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MUL TIPERIOD PRODUCTION WITH FORWARD AND OPTION MARKETS 

Abstract 

Production and hedging in both forward and options markets are analyzed for forward

looking fmns that maximize expected utility. In the presence of unbiased forward and options 

prices, it is shown that such firms will use options as hedging instruments. This result contrasts 

with the conclusions from studies that assume myopic behavior, and occurs because forward

looking agents care about the effect of future output prices on profits from future production 

cycles. Simulations support the theoretical results and show how the introduction of an options 

market influences the optimal forward position. 
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MUL TIPERIOD PRODUCTION WITH FORWARD AND OPTIONS MARKETS 

Most of the literature on risk aversion and price uncertainty has incorporated Sandmo's 

implicit assumption that the firm is concerned with a single production cycle. This convention has 

been extended into the hedging literature (e.g., Holthausen; Feder, Just, and Schmitz; Anderson 

and Danthine 1980; Losq; Batlin; Benninga, Eldor, and Zilcha; Smith and Stulz; Paroush and 

Wolf; Kerkvliet and Moffett). However, output price changes that occur in one period will change 

price expectations for subsequent production periods. In addition, for industries with at least one 

fixed input, output supply changes will cause changes in input prices and optimal input use for 

subsequent production cycles. Firms operating and hedging in this environment will presumably 

have noticed the effects of changes in this period's price on next period's profitability and adjusted 

their hedging behavior accordingly. 

This paper extends the number of production cycles to two and shows how optimal 

hedging depends on the perceived relationships between this period's output price and next 

period's input and output prices.! We focus on forward rather than futures markets to show that 

the main results do not depend on the existence of basis risk, and also to avoid the complexities 

that arise from the presence of basis risk. In addition, we extend the model to incorporate options 

and show a valid role for options as hedging instruments that has here-to-fore been lacking in the 

one-period hedging models (Lapan, Moschini and Hanson; Sakong, Hayes, and Hallam). The 

analysis by Lapan, Moschini, and Hanson reveals that myopic firms with nonstochastic production 

will use options only if futures and/or options prices are biased. Sakong, Hayes, and Hallam 

showed that production uncertainty will lead myopic fmns to use options for hedging purposes. In 

this paper, we will show that options are used for hedging even if production is nonstochastic and 

prices are unbiased, as long as firms exhibit forward-looking behavior. 

!Anderson and Danthine (1983), Hey, and Karp also analyzed dynamic hedging. Our model differs from that 
of Anderson and Danthine (1983) in that they considered hedging revisions within a single production cycle. It 
differs from that of Hey in that he assumed that prices were independently distributed and that agents had 
intertemporally additive utility functions. Karp's basic model is similar to that of Anderson and Danthine (1983), 
with the addition of stochastic production. None of these references includes options. 
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The first section of this paper develops the optimal options and forward positions for a finn 

that will be in operation for two periods. It is shown that the hedging decision made at the 

beginning of the first period will incorporate the effect of the first period's price changes on both 

the first and second periods' profits. The second period effect is caused by the impact of the fust 

period price on expected input and output prices for the second period. One of the more interesting 

aspects of this second period effect is that the fust period price will almost always have a nonlinear 

relationship with the profits from the second production cycle. Because the payoff from forward 

contracts is linear in prices, it is therefore not possible to fully hedge with forward contracts against 

this nonlinear relationship. Options offer a more flexible way of hedging against this nonlinearity 

and consequently options are shown to have a hedging role. The derivation of the optimal options 

position is complex because options truncate the distribution of expected returns. This derivation 

is the subject of the second section. In the third section, we perform simulations to calculate the 

expected-utility-maximizing forward and options positions for individuals with constant absolute 

risk aversion. These optimal positions are shown to depend on the characteristics of the utility and 

the production functions, and on the expected correlation among the first period's output prices and 

the second period's input and forward prices. These simulations are performed for an individual 

who has access to both forward and options markets and to a forward market alone. 

The Theoretical Model 

Consider a decision maker characterized by a twice differentiable utility function of tenninal 

wealth U(Wy) such that U' > 0 and U" < 0. Tenninal wealth is defined as initial wealth at the 

current date plus the cash flows arising up to and including the terminal date:2 

2To simplify the exposition. interest rates are omitted in (1.1). The omission does not affect in any 
meaningful way the main conclusions of the study, as long as interest rates are nonstochastic and there are no 
constraints regarding the amounts of money that can be borrowed or lent at the prevailing interest mte. 
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where W, denotes monetary wealth at the end of trading date t and c, is cash flow at time t. 

