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CHAPTER I. GENERAL INTRODUCTION 

Research Objectives 

Molecular data have had a profound effect on the field of plant evolutionary biology. 

These data have been applied profitably to analyses at miiltiple levels, from population-level 

studies of genetic diversity to large-scale analyses of plant relationships. These analyses thus far 

have relied, for the most part, on molecular data from either the chloroplast genome (cpDNA) 

or from nuclear-encoded ribosomal DNA (rDNA). The reasons behind this bias are primarily 

practical, in that both cpDNA and rDNA are present in high copy nimiber and represent 

relatively simple genetic systems often making inferences of homology straightforward. Such 

inferences are imperative in that one of the critical assimiptions of evolutionary analyses are 

that strictly homologous characters are being analyzed. As an alternative to cpDNA or rDNA, 

low-copy number nuclear-encoded genes offer a potentially vast array of sequences that could be 

co-opted for evolutionary studies. The difSculties associated with using low-copy sequences, 

however, are not insignificant. The primary obstacle is that nuclear genes often exist in 

multigene families, thereby requiring identification and isolation of absolute orthologues (genes 

related by speciation) as opposed to paralogues (genes related by duplication). 

The goal of the research described herein is to use two well-developed model systems to 

explore the evolutionary dynamics of a nuclear-encoded gene family and to apply those 

foundational data in empirical studies of plant phylogeny and genetic diversity. The models I 

have exploited are the alcohol dehydrogenase {Adh) gene family as a model genetic system in 

selected species of the genus Gossypium L. (Malvaceae) as a model organismal system. 

Among nuclear-encoded genes in plants, the Adh gene family is probably the best 

characterized from a phylogenetic and molecular evolutionary perspective (Clegg et al. 1997). 

Adh genes have been isolated from a large number of angiospemis and are generally encoded by a 

small number of loci (typically 2-3; e.g., Dennis et al. 1984, 1985). Gene structure (intron/exon 

number and position) is relatively conserved (generally 10 exons & 9 introns), although 

exceptions do exist (e.g., Arabidopsis thaliana has 7 exons and 6 introns). ADH enzymes are 

important metabolic components, especially in a plant's response to hypoxia (Freeling and 

Bennet 1985). The enzyme converts acetaldehyde to ethanol and in the process regenerates 

NAD"^ from NADH, thus allowing glycolysis to continue even in the absence of oxygen. 

The cotton genus, Gossypium L., consists of approximately 50 pantropically distributed 

species of which the majority are diploid (2«=2r=26), but five are allotetraploids (2n=4jc=52; 

Wendel 1995). Gossypium has been the subject of both evolutionary and genetic study including: 

cytogenetics (reviewed in Endrizzi et al. 1985); generic-level phylogenetic analyses based on 
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multiple plastid and nuclear markers (Cronn et al. 1996; Seelanan et al. 1997; Small et al. 1998; 

Wendel and Albert 1992,); analyses of the origin and relationships among the allotetraploid 

species (Brubaker et al. 1993; Brubaker and Wendel 1994; Small et al. 1998; Wendel et al. 1992); 

and RFLP genetic linkage maps of the tetraploid species (Reinisch et al. 1994) and the parental 

diploid species (Brubaker et al. 1999). This wealth of background infonnation makes Gossypium 

a model system for examining molectilar evolution in a well understood phylogenetic context. 

This study was undertaken with three primary goals. First, to characterize the Adh gene 

family in representative species of Gossypium. These data provide the foundation for the 

following two goals: exploring the phylogenetic utility of nuclear-encoded genes, and examining 

rates and patterns of molecular evolution within and among loci and lineages. The three papers 

that describe original research in this dissertation include a paper that addresses each one of these 

goals. 

Dissertation Organization 

The dissertation is organized into five chapters. The introductory chapter provides an 

overview of the objectives of the research, outlines the model systems used in the research, and 

briefly reviews the relevant literature. The subsequent three chapters constitute original research 

papers that are either published, accepted for publication, or prepared for submission for 

publication. The first of these chapters reports on the organization of the AM gene family in 

Gossypium. The second and third chapters report results from applications of the foundational 

data to problems in plant phylogenetics and genetic diversity, respectively. The final chapter 

provides general conclusions drawn fi'om the research as a whole. 

Chapter 2, entitled "Organization and evolution of the Adh gene family in diploid and 

tetraploid cotton {Gossypium L.)," has been prepared for submission to the journal Molecular 

Biology and Evolution. This foundational paper provides data on the organization of the 

alcohol dehydrogenase {Adh) gene family in Gossypium including details on gene family size, 

gene structure, genetic mapping, and molecular evolutionary patterns. 

Chapter 3, entitled "The tortoise and the hare: choosing between noncoding plastome 

and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group," was 

published in the American Journal of Botany (Small et al. 1998). This paper compares the 

potential phylogenetic utility of a number of noncoding cpDNA sequences (introns and 

intergenic spacers) to that of a pair of homoeologous Adh loci in the allotetraploid species of 

Gossypium. The results of these analyses clearly show that nuclear-encoded genes such as Adh 

can provide significantly better resolution of phylogenetic problems than cpDNA sequences. 
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Chapter 4, entitled "Low levels of nucleotide diversity at homoeologous Adh loci in 

allotetraploid cotton {Gossypium L.)," was published in the journal Molecular Biology and 

Evolution (Small, Rybum, and Wendel 1999). This paper reports a study of genetic diversity at 

the nucleotide level (nucleotide diversity) for a pair of homoeologous Adh loci in two 

allotetraploid cotton species, Gossypium hirsutum L. and Gossypium barbadense L. We found 

that nucleotide diversity at these loci is extraordinarily low, lower than any previous reports for 

plant nuclear-encoded genes. This appears to be due to a combination of factors including a 

selfing breeding system, repeated genetic bottlenecks, and a low rate of molecular evolution. In 

addition, we obtained qualitative evidence that the subgenomes of the allotetraploid are under 

different evolutionary pressures, as evidenced by an increase in nucleotide diversity and 

heterozygosity in one relative to the other. 

Chapter 5 provides a summary of the conclusions reached in this research as well as 

suggesting additional ai eas of research that could be pursued. 

Literature Review 

Adh Evolution in Plants — Adh in angiosperms exists in nuclear-encoded, small gene 

families (Clegg et al. 1997; Gottlieb 1982; Sun and Plapp 1992; Yokoyama and Harry 1993). 

Estimates of Adh copy number have been derived primarily from isozjmie studies, which indicate 

that most angiosperms have two or three expressed loci (Gottlieb 1982), and molecular genetic 

analyses have often corroborated these estimates (e.g., Dennis et al. 1984, 1985). 

While there are numerous publications characterizing Adh genes and their expression 

patterns in a variety of plsmt species, few describe phylogenetic or molecular evolutionary 

analyses of sequence variation within or among species. Published studies are primarily from the 

grass family, especially maize (Gaut and Clegg 1991, I993a,b; Gaut et al. 1996) or Arabidopsis 

thaliana and related taxa (Hanfstingl et al. 1994; Innan et al. 1996; Miyashita et al. 1996). 

These smdies have highlighted several aspects of Adh evolution including variation in 

evolutionary rates, the importance of recombination in generating allelic diversity, and the 

prevalence of gene duplications and deletions. 

Rates and patterns of evolution of Adh loci have been shown to vary, both between 

orthologous loci (genes related by speciation) and among paralogous loci (genes related by gene 

duplication). For example, in grasses, Adhl in maize is highly polymorphic relative to pearl 

millet (4.5-fold higher nucleotide diversity) and exhibits a nucleotide substitution rate estimated 

to be 1.7 times faster (Gaut and Clegg 1993a,b). Patterns have also been shown to differ between 

paralogous loci within species. Gaut et al. (1996) analyzed sequence data from Adhl sadAdhl of 

three grasses and found that amino acid replacement rates are accelerated in Adhl without a 
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concomitant acceleration of synonymous rates. Clearly, patterns of molecular evolution for Adh 

genes vjuy both between closely related taxa at ortbologous loci, and between paralogous loci 

within species. 

A second observation derived from previous smdies is that recombinational events are a 

potent force in generating allelic diversity at Adh loci. This has been shown in maize (Gaut and 

Clegg 1993a; Goloubinofif et al. 1993; Hanson et al. 1996) and Arabidopsis (Innan et al. 1996). 

A final observation is that patterns of genomic change (gene duplication and deletion) are 

complex and dynamic. Global phylogenetic analyses of Adh sequences show that plant Adh 

sequences appear as a unique group distinct from other Adh sequences. The observed pattern, 

however, is not that predicted if all loci were the result of a single ancient duplication (e.g., Clegg 

et al. 1997; Gaut et al. 1996; Morton et al 1996; Shafqat et al. 1996). This latter assertion is 

supported by the growing number of plants that have been shown to contain more than two Adh 

loci. For example, most grasses have two loci, but barley, sorghimi, and some accessions of maize 

have three (Trick et al. 1988; EUestrand et al. 1983; Osterman and Dennis 1989, respectively). 

The palm, Washingtonia, has three loci (Morton et al. 1996), as do some peonies (Paeoniaceae; 

Sang et al. 1997), whereas diploid Gossypium have at least seven loci (Millar and Dennis 1996; 

Small and Wendel unpub. data). 

Adh in Gossypium —Adh has been well-studied at the isozyme level in Gossypium. 

(Hancock 1982; Millar et al. 1994; Wendel and Percival 1990). These studies have shown that 

diploid Gossypium species have at least two expressed Adh loci as well as variation in the number 

of expressed loci among diploids. Preliminary characterization of the Adh gene family at the 

molecular level in G. hirsutum has also been published (Millar and Dennis 1996; Millar et al. 

1994). Sequence and Southern blot analyses reveal a surprisingly complex pattern given the 

isozyme-derived hypothesis of a two-locus system in the diploids (and therefore presumably a 

four-locus system in the allotetraploids). A total of four "classes" of cDNAs were isolated and an 

additional "class" was isolated from a genomic clone. Southern blot analyses reveal patterns 

suggestive of at least six to seven loci. 

Organismal Context — Gossypium L. consists of approximately 50 pantropically 

distributed species of which the majority are diploid (2N=2X=26), but five are allotetraploids 

(2N=4X=52; Wendel 1995). Gossypium has been the subject of both evolutionary and genetic 

study including; cytogenetics (reviewed in Endrizzi et al. 1985); generic-level phylogenetic 

analyses based on multiple plastid and nuclear markers (Seelanan et al. 1997; Wendel and Albert 

1992); analyses of the origin and relationships among the allotetraploid species (Brubaker et al. 

1993; Brubaker and Wendel 1994; DeJoode and Wendel 1992; Small et al. 1998; Wendel 1989; 

Wendel and Albert 1992); and RFLP genetic linkage maps of the tetraploid species (Reinisch et 
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al. 1994) and the parental diploid species (Brubaker et al. 1999). This wealth of background 

information makes Gossypium an model system for examining moleciilar evolution both among 

diploid lineages and within the common genome of the allotetraploids. 

My analyses will focus on four species of Gossypium: the diploids G. robinsonii (C-

genome Australian cotton as an outgroup for comparative purposes); G. herbaceum (African-

Asian A-genome diploid, representative of parent of the tetraploid); G. raimondii (South 

American D-genome diploid, representative of parent of the tetraploid); and the allotetraploid G. 

hirsutum (AD-genome). These taxa were chosen specifically because, as described above, their 

phylogenetic relationships are well-resolved, the genomic relationships among diploid and 

allotetraploid are understood, and critically, genetic linkage maps have been constructed for the 

A, D and AD genome taxa, allowing us to clearly assess orthology of loci. 
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CHAPTER 2. ORGANIZATION AND EVOLUTION OF THE ALCOHOL 

DEHYDROGENASE GENE FAMILY IN DIPLOID AND TETRAPLOID COTTON 

{GOSSYPIUMU) 

A paper to be submitted to the journal Molecular Biology and Evolution 

Randall L. Small' and Jonathan F. Wendel* 

Abstract 

Most plant nuclear-encoded genes exist in gene families of various sizes. We present a 

characterization of the structure and evolution of the alcohol dehydrogenase {Adh) gene family 

in diploid and tetraploid members of the cotton genus {Gossypium). A PCR-based approach was 

employed to isolate and sequence multiple Adh gene family members. We used Southern 

hybridization analyses to docimient variation in gene copy number in three diploids which 

represent the primary centers of Gossypium diversity (Australia — G. robinsonii, Africa — G. 

herbaceum. New World — G. raimondii), as well as one of the five allotetraploid species (G. 

hirsutum). The diploid species of Gossypium contain at least seven Adh loci in two primary gene 

lineages. One of these lineages contains two loci that are the result of a local duplication; the 

other lineage contains at least five loci. Sequence analysis reveals extensive variation in intron 

lengths between loci, and one locus has lost two introns usually found in other plant Adh genes. 

Evolutionary rate estimates differ between loci and in some cases between organismal lineages at 

the same locus. Finally, the Adh gene family appears relatively active in that multiple examples 

of apparent gene duplication events were found and at least one case of pseudogenization and one 

case of gene elimination were also found. 

Key Words; Adh, cotton, genetic mapping, molecular evolution, gene family, polj^loidy 

Introduction 

Plant nuclear genes are generally part of gene families — multiple genes encoding 

products of the same or similar function. These gene families vary from small families with few 

loci (e.g., many metabolic enzymes such as Adh, Pgi, rbcS; Clegg, Cummings, and Durbin 1997) 

to large families with hundreds of loci (e.g., heat shock proteins. Waters 1995). The 

'Department of Botany, Iowa State University, Ames, lA 50011. 
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evolutionary processes that control the structure and dynamics of such gene families are 

relatively poorly understood (reviewed by Clegg, Cununings, and Durbin 1997). The majority of 

molecular evolutionary studies have focused either on a single lociis within a single species (e.g., 

Adhl in maize, Gaut and Clegg 1993a), or on a whole gene family in a wide range of species (e.g., 

Adk in eukaryotes, Yokoyama and Harry 1993). Focusing on a single species allows fine-scale 

dissection of evolutionary forces acting on a given locus at the population level, but lacks the 

perspective provided by a comparative approach. Analyses of a wide range of species and loci 

allow for more general conclusions, yet are rarely inclusive enough (in terms of both species and 

loci) to provide more than a coarse picture of evolutionary dynamics afTecting a given gene 

family. A balanced approach that evaluates a gene family within a well-characterized 

phylogenetic framework allows for a focused analysis of the evolution of a whole gene family in 

a defined set of species. 

To accomplish this we have employed two model systems: the cotton genus, Gossypium, 

as a model organismal framework, and the alcohol dehydrogenase (Adh) gene family as a model 

low-copy nuclear-encoded gene. Gossypium has a number of attributes that make it amenable to 

molecular evolutionary studies. First, there is a wealth of cytogenetic data for Gossypium that 

have resulted in the division of the species into "genome groups" (A-K, reviewed in Endrizzi, 

Turcotte, and Kohel 1985; Stewart 1995). Second, Gossypium contains both divergent diploid 

and reticulate allotetraploid species allowing evolutionary analyses at multiple levels. Third, a 

well-resolved and robustly supported phylogeny based on multiple molecular data sets exists for 

the whole genus (fig. 1; Wendel and Albert 1992; Seelanan, Schnabel, and Wendel 1997; Small et 

al. 1998). The phylogenetic analyses correspond well with previous taxonomic (Fryxell 1992) 

and cytogenetic (Endrizzi, Turcotte, and Kohel 1985) studies. Fourth, genetic maps exist for 

both the allotetraploid species group (Reinisch et al. 1994) and its parental diploid species groups 

(Brubaker, Paterson, and Wendel 1999). Finally, a number of previous molecular evolutionary 

studies have been published within this fi:amework (Cronn et al. 1996; Small et al. 1998, Small, 

Rybum, and Wendel 1999; VanderWiel, Voytas, and Wendel 1993; Wendel, Schnabel, and 

Seelanan 1995a, 1995b). 

Adh is among the best studied plant nuclear-encoded gene families, both in terms of 

molecular biological and molecular evolutionary investigations (reviewed by Clegg, Cummings, 

and Durbin 1997). Adh genes are generally of a convenient size for study (fig. 2; ca. 1 ICQ 

nucleotides of coding sequence, and whole genes between 2-3 kb in length) with (usually) 10 

exons and 9 introns, and generally exist as a relatively small gene family (often only two or three 

loci). The ADH enzyme is important primarily in response to hypoxic conditions where its 

expression is highly induced (Dolferus et al. 1997). Additionally, ADH may be important during 
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seedling development^ fruit ripening, and pollen development (Freeling and Bennett 1985; 

Dolferus et al. 1997). Moleoilar evolutionary studies of Adh ioci have been performed in a 

number of plant species (e.g., maize, Ejrc-Walker et al. 1998; barley, Cununings and Clegg 1998; 

Arabidopsisy Innan et al. 1996; Leavenworthia, Charleswortb, Liu, and Zhang 1998; cotton. 

Small, Rybum, and Wendel 1999; palms, Gaut et al. 1996) and have led to a number of 

conclusions. As noted above, Adh is generally found in small gene families, often with only two 

to three loci. Phylogenetic analyses of all available plant Adh sequences, however, indicate that 

this is not due to retention of the products of an ancient gene duplication, but apparently to 

repeated inflation and shrinkage of the gene family in different organismal lineages throughout 

plant evolution (Clegg, Cummings, and Durbin 1997; Gaut et al. 1996). A second insight gleaned 

from these analyses is that evolutionary rates may differ dramatically at a number of levels: 

nonsynonymous vs. synonymous rates (Gaut et al. 1996); absolute rate variation between 

different lineages (Gaut et al. 1996, Small et al. 1998, Small, Rybum, and Wendel 1999) and 

between paralogous loci (Gaut et al. 1996). These differences in evolutionary rates, along with 

differences in other variables (such as life history traits) have led to vast differences in genetic 

diversity values among Adh loci in different species. In fact, in estimates of nucleotide diversity 

for plant nuclear-encoded genes with large sample sizes, Adh loci hold both the highest and the 

lowest published values {AdhI in Zea mays ssp. parviglumis 9w=0.0245, Eyre-Walker et ai. 

1998; AdhA in the A-subgenome of Gossypium hirsutum 0vv=O.OO7, Small, Rybum, and Wendel 

1999, respectively). Clearly then, the gene family a given locus belongs to may not necessarily 

be predictive of its rate or pattern of molecular evolution. 

The purpose of the present paper is to describe the Adh gene family of both diploid and 

allotetraploid species of Gossypium with the goal of better understanding the patterns and 

processes of the evolution of this gene family. Specifically, we wish to address the following 

questions. (I) How many Adh loci are there in Gossypium species and how many gene lineages 

do these loci fall into? (2) What is the structure of these genes? (3) What molecular 

evolutionary pattems can we detail? 

Materials and Methods 

Plant Materials: The diploid species of Gossypium have been divided into a number of genome 

groups (A-K; see fig. 1, table 1) based on cj^ogenetic data, and phylogenetic analyses indicate 

that these genome groups are monophyletic (Wendel and Albert 1992; Seelanan, Schnabel, and 

Wendel 1997). These groups exist in three primary centers of diversity: the A, B, E, and F-

genomes in Africa and Asia; the C, G, and K-genomes in Australia; and the D-genome in North, 

Central, and South America (Wendel 1995). In addition to the diploid species, there zire five 
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allotetraploid species of Gossypium, all derived fixsm a single allopolyploidization event that 

occurred ca. 0.5-2 million years ago (Wendel 1989; Seelanan, Schnabel, and Wendel 1997; Small 

et al. 1998). The parents of this allopolyploidization event are best represented by the extant 

species G. herbaceum L. (A-genome, African species) and G. raimondii (Ulbrich) (D-genome, 

South American species); thus the allotetraploids are termed the AD-genome and the individual 

subgenomes of the allotetraploid are referred to as A' and D'. Relationships among these species 

groups are depicted in fig. 1. 

We have chosen to focus on three diploid species, one representing each of the primary 

centers of diversity, as well as the parents of the polyploids, and one of the allotetraploid species. 

Specifically, as a diploid outgroup from the Australian C-genome we included Gossypium 

robinsonii (F. Mueller); from the African-Asian A-genome clade we chose G. herbaceum-, from 

the New World D-genome clade we included G. raimondii', and from the AD-genome 

allotetraploid species we included Gossypium hirsutum L. ("upland cotton'^. All species sampled 

and locations of voucher materials are listed in table 1. 

Isolation of Adh Sequences: Some baseline information on the Adh gene family in Gossypium 

has been published previously. Isozyme surveys have been conducted on a wide range of species 

(e.g., Wendel and Percival 1990; Wendel, Brubaker, and Percival 1992; Millar, Olive, and Dennis 

1994) and suggested that the Adh gene family included at least two loci, and in some instances a 

third (Wendel, unpublished data; Millar, Olive, and Dennis 1994). Hancock (1982) estimated 

Adh isozyme number and performed biochemical analyses on a number of Gossypium Adh 

isozymes. Some molecular genetic analyses of Adh have been conducted in G. hirsutum (Millar 

et al. 1994; Millar and Dermis 1996a, 1996b). These analyses focused on a group of loci that 

were induced by hypoxic conditions and revealed at least five classes of such sequences, termed 

Adh I and Adh2a-Adh2d by Millar and Dennis (1996b). 

To isolate additional Adh sequences we employed a PCR-based approach. We used Adh 

primers PI and P2 (primers and PCR reaction conditions are described in Small et al. 1998, all 

PCR primers described are given in table 2) that are homologous to regions of exon 2 and exon 9 

(fig. 2) to amplify Adh sequences from the Gossypium species of interest. These reactions 

resulted in amplification of multiple Adh sequences, as evidenced by multiple bands of sizes 

ranging from ca. 1.2-1.8 kb detected via agarose gel electrophoresis of the PCR products. To 

isolate individual PCR products for analysis we cloned this heterogeneous PCR product pool into 

pGEM-T (Promega) and screened colonies for Adh inserts as described (Small et al. 1998). 

Based on data generated from the above procedure we were able to design sets of locus-

specific PCR amplification primers (all PCR primers are described in table 2). These primer pairs 
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allowed us to selectively ampliiy sequences of only one locus at a time which in turn allowed us to 

sequence PCR products directly. 

DNA Sequencing: DNA sequencing was performed in several ways. PCR products were either 

cloned into pGEM-T (Promega) or sequenced directly. Sequencing was performed either by 

automated DNA sequencing (ABI prism) at the Iowa State University DNA Sequencing and 

Synthesis Facility, or using the ^^P-labeled dideoxy terminator cycle sequencing kit (Amersham) 

and electrophoresed on 5-6% Long Ranger gels (FMC). 

Southern Hybridization Analyses: Southern hybridizations were performed for two reasons. 

First, genetic maps for the A- and D-genome diploid species groups (Brubaker, Paterson, and 

Wendel 1999) and the AD-genome allotetraploid species group (Reinisch et al. 1994) were based 

on RFLP analyses of segregating F, populations. We performed additional RFLP analyses to add 

the Adh loci to these genetic maps. Secondly, we wished to estimate copy number of each of the 

sequence types isolated. We reasoned that with small (ca. 500 bp) probes, each hybridizing band 

should be equivalent to a single locus if there are no restriction sites within the probe region and 

if the organism is homozygous. Heterozygosity, though rarely observed (e.g., Wendel, Brubaker, 

and Percival 1992; Brubaker and Wendel 1994; Small, Rybum, and Wendel 1999), can be 

distinguished from gene duplication by using multiple enzyme digestions because heterozygosity is 

expected to be detected with one or a few enzymes while gene duplication would be expected to 

be revealed with most or all enzymes. 

