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I. INTRODUCTION 

The analysis of steady and transient stability with automatic control 

devices constitutes the most important tool for judging the system 

performance in the present day. Oscillations of power flow between 

synchronous machines have been known to be present not only in the 

transient state, but also in the steady state. Theoretically no such 

oscillations exist in the steady state, however power systems in the 

steady state cannot be adjusted continuously to meet new conditions as 

there are disturbances of small or large size. 

The study of power system stability under transient conditions is a 

tedious task because the differential equations of motion describing even 

the simplest system are nonlinear. The general approach has been to 

obtain a time solution and to observe if the system is stable or not by 

inspecting the first and subsequent swings. The amplitude of these swings, 

whether increasing or decreasing, determines the magnitude of the sus

tained oscillation and the ability of the system to be stable when 

operating in the dynamic region. 

It is the purpose of this dissertation to analyze the characteristics 

of the following factors under transient conditions : 

1. Excitation system response 

2. Synchronous machine and connected system characteristics 

3. Governor response 

These components are interrelated and the interrelation is quite 

complex. The effects of each component will be discussed independently, 

and then the combined results will be evaluated. 
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For the purpose of this study, the system shown in Fig. 1 is taken to 

"be representative of the problem. It consists of a synchronous machine 

(S) driven "by a turbine (T) which is controlled by a governor (G) to respond 

for any speed variation 6, and the generator is electrically connected to 

a load system. The differential equation defining the behavior of the 

synchronous generator subjected to a small power pulsation due to a 

sudden change in electrical output power of the machine is 

™ + D I = Pin(5) ' Pout<5) = V 6 )  W  

where 

M is the inertia of the generator which is assumed to be constant 

D is the damping power coefficient of the system, described on 

page 18 and 23 

P. is the mechanical input power 
in 

PQut is the electrical output power 

P^ is the accelerating power 

6 is the angular rotor position 

In the above equation it is assumed that the oscillations are very 

small so that P^^(ô) may be assumed to be a linear function of 6 and 

not sin 5. In Fig. 1 it should be assumed that the controller feedback 

loop is open so that P. (ô) is constant. 

The solution of Equation 1 can be written as 

„ ™ + rïL . ÎEft 
S(t) = A e 2M " bV? M (2) 

where A is a constant depending on the initial conditions. 

P rf 
Since is greater than due to the fact that the damping 

M #r 

coefficient is usually less than the accelerating coefficient, then 
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Pig. 1. System-line diagram. 



k 

Equation 2 can "be written as 

- — t P o 
ô(t) = B e m cos -]t (3) 

W 

Equation 3 describes the motion of the system following a disturbance. 

It is seen that if D is equal to zero, the angular oscillation would 

simply continue at its initial amplitude, and also if D is negative, the 

amplitude of oscillation would build up with time, but in practical 

cases the damping coefficient is positive which will help in decaying the 

oscillation rapidly. 
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II. REVIEW OF LITERATURE 

Stability oscillation in interconnected power systems has "become 

more evident during the last fifty years, and during this period power 

systems have grown to such dimensions that special measures have had to 

be taken and special designs introduced in order to ensure a maximum of 

reliability. Very large blocks of powers are now transmitted over long 

distances, so it is becomming more likely for disturbances to happen and 

oscillations will become more significant. However, in order to prevent 

instability during a reasonable disturbance, a line capacity must be 

provided to permit sufficient transfer of synchronizing power over the 

tie-line. This immediately implies that ties between systems should be 

designed, not only for the economic normal interchange power, but also 

to handle the required synchronizing power. In other words, the question 

of stability limit is the major key in judging the system performance. 

Kimbark (l, 2), Crary (3,4), and Dahl (5) give excellent discussion of the 

various aspects of transient and steady state stability limits. 

Since the problem of power system stability is to determine whether 

or not the various synchronous machines on the system will remain in 

synchronism with one another, the characteristics of these machines 

obviously play an important part in the problem, and many notable papers 

have been written on this subject. 

In the period from 1923 to 1928 the solution for a three-phase short 

circuit of a cylindrical-rotor machine was accomplished by Bakku, 

Biermanns, Dreyfus, and Lyon (6) under these assumptions: (l) The total 

armature self inductance is constant, (2) the rotor has only one circuit, 
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(3) the saturation is negligible. Their work was the first step in 

evaluating the armature reactance of synchronous machines. 

Doherty, R. E. and Nickle, C. A. ( 7 )  published a paper in 1928 for 

the solution of single phase short circuits for salient and non salient-

pole machine. In their paper they assumed the self inductance is variable 

with respect to the rotor position, and the author believes that their 

brilliant work was a major advance in analyzing the machine character

istics during the transient period. 

