
Inverse parametric sequence alignment

by

Fangting Sun

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
David Fernandez-Baca, Major Professor

Srinivas Aluru
Soma Chaudhuri

Govindarasu Manimaran

Iowa State University

Ames, Iowa

2002

Copyright © Fangting Sun, 2002. All rights reserved.

11

Graduate College
Iowa State University

This is to certify that the master's thesis of

Fangting Sun

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

lll

TABLE OF CONTENTS

Abstract

1. Introduction .

Sequence Alignment

Parametric Sequence Alignment .

Inverse Parametric Sequence Alignment

Related Work

2. Global Alignment without Gap Penalty

Preliminary Results ..

Algorithm and Analysis

3. Global Alignment with Gap Penalty

Preliminary Results

Description of the Algorithm

Algorithm Analysis

4. Further Results and Open Problems

Acknowledgments

IV

1

1

3

3

5

8

8

9

13

13

14

16

22

24

iv

Abstract

We consider the inverse parametric sequence alignment problem, where a sequence align-

ment is given and the task is to determine parameter values such that the given alignment

is optimal at that parameter setting. We describe a O{mnlogn)-time algorithm for inverse

global alignment without gap penalties and a O(mn log m) time algorithm for global alignment

with gap penalties, where m, n (n :::; m) are the lengths of input strings. Finally, we discuss

the local alignment problem and future work.

1

1. Introduction

Sequence Alignment

High similarity between biomolecular sequences(DNA, RNA, or amino acid sequences),

usually implies significant functional or structural similarity. Thus sequence alignment, which

can be used for determining similarity between biological sequences, has become essential

in modern molecular biology. There are hundreds of papers written on this topic and its

applications to biology. The review [1] gives relevant references.

Given two sequences S and T of lengths n and m, n :S m, a global alignment is obtained by

inserting special space characters into the two sequences in such a way as to build sequences S'

and T' of equal length, denoted by A= (S', T'). A match is a position where S' and T' have

the same characters. A mismatch is a position in which S' and T' have different characters,

neither of which is a space. An indel is a position in which one of S' and T' has a space. A

gap is a sequence of one or more consecutive spaces in S' and T'.

As an example of a global alignment, consider the alignment of the strings AGCTA and

A CTCA shown below:

AG-CTA

AC TC-A

In this alignment, character G is mismatched with C, A's and C match their counterparts in

the opposite string, and all other characters are opposite space, which are called indels.

An global alignment A can be characterized by its number of matches, mismatches, indels

and gaps, denoted by w, x, y, z, respectively. In scoring an alignment matches are rewarded,

while mismatches, indels and gaps are penalized. Let a, /3 and 'Y denote the mismatch, indel

2

and gap penalties. Then the score of A is

scoreA = w - ax - (3y - -yz

The case, where the weight of the matches is a parameter, is ignored since we can divide all

the parameters by this value and reduce it to the above case.

For any given pair of strings, there are different alignments with different scores. Continuing

the previous example, consider the following two alignments for the two strings:

AG-CTA

AC TC-A

AGCTA

ACTCA

Suppose a= 1,(3 = 1,-y = 0, then scoreA1 = 3 - 1- 2 = O,scoreA2 = 2 - 3 = -1, so A1 is

better than A2· If a = 1, (3 = 1, 'Y = 1, then scoreA1 = 3-1-2-2 = -2, scoreA2 = 2-3 = -1,

so A2 is better than A1. The optimal alignment problem is to find a maximum-score alignment

A between two strings. For fixed weights, this problem can be solved in O(mn) time [11].

In many applications, two strings may not be highly similar in their entirety but may

contain regions that are highly similar. Thus, local similarity is far more meaningful than

global similarity. Then we need to find and extract a pair of regions, one from each of the two

given strings, that exhibit high similarity. This is called local alignment.

Given two sequences S and T, a local alignment is obtained by finding substrings S' and

T' of S and T, respectively, whose optimal global alignment score is maximum over all pairs

of substrings from S and T [6].

For example, to strings S = pqraxabcstvq and T = xyaxbacsll, given a= 1, (3 = 0.5, 'Y = 0,

then the two substrings S' = axabcs, T' = axbacs of Sand T respectively, have the following

optimal alignment

axab-cs

ax-bacs

which has a score of 4. Furthermore, over all choices of pairs of substrings, one from each of the

two strings, those two substrings have maximum similarity. Hence, for that scoring scheme,

the optimal local alignment of S and T has score 4 and is defined by substrings S' and T'.

3

If the lengths of S and T are n and m, then the local alignment problem can be solved in

O(mn) time for fixed weights of matches, mismatches, indels and gaps [12].

