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Eddy current techniques for nondestructive testing play a 
significant role in a variety of industries for evaluating the integrity 
of products. Any nondestructive testing system consists of five major 
functions as shown in Fig. 1. The test object to be examined is energized 
by an excitation transducer . The response of the energy-specimen 
interaction is picked up by a receiving transducer. The received signal 
is then processed and analyzed for defect characterization or Inversion. 
The ultimate goal of an NDT system is the inverse problem of determining 
the defect profiles in the test object, given the measurements from the 
receiving transducer. The defect characterization scheme is generally 
based on the solution of the partial differential equations governing the 
energy- test specimen interaction. As seen in Fig. 1 one of the primary 
steps involved in the inverse problem solution is that of signal 
conditioning. Pre-processing of signals is essential in certain 
situations in order to extract the true defect signal from the measured 
data. This paper describes the signal conditioning aspect of the inverse 
problem in the context of steam generator tube inspection using eddy 
current method. 
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Fig. 1. Functional units of a generic NDT system. 
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NEED FOR MULTIFREQUENCY EDDY CURRENT TESTING 

Steam generators are the heat exchange units in a nuclear power 
plant. Each unit shown in Fig. 2 contains a large number of Inconel tubes 
through which the primary coolant from the reactor circulates. The heat 
from the primary coolant is transferred to a mixture of high pressure 
steam and water circulating outside the tubes. The steam generator tubes 
are anchored at intervals by support plates made of carbon steel. The 
support plates react with the steam and water and result in corrosion 
products that are deposited in the crevice gap between the tube and the 
support plate. The growth of this deposit over a period of time leads to 
denting and cracking of the tubes which can result in the contamination of 
the secondary coolant by the radioactive primary coolant . It is therefore 
of critical importance to evaluate the integrity of the tubes at regular 
intervals so that the anomalies can be detected in early stages. 

The differential eddy current probe is one of the commonly used 
device for detecting defects in steam generator tubing [1]. The 
principles of operation of the eddy current method are reported in a 
number of papers [2,3] . Briefly, the eddy current method consists of 
exciting the probe by an alternating source of current and measuring the 
terminal impedance of the probe coil as it scans the test specimen. Fig. 
3 shows a typical differential eddy current probe signal due to an O.D. 
slot in the tube wall. 
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Fig . 2. Steam generator unit . 

Fig. 3. A typical eddy current probe signal due to a defect in the tube 
wall. 
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Conventional eddy current inspection techniques involve the use of 
eddy current probe responses due to a single excitation frequency. One of 
the limitations inherent in single frequency testing [4] is the 
sensitivity of the response signal to a variety of test variables such as 
specimen electrical conductivity, magnetic permeability, test specimen 
thickness, coupling between probe coil and specimen resulting in unwanted 
contributions to the signal as the probe moves along the tube. Since the 
defects in the steam generator tubes occur invariably in the vicinity of 
the support plates, the resulting eddy current response is generally 
complex as seen in Fig. 4 caused by the vector addition of the 
contributions from defects, support plates, proble wobble and so on. It 
is therefore important to extract the desired defect information from the 
complex signal. This is accomplished using the multifrequency eddy 
current test method. 

2 . 0 

1.5 -

1.0 

.5 

j 0 

-.5 

-t.o 

-t.s 

fteelel.once 

Fig . 4. Eddy current signal due to a defect in the vicinity of a support 
plate. 

MULTIFREQUENCY EDDY CURRENT TESTING 

Libby [2] developed the multifrequency eddy current test method 
where eddy current data is collected at several frequencies. The 
increased amount of information is analyzed by multifrequency techniques 
where the data from individual frequencies are combined in such a way that 
unwanted contributions are suppressed and relevant defect signals are 
retained. The extraneous test variable suppressed may be ferromagnetic 
tube supports, tube sheet, tube I.D. noise, small dents or combinations of 
all these variables. 

Currently these principles have been implemented using mixing 
modules in which eddy current signals at two frequencies are mixed 
appropriately. The in-phase and quadrature components are combined 
line:arly for selectively suppressing an unwanted test parameter [5]. 
However, the complexity of the design and problems of optimizing the 
combination parameters increases as the number of parameters and 
frequencies increase. 

An alternate approach for implementing the multifrequency eddy 
current algorithm using affine transformations is proposed here. This 
approach is similar to pro~edures used in image registration and can be 
formulated in the time domain as well as the frequency domain, as 
described on next page. 
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MULTIFREQUENCY EDDY CURRENT ANALYSIS USING AFFINE TRANSFORMATIONS 

The fundamental assumption made in the multifrequency eddy current. 
analysis is that eddy current signals at two frequencies are RST 
(rotation, scaling, translation) transformations of each other. 

The steps involved in the analysis of the eddy current data at two 
different frequencies are described below, for suppressing the 
contribution due to the support plate . 