In 1929, Park, R. A. (8) published a paper presenting a generalization 

and extension of the work of Blondel, Dreyfus, Doherty and Nickle (7). He 

established a new and general method of calculating current and torque of 

a salient-pole machine in transient state. In 1933 (9), he published a 

paper for evaluating the damping torque coefficient of a rotor in 

transient state condition, he concluded in his paper that this damping 

torque is similar to the torque produced by an induction motor due to the 

difference in slip. 

Wagner, C. E. (10) published a paper in 1931 for the damper winding 

in water wheel generators. He discussed the effects of damper windings 

upon both real and reactive components of the negative sequence impedance. 

In 1957 (ll) Concordia, C. published a paper for the analysis of 

non salient-pole machine in terms of direct and quachature quantities in 

the case when any balanced impedance is connected to the armature 

terminals, in i960, (12) he published a paper which he considered as 

expressing the results of the previous paper in more convenient form. 

He concluded that the effect of the air-gap and rotor surface curvature 
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is very small, and a large solid-rotor machine develops a relatively 

large damping torque, and the resistance of the machine should "be taken 

into account for calculating the proper value of subtransient impedance. 

In I95O (13) Concordia, C. published a paper for the analysis of synchro

nous machine damping and synchronizing torques, and the object of his 

work was to present the results of some calculations of damping and 

synchronizing torque coefficients which were calculated by Park ( 9 )  

with fixed excitation systems. He concluded in his paper that for any 

fixed value of armature resistance of the machine with armatessier winding, 

the damping coefficient never decreases, and usually increases with 

decreasing external line reactance in the range of system parameters 

studied. 

A great deal has been written about the effects of excitation 

response on stability. Before modern quick-operating circuit breakers 

and relays were developed, the transient stability limits of a system was 

low as compared to the steady state limit. As a result, studies were 

made in those days which lead to improving the power limits by high 

speed excitation response. 

Doherty, R. E. (l4) published a paper in 1928 on excitation systems, 

and their influence on short circuits and maximum power. He discussed 

the advantage and disadvantage of quick response excitation upon short 

circuit current and internal voltage of a synchronous machine. He 

concluded that fast excitation systems may increase the transient 

stability limit by 10$. 

Bothwell, F. E. (15) wrote a paper in 1930 on the stability of 
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voltage regulators. He discussed the theory of Liapounoff on the 

stability of dynamical systems under small displacement from equilibrium 

together with Roath-Hurwitz stability criterion. A graphical method for 

locating the stability boundary for general control elements with 

imperical given characteristic were found. 

Governor systems are now being used for water wheel and steam 

generators which have transient speed regulation up to 20$, which indicates, 

if there is no time lag in the governor, a range of equivalent damping 

coefficient of about 5 as mentioned by Crary (4). Such damping torque 

could have certain effects on the system stability. 

Concordia, C. and Kirchmayer, L. C. (l6,17) published a paper to 

represent the results of a study of the performance of two interconnected 

steam and hydroelectric power generating areas as affected by frequency 

and tie-line controllers. The object was to determine theoretically the 

best values of controller gains for best overall system performance. 

They concluded that the tie-line gain is more effective than the fre

quency gain in reducing the oscillation. 

In 1957 Concordia, Kirchmayer, and Szymansk.i (l8 ) wrote a paper to 

report the effects of speed governor dead-band on the supplementary 

controller performance. They concluded that speed governor dead-band 

tends to produce continuous oscillations of the tie-line power at the 

tie-line natural period of about 2 seconds. 
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III. EXCITATION SYSTEM RESPONSE 

The ability of an automatic voltage regulator to increase the stability 

limit has been recognized. It is assumed that the flux linkage is constant; 

this is equivalent to considering the quadrature-axis component E q̂ and the 

direct-axis component E q̂ of the internal voltage of the machine do 

not change suddenly, and they have the same values directly after a 

disturbance takes place as they had before. Hence the initial values of 

these components are used in the subtransient-calculations. However, 

subsequently the internal voltage will change, the rapidity of variation 

depending primarily upon the resistance of the field circuit, and the 

manner in which the voltage regulator and exciter respond. 