Parametric Sequence Alignment

When using sequence alignment methods to study sequences, there is often considerable

disagreement about how to weigh matches, mismatches, indels and gaps. It is widely observed

that the biological significance of the resulting alignment can be greatly affected by the choice

of parameter settings. Parametric sequence alignment is a tool that efficiently explores such

penalty variation. It avoids the problem of choosing fixed parameter settings by computing the

optimal alignment as a function of variable parameters for penalties. The parametric sequence

alignment problem is to compute optimal alignments for two fixed sequences as a function

of varying penalties. The value of an alignment is a linear function of the parameters; thus

the parameter space can be partitioned into optimal regions such that in every region one

alignment is optimal throughout and the regions are maximal for this property. So parametric

alignment allows one to see explicitly, and completely, the effect of parameter choices on the

optimal alignment.

For example, consider strings S = pqraxabcstvq and T = xyaxbacsll. Suppose /3 = 1, then

the score of an alignment is a function of a,"(: ·score= w - ax - y - "fZ. Figure 1.1 illustrates

the polygonal decomposition of the a, 'Y parameter space.

Parametric sequence alignment was first proposed by Fitch and Smith [4]. Later, both

mathematical formulations and algorithms for parametric sequence alignment were obtained

by Gusfield et al. [7, 8]. Figure 1.1 is drawn by the XPARAL [8], which is a parametric

alignment application developed by Gusfield et al. Additional work is found in [3, 13, 14, 15].

Inverse Parametric Sequence Alignment

In inverse parametric optimization [2] one is given a parametric optimization problem and

a desired optimal solution and the task is to determine parameter settings such that the given

solution is optimal for those values. The inverse parametric sequence alignment problem is to

4

find parameter values such that reference alignment is optimal for those values or, if no such

settings exist, find a parameter setting minimizing the numerical difference between the score

of the optimal alignment and the score of the reference alignment. These parameter values

define an inverse optimal point on the parameter space. Inverse parametric computation is

useful for deducing parameter settings where the optimal alignment is likely to reconstruct

correct alignments that have been determined by other methods.

Since the optimal regions are bounded by the intersection of hyperplanes, all regions are

convex polygons [4, 7, 8, 3]. Hence, the inverse optimal parameter setting(s) must occur at

a single vertex (intersection point of three or more optimal regions), at a single edge (inter-

section line between two optimal regions), or at a single complete polygon of the polygonal

decomposition of the parameter space.

To illustrate this, let us see a simple case where only one parameter is counted. Suppose

{3 = a,/ = b, where a, b are constants, then the score of alignment is the function of a:

score = w - ax - ay - bz. As shown in Figure 1.2, there are three different cases for this

situation. The straight line represents the score of the reference alignment, which goes down

while the value of a increases. The continuous line segments represent the score of the optimal

alignments for different values of a. The score of the optimal alignments decreases when the

value of a goes up. Since for different values of a there are different optimal alignments, the

slopes of those line segments are different. One line segment corresponds to one complete

optimal region in the decomposition of parametric space. Figure l.2(a) shows the situation

where the inverse optimal parameter settings occur at a single complete optimal region, Figure

l.2(b) shows the situation where the inverse optimal parameter setting occurs at a single

vertex, Figure l.2(c) shows the situation where the reference alignment cannot be an optimal

alignment.

When more than one parameter are counted, the figure will be extended into multi-

dimension in a similar but more complicated way.

5

Related Work

Although there has been considerable work on parametric sequence alignment, the inverse

parametric sequence alignment was only mentioned in [8].

One way to locate the inverse-optimal parameter settings is to first construct the entire

decomposition of the parameter space and then choose the correct values. Alternatively, one

can try to find the parameter settings directly. This can be done by gradient descent [8],

although it is not clear how to obtain bounds on the worst-case performance of this method.

Megiddo's method of parametric search [9, 10] can be used instead, leading to a O(m2n2)

method for the case where only one parameter is varied. While powerful, Megiddo's method

has the drawback that it leads to complex algorithms. Improvements in the running time

are possible by relying on the existence of a parallel algorithm for the problem, but this only

complicates the results further. Here we give an approach that is much simpler than Megiddo's

method and exploits the integer nature of the scoring of sequence alignments.

The main idea of our algorithms is to find the inverse-optimal point in the parameter space

using binary search. Our main contribution is a proof that this simple algorithm converges

quickly.

The rest of this thesis is organized as follows. Chapter 2 gives a 0(mn log n) algorithm for

global alignment without gap penalties. A O(mnlogm) algorithm for global alignment with

gap penalties is described in Chapter 3. Further results are discussed in Chapter 4.

s c 0 r e ¥ a 9 a p i n 1 t i a t i 0 n

R
eg

io
n:

 K
:

O
 .0

00
00

0
to

 1
0.