Genetic Mapping: All mapping analyses used segregating F2 populations described by Reinisch 

et al. (1994), and Brubaker, Paterson, and Wendel (1999). Previously described restriction 

digested membrane-bound DNAs (Reinisch et al. 1994, Brubaker, Paterson, and Wendel 1999) 

were probed with locus-specific Adh probes. Probes generally consisted of gene fragments 

representing the intron 3/exon 4 region from the G. robinsonii gene for each locus (fig. 2). 

Nucleotide divergence between most pairs of Adh loci is ca. 15-25% in exons and introns are 

unalignable in most interlocus comparisons (table 3). Preliminary Southern hybridization 

analyses showed that, under stringent hybridization conditions (65°C, 6X SSC followed by 

washing at 65°C in 0.1 X SSC, 0.5%SDS) these probes do not cross hybridize. These probes were 

produced by PCR-amplifying the intron 3/exon 4 region from cloned PCR products of each 

individual locus using primers Fex3 and Bex4-3' (provided by B. Gaut, University of California, 

Irvine; see fig. 2). In some cases alternative probes were used including individual intron 

fragments, or the 3' UTR of cDNAs (generously provided by A. Millar, M. Ellis, and E. Dennis, 
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CSIRO, Australia and described in Millar and Dennis 1996b); these probes were produced by 

restriction digestion of cloned genomic DNA fragments. Probes were radiolabeled via random 

primer labeling (Gibco-BRL). Hybridization and washing was performed according to Sambrook 

et al. (1989), except that the 37°C wash was omitted. 

In cases where RFLP analysis did not reveal polymorphism we used other techniques to 

generate segregation data. Specifically, we used PCR-RFLP, SSCP, jmd length polymorphism of 

PCR amplified firagments. PCR-RFLP is digestion of PCR products with restriction enzymes that 

reveal a polymorphism between parental lines, and thus segregates in the population. SSCP, or 

single stranded conformational polymorphism was performed as described (Pokomy et al. 1997). 

Similar to SSCP, we exploited known length differences between PCR products from the two 

parents by incorporating '"P-dCTP into a PCR reaction and running the products on a 5% Long 

Ranger acryiamide gel. 

Genetic mapping analyses of the F2 segregation patterns follow Reinisch et al. (1994) and 

Brubaker, Paterson, and Wendel (1999) using MapMaker version 2.0 (Lander et al. 1987). 

Mapping data are reported in terms of homoeologous assemblages of Brubaker, Paterson, and 

Wendel (1999), who compared genetic maps of the AD-genome allotetraploids (G. hirsutum x G. 

barbadense) with representatives of its diploid progenitors, the A-genome (G. herbaceum x G. 

arboreum), and the D-genome {G. trilobum x G. raimondii). Thus each homoeologous 

assemblage consists of four linkage groups — one from each diploid group and two from the 

allotetraploid. 

Molecular Evolutionary and Phylogenetic Analyses: Adh genes isolated from Gossypium 

were subjected to phylogenetic analysis along with plant Adh genes available from GenBank. Adh 

coding regions were aligned and subjected to neighbor-joining analysis (Saitou and Nei 1987) using 

Kimura 2-parameter distances as implemented in PAUP* (Sinauer Assoc., Sunderland, MA). 

For each individual locus we performed phylogenetic and evolutionary rate analyses on 

sequences of the four representative species. Phylogenetic analysis (parsimony) was performed 

for each locus using G. robinsonii as the outgroup. In addition, using G. robinsonii as the 

outgroup we performed relative rate tests (Tajima 1993) for all pairs of sequences (A vs. D, A vs. 

A', D vs. D', A' vs. D'). We also calculated Jukes-Csintor corrected synonymous {Ksyn), non-

synonymous {Kd) substitution rate according to Nei and Gojobori (1986), as well as a silent (Ksil\ 

including both synonymous and intron sites) and an intron rate (A"/). All such values were 

calculated as the mean of all pairwise comparisons between ingroup and G. robinsonii outgroup 

sequences. Using previously published (Seelanan, Schnabel, and Wendel 1997) estimates of 

divergence times for two of the nodes within Gossypium (see fig. 1) we also estimated absolute 
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synonymous rates using only exon data. Many of the above calculations were expedited by the 

software programs Tajima93 (T. Seelanan, unpublished software), DnaSP (Rozas and Rozas 1997, 

1999), and PALTP*. 

Results 

Initial Characterization of the Adh Gene Family: To begin to understand the Adh gene 

family in Gossypium we undertook a PCR survey of representative species, G. robinsonii, G. 

herbaceum, G. raimondii, and G. hirsutum. This resulted in amplification of four distinct size 

classes of PCR products from each species, ranging in size from ca. 1.2 to 1.8 kb as determined 

by agarose gel electrophoresis. These PCR product pools were cloned and examples from each 

size class from each species were identified and sequenced. We determined (see below) that each 

of these sequence classes represented different genetic loci (or sets of loci) and have termed them 

AdhA, AdhB, AdhC, and AdhD. An additional locus has been isolated using a separate pair of 

PCR primers (see below) and has been denoted AdkE. Each of these loci was isolated and 

sequenced from the four representative species and was subjected to copy number estimation and 

phylogenetic analysis. We also attempted to genetically map each locus. Each locus is 

individually detailed below. 

AdhA: The Gossypium AdhA locus is unique among the genes described in this paper in that it 

lacks two of the introns typically found in plant Adh genes, specifically introns four and seven 

(fig. 3). Those introns that remain are also short relative to other Gossypium Adh genes (table 

4) making AdhA the shortest Adh gene in our sample. 

Southern hybridization analysis indicates that AdhA exists in one copy per diploid 

genome (fig. 4a), as a single band is observed in all digests of diploids and two bands in the 

tetraploid. The sole exception to this is the EcoRV digest of G. herbaceum, which displays two 

bands (fig. 4a). Using the AdhA intron 3/exon 4 probe in Southern hybridization analysis of 

populations we were able to genetically map this locus to homoeologous assemblage 8C of 

Brubaker, Paterson, and Wendel (1999) in both of the diploid populations and in the D-

subgenome of the allotetraploid (fig. 5). 

Phylogenetic analysis of AdhA sequences revealed the expected topology where the 

sequence from the A-genome diploid is sister to its counterpart from the A-subgenome of the 

allotetraploid and the sequence from the D-genome diploid is sister to its counterpart from the 

D-subgenome of the allotetraploid (fig. 6a). Differential evolutionary rates, however, are 

suggested by the branch lengths. The branch leading to the G. raimondii and G. hirsutum D-

subgenome sequences is 2.5 times longer than the branch leading to G. herbaceum and G. 
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hirsutum A-subgenome sequences. Relative rate tests, however, indicate that only the rate 

difference between the G. raimondii and G. herbaceum sequences is significant (P < 0.05). 

Nucleotide substitution rates were calculated as the mean of all pairwise comparisons of both 

diploid (A- and D-genome) and allotetraploid (A- and D-subgenome) sequences vs. the C-genome 

outgroup sequence. The mean Ksyn = 0.0369 while the mean Ka = 0.0015 resulting in a KsyniKa 

ratio of 25:1; Ksil = 0.260 and Ki = 0.0198. In addition to relative rates we calculated an absolute 

synonymous rate for AdhA using only exon sequences (Small, Rybum, and Wendel 1999), using 

two separate estimated times of divergence (Seelanan, Schnabel, and Wendel 1997). These 

resulted in an absolute rate estimate of 1.5 - 2.1 x 10"' synonymous substitutions/synonymous 

site/year. 

A previous study (Small, Rybum, and Wendel 1999) explored levels of genetic diversity 

at this locus in both subgenomes of the allotetraploid cottons G. hirsutum and G. barbadense. 

Accompanying the slow substitution rate we found extraordinarily low levels of nucleotide 

diversity at these loci. Despite the low levels of diversity observed, preliminary evidence 

suggested that the D-subgenome harbored greater genetic diversity (both nucleotide and allelic) 

than the A-subgenome. This is suggestive of differential evolutionary dynamics affecting the two 

subgenomes. To follow up this observation we are exploring additional loci to determine whether 

or not this pattern is consistent across loci. 

AdhB: The Gossypium AdhB locus maintains a ten exon/nine intron structure typical of most 

angiosperm Adh genes (fig. 3), as do all other Gossypium Adh genes. Based on phyiogenetic 

analysis (see below) this locus is closely related to the Adh2 genes reported by Millar and Dennis 

(1996b). 

Southern blots revealed a complex pattern when probed with the AdhB intron 3/exon 4 

probe (fig. 4b), yet the AdhB probe does not cross hybridize to AdhA, AdhC, AdhD, or AdhE. 

Diploid species displayed from two to four bands per digest while the tetraploid displayed up to 

six hybridizing bands. Sequence alignment of AdhB with the Adh2 genes of Millar and Dennis 

(1996b) show that there is retention of significant sequence homology between these genes, even 

in the introns, such that they would cross-hybridize under our experimental conditions. We were 

able to genetically map AdhB-like loci in three of the four linkage groups of homoeologous 

assemblage 8A (fig. 7). In addition to segregating bands observed with the AdhB probe, we have 

mapped Adh2a of Millar and Dennis (1996) using the 3' UTRs of cDNAs. This locus is tightly 

linked to AdhB suggesting the AdhB/Adh2 gene "subfamily" has evolved via tandem gene 

duplication. 
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Phylogenetic analysis of the AdhB sequences again resulted in the expected topology (fig. 

6b) and the relative rate tests detect no departures from rate homogeneity. As noted above, the 

Adh2 sequences of Millar and Dennis (1996b) appear closely related to our AdhB sequences based 

on (1) overall nucleotide similarity in the coding regions, and (2) the ability to confidently align 

intron sequences (intron sequences are unalignable in most other interlocus comparisons, 

although see discussion of AdhD/E below). Inclusion of these sequences in a phylogenetic 

analysis (fig. 8) reveals that (I) the Adhlb sequence of Millar and Dennis (1996b) is probably 

orthologous to the AdhB sequences we report here as it comes out sister to the AdhB sequence 

from the D-subgenome of G. hirsutum (fig. 8); and (2) the Adh2a and Adh2d sequences appear to 

represent loci that are distinct both from our AdhB and from each other based on levels of 

nucleotide similarity, as also noted by Millar and Dennis (1996b). Our present estimate is that 

there are a minimum of three Adh sequences in the diploids that retain sufficient sequence 

homology to cross-hybridize with our AdhB clone and that this class represents an AdhBIAdhl 

"subfamily" of genes. 

Using only the AdhB sequences (i.e., not the Adh2 sequences) we have estimated Ksyn = 

0.0177 and Ka = 0.0045 resulting in a KsynJCa ratio of 3.9:1; Ksil = 0.0217 and Ki = 0.0228. 

The absolute rate for AdhB was estimated at 0.6 - 0.7 x 10"' synonymous 

substitutions/sjmonymous site/year. 

AdhC: Sequence data for AdhC have been previously reported in the context of a phylogenetic 

analysis of the tetraploid species of Gossypium (Small et al. 1998). Analysis of AdhC highlights 

the dynamic nature of the Adh gene family in Gossypium. This locus displays evidence of gene 

duplication, pseudogenization, and gene loss in various species. Southern hybridization shows 

that the allotetraploid G. hirsutum displays two bands per digest as expected. On the other hand, 

the D-genome diploid, G. raimondii, displays three bands per digest indicative of gene 

duplication(s), whereas the A-genome diploid, G. herbaceum, does not hybridize at all to the 

AdhC probe. As reported previously (Small et al. 1998), we were able to isolate an AdhC 

fragment from G. arboreum, the only other extzmt A-genome taxon, and this fragment clearly 

represents a pseudogene as it contains an internal stop codon and large deletions (one of which 

removes all of exon six plus regions of the flanking introns). We were able to genetically map 

AdhC to homoeologous assemblage 7B on both diploid maps and in both subgenomes of the 

allotetraploid map (fig. 9). Because AdhC is missing from G. herbaceum, it wzis mapped as a 

dominant marker in the G. herbaceum x G. arboreum mapping population. 

Phylogenetic analysis of these sequences results in the expected topology (fig. 6c) and 

also reveals the rate heterogeneity previously described (Small et al. 1998). This is due to an 
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apparent rate acceleration in the lineage leading to G. raimondii and the D-subgenome of the 

allotetraploids, relative to the A- and C-genome lineages. Due to the rate heterogeneity we 

report absolute rates calculated for the A- and D-genome lineages separately. In each case we 

calculate the absolute rate as the mean of the comparisons of the C-genome to the diploid and 

the related subgenome of the allotetraploid. For the A-genome lineage Ksyn = 0.0230 and Ka = 

0.0108 for a KsyniKa ratio of 2.1:1; Ksil = 0.0356 and Ki = 0.0387. For the D-genome lineage 

Ksyn = 0.0511 and Ka = 0.0137 for a KsyniKa ratio of 3.7:1; Ksil = 0.0611 and Ki = 0.0586. We 

estimated absolute synonymous substitution rates of 0.9 x 10'^ synonymous 

substitutions/synonymous site/year for the A-genome lineage and 2.1 x 10'^ synonymous 

substitutions/synonymous site/year for the D-genome lineage; thus the D-genome lineage appears 

to be evolving over twice as fast as the A-genome lineage. 

AdhD: The AdhD gene is the largest of the Gossypium Adh genes reported here, owing primarily 

to the length of introns three and five (fig. 3). Sequence data from this locus have been used in a 

phylogenetic analysis of a group of Australian cottons (Seelanan et al. 1999). Based on 

phylogenetic analysis (see below) this locus is probably orthologous to the Adhl sequence 

reported by Millar and Dennis (1996b). 

Southern hybridization analysis using an intron 3/exon 4 probe revealed strong 

hybridization to a single band in the diploid species, and two bands in the allotetraploid species, 

but also showed weaker hybridization to additional band(s) in some digests. This suggested that an 

additional locus closely related to AdhD was present in the Gossypium genome. This suspicion 

was subsequently confirmed. For the phylogenetic study of Seelanan et al. (1999) PGR primers 

were produced that were intended to be locus-specific for AdhD', these primers were homologous 

to regions in exons two and eight. Amplification using these primers, however, resulted in two 

distinct products — AdhD, and a second, heretofore undiscovered locus; this second locus was 

termed AdhE and is discussed below. It is important, however, to note that AdhE is similar to 

AdhD, both in exon (table 3) as well as in most intron sequences, which explains the cross-

hybridization noted above. AdhD and AdhE are distinguishable at the PCR amplicon level, 

however, because they differ dramatically in size due to length differences primarily in introns 

three and five. Due to a lack of polymorphism at the RFLP level for AdhD we were able to map 

this locus only by using single-stranded conformational polymorphism (SSCP) techniques where 

we can readily distinguish AdhD from AdhE by size. This allowed us to map AdhD in the D-

diploid mapping population where it mapped to Chromosome D7 (fig. 10). It is interesting to 

note, however, that AdhD and AdhE (see below) map to positions very close to each other on 
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this imkage group (2.2 cM; one recombinant between them out of 62 F2 progeny) suggesting that 

these loci are the result of a local duplication. 

Phylogenetic analysis of these sequences result in the expected topology (fig. 6d) and 

displays near-equality of branch lengths in the two clades. Inclusion of the Adhl cDNA sequence 

of Millar and Dennis (1996b) indicates that Adhl is probably orthologous to AdhD as the Adhl 

cDNA sequence comes out as sister to the AdhD sequence fi'om the A-subgenome of G. hirsutum 

(fig. 6d). This is bolstered by Southern hybridization analysis using the 3' UTR of the Adhl 

cDNA as a probe (fig. 4d). The Southern hybridization pattern of Adhl was a subset of the 

patterns shown using the AdhD intron 3/exon 4 probe. Presxmiably the 3' UTR of the Adhl 

cDNA is sufficiently diverged from AdhE that they do not cross-hybridize. Thus, we can identify 

the AdhE bands by subtraction (see below). 

Using the AdhD sequences we have estimated Ksyn = 0.0397 and Ka = 0.0095 resulting in 

a KsynJCa ratio of 4.2:1; Ksil = 0.285 and Ki = 0.0266. The absolute rate for this locus was 

estimated at 1.7 - 1.8 x 10"' synonymous substitutions/synonymous site/year. 

AdhE: This locus was isolated using PGR primers homologous to regions in exons two and eight 

(see above); thus the genomic sequence available for this locus is shorter than for the other 

Gossypium Adh loci we isolated. For the sequence that is available, this locus appears to 

maintain the characteristic 10 exon/9 intron structure (fig. 3). These amplifications produced 

AdhE PGR products from the D-genome diploid, and from both subgenomes of the allotetraploid, 

but no amplification of AdhE from either of the A-genome diploid species. 

As noted above, the sequences of AdhD and AdhE have high identity resulting in cross-

hybridization on Southern blots. We deciphered the relationships among these genes with a 

combination of Southern hybridizations using separately; an AdhD intron 3/exon 4 probe; an 

AdhE exon 5/intron 5 probe, an AdhD intron 3 probe, and an Adhl (= AdhD) cDNA 3' UTR 

probe. The AdhD intron 3/exon 4 probe and the AdhE exon 5/intron 5 probe revealed identical 

hybridization patterns with one to two hybridizing bands in the diploids and two to four 

hybridizing bands in the allotetraploid. Use of the AdhD intron 3 and Adhl 3' UTR also revealed 

hybridization patterns identical to each other, and which were a subset of the fragments revealed 

with the exon + intron probes: a single fragment in each diploid and two to three in the 

allotetraploid. Presumably those bands that hybridize to both the AdhD and AdhE exon + intron 

probes as well as the AdhD intron 3 probe and the Adhl 3' UTR represent AdhD, while those 

bands that hybridize only to the AdhD and AdhE exon + intron probes represent AdhE. These 

data also indicate that, despite our inability to PGR-amplify AdhE from an extant A-genome 

taxon, it does exist, at least in G. herbaceum. 
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One of these sets of AdhE bands was polymorphic in the parents of the D-genome diploid 

mapping population and we were able to map AdhE to Chromosome 7, tightly linked to AdhD. 

Other than the inability to recover an AdhE sequence firom an A-genome diploid species, 

phylogenetic analysis reveals the expected topology (fig. 6e). Estimates for relative substitution 

rates were Ksyn = 0.0295, and Ka = 0.0095 for a ratio of 3.1:1; Ksil = 0.0323 and Ki = 0.0330. 

The absolute rate was calculated at 1.1 x 10"' synonymous substitutions/synonymous site-'year. 

Discussion 

Adh Gene Family Evolution: Early work on angiosperm nuclear gene families such as Adh 

suggested that many genes appeared to be encoded by a relatively small number of loci, often 

only two to three (e.g., Gottlieb 1982). One explanation for this observation is that extant gene 

copies are the result of a gene duplication that occtirred prior to the origin of angiospenns 

(Gottlieb 1982; Morton, Gaut, and Clegg 1996). Such a scenario makes certain predictions about 

the relationships among extant copies of the genes: first, it predicts that all plant Adh genes 

should fall into one of two groups, corresponding to the two products of the ancient gene 

duplication; secondly it predicts that the relationships among the organisms that bear the copies 

of the genes should be similar in each of the two clades and that these relationships should reflect 

the organismal relationships. This scenario is perpetuated by the use of terms such as 

^""Adhl" etc., that suggest, intentionally or unintentionally, that all Adh I genes are more closely 

related to each other than any are to Adh2 genes. This unjustified assimiption appears to be 

responsible, at least in part, for the use of the term Adh I to refer to genes expressed early during 

development and at low levels throughout the plant, while genes called Adh2 are often only 

expressed when induced by hj'poxia (or more likely they are so called by their discoverers because 

they display such tendencies). Recent work (e.g., Morton, Gaut, and Clegg 1996; Clegg, 

Cummings, and Durbin 1997; see below), however, has shown that the Adh gene family appears 

to be dynamic in the number of genes that exist in a given organism, and that its history has been 

characterized by many gene duplication and deletion events. 

Phylogenetic analysis of plant Adh sequences available firom GenBank combined with 

data presented in this paper results in the topology shown in fig. 11. Several noteworthy 

conclusions may be drawn from this analysis. First, Adh sequences do not fall into two primary 

clades as predicted by the ancient gene duplication hypothesis. In fact, the topology of the tree 

shows that gene duplications have occurred at multiple levels within the tree, i.e., at various times 

during evolution. Examples of relatively old duplications include sequences fi-om the plant family 

Solanaceae {Lycopersicon, Nicotiana, Petunia, and Solanum) which occur on two clades that are 

separated by a number of other groups (fig. II). A similar history is evident for the sequences 
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from the Rosaceae (Fragaria, Malus, and Pyrus Adh4 vs. Pyrtts Adh3). More recent gene 

duplications are also evident in the tree (fig. 11). For example, the Adhl and Adh2 sequences of 

the grass family are more closely related to each other than they are to other monocot 

sequences, suggesting that a recent gene duplication is responsible for this arrangement. Similar 

results have been obtained for peonies (fig. II) where one recent gene duplication gave rise to 

Adhl and Adh2 and a second gave rise to Adhl a and Adhlb in a subset of species (Sang, 

Donoghue, and Zhang 1997). 

A global phylogenetic analysis of plant Adh genes indicates a history of gene duplication 

and divergence on a global level. Such a history is also evident within the microcosm of the 

single genus Gossypium which shows evidence of both ancient and recent gene duplication events. 

For example, figure 11 shows that Gossypium Adh sequences are found in two primary gene 

lineages: AdhA/B/C and AdhD/E. The split between these lineages goes almost to the base of the 

tree, suggesting that this split was quite ancient Other, more recent duplication events are also 

apparent in Gossypium-, e.g., the duplications giving rise to AdhA, AdhB, and AdhC in one lineage 

and AdhD and AdhE in the other lineage. Finally, even more recent duplications are also 

apparent. Southern hybridization and genetic mapping evidence as well as phylogenetic analysis 

indicate that the AdhB!Adhl group of sequences are closely related and presumably the result of 

recent tandem gene duplication events. Southern hybridization data also suggest that the AdhC 

gene has become duplicated (or perhaps triplicated) in G. raimondii (fig. 4). 

The significance of these observations is that Adh gene family evolution in plants is an 

ongoing and dynamic process with both gene duplication and gene deletion occurring at multiple 

levels within the phylogeny of angiosperms. This is important not only for our understanding of 

gene evolution, but also for our understanding of gene function. As noted above, plant Adh genes 

are often grouped into Adhl-\ik.& genes which are expressed under certain developmental 

conditions, or AdhZ-Wks genes that are inducible under hypoxic conditions. If these 

generalizations are true, yet all Adhl genes are not orthologous (derived from a conunon Adhl 

gene) this suggests that there has been convergent evolution toward an Adh gene family that has 

both developmentally regulated and inducible members and that this condition has evolved 

multiple times. Refinements in our imderstanding of regulation and expression patterns of Adh 

genes in different species should shed light on this hypothesis. 