1. Vector Diagram of a Salient-Pole Machine Connected to Infinite-Bus. 

The effect of salièney in the subtransient period is small, due to the 

fact that the damper winding is more effective than the field winding 

in keeping the stator flux out of the rotor circuit at the instant of a 

disturbance because the damper winding has lower reactance than the 

field winding, and is closer to the stator surface. Therefore it is 

assumed that the direct-axis subtransient reactance is equal to the 

quadrature-axis subtransient reactance X^ which means that the excitation 

voltage E" is equal to the subtransient internal voltage E% The direct-

axis components of the internal voltage E^ and E^ appear suddenly in the 

subtransient period due to the effect of the quadrature-axis component 

of the armature reaction, and that is why the quadrature-axis armature 

current is considered in that period. 
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Fig. 2. Vector diagram of a salient-pole machine connected 
to infinite-bus in the subtransient period (resistance 

is neglected) 
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The differential equation expressing the rate of change of the 

quadrature-axis component of the internal voltage as given by Kimbark (2) 

and Crary (4) is 

dE" 
9. 

Ldo dt "ex TL B - E„ W 

where T" is the direct-axis subtransient open circuit time constant, E 
d o  ' e x  

is the open circuit exciter armature voltage, and is the voltage 

behind the direct-axis synchronous reactance which is proportional to 

the field current. 

From Fig. 2 

•W (xa ' XP ̂  (5) 

•where X is the direct-axis sync^vonour reactance, ilj the a-c subtransient 

direct-axis armature current. 

The vector diagram shows the effect of the a-c component of the 

armature current on the internal voltage following a disturbance, but 

actually the d-c components of the armature current share the a-c 

components on this effect. 

Therefore, Equation 5 can be reduced to 

Bq = % + (Xd - Xd' \ (6) 

where 

\ " [1a-e2 + ̂ -c2!4 

a a 

t 

F~*-K • t T = V2i" e (7) 
"d-c d-c 

d do 

T is the armature time constant, i" is the initial value of subtransient 
a a-c 

do 
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a-c armature current. 

From Equation 6, Equation 4 can "be written as 

dE" 

Tdo -à + Eq = Eex " W 

The initial value of E" is q 

Eq = EqS ' <Xd ' Xâ> !as & 
0 

vhere E Q is the steady state voltage behind synchronous reactance, I Q 
C|u Ub 

is the steady state direct-axis component of the armature current. 

Similarly, the rate of change of direct-axis component of internal 

voltage can be deduced from Equation 8, except there is no excitation on 

the quadrature-axis, then 

dE" 

Tq It - Ed = - (V Xq) (10) 

u0 1 

The initial value of E" is 
d 

Edo - - (Xq - Xq) ~qS 

•where 

- tv=a + ld-=2i4 
q q q 

£ 

1, = V2 i" g "^a (ll) 
d-c a-c 

q qo 

I is the steady state quadrature-axis component of the armature 
qb 

current, i" is the initial value of subtransient a-c quadrature-axis 
' a-c 

qo 

component of the armature current, T^ is the quadrature-axis open circuit 

time constant and X is the quadrature-axis synchronous reactance 

2. Two-Machine System. 

Consider the system network shown in Fig. 5, from the theorem of 
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NETWORK 

SYSTEM 

— H 
Eo 

- REFERENCE POINT 

Fig. 3. The 2-part system network showing the direction of 

Î" and Ë" 



14 

Superposition as given by Crary (3). 

Iï-

Ê» 
È2 EI 

Ô1 Eg ^ 

2n 212 
S11 Z12  ̂

S2 S E2 
52 E1 Sl 

?22 221 2̂2 
621 

Z21 021 

(12) 

The voltages El^ and represent voltages behind subtransient 

reactances, in which case the subtransient reactances are assumed to be 

regarded as parts of the network. Z , Z^ are the driving impedances 

of machines 1 and 2, and is the transfer impedance between the two 

machines. 

The direct-axis subtransient component of the armature current is 

E" E" 

iâ-c = Sin ®11 " Z^ Sin (°1 - 52 + V 

dl 

„ E2 „ E1 sin (ôo - 5-, + 0O1 ) (13) 
^a-c " Zgg ̂  -gg - — \"2 ^ ' -21 

d2 

Similarly the quadrature-axis subtransient component of the armature 

current is 

Eï „ EI 
1a-c = Z^ C05 0U - cos (61 " &2 + 

q 
'1 

^ E^ 
cos 0OO - — COS (ôQ - Ô-, + 0o ) (14) 

I_c - ̂  "22 - Z^ — ̂ 2 "1 ' "2r 

*2 

From Fig. 2 
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E" = [E"2 + E"2 ] 2 (15) 
- q a x 