 00
00

00

Y:
 0

.0
00

00
0

to
 1

0.
00

00
00

IV

I
I

v V
I

of
 a

 ,.
iS

M
tc

h

S
tr

in
g

s:

p
q

ra
x

ab
cs

tv
q

x

y
ax

b
ac

sl
l

A
li

gn
m

en
t

I:

p
q

ra
x

ab
cs

tv
q

x

y
ax

b
ac

sl
l-

-

A
li

gn
m

en
t

II
:

p
q

ra
x

ab
cs

tv
q

x

y
-a

x
b

ac
sl

l-

A
li

gn
m

en
t

II
I:

p
q

ra
x

-a
b

cs
tv

q

x
y

-a
x

b
a
-c

sl
l-

A
li

gn
m

en
t

IV
:

--
--

--
--

--
p

q
ra

x
a
b

c
st

v
q

x

y
a
x

b
a
c
sl

l-
--

--
--

--
--

-

A
li

gn
m

en
t

V
:

p
q

ra
x

--
--

a
b

c
s-

-t
v

q

--
--

x
y

a
x

b
a
-c

sl
l-

--

A
li

gn
m

en
t

V
I:

--
p

q
ra

x
-a

b
c
s-

-t
v

q

x
y

--
-a

x
b

a
-c

sl
l-

--

F
ig

ur
e

1.
1:

 A
 p

ol
yg

on
al

 d
ec

om
po

si
tio

n
of

 th
e

a,
 'Y

 p
ar

am
et

er
 s

pa
ce

sc
o

re

sc
o

re

sc
o

re

re
fe

re
n

ce

re
fe

re
n

ce

(a
)

(b
)

(c
)

F
ig

ur
e

1.
2:

 T
he

 re
la

tio
ns

hi
p

be
tw

ee
n

op
tim

al
 a

lig
nm

en
ts

 a
nd

 r
ef

er
en

ce
 a

lig
nm

en
t

8

2. Global Alignment without Gap Penalty

In this Chapter we consider global alignment where the number of gaps is ignored (T = 0).

Then, the score function is score = w - ax - f3y. Given a reference alignment Ao with wo

matches, xo mismatches and Yo indels, we need to find an inverse-optimal point for Ao in the

a, f3 plane.

Preliminary Results

Theorem 2.1 (Gusfield et al. [7]) Any line forming a boundary between two regions is of

the form /3 = c + (c + 0.5)a, for some c > -1/2.

Corollary 2.1 Suppose (ao, /30) is an inverse-optimal point for reference alignment Ao in the

a,/3 space. Then all points on the line that goes through (-1, -1/2) and (ao,/30) are znverse-

optimal for Ao.

Lemma 2.1 ([7]) The positive /3-axis intersects all the region boundaries.

Lemma 2.2 ([7]) Let A1, A2, ... , Ak be the optimal alignments encountered by f3 axis in order

of increasing /3-value. Then Yi+l <Yi for all Ai(i < k).

An example is shown in Figure 2.1 to illustrate the decomposition properties on the a, f3

parameter space when gap penalties are ignored (T = 0).

Let Ai, Aj be the optimal alignments in two neighboring optimal regions encountered by

f3 axis, with score Wi - axi - f3Yi and Wj - axj - f3Yi· Then the equation of the boundary line

between the regions is:
w·-w· x·-x· /3= i 1+ 1 ia
Yi -yi Yi - Yi

(2.1)

9

A breakpoint along any given line is the point where the line moves between two adjacent

optimal regions.

Lemma 2.3 The length of the interval between any two successive breakpoints along the /3-axis

is greater than l/n2 •

Proof According to Equation (2.1), the boundary line of two neighboring optimal regions

where Ai, A1· are optimal respectively intersects the f3 axis at (0, w;-WJ).
y;-YJ

Let Ai, Aj, Ak (i < j < k) be the optimal alignments in three consecutive optimal regions

when going along the /3 axis and let .6.w1 = Wj-Wk, .6.w2 = Wi-Wj, .6.y1 = Yj-Yk, .6.y2 = Yi-Yj·

Then the interval between two breakpoints on the /3 axis is:

.6./3 = Wj - Wk - Wi - Wj = .6.w1.6.Y2 - .6.w2.6.y1
Yj - Yk Yi - Yj .6.y1.6.Y2

Notice that m - n ::; y ::; m + n, thus .6.y1 + .6.y2 = Yi - Yk::; (m + n) - (m - n) :S2n, therefore

D

Algorithm and Analysis

The main idea of our algorithm is to use binary search on the /3 axis. The details are given

in Algorithm l.

Theorem 2.2 Algorithm 1 correctly solves the inverse parametric alignment problem for global

alignment without gaps in 0(mn log n) time.

Proof From equation (2.1), all breakpoints on the f3 axis lie below (0, n), so it is correct to

restrict the search space to the portion on the /3-axis between (0, 0) to (0, n). Lemma 2.1 and

2.2 guarantee that binary search works for this problem, since the algorithm can decide to go

up or down along the f3 axis according the number of indels.

If the algorithm finds a point (0, {30) such that the optimal alignment A for that point has

the same number of indels as the reference alignment, then (0, {30) is either inverse-optimal

10

(w = wo) or it is approximately inverse-optimal (w =I= wo). Following Corollary 2.1, the

algorithm returns a line.

Lemma 2.3 shows that when the length of the search interval is at most l/n2 , it cannot

contain a complete optimal region. It includes either part of one optimal region (Ahigh equals

Alow) or one breakpoint. In the first case, all points in the remaining search space are ap-

proximately inverse-optimal. In the second case, the breakpoint may be inverse-optimal or all

points in the remaining search space are approximately inverse-optimal. Thus Algorithm 1

gives the correct answer.