Gene Family Size: As noted above, most angiosperms are reported to have two or three Adh 

loci (e.g., Gottlieb 1982; Dennis et al. 1984, 1985), although it is rare that the goal of a smdy is 

to document the total nimiber of genes within a gene family in a species. Thus these estimates 

may reflect small gene family size, or alternatively, a lack of thorough searching for additional 
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genes. For example, isozyme anal3^is indicated that diploid Gossypium contained two (e.g.. 

Suiter 1988), or rarely three Adh loci (Wendel, unpublished data; Millar, Olive, and Dennis 

1994). The molecular genetic analysis of Millar and Dermis (1996) dociraiented five distinct 

loci. The present study indicates that there are at least seven Adh loci in Gossypium. 

Variation in gene nimiber from other species has been documented; for example, three 

loci have been reported from a niunber of species (e.g., Hordeum — Trick et al. 1988; Sorghum 

— EUestrand, Lee, and Foster 1983; maize, Osterman and Dennis 1989; some palms, Morton, 

Gaut, and Clegg 1996; some Paeonia species — Sang, Donoghue, and 2^ang 1997; 

Leavenworthia — Charlesworth, Liu, and Zhang 1998). Other species, notably some members of 

the Brassicaceae (Arabidopsis, Arabis, Chang and Meyerowitz 1985; Miyashita, Innan, and 

Terauchi 1996), have but a single Adh locus. The largest plant Adh gene family yet reported is 

from a gymnosperm, Pinus banksiana, which contains at least seven expressed Adh loci (Perry 

and Fumier 1996). Taken in the context of the phylogenetic analysis discussed above, these data 

reinforce the dynamic nature of Adh gene family evolution. Gossypium contains the largest Adh 

gene family yet described in an angiosperms with at least seven genes, and equals the largest 

described from any plant. The functional significance of this observation is, at present, 

imknown, but it is interesting to note that cultivated cotton is relatively intolerant to flooding 

despite the large Adh gene family and the fact that ADH expression is induced several-fold in 

anaerobically induced cotton plants (Millar, Olive, and Dennis 1994; Millar and Dennis 1996a,b). 

Interlocus Comparisons of Evolntionary Dynamics: One of the advantages of studying a 

small gene family in a phylogenetically well-understood and closely related group of species is 

that a number of intra- and interlocus comparisons may be drawn regarding processes and 

patterns of evolution. Specifically, for Adh in Gossypium, we note that there is variation degrees 

of sequence variation among loci for exons; variation in intron presence and degree of intron 

sequence divergence between loci; variation in evolutionary rates, both between loci and between 

lineages for some loci; and finally variation in gene copy number. Each of these is discussed 

below. 

Exon Variation — Table 3 presents a comparison of genetic divergence in coding sequences (for 

both nucleotide and amino acid sequences) among the Gossypium Adh loci. For perspective we 

also include comparisons between Gossypium loci and other model system Adh loci: maize Adhl, 

maize Adh2, and Arabidopsis thaliana Adh. These data reflect the phylogenetic relationships 

among the sequences in that Gossypium AdhA,AdhB, and AdhC are all more similar to each 

other than any of them are AdhD or AdhE and vice versa. All nucleotide sequence percent 
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similarities fall within a relatively small range from 68.5% {Gossypium AdhC vs. maize AdhI) to 

93.4% {Gossypium AdhD vs. AdhE). Amino acid percent identities cover a similarly small range 

from 76.7% {Gossypium AdhC vs. maize Adh2) to 92.7% [Gossypium AdhD vs. AdhE^. 

Intron Variation — The majority of plant Adh sequences have a ten exon/nine intron structure 

(fig. 2), with introns of various size and sequence foimd at identical sites within the gene. The 

Pinus genomic sequences isolated also have this structure (Perry and Fumier 1996), suggesting 

that it is the ancestral condition in seed plant Adh genes. Intron loss from nuclear genes is not 

uncommon (Drouin and Moniz de Sa 1997; Frugoli et al. 1998; Loguercio and Wilkins 1998), and 

several cases of missing introns have been reported in Adh genes including from species of the 

Brassicaceae {Arabidopsis — Chang and Meyerowitz 1986; Arabis — Miyashita et al. 1996; 

Leavenworthia — Charlesworth, Liu, and Zhang 1998), and barley (Trick et al. 1988). While the 

mechanism(s) of intron loss have not been demonstrated, they presumably involve interaction 

between an intact gene and a processed pseudogene or reverse-transcribed cDNA. 

All Gossypium Adh genes have the normally found introns in the same positions as in 

other plant Adh genes, with the exception of AdhA which has lost two introns (fig. 3). The 

introns absent from this gene are those between exons 4 and 5 and exons 7 and 8. It is ctirious to 

note that these are two of the three introns that are missing from the Brassicaceae Adh genes and 

that phylogenetic analysis clearly shows that this shared loss is not due to inheritance of an 

intronless gene from a common ancestor (fig. 11). This situation may be analogous to repeated 

loss of introns from chloroplast genes (e.g., Downie et al. 1991; Lai et al. 1997). 

Intron sequence divergence between loci is presumably a measure of evolutionary 

divergence between loci, but may also reflect the proximity of the loci to each other (dispersed 

vs. tandem) and therefore the possibility for interlocus interactions. In most comparisons 

between Gossypium Adh loci the intron sequences are unalignable £md intron lengths differ (table 

4). There are two exceptions to this: AdhBIAdhI, and AdhD!AdhE sequences. 

The AdhBIAdh2 sequences are alignable throughout their length although a number of 

insertions and deletions (indels) must be introduced in the introns. Also, these loci all map either 

to identical sites or very close to each other. This suggests that they are the result of recent 

tandem gene duplication events. Millar and Dermis (1996b) noted the potential recombinant 

origin of one of the Adh2 sequences they isolated; such a scenario makes sense in light of the 

tandem arrangement of the genes and the potential for imequal crossing over to occur. 

The AdhD!AdhE genes are also tandemly arranged, at least in the single genome in which 

they have both been mapped. Comparison of these two loci reveal that the intron sequences are 

alignable throughout most of the gene, although large indels are present in introns 3 and 5. 
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Rate Variation — Average absolute evolutionary rate values for plant nuclear genes have been 

examined by several authors (e.g., Wolfe et al. 1987, 1989; Gaut 1998) and range from a low of 

ca. 1.5 X 10"' synonymous substitutions/synonymous site/year (Small, Rybum, and Wendel 1999) 

to 30 X 10"' synonymous substitutions/synonymous site/year (Wolfe et al. 1987), although this 

upper value probably reflects a paralogous comparison, and so is inflated. A mean rate based on a 

comparison of nine nuclear genes in rice and maize has been calculate at 6.0 x 10"' synonymous 

substitutions/synonymous site/year (Gaut 1998). Clearly then, evolutionary rates vary among 

nuclear-encoded genes. This variation is apparent not only when comparing different organisms 

(e.g., palms evolve more slowly than grasses across loci, Gaut et al. 1996), but also when 

comparing different genes within a conunon organismal framework (e.g., Adh2 has a faster 

nonsynonymous rate than Adhl in grasses, Gaut et al. 1996). Our results from Adh in 

Gossypium show rate variation both between loci and between lineages. 

Rate variation between loci is evident from comparisons of both absolute and relative 

rates. First, using a common pair of calibration points (see fig. 1) we estimated absolute 

synonymous substitution rates for all five loci. These estimates range from ca. 1.0 x 10"' (AdhA) 

to 2.7 X 10"' {AdhC) synonymous substitutions/synonymous site/year, an almost 3-fold difference 

among loci. Such variation was also noted by Gaut (1998) in a comparison of nine nuclear genes 

between rice and maize from which he calculated an average rate of 6.0 x 10"'; it is interesting to 

note that while similar levels of synonymous rate variation were observed (2.7-fold difference in 

Gossypium, 2.4-fold in grasses — Gaut 1998), the rates in Gossypium are much lower. Ilate 

variation among loci is also apparent when comparing synonymous {Ksyn) and nonsynonymous 

{Ka) relative rates. Because these rates are calculated on a per site basis, they can be directly 

comp£U'ed (within a given phylogenetic context) despite the fact that they are derived from 

sequences of different lengths. All Ksyn and Ka values are reported in table 5. Average 

synonymous rates per locus ranged from Ksyn = 0.0177 (AdhB) to Ksyn = 0.0397 {AdhD), a 2.2-

fold difference. Average nonsynonymous rates ranged from Ka = 0.0020 {AdhA) to Ka = 0.0122 

(AdhC), a 6.1-fold difference. These observations are again consistent with those of Gaut (1998) 

who noted that in the comparison of nine nuclear genes in rice and maize the synonymous rate 

varied only 2.4-fold, while the nonsynonymous rate varied over 10-fold. 

Nucleotide substitution rate variation is also apparent between lineages for two Adh loci. 

Inspection of the phylogenetic trees constructed for these loci (fig. 6a-e) reveal apparent rate 

heterogeneity among sequences of AdhA (fig. 6a) and AdhC (fig. 6c). Application of the Tajima 

(1993) relative rate tests statistically support these observations in both cases. For AdhA, 

statistically significant rate heterogeneity is detected only between G. raimondii and G. 
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herbaceum with G. raimondii evolving at a faster rate (Small, Rybum, and Wendel 1999). These 

data suggest that the clades to which these species belong are also evolving at different rates, 

despite the lack of statistical support. For AdhC, in all comparisons the D-(sub)genomes are 

acciunulating nucleotide substitutions at a statistically significantly higher rate than the A-

(sub)genomes (Small et al. 1998). Rate variation among lineages may be fueled by a number of 

phenomena including, for example, the generation-time effect, fidelity of DNA polymerases or 

repair enzymes, and selection (reviewed in Gaut 1998). It is unclear what processes have resulted 

in rate variation among Gossypium lineages, although it is provocative to note that in both cases 

of statistically supportable rate variation the D-(sub)genome lineage had an accelerated rate 

relative to the A-(sub)genome lineage. This is accompanied by increased nucleotide 

polymorphism in the D-subgenome of the allotetraploids G. hirsutum and G. barbadense for 

both AdhA aai. AdhC (Small, Rybum, and Wendel 1999; unpublished data). The stmi of these 

observations suggest that the D-(sub)genome lineage may be subject to different and accelerated 

evolutionary pressures relative to the A-(sub)genome. Further research is necessary to evaluate 

the generality of this observation and to address its underlying mechanism(s). 

Copy Number Variation — The Adh loci described herein vary in their relative divergence from 

other loci, and in the nimiber of genes observed in different species. For example, initial 

Southern hybridization analysis of AdhA indicated that it was single copy per diploid genome in 

all species sampled (fig. 4a). In the course of a phylogenetic study of a group of New World 

diploid species, however, we obtained evidence suggestive of a gene duplication confined to four 

of these species (unpublished data). Southern hybridization of an AdhB fragment revealed a 

number (2-4) of hybridizing fragments in all diploid genomes suggestive of a number of closely 

related loci. The AdhB loci also closely matched the sequences of Adh2 genes described from G. 

hirsutum (Millar and Dermis 1996b) which had also been suggested to be in relatively high copy 

number. Unlike most interlocus comparisons, we were able to align even the intron sequences 

between AdhB and Adh2. Phylogenetic analysis of these sequences suggest a minimum of three 

AdhB/Adh2-\iks loci, with a fourth (their Adh2c) suggested by the work of Millar and Dermis 

(1996b). Mapping data indicate that these loci are all tightly linked and are probably the result 

of local gene duplications. 

AdhC reveals in a microcosm many of the phenomena impacting Adh evolution on a 

global scale in plants. For AdhC we have evidence of gene duplication, pseudogenization, and 

deletion, all in different species. Southern hybridization analysis of AdhC (fig. 4c) revealed three 

hybridizing bands in the D-genome species, G. raimondii, suggesting gene duplication(s). This 

same figure shows that AdhC does not hybridize to anything in the genome of G. herbaceum, an 
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A-genome diploid species; attempts to PCR ampiiiy AdhC from G. herbaceum were also 

unsuccessful. Hybridization of AdhC to the other extant A-genome species, G. arboreum did 

result in a single hybridizing band (data not shown) and we were able to isolate an AdhC gene 

firagment from G. arboreum via PCR (see Small et al. 1998). This gene fragment, however, 

clearly represents a pseudogene, as it contains both an internal stop codon, and a large deletion 

that removes the entirety of exon six as well as portions of the surroimding introns. Despite the 

lack of an intact AdhC in either of the extant A-genome diploid species, the A-subgenome of all 

five allotetraploid species contain what appear to be fully intact AdhC sequences (Small et al. 

1998) indicating that the pseudogenization and loss of AdhC from G. arboreum and G. 

herbaceum occurred after the split of these species from the species that were involved in the 

origin of the allotetraploid species. Furthermore, mutations in intron splice site sequences and 

deletions in some AdhC sequences from the D-subgenome of the allotetraploid species suggest 

that these loci may also be pseudogenes. 

While AdhD and AdhE cross-hybridize at the Southern level, they each appear to be 

represented by a single locus per diploid genome, although tightly linked to each other. Using an 

AdhD intron 3 probe Seelanan et al. (1999) have shown that AdhD is single copy in a number of 

wild diploid Australian Gossypium species. This same probe also reveals a single hybridizing band 

per diploid genome in the four species we sampled (data not shown). We have been unable to 

design an equivalent AdhE-specific probe, but have inferred based on subtraction of AdhD 

fragments from an AdhD/AdhE hybridization profile that AdhE is also single copy. 

While the Adh gene family in angiosperms often seems to be stable in terms of copy 

number (Clegg, Cummings, and Durbin 1997), a detailed analysis of the whole gene family in a 

group of closely related species reveals that dynamic fluctuations in gene copy number are 

occurring. These fluctuations are due to both the origin of new genes via gene duplication events 

(often due to local duplications) and to the loss of genes through pseudogenization and gene 

deletion. 

Conclusions: The study presented here was designed to elucidate the strucmre, organization, 

and evolution of the Adh gene family in the genus Gossypium. These data were produced for two 

primary reasons: (1) to facilitate an understanding of the patterns and processes of gene family 

evolution within a well-understood phylogenetic framework so that the inferences drawn from 

this work can be generalized to other species and gene families; and (2) to provide the foundation 

for more detailed studies of phylogeny, nucleotide diversity, and molecular evolution (Small et al. 

1998; Small, Rybum, and Wendel 1999). The data simimarized here provide insights into gene 

family evolution. Specifically, as more species are sampled, it is becoming apparent that gene 
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family size is more variable than initially predicted, with Gossypium representing the largest Adh 

gene family yet described in an angiosperm. Secondly it is also apparent that the process of gene 

birth and death are also more dynamic than previously thought, with three of the Adh loci 

showing evidence of recent gene duplications as well as evidence for pseudogenization and gene 

loss. Finally, we provide evidence of evolutionary rate variation among Adh loci as well as 

among lineages. The absolute synonymous substimtion rates we calculated are slower than 

published average nuclear gene rates (Wolfe, Li, and Sharp 1987; Wolfe, Sharp, and Li 1989; 

Gaut 1998). These data and analyses provide new insights as well as additional avenues in need of 

research. 
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Table 1. Plant materials. All voucher specimens are deposited at the Iowa State University Ada 
Hayden Herbarium (ISC). Voucher abbreviations are as follows: TS = Tosak Seelanan, JFW & 
TDC = J. F. Wendel and T. D. Couch 
Taxon Accession Voucher 
C-genome diploid 

Gossypium robinsonii F. Mueller AZ-50 TS 12 

D-genome diploid 
Gossypium raimondii Ulbrich #436 JFW & TDC 127 

A-genome diploids 
Gossypium herbaceum L. 
Gossypium arboreum L. 

A,-73 
A2-74 

JFW 539 
JFW & TDC 312 

AD-genome tetraploid 
Gossvpium hirsutum L. "Palmeri" JFW & TDC 632 
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Table 2. PCR amplification and sequencing primers used in this study. 
Locus Primer* 

Amplification primers 
Adh (aU loci) PI: CTG CKG TKG CAT GGG ARG CAG GGA AGC C (f) 

P2: GCA CAG CCA CAC CCC AAC CCT G (r) 
AdhA 

AdhD/E 

Adhx2-1: CTT CAC TGC TTT ATG TCA CAC T (f) 
Adhx8-1: GGA CGC TCC CTG TAC TCC (r) 
Adhx2-2: GCA ATG GAG GTT CGT CTG (f) 
Adhx8-3: GAT CAT GGC ATT AAT GTT TC (r) 

Sequencing primers 
AdhA/B/C Adhx4-I: 
AdhC 

AdhD/E 

Adhx4-2: 
Adhx4-3: 
Adhx6-2: 
Adhx8-2; 
Adhx2-2: 
Adhx3-I: 
Adhx4-4: 
Adhx5-1: 
Adhx5-2: 
Adhx6-1: 

TCA TGT TCT CCC TAT CTT CAC (f) 
GTG GAG AGT GTA GGT GAA GG (f) 
GGG CAG ACT AGG TTT TCC AAA G (f) 
TCA ATA CCA ATG ATC CTA GAA (r) 
GAA ACC ATG GCC TGG GTG (r) 
GCA ATG GAG GTT CGT CTG (f) 
ACT CCA TTA TTT CCT CGT AT (f) 
ACC TCA CCC ACA CTC TCA AC (r) 
GCC ACA GTT GAA CCT TTG (r) 
AAT AAT TTT CGA GGT CTT GG (f) 
ATC AAC ACC AAT AAT CCT AGA A (r) 

'Primers ail written 5' to 3'; forward primers denoted (f), reverse primers denoted (r). 
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Table 3. Comparison of percent identity among Gossypium, maize, and Arabidopsis Adh 
sequences. Percent nucleotide identity is below the diagonal; percent amino acid identity is above 

I 2 3 4 5 6 7 8 
I. Arabidopsis Adh" — 81.3 79.4 80.8 85.3 80.5 84.1 82.0 
2. maize Adhl*' 74.6 — 87.1 80.1 83.8 80.5 89.3 88.4 
3. maize Adh^ 72.1 82.0 — 79.3 80.8 76.7 84.5 84.1 
4. Gossypium AdhA 73.5 73.2 69.3 — 85.3 80.8 82.0 82.0 
5. Gossypium AdhB 76.8 75.6 71.6 80.6 — 86.8 83.3 82.8 
6. Gossypium AdhC 73.8 72.8 68.5 80.1 85.5 — 81.5 80.7 
7. Gossypium AdhD 76.6 76.0 74.1 75.1 75.0 75.0 — 92.7 
8. Gossypium AdhE 76.0 77.3 74.6 75.3 75.6 75.3 93.4 — 

'GenBank accession X77943 
''GenBank accession X00580 
'GenBank accession X01965 
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Table 4. Intron sizes comparison between loci; given in base pairs (bp) for aligned sequences. 
Intron 
Number 

2 3 4 5 6 7 8 Aligned 
Length 

AdhA 80 75 absent 85 99 absent 81 1^18 bp 
AdhB 106 92 121 103 110 144 84 1,554 bp 
AdhC 157 180 81 86 99 184 71 1,653 bp 
AdhD 104 259 89 279 92 88 116  1,823 bp 
AdhE 98 81 92 208 96 92 NA 1.362 bp 
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Table 5. Comparison of patterns of nucleotide substitution within and among loci and lineages. 
Locus* Kf Ksir Ksyn'^ Ka" Ksyn'Xa 

ratio 
AdhA A' 0.0126 0.0190 0.0320 0.0010 32.0:1 
AdhA D' 0.0270 0.0330 0.0418 0.0020 20.9:1 
AdhA 0.0198 0.0260 0.0369 0.0015 24.6:1 

AdhB A' 0.0265 0.0226 0.0081 0.0050 1.6:1 
AdhB D* 0.0192 0.0209 0.0274 0.0041 6.7:1 
AdhB 0.0228 0.0217 0.0177 0.0045 3.9:1 

AdhC A' 0.0387 0.0356 0.0230 0.0108^ 2.1:1 
AdhC D' 0.0586 0.0611 0.0511 0.0137 3.7:1 
AdhC 0.0512 0.0483 0.0371 0.0122 3.0:1 

AdhD A' 0.0261 0.0285 0.0431 0.0095 4.5:1 
AdhD D' 0.0272 0.0285 0.0364 0.0095 3.8:1 
AdhD 0.0266 0.0285 0.0397 0.0095 4.2:1 

AdhE A'® 0.0287 0.0284 0.0271 0.0066 4.1:1 
AdhED' 0.0352 0.0343 0.0307 0.0110 2.8:1 
AdhE 0.0330 0.0323 0.0295 0.0095 3.1:1 

'For each Adh locus the data are presented for three separate comparisons: (1) as the mean of all 
pairwise comparisons between the C-genome outgroup {G. robinsonii) and the A-genome diploid 
(G. herbaceum or G. arboreum) and the A-subgenome of the allotetraploid (G. hirsutum) 
(denoted A'); (2) as the mean of all pairwise comparisons between the C-genome outgroup {G. 
robinsonii) and the D-genome diploid (G. raimondii) and the D-subgenome of the allotetraploid 
(G. hirsutum) (denoted D'); and (3) as the mean of all pairwise comparisons between the C-
genome outgroup and sequences of both A- and D-genome diploids and both subgenomes of the 
allotetraploid. 
"T^Jumber of substitutions per site for intron sites only. 
"dumber of substitutions per site including intron and synonymous sites. 
''Number of synonymous substitutions per synonymous site in coding sequences; calculated via the 
method of Nei and Gojobori (1986). 
"dumber of nonsynonymous substitutions per nonsynonymous site in coding sequences; calculated 
via the method of Nei and Gojobori (1986). 
"This comparison includes the G. arboreum AdhC pseudogene. 
because the A-genome diploid sequence for AdhE is not available, these values represent a 
comparison of G. robinsonii and the A-subgenome sequence of G. hirsutum. 
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Figure I. Phylogenetic hypothesis for the genus Gossypium showing relationships among 
the diploid (2n = 26) species, the origin of the allotetrapioid (2n = 52) species, and estimates of 
the timing of the initial divergences within the genus (Wendel and Albert 1992; Seelanan et al. 
1997; Small et al. 1998). 



Figure 2. Structure of maize Adhl gene as an example of a plant Adh gene; numbered boxes represent exons; intervening lines 
represent introns. Approximate locations of PGR primers are shown as arrows; forward primers are shown above, reverse primers 
below. The bold line below represents the intron 3 / exon 4 region used as a probe in Southern hybridization analyses. 



AdhC o 

AdhD 

AdhE 

Figure 3. Schematic representation of Gossypium Adh genes. Numbered boxes represent exons; intervening lines represent 
introns. A 250 bp scale is shown for reference. Note that introns 4 and 7 are missing from Adh A, 
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Figure 4A-E. Southern hybridization analysis of the Gossypium Adh genes. Each panel 
shows hybridization profiles for four species (diploids G. robinsonii, G. herbaceum, and G. 
raimondii; tetraploid G. hirsutum), each digested with four restriction enzymes (^coRI, £coRV, 
Hindm, Xbal). Panels A-E represent identical membranes probed with gene fragments from 
AdhA, AdhB, AdhC, AdhD, and AdhE respectively. For AdhA, AdhB, and AdhC the probe 
consisted of the intron 3/exon 4 region; for AdhD the probe consisted of the 3' UTR of an Adhl 
cDNA (which is orthologous to AdhD, see text); and for AdhE the probe consisted of an exon 5 / 
intron 5 gene fragment. 