1. Let ~a and ~b be the support plate signals at frequencies fa and 
fb . 

2. Let ~b - {T} ~a where the transformation T is a function of 

s : scaling in X direction 
X 

s : scaling in y direction y 

t : translation in x direction 
X 

t : translation in y direction y 

tf; : rotation about the origin 

Estimate the transformation parameters using ~a and ~b 

3. Let ga and gb be the composite (support plate+ defect) signals 
at frequencies fa and fb. 

4. Then the defect signal 

- T • gf 
a 

Time Domain Implementation 

In time domain , the basic transformation of rotation scaling and 
translation (RST) can be combined to yield a single transformation matrix 
[6]. 

T = [ _:x:::: :y:~:: l (1) 

S (t co~8 - t sin8) S (t sln8 + tycos8) 
X X y y X 

Using the support plate signals ~ and ~b' the transformation parameters 
are obtained by least squares estfmation procedure, i.e. by minimizing 
the error function 

E = II ~b- T • ~a 112 (2) 

with respect to the transformation parameters. This results in a set of 
five nonlinear equations to be solved simultaneously [6]. 

Initially the method was implemented using only rotation and 
scaling parameters (8, S , S ) and the results of implementation looked 
very promising [6] . An alte¥nate method for estimating the 
transformation parameters is in the frequency domain via the Fourier 
descriptors [7]. 

Frequency Domain Implementation 

The principal advantage of this method is that in the frequency 
domain, the transformation equations are decoupled in the parameters and 
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significantly easier to solve. In order to implement the transformation 
in the frequency domain the signals are first represented in the 
frequency domain using the Fourier descriptors [7]. 

Since the impedance plane trajectories obtained from eddy current 
probes are closed curves, a point (x,y) on the signal can be represented 
as a function of the arc length 1 (from an arbitrary starting point), in 
terms of the complex contour function 

u(i) - x(i) + j y(i) (3) 

Since 

u(i) - u(i) + L) (4) 

where L is the total arc length, the periodic function u(i) can be 
expanded in a Fourier series 

u(1) - 2 
n=-oo 

where the Fourier series coefficients 

c 
n 

1 

L 

L 

f 0 u(i) e-j2~ni/L di 

(S) 

(6) 

The linearity property of the Fourier series expansion yield a simple 
relation between the Fourier series coefficients of two curves that are 
transformed versions of each other . Let r be a simply closed curve with 
Fourier series coefficients (C }. Let r' be obtained by rotation (9), 
scaling (s) and translation (p~ of the curve r. Let (C '}be the Fourier 
series coefficients of r' . -n 

Using properties of Fourier transform the relation between 

(~} and (~} is given by 

c , 
0 

c , 
n n = 1,2, 

(7) 

(8) 

The transformation parameters s, 9, and p for the multifrequency 
algorithm are obtained by considering just one of the Fourier series 
coefficients of the two support plate signals at frequencies fa and fb . 

RESULTS 

The results of implementing the proposed algorithm using time 
domain equations are presented in [6]. The estimation of the 
transformation parame ters in frequency domain using just one of the 
harmonics, is less optimal than in the time domain where the parameters 
are obtained using least squares estimation. Some initial results of the 
frequency domain implementation are presented. Fig. Sa and Sb are the 

finite element predictions of the support plate signals at frequencies 
100KHz and SO KHz respectively. Representing these signals by the 
complex contour function, the Fourier series expansion was computed. The 
Fourier series coefficients were used to determine the transformation 
parameters sand 9 using Eqn . (8). Since these signals were obtained 
using the finite element model, translation was neglected. 
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Fig . 5. Eddy current probe signal of a support plate at (a) 100KHz 
(b) 50KHz (c) Signal in (b) transformed. 

The transformation parameters s and ~ were used to transform the 50 
KHz signal and the transformed signal is presented in Fig. Sc. The next 
step was to generate a composite signal due an O.D. slot located in the 
vicinity of a support plate . The composite signals at 100 KHz and 50 KHz 
are shown in Figs. 6a and 6b respectively. Using the transformation 
parameters estimated earlier, the signal in Fig. 6b was transformed as 
seen in Fig. 6c . Subtracting the signal in Fig. 6c from the signal in 
Fig. 6a the resulting defect signal due to the O.D. slot alone is shown 
in Fig. 6d. The finite element prediction of the defect signal due to 
the O.D . slot, shown in Fig. 7, compares reasonably to the signal in Fig. 
6d . 

334 



w
 

w
 

U
1 

I
i
I
 
i
I
i
 

I 
a 

I 
a 
i
I
I
 

····-
-

····-
-

a•
ao

-e
 ··-· 0 -··-
· 

-z
•a

o-
e 

-····
--

-····
-· 

a 
-•

·••
-•

 ~
~
 

__
_.
..
_,
..
,.
_'
-:
:'
-.
..
.,
._
~~
--
'-
:!
~ 

\
\
\
\
\
't

.1
r
 -

\'
t.

't
.i

't
.\

\ 
~ 

~ 
~ 

T
 
~ 

' 
! 