Therefore from Equations 7; 8, 1$, and 15, the rate of change of the 

quadrature-axis components of the internal voltages of the two machines 

15 dE" Çç (E 2̂ + E 2̂)^ 

% -4 + 'V V ' (Xa * \ 1 sin 0n 

(E"2 + E"2)2 
qg d2' 

] + [V2 1" e" Xl2 J 

2 

z sin (ô]_ - ôg + 0^2) J + [^2 e ai^ I (l^) 

ijt" 

dE" 
*2 

dOg dt 
+ E" = E - (X. 

ex2 c 
XP2 
[ 

(E"2 + E"2) "2xi" 

sin 
22 

22 

E"2 + E"2) ti2 • 

1 
sin 

J21 
(Be 5i + ] 2

+ [ V a  T 
d2]2 

o2 

7I 2 

(17) 

Similarly from Equations 10, 11, 14, and 15, the rate of change of the 

direct-axis components of the internal voltages is 

aEa fr K + 

t;o1 — - Eal • - - xq'i [ L —̂  cos 911 

1 
(E"2 + Elj2)2 ..2 _ t 1 2 

-% — cos (ô - 5 + 0 ) J + [V2 i" e Ta ]2 f (l8) 
12 ol ^ 

dE" 
a. 

rjn" 

1=2 3t 
" <Xq " Xq^2 

cos 
22 
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•q- + 2 _ t_ 

—: cos (ô - Ô + 0 ) J + [V2 i" e ra f f (19) 
21 o2 

From Equation 1, the rate of change of the angular rotor positions of 

the two machines is 

ft « K + * V  + E-]i[E-+ Ef 

c o s 0 -  ^  

cos (61 - S2 + e12) = p.n (5X, a2) , (20) 

ft2 d, + V 

M^ + D=- +-^ c o s^ r— 

cos (e>2 - ô1 + 021) = Pin (ôg, 51) (21) 

Therefore, the above six equations can "be solved simulantaneously 

and time solutions of the angular rotor positions, and the internal 

voltage components can "be obtained. This method can be extended for 

multi-machine systems with the same procedure used. 

The effects of higher-than-normal armature currents during a 

disturbance are such as to increase saturation in the leakage paths as 

well as in the main paths. Increased saturation in the leakage paths 

decreases that portion of the total reactance due to the leakage flux. 

This can be equivalent to reactances lower than the unsaturated reactance, 

and as indicated by Concordia (H ) the effective reactance appears as 

only from 0.6 to 0.8 of the unsaturated value. 
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IV. DAMPING POWER 

A. Generator Damping 

Since the generator rotor has two windings, namely the field and 
. ̂ 

armotessier windings, each one develops an electrical power following any 

disturbance. In the following analysis each winding is considered 

separately in the absence of the other. 

1. Field damping 

During an oscillation the flux linkage of a machine is not constant, 

but it varies according to the machine characteristics, and the rate of 

change of the flux linkage produce an electrical damping power. In the 

derivation of this damping the following assumptions are considered: 

1. No resistance in the armature circuit 

2. Small slip 

3. Damping action is caused by only one set of windings, i.e. the 

field winding. 

From Equation 6 

E - E" 
i = -â—a— (22) 

< V X q >  

Similarily, 
E^ + E" 

I = 1— (23) 

"q 

From Fig. 2, the electrical output power of a synchronous machine 

connected to an infinite-bus is 

P ^ = I V sin ô + I V cos ô (24) 
output Gq 

Substitute for I and I from Equation 22 and 23 in Equation 24, then 
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E - E" E + E" 

60 

From Equations 4 and 10, then 

dE" 
Eq " Eex - Tdo "i (26) 

dE^ 
Ed = " Tio ~dt ' [since El[ = (Xq-X^)I£ -Efl as shown in Fig. 2] 

(27) 

Therefore, from Equations 26 and 27, Equation 25 can be written as 

dE" dE" 
P _ E - E" - T" : V SIN S + E" - T" V C0S 5 
output ex q do dt ,v v,n d qo dt , 

(%d - %d) ^q " 

(28) 

since ô = (ô + Aô). 

Then, sin 5 = sin (ô + Aô) = sin ôQ cos AS + cos ô0 sin Aô. 

The oscillations are assumed very small, then cos Aô ~ 1, sin Aô — Aô. 