42 

P2-58E4 
pAn0l9.T5E3 

PARI 51 

PAR19 

M16-78 

P5-39E3 
PAR11 

AITZOa 
A1794 

G1171E5R 
G1097 
PAR132E3 

A11Q2 

A1097 

PXP3 42 

Figure 5. AdhA maps to homoeologous assemblage 8C of Brubaker, Paterson, and 
Wendel (1999) in both A- and D-genome diploid maps and in the D-subgenome of the 
allotetraploid map. 
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Figure 6A-E. Phylogenetic trees resulting firom parsimony analysis of sequences of 
AdhA, AdhB, AdhC, AdhD, and AdhE respectively, and rooted with the G. robinsonii sequence. 
Branch lengths are given above each branch. The A- and D-subgenomic sequences of G. hirsutum 
are designated G. hirsutum A' and D' respectively. For each tree the following information is 
given below; tree length including autapomorphies (L), consistency index (CI), and retention 
index (RI). AdhA: L: 40, CI: 1.0, RI: l.O; AdhB: L: 56, CI: 1.0, RI: l.O; AdhC: L: 118, CI: 
0.99, RI: 0.98; AdhD: L: 66, CI:0.97, RI: 0.95; AdhE: L: 54, CI: 0.98, RI: 0.94. 
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Figure 7. AdhB maps to bomoeologous assemblage 8A of Brubaker, Paterson, and 
Wendel (1999) in both A- and D-genome diploid maps and in the A-subgenome of the 
allotetraploid map. 
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Figure 8. Phylogenetic analysis of Gossypium AdhB and Adh2 (Millar and Dennis 1996) 
sequences, midpoint rooted, branch lengths shown above each branch. Length; 206, Consistency 
Index; 0.98, Retention Index; 0.91. This analysis shows Adh2b of Millar and Dennis (1996) as 
sister to the AdhB sequence from the D-subgenome of G. hirsutum suggesting that these genes are 
probably orthologous. 
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Figure 9. AdhC maps to homoeologous assemblage 7B of Brubaker, Paterson, and 

Wendel (1999) in both A- and D-genome diploid maps and in both subgenomes of the 

allotetraploid map. 
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Figure 10. AdhD and AdhE are closely linked on Chromosome D7 (D-genome diploid 

map) in homoeologous assemblage 5 of Bnibaker, Paterson, and Wendel (1999). 
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Figure 11. Phylogenetic analysis (neighbor-joining) of plant Adh genes; rooted with a 

Pinus banksiana Adh sequence. 
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CHAPTER 3. THE TORTOISE AND THE HARE: CHOOSING BETWEEN NONCODING 

PLASTOME AND NUCLEAR SEQUENCES FOR PHYLOGENY 

RECONSTRUCTION IN A RECENTLY DIVERGED PLANT GROUP* 

A paper published in the American Journal of Botany^ 

Randall L. Small", Julie A. Ryburn% Richard C. Cronn', Tosak Seelanan", 

and Jonathan F. WendeP 

Abstract 

Phylogenetic resolution is often low within groups of recently diverged taxa due to a 

paucity of phylogenetically informative characters. We tested the relative utility of seven 

noncoding cpDNA regions and a pair of homoeologous nuclear genes for resolving recent 

divergences, using tetraploid cottons (Gossypium L.) as a model system. The five tetraploid 

species of Gossypium are a monophyletic assemblage derived from an allopolyploidization event 

that probably occurred within the last 0.5-2 million years. Previous analysis of cpDNA 

restriction site data provided only partial resolution within this clade despite a large number of 

enzymes employed. We sequenced three cpDNA introns (rpll6, rpoCl, ndhA) and four cpDNA 

spacers (accD-psal, tmL-trnF, irnT-trnL, atpB-rbcL) for a total of over 7 kb of sequence per 

taxon, yet obtained only four informative nucleotide substimtions (0.05%) resulting in 

incomplete phylogenetic resolution. In addition, we sequenced a 1.65-kb region of a 

homoeologous pair of nuclear-encoded alcohol dehydrogenase {Adh) genes. In contrast with the 

cpDNA sequence data, the Adh homoeologues yielded 25 informative characters (0.76%) and 

provided a robust and completely resolved topology that is concordant with previous cladistic and 

phenetic analyses. The enhanced resolution obtained using the nuclear genes reflects an 

approximately three- to sixfold increase in nucleotide substitution rate relative to the plastome 

spacers and introns. 

Key words: alcohol dehydrogenase; Gossypium-, molecular phylogenetics; noncoding 

chloroplast DNA; polyploidy. 

' Reprinted with permission from the American Journal of Botany, 1998, 85(9): 1301-1315. 

' Department of Botany, Iowa State University, Ames, lA 50011. 
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Introdaction 

The ease of generating DNA sequence data has led to an explosion of molecular 

phylogenetic analyses in recent years (reviewed in Soltis, Soltis, and Doyle, in press). In plants, 

analyses of cpDNA have predominated (reviewed by Olmstead and Palmer, 1994), typically 

involving genes such as rbcL, matK, or ndhF (e.g.. Chase et al., 1993; Olmstead and Palmer, 

1994; Olmstead and Sweere, 1994; Steele and Vilgalys, 1994). More recently, sequencing of 

cpDNA noncoding regions (introns and intergenic spacers) has become popular for analyses at 

various taxonomic levels (e.g., Morton and Clegg, 1993; Gielly and Taberlet, 1994a, b, 1996; van 

Ham et al., 1994; Kita, Ueda, and Kadota, 1995; Manen and Natali, 1995; Downie, Katz-Downie, 

and Cho, 1996; Gielly et al., 1996; Johnson and Hattori, 1996; Jordan, Courtney, and Neigel, 

1996; Kelchner and Wendel, 1996; Kelchner and Clark, 1997; Savolainen, Spichiger, and Manen, 

1997; Sang, Crawford, and Stuessy, 1997). Noncoding regions have been presiuiied to be more 

useful at lower taxonomic ranks because they are less fimctionally constrained and are therefore 

freer to vary, thereby potentially providing more phylogenetically informative characters per 

unit of sequencing effort (Clegg et al., 1994). 

One of the often-cited advantages of molecular data for phylogenetic reconstruction is 

the almost infinite number of characters that can be sampled. Yet, for plant groups where 

radiations have been relatively recent it may be extraordinarily difficult to generate sufficient 

phylogenetic signal because of the relatively slow accumulation of mutations, even in "rapidly 

evolving" noncoding DNA. The literature is replete with cladograms derived from molecular data 

that are well resolved internally, but that contain unresolved terminal clades of presmnably 

closely related species (e.g., Hodges and Arnold, 1994; Bayer, Hufford, and Soltis, 1996; Soltis et 

al., 1996; Panero and Jansen, 1997; Sang, Crawford, and Stuessy, 1997). This phenomenon is 

the focus of the present paper. Specifically, we wished to address the issue of phylogenetic 

resolution within recent radiations by asking the following questions: (1) are mutation rates 

sufficiently high in noncoding cpDNA to provide phylogenetic resolution within a group of 

woody perennials that may be only 0.5-2 million years old? (2) do mutation rates vary among 

cpDNA noncoding regions, and if so, which exhibits the highest mutation rate? (3) can strictly 

orthologous low-copy nuclear-encoded genes be isolated, and if so, do they exhibit a higher 

mutation rate than noncoding cpDNA? (4) what are the relative strengths and weaknesses of the 

various types of molecular data for evaluating the phylogenetic relationships of recently radiated 

groups? As a model system for examining these questions we chose the tetraploid species of 

Gossypium L. 

Gossypium includes ~ 50 species (Fryxell, 1992; Wendel, 1995; Wendel, Brubaker, and 

Seelanan, in press), of which the majority are diploid (2n = 2x = 26) and five are allotetraploids 
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(2ii = 4x = 52). Previous studies have resulted in the phylogenetic hypothesis shown in Fig. I. 

The allotetraploid species appear to be a monophyletic assemblage derived from a single 

polyploidization event ca. 0.5-2 million years ago (Wendel, 1989; Wendel and Albert, 1992; 

Seelanan, Schnabel, and Wendel, 1997), and despite extensive efforts directed at understanding 

relationships among tetraploid cottons, only weak resoliition has been obtained (Endrizzi, 

Turcotte, and Kohel, 1985; Wendel, 1989; DeJoode and Wendel, 1992; Wendel and Albert, 

1992; Reinisch et al., 1994; Cronn et al., 1996; Wendel, Schnabel, and Seelanan, 1995a, b; 

Seelanan, Schnabel, and Wendel, 1997). In addition to cpDNA and rDNA restriction site data, 

sequences from the nuclear ribosomal ITS regions are available for all tetraploid species (Wendel, 

Schnabel, and Seelanan, 1995a, b; Seelanan, Schnabel, and Wendel, 1997) and ndhF data are 

available for two of the five species (Seelanan, Schnabel, and Wendel, 1997). Given volimiinous 

data yet little phylogenetic resolution, tetraploid Gossypium provide a test case for evaluating 

the utility of a variety of putatively quickly evolving molecular sequences for resolving the 

phylogeny of a recent radiation. To this end we sequenced seven cpDNA noncoding regions in 

each of the five tetraploid species and a representative of the diploid maternal (chloroplast 

donor; Wendel, 1989) lineage, G. arboreum L. In addition, we isolated and sequenced a region of 

a pair of homoeologous nuclear-encoded alcohol dehydrogenase (Adh) genes for these same taxa, 

as well as a representative of the paternal lineage, G. raimondii Ulbrich, and an additional 

outgroup, G. robinsonii F. Mueller. 

Materials and Methods 

Plant materials and DNA isolation — The species of Gossypium smdied include one 

accession from each of the Hve allotetraploid species, and one species from each of three diploid 

"genome groups." Two of these ("A" and "D" diploids) represent the lineages (maternal and 

paternal, respectively; Wendel, 1989) from which the allotetraploids were derived, and the third, 

more distantly related diploid ("C" genome) was included as an outgroup (Table 1). Previous 

studies support the intrageneric phylogeny shown in Fig. 1 (Wendel and Albert, 1992; Wendel, 

Schnabel, and Seelanan, 1995a, b; Seelanan, Schnabel, and Wendel, 1997). DNA extractions were 

carried out as previously described (Paterson, Brubaker, and Wendel, 1993). All sequences 

obtained in this study have been deposited in Genbank under the accession nimibers given in Table 

2. 

cpDNA regions ~ Many cpDNA noncoding regions (introns and intergenic spacers) have 

been characterized either by direct sequencing (e.g., Morton and Clegg, 1993; van Ham et al., 

1994; Manen and Natali, 1995; Downie, Katz-Downie, and Cho, 1996; Gielly et al., 1996; 
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Johnson and Hattori, 1996; Jordan, Courtney, and Neigel, 1996; tCelchner and Wendel, 1996; 

Kelchner and Clark, 1997; Savolainen, Spichiger, and Manen, 1997; Sang, Crawford, and Stuessy, 

1997) or by restriction site analysis of polymerase chain reaction (PCR)-ainplifled products 

(Listen, 1992; Rieseberg, Hanson, and Philbrick, 1992; Demesure, Comps, and Petit, 1996; 

Wolf, Murray, and Sipes, 1997; Wolfe et al., 1997). The regions we chose to study (Table 2, Fig. 

2) included both cpDNA introns 

and intergenic spacers and were selected based on the availability of PGR primers, and/or their 

size and previous reports of phylogenetic utility. These cpDNA regions ail reside in the large 

single-copy region of the tobacco plastome (Shinozaki et al., 1986) with the exception of the 

ndhA intron, which is in the small single-copy region (Fig. 2). Phylogenetic analyses of sequence 

data for the cpDNA regions analyzed in this study have been previously reported from other 

plant groups with the exceptions of the accD-psal spacer and the ndhA intron. 

The atpB-rbcL spacer has been used extensively in phylogenetic and molecular 

evolutionary analyses (Golenberg et al., 1993; Hodges and Arnold, 1994; Manen, Savolainen, and 

Simon, 1994; Savolainen et al., 1994; Manen and Natali, 1995; Natali, Manen, and Ehrendorfer, 

1995; Savolainen, Spichiger, and Manen, 1997). The tmL-tmF and tmT-trnL spacers were 

initially characterized by Taberlet et al. (1991). The tmL-tmF spacer has been widely exploited 

in molecular systematic investigations (Bohle et al., 1994; Gielly and Taberlet, 1994b; van Ham 

et al., 1994; Bohle, Hilger, and Martin, 1997; Sang, Crawford, and Stuessy, 1997). Curiously, the 

trnT-trnL spacer has rarely been used in systematic studies (Bohle et al., 1994; Bohle, Hilger, and 

Martin, 1997) despite the popularity of the other regions described in the same paper (Taberlet 

et al., 1991), the larger size of this region relative to the trnL intron and the tmL-tmF spacer, 

and the observation by Bohle et al. (1994) that this region is the most variable of the three. The 

accD-psal spacer has been used only recently (Mendenhall, 1994; T. Barkman, University of 

Texas, Austin, personal communication). The PCR primers for the accD-psal spacer region 

were originally designed by B. Milligan (New Mexico State University, Las Cruces) and were 

provided by T. Barkman and B. Simpson (University of Texas, Austin). The ndhA intron has 

been used in PCR-RFLP analysis (Wolf, Murray, and Sipes, 1997), and Downie, Katz-Downie, 

and Cho (1996) report 67.1% similarity in a comparison of the ndhA introns of tobacco and 

rice, but analyses of sequence variation among species have not previously been reported. PCR 

primers for the ndhA intron were designed based on maize, rice, and tobacco ndhA sequences 

from Genbank and were anchored in flanking exons. The rplI6 intron has recently been used 

extensively for phylogenetic analyses in a variety of plant groups (Dickie, 1996; Jordan, 

Courtney, and Neigel, 1996; Kelchner and Wendel, 1996; Kelchner and Clark, 1997; Baum, 

Small, and Wendel, in press; A. Schnabel and J. Wendel, unpubUshed data; S. Downie, University 
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of Illinois, personal communication). Downie, Katz-Downie, and Cho (1996) report 64.5% 

similarity in a comparison of the rpll6 introns of tobacco and rice; this is the lowest similarity 

reported in their comparison of cpDNA introns. The rpoCl intron was used by Downie, Katz-

Downie, and Cho (1996) for assessing intrafamilial relationships within Apiaceae. 

Nuclear-encoded alcohol dehydrogenase loci — Alcohol dehydrogenase {Adh, E.C. 

number 1.1.1.1) is a metabolic enzyme responsible for the interconversion of ethanol and 

acetaldehyde, primarily in response to hypoxic conditions (Freeling and Bennett, 1985). In 

cotton, as in most plants, Adh exists as a nuclear-encoded small gene family (Millar and Dennis, 

1996; Small and Wendel, unpublished data). Gene structure of Adh in Gossypium is generally 

conserved relative to other plant species studied (Fig. 3; Millar and Dennis, 1996; Small and 

Wendel, unpublished data). Because the Gossypium species under consideration are 

allotetraploids (containing A and D subgenomes; see above) each nuclear-encoded locus present in 

diploid species is present in two copies (homoeologues) in the tetraploid species, one per 

subgenome. We have PCR-amplified, cloned, and sequenced the majority of a pair of 

homoeologous Adh genes from tetraploid Gossypium as well as the orthologues from diploid 

Gossypium representing the parents of the allopolyploid. 

An underlying assumption of any phylogenetic analysis is that the sequences included are 

orthologous (related by speciation), rather than paralogous (related by gene duplication). The 

most reliable method of demonstrating orthology for nuclear genes is comparative genetic 

mapping. Mapping genes to positions on homologous/homoeologous linkage groups provides 

strong evidence for orthology. Therefore, we have genetically mapped the sequenced Adh loci in 

both the A- and D-diploid genomes and one subgenome of the AD-allctetraploid. We found that 

these loci map to homologous/homoeologous linkage groups (data not shown) and so infer that 

they JU'e orthologous. We term the Gossypium sequences reported here AdhC to differentiate 

them from the commonly used terminology Adhl,Adh2, etc., which imply homologies to Adh 

genes in other plants that are not in evidence. The AdhC sequences reported here are not 

orthologous to the Gossypium Adh I or Adh2 sequences reported by Millar and Dennis (1996). 

Adh sequences have been used previously in a number of phylogenetic and molecular 

evolutionary studies in plants (Gaut and Clegg, 1991, 1993; Goloubinoff, Paabo, and Wilson, 

1993; Hanfstingl et al., 1994; Gaut et al., 1996; Innan et al., 1996; Miyashita, Innan, and 

Terauchi, 1996; Morton, Gaut, and Clegg, 1996; Sang, Donoghue, and Zhang, 1997). 

Amplification, cloning, and sequencing — cpDNA regions — PGR amplifications were 

performed in 50-mL reactions consisting of 1 unit Tag polymerase (Promega, Madison, 
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Wisconsin), IX buffer (Promega), 200 ounol/L each deoxy-nucleotide triphosphate, 1.5 mmoI/L 

MgCU, 10-20 pmol of each primer and 8-12 ng of template genomic DNA. Amplifications were 

carried out using the parameters described in Table 3 in an MJ Research PTC-100 thermal cycler 

(Watertown, Massachusetts). Amplifications were preceded by a 'Tiotstart" consisting of 2 min 

at 94''C followed by 5 nnin at 80°C during which time the Tag polymerase was added to the 

reactions. A negative control reaction (no template ONA) was included for each set of 

amplifications to monitor for the possibility of contamination. All PCR primers were either 

obtained from other researchers or were synthesized by Integrated DNA Technologies 

(Coralville, Iowa). Amplification products were visualized by agarose gel electrophoresis, 

concentrated using Microcon-100 centrifugation separators (Amicon, Beverly, Massachusetts), 

and quantified fluorometrically. PCR products were either sequenced directly {rplI6 intron, tmL-

tmF spacer, rpoCl intron, ndhA intron) or cloned into pGEM-T (Promega) and sequenced 

{atpB-rbcL spacer, tmT-tmL spacer, accD-psal spacer). For the cloning approach, purified PCR 

products were ligated into pGEM-T according to the manufacturer's instructions. Competent 

Top 10 F' (Invitrogen, San Diego, California) cells were transformed via electroporation and the 

resulting colonies were screened for plasmids with inserts by PCR using the original amplification 

primers. Plasmids were isolated firom a single recombinant colony using an alkaline lysis/PEG 

precipitation protocol (Sambrook, Fritsch, and Maniatis, 1989). Cloning was performed only 

when PCR-amplification resulted in insufficient template for automated sequencing or when 

difficulties were encountered in using the amplification primers as sequencing primers. All 

sequencing was performed using amplification, internal, and/or vector specific primers (Table 2) 

at the Iowa State University DNA Sequencing and Synthesis Facility. 

Adh — PCR-amplification and cloning of Adh homoeologues were performed as described 

for the cpDNA regions except that 2.0 mmol/L MgCla was used in PCR reactions. The primers 

PI and P2 (designed by K. Schierenbeck, California State University, Fresno; Table 2) are 

homologous to regions in exon 2 and exon 9, respectively, of Gossypium Adh (Fig. 3). Initial 

use of these primers resulted in amplification of multiple members of the Adh gene family. To 

isolate AdhC sequences, the entire heterogeneous PCR product pool was cleaned and concentrated 

using Geneclean 11 (Bio 101, La Jolla, California), ligated into pGEM-T, and transformed into 

ToplO F' cells. The resulting colonies were screened by PCR using the amplification primers, 

and colonies that contained inserts of the size corresponding to the AdhC sequence were 

identified. Because tetraploid species of Gossypium contain two AdhC loci (homoeologues), it 

was necessary to further screen these plasmids to isolate A and D subgenome sequences. Multiple 

colonies containing plasmids with appropriately sized inserts were isolated firom each taxon. 
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Inserts from these plasmids were PCR amplified, ethanol precipitated, resuspended in a small 

volimie of water, and then restriction digested with Alul (American Allied Biochemical, Aurora, 

Colorado) according to the manufacturer's instructions. Visualization of the digestion products 

by agarose gel electrophoresis revealed subgenome-specific digestion patterns that allowed 

discrimination of plasmids containing either A or D subgenome AdhC inserts. Using this 

PCR/cloning approach we isolated AdhC sequences from the diploids G. robinsonii, G. raimondii 

and from both the A and D subgenomes of all five tetraploid species (Table 1). These plasmids 

were then isolated and sequenced as described above. We were unable, however, to isolate the 

corresponding AdhC sequence from either of the two extant A-genome diploids (G. arboreum or 

G. herbaceum) using this approach. We therefore employed an internal, AdhC-specific primer 

(ADHX8-2, Table 2; Fig. 3) in conjunction with PI and amplified a ~ 1.35 kb AdhC fragment 

from G. arboreum. Because the primer combination is locus specific we were able to directly 

sequence the G. arboreum AdhC PCR product using the Thermosequenase cycle-sequencing kit 

(Amersham, Arlington Heights, Illinois). 

Analyses ~ Characterization of each region and sequence comparisons were facilitated by 

the software programs MacClade 3.05 (Sinauer, Sunderland, Massachusetts), PAUP 3.1.1 

(Swofford, 1993) and MEGA l.O (Kumar, Tamura, and Nei, 1993). Analyses were conducted 

both on individual and combined data sets as follows. Individual cpDNA region data sets were 

analyzed separately (when warranted by the existence of stifficient variation) and then as a 

combined cpDNA data set. Adh sequences were analyzed in three separate ways: individual 

sequences as terminal "taxa," by subgenome, and by combining Adh homoeologue sequences for 

tetraploid taxa for an Adh 'total evidence" analysis. For each data set a g, statistic (Hillis and 

Huelsenbeck, 1992; Hillis, Allard, and Miyamoto, 1993) was calculated using PAUP 3.1.1 to 

determine whether or not significant phylogenetic structure existed within the data set. For 

phylogenetic analyses, exhaustive searches for most-parsimonious trees were conducted with 

uninformative characters excluded. Due to the larger number of sequences included in the initial 

Adh analysis (each allotetraploid represented by two distinct sequences), the Branch and Bound 

algorithm was employed to search for maximally parsimonious trees. Relative levels of support 

for clades present in the most-parsimonious trees were assessed by calculating decay values, the 

number of extra steps required to collapse the clade (Bremer, 1988). For all phylogenetic 

analyses the tree lengths and consistency indices reported do not include autapomorphic 

characters. Rate variation among sequences was assessed using the ID and 2D relative rate tests 

of Tajima (1993) as implemented in the program Tajima93 (T. Seelanan, unpublished software). 
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Results 

cpDNA sequences — Over 7.3 kilobase pairs (kb) of q)DNA sequence (6.4 kb of 

noncoding sequence) from seven different regions were determined for each of the five tetraploid 

species of Gossypium and the outgroup, G. arboreum. These data collectively represent ~ 5.6% 

(7369/130 505 bp) of the unique sequence of the tobacco plastome (i.e., counting the inverted 

repeat only once) and ~ 10% (6438/64 437 bp) of the unique noncoding portion of the tobacco 

plastome (K. Wolfe, University of Dublin, Trinity College, Ireland, personal communication). 

Each of the sequenced regions is characterized in Table 4. Phylogenetically informative 

characters were observed only in the tmT-tmL spacer and the rpll6 intron. The low observed GC 

content (~ 30%, see Table 4) of the sequenced regions is similar to that reported for plastomes in 

general (Palmer, 1991). 