Steps 1, 2, 4, 6-14, 17 need 0(1) time; step 16 and 18-28 need O(mn) time; step 5 needs

O(mn) time, and the while statement can loop at most 3 log n times. Therefore, the total time

is 3logn · O(mn) = O(mnlogn). D

s c 0 r e ? a n 1 ~ T I 9 a p e x t e n s I 0 n

R
eg

io
n:

 X
:

0.
00

00
00

 t
o

10
.0

00
00

0
Y:

 0
.0

00
00

0
to

 1
0.

00
00

00

I

II

m

Sc
or

e
of

 a
 11

11 s
11

atc
h

S
ti

n
g

s:

TG
A

CT
CA

CT

CC
AT

GC
AG

A
li

gn
m

en
t

I:

TG
A

CT
CA

CT

CC
A

TG
CA

G
-

A
li

gn
m

en
t

II
:

TG
A

CT
-C

A
CT

C

C
A

-T
G

C
A

G
-

A
li

gn
m

en
t

II
I:

--
-T

G
A

C
T

C
A

-C
T

C

C
A

T
G

-C
--

A
G

--

F
ig

ur
e

2.
1:

 A
 p

ol
yg

on
al

 d
ec

om
po

si
tio

n
of

 th
e

a,
 f3

pa
ra

m
et

er
 s

pa
ce

 w
he

n
'Y

=
0

1-
-'

1-
-'

12

Algorithm 1 Global alignment without gap penalties
1: high= n
2: low= 0
3: while ((high - low) > 1/n2) do
4: mid= low+ (high - low)/2
5: compute the optimal global alignment A(w,x,y) at point (O,mid)
6: if (y ==Yo) then
7: return the line passing through (-1, -~)and (O,mid)
8: else
9: if (y > Yo) then

10: low= mid
11: else
12: high = mid
13: end if
14: end if
15: end while
16: compute optimal global alignments Ahigh• A1ow for points (0, high), (0, low)
17: mid= low+ (high - low)/2
18: if (Ahigh is the same as A10 w) then
19: return the line passing through (-1, - ~) and (0, mid)
20: else
21: compute /30 such that Whigh - f3oYhigh = Wtow - f3oYlow
22: compute optimal alignment A for point (0, /30)
23: if (wo - f3oYo == w - f3oY) then
24: return the line passing through (-1, -~)and (0,/30)
25: else
26: return the line passing through (-1, - ~) and (0, mid)
27: end if
28: end if

13

3. Global Alignment with Gap Penalty

In this chapter we solve the inverse parametric global alignment problem with gap penalties.

There are now three parameters to consider, a, f3 and 'Y· Given a reference alignment Ao with

w0 matches, xo mismatches, Yo indels and zo gaps, we need to find a point on the a, (3, 'Y space

where Ao is optimal or approximately optimal.

Preliminary Results

First, let us describe the boundary lines of the optimal regions in the a, (3, 'Y space.

Theorem 3.1 (Gusfield et al. [7]) Any line forming a boundary between three or more re-

gions is of the form f3 = c + (c + 1/2)a, 'Y = d + da.

Corollary 3.1 Suppose (ao, ,Bo, 10) is an inverse-optimal point in the a, ,B, / space for ref-

erence alignment Ao. Then every point on the line that passes through (-1, -1/2,0) and

(ao, f3o, 10) is inverse-optimal for Ao.

Corollary 3.2 All region boundaries intersect with either the positive ,B, 'Y coordinate plane or

with the positive a, 'Y coordinate plane.

As in Equation (2.1), the boundary line between optimal regions on the ,8, I plane associated

with alignments Ai and Aj has the form

,B Wi - Wj Zi - Zj
= - 'Y

Yi - Yi Yi - Yi
(3.1)

A vertex is the intersection point of three or more optimal regions. Suppose vertex v

is intersection point of three optimal regions whose optimal alignments are A 1, A2, A3. Let

f3v = ~w1~z2 - ~w2~z1
~Y1~z2 - ~Y2~z1

14

and

Finally, let us describe a property of centroids of convex polygons.

(3.2)

Theorem 3.2 (Grunbaum [5]) Let S be a convex body of volume 1 in Rd. Letv1 be the larger

of the two volumes in a division of S by a hyperplane through its centroid. Then v1 :::; 1- (d! 1)d.

Description of the Algorithm

According to Corollary 3.2, if there is an inverse-optimal point on the search space, then

there must be an inverse-optimal point on either the positive /3, 'Y coordinate plane or the

positive a, 'Y coordinate plane. Thus we can search on the /3, 'Y (a = 0) coordinate plane

first. If an inverse-optimal point is found on the /3, / coordinate plane, algorithm terminates;

otherwise, continue to search on the a,/ coordinate plane. If an inverse-optimal point is found

on the a, 'Y coordinate plane, then return it. If there is no inverse-optimal point on the a,/

coordinate plane either, then return an approximate inverse-optimal point.