Therefore 

sin ô — sin 5 + A5 cos ô 
o o 

cos ô — cos ôQ - A5 sin 6 (29) 

From Equation 29, then can be written as 

dE" 

Poutput = (Xd - X») IX -Eq-SollJ 5o + ̂  cos 5o] 

dE" 

+ TT-Tx;) - ^qo -at ] ^ 

V sin ô _ dE" -, Y Aô cos ô 

= % " XP ex " Ea " T̂ o "dt + (Xfl - XJ) [Eex ~ Eq] 
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V cos 5 dE" V AS sin 5 

+ % - XP [Ê  " T̂ ° ~"] " (xd - %p° Ed 

V cos bn r dE" -| V sin 5 r dE" ] AR 

- Xp [ - ^do "dt J ^ - (X^ _ X^) B ̂qo — J 

By inspecting Equation 50, ̂ ^put can be reduced to 

Poutput = pt50» + P CAS) + D f (51) 

As vas mentioned "before, the damping power is proportional to the slip 

(^r) for small oscillations. Therefore D should "be equal to the damping 
f 

coefficient of the field winding, and "by comparing Equation $0 with 

Equation $1, then 

At T" ^ T-j 

5 " irfpT sin 5o v Êâ ' TxTrW =°= 6o v Ê» (52) 
f x q q' x d dy ^ 

It is clear from Equation 32, that D is flux linkage dependent which is 
f 

effective in the first few cycles of disturbance due to the rapid decrease 

of the internal voltage. 

2. Induction damping 

Due to the rate of change of the rotor angle during an oscillation 

with respect to the armature flux, there will "be induced current in the 

rotor. This induced current produces a damping power similar to the 

power developed "by an induction motor. Park (9) derived this damping 

power under the following assumptions : 

1. No resistance in the armature 

2. No resistance in the field circuit 

5. Small slip 
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4. Damping action is caused "by damper •winding only. 

The induction damping coefficient as given "by Park is 

r % - x") (x1 - x") i 
D = V2 L — — T" sin2 5 + —^T" cos2 5 J (53) 
1 do ,2 qo 

^d q 

where X^ and X' are the direct and the quadrature-axis transient reactances. 

Equations 55 and 54 are derived for one machine connected to an 

infinite-bus whose voltage is V. 

For a two machine system, consider Fig. 4. In calculating the terminal 

voltage of machine 1, i.e. Vp the other machine can "be represented "by its 

internal voltage E^ in series with the reactance Xp, then 

J  +  W + l - 2  - X g >  ] 4 (31*) 
z_ + Z2 + jx2 

1 (z2 + z_ + JX2) 

Similarly 

1  n W J  * u  ™  1  = •  " "  
3 1 1 ^ 1 o 1 

It is seen from the above two equations the the damping coefficient 

decreases by increasing the external reactances of the systems. 

B. Load Damping 

The input power to the system which is equal to the positive-sequence 

output power of the machine is the algebraic sum of the damping power and 

the synchronous power. Therefore from Equations 52 and 53 the input power 

to the system is 

Pin system = M8' + <= + V 1 (56) 

where P (ô) is the synchronizing power. 
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r—O 

Zt, 

Zt; 

v2 
-CH 

LOAD, LOADg 

Fig. 4a. Two-machine system 

• V, Z, Z2 V2 

1 
x? 

E. l$l 

Fig. 4b. Equivalent circuit of two-machine system 
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Following any disturbance, especially a fault condition, the output 

power of synchronous generators decreases, and due to the discontinuity 

"between the mechanical input and electrical output, then the generator 

rotor will speed up. Accordingly there is applied to the system a 

component of power having higher speed than normal due to the power 

generated by the generator which has increased its speed, and this is 

obviously clear from Equation $6. This component of power at slightly 

higher speed develops additional electrical power due to the character

istics of the connected system. This effect is reflected to the generator 

and produces damping in the generator. 

no o "non 4" 4"r\ 4" VT o cl i T*t I 
W 

Differentiating Equation $6 with respect to the slip (̂ r), then 

ŝystem = ̂  + ̂  (37) 

Commercial loads in general are composite loads; they consist of 

lighting, synchronous motors, and induction motors, and each one has 

certain characteristic performance. 

Therefore the rate of change of input power to the system with 

respect to the slip must be written as 

aFin^yrtem = c (Df + y (38) 

where C is a constant depending on the load characteristic. 

Therefore the additional electrical input power to the system which 

can be translated as the reflecting generator damping is 

PDr = C [Df + V ft  ( 3 S )  
Load 
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V. GOVERNOR AND CONTROLLER 

A. Tie-Line and Load Frequency Control 

The main object of a tie-line and load frequency controller is to 

regulate the output of each area to absorb its own disturbances. To 

illustrate this point consider the system shown in Fig. 5. 