Averaged over all cpDNA sequences the mean divergence between G. arboreum and the 

ingroup species was 0.30% and mean divergence among tetraploid Gossypium was 0.20%. These 

values, however, were not equally distributed across all regions and, in fact, divergence from G. 

arboreum ranged from 0.00 to 0.96%, while divergence among tetraploids ranged from 0.00 to 

0.49% (in both cases, rpoCl intron and tmT-tmL spacer, respectively). The mean 

transition:transversion ratio (Ts:Tv) across all cpDNA sequences was 0.9:1, while individual 

values ranged from 5:1 to 0:6 (Table 4). Substitution patterns taken across all regions appear to 

follow the observations of Morton (1995), in that positions flanked by A or T are more likely to 

undergo transversions. While this pattern is evident upon inspection, the data are too few to test 

statistically. 

Overall, 7369 characters (nucleotides) were sampled, yielding 52 variable positions 

(0.71%) and four potentially phylogenetically informative nucleotide substitutions (0.05%). In 

addition to nucleotide substimtions, we observed 15 length mutations (indels), of which four were 

potentially phylogenetically informative. 

Phylogenetic analyses of cpDNA sequences — Potentially phylogenetically informative 

characters were found in only two of the seven regions; the tmT-tmL spacer (four characters) and 

the rpll6 intron (four characters) (see Table 4). Exhaustive searches of all possible trees were 

performed for each of these data sets using PAUP v. 3.1.1 (Swoflford, 1993). The g^ statistics 

were -1.57 and -0.23 for the trnT-trnL and the rpll6 intron, respectively. For the number of 

taxa and characters in these data sets, only the tmT-tmL spacer data set is significantly more 

structured than random (P <0.01; Hillis and Huelsenbeck, 1992). The single most-parsimonious 

tree resulting from analysis of the tmT-tmL data set is shown in Fig. 4 (length = 4; consistency 



57 

index [CI] = 1.0; retention index [RI] = 1.0). When all q)DNA data were combined into a single 

data set, a g^ statistic of -1.08 was obtained which is significantly more structured than random 

(P < 0.01). Two equally most-parsimonious trees (length = 11; CI = 0.727; RI = 0.625) were 

found in an exhaustive search; the topology of the strict consensus tree was identical to Fig. 4. 

The two shortest trees differed only in the placement of G. hirsutum which was resolved either as 

sister to a G. barbadense + G. darwinii clade, or as part of an unresolved polytomy as in the 

strict consensus tree. 

Nuclear Adh sequences — Adh exists as a small gene family in Gossypium. We chose to 

analyze the locus we refer to as AdhC. This locus maps to homologous/homoeologous regions of 

the A- and D-genome diploids and AD-genome tetraploid genetic maps (data not shown); thus we 

are confident that we are analyzing orthologous sequences. The PCR primers PI and P2 amplify 

a ~ 1.65-kb region of Adh from exon 2 to the 5' end of exon 9 (Fig. 3). We obtained sequences 

from G. robinsonii (C-genome diploid outgroup; see Fig. 1), G. raimondii (D-genome diploid), 

and from both the A- and D-subgenomes of all five AD-genome tetraploid species using these 

primers. A G. arboreum (A-genome diploid) sequence was obtained using the locus-specific 

primer pair PI/ADHX8-2, which amplifies a region from the middle of exon 2 to the 5' end of 

exon 8 (Fig. 3); the resulting PCR product was 1352 bp in length. 

All AdhC sequences maintain the expected 5' GT... and ...AG 3' intron boundary 

sequences with the exception of a G to A transition of the first nucleotide of intron 6 of the D-

subgenomes of G. hirsutum and G. tomentosum, and an A to G transition at the 3' end of intron 

3. All sequences also maintain exon integrity (presence, length, reading frame) with the 

following exceptions. A 67-bp deletion in the A-subgenome sequences of G. barbadense and G. 

darwinii begins seven nucleotides from the 3' end of exon 4 and ends in the middle of intron 4. 

A large (182 bp) deletion in the G. arboreum sequence results in partial loss of introns 5 and 6, 

and all of exon 6. Finally, a G to A transition in exon 2 of the G. arboreum sequence results in 

the conversion of a tryptophan-encoding codon (TGG) to a stop codon (TAG). The relevance 

of the foregoing observations to AdhC expression was not explored. 

Sequence characteristics for AdhC are summarized in Table 5 and are discussed below. 

The total aligned length of the data matrix is 1667 bp; this includes 798 bp of exon sequence and 

869 bp of intron sequence. With the exception of the sequence from G. arboreum, the absolute 

sequence lengths ranged from 1579 bp to 1655 bp. GC content varied little between the A- and 

D-(sub)genomes, but varied greatly between exons (45.4 - 46.2%) and introns (30.1 - 32.0%). 

Among sequences from tetraploid taxa, transition:transversion ratios (Ts:Tv) varied between 

genomes, and especially between introns and exons. In the A-(sub)genome the Ts:Tv was ~ 
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4.2:1, whereas in the D-(sub)genome the Ts:Tv was ~ 3.6:1 (Table 5). The differences between 

intron and exon Ts:Tv are more dramatic, ranging from 7-8:1 in exons and 1.6-3.3:1 in introns. 

Table 5 also reveals a marked disparity in the ntmiber of nucleotide substitutions in the two 

subgenomes; the number of nucleotide differences between all pairs of sequences are shown in 

Table 6. The D-subgenome sequences have experienced ~ 1.5 times as numy nucleotide 

substitutions and yield almost three times as many potentially phylogenetically informative 

characters. This disparity is also reflected in the relative rate tests (Tajima, 1993), as 

summarized in Table 6. These tests indicate that, in all comparisons, AdhC genes from the D-

(sub)genomes are accumulating substitutions at a rate that is significantly faster than are their 

orthologues/homoeologues in the A-(sub)genomes. 

Phyiogenetic analyses of Adh sequences — Three separate analyses were conducted with 

the AdhC sequences. First, an analysis was conducted using each sequence as a terminal; secondly, 

sequences of each (sub)genome were analyzed separately; and finally, the data from the 

subgenomes were combined for each taxon for a "total evidence" analysis. 

For the data set in which each sequence was treated as a terminal the g, statistic estimated 

from 10 000 random trees was -0.49, which indicates that the data aiQ significantly more 

structured than random (P < 0.01). Phyiogenetic analysis of this data set resulted in a single 

most-parsimonious tree (length = 97, CI = 0.93, RI = 0.98), which is shown in Fig. 5. The tree is 

completely resolved and divided into two primary clades — one including the D-genome diploid 

and D-subgenome of the allotetraploids and the second including the A-genome diploid and the 

A-subgenomes of the allotetraploids. Within each (sub)genomic clade the resolution is complete 

and the topology is identical between clades. 

Analyses of the subgenome sequences individually were also performed. The g^ statistics 

calculated for the A- and D-subgenome data sets were -1.55 and -1.52, respectively; both values 

indicate data significantly more structured than random at the /* = 0.01 level. In both cases, 

phyiogenetic analysis found a single most-parsimonious tree. For the A-(sub)genome the tree 

had a length = 8, CI = 1.0, and RI = 1.0. The D-(sub)genome tree had a length = 20, CI = 0.95, 

and RI = 0.95. Again, each tree was fully resolved and the resulting topologies were identical to 

that shown in Fig. 5. 

Finally, the data for both homoeologues were combined for each taxon for an Adh "total 

evidence" analysis. For outgroup comparison, the G. raimondii and G. arboreum sequences were 

combined to make a "diploid progenitor" sequence and the G. robinsonii sequence was duplicated. 

This data set had a statistic of -1.39, significantly more structured than random at the P = 

0.01 level. An exhaustive search found a single most-parsimonious tree (Fig. 6) with length = 43, 
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CI = 0.91, and RI = 0.91. The tree is fully resolved and well supported, as indicated by high decay 

values and branch lengths. 

Discussion 

Phylogeny of allotetraploid Gossypium — Despite intensive study of the tetraploid 

species of Gossypium, the phylogenetic relationships among these species have remained elusive. 

The data presented in this paper provide a completely resolved and robustly supported 

phylogenetic hypothesis for tetraploid Gossypium (Fig. 6). Within the tetraploid clade, the 

Brazilian endemic G. mustelinum represents the sole descendant of one branch of the initial 

divergence, as tentatively shown by DeJoode and Wendel (1992) and predicted by Wendel, 

Rowley, and Stewart (1994). The remaining four taxa form a clade sister to G. mustelinum, and 

are divided into two species-pairs; G. barbadense + G. darwinii; and G. hirsutum + G. 

tomentosum. The relationship between G. barbadense and G. darwinii has long been established, 

and in fact, the two taxa have been considered conspeciiic (see discussion in Percy and Wendel, 

1990; Wendel and Percy, 1990). The afBnities of G. hirsutum and G. tomentosum, however, 

were unclear until the study of DeJoode and Wendel (1992), which suggested that they are sister 

taxa; this relationship, however, was only weakly supported by a single rDNA restriction site 

mutation. Subsequent analysis of ITS sequences have confirmed this observation (Wendel, 

Schnabel, and Seelanan, 1995a, b; Seelanan, Schnabel, and Wendel, 1997) and the AdhC data 

presented here corroborate this relationship and provide additional strong support. 

Relationships hypothesized by these data additionally confirm predictions based on other 

sources of evidence. For example, the basal position of G. mustelinum predicts that it should be 

genetically equidistant from all other tetraploid species (Wendel, Rowley, and Stewart, 1994). 

This is borne out not only by the allozyme data presented by Wendel, Rowley, and Stewart 

(1994), but also by the AdhC sequence data reported in this paper; in the combined analysis (Fig. 

6) there are 34, 35, 28, and 32 character-state changes between G. mustelinum and G. hirsutum, 

G. tomentosum, G. barbadense and G. darwinii, respectively (mean divergence from G. 

mustelinum = 1.0%). The Adh data also support the conclusion that G. barbadense and G. 

darwinii diverged more recently from each other than did G. hirsutum and G. tomentosum: while 

the branches leading to these two clades have similar lengths (10 vs. 12 steps), the number of 

autapomorphies each lineage has accumulated differ dramatically (9 and 10, respectively, in G. 

hirsutum and G. tomentosum vs. 1 and 5, respectively, in G. barbadense and G. darwinii). 

Molecular evolution of noncoding cpDNA — The impetus for the experiments described 

here was to explore the phylogenetic utility of various sequences rather than to provide an in-
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depth analysis of patterns of molecular evolution. Nonetheless, some observations are prompted 

by our data. First, it has been recognized that cpDNA accumulates nucleotide substitutions more 

slowly than does plant nuclear DNA (Wolfe, Li, and Sharp, 1987; Wolfe, Sharp, and Li, 1989). 

As summarized in Tables 4 and 6, this rate difference is clearly evident in our data. In fact, the 

cpDNA data are astounding in their lack of informativeness, with a total of only eight 

phylogenetically informative characters observed among over seven thousand nucleotides 

surveyed. As a result of so little variation, the cpDNA provide only limited phylogenetic power. 

In addition to the overall paucity of genetic variation, certain patterns observed 

previously are also noted here. First, the finding of Morton (1995) that transversions are more 

prevalent at positions flanked by A/T is supported by our data qualitatively, but sufficient data do 

not exist to statistically test this association. Also, previous observations that indels occur 

almost as frequently as nucleotide substitutions in noncoding cpDNA (Golenberg et al., 1993; 

Gielly and Taberlet, 1994b) are not supported by our data (Table 4). Rather, we detected over 

three times as many substitutions as indels in sequences from the allopolyploids (52 vs. 15, Table 

4). Patterns of substitutions and indels vary between regions and in no case does the number of 

indels equal the number of substitutions. Of the indels that occur, two primary types are 

observed: insertion or deletion of a multinucleotide stretch of unique sequence; or 

insertion/deletion of one or a few nucleotides within a polynucleotide tract (particularly 

poly A/T). The former type of indel is generally easily aligned and, if cladistically informative, is 

usually nonhomoplasious. In our cpDNA data tiiere were 12 such indels, of which three were 

phylogenetically informative and none were homoplasious. The latter type of indel (three in our 

data), however, appears evolutionarily labile and probably originates via slipped-strand mispairing 

during replication (Levinson and Gutman, 1987). These types of indels ofiten provide 

homoplasious characters. For example, the single homoplasious indel character in our cpDNA 

data set is a deletion of a single T in a string of ten in the rpll6 intron, which is shared by G. 

hirsutum and G. barbadense. 

Molecular evolution of Adh ~ Patterns of molecular evolution among the AdhC 

sequences will be discussed in the context of a full presentation of the evolution of the Adh gene 

family in Gossypium. Certain features of the data, however, are especially relevant here. In 

particular, the disparity of substitution rates between AdhC sequences of the A- and D-

subgenomes is striking, consistent, and statistically significant (see Table 6). Relative rate 

differences may be attributed to a number of evolutionary or population genetic phenomena, 

including background mutational processes, generation time, lineage effects, selection, drift, and 

rates of recombination (Bosquet et al., 1992; Gaut et al., 1992; Gaut, Muse, and Clegg, 1993; 
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Clegg et al., 1994; Eyre-Walker and Gaut, 1997). Because both of the two AdhC homoeologues 

exist within the same nuclear genome, however, background mutational and population genetic 

phenomena should affect them equally and can therefore be ruled out as having a significant 

effect. Selection is one (but not the only) process that can potentially differentially affect genes 

in the same nucleus. Either differing levels of purifying selection on the subgenome sequences or 

positive (diversifying or directional) selection on the 0-subgenome sequences could account for 

the observed rate differences. There is an almost fivefold elevation of nucleotide substitution 

rates in exons of the D-subgenome relative to the A-subgenome {K = 0.014 vs. 0.003, 

respectively; Table 5), despite the fact that intron nucleotide substitution rates are actually 

slightly higher in the A-subgenome sequences {K = 0.009 vs. 0.008; Table 5). Secondly, within 

exon sequences the synonymous nucleotide substitution rate (Ks) is over twice as high in the D-

subgenome relative to the A-subgenome - 0.019 vs. 0.008; Table 5), but the nonsynonymous 

nucleotide substitution rate {K^ is over six times higher (K^ = 0.013 vs. 0.002; Table 5). Finally, 

overall AdhC nucleotide substitution rates in the A-subgenome sequences are higher in the introns 

than in the exons {K = 0.009 vs. 0.003, respectively; Table 5) as predicted by neutral theory 

(Kimura, 1980); yet, in the D-subgenome sequences the nucleotide substitution rate is 

approximately twice as high in exons as in the introns {K = 0.014 vs. 0.008 respectively; Table 

5). These data collectively suggest that selective forces may differ between homoeologues. 

Relative phylogenetic utilities of molecular data — The phylogenetic conclusions 

described above are based almost exclusively on the wealth of data provided by the AdhC 

sequences, despite the volume of cpDNA data generated for identical taxa. In addition to the 

data presented in this paper, there exist for allotetrapioid Gossypium comparable molecular data 

sets for cpDNA restriction sites (Wendel, 1989; DeJoode and Wendel, 1992; Wendel and Albert, 

1992), and ITS sequences (Wendel, Schnabel, and Seelanan, 1995a, b; Seelanan, Schnabel, and 

Wendel, 1997). Figure 7 presents a comparison of the percentage of phylogenetically 

informative characters for these data sets. The cpDNA data consistently exhibit lower levels of 

informative characters than do the nuclear-encoded loci, as expected (Wolfe, Li, and Sharp, 

1987; Wolfe, Sharp, and Li, 1989; Eyre-Walker and Gaut, 1997). The percentage of 

phylogenetically informative characters in the cpDNA data sets varied from 0 to 0.34%, and 

several of the cpDNA noncoding regions yielded no informative characters. The three cpDNA 

data sets that did contain informative characters irpll6 intron, trnT-tmL spacer, and cpDNA 

restriction sites) exhibited similar levels of informativeness both in terms of percentages (0.29 -

0.34%) and absolute numbers of informative characters (3 - 4). 
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Among the nuclear-encoded loci there is large range of divergence values, as is expected 

given that each sequence type has its own unique biology. The value for ITS was partially 

extrapolated from the nimiber of characters on internal branches. This was done because the ITS 

sequences in G. mustelinum have concerted to an A-genome like sequence, while the ITS 

sequences of the remaining tetiaploids have concerted to a D-genome like sequence (Wendel, 

Schnabel, and Seelanan, 1995a). Despite these caveats, three results are clear from Fig. 7: (1) 

levels of phylogenetically informative characters are higher in nuclear-encoded sequences than in 

plastome data sets; (2) levels of informative characters vary among nuclear-encoded sequences; 

and (3) percentages of informative characters in the AdhC sequences are equivalent to or higher 

than ITS sequences. Current work is underway to examine levels of divergence among a large 

number of nuclear-encoded sequences in Gossypium (Cronn and Wendel, unpublished data). 

Advantages and limitations of nuclear-encoded genes for phylogenetic analysis — 

Relative rates — It has long been recognized that nuclear-encoded sequences evolve at a faster 

rate than plastid-encoded sequences (e.g., Wolfe, Li, and Sharp, 1987; Wolfe, Sharp and Li, 1989; 

Eyre-Walker and Gaut, 1997). Despite this, in the search for the most phylogenetic information 

per unit of effort, nuclear-encoded sequences have been relatively ignored, with the exception of 

the widely used rDNA regions. The data presented here show clearly that cpDNA noncoding 

sequences may not be able to provide sufficient characters for robust resolution among closely 

related taxa, even if sampled ad infinitum. We sampled over 6 kb of cpDNA noncoding sequence 

(~ 10% of all unique cpDNA noncoding sequences), and yet obtained incomplete and poorly 

supported phylogenetic resolution. In addition, over 1000 cpDNA restriction sites were 

previously sampled (Wendel, 1989; DeJoode and Wendel, 1992), again with incomplete 

resolution. In contrast, sequences from a l.6-kb nuclear-encoded AdhC gene provided complete 

and robust resolution among these closely related taxa. This difference in phylogenetic utility 

reflects simply the greatly accelerated rates of nucleotide substitution in the nuclear genome 

relative to the plastome, as illustrated in Fig. 7. The mean number of substitutions per site (AT) in 

the combined cpDNA sequence data set was K = 0.002, while in the AdhC data sets K = 0.006 in 

the A-(sub)genome and ^ = 0.011 in the D-(sub)genome — a three to sixfold difference in 

nucleotide substimtion rates. Extrapolation of these data allow the following observation. Given 

a total of four informative nucleotide substitutions out of a total of 6438 bp of noncoding 

cpDNA sequenced, and 25 informative nucleotide substitutions in the AdhC sequences, and 

assiuning that levels of informative characters are constant across the chloroplast genome, over 

40 kb of noncoding cpDNA would have to be sequenced to obtain an equivalent number of 

informative nucleotide substitutions as found in the AdhC sequences. This represents 62% (40 
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238 bp / 64 437 bp) of the unique noncoding complement of the tobacco chioroplast genome (K. 

Wolfe, University of Dublin, Trinity College, Ireland, personal communication). 

Patterns of mutation — In addition to levels of divergence, issues of alignability are 

important in selecting a genie or noncoding region for phylogenetic studies. While noncoding 

sequences generally accumulate nucleotide substitutions at a higher rate than coding sequences, 

they also appear to accumulate indels at a faster rate, occasionally equaling the rate of nucleotide 

substitutions (Golenberg et al., 1993; Gielly and Taberlet, 1994b). Because coding regions are 

constrained to maintain frame, indels occur less frequently, and when they do, they occur in 

multiples of three (i.e., a codon). Sequence alignment for genie regions, therefore, is usually 

straightforward, thereby making assessment of positional homology unambiguous. Noncoding 

regions, on the other hand, experience indel mutations of all lengths and at high frequency, 

making sequence alignment more problematic in many cases, particularly as more distantly 

related taxa are included (e.g., Golenberg et al., 1993; Downie, Katz-Downie, and Cho, 1996; 

Savolainen, Spichiger, and Manen, 1997). Additional confounding factors in assessing homology 

of mutations include the duplication/deletion of short repeats (or individual nucleotides in a run) 

via slipped-strand mispairing (Levinson and Gutman, 1987; Golenberg et al., 1993; Cummings, 

King, and Kellogg, 1994); the potential multiple origin of small inversions that occur in the loop 

of stem-loop secondary structures (Kelchner and Wendel, 1996); the higher potential for 

homoplasy due to a functionally reduced niunber of character states (due to the high AT content 

of noncoding cpDNA regions), and biased nucleotide substitutions in AT-rich regions (Morton, 

1995). The use of coding regions can circumvent these difficulties, but at the cost of reduced 

levels of variation, at least in cpDNA genes. Nuclear-encoded genes, however, may offer the 

higher levels of variation desired, with the ease of alignment afforded by coding sequences. 

Sequencing vs. restriction site data — Jansen, Wee, and Millie (in press) have analyzed 

both the relative utility (in terms of nimiber of characters) and the relative reliability (in terms of 

CI and RI) of gene sequencing and restriction site studies of cpDNA. They suggest that, for 

intrageneric comparisons, cpDNA restriction site data are preferable, both because of the greater 

nimiber of informative characters and because they report that restriction site data are, in 

general, less homoplasious than sequence data. Their analyses, however, did not address the lower 

end of the divergence spectrum (as in our smdy), where analysis of over 1000 cpDNA restriction 

sites still provided only limited resolution. cpDNA restriction site data are relatively free from 

problems associated with sequence data such as alignability and length of sequence. Comparison 

of mapped restriction sites is straightforward (assinning low levels of rearrangement), but 
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becomes more difficult as taxonomic distance increases (Olmstead and Palmer, 1994; Jansen, 

Wee, and Millie, in press). Restriction site studies, however, require large amounts of clean DNA 

and hence, are contraindicated in situations where availability of material is limiting. 

Coalescence and intraspecific variation — Intraspecific genetic variation (i.e., allelic 

variation) is often observed when more than one accession of a species is sampled for molecular 

phylogenetic analysis. Two tjrpes of variation may be observed and their impacts on 

phylogenetic reconstruction are profoundly different. First, alleles within species may all be 

derived from a single ancestral allele present in the species — i.e., alleles coalesce within species. 

In this case, all intraspecific variation will be autapomorphic and therefore irrelevant for 

parsimony analysis. On the other hand, allelic variation may transcend species boimdaries and 

therefore gene trees may not be equivalent to species trees simply because alleles may be older 

than species and multiple alleles can be maintained within a lineage (Pamilo and Nei, 1988; 

Hudson, 1990; Maddison, 1995; Clegg, 1997; Wendel and Doyle, in press). The probability of 

concordance between a species tree and a gene tree is dependent on the time (in generations) 

between speciation events (the greater the number of generations, the higher the probability of 

recovering the species tree) and population genetic factors such as effective population size and 

selection. Although phylogenetic analyses of nuclear-encoded genes that have sampled multiple 

alleles are rare (see Huttley et al., 1997; Clegg, 1997, and references therein), incomplete 

coalescence has been observed (Buckler and Holtsford, 1996a, b; Gaut and Clegg, 1993; 

Goloubinoff, Paabo, and Wilson, 1993; Hanson et al., 1996). Problems of noncoalescence are 

expected to be most prevalent in species where population genetic parameters promote the 

maintenance of multiple alleles, for example, large population size, high migration, and 

outbreeding (Pamilo and Nei, 1988; Hudson, 1990; Maddison, 1995). Populations of Gossypium 

species are primzirily small, isolated, and inbred. These observations, in concert with the 

concordance of the phylogenies estimated from the separate homoeologues and the congruence 

with previous analyses, suggest to us that lack of coalescence is not an issue for this locus for 

these taxa. Current studies are underway to assess intraspecific polymorphism and to explicitly 

test whether or not Adh loci coalesce within closely related Gossypium species. 