The algorithm uses the following idea to reduce the search space. Let v = (0, f3v, Iv) be a

point in the remaining search space on the f3, / plane and let Av be the optimal alignment at

v, with Wv matches, Xv mismatches, Yv indels and Zv gaps. If reference alignment Ao is optimal

at v, then v is an inverse-optimal point. Otherwise, suppose Ao is optimal at point (0, /3, 1).

By the optimality of Ao and Av, it follows that:

Wo - f3yo - /Zo ~ Wv - f3Yv - /Zv and Wv - f3vYv - /vZv ~ WO - f3vYO - /vZo.

Therefore,

(Yv - Yo)/3 + (zv - zoh ~ (Yv - Yo)f3v + (zv - zohv (3.3)

If Ao is not an optimal alignment at any point on the /3, /plane, then suppose (0, /3, 1) is

an approximately inverse-optimal point that minimizes the numerical difference between the

score of the optimal alignment and the score of Ao, and that A is optimal at that point. Thus,

15

we have:

(wv - f3vYv - 'YvZv) - (wo - f3vYo - 'Yvzo) ~ (w - f3y - -yz) - (wo - f3yo - -yzo)

and (w - f3y - -yz) ~ (wv - f3Yv - 'YZv)

Therefore

(Yv - Yo)/3 + (zv - zo)'Y ~ (Yv - Yo)f3v + (zv - zo)'Yv,

which is the same as inequality (3.3).

The boundary line l of the halfplane defined by (3.3) passes through v, so l divides the

remaining search space into two regions. The region whose points do not satisfy inequality

(3.3) can be discarded, thereby reducing the search space. Line l becomes a new boundary

line for the remaining search space; we say that this boundary line is defined by point v and

alignment Av· According to the Theorem 3.2, if the centroid of the present search space is

selected as point v, the area of search space will reduce by a factor of at least 4/9.

Using the centroid as described above, we repeatedly reduce the search region on the (3, 'Y

plane until its area is smaller than 1/2m7 • By Theorem 3.3, which is proved later, when the

region is reduced to this size, it cannot include a complete optimal region.

After the binary search terminates, if there exists an inverse-optimal point, there must

exist an inverse-optimal vertex in the remaining search space. From Lemma 3.2, proved later,

the inverse-optimal vertex cannot occur on the boundary line of the remaining search space.

From Theorem 3.4, also proved below, if there exists an inverse-optimal vertex (/3*, -y*) in the

remaining search space, there exist two distinct boundary lines li and h, defined by (/3i,'Yi)

and Ai and by (/32, 'Y2) and A2, such that Ai, A2 that are optimal at (/3*, -y*); that is, (/3*, -y*)

is the intersection of the scores of Ao, Ai, and A2, and we say (/3*, -y*) is located (determined)

by li and 12 or Ai and A2. From Lemma 3.4, if there exists an inverse-optimal vertex in the

remaining search space, when m is big, we can use the two longest boundary lines to locate

that vertex; when mis small enough, we need check different pairs of boundary lines to locate

that inverse-optimal vertex.

The details of the algorithm are shown in Algorithm 2.

16

Algorithm Analysis

To show that Algorithm 2 is correct, we first need to prove some results.

Lemma 3.1 The distance between any two vertices on the (3, 'Y plane is greater than 1/m3 and

the distance between a vertex and a boundary line of optimal regions is greater than 1/m3 .

Proof According to Equation (3.1) and (3.2), select a boundary line l of optimal regions

and a vertex v = (f3v, 'Yv) as:

Then the distance between v and l is:

d = \f3v + /j.zi 'Yv _ /j.wi I · jjj.yi I
jj.yi jj.yi J jj.y[+ jj.z[

Since -m < /j.wi, /j.yi, /j.zi < m, when d > 0, d > 1/m3

Since the distance between any two vertices should be greater than the distance between

a vertex and a boundary line of an optimal region, the distance between any two vertices is

greater than 1/m3 . D

Theorem 3.3 The area of any complete optimal region on the (3, 'Y plane is greater than 1/2m6

Proof A complete optimal region is composed of at least three vertices. Suppose the min-

imal complete optimal region is made with 3 vertices, then it is a triangle. By Lemmas 3.1,

the base of this triangle has length greater than 1/m3 and the height of this triangle is greater

than 1/m3 . Therefore, the area is greater than ~ · ~ · ~ = 1/2m6 . D

The precondition for the following results is that the area of the remaining search space is

smaller than 1/2m7 •

17

Lemma 3.2 The inverse-optimal vertex cannot be on the boundary of the remaining search

space.

Proof Assume that the reference alignment is Ao(wo, yo, zo), that the inverse-optimal vertex

([3*, 1*) is on a boundary line l of the remaining search space, and that the boundary line l

is defined by (f3v,/v) and alignment Av(wv,Yv,zv). Notice that Ao is not optimal at (f3v,/v),

then ([3*,1*) =f (f3v,/v)· Since ([3*,1*) is on l, according to Equation (3.3), we have:

(yv - Yo)f3* + (zv - zo)T* = (Yv - Yo)f3v + (zv - zohv

By the optimality of Ao and Av, we have:

{3* * > {3* * d f3 f3 wo - Yo - 'Y Zo _ Wv - Yv - 'Y Zv an Wv - vYv - /vZv > Wo - vYo - /vZo.