The agent can produce output Q, from input I,_ 1 by means of the transformation function 

Q, = q(I,_1), where qO is such that q' > 0, q" < 0, q(O) = 0, and q'(O) --+ oo.3 The time subscripts 

indicate that it takes one production cycle (from t-1 to t) to transform input into output. Production 

is assumed to be nonstochastic to emphasize that the role of options as hedging instruments is not 

due to production uncertainty (Sakong, Hayes, and Hallam). 

It is also assumed that the agent has access to forward and options markets for the final 

good. Only forward and put markets are considered, however, because any combination of 

forward, put, and call contracts can be replicated by any two of these financial instruments. To see 

why this assertion is true, examine the upper panel of Figure 1. This position diagram shows the 

payoff to an investor who has written a put (dashed line) and who has sold a forward contract 

(solid line). The addition of the two payoffs (i.e., the sum of the vertical distances from the 

horizontal axis) yields the net payoff shown in the lower panel of Figure 1. This net position is 

identical to the payoff of a written call. In fact, any two of forward, put, and call contracts can be 

used to replicate the third. This allows us to ignore calls in the analysis that follows without 

precluding call-like solutions. 

At date t, the individual sells X, forward contracts for delivery at t+ 1 at the forward price 

F,. At date t+ 1, the individual repurchases the X, forward contracts at the prevailing cash price 

Pt+l' The cash flow from these two operations in the forward market occurs at date t+ 1 and is 

equal to [(F,- Pt+l) X,]. Similarly, the agent at date t buys z, puts with strike price F, at a price 

Rt' and at t+ 1 obtains a revenue of zero if Pt+l exceeds the strike price F,, or a gain of 

[(F,- P,+1) Z,J otherwise.4 Given this setting, the cash flow at each decision date is given by 

(1.2) c, = P, Q, + (F,_ 1 - P,) X,_1 - R, z, + (F,_ 1 - P,) L, z,_ 1 - H, I, 

3These conditions on qO are standard assumptions in production models. These conditions are useful 
because in most scenarios they rule out the possibility of negative input demand. 

4Note that x, < 0 (Z, < 0) means that the agent is buying forward (selling put) contracts at date t. 
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Figure 1. Payoff diagrams for short forward, short put, and short call positions. 
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a. Payoff diagram for short forward and short put positions. 
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b. Payoff diagram for short call position (equal to sum of short forward and short put positions). 
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where H, denotes input price, and L, is a binary variable such that L, = 1 when the put option 

finishes in the money (F,_1 > P,) and L, = 0 when the put option finishes at or out of the money 

(F,_ 1 ~ P,). 

Because our purpose is to explore the consequences of relaxing the assumption of a single 

production cycle, and because a two-production cycle model captures the essentials, we limit the 

discussion to the two-cycle case. Denote the current decision date by t = 1, the next decision date 

by t = 2, and the terminal date (T) by t = 3. The optimal decisions regarding input, and forward 

and put positions at the current date t = 1 (i.e., I1, X1, and Z1) must solve the following set of 

recursive equations: 

where: p, = (P,, H,, F,, R,), 

J2., = CPa····· p,). 

E,(·) denotes the expectation operator based on information available at t, the matrix Jl, comprises 

the cash, forward, and put prices up to (and including) time t, and cash flows are given by (1.2). 

Equations (1.3) through (1.5) tell us that the decision maker at the current decision date chooses 

the levels of input, puts, and forward contracts that maximize expected utility over the entire 

planning horizon, assuming that the future levels of input, forward contracts, and puts will be 

chosen so as to maximize expected utility over the rest of the planning horizon. 
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The optimizing levels of forward contracts and puts at the current date are obtained by 

starting at the terminal date and working backwards. Simple inspection of (1.3) indicates that the 

value of I3 that maximizes UO is zero (I3 * = 0) because UO is a strictly decreasing function of 

I3 and I3 cannot be negative. Substituting I3 * = 0 into the expression for terminal wealth yields 

At date 2, the optimum levels of input (I2 *), puts (Zz *), and forward contracts (X2 *) must 

satisfy the following necessary first order conditions (FOCs) 

(1.7) 

(1.8) 

(1.9) 

where M3' denotes U' evaluated at I3 *, I2*, Zz*, and X2*. Combining (1.7) and (1.8), we get 

F2 q'(I2 *) = H2, which means that the optimal level of input (and therefore of production) is 

determined separately from the optimal number of puts and forward contracts. The optimal input 

demand at date 2 is a function of the ratio of input and forward prices only, i.e., I2* = q'-l(Hjf2), 

where q'-1 is the inverse function of q'5 

It can be inferred that the decision problem at date 2 represents the standard myopic or static 

decision problem. Only one production cycle remains at date 2; therefore, the decision maker 

behaves as if he or she were to stop producing at the end of the current cycle. This myopic model 

has been extensively used in studying optimal production and hedging behavior; in particular, the 

case of production in the presence of futures and options has been recently analyzed by Lapan, 

5The inverse function q'- 1 exists because q" < 0 by assumption. 
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Moschini, and Hanson. Perhaps the most important (and striking) result obtained by these authors 

is that options are not used as hedging instruments if both forward and options prices are unbiased 

{i.e., EiP3) = F2 and E2[(F2 - P3) L3] = ~). Under unbiasedness, the optimal decisions are 

given by I2 * = q'·1(Hz1F2), Z2* = 0, and X2* = Q3 • [ = q(I2*)], independently of the degree of risk 

aversion and the initial wealth. 