Concerted evolution — Multigene families are often subject to concerted evolution 

(Amheim, 1983; Nagylaki, 1984; Walsh, 1987; Sanderson and Doyle, 1992; Elder and Turner, 

1995). The ITS regions of nuclear rDNA became widely used as a source of sequence data after it 

became apparent that concerted evolution homogenizes sequences so that an entire array of 

tandemly repeated rDNA cistrons evolves as a single "locus" (Amheim, 1983; Hillis and Dixon, 
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1991; Elder and Turner, 1995). Exceptions to the apparent rule of intraspecific and 

intraindividual sequence homogeneity are being discovered with increasing frequency, however, 

and the implications of these findings can be profound for phylogenetic reconstruction. Three 

observations that bear on the use of ITS are (1) paralogous loci are not necessarily homogenized 

by concerted evolution (e.g., Suh et al., 1993); (2) in polyploids, interlocus concerted evolution 

may serve to homogenize homoeologous rDMA loci so that only a single parental type is 

retained, and that this may occur difTerentially toward either parental type in different 

descendant lineages (Wendel, Schnabel, and Seelanan, 1995b; but see Waters and Schaal, 1996); 

and (3) rDNA pseudogenes may persist within the genome and may be preferentially sampled by 

PCR (Buckler and Holtsford, 1996a, b; Buckler, Ippolito, and Holtsford, 1997; Seelanan and 

Wendel, impublished data). All three of the above phenomena may give rise to incongruence 

between the gene tree and the organismal tree, despite a well-resolved and robustly stipported 

gene tree. 

While interlocus gene conversion and recombination have been observed for low-copy 

nuclear-encoded gene families in plants (e.g., actins, Moniz de Sa and Drouin, 1996; heat-shock 

proteins. Waters, 1995; rbcS, Meagher, Berry-Lowe, and Rice, 1989; glutamine synthetase. 

Walker et al., 1995) the frequency of these events may depend on sequence conservation 

between paralogues (e.g., Walsh, 1987). Clearly, gene families that retain a large number of loci 

with strong sequence homologies are more likely to undergo interlocus concerted evolution 

and/or recombination than are smaller, more divergent gene families. 

In our Southern hybridization experiments we used an AdhC-s^tcifvc probe under high 

stringency conditions (65°C, 0.1 X SSC/0.5% SDS wash) and detected a single hybridizing band 

with multiple enzyme digestions for diploid taxa (data not shown) with the exception of G. 

raimondii (which showed a multibanded digestion pattern), and two hybridizing bands in the 

tetraploids. TTiese Southern hybridization data, the recovery of two identical, paralogous gene 

trees, the genetic mapping data, and the high degree of sequence divergence between Gossypium 

Adh loci (16-25% in exons, introns are unalignable. Small and Wendel, unpublished data) provide 

strong evidence that homoeologues were sampled in the allotetraploids and that these sequences 

have been free from interlocus concerted evolution. 

Conclusions — For phylogenetic analysis to accurately reconstruct organismal history 

(i.e., the species tree), orthologous sequences need to be compared (Wendel and Doyle, in press). 

For this reason, among others, plant molecular systematics have relied primarily on cpDNA data 

because the chloroplast genome is nonrecombinant, generally uniparentally inherited, and "single 

copy." Because nuclear-encoded genes usually exist in gene families, each member of which 
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exists in a nriininmim of two copies (in diploids), and because these mtiltipie copies may 

experience recombination and gene conversion, demonstration of orthology is more complex. 

Methods for establishing orthology (whether explicitly stated or implied) vary considerably and 

include criteria such as overall sequence similarity; monophyly and systematic content — i.e., 

reconstruction of the expected phytogeny (Gaut et al., 1996); tissue specificity (Doyle, 1991); 

Southern hybridization data (Matthews and Sharrock, 1996); and most convincingly, 

comparative genetic mapping data (23iu et al., 1995; Cronn and Wendel, unpublished data; this 

paper). These data are not always available or readily obtainable, but inferences of orthology 

may be facilitated with only a modest investment of effort by Southern hybridization 

experiments conducted using locus-specific probes and multiple enzyme digestions. 

By isolating and analyzing orthologous nuclear genes and a nimiber of different cpDNA 

regions, we have shown that miitation rates in noncoding cpDNA do not appear high enough to 

provide sufficient phylogenetic information to resolve relationships of this recently radiated 

group of tetraploid cottons, despite sequencing over 6 kb of noncoding cpDNA. Consequently, it 

is difficult to draw concliisions regarding the relative utility of the various cpDNA noncoding 

regions used. It is clear, however, that levels of divergence vary among noncoding cpDNA 

sequences (as pointed out for cpDNA introns by Downie, Katz-Downie, and Cho, 1996) and our 

analyses tentatively identify the rplJ6 intron and the trnT-tmL intergenic spacer as among the 

fastest evolving cpDNA regions (Table 4); this agrees with Downie, Katz-Downie, and Cho, 

(1996) who suggested that rpll6 should be the fastest evolving cpDNA intron. 

As an alternative source of phylogenetic evidence, orthologous, low-copy, nuclear-

encoded loci such as AdhC in Gossypium, may be isolated, and may exhibit mutation rates up to 

six times higher than cpDNA noncoding sequences (Fig. 7). The use of nuclear-encoded genes for 

phylogeny reconstruction has both advantages and limitations. Primary among the advantages 

are the higher mutation rates and the ability to analyze large regions of sequence with 

interspersed coding and noncoding regions. The limitations, however, need to be considered. 

Demonstration of orthology among sequences is imperative and reqxiires additional experimental 

effort. In addition, cognizance of issues such as coalescence and concerted evolution are required 

even when strict orthologues are recovered. Our study provides reason for both encouragement 

and caution in the continuing quest for additional and more informative tools for phylogenetic 

analysis in plants. 
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Table 1. Plant materials. All voucher specimens are deposited at ISC. Voucher abbreviations are 
as follows: TS = Tosak Seelanan. JFW & TDC = J. F. Wendel and T. D. Couch 
Taxon Accession Voucher 
C-genome diploid 

Gossypium robinsonii F. Mueller AZ-50 TS 12 

D-genome diploid 
Gossypium raimondii Ulbrich #436 JFW &. TDC 127 

A-genome diploid 
Gossypium arboreum L. A2-74 JFW & TDC 312 

AD-genome tetraploids 
Gossypium hirsutum L. 
Gossypium barbadense L. 
Gossypium tomentosum Nuttall ex Seemann 
Gossypium mustelinum Miers ex Watt 
Gossvpium darwinii Watt 

"Palmeri" 
KlOl  
WT936 
W400 
WB1215 

JFW & TDC 632 
JFW & TDC 612 
JFW & TDC 621 
JFW & TDC 622 
JFW & TDC 620 



Table 2. Regions studied. PCR primer sequences, and Genbank accession numbers. 
Region Primer sequences (written 5' to 3'). References Genbank accession numbers 
atpB-rbcL spacer 

trnL-tniF spacer 

IrnT-trnL spacer 

accD-psal spacer 

ndhA intron 

rplI6 intron 

rpoCI intron 

AdhC 

alpB: GTG GAA ACC CCG GGA CGA GAA GTA GT 
rhcL: ACT TGC TTT AGT TTC TGT TTG TGG TGA 
E; GGT TCA AGT CCC TCT ATC CC 
F: ATT TGA ACT GGT GAC ACG AG 
A: CAT TAC AAA TGC GAT OCT CT 
B: TCT ACC GAT TTC GCC ATA TC 
IrnT-l: CTG ACT CCA TTT TTA TTT TC 
accD-769F: GGA AGT TTG AGC TTT ATG CAA ATG G 
psa/-75R: AGA AGC CAT TGC AAT TGC CGG AAA 
accDl: GGG CTT TGA CTT TGT GAC 
ndhA-V: GGW CTT CTY ATG KCR GGA TAT RGM TC 
ndhA-R: CTG YGC TTC MAC TAT ATC AAC TGT AC 
ndhA-l: ATT CTG CTT TCG GAT CTG 
F71: GCT ATG CTT AGT GTG TGA CTC GTT G 
R1661: CGT ACC CAT ATT TTT CCA CCA CGA C 
R1516: CCC TTC ATT CTT CCT CTA TGT TG 
5'rpoCI exon: GGT CTT CCT AGY TAY ATH GC 
rpoCI exon 2: ATT TCA TAT TCG AAY AAN CC 
PI: CTG CKG TKG CAT GGG ARG CAG GGA AGC C 
P2: GCA CAG CCA CAC CCC AAC CCT G 
ADHX6-2: TCA ATA CCA ATG ATC CTA GAA 
ADHX4-1: TCA TGT TCT CCC TAT CTT CAC 
ADHX8-2: GAA ACC ATG GCC TGG GTG 

Hodges and Arnold, 1994 

Taberlet et al., 1991 

Taberlet et al., 1991 

this paper 
T. Barkman and B. Simpson, 
University of Texas, Austin, 
personal communication 
this paper 

AF031445 - AF03I450 

AF031439-AF031444 

AF031433 - AF031438 

AF031580-AF031585 

AF031574-AF031579 

Jordan, Courtney, and Neigel, AF031451 • AF031456 
1996; Kelchner and Wendel, 
1996 
Downie, Katz-Downie, and AF031457 - AF031462 
Cho, 1996 
K. Schiercnbeck, Califomia 
State University, Fresno, 
personal communication (PI, 
P2); this paper (ADHX6-2,4-
1. and 8-2) 

AF036567 - AF036579 



Table 3. PCR amplification conditions. 
Region Denaturation Annealing Extension 

temperature/Time temperature/Time temperature/Time 
atpB-rbcL spacer 94°C / I min 55° - 50° C / 1 min" 72°C / 3 min 
IrnL-lrnF spacer 94°C / 1 min 48° C /1 min 72°C / 3 min 
trnT-trnL spacer 94°C / 1 min 48° C / 1 min 72°C / 3 min 
accD-psal spacer 94°C / 1 min 65° C / I min 20 s 72°C / 3 min 
ndhA intron 94°C / I min 30 s 42° C / 1 min 30 s 72°C / 2 min 
rpll6 intron 95°C / 1 min 50° C / 1 min" 65°C / 4 min 
rpoCl intron 94°C / 1 min 42° C / 1 min 72°C / 3 min 
AdhC 94°C / 1 min 50° C / 1 min 72°C / 2 min 

"Touchdown PCR (Don et al., 1991); initial annealing temperature of SS°C, followed by a 0.5° reduction in annealing temperature 
cycle for ten cycles, followed by an additional 20 cycles with a 50°C annealing temperature. 

''Following a S0°C annealing step for 1 min the temperature was ramped to 6S°C by r/8 s. 



Table 4. Characterization of cpDNA sequences (coding and noiicoding). 

Regions analyzed Aligned 
length (bp)" 

GC 
content 

Divergence 
from A 
diploid 
outgroup'' 

Divergence 
within 
tetraploids' 

TsiTv" Substitutions'' Indels*^ 

Intergenic spacers 
atpB-rbcL 976 (18) 28.3% 0.20% 0.20% 5:1 6(0) 5(0) 
IrnL-trnF 437 (42) 33.7% 0.12% 0.24% 1:2 3(0) 0 
trnT-trnL 1394 (22) 22.9% 0.96% 0.49% 0.8:1 23(2) 6(2) 
accD-psal 1146 (390) 29.3% 0.40% 0.30% 2:1 12(0) 0 

Introns 
ndhA 1140 (82) 31.9% 0.12% 0.04% 1:1 2(0) 0 
rpll6 1173 (24) 30.4% 0.34% 0.28% 0:6 6(2) 4(2) 
rpoCl 1103 (353) 37.0% 0.00% 0.00% 0 0 

Total 7369 (931) 30.0% 0.30% 0.20% 0.9:1 52(4) 15(4) 
'Length of coding sequence in parenthesis. 
''Calculated as the mean nucleotide percentage difference between sequences from the outgroup (G. arboreum) and all ingroup species 

(gaps treated as missing data). 
'Calculated as the mean nucleotide percent difference among all pairwise comparisons of sequences from tetraploid species (gaps treated 

as missing data). 
''Ratio of transitions to transversions. 
"Number of nucleotide substitutions; number of potentially phylogenetically informative substitutions in parenthesis. 
'^Number of indels; number of potentially phylogenetically informative indels in parenthesis. 



Table 5. Characterization of Adh sequences. 
Tetraploid taxa and diploid outgroups 

Region analyzed Aligned 
length 
(bp) 

GC 
content 

Divcrgcnce 
from A/D 
diploid 
outgroup* 

Divergence 
from C 
diploid 
outgroup'' 

Divergence 
within 
tetraploids' 

K.' K,' IC Ts:Tv* Substitutions' Indels' 

A (sub)genome 
Exons 798 46.2% 1.0% 1.1% 0.3% 0.009 0.004 0.005 8:1 11(2) 2(1) 
Introns 847 32.0% 1.0% 3.2% 0.9% — — 0.009 3.3:1 20(5) 2(0) 
Total 1645 39.0% 1.0% 2.1% 0.6% — — 0.007 4.2:1 31(7) 4(1) 

D (sub)genome 
Exons 798 45.4% 1.9% 2.3% 1.4% 0.028 0.013 0.016 7:1 33(12) 1(0) 
Introns 86S 30.1% 2.6% 5.5% 0.7% — — 0.014 1.6:1 30(6) 3(1) 
Total 1663 37.5% 2.3% 3.9% 1.1% — — 0.015 3.6:1 63(18) 4(1) 

'Calculated as the mean nucleotide percentage difference between the relevant subgenome outgroup (A - G. arboreum or D - C7. raimondii) and the 
corresponding sequences from the tetraploid species (gaps treated as missing data). 

''Calculated as the mean nucleotide percentage difference between the C-gcnome diploid outgroup {G. robinsonii) and sequences from the tetraploid species 
(gaps treated as missing data). oo 

'Calculated as the mean nucleotide percentage difference among all pairwise comparisons of sequences from tetraploid species (gaps treated as missing data). ^ 
''Nucleotide substitutions among tetraploid taxa and their relevant diploid outgroup. Number of synonymous substitutions per synonymous site (K,), 

nonsynonymous substitutions per nonsynonymous site (K,), and substitutions per site (K) calculated with the Jukes and Cantor (1969) correction for 
multiple hits. K, and K, calculated according to the method of Nei and Gojobori (1986). 

'Ratio of transitions to transversions among sequences from tetraploid taxa and the relevant subgenome outgroup. 
'Number of nucleotide substitutions among sequences from tetraploid taxa and the relevant subgenome outgroup; number of potentially phylogenetically 

informative substitutions in parenthesis. 
'Number of indels among sequences from tetraploid taxa and the relevant subgenome outgroup; number of potentially phylogenetically informative indels in 

parenthesis. 
''Nucleotide substitutions among tetraploid taxa only. K„ Kt, and K calculated with the Jukes and Cantor (1969) correction for multiple hits. K, and K, 

calculated according to the method of Nci and Gojobori (1986). 



Table 5. continued. 
Tetraploid tya only 

¥ 

0.008 0.002 0.003 
0.009 
0.006 

0.019 0.013 0.014 
0.008 
O.Oll 

00 



Table 6. Results of Tajima (1993) 2D relative rate tests for Adh sequences (below diagonal) and number of nucleotide differences 
between Adh sequences (above diagonal). Significantly different rates are denoted by asterisks as follows; * 0.05 > P > 0.01; 0,01 > 
P > 0.005; *** P < 0.005. A' and D' refer to the A and D subgenoities of the tetraploids. In all cases G. robinsonii was used as the 
reference taxon. 
Species 1 2 3 4 5 6 7 8 9 10 11 12 
1 G. raimondii (D) 44 36 41 33 38 28 70 62 68 64 64 
2 G. hirsutum D' — 22 9 23 24 34 77 69 77 73 71 
3 G. barbadense D' — 19 17 4 28 71 63 71 67 65 
4 G. tomentosum D' ... 20 21 31 76 68 76 72 70 
5 G. mustelinum D' ... 19 29 68 60 68 64 62 
6 G. darwinii D' ... 30 73 65 73 69 67 
1 G. arboreum (A) * * * *  *** * *« ... 8 4 8 5 4 
8 G. hirsulum A' ** * * *  * * *  • • • * *  * * *  — 8 12 12 10 
9 G. barbadense A' *''• *** * * *  * * *  * * *  — 13 9 2 
10 G. tomentosum A' ** *** *** * *** — 14 15 
11 G. mustelinum A' ** • • • *** *** * * *** — 11 
\2G. darwinii A' * * * *  * * *  * *  * * *  ... 

00 



83 

AMean-Asian A-oenome 

G. arboreum 
Mew Worid D-oanome 

G. raimondii 

other New worid 

D-genome Afncan-Asian 

B-, E, F-genomes 

Australian 

C-, G-, K-genomes 

Fig. 1. Phyiogenetic hypothesis for intrageneric relationships in Cossypium, including 
the origin of the aUotetraploid species. The maternal diploid parent is represented by the extant 
A-genome species, G. arboreum and G. herbaceum, while the paternal diploid parent is 
represented by the extant D-genome species, G. raimondii. 



trnF trnL 

rbcL 

psal 

exon 2 

rpl16 

trnT 

exon 2 exon 1 

H 200 bp 
intron/spacer 

exon/gene 

exon 1 

exon 2 „ , exon 1 
ndhA 

00 
•u 

Fig. 2. Chloroplast DNA noncoding regions sampled. The circle represents the chloroplast genome, with shaded regions 
representing the inverted repeats. Sequenced regions are shown as mapped in the tobacco chloroplast genome (Shinozaki et al., 1986). 
For each region exons are represented by shaded boxes and are not drawn to scale; introns and spacers are represented by open boxes and 
are drawn approximately to scale. 



P1 X4-1 

1 
100 bp 

00 
L/1 

X6-2 X8-2 P2 

Fig. 3. Schematic representation of the AdhC genie region. Exons are represented by numbered and shaded boxes; introns are 
represented by open boxes. All regions are drawn to scale except introns I and 9 for which data are unavailable. Relative positions of 
the forward PCR primers are shown above the gene, reverse primers below. 



86 

G. arboreLwn 

G. hirsutum 

+2 +2 

G. ba rttadenst. 

G. darwinii 

G. tome ntos um 

3 
I — — — — — —  G .  m  u s  t e l i n u m  

Fig. 4. Single most-parsimonious tree (length = 25, CI = 1.0, RI = 1.0) from analysis of 
the tmT-trnL spacer region. Branch lengths are shown above, and decay values below each 
branch. 
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G. roblnsonli 

17 

16 

ag 
>5 

G. rafmondii 

11 
>5 

3_ 
*2 

>5 

6 G. hirsutum 

>5 

G. tom&ntosum 

- G. barbadenso 

G. darwinft 

6 G. mustaiinum 

i a  
>5 

G. arboroum 

G. hirsutum 

G. tomontosum 

+5 

G. barbadonsB 

 ̂G. darwtntt 

G. m usteifnum 

Fig. 5. Single most-parsimonious tree (length = 97, CI = 0.93, RJ = 0.98) from analysis 
of individual AdhC sequences. Branch lengths are shown above, and decay values below each 
branch. Nodes without decay values shown collapse in the strict consensus tree of trees one step 
longer than the most parsimonious. 
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G. robinsonii 

TT 

22 G. ra/mondii 
G. arborottm 

10 

14 
>5 

+3 

>5 

G. hirsutum 

10 G. tom&ntosum 

12 
>5 

r G. barbadonso 

G. darwinii 

10 G. mustoHnum 

Fig. 6. Single most-parsimonious tree (length = 43, CI = 0.91. RI = 0.91) from analysis 
of combined AdhC data. Branch lengths are shown above, and decay values below each branch. 
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Fig. 7. Percentages of phylogenetically informative characters for several molecular 
data sets applied to tetraploid Gossypium. Nximber of informative ITS characters were partially 
extrapolated (see text). 
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CHAPTER 4. LOW LEVELS OF NUCLEOTTOE DIVERSITY AT HOMOEOLOGOUS 

ADH LOCI IN ALLOTETRAPLOID COTTON {GOSSYPIUM L.) 

A paper published in Molecular Biology and Evolution^ 

Randall L. Small", Julie A. Rybum", and Jonathan F. Wendel" 

Abstract 

Levels of genetic diversity within and among populations and species are shaped by both 

external (population-level) and internal (genomic and genie) evolutionary forces. To address the 

effect of internal pressures we estimated nucleotide diversity for a pair of homoeologous Adh loci 

in an allotetraploid species, Gossypium hirsutum. These data represent the first such estimates 

for a pair of homoeologous nuclear loci in plants. Estimates of nucleotide diversity for AdhA in 

Gossypium are lower than for any plant nuclear gene yet described. This low diversity appears to 

reflect primarily a history of repeated, severe genetic bottlenecks associated with both speciation 

and recent domestication, supplemented by an unusually slow nucleotide substitution rate and an 

autogamous breeding system. While not statistically supportable, the sxim of the observations 

also suggest differential evolutionary dynamics at each of the homoeologous loci. 

Key words: alcohol dehydrogenase, cotton, Gossypium, homoeology, nucleotide diversity, 

polyploidy 

Introduction 

Levels and patterns of genetic diversity vary greatly within and among populations and 

species. This variation reflects the interplay of myriad historical factors and evolutionary 

forces, involving external forces such as natural selection, population size and history, gene flow, 

emd breeding system, as well as internal genomic and genetic factors such as recombination, 

mutation rate, and gene conversion (Aquadro and Begun 1993; Tajima i993b; Moriyama and 

Powell 1996; Clegg 1997; Clegg, Cummings, and Durbin 1997; Amos and Harwood 1998). 

Recent studies have revealed varying patterns of nucleotide diversity within plant species (Gaut 

and Clegg 1993a, 1993b; Hanfstingl et al. 1994; Hanson et al. 1996; Innan et al. 1996; 

Miyashita, Iiman, and Terauchi 1996; Huttley et al. 1997; Kawabe et al. 1997; Terauchi, 

' Reprinted with permission from Molecular Biology and Evolution, 1999, 16(4): 491-501. 

" Department of Botany, Iowa State University, Ames, LA 50011. 
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Terachi, and Miyashita 1997; Bergelson et al. 1998; Cummings and Clegg 1998; Eyre-Walker et 

al. 1998; Liu, Zhang, and Charlesworth 1998). While these and other studies have yielded a 

number of insights into the factors that shape naturally occurring variation, in any particular case 

the evolutionary or historical forces responsible for the diversity patterns observed may be 

difficult to discern. This is especially true for comparisons between species, where nimierous 

potentially confounding life-history features and population histories may influence both the 

amount and apportionment of diversity. Allopolyploid species, which contain duplicated genes 

in the same nucleus, may be particularly useful in isolating potentially relevant internal genetic 

and genomic factors from external population-level processes. In allopolyploids some external 

processes (e.g., selection) can differentially effect duplicated genes, while others (e.g., genetic 

drift, breeding system) are expected to effect duplicated genes equivalently. Thus, examining 

molecular evolution at duplicated genes in a polyploid allows at least some population-level 

effects to be ruled out as having contributed to differential evolution. 