I 
I 

-
~ 

c 

X
 

••
IQ

-1
1

 [
' 

o 
o 

o ~
:
.
:
:
:
:
:
:
:
:
:
:
:
:
'
I
 0

0 
o 

O
j 

o 
o 

o 
O

j 
o 

o 
o 

0 
I 

0
0

 0
0

 j
O

 
o 

o 
o 

jO
 
o 
"
]
 

.....
 -• .... -
-

a•
ao

-•
 

ao
-•

 

Q
 -··-
-

-a
 ...

 o-
a 

-····
--

-····
-· 

b 
_ .

..
. -

.t
o

o
o

 
I 

o
o

o
lo

o
o

o
l 

o
o

o
lo

 
I 
::

::
::

--
.~

0 
i 

~
 

\ 
~
 
~ 

\ 
D

 
't. 

~
 
~
 

't.
 
~
 

~ 
' 

~ 
~ 

~ 
I 

a 
~ 

I 
~ 

d 

X
 

••
1

0
-1

1
 r 

O
h

iO
"
 h

 
•:

::
:;

::
::

;:
: 
!l

 o
 
"
::

::
::

::
:'

"
 O

lh
 o

o 
I 

00
 o

o 
iO

 o
"
 I

 o
o 

oo
 I

 0
0 
"J

 
.....

 -• 
.....

 -• 
Z

ll
ll

O
-a

 ··-· -a
o-

• 

-a
•a

o-
• 

-a
 III

lo
-•

 

-····
-· 

....
.. -.

io 
0 

0 
t." 

0 
'i

 .....
.. 't 

:!
 

, 
:!

 
, 

'I'
 

'II 
iji

 
~
 
l 

i 
i 

X
 

1
2

M
l0

-·
 L

 •
 

I 
• 

I 
0 

I 
IO

M
IQ

-8
 

1 
I 

I 
I 

; 
.
.
.
.
.
.
.
 

o 
o 

I 
0 

I 
o 

I 
o 

~ 

.....
 -

tll
liA

-e
 

a"
'o

-'
 

0 

-2
M

i0
-·

 

_ ....
... 

-a
-a

o-
e 

_, ..
.....

 
-1

01
11

10
-a

 

-•a
 ....

... ~
.
.
.
.
_
.
_
o
.
-
J
.
_
.
_
_
_
.
_
_
.
~
_
.
_
_
_
.
_
.
.
.
.
.
.
_
-
4
-
.
.
.
.
_
 • .
.
.
_
~
~
 ....

... ~
..
..
..
..
J 

~ 
' 

\ 
~ 

\ 
-

\ 
! 

\ 
i 

\ 
X

 

F
ig

. 
6

. 
C

o
m

p
o

si
te

 
(s

u
p

p
o

rt
 

p
la

te
 

+
 

O
.D

. 
d

e
fe

c
t)

 
ed

d
y

 
c
u

rr
e
n

t 
si

g
n

a
l 

a
t 

(a
) 

lO
O

K
H

z 
(b

) 
50

K
H

z 
(c

) 
si

g
n

a
l 

in
 

(b
) 

tr
an

sf
o

rm
ed

 
an

d 
(d

) 
si

g
n

a
l 

in
 

(a
) 

-s
ig

n
a
l 

in
 
(c

).
 



ZIIMio-11 

ZO><Io-11 

I!IMI0-11 

IO•Io-11 

&><lo-ll 

0 

-S•Io-11 

-10><10-11 

-I!IMI0-11 

-ZO•Io-11 

-ZSMIQ-11 

b b 
11' 11' 
'r ,. 

X 

Fig . 7. Eddy current signal due to an O.D. defect. 

CONCLUSIONS 

The results show the feasibility of the approach for suppressing 
the support plate contribution in a composite signal, obtained when a 
defect in the tube wall is in the vicinity of the support plate. The 
method is robust and the computational burden is low, particularly in the 
frequency domain implementation . However, the error introduced in the 
time domain algorithm is considerably lesser due to the more optimal 
nature of the least squares estimation procedure as opposed to the 
frequency domain algorithm where the parameter estimation was done using 
just one harmonic of the signals. Further research needs to be done on 
various combinations of defect, support plate and other extraneous 
effects. 

REFERENCES 

1. W. Lord, EPRI NP 2026, Electric Power Research Institute, Palo Alto, 
California, September, 1981. 

2. H.L . Libby, Introduction of Electromagnetic Nondestructive Test 
Methods (Krieger Publishing Co., New York, 1979). 

3 . R. Palanisamy, Ph.D . Dissertation, Colorado State University, 1980. 
4. C.V . Dodd and W.E. Deeds , in Eddy Current Characterizat ion of 

Materials and Structures. edited by G. Birnbaun and G. Free 
(American Society for Testing and Materials, 1981). 

5. S.D . Brown in Eddy Current Characteristics of Materials and 
Structures, edited by G. Birnbaum and G. Free (American Society for 
Testing and Materials, 1981). 

6. J. Stolte, L. Udpa and W. Lord, in Review of Progress in 
Quantitative Nondestructive Evaluation. edited by D.O. Thompson and 
D.E. Chimenti (Plenum Press, New York, 1982) , Vol 7A , pp. 821-830. 

7. S.R . Satish, Ph.D. Dissertation, Colorado State Universi t y, 1983. 

336 