One of the purposes of this study is to show that, in contrast with the myopic case, options 

are generally useful hedging instruments for forward-looking decision makers even if both forward 

and options prices are unbiased. The optimal amount of puts bought by a myopic decision maker 

is generally nonzero when prices are biased; hence, to demonstrate that our results are driven by 

forward-looking behavior rather than biased prices we will assume throughout that prices are 

unbiased {i.e., E,(P,+1) = F, and E,[(F,- P,+1) L,+1] = R,).6 Then, substituting I1*, I/. Z/. and 

X2* under unbiased forward and options prices in the expression for terminal wealth (1.1) we get 

The term n represents the profits arising from optimal behavior in the second production cycle; n 

is nonnegative because it is zero if I2 • = 0 and strictly positive if I2 • > 0. 

Finally, the necessary FOCs for optimality at the current date t = 1 are 

6We assume that markets are unbiased throughout the paper because we are interested in hedging behavior. 
Any changes from the optimal positions caused by the introduction of biased markets would be speculative by 
definition. Therefore. we learn nothing about hedging behavior by introducing biased markets. 
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(1.13) 

where M2' denotes U' evaluated at I3*, I2*, Z2*, X2*, I1*, Z1*, and X1*. As it was the case for 

the myopic scenario (t = 2), the optimal input level for the forward-looking finn is detennined 

separately from the optimal levels of puts and forward contracts. Optimal input demand at date 1 is 

given by I1* = q'-l(H/F 1). 

To characterize the optimal forward and put positions, it is helpful to express FOCs (1.12) 

and (1.13) as (1.12') and (1.13'), respectively:? 

(1.12') 

(1.13') 

where Cov
1
(·) denotes the covariance operator, given information at date t. Evaluate now 

Cov 1(P2, M3') and Cov 1[(F 1 - P2) L2, M3'] at the levels that would be optimal if the firm were 

myopic, that is, selling forward the entire output {X1 = Q2* [ = q(I1*)]} and buying zero puts 

(Z1 = 0). Plugging these values in (1.10) yields W3 = W0 + c1 + F1 Q2* + n. This means that, in 

general, X1 = Q2* [ = q(I1*)] and Z1 = 0 are the optimal forward and put positions only if IT and P2 

are independently distributed. If IT and P 2 are not independent, setting X1 = Q2 • and Z1 = 0 

generally will not render M3' and P2 independent, and consequently Cov 1 (P2, M3') "¢' 0 and 

Cov1[(F1 - P2) L2, M3'] "¢' 0. Hence, X 1 = Q2* and Z1 = 0 are not optimal because the necessary 

FOCs (1.12') and (1.13') do not hold for such values ofX1 and Z1. The myopic case, which is 

the assumption upon which much of the literature is based, can be obtained by setting IT= 0 and 

can therefore be viewed as a special case of the model presented here. The direction and magnitude 

to which X1* differs from Q2 • and Z1* differs from zero in the more realistic scenario where IT and 

P 2 are not independent is the focus of the following sections. 

7Recallthat E(x y) = Cov(x, y) + E(x) E(y) for any pair of random variables x andy. 



9 

The Role of Options as Hedging Instruments for Forward-Looking Producers 

Inspection of n =o F2 q(I/) · H2 I2• reveals that the only way for nand Pz to be 

independent is the very unrealistic instance in which both F2 and Hz are independently distributed 

from P 2. Thus, the key is whether at time one the agent believes that output price is related to input 

or forward prices at date two. Any price shock that is not viewed as transitory will change 

expected cash and forward prices at subsequent periods. Input prices at date twill respond to 

changes in output prices at date t-1 if input supply is other than perfectly elastic and if output prices 

at date t-1 alter optimal production at date t for at least a subset of producers. Producers who 

belong to this subset may, for example, bid up input prices because they view an output price 

increase as permanent or because higher output prices create more liquidity and allow them to 

expand production. For our purposes, it does not matter whether this input price response is 

caused by rational behavior, but only that the decision maker believes it may occur. 