The cotton genus {Gossypium) provides a model system for studying molecular evolution 

of genes duplicated by allopolyploidy. The five tetraploid Gossypium species (/i = 26) are a 

monophyletic assemblage derived from a single allopolyploidization event that occurred 

approximately 1-2 MYA (Wendel 1989; Seelanan, Schnabel, and Wendel 1997; Small et al. 

1998). A robust phylogenetic framework has been developed for both the diploid and 

allopolyploid members of the genus (Fig. 1; Wendel and Albert 1992; Seelanan, Schnabel, and 

Wendel 1997; Small et al. 1998). Diploid Gossypium species (all n = 13) have been divided into 

genomic groups (A-K) based on differences in chromosome size and pairing behavior in 

interspecific hybrids (Endrizzi, Turcotte, and Kohel 1985; Stewart 1995). The two diploid 

species that gave rise to the allotetraploids were from the A-genome and D-genome groups, and 

are best represented by the extant species G. herbaceum L. and G. raimondii Ulbr., respectively 

(Endrizzi, Turcotte, and Kohel 1985; Wendel, Schnabel, and Seelanan 1995; Small et al. 1998). 

Tetraploid species are therefore termed the AD-genome group, and their two constituent 

genomes are referred to as the A- and D-subgenomes. 

Two of the allotetraploid species, G. hirsutum L. and G. barbadense L., were independently 

domesticated within the last 5000 years for their seed fiber (reviewed in Wendel 1995). The 

genetic consequences of domestication of G. hirsutum, the species that presently dominates 

world cotton commerce, have been explored in depth at the isozyme and RFLP levels (Wendel, 

Brubaker, and Percival 1992; Brubaker and Wendel 1994). Among the conclusions of these 

studies is that genetic diversity m G. hirsutum is very low, and is especially restricted in the gene 

pool represented by modem annualized cultivars. Gossypium hirsutum probably was first 

domesticated in the Yucatan peninsula. The only extant form of G. hirsutum that arguably is 
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wild, race "yucatanense," is found here as a common component of the indigenous beach strand 

vegetation (Stephens 1958; Sauer 1967), where it exists as a sprawling, perermial shrub. Evidence 

suggests that following initial domestication, the original perennial cultivated forms became 

widely dispersed throughout the Yucatan peninsula. Later, localized derivatives developed, the 

most important of which was the annualized race "latifolium," which is suggested to have spread 

to Guatemala and southern Mexico where further agronomic development took place, leading to 

cultivated forms that spread via human-mediated diffusion throughout Mesoamerica. Molecular 

marker evidence (Wendel, Bmbaker, and Percival 1992; Brubaker and Wendel 1994) shows that 

most of the gene pool of the modem, aimual forms of G. hirsutum, including the Upland cotton 

cultivars that are common in the cotton belt of the United States, traces to Mexican stocks that 

had been transported there from Guatemala and southern Mexico (Niles and Feaster 1984). This 

history of sequential genetic bottlenecks and rapid population expansion is thought to be 

responsible for the constrained levels of genetic diversity, as often observed in crop plant gene 

pools (Doebley 1989, 1992). 

The goal of the present study was to quantify nucleotide diversity at a pair of 

homoeologous Adh loci in the allotetraploid species, G. hirsutum. With these data we asked the 

following questions: (1) Are estimates of nucleotide diversity equivalent at the two 

homoeologous loci that resulted from the allopolyploidization event? (2) How do estimates of 

nucleotide diversity for Adh in cotton compare with nucleotide diversity estimates from other 

species? (3) Are nucleotide diversity data consistent with previous information on the history 

of domestication for G. hirsutum? (4) How do direct measurements of genetic diversity based on 

DNA sequence data compare with indirect estimates derived from isozyme and RFLP data? 

Materials and Methods 

Plant materials 

Based on variation at 205 anonymous nuclear loci detected by low-copy RPLP probes, 

Brubaker and Wendel (1994) defined 18 genetic/geographic groups of wild or feral G. hirsutum 

that represent the diversity encompassed by the species. In addition, they sampled several 

cultivars ("Upland cotton") from the cotton belt of the United States and several accessions of 

G. barbadense ("Pima cotton"; "Egyptian cotton"). For this study we surveyed one accession 

from each of the 18 groups identified by Brubaker and Wendel (1994) and three Upland cultivars 

of G. hirsutum. We also included five accessions of G. barbadense for comparison (Table 1). 

Because one of our objectives was to compare diversity detected using various molecular tools, 

the same accessions were used as in earlier studies employing isozymes (Wendel, Brubaker, and 
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Percival 1992) and RFLPs (Brabaker and Wendel 1994). Genomic DNAs used in the present 

study were the same as those described in Brubaker and Wendel (1994). 

PCR amplification, cloning, and sequencing 

The Adh gene family in Gossypium consists of a minimum of five genetic loci in the 

diploid species and five pairs of homoeologous loci in the allotetraploids (RLS and JFW, 

unpublished data). Adh genes encode alcohol dehydrogenase (alcohohNAD^ oxidoreductase, E.C. 

1.1.1.1), metabolic enzymes involved primarily in anaerobic respiration. We have termed the 

locus discussed here AdhA. AdhA exists as a single-copy locus in the diploids G. herbaceum (A-

genome) and G. raimondii (D-genome) and at a pair of homoeologous loci in the allotetraploids 

(Fig. 2). As expected from the organismal history, allotetraploid cotton contains a pair of 

homoeologous ioci corresponding to the copies donated by the A- and D-genome ancestors at the 

time of allopolyploid formation. While most Gossypium Adh genes have the classical 10 exon/9 

intron Adh structure (Millar and Dennis 1996; RLS and JFW, tmpublished data), AdhA has lost 

introns 4 and 7 (Fig. 3). Intron loss has been observed in other plant Adh loci (Chang and 

Meyerowitz 1986; Trick et al. 1988; Charlesworth, Liu, and 2^ang 1998), as well as in other 

plant genes (e.g., Drouin and Moniz de Sa 1997; Fmgoli et al. 1998), and is presumably 

accomplished via gene conversion or recombination between an intact gene and a reverse-

transcribed cDNA or processed pseudogene (Drouin and Moniz de Sa 1997; Frugoli et al. 1998). 

A more complete analysis of the structure and evolution of the Gossypium Adh gene family will 

be presented elsewhere. 

To isolate AdhA sequences we designed AdhA-sgQciTic PCR primers homologous to 

regions in exons 2 and 8 (Fig. 3; Adh^xl-\: CTT CAC TGC 111 ATG TCA CAC T; Adhii&-\-. 

GOA CGC TCC CTG TAC TCC) and amplified a ~ 1 kb fragment of AdhA. PCR reactions were 

performed as described (Small et al. 1998). Because AdhA exists as a pair of homoeologous loci, 

the resulting PCR product contained a mixture of sequences from both the A- and D-subgenomes. 

To separate these products into their respective subgenomic sequences, we recovered the PCR 

products with Geneclean II (Bio 101), Ugated the PCR products into pGEM-T (Promega), and 

transformed competent E. coli Top 10 F' cells (Invitrogen). Resulting colonies were screened for 

inserts by resuspending bacterial colonies in 10 |i.l of water, boiling for 10 minutes, centrifuging 

for 30 seconds, and using 2.5 ^1 of the supernatant as a template in a 10 ^1 PCR reaction using 

the original amplification primers and reaction conditions. PCR products that were the correct 

size (indicating presence of an AdhA insert) were ethanol precipitated, resuspended in 10 |i.i of 

water, and subjected to restriction digestion with (New England Biolabs), an enzyme that 

has one recognition site in sequences from the A-subgenome and two sites in sequences from the 
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D-subgenome. This procedure allowed us to distinguish the subgenomic origin of each individual 

clone. To eliminate sequencing artifacts caused by misincorporation during PCR, for each 

accession we isolated and pooled ten plasmids from each subgenome and sequenced this pool using 

the amplification primers as sequencing primers. For 39 of 48 templates (81%), this procedure 

resulted in a monomorphic sequencing ladder; i.e., no apparent heterozygotes were detected. The 

remaining templates showed polymorphism at one or more sites. To evaluate whether these 

polymorphisms reflected true heterozygosity or misincorporation, we repeated the amplification, 

cloning, and sequencing steps. For all sequences that were initially based on clones, we were 

unable to reproduce the polymorphisms detected earlier, and in several cases new polymorphisms 

appeared. We concluded that in all but one case, polymorphisms did not reflect true 

heterozygosity but instead arose due to PCR error. 

After the initial results were obtained, a second strategy was employed to isolate 

subgenome-specific AdhA sequences. This approach involved the use of two pairs of 

homoeologue-specific PCR primers that would amplify AdhA from only one subgenome at a time 

(A-subgenome-specific primers — AdhA:f2i2-A: AAG GTA TTA CTG TAG GAT AA; 

AdhAx9a-A: CCT GTA ATT CAA GAA GAA G; D-subgenome-specific primers — AdhAx2i3-

D: AAG GTA TTA CTG TTC GAT AT; AdhArSii-D-. CCT GTA ATT CAA GAA GCA T). 

These primers generated homogeneous PCR pools that could be directly sequenced, obviating the 

laborious cloning and restriction digestion steps. In addition, direct sequencing of PCR products 

(as opposed to sequencing cloned PCR products) greatly reduces the likelihood of detecting 

misincorporated nucleotides since these are expected to be present in low concentrations relative 

to the correct products. Therefore, we reamplified AdhA (using the homoeologue-specific 

primers) and sequenced the PCR products directly from those accessions that had shown 

polymorphism. Sequences obtained using this approach were monomorphic, indicating that we 

had eliminated PCR artifacts. 

All DNA sequencing was performed using the Thermo Sequenase ^^P-radiolabeled 

terminator cycle sequencing kit (Amersham). Sequencing reactions were electrophoresed on 5-

6% Long Ranger sequencing gels (FMC). Because so little polymorphism was detected, templates 

were sequenced on one strand only. After the entire data set had been collected, each sequence 

was rechecked at all polymorphic sites to confirm the original reads. The sequences reported 

here have been submitted to GenBank under accession numbers AF085064-AF085085, 

AF085812-AF085821, and AF090146-AF090168. 
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Statistical analyses 

Gossypium hirsutum and G. barbadense are genomic allotetraploids and display disomic 

inheritance. For analytical purposes we assiuned that our approach detected both alleles, and we 

therefore represented each locus in each accession by the two alleles present notwithstanding the 

high level of homozygosity observed (cf. Gaut and Clegg 1993b). Our experimental design of 

pooling ten plasmids per homoeologue for each accession was designed to eliminate Taq error, as 

well as to ensure cloning and sequencing of both alleles. Assuming equal representation of both 

alleles in the PCR product pool and equivalent success of cloning each allele, the probability of 

not including both alleles in the plasmid pool is quite small (0.5*° orP=0.001). In our 

experience, even if an allele is represented only once in the plasmid pool it would be detected in 

the sequencing ladder. Finally, in other studies of AdhA in diploid Gossypium species, we used 

identical PCR primers and readily amplified both alleles of heterozygous individuals. The 

foregoing observations suggest that our approach is expected to detect both alleles at a locus and 

that the monomorphic sequencing ladders we obtained were the result of homozygosity. 

For each subgenome of both G. hirsutum and G. barbadense we calculated two measures 

of nucleotide diversity per base pair: n (Nei 1987, pp. 256-257) and 0,, (Watterson 1975). The 

former measure quantifies the mean percentage of nucleotide differences among all pairwise 

comparisons for a set of sequences, whereas the latter is simply an index of the number of 

segregating (polymorphic) sites. Under neutral expectations, 0„ is equal to n (Tajima 1989; 

1993b). A 95% confidence interval around 0^ was calculated for AdhA from both subgenomes of 

G. hirsutum, using methods described by Kreitman and Hudson (1991). Tests of neutral 

evolution were performed as described by Tajima (1989), Fu and Li (1993), and Hudson, 

Kreitman, and Aguade (1987). Recombination was explored using the algorithm of Hudson and 

Kaplan (1985). Many of the above calculations were expedited by the software program DnaSP 

V. 2.52 (Rozas and Rozas 1997). Estimates of genetic diversity (mean number of alleles per locus 

— A-, mean panmictic [expected] heterozygosity — H-^=\ - ZfpJ' wherep, represents allele 

frequencies; cf. Brubaker and Wendel 1994) were calculated using our sequence data as well as 

previously published isozyme (Wendel, Brubaker, and Percival 1992) and RFLP (Brubaker and 

Wendel 1994) data for a comparable set of accessions (identical accessions for RFLP data; three 

missing accessions for isozyme data). 

Given the phylogenetic framework of the genus Gossypium and estimates of the timing 

of several major branching points in the phylogeny (Fig. 1; Wendel and Albert 1992; Seelanan, 

Schnabel, and Wendel 1997), we were able to estimate an absolute mutation rate for AdhA. 

Specifically, using unpublished AdhA sequences of G. robinsonii (C-genome outgroup), G. 

herbaceum (A-genome diploid), and G. raimondii (D-genome diploid), we generated, using exon 
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data only, a synonymous site Jukes-Cantor (JC) distance matrix using MEGA v. 1.0 (Kumar. 

Tamura, and Nei 1993). The timing of the two branch-point estimates shown in Fig. 1 were 

derived firom analyses of chloroplast ndhF sequences (Seelanan, Schnabel, and Wendel 1997). 

Using these divergence time points and the JC distances, we estimated the absolute synonymous 

mutation rate as the JC distance divided by twice the time since divergence. 

Results 

DNA polymorphism 

We determined approximately 1 kb of sequence from both the A- and D-subgenomic 

homoeologues of AdhA for 22 accessions (44 alleles per subgenome) of G. hirsutum and five 

accessions (10 alleles per subgenome) of G. barbadense. Thus, approximately 108 kb of 

effective sequence data were generated (27 accessions X 2 alleles/homoeologue X 2 

homoeologues). Sequence data for each allele consists of 662 bp of coding sequence and 336 bp 

of intron sequence; this represents a mean of 500.33 nonsynonymous sites and 482.67 silent 

sites (synonymous or intron; excluding gaps). 

All sequences appeared homozygotis, with the exception of one G. hirsutum cultivar 

(Paymaster H86048) which was heterozygous for alleles ID and 2D (see Fig. 4). The distribution 

of nucleotides at all poljmiorphic sites for both homoeologues is shown in Fig. 4. In the A-

subgenome of G. hirsutum we observed only one polymorphic site (position 571), which included 

approximately equal representation among accessions of the alternative nucleotides G and A. 

This transitional and silent substitution was at a third codon position. In the A-subgenome of G. 

barbadense no polymorphic sites were observed. In the D-subgenome of G. hirsutum there were 

three polymorphic sites, all within introns. Two of these three sites (positions 84 and 942) 

reflected transitional mutations, while the third polymorphism resulted from a [G,T] transversion 

(position 684). For all three polymorphic sites, the minority state occurred in either 5 or 6 of 

the 22 accessions sampled. One polymorphic site was revealed in the D-subgenome of G. 

barbadense (position 511, a third codon position transition). 

No nucleotides at either AdhA homoeologue distinguish all G. barbadense alleles from 

those of G. hirsutum. For the A-subgenome locus, all five G. barbadense accessions are 

homozygous for an allele shared by eight of the 22 G. hirsutum accessions. Similarly, for AdhA 

from the D-subgenome, four of the five G. barbadense accessions are homozygous for an allele 

shared by 11 of the 22 G. hirsutum accessions (Fig. 4). 

Estimates of nucleotide diversity (tc, 6^; gaps treated as missing data) are shown for each 

data set in Table 2. These estimates show that nucleotide diversity is approximately twice as 

high for AdhA from the D-subgenome as it is for AdhA from the A-subgenome. 
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The two homoeologues of AdhA differed by a minimuni of 20 nucleotide substitutions 

within both G. hirsutum and G. barbadense, representing 12 transitions and 8 transversions (Fig. 

4). Thus, the two AdhA homoeologues exhibit approximately 2% sequence divergence based on 

non-gapped positions. In addition, the two homoeologues are differentiated by four gaps, all of 

which are intron nucleotides present in the A-subgenomic homoeologues that are absent from the 

corresponding locus in the D-subgenome. All available data indicate that the AdhA 

homoeologues have evolved independently subsequent to polyploid formation; i.e., there is no 

evidence of intersubgenomic gene conversion or recombination. This inference is supported by 

the 20 nucleotide substitutions and four gaps that distinguish the homoeologues, the majority of 

which are also shared with the respective diploid progenitors. 

Tests of neutral evolution, recombination, and rates of nucleotide substitution 

Several statistical tests were used to test the hypothesis that AdhA sequences have been 

evolving in accordance with expectations under neutral theory. The tests of Tajima (1989) and 

Fu and Li (1993) compare different estimates of 0 (4Ne(i), each of which makes certain 

assumptions about how sequences evolve (Simonsen, Churchill, and Aquadro 1995; Wayne and 

Simonsen 1998). These tests were conducted on each of the four data sets (two subgenomes in 

two species), and the results are shown in Table 2. None of these tests returned significant P-

values. This is not surprising, given the small number of variable positions and the relatively low 

statistical power of these tests (Simonsen, Churchill, and Aquadro 1995; Wayne and Simonsen 

1998). The HKA test (Hudson, Kreitman, and Aguade 1987) compares levels of polymorphism 

between genes or regions both within and between species, the assumption being that levels of 

neutral polymorphism should be correlated with rates of evolution across genomes. While the 

original intent of this test was to compare an unknown region to a region that is presumed to be 

evolving neutrally, we adapted it to test the assiuiption that the two homoeologues are evolving 

equivalently. Intraspecific polymorphism at the G. hirsutum AdhA A-subgenome homoeologue 

was compared to the AdhA D-subgenome homoeologue; the same regions from G. barbadense 

provided the interspecific comparison. The HKA test result was not significant (P=0.75). The 

Hudson and Kaplan (1985) estimate of the minimum nimiber of recombination events was zero, 

viz., all sites were compatible with a history devoid of inter-allelic recombination. A network 

depicting allele relationships and their corresponding taxonomic and geographic distribution is 

shown in Fig. 5. 

An absolute rate of nucleotide substitution was estimated for AdhA using two separate 

calibration points (Fig. 1) derived from analyses of chloroplast DNA sequence data (Seelanan, 

Schnabel, and Wendel 1997). Using the divergence of the [A+D]-genome clade from the C-
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genome ciade (synonymons site JC distance = 0.035; divergence time of 12 Myr), a rate of 1.47 

X 10"' synonymous substimtions/synonymous site/year was obtained. Using the split between the 

A- and D-genomes (synonymous site JC distance = 0.045; divergence time of 11 Myr), the 

substitution rate was estimated to be 2.05 x 10'^ synonymous substitutions/synonymous site/year. 

Comparisons of measures of genetic diversity 

One difference between DNA sequencing and indirect methods of assessing genetic 

variation (e.g., isozymes or RFLPs) is that all polymorphisms will be detected in the region 

sequenced, not just those that result in restriction site mutations (cf. RPLP analysis) or 

electrophoretically detectable charge or conformational changes (cf. isozyme analysis). Thus, 

one might expect levels of allelic diversity and heterozygosity to be higher for nucleotide 

sequence data than for other data sets; this expectation was met in the present study (Table 3). 

Previous studies have assayed isozyme and RFLP diversity in G. hirsutum and G. barbadense 

(Wendel, Brubaker, and Percival 1992; Bmbaker and Wendel 1994). We recalculated genetic 

diversity statistics for the isozyme and RFLP data by pruning the data sets to include only those 

accessions sampled here (Table 3). In general, allelic diversity was higher for AdhA sequence data 

than for isozymes or RFLPs, as expected. In addition, expected heterozygosity (= mean 

panmictic heterozygosity) was also higher for the sequence data, but observed heterozygosity at 

AdhA was zero in all cases except for the D-subgenome of G. hirsutum. The single heterozygote 

observed was for a cultivar (Paymaster H86048); heterozygosity in this accession may reflect the 

results of a breeding program or germplasm maintenance. 

Discussion 

Nucleotide diversity in allopolyploid Gossypium 

A primary conclusion of the present study is that nucleotide diversity for AdhA in G. 

hirsutum and G. barbadense is very low. Estimates reported here are lower than previously 

reported values not only for plant Adh sequences (see Table 3 of Cummings and Clegg 1998; Liu, 

Zhang, and Charlesworth 1998), but for other plant nuclear genes as well (C/ in maize — Hanson 

et al. 1996; ChiA in Arabidopsis — Kawabe et al. 1997; ChsA in Ipomoea — Huttley et al. 1997; 

Pgi in Dioscorea — Terauchi, Terachi, and Miyashita 1997). Nucleotide diversity per base pair 

for nuclezu' genes in other plant species range from a low of 6^^=0.001 at Pgi in Dioscorea 

(Terauchi, Terachi, and Miyashita 1997) to a high of 6^=0.025 at Adhl in Zea mays ssp. 

parviglumus (Eyre-Walker et al. 1998); our values of 0^ ranged from 0.000 (G. barbadense A-

subgenome) to 0.0007 (<7. hirsutum D-subgenome). 
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Potential explanations for such low levels of nucleotide diversity include one or more 

recent genetic bottlenecks, a low mutation rate, a self-pollinating reproductive biology, and a 

selective sweep. We present evidence that the first three of these factors have been important in 

shaping the population genetic structure of cotton and are sufficient to explain our observations 

thus obviating the need to invoke additional mechanisms such as selective sweeps. Operating 

together, the historical and life-history features of G. hirsutum have had a net effect of severely 

constraining levels of genetic diversity, as discussed in the following paragraphs. 

Genetic bottlenecks — Accimiulated evidence indicates that G. hirsutum and G. barbadense are 

allotetraploids that are derived from a single polyploidization event that occurred ~ 1-2 MYA 

(Wendel 1989; Seelanan, Schnabel, and Wendel 1997; Small et al. 1998). Because the two 

parental diploid genomes are confined to different continents (A-genome: Africa-Asia; D-

genome: New World, primarily Mexico), polyploidization appears to have been precipitated by 

trans-oceanic dispersal of an A-genome propagule to the New World, followed by hybridization 

and allopolyploidization with the native D-genome donor. It seems likely that only one to a few 

A-genome propagules made this trans-oceanic voyage, and similarly probable that only one to 

very few individuals were involved in the initial hybridization event from which allopolyploid 

Gossypium emerged. Thus, the process by which the lineage formed is characterized by a severe 

genetic bottleneck; presumably one or a few hybrid individual(s) constituted the entire gene pool 

from which the extant tetraploids are derived. Subsequent diversification of the nascent 

allopolyploid into the five modem tetraploid species implicates additional genetic bottlenecks 

associated with these more recent speciation events. Finally, more recent bottlenecks 

undoubtedly occurred as a consequence of the domestication of G. hirsutum, perhaps 4000-5000 

years ago (Wendel, Brubaker, and Percival 1992; Brubaker and Wendel 1994; Wendel 1995). 