Therefore,

(Yv - Yo)f3* + (zv - zoh* > (Yv - Yo)f3v + (zv - zohv

Equations (*), (**) are contradictory, so the assumption is wrong. Thus, the inverse-optimal

vertex cannot be on any boundary line. 0

Lemma 3.3 Suppose reference alignment Ao(wo,yo,zo) is optimal at vertex ([3*,1*) in the

remaining search space. Let l be a boundary line of the remaining search space defined by

(f3v, /v) and alignment Av. If Av is not optimal at ([3*, 1*), then the distance between ([3*, 1*)

and l is greater than 1/m3 .

Proof According to inequality (3.3), the boundary line l is

(Yv - Yo)f3 + (zv - zoh = (Yv - Yo)f3v + (zv - zohv

Suppose Av is not optimal at ([3*, 1*). From the optimality of Ao and Av, we have:

Wo - f3*yo - 1* zo = Wv - f3*yv - 1* Zv + ~c1, ~c1 > 0

Wv - f3vYv - /vZv = Wo - f3vYO - /vZo + ~c2, ~C2 > 0

18

Adding (**) and (***) we obtain

(Yv - Yo)f3* + (zv - zoh* = (Yv - Yo)f3v + (zv - zohv + ~c1 + ~c2

Equations (*) and (****) define two parallel lines, and (****) passes through ((3*, 1*). Thus

the distance between ((3*, 1*) and line l equals the distance between line (* * * *) and line l.

Hence the distance is:

d = ~c1 + ~c2 . Yv - Yo
Yv - Yo J(yo - YvF + (zo - zv)2 V(Yo - Yv) 2 + (zo - zv)2

According to (**), ~c1 = wo - Wv - (yo - Yv)f3* - (zo - zvh* > 0

Since ((3*, 1*) is a vertex, according to Equation (3.2) it is given by an expression of the

form:
(3* = ~W1~z2 - ~W2~Z1

~Y1~z2 - ~Y2~z1

It is clear that ~c1 > 1/m2, then

1 1 1
d> >

m 2 . V(Yo - Yv) 2 + (zo - zv) 2 m 3

0

Theorem 3.4 If there exists an inverse-optimal vertex ((3*, 1*) in the remaining search space,

then there exist two boundary lines that are defined by ((31, 11), where alignment A 1 is optimal,

and ((32,12), where alignment A2 is optimal, and alignments A1,A2 are optimal at ((3*,1*).

Proof Suppose reference alignment Ao is optimal at vertex ((3*, 1*) in the remaining search

space.

Assume that no boundary line that is defined by (f3i, Ii), alignment A and Ai is optimal at

((3*, 1*). Then from Lemma 3.3, the distance between ((3*, 1*) and any point on the boundary

of the remaining search space is greater than 1/m3 . Hence the area of the remaining search

space is greater than 1/m6 . But the area of the remaining search space is smaller than 1/2m7 ,

a contradiction. So there exists at least one boundary line that is defined by ((31 , 11), alignment

A1 and A1 is optimal at ((3*, 1*).

19

If there is only one boundary line that satisfies the above requirements, we can find a con-

tradiction from similar reasoning. Thus there exist at least two boundary lines that satisfy

above requirements. 0

Lemma 3.4 If there exists an inverse-optimal vertex in the remaining search space, then when

m > 80, it can be located using the two longest boundary lines.

Proof Suppose that there exists an inverse-optimal vertex in the remaining search space.

Notice that if the distance of the two farthest points on the boundary is smaller than 1/m3 ,

then any two boundary lines can be used to locate the inverse-optimal vertex (according to

Lemma 3.3).

Since the search space can be initially restricted to 0 :::; f3 :::; m 2 , 0 :::; -y :::; m 2 , the area

of remaining search space is smaller than 1/2m7 , and every iteration reduces the search by

at least 4/9 and increases the number of boundary lines by at most one, there are at most

logg 2 + 11 logg m boundary lines of the remaining search space.
5 5

If the length of a boundary line l is more than 1/m4 , then l can be used to locate that

inverse-optimal vertex. Thus if the lengths of the two longest boundary lines are greater than

1/m4 , then the inverse-optimal vertex can be located by them. If there are no two boundary

lines whose lengths are greater than 1/m4 , then the distance of the two farthest points on the

boundary is smaller than d = (logg 2 + 11 logg m) · ~- When m > 80, d < ~' thus the two
5 5

longest boundary lines can be used to locate the inverse-optimal vertex too. 0

Now we prove the correctness of Algorithm 2 and analyze its running time.

Theorem 3.5 If there exists an inverse-optimal point on the /3, -y coordinate plane, then Al-

gorithm 2 can find it in O(mnlogm) time.