Assume that Fz and Hz are each a differentiable function of P 2 and of other random 

variable independent of P z• i.e., 

(2.1) Fz = F(P2, f) 

(2.2) H2 = H(Pz, h) 

where f and h are random variables with finite variances. The random variables f and h are 

possibly related to each other but they are independent of P 2. Let g(P z) be the expectation of M2' 

over f and h, i.e., g(P2) =o E1(M2'1P2), where the notation g(P2) emphasizes that P2 is the only 

random variable affecting the function g(·). Then, FOCs (1.12) and (1.13) can be rewritten as 
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Given the assumptions of the model, g(P 0 ) is continuous and differentiable everywhere except at 

P2 = F1, at which it is continuous but not differentiable if Z1* ;e 0. Under these conditions, it is 

possible to apply the Mean-Value Theorem to prove the following Proposition. 

PROPOSffiON. Assume that forward output prices and input cash prices behave as in (2.1) and 

(2 .2 ). Then, the forward-looking firm under unbiased forward and put prices will find it optimal 

to use puts as hedging instruments and to establish a forward position different from short selling 

total output. 

Proof. See Appendix. 

This Proposition is important because it reveals that key results previously reported 

regarding optimal hedging behavior (i.e., optimality of a null position in options coupled with 

forward full hedging under unbiased prices) are due to the assumption of myopic behavior. 

Moreover, whether decision makers are forward-looking or myopic can be (at least conceptually) 

tested empirically because their behavioral differences are observable. 

The reason for resorting to a nonstandard technique (i.e., the Mean-Value Theorem) to 

prove the above Proposition is as follows. If n and P 2 were independently distributed, the optimal 

forward and put positions would be X1* =.Q2* and Z/ = 0, and the graph of g(P2) would look 

like the horizontal line in Figure 2. In contrast, when nand P 2 are not independent the optimal 

forward and put positions are X1* ;e Q2 * and Z1* ;e 0 (see Proposition), and the graph of g(P 2) 

looks something like the dashed line in Figure 2. If n and P 2 are not independent, the function 

g(P2) is differentiable everywhere except where P2 equals the strike price F1. Moreover, the 

function g(P2) need not be concave or convex on either side of F1 for the Proposition to hold. 

As we already discussed, whether the optimal combination of forward and put contracts is 

(X 1* = Q2 *, Z1* = 0) or (X 1* ;e Q 2*, Z1* ;e 0) depends on whether n and P 2 are independently 



Figure 2. Graph of the function g(P 2). 

' \ 
\ 

' ',, 
', 

\ 
\ 
\ 
\ 

\ 

' ' 
' ' ' 

gi = g(P 2) when 0 and P 2 are independent. 

11 

\ /. 
\ , 

\ I y 

g
0
(P2) = g(P2) when 0 and P2 are not independent. 

,. 
~ 

--~ 

/ 

------
,.~ 

gn(P z) I 
I 

I 

I 

-" 

I 
I 

I 

I 
I 

I 
I 

" I 



12 

distributed or not. If forward and input cash prices behave as in (2.1) and (2.2), the first 

derivative of n with respect to P2 iss 

(2.5) 

Clearly, the sign of Cli1/ilP2 is ambiguous. Assuming that ()2Fz1ClP22 = ()2Hz1ilP/ = 0 (i.e., that 

forward and input prices are linearly related to contemporaneous output prices), the second 

derivative of n with respect to p 2 is9 

(2.6) 

(2.6') 

ilF0 = [q'(I *) --
2 ilPz 

The second derivative ()2I1J()p / is nonnegative because q" < 0 by assumption. This assumption 

means that there are decreasing returns to scale, which is the most realistic scenario because fmns 

under perfect competition will only produce at a point at which q" < 0. The linear relationship 

between output prices and payoff in the myopic model exists because production levels and costs 

are predetennined. When we introduce a second relevant production cycle, the convexity of the 

profit function re-emerges. 

Figure 3 depicts the range of possible impacts of next period output price (P 2) on the 

profits from the next production cycle (0), assuming that ()2I1JilPl is strictly positive. Figure 3 

also shows schematically how options and forward contracts can be used to hedge the additional 

risk attributable to the next production cycle. It can be seen that n is nonnegative and that the 

relationship between nand P 2 is nonlinear. Options allow producers to create hedged positions 

8Note that F2 q'(l;l ~ H, from the FOCs corresponding to date t ~ 2 [see discussion following FOCs (1.7) 

through (1.9)]. 
9The expression for ai;;aP

2 
can be obtained by differentiating F

2 
q'(l

2
•) ~ H, with respect to P

2 
and 

solving for oi
2
'/oP

2
, which yields oi

2
·;aP

2 
~- [q'(l

2
") oF/oP

2
- oH/oP

2
]/[F

2 
q"(l

2
")]. 
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Figure 3. Profits from the second production cycle (TI) and payoffs from combined forward-put 
positions (XZ) as functions of output cash prices at date t = 2. 
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with kinked payoffs. This kink allows producers to better hedge the additional risk than the linear 

forward position. It is clear from Figure 3 that to hedge the additional risk attributable to the next 

production cycle, the agent will sell puts if ClfVCJP2 < 0, and sell puts and forward contracts (which 

is equivalent to selling calls) if ClfVCJP z > 0. It is also clear that if options are not available, the 

forward-looking flrm will sell forward more (less) than its entire production if ClfVCJPz < (>) 0. 