Thus, the agronomic development of modem G. hirsutum varieties has been 

characterized by sequential genetic bottlenecks followed by rapid range expansions. A similar 

history with an approximately equivalent time-scale has been described for G. barbadense (Percy 

and Wendel 1990). For both species, these episodic bottlenecks undoubtedly contributed to a 

winnowing of nucleotide diversity, which may not have been especially extensive even in the wild 

progenitors. This winnowing process has occurred over a period of time that is exceptionally 

brief on an evolutionary timescale, especially in light of the timeframe necessary for the 

introduction of genetic diversity through mutation. 

Breeding system — An additional constraint on levels of nucleotide diversity levels in G. 

hirsutum and G. barbadense stems from their reproductive biology; both species are self-
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compatible and produce a high proportion of their seed through self-pollination (Wendel 1995). 

Self-pollination is known to reduce effective population size, which in turn reduces expected 

levels of genetic diversity (Pollak 1987; Liu, Zhang, and Charlesworth 1998). In addition to 

reducing levels of genetic diversity, selfing is expected to reduce observed heterozygosity relative 

to expected heterozygosity as allelic variation manifests itself as alternative homozygotes, rather 

than heterozygotes. Thus, the breeding system is consistent with our observation of a near-

complete absence of observed heterozygosity at AdhA, where the sole exception was for a G. 

hirsutum cultivar that may have acquired its heterozygosity (either intentionally or 

unintentionally) through a breeding program or during seed increase for germplasm maintenance. 

Low mutation rate — The absolute synonymous substitution rate calculated for AdhA in 

Gossypium is 1.47 x IC' to 2.05 x 10"' substitutions/site/year. Wolfe, Li, and Sharp (1987) 

estimated that synonymous substitution rates at plant nuclear genes range from 5-30 x 10*', and 

average 5.1-7.1 x 10"' (Wolfe, Sharp, and Li 1989). Gaut (1998) has estimated a synonymous 

rate of 6.03 x 10"' in a comparison of nine nuclear genes in rice and maize. The lowest published 

synonymous rate for a plant nuclear gene is 2.61 x 10"' for AdhA in palms (Gaut et al. 1996). 

The synonymous substitution rate for AdhA in Gossypium is therefore 2.5 to 4 times lower than 

average rates, and is lower than any previously published rates. This estimate is, in fact, within 

the range (1.0-3.0 x 10"*) of synonymous substitution rates in chloroplast genes (Wolfe, Li, and 

Sharp 1987). Given this slow mutation rate, there has been little time for the genesis of allelic 

diversity since species formation (perhaps 1-2 million years), and even less time since G. 

hirsutum and G. barbadense were domesticated (perhaps 4000-5000 years). Even under a 

scenario of complete retention of genetic diversity, i.e., no loss due to sampling or genetic 

bottlenecks (as discussed above), the expectation is that for AdhA, with approximately 500 silent 

sites and mutation rates as estimated above, only one or two nucleotides, on average, are 

expected to become polymorphic in each million years. Hence, the observation of only 1 and 3 

polymorphic sites in the A- and D-subgenomic homoeologues, respectively, is consistent with 

expectations based on our understanding of mutation rates and the history and biology of the 

species. It therefore seems unnecessary to invoke additional mechanisms such as selective 

sweeps. 

Lack of coalescence — One of the noteworthy observations of this study is that AdhA alleles do 

not coalesce within species. In both the A- and D-subgenomes, the predominant allele found in 

G. barbadense also occurs at high frequency in G. hirsutum. This result is consistent with the 

low mutation rates and phylogenetic history discussed above, or alternatively, with an hypothesis 
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of large-scale introgression of C7. hirsutum alleles into G. barbadense (Brubaker, Koontz, and 

Wendel 1993). With respect to the former, molecular phylogenetic data have led to the 

suggestion that post-poljrploidization, there was a rapid radiation into the extant clades 

represented by the five modem species (Fig. 1; Wendel 1989; Small et al. 1998). Under such 

circumstances (low variation and rapid radiation) it is expected that alleles would be shared across 

species boundaries, unless a high mutation rate and a high fixation rate was operating. 

Comparison within and between homoeologous locus-pairs 

One of the initial goals of this study was to test the hypothesis that homoeologous loci 

exhibit equivalent evolutionary dynamics. Given a single origin of the tetraploid Gossypium 

species, levels and patterns of genetic diversity should be equivalent for homoeologous loci, 

assimiing an absence of selection, differential recombination, or other forces that might 

differentially affect members of a homoeologous locus-pair. All population-level factors other 

than selection (e.g., effective population size, genetic drift, breeding system) are equivalent. 

A previous study (Small et al. 1998) has shown that for another alcohol dehydrogenase 

locus in Gossypium (AdhC), evolutionary rates at the two homoeologues differ significantly, with 

the locus firom the D-genome diploid and D-subgenome of the tetraploids evolving at a faster 

rate. Neutral theory predicts that evolutionary rate and genetic diversity should be positively 

correlated — this is, in fact, the basis of the HKA test (Hudson, Kreitman, and Aguade 1987). 

We applied this test to the AdhA data presented here, not to detect departure firom neutrality, but 

to detect differences in evolutionary dynamics between homoeologues; the result was not 

significant. Likewise, the 95% confidence intervals calculated for largely overlap. Finally, 

application of Tajima's (1993a) ID relative rate test comparing AdhA sequences from the A-

genome diploid and the A-subgenome of G. hirsutum to the D-diploid and D-subgenome of G. 

hirsutum returned only one significant departure from rate homogeneity [G. herbaceum vs. G. 

raimondii), despite a qualitatively obvious rate difference (Fig. 6). Although none of the 

statistical tests supports an inference of rate inequality among the AdhA homoeologues, allelic 

diversity is twice as high in the D-subgenome, and nucleotide diversity is two to three times 

higher in the D-subgenome, results that are directionally consistent with the previously reported 

AdhC data (Small et al. 1998). These observations may or may not be consequential; data from 

other homoeologous pairs are needed to evaluate the possibility that the subgenomes of G. 

hirsutum are subject to different evolutionary pressures. 

Comparisons among homoeologous locus-pairs may also provide insight into processes of 

genomic evolution. The evolutionary dynamics appear different for AdhA and AdhC in 

tetraploid Gossypium. For example, in the tetraploid species of Gossypium, percent sequence 
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divergence for AdhA (A-subgenome vs. D-subgenome) averages 2%, but is over 4% for AdhC 

(Small et al. 1998). As described above, increased evolutionary rate should be correlated with 

increased genetic diversity, which would predict a higher level of diversity at AdhC than at AdhA. 

We are currently conducting studies to test this hypothesis. Finally, previous studies have shown 

that a correlation exists between chromosomal position (and associated rates of recombination) 

and levels of genetic diversity at a locus. In general, the more distal a locus is from the 

centromere, the higher the recombination rate and genetic diversity will be (Begun and Aquadro 

1992; Aquadro and Begun 1993; Dvorak, Luo, and Yang 1998). Genetic mapping data allow us 

to speculate that Gossypium Adh loci may show the opposite trend. The slowly-evolving, low-

diversity locus AdhA resides at the distal end of a linkage group, while the quickly-evolving locus 

AdhC maps near the middle of a linkage group (RLS and JFW, unpublished data). While we are 

cuirently imable to correlate these genetic mapping data with a physical map and therefore 

pinpoint distances from the centromere or telomere, these preliminary data may provide an 

exception to the general relationship between genetic diversity and chromosomal position. 
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_T^leL^Iam^atOTa|sjisedjnthis_stud^ 

Species Accession Geoeraphic Origin 

Oaxaca, Mexico 

TX-1 Guerrero, Mexico 

TX-6 Pueblo, Mexico 

TX-21 Chiapas, Mexico 

TX-44 Chiapas, Mexico 

TX-5I Chiapas, Mexico 

TX-93 Jutiapa, Guatemala 

TX-94 Zacapa, Guatemala 

TX-98 Chiquimula, Guatemala 

TX-111 Jutiapa, Guatemala 

TX-116 Santa Rosa, Guatemala 

TX-119 El Salvador 

TX-166 Zacapa, Guatemala 

TX-188 Baja Verapaz, Guatemala 

TX-192 Oaxaca, Mexico 

TX-367 Santa Rosa, Guatemala 

TX-481 Yucatan, Mexico 

TX-706 Honduras 

TX-766 Belize 

Paymaster H86048 cultivar 

Oeltapine 50 cultivar 

BR115 cultivar 

Pima S5 cultivar 

B106 Dominican Republic 

B250 Belize 

Gossypium hirsutum 

G. barbadense 

B444 

B559 

Colombia 

Venezuela 
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Table 2. Estimates (x lO') of nucleotide diversity per base pair (7t, 9„), and tests of neutral 
evolution. 

7C 0w{eL,eu)" D" D'= F 
G. hirsutum A-subgenome 0.50 0.24 (0.0006, 1.52) 1.47 0.55 0.94 
G. hirsutum D-subgenome 1.23 0.74 (0.16, 2.38) 1.42 0.91 1.24 
G. barbadense A-subgenome 0.00 0.00 — — — 

G. barbadense D-subeenome 0.36 0.36 (0.009. 2.73) 0.62 0.74 0.67 

'Lower (0l) and upper (0u) boxmds (x 10^) of the 95% confidence intervals in parentheses. 
"Test statistic of Tajima (1989); no results are statistically significant. 
'Test statistics of Fu and Li (1993); no results are statistically significant 
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T^le_^jGOTeticdivM2rt^statisticsfbrjsozyme^RF^_Md^rfft^l^ data. 
Obs. Het.' 

G. hirsutum 
Isozymes 1.4 0.126 0.006 
RFLPs 1.6 0.144 0.004 
AdhA, A-subgenome 2 0.463 0.000 
AdhA, D-subgenome 4 0.656 0.045 
AdhA loci, mean 3 0.556 0.023 

G. barbadense 
Isozymes 1.2 0.074 0.000 
RFLPs 1.2 0.062 0.008 
AdhA, A-subgenome I 0.000 0.000 
AdhA, D-subgenome 2 0.320 0.000 
AdhA loci, mean 1.5 0.160 0.000 

'Mean niimber of alleles per locus. 
^ean panmictic (expected) heterozygosity. 
'Observed heterozygosity (# of heterozygous accessions/total number of accessions sampled). 
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AUbpoiypfbicft 
New World; 2n=52 

IHieniNnftElqMbm 
New World; 2n = 

; - iBaBRdmttOipiDMft 

B-, E-genome Diploids 
Africa; 2n =26 

CvGKK-ganoiw Diploids 

AastraliB;2ns26 

- 11 MYA 
- 12 MYA 

Figure I. Composite phylogenetic hypothesis for the genus Gossypium based on analyses 
of multiple molecular data sets. Individual genome groups are boxed, and their geographic origin 
and chromosome numbers are identified. This hypothesis depicts both the divergent evolution of 
the diploid species (A through K genomes; In = 26) and the reticulate origin of the 
allotetraploids (AD-genome; 2n = 52) via hybridization and polyploidization between A- and D-
genome diploids (best represented by G. herbaceum and G. raimondii, respectively). Arrows 
indicate estimated time of divergence for two nodes: initial divergence within the genus at ca. 12 
MYA and the divergence between the A- and D-genome groups at ca. 11 MYA. 
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Figure 2. Southern blot of an Ac/M-specific probe hybridized to ////idlll and Xbal digested genomic DNAs of three diploid 
(G. robinsonii, C-genome; G. herbaceum, A-genome; G. raimondii, D-genome) and one tetraploid (G. hirsutum) cotton species. 

In both sets of digests the probe reveals only a single band per diploid genome, indicating that AdhA is single copy. 
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Adtn(2-1 AdtKB-^ 

AdhAx2i3-A/D 100 bp >4dMx9i8-A/D 

Figure 3. Diagrammatic representation of the Gossypium AdhA locus. Exons are shown 
as shaded boxes, introns as the line connecting the exons. Genomic sequence data are available 
only for exons 2-8; the lengths of exons 1, 9, and 10 and introns 1 and 9 are extrapolated from 
other Gossypium Adh sequences. PCR amplification primers are shown in their approximate 
positions. AdhA-specific primer pair AdhTQ.-\ and Adkx&-\ is shown above the diagram while 
homoeologue-specific primer pairs {AdhATf2i3-fii. + AdAAx8i9-A; AdAAx2i3-D + Ad/tA x9i8-D) 
are shown below the diagram. A 100-bp scale bar is included for reference. 
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Figiire 4. Polymorphic nucleotide positions in the AdhA data set. At each polymorphic 
nucleotide site (numbers shown above the sequences), the nucleotide state observed in each 
accession is given relative to the G. hirsutum pfic-A sequence. A period denotes identity, while 
question marics are used for missing data. Alignment gaps are indicated by dashes. Allelic 
designations are given in the final coltmm. 
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 ̂ n = 11754 
Allefi^B^ 

Figure 5. Allele network depicting relationships among alleles observed at the D-
subgenome homoeologue of G. hirsutum and G. barbadense\ each allele differs from alleles to 
which it is connected by a single nucleotide substitution. Allele designations follow Fig. 4. For 
each allele the number of times it was observed out of a total of 54 alleles (44 G. hirsutum alleles 
and 10 C7. barbadense alleles) is given. The taxonomic and geographic distributions of alleles are 
as follows: H — allele detected in G. hirsutum-, B — allele detected in G. barbadense-, B — 
Belize; C — Colombia; D — Dominican Republic; E — El Salvador; G — Guatemala; H — 
Honduras; M — Mexico; V — Venezuela; and cv— cultivar. 
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6. robinsonii (C-genome outgroup) 

,G. hirsutum (A-subgenome homoeologue) 

6. herbaceum (A-genome diploid) 

0.01 

, G. hirsutum (D-subgenome homoeologue) 

, G. raimondii (D-genome diploid) 

Figure 6. Neighbor-joining tree of AdhA sequences from diploid and tetraploid 
Gossypium, rooted with G. robinsonii (the topology resulting from maximum parsimony analysis 
is identical). Homoeologues from allotetraploid G. hirsutum (accession pfic) cluster with their 
respective diploid progenitors. Branch len^ leading to the G. hirsutum D-homoeologue and G. 
raimondii (D-diploid) is ca. twice as long as the branch leading to the G. hirsutum A-
homoeologue and G. herbaceum (A-diploid). Tajima's (1993a) ID relative rate test returns a 
statistically significant rate difference only in the comparison of G. raimondii and G. 
herbaceum. 
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CHAPTERS. GENERAL CONCLUSIONS 

An understanding of the evolutionary dynamics of nuclear-encoded gene families is 

important for a number of reasons, both theoretical and practical. From the theoretical point of 

view data are becoming available to test long-standing hypotheses about the structure and origin 

of nuclear gene families. A prime example of this is the widely held hypothesis that pairs of 

nuclear genes such as "AdhI" and "^Adhi" are the result of an ancient gene duplication and 

therefore all "^Adhl" genes are more closely related to each other than any are to '^'^Adhi" genes 

(Gottlieb 1982). Similarly, nuclear-encoded gene families in angiosperms are often considered to 

be relatively stable in terms of the number of loci they include (Clegg et al. 1997). Data 

presented in this dissertation challenge both of these hypotheses. 

From a more practical point of view, nuclear-encoded gene families represent a largely 

untapped reservoir of sequences that can be co-opted for studies of phytogeny, molecular 

evolution, and genetic diversity. In plants to date, data to address these issues have derived 

primarily from chloroplast DNA (cpDNA) and nuclear-encoded ribosomal DNA (rDNA) structure 

and sequences. Both cpDNA and rDNA suffer from limitations of either the number of sequences 

available for a given question, or their rate of evolution is inappropriate for a given question. 

Nuclear-encoded genes, however, are almost functionally infinite in terms of the mmiber of loci 

that can be sampled and they display evolutionary rates that span a wide range, so that a sequence 

with an appropriate level of variation can be employed. Again, data presented in this dissertation 

have shown that data from nuclear-encoded sequences can be more informative than data from 

cpDNA or rDNA. 

The goals of the study presented here were to use two model systems - the genus 

Gossypium and the alcohol dehydrogenase gene family — to explore two areas of plant 

evolutionary biology. The first goal was to describe and characterize the evolution of the alcohol 

dehydrogenase gene family in both diploid and allotetraploid Gossypium species. The second 

goal was to use the information derived from these foundational studies to address problems in 

phylogenetics, genetic diversity and molecular evolution using the tools developed in the 

preliminary study. The three original research papers included in this dissertation represent the 

fruition of those goals. 

The first of these papers [Chapter Two: Organization and evolution of the alcohol 

dehydrogenase gene family in diploid and tetraploid cotton (Gossypium L.)] provides a 

description of the Adh gene family in Gossypium species. The data presented include genomic 

sequences, estimates of the number of loci encoded in the gene family, and structures of the 

isolated genes. In addition, evolutionary rates were estimated and compared both across loci and 
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between lineages for the same loci. The results of this study show that the Gossypium Adh gene 

family is the largest yet described in angiosperms and is at least as large as that of Pinus 

banksiana (jack pine), which has the largest published Adh gene family in plants (Perry and 

Fumier 1996). These data run counter to suggestions that the Adh gene family has a small and 

stable number of loci (usually 2-3; Gaut et al. 1996) and may reflect the fact that estimates of the 

niunber of genes in a given gene family are often derived from small sample sizes in terms of 

species assayed. Also, it seems likely that many genes may go undetected due to methodological 

limitations of the approaches employed for their detection. 

In addition, we have shown that gene structure is variable among Gossypium Adh loci. 

Most plant Adh genes have a 10 exon/9 intron structure, although a few examples of intron loss 

have been published (e.g., Arabidopsis thaliana, Chang and Meyerowitz 1986). The majority of 

the Gossypium Adh genes we isolated had a 10 exon/9 intron structure as well, but AdhA was 

missing two of the nine introns, and interestingly, these are two of the same introns missing in 

Arabidopsis and some other members of the Brassicaceae. 

Finally, we observed evolutionary rate variation, both among loci and among lineages at a 

given locus. Synonymous substitution rates varied ca. two-fold among loci, while 

nonsynonymous substitution rates varied almost ten-fold. In addition to among-locus variation 

we observed statistically significant among-lineage variation at two Adh loci (AdhA and AdhC). 

In both cases the lineage with the faster rate was the D-(sub)genome lineage, suggesting that some 

conunon evolutionary pressure (or lack thereof) is promoting rate acceleration in this lineage 

relative to the A- and C-genome species. 

The second research paper (Chapter Three: The tortoise and the hare: choosing 

between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a 

recently diverged plant group) describes an application of the Adh data to a practical problem in 

plant systematics. Specifically, examples abound of studies at low taxonomic levels where there 

is insufficient genetic variation among species to produce a robust hypothesis of relationships. 

One common approach to resolve such situations is to employ noncoding regions of cpDNA 

(e.g., introns or intergenic spacers) because such regions are likely to be under less ftmctional 

constraint than genes and should therefore accumulate nucleotide substitutions at a faster rate. 

An alternative approach is to employ a nuclear-encoded sequence, £is nuclear-encoded genes have 

been shown to have a faster evolutionary rate than cpDNA sequences (Wolfe et al. 1987; Gaut 

1998). Using the group of closely related allotetraploid Gossypium species we tested the 

phylogenetic utility of seven different cpDNA noncoding regions as well as a nuclear-encoded 

gene, AdhC. Analysis of the cpDNA sequences resulted in little phylogenetic resolution, and 

weak support for the resolution obtained. The AdhC data, on the other hand, provided complete 
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and robust resolution of the relationships among the species, despite the fact that we sampled 

over 4 times as much cpDNA data. This increased resolution is due to a nucleotide substitution 

rate that is three to six times faster in AdhC than in the cpDNA sequences. This analysis clearly 

shows that nuclear-encoded sequences can be usefiil for phylogenetic analysis and that they may 

provide greater resolution than many previously used data sets. 

The third research paper [Chapter 4: Low levels of nucleotide diversity at homocologous 

Adh loci in allotetraploid cotton {Gossypium L.)] describes our exploitation of the Adh data to 

explore a question of genetic diversity in allopolyploid cotton. Because allopolyploid cottons are 

hypothesized to have formed only once we can postulate that the subgenomes of tetraploid 

cotton ought to have originated with equivalent levels of genetic diversity. Thus, all things being 

equal, each subgenome ought to harbor equivalent levels of genetic diversity in extant species zis 

weU. Alternatively, evolutionary pressures acting differentially on the subgenomes may allow 

one to acquire diversity at a faster rate than the other. To attempt to distinguish among these 

alternatives we sequenced AdhA from both subgenomes of 22 accessions of the tetraploid G. 

hirsutum, as well as five accessions of a closely related tetraploid, G. barbadense. These 

accessions were chosen to represent the genetic and geographic diversity of the species (Wendel 

et al. 1992; Brubaker and Wendel 1994). The results show that, as indicated earlier, genetic 

diversity is low in G. hirsutum. Despite the low levels of genetic diversity observed, however, the 

D-subgenome of both G. hirsutum and G. barbadense harbored greater allelic and nucleotide 

diversity than the A-subgenome, suggesting that differential evolutionary pressures are acting on 

these two subgenomes. 

Taken together, these analyses have broadened our understanding of the evolutionary 

dynamics of nuclear-encoded gene families, and have provided evidence that nuclear-encoded 

genes can be useful in studies of phylogeny and genetic diversity. These studies point the way for 

at least two logical extensions of the present work. The generality of the results obtained here 

can only be determined by additional sampling of both gene families and organismal systems. 

One direction to pursue is to perform similar types of analyses in Gossypium with other 

low-copy nuclear-encoded gene families. Such analyses could provide important information on 

the generality of the inferences from the Adh work. For example, the Adh studies indicate that 

the Adh gene family in Gossypium is larger than reported for other angiosperms; are other 

Gossypium gene families larger than the "average" angiosperm gene family or is the Adh gene 

family unusual? In a similar vein, relative rate differences have been detected within and among 

loci and lineages in the Gossypium Adh gene family; do other gene families also display rate 

heterogeneity within and among loci and lineages? Evidence has also been provided that 

nucleotide diversity is unequally apportioned between the subgenomes of allotetraploid cotton at 
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Adh loci; is this true across all loci, and if so, what mechanistic explanations can be provided for 

such a bias? We have not detected any evidence of intersubgenomic interactions at Adh loci in 

the allotetraploid species, despite evidence presented for repetitive DNA that such interactions 

are not unusual (Wendei et al. 199S; Hanson et al. 1998); does this observation hold for other 

low-copy nuclear encoded genes? 

An alternative approach is to apply the tools developed in Gossypium to phylogenetic or 

molecular evolutionary studies of other organismal groups. The tools and inferences derived 

from the Gossypium Adh studies may be best suited for studies of other members of the 

Malvaceae. One group that particularly stands out as a candidate is the genus Hibiscus, 

specifically section Furcaria. There are a nimiber of parallels between Hibiscus sect Furcaria 

and Gossypium.-. both have a long history of cytogenetic investigation, they have similar 

geographic distributions, and both contain polyploids (up to dodecaploids in Hibiscus sect. 

Furcaria). Despite these similarities, and the potential ornamental value of Hibiscus spp., little 

is known regarding the systematics of Hibiscus secL Furcaria. Thus, this group provides a test 

case in which the Adh tools developed in Gossypium could be applied to studies of an unknown 

group. 
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