Proof According to Equation 3.2, the maximum coordinate for a vertex is (m2 ,m2). Thus,

we can restrict the search space to 0 :::; f3 :::; m2 , 0 :::; -y :::; m2 . If the algorithm finds an

inverse-optimal point (f3v, 'Yv) during the binary search, it returns a line. Theorem 3.3 shows

20

that when the area of the remaining search space is smaller than 1/2m7, it cannot include a

complete optimal region. At this time, if there exist inverses an optimal point, it can not occur

in a complete optimal region; it can only occur at a single vertex or single boundary line of the

optimal regions. When the inverse optimal points occur on the boundary line of the optimal ·

regions, there are two inverse optimal vertices. So at this time binary search terminates and

the algorithm begins to check the vertices in the remaining region. From Lemma 3.2 the

inverse-optimal vertex cannot occur on the boundary. If there exists an inverse-optimal vertex

in the remaining search space, from Theorem 3.4 and Lemma 3.4, steps 11-32 can find it. So

if there exists inverse-optimal point on /3, 'Y coordinate plane, Algorithm 2 can find that point.

The initial area of search space is m4 ; the binary search terminates when the area is less

than 1/2m7• Every iteration reduces the area of search space by at least 4/9 and increases

the number of boundary lines by at most 1, so there are O(logm) iterations and O(logm)

boundary lines. In every iteration, the algorithm computes one optimal alignment which takes

O(mn) time. Thus steps 1-10 need O(mnlogm) time. Step 11 needs O(logm) time, since

there are 0 (log m) intersection points on the boundary and the two farthest points must both

be intersection points. Steps 12-13 need O(logm) time, since there are O(logm) lines on the

boundary of the remaining search space. Function checkvertex needs O(mn) time, then steps

15-16 needs O(mn) time. In step 17-32, since m < 80, we can consider the number of different

pairs of boundary lines as constant, then the time needed is O(mn). Thus the total time need

by Algorithm 2 is O(mnlogm). D

Algorithm 2 also works for searching on the a, 'Y plane, only that, in step 35, when we have

found that the reference alignment cannot be optimal on the a, 'Y coordinate plane, we need to

return the centroid of the remaining search space as an approximately inverse-optimal point.

21

Algorithm 2 Global alignment with gap penalties

1: set the search space R = {(O, ,B, 1) IO ::; ,B ::; m 2 , 0 ::; / ::; m 2}

2: while (Area(R) > 1/2m7) do
3: compute the centroid v(,Bv, 'Yv) of search space R
4: compute the optimal global alignment Av at point v on ,B, 'Y space
5: if (Av is the same as Ao) then
6: return the line passing through (-1, - ~, 0) and (0, ,Bv, 'Yv}
7: else
8: R ~ Rn the halfplane defined by Equation (3.3)
9: end if

10: end while
11: d = max{luvl !u,v are points on the boundary of R}
12: 11 = the length of the longest boundary line of R
13: 12 = the length of the second longest boundary line of R
14: if (d < 1/m3 or 12 ~ 1/m4 or m > 80) then
15: alignments A1,A2 define the boundary line l1,l2
16: checkvertex(A1, A2, R)
17: else
18: if (li ~ 1/m4) then
19: store all boundary lines of R except 11 into stack S
20: alignment A 1 defines the boundary line li
21: while (S is not empty) do
22: pop a boundary line defined by alignment A2 from S
23: checkvertex(A1,A2,R)
24: end while
25: else
26: store all pairs of different boundary lines of R into stack S
27: while (S is not empty) do
28: pop a pair of boundary lines defined by alignments A 1 , A2 from S
29: checkvertex(A1, A2, R)
30: end while
31: end if
32: end if
33: continue search on a, 'Y plane

Function 1 checkvertex(A1 , A2, R)

1: compute (,8, i') so Ao, A1 , A2 have same score at (,8, i')
2: if ((,8,)') is in R) then
3: compute the optimal global alignment A at point (,8, i')
4: if (A and Ao have same score at (,8,i)) then
5: return the line passing through (-1, -~, 0) and (0, ,8, i')
6: end if
7: end if

22

4. Further Results and Open Problems

In this Chapter, we give the algorithm for inverse parametric local alignment without gaps

problem and discuss the futures work.

The inverse local alignment problem without gaps (T = 0) asks to find an inverse-optimal

or approximately inverse-optimal point on the a, /3 coordinate plane. This problem can be

solved by slightly modifying Algorithm 2 of Chapter 3.

Note that in this case, we search over the a, /3 coordinate plane. Similar to equations

(3.1),(3.2),(3.3), the boundary line between optimal regions on the a, /3 plane has the form

Wi - Wj Yi - Yj /3 a= - ,

vertex v on the a, /3 plane has the form

Xi - Xj Xi - Xj

and f3v = .6.w1 .6.x2 - .6.w2.6.x1
.6.y1 .6.x2 - .6.y2.6.x1

and the inequality used to reduce the search space has the form

(xv - xo)a + (Yv - Yo)/3 2: (xv - xo)av + (Yv - Yo)f3v

(4.1)

(4.2)

(4.3)

Lemmas 3.1, 3.2, 3.3, 3.4 and Theorems 3.3, 3.4 all hold for the a, /3 plane. Thus we can

modify Algorithm 2 as follows: search on the a, /3 plane instead of the /3, 'Y plane; compute the

local alignment instead of global alignment. Details are given in Algorithm 3. The algorithm

analysis in Chapter 3 implies that this algorithm runs in 0(mn log m) time.