The rate of change of the controller signal as given by Kirchmayer 

and Concordia ( l6) is 

d 1̂ 
— Ap̂  = AT12 (ô1 - S2) + Kf̂  (1*°) 

where 

Ap£ is power correction initiated by controller number 1 

K is the tie-line controller gain 
el 

K„ is the frequency controller gain 
1 

AT̂ 2 is the tie-line power deviation 

Similarly for controller of area 2 

It A»2 = % AT21 ' 51> + % "dt <41) 

If Ap* is constant, then Ap1 is equal to zero. 

This means that the controller will not operate and reach steady 

state condition. Suppose there is a disturbance in area 1 due to sudden 

change in load 1, therefore ̂  p* should be equal to zero, i.e. controller 

2 will not operate, and the reverse is true if there is a disturbance in 

area 2. 

For three-phase short circuits in the interconnected system, the two 

machines will be disturbed depending on the power flow, and the two 

controllers will operate. 



A P, 

LOAD 

>rS 
LOAD 

TURBINE 
WT |  (S)  

TURBINE 

GOVERNOR 
W s ,  (S)  

GOVERNOR 

CONTROLLER 
WC | (S)  

CONTROLLER 

Fig. 5. Block diagram of interconnected system with governed 
supplementary controllers 
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The tie-line power deviation can be written as 

AT 12 
sin (A512 - a12) 

where al2 =90 - 9̂  

AÊ  AEg 

Z12 
f sin a&12 cos Ô 2 - cos A5̂ 2 sin CL̂  j 

AÊ  AEg 
cos 0g_2 

A%2 AE2 
1̂2 - 1̂ -- ̂ 2̂ 

(42) 

Therefore Equation 40 can be written as 

3E Api " Kt. 
~̂ T 

cos °12 ] A5 12 
AÊ  AÊ  

T̂~ 
sin a. 

12 

d6̂  

+  K f i ^  

The output controller signal Ap| is 

t 

(̂ 3) 

I -  /  \ F I  

AE" AG" I 
Ap£ = I K, 1 | —z cos CL,̂  I A5, 

12 
"12 J 12 

z$2 

~ST 
sin °12 dt 

X 

r a5i 
j \ <-dt)at 

x 
(44) 

It is assumed that the oscillation is very small, i.e., the angle 5 and 

the slip ̂  are slowing varying with time. 

Therefore Equation 44 is reduced to 

R AE» AS" 1 R 

i = -Ẑ — C0S °12J A612 J at " AP 

t. 

AE? AE" 
0]_ 1 d 

12 
'K, 
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r âô ~ r £E" ae.l; i 
sin a12 J at + K (-̂ -) J at = K I —cos 0̂ 2 AÔ12 (t-

, 1 , 1 12 

X 
d6 AE"AE" 

+ K
fl (-«' - \) -Ktl -g-sin ai2 

where t̂  is the controller time lag, and is equal to 0.26 second approxi

mately. It is seen from the above equation that Ap̂  is negative if t 

is less than t» which means that the oscillation increases during the 

first few cycles of disturbance. 

B. Governor Response 

The input signal to the governor is 
, dô, 

Api(t) = it+ ûpî <tJ (46) 

where R̂  is the steady state regulation of machine 1. 

By convolution theorem, the output signal of the governor can be 

written as 

Ap 
G 
(t) = J AP1 (T) ¥q (t - T) dr . (47) 

01 X 
Substitute for Ap. (T) from Equation 45 and 46 in the above equation, then 

K AE2 -|  ̂

Ap (t) = L s cos OL J A5 J (T - t ) W (t-r) dr 
G 12 ^ ^ / 1 1 
°1 

asjasj . ] r 

'1 "12 / "1 "1 

X 
Kt, 4—̂  sln «L2 -1 J  ̂ \(e"T) dT 
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t 

+ tK
f "dl •* J <T - \  ) WG (M) ^ -I j  d - -

\ 
(48) 

•where 

Ŵ (t) is the transfer function in the time-domain of the governor 

t̂  is the dead band time of the governor 

If the time lag of the turbine is neglected compared to the governor 

and controller time lags, then the power output of the turbine is 

P = Pq - Ap (49) 
T 1 G 
°1 °i 

where pQ is the steady state output power of the turbine 1 
S1 

Ap is the output signal of the governor as given by Equation 48. 
G 
° 1̂ 

Differentiating Equation 49 with respect to the slip (—̂ ) 

d d 
Pm = - AP 

dS r$ol % G 
1 1 o 

t t 

=  -K J (r-t )W (t-T ) c h-i- J W (T) dT (50) 

Equation 50 gives the rate of change of the output signal of the 

turbine with respect to the slip, and due to the turbine characteristic 

the infinitesmal change in the output signal which can be expressed as 

the prime mover damping power coefficient is 

t t 

D = - C K f ('T-t„ )W ( t-r)dr + f W (T) dr 
P p i fi { Ki Gi Ki \ J 

dl dl 
where C is the prime-mover characteristic constant. 