In order to flnd the relative size of the optimal forward and put positions, it is necessary to 

specify the utility function (U), the production function (q), and the relationships between Pz and 

Fz and Hz [i.e., Fz = F(P2, f) and H2 = H(P2, h)]. The next section presents simulated examples 

that show how the optimal forward and put positions respond to some of the parameters 

characterizing U, q, F2 = F(P2, f), and Hz= H(P2, h). 

Numerical Simulations 

In this section, we present and discuss the results of numerical simulations regarding the 

theoretical Proposition derived previously. Although these simulations correspond to particular 

scenarios, they are helpful in assessing the orders of magnitude of the forward and options 

positions involved. 

The simulations are performed assuming that the decision maker is constant absolute risk 

averse (CARA), i.e., 

(3.1) U =- exp(- A W3) 

where A is the coefficient of absolute risk aversion, and that forward and input prices are linearly 

related to output cash prices, 
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where P2 n.i.d. (f1, crp2), f n.i.d. (0, cr?J, and h n.i.d. (0, crh2). To be as unrestrictive as possible 

while maintaining tractability, a second-order Taylor expansion of I1 [II = F2 q(l:I *) - H2 Iz', 

I2* = q'-1(H2/F2)] around the means of the random variables P2, f, and his used instead of 

assuming a particular production function (q), i.e., 

A A A 

+ (P2 - ll) f I1p1 + (P2 - ll) h I1Ph + f h Ilfh 

where the symbol represents variables measured at the means (P2 = f1, f = 0, h = 0), and the 

subscripts along with I1 denote the derivatives of I1 with respect to the respective random variables. 

The optimal forward and put positions can be calculated after (i) substituting expression 

(3.4) into (1.10) and the resulting expression into the utility function (3.1), (ii) calculating the 

expected utility over the random variables P 2, f, and h, and (iii) finding the combination of 

decision variables that maximizes the expected utility. At stage (ii), the combined assumption of 

CARA utility and normally distributed random variables coupled with the second-order Taylor 

expansion (3.4) proves very helpful because it allows a substantial simplification of the 

calculations. Under these conditions, two out of the three integrals comprised in the expression for 

expected utility have closed-form solutions, thus greatly simplifying the numerical integration.lO 

The simulation exercise can be performed for any decision setting for which the theoretical 

model provides a reasonable approximation. Because of data availability, the particular example 

chosen is the production of fat cattle (Q
1
+

1
) from feeder cattle (I1). The decision maker is assumed 

A A 

to be a representative producer, for whom Q3 = 120,000 pounds of fat beef and I2 = 60,000 
A A 

pounds of feeder cattle, where Q3 and I2 equal production and input demand evaluated at the means 

lODetails about the simulations are available from the authors upon request. 
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of the random variables. The output elasticity of factor demand (11Qr) is assumed to equal 0.9, and 

the transformation of feeder cattle to fat cattle is hypothesized to last 8 months. Based on price data 

over the period 1974-1986,11 it is postulated that F1 = ~ = F2 = 70, crp2 = crF2 = 70, and 

crH2 = 250, where prices are expressed in dollars of December 1986 per 100 pounds, and crF2 and 

crH2 denote the variances of F2 and H2, given information at date t = 1. 

Sensitivity analysis was performed for the degree of absolute risk aversion (A.), the 

elasticity of input demand with respect to forward price (TliF), the derivative of input prices with 

respect to output cash prices (1\t), 12 and the relationship between forward and output cash prices 

(~F). 13 When ~F = 0, the underlying hypothesis is that output cash price shocks are transitory, 

i.e., price shocks at a particular date have no effect on prices at later dates. In contrast, ~F = 1 

represents the case in which price shocks at a particular date are permanent because they affect 

prices forever. Note that different values of 1\t and~ imply different values of crh2 and cr? 

because crh 2 = crH2- ~H2 crp2 and cr/ = crF2- ~F2 crp2· 

The results of the simulations are presented in Table 1. The optimal levels of the decision 

variables are expressed in thousands of pounds. Optimal production (Qz') equals 120,000 pounds 

in all instances. Therefore, for a myopic decision maker it would be optimal to sell forward 

120,000 pounds and to have a zero put position. In contrast, a forward-looking agent will find it 

optimal to sell the number of forward contracts reported in the column labeled (X1*1 Z1 = Z1*) and 

to buy the amount of puts indicated in the column labeled (Z1*). The amount of puts bought is 

negative in all instances, which means that the optimal strategy in this example is to sell puts. 

llCash prices used were monthly averages of daily prices corresponding to medium frame one steer calves 
at Kansas City and 900-i,HlO pounds choice slaughter steers at Omaha, reported by the U.S. Department of 
Agriculture. Prices were expressed in real terms by using the Producer Price Index. 

