom-left graph

indicates the performance of the network for testing subset with rfit of 0.98. The bottom-

right graph indicates the overall performance of the network.

of predicting the elastic modulus value of asphalt mixtures. The fact that the

values of rfit for all of the subsets are close assures that the over-fitting is not

likely to happen in the supervised training procedure.

4.3. Finite element analysis

Results of finite element analysis is presented in this section. The deformed

shape of the HMA specimen due to sinusoidal loading with the loading frequency

of 25 Hz is presented in Fig. 7.

Vertical and horizontal stresses, S22 and S11, and deformations, U2 and

U1, of the specimen under the applied load are obtained for different loading

frequencies. Complex modulus values for the nine different pavement groups
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Figure 7: Finite element analysis results. From left to right, the top ones indicate stress,

strain and deformation in horizontal direction and the from left to right, bottom ones indicate

stress, strain and deformation in vertical direction respectively.

are calculated for each frequency using Eq. 21.

E∗ =
S11 − νS22

E11
(21)

where S11 is the horizontal stress along the x-axis, S22 is the vertical stress

along the x-axis and E11 is the horizontal strain along the x-axis. The obtained

modulus from Eq. 21 is the complex modulus of the material along the x-axis

which is assumed to be not very different from the modulus along the y-axis.

The dynamic modulus value is the amplitude of the complex modulus wave is

presented in Eq. 23

E∗ = |E∗|e(iφ) (22)

where i is the imaginary number and φ is the phase angle. The predicted

values of dynamic modulus were calculated and compared with laboratory test

results. Figure 8 indicates a comparison between master curves obtained from

experimental results and the ones obtained from the FE analysis. For all of the

nine groups, the FE analysis was able to predict the dynamic modulus value.

Element size is an important factor in determining the accuracy of solution

in the FE method. To converge the solution to the correct value, the mesh
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Figure 8: Comparison of master curves created using experimental results and simulation

results for 9 different pavement sections. Master curves are ordered from left to right so the

very top-left one belongs to Group 1 and the very bottom one belongs to Group 9
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Figure 9: Convergence study results for finite element analysis

should be properly discretized or a proper order element should be selected. In

order to examine the ability of selecting a proper mesh by balancing accuracy

of the solution as well as computational efficiency, a mesh convergence study

is performed using five different mesh sizes including 10, 7.5, 5, 2.5 and 2 mm.

The result of the convergence study for the first group of asphalt mixtures is

presented. Figure 9 represents a log-log scale of the relative error versus the

number of elements for different loading frequencies. Based on the convergence

study results, the relative error will converge to a specific value by increasing

the number of elements or decreasing the mesh size.

The relative errors between simulation results and laboratory data for differ-

ent loading frequencies and for different pavement sections were less than 20%,

which indicates that FE modeling is a capable tool to estimate dynamic modu-

lus and performance evaluation of asphalt concrete. Larger amount of error was

observed for groups 7, 8 and 9 which means that the assumption of homogeneity

for asphalt mixture is not accurate although the predicted value is not far from
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the laboratory measurements.

4.4. Assessing the prediction performance: Receiver Operating Characteristics

(ROC)

A receiver operating characteristics (ROC) graph is a technique for visualiz-

ing, organizing and selecting classifiers based on their performance. The ROC

graphs are used widely in medical decision making as well as machine learning

and data mining research [46]. The ROC curves plot the false positive rate on

the x-axis and the true positive rate on the y-axis. A classifier performs well

if the ROC curve climbs rapidly towards the upper left-hand corner. Random

guessing on the other hand, will result in the diagonal line (y = x). The more

the curve deviates from the y = x behavior, the better the prediction is [47].

The ROC curve can be used to visualize the performance of a predictive model

by plotting the error tolerance on the x-axis and the accuracy of the predic-

tion on the y-axis. Accuracy is defined as the percentage of points that are fit

within the tolerance [48]. In case of having zero tolerance, those points that

the function fits exactly would be considered accurate. The obtained prediction

accuracy is plotted for different error tolerances (margins) in Figure 10. The

obtained curve is monotonically non-decreasing curve which climbs towards the

upper left-hand corner (which is the desired situation) which shows that the

predictive model performs well.

4.5. Model validation

Considering each pair of the measured and predicted dynamic modulus val-

ues, their differences are obtained from Eq. 23:

di = yi − y
′

i
(23)

where yi is the measured dynamic modulus value, y
′

i is the predicted values,

and di is a random error term which assumed to be normally distributed with

a mean of zero and unknown variance σ2 for i = 1, . . ., n, where n is the

number of input vectors. Many types of model inadequacies and violations of the
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Figure 10: Prediction accuracy with regard to a prespecified error tolerance

underlying assumptions can be assessed. If the model is adequate, the residuals

should contain no obvious pattern [49]. The plot of the difference against the

predicted values is presented in Figure. 11. Since there is no obvious pattern

in this plot, the assumption of equal variances seems acceptable. Figure 12

represents the linear relationship between experimental results and simulation

results with the correlation coefficient of 0.98.

A histogram with a bell-shaped model over the differences (di) is created and

presented in Figure 13. The distribution appears to be more clustered around

zero than normal plot. Experimental and simulated dynamic modulus values are

ploted against their mean values in Figure. 14. According to this plot although

spread increases as the order of the data increase, the spread of experiment is

greater than the simulation spread or the simulation method is not adding any

more variation to the existing variation caused by the experiment.

5. Conclusions and recommendations

The present study used the material components’ properties to estimate the

dynamic modulus value by means of finite element method (FEM). Two sep-
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Figure 11: Log of residual versus log of predicted values of dynamic modulus

Figure 12: Experimental results versus simulation results

Figure 13: A histogram of the differences,di, with bell-shaped model overlaid
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Figure 14: Normal distribution of the difference between two methods

arate databases were created for this research. The first one (database (a))

was created using twenty-seven field cores from nine different asphalt mixtures

collected from five districts in the State of Minnesota.Database (a) contained

dynamic modulus, binder shear properties, aggregate gradation and asphalt mix

volumetric properties for 27 specimens. The second database (database (b)) was

created using field cores taken from 20 different pavement sections in the States

of Iowa, Wisconsin and Minnesota.This database is used to back-calculate the

elastic modulus based on material components’ properties by means of an ar-

tificial neural network. The predicted elastic modulus along with binder shear

properties were used as inputs in the finite element analysis. Simulation re-

sults were compared to the experimental data in terms of the dynamic modulus

master curves. Based on this comparison, FE is a capable tool in predicting

dynamic modulus of asphalt mixture. In the absence of field data. ANN is

able to predict/back-calculate the elastic modulus of asphalt mixture. Larger

database could be more liable to be used in such predictive modeling. Although

running simulation instead of performing the laboratory testing is cost effective,

developing predictive models by means of machine learning techniques could be

even more efficient. A larger database with more variety (location, pavement

mix design, etc.) should be used in future predictive modelings.
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