P1 

(51) 
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It is seen that the damping power of the prime-mover is negative 

which means that the output power of the turbine decreases which improves 

the stability of the system. 

Similarly 

D = - C 
K fr  

t t 

J (T-\ )v ( t-T)aT  +  h / V 
td  ̂  ̂  ̂ t. 

r)dx (52) 

By making the approximation that  ̂AtB̂  

and AÊ  — AtÊ̂  and AÊ  * AtÊ̂  . 

Then from Equations 32, 33, 39, 48, and 51, the rate of change of the 

angular rotor position of machine 1 is 

d̂ 6 

"i 
at 
- + (1 + C ) 
2 J-

V„ È" sin "1 "q, "o i a i 
V, E" cos 5 

1 °1 

(\ - x;>i 
~ At \ ' (xa-*â>i " ̂  1 

m" 
d 

+ il \ slna + ̂  K - % r ce*, 

xdx < 

] !!I J dt 

+ C K, 

t 

/ 

1 
(r-t )W (t-r)dT + =-

K-l uL / W (t)dT 
1 

dt 

f 
I 
S 5% E2 1 f 

= p - p (Bl,62) - j [ (At)3 COS J j (T-tKi)WGi(t-

output̂  

1 

T) dT 
dô 

dt 
-  ( - )  [  

Ktn E1 E2 
12 r \  I '1 t^\Z (At) sin a. 

12 
12 1 /  (r-t )W (t-x)dT 

1 U1 
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K, / (?-t )W (t-T)dT + 
1̂ U1 "l 

T. 

/ 
W (T) dr 
U1 

dôl 
dt (53) 

l 1 

where p„ is the steady state mechanical input to the machine 1 p(ôn,ô0) 
b., -L d. 

output, 

is the synchronizing power of machine 1, and as given "by Crary (4) is 
Ê 2 Ê  Eg 

eq.ua! to %— sin OL + — sin (ô, - ôc - a, c) . 
%11 %12 1  ̂

Similarly 

>2 
4=6, 

M —T + (1+c ) 
d-tf 

V2 Ed, Si" % EL =°S \ 

( \  -  r ) 2  
A t  \ - (*„ - ^ At Tâ-

+ I5^â1„ slnX + ccs2 5 

d d'2 

dô_ 

X' 
12 dt 

+  %  [ %  k  J (T'tK2)WG2(t"r)dT + ̂  

u 

f W  ( T ) dT 

2 

dÔ2 
dt 

•K ÊJ 

= Ps -P(ÔL,Ô2)- ) T—2 (AT)3 COS A 

 ̂outputg 21 
12 

] / (T-t )W (t-r)dT 
2 2 

dô, 

" dt~ 
21 

- ( - )  

r ^ ̂  
—I (At)2 sin a 
%2i 12 J  (T-t )W (t-r)dT 

2 2 

[• (T-tKs)WG2(t-T)d't + % 

t 

/ 

W (T) dT 
2 

dô, 

dt 
(5̂ ) 
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where Pg is the steady state mechanical input to the machine 2 p(ôpôg) 

2 output̂  

is the synchronizing power of machine 2, and as given "by Crary (4) 
E"2 Eg Ê  

is equal to Z , sin ct̂  + sin (ô̂  - Ô, + (X̂ ). 
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xâ 
= 31# 

X' = 71.5% X" = 
1 

= 71.5% 
q. 

T' = 0.446 sees T = 
d a 

m" 
d 
= 0.055 sees 

VI. ILLUSTRATIVE PROBLEM 

The following data are from Westinghouse. 

1. 3958 K.V.A., 480 volt, three-phase, 60 cycles, 240 rpm, 

power factor, salient-pole machine has the following values : 

x̂  = 131# x; = 31# = 24# 

= 71.5% 

T̂  =2.5 sees 
o 
= 0.0045 sees 

° -4 2 
M = 2.5 % 10 unit power sec per electrical degree. 

2. 40 KW, 125 volt, II50 r.p.ra., separate excited exciter has the 

following values : 

Four main poles, two commutating poles 

475 turns/pole (main pole) 

Field poles all in series 

Total field resistance 5.94 ohms at 75 0° 

Field leakage inductance 0.06 hennies 

Nominal field inductance 0.440 hennies 

Armature resistance 0.0091 ohm at 75 0° 

Armature inductance O.OOO638 hennies 

Pilot exciter voltage 62 volt (battery) 

Tne exciter has 126 bars, one turn per single coil, four circuits, three 

single coils per coil, 6 conductors per slot and 42 slots 

Steady state exciter current 8.4 amp. 