12Empirical estimates of ~H for different months ranged from 1.05 to 1.40 without correcting for 

autocorrelation, and from 0.93 to 1.30 when the correction was imposed. 
13Using futures as proxies for forward prices, we obtained sample estimates of ~F ranging between 0.82 and 

1.07 depending on the month being considered. Futures prices were monthly averages of daily futures prices for live 
cattle at the Chicago Mercantile Exchange, reported in the Statistical Yearbook of the Chicago Mercantile Exchange. 
The October contract was used in January and February, the December contract in March and April, the February 
contract in May and June. the April contract in July and August, the June contract in September and October, and the 
August contract in November and December. 



Table I. Optimal decisions at date t = I 

Response of Response of Coefficient of Elast. of Input Optimal Decisions at Date t = 1 (unit: 1,000 Eounds) 

Cash to Forward to Absolute Risk Demand with Production F01ward Contracts Sold in the Puts Bought 

Output Prices Output Prices Aversion Respect to (Q2*) Absence of Presence of (Zt*) 

(~H) (~p) (A) Forward Prices Puts Puts 

(TliF) cx 1*1 z1 = O) (X 1*1 Z 1 = Z 1*) 

0.5 0 0.00003 1 120 92.0 93.0 -2.0 
0.5 0 0.00003 3 120 95.2 97.9 -5.5 
0.5 0 0.00012 1 120 96.6 97.4 -1.7 
0.5 0 0.00012 3 120 103.9 105.8 -3.7 
0.5 1 0.00003 1 120 207.5 214.6 -14.3 
0.5 1 0.00003 3 120 202.9 223.0 -40.2 
0.5 1 0.00012 1 120 200.8 207.4 -13.0 
0.5 1 0.00012 3 120 187.8 203.4 -31.4 
1.0 0 0.00003 1 120 63.5 67.6 -8.3 ~ 

-..J 

1.0 0 0.00003 3 120 69.5 80.6 -22.3 
1.0 0 0.00012 1 120 72.0 75.6 -7 .I 
1.0 0 0.00012 3 120 86.2 93.9 -15.4 
1.0 1 0.00003 1 120 178.8 181.5 -5.5 
1.0 1 0.00003 3 120 176.6 184.4 -15.6 
1.0 1 0.00012 1 120 175.5 178.1 -5.1 
1.0 1 0.00012 3 120 168.7 175.1 -12.8 
1.5 0 0.00003 1 120 34.2 43.6 -18.8 
1.5 0 0.00003 3 120 41.7 67.5 -51.7 
1.5 0 0.00012 1 120 45.0 53.3 -16.6 
1.5 0 0.00012 3 120 64.4 83.2 -37.7 
1.5 1 0.00003 1 120 149.8 150.2 -0.8 
1.5 1 0.00003 3 120 149.3 150.4 -2.3 
1.5 1 0.00012 1 120 149.1 149.5 -0.8 
1.5 1 0.00012 3 120 147.5 148.6 -2.0 
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Because one can create any desired forward/options payoff with any two contracts of the 

set of forward, put, and call contracts, we restricted the choice to forward and put contracts. But 

this restriction does not prevent the decision maker from creating a written call position. To do so, 

the producer sells forward more than 120,000 pounds and sells puts. The forward contracts in 

excess of 120,000 pounds coupled with the written puts create a written call position that hedges 

against 11 when ()f]j()P2 is positive everywhere (see Figure 3c). This situation occurs when 

l3p = 1, i.e., when the producer perceives price shocks as permanent. 

From Table 1, it can also be seen that 

(i) Q2*- X1*(Z1 = Z1*) > 0 > Z1* when ~F = 0 

(ii) 0 > Z1 * > Q2*- X1 *(Z1 = Z1 *)when ~F = 1 

where [Qz *-XI *(ZI = zl *)] denotes the difference between the optimal myopic hedge (X1 = Qz*) 

and the optimal forward-looking hedge in the presence of puts [X1 *(Z1 = Z1 *)]. Inequalities in (i) 

hold because, for given values of the random variables f and h, ()f]j()P 2 is negative everywhere 

when ~F = 0 [see expression (2.5)]. Hence, the position that offsets ()f]j()P2 must be positively 

sloped with respect to P 2, which is achieved by buying forward contracts 

[Q2*- X1 *(Z1 = Z1 *) > 0]. The explanation of inequalities in (ii) obeys the same logic: ()f]j()P2 is 

positive everywhere when ~F = 1 and ~H < 2; therefore, the decision maker sells additional 

forward contracts [Q2 * - X 1 *(Z1 = Z1 *) < 0]. 