An open problem is to extend our binary search strategy into fixed-dimensional space. For

example, this could lead to an efficient algorithm for inverse local alignment with gaps, which

is a search problem in the three-dimensional a, /3, 'Y space.

23

Algorithm 3 Local alignment without gap penalties

1: set the search space R ={(a, !3)10 ~a~ m 2, 0 ~ f3 ~ m 2}

2: while (Area(R) > 1/2m7) do
3: compute the centroid v (av, f3v) of search space R
4: compute the optimal local alignment Av at point v on a, f3 space
5: if (Av is the same as Ao) then
6: return the point (av, f3v)
7: else
8: R +- Rn the halfplane defined by Equation (4.3)
9: end if

10: end while
11: d = max{luvl ju,v are points on the boundary of R}
12: Li = the length of the longest boundary line of R
13: 12 = the length of the second longest boundary line of R
14: if (d < 1/m3 or 12 ~ 1/m4 or m > 80) then
15: alignments A1, A2 define the boundary line l1, l2
16: checkvertex(A1,A2,R)
17: else
18: if (11 ~ 1/m4) then
19: store all boundary lines of R except l1 into stack S
20: alignment Ai defines the boundary line Li
21: while (S is not empty) do
22: pop a boundary line defined by alignment A2 from S
23: checkvertex(A1, A2, R)
24: end while
25: else
26: store all pairs of different boundary lines of R into stack S
27: while (S is not empty) do
28: pop a pair of boundary lines defined by alignments A1, A2 from S
29: checkvertex(A1,A2,R)
30: end while
31: end if
32: end if
33: return the centroid of the remaining search space R

Function 2 checkvertex(A1, A2, R)

1: compute (&,fi) so Ao,A1,A2 have same score at (&,fi)
2: if((&, fi) is in R) then
3: compute the optimal local alignment A at point (&, fi)
4: if (A and Ao have same score at (&, fi)) then
5: return the point (&, fi)
6: end if
7: end if

24

Acknowledgments

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, Dr.

David Fernandez-Baca for his guidance, patience and support throughout this research and

the writing of this thesis. His insights and words of encouragement have often inspired me

and renewed my hopes for completing my graduate education. I would also like to thank my

committee members for their efforts and contributions to this work: Dr. Soma Chaudhuri, Dr.

Srinivas Aluru and Dr. Govindarasu Manimaran. I would additionally like to thank Dr. Wei

Yu for his help throughout my research.

25

Bibliography

[1] A. Apostolico and R. Giancarlo. Sequence alignment in molecular biology. Journal of

Computational Biology, 5(2):173-196, 1998.

[2] D. Eppstein. Setting parameters by example. Proc. 40th Symp. Foundations of Computer

Science, IEEE, pages 309-318, 1999.

[3] D. Fernandez-Baca, T. Seppiiliiinen, and G. Slutzki. Bounds for parametric sequence

comparison. Discrete Applied Mathematics, 2002, to appear.

[4] W. Fitch and T. F. Smith. Optimal sequence alignments. Proceedings of the National

Academy of Sciences of the USA, 80: 1382-1386, 1983.

[5] B. Grunbaum. Partitions of mass distributions and of convex bodies by hyperplanes.

Pacific Journal of Mathematics, 10:1257-1261, 1960.

[6] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-

tational Biology. Cambridge University Press, Cambridge, New York, Melbourne, 1997.

[7] D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of sequence

alignment. Algorithmica, 12:312-326, 1994.

[8] D. Gusfield and P. Stelling. Parametric and inverse-parametric sequence alignment with

XPARAL. Methods in Enzymology, 226:481-494, 1996.

[9] N. Megiddo. Combinatorial optimization with rational objective functions. Mathematics

of Operations Research, 4:414-424, 1979.

26

[10] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.

Journal of the ACM, 30(4):852-865, 1983.

[11] D. Sankoff and E. J. Kruskal. Time Warps, String Edits, and Macromolecules: the theory

and practice of sequence comparison. Addison- Wesley, 1983.

[12] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, 147:195-197, 1981.

[13] M. Vingron and M. Waterman. Sequence alignment and penalty choice: review of con-

cepts, case studies, and implications. Journal of Molecular Biology, 235:1-12, 1994.

[14] M. S. Waterman. Parametric and ensemble sequence alignment. Bulletin of Mathematical

Biology, 56(4):743-767, 1994.

[15] M. S. Waterman, M. Eggert, and E. Lander. Parametric sequence comparisons. Proceed-

ings of the National Academy of Sciences of the USA, 89:6090-6093, 1992.