In the simulations reponed, the amount of puts bought is positively related to the coefficient 

of absolute risk aversion (A) and negatively related to the elasticity of input demand with respect to 

forward prices (TJIF). Although in unreported simulations both relationships also held for all other 

values of the exogenous variables that were tried, we were unable to prove that they always hold. 

The relationship between Z1 * and TJIF should be negative in most situations because increasing llJF 

increases the convexity of 11 as a function of P 2:14 

(3.5) fiPP = (~F 11Qr Q3 - ~H Iz)2 1ln!(11Qr Fz Q3) 

1'1-he derivation of (3.5) from (2.6') is available from the authors upon request. 
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The effect of TliF on the convexity of IT is attributable to the fact that IT depends essentially on input 

usage at date 2, and the absolute changes in input usage due to P 2 are larger the larger is the 

elasticity 'llJF· 

Expression (3.5) helps explain the negative (positive) relationship between ~Hand the 

amount of puts bought when l3r: = 0 (~F = 1). When ~F = 0, the convexity of IT is positively 

related to the absolute magnitude of~ (1~1). Intuitively, ~Hi' 0 means that the agent perceives 

future input cash prices (H2) to be associated with future output cash prices (P2). But future 

profits (IT) are a convex function of Hz because of the response of future input use (l:z) to Hz. 

Hence, the larger I~HI, the larger the convexity of IT as a function of P z· For similar reasons, the 

convexity of IT is positively related to the absolute magnitude of ~P given ~H = 0. 

When ~Hand l3r: have the same signs, the effect that P 2 exerts on th~ curvature of IT 

through Hz tends to offset the effect of Pz on the curvature of IT through F2. If~ is positive, the 

producer will tend to reduce I2 (and therefore Q3) as P2 increases. But if ~F is also positive, the 

agent will tend to increase Q3 (and therefore I2) with increases in P 2. These two responses of I2 to 

P 2 work in opposite directions, tending to cancel with each other. The maximum offsetting effect 

occurs when ~H = ~F 11Qr Qytl2, at which fiPP = 0 [see (3.5)]. At this value of ~H· IT is 

approximately a linear function of P2, thus rendering puts unnecessary. This observation makes 

sense, there must be a set of circumstances under which the advantages of forward price increases 

are exactly offset by increases in input costs. In Table 1, the closest scenario to flpp = 0 is when 

~H = 1.5 and ~F = 1, at which the optimal amounts of puts bought are near zero (Z/ ranges 

between -2.3 and -0.8). 

Unreported simulations reveal that the optimal amount of puts purchased is negatively 

related to crp2, and positively related to crF2 and cri. The negative effect in the quantity of puts 

bought caused by an increase in crl outweighs the positive effect due to the same percentage 

increase in crF2 and crH2 Within reasonable bounds, however, the optimal put position does not 

seem very sensitive to changes in the magnitudes of the variances. 
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In Table 1, the column labeled (X1*1 Z1 = 0) shows the optimal forward positions in the 

absence of puts, and the column labeled (X1*1 Z1 = Z1*) reports the optimal forward positions in 

the presence of puts. These two columns reveal that the amount of forward contracts sold when 

puts are available is greater than the amount sold when puts are not available. The explanation of 

this result is that forward contracts are used for two purposes: (i) offsetting the convexity of n, and 

(ii) offsetting the average slope of n. To offset the convexity of n, it is necessary to sell both 

forward and put contracts; but because forward contracts alone are not useful for this purpose, the 

absence of options leads to a net loss in the number of forward contracts sold. In contrast, to 

offset the average slope of n, forward contracts alone are used; therefore, the amount of forward 

contracts employed for this purpose is unaffected by the availability of options. The use of 

forward contracts to offset the average slope of n explains why the amount of forward contracts 

sold is positively associated with ~(given a particular value of 1\J), and negatively related to ~H 

(given a particular value of ~F). From expression (2.5), it can be seen that Clf1/CJP2 (and therefore 

the average slope of m increases with ~p for a given ~H· 

The increase in the amount of forward contracts sold attributable to the availability of puts 

suggests a synergetic effect between the two types of contracts from a hedger's perspective. In 

other words, the scenario analyzed depicts a situation in which puts complement rather than 

compete with forward contracts. The opposite is true if the options available are calls rather than 

puts. That is, in the absence of puts, the decision maker will sell less forward contracts if calls can 

be traded than if calls cannot be traded. Hence, the example is such that calls compete with 

forward contracts. The reason for this result is that the payoff of any position involving the sale of 

x forward contracts andy puts can be replicated by a combination of selling (x- y) forward 

contracts and selling y calls. For example, if calls were available but puts were not, the simulation 

in the first row of Table 1 would involve selling calls for 2,000 pounds and forward contracts for 

91,000 (= 93,000- 2,000) pounds. It can be seen that the amount of forward contracts sold in the 

presence of calls and the absence of puts (91,000 pounds) is less than that sold in the absence of 

options (92,000 pounds). 
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In this example, the producer always sells puts because the simulations assumed decreasing 

returns to scale. Had it been assumed increasing returns to scale, puts would always be purchased 

[see (2.6')]. Decreasing returns to scale is a more realistic assumption, yet the optimality of 

writing puts seems counterintuitive. This result occurs because the producer uses the forward 

market to reduce price risk on the long physical position. Were we to make the forward market 

redundant (instead of the call market), the producer would achieve the exposure depicted in the 

sixth column of Table I by purchasing puts and writing calls to create a synthetic forward position. 

Concluding Remarks 

In a standard one-period (or myopic) model under nonstochastic production and unbiased 

forward and options prices, it is optimal to sell the entire production in the forward market for 

output and to hold a null position in options. Relaxing the restrictive assumption of a single 

production cycle (i.e., allowing for forward-looking behavior), however, will generally change the 

optimal forward position and create a hedging role for options. The reason for the behavioral 

difference between myopic and forward-looking agents is that the latter realize that this period's 

(random) output prices will be associated in a nonlinear manner with prices in subsequent periods. 
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Appendix 

The function g(P2) is continuous and differentiable everywhere except at P2 = F1, at which 

it is continuous but not differentiable if Z1* * 0. Then, according to the Mean-Value Theorem, 

there exists at least one number a in the interval (c, F1) at which 

(Al) 
'( ) g(F 1)- g(c) 

g a = F 
1 - c 

Denote the set of such numbers by A, i.e., A= {a: a E (c, F1) and g'(a) = [g(F1)- g(c)]/(F1 - c)}. 

Similarly, there exists at least one number in the interval (F1, d) at which 

(A2) g'(b) = g(~ ~ ~(F1) 
1 

Let B = { b: b E (F 1, d) and g'(b) = [g(d) - g(F 1)]/(d- F 1)}, and define the following strictly 

increasing function of P2: 

(
A

3
) = { inf(A) if P 2 = c < F 1 

P- sup(B)IfP 2 =d>F 1 

Because pis a one-to-one mapping of P2, the first derivative of g(P2) with respect to P2 evaluated 

at P2 = p equals 

where rnz" = M2"(P2 = p) and rr' = Clll!CJP2 evaluated at P2 = p. But from (Al) through (A3) we 

also have 
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By substituting (A4) into (AS) and the resulting expression into FOC (2.3) we get 

where: £pp = E1[m2" (F1 - P2)2] 

£PPL = El[ffiz" (Fl- Pz)2 Lz] 

£PPn = EI[mz" (FI- Pz)2 1t'] 

Expression (A6') follows from (A6) because F 1, Q2 *, X1 *, and Z1 * are nonstochastic at date t = 1, 

and F1 = E1 (P 2) if forward prices are unbiased. By proceeding in a similar manner with FOC 

(2.4) we obtain 

(A 7") 

where: £d = E1[g(P2)]- g(F1) 

£PP1tL = El[mz" 1t' (Fl - Pz)2 Lz] 

In deriving (A7'') from (A7') we used the facts that E1[(F1 - P2) L2] = R1 (because put prices are 

assumed to be unbiased) and that Ll = L2 (from the definition of L2). Finally, FOCs (A6') and 
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(A 7'') can be combined to yield the following expressions forthe optimal forward and put 

positions: 

(A8) 
£ 

X*=Q*+ PP7t 
1 2 £pp - £PPL 

(A9) 

R 1 £,.. + £PPrtL 

£pp- £PPL 

£pp 

frPL 

It must be true that £pp < £PPL < 0 because~" < 0 (from the assumption that U" < 0) and 

(F 1 - P 2)2 > 0 for P 2 >' F 1. For the same reasons, £PPrt < £PP7tL < 0 if 1t' > 0 everywhere, and 

£PP1t > £PPrtL > 0 if 1t' < 0 everywhere. If 1t' is not either positive or negative everywhere, then the 

signs and relative magnitudes of £PP7t and £PP7tL are ambiguous. Finally, the sign of£,.. is 

ambiguous in general, but it is strictly positive in the most realistic case of decreasing absolute risk 

aversion. Hence, barring pathological cases, it will be true that X1* >' Q2* and Z1* * 0. Q.E.D. 
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