Steady state exciter voltage 3.15 volt 
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The system shown in Fig. 4a illustrates the problem. 

The generators G, and Gg have the same rating as indicated above. 

Load in area 1 takes half of the generating power from G,, so the power 

flows over the double transmission lines from G,. Load in area 2 takes 

one and half of the total generated power of G, and Ĝ  minus the losses 

in the transmission lines. 

ZLà = 2 p.u, and = 0.601 p.u which are approxi

mated to be constant, due to the fact that most power systems have feeder 

voltage regulators which hold the voltages at the individual loads nearly 

constant. 

Z = Z = 0.08 + JO.60 p.u 
t, tg 

K = K = 0.002 p.u per second 
1 2 

K = K = 0.02 p.u per second 
tl t2 

R1 = R2 " p,u 

t = t = 0.028 second; t„ _ t„  ̂0.26 second 
1 2 1 2 

= ¥G2̂  = TS + 1 

where T is the time lag of the governor — 0.50 second. 

Initial conditions: 

= v, + Jx̂ I, 

= 1 l_0 + 0.715 ° x 1 

= 1.54 P.u 

0 

]0 

Ô, = 22. 

0 
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Bydg = ̂ 2 + ̂ 2̂ 2 

= 0.903 ̂ 6*8 + 0.715 x 1 '-56,9 

= 1.400 (18.7° p.u 

%2o = 18.7° 

Igg ™ I, sin (&10 + 0,) = 1 sin (22.8° + 36.9°) 

= 0.855 P.u 

I g = I, COS (e>10 + 0,) = 0.517 p.u 

EqS1 = Eqd1 + (%dl " Xql̂  IdS1 

= 1.54 + 0.855 (1.31-0.715) = 2.04 p.u 

IdS2 = I2 Sin 2̂0 + Q2) 

= 1 sin (18.7̂  + 36.9°) = 0.855 p.u 

^qS = ^2 (5gQ + = 0.555 p.u 

BqCg = Eqdg + (%dg " IdSg 

= 1.400 + 0.855 (1.51-0.715) = I.895 p.u 

\ = V, + JX̂  I, 

= 1.0 + 0.24< 0̂ x 1 

= 1.15 p.u ; & = 9.8° 
10 

^10 " X ' (\ - V X 

= 2.04 - 0.855 (1.31-0.24) = 1.11 p.u 

E" = -O.5I7 (0.715-0.24) = -0.245 p.u 
10 

EI2 
=ï2 + J \ \ 
. 0.905 t6-B° + o.24L9°9 

x x 

= 1.04 L7-5 p.u; 5, = 7.5° 
20 
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E" = 1.895 - 0.855 (1.51-0.24) = 1.000 p.u 
2̂0 

E" = -0.555 (0.715-0.24) = -0.265 p.u 
20 

Z„ = 0.457 , Zgg = %12 = %21 = 3.31 P.u 

It is assumed that a 3-(j> short circuit occurs at the middle of one 

of the transmission lines in Fig. 4a. uubtransient period is assumed to 

"be 0.001 second. 

Z„ = 0.485 ^'9 , Zgg = 0.4)0 , and Z^ = Z^, = 5.90^ 

in the transient period. 

It is assumed that the fault is cleared at 0.15 second, following 

disconnection of the faulted line. 

Z„ = 0.862/Z2.5 ^ = 0.607^° , Z,g = Zg, = 1.55 p.u 

Exciter circuit: 

The differential equation expressing the field current of separately 

excited exciters 

L + Ri = E (a) 

Pilot exciter voltage E is constant 

The solution of Equation a is 

i(t) = (ig - §) e  ̂+ § (̂ ) 

The differential equation of voltage around the field circuit is 

c + Ri (t) = E (c) 
dt 

By substituting for i(t) in Equation c, then 

e(t) = ~ (| - ig) (l - e L t) + eQ (d) 

•where 

aN 
c " K 
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a = constant coefficient of dispersion and it is equal to 1.15 

- 6 x t e 6 o 1^RT 

c = ̂  = 0.1127 second 

Then from Equation d 

- 3.94 

el(t) - = Oïfî - S-'-X1 - eCTW" ) + 31-5 

= 1.97 (l - + g.o4 

e_ (t) = E (t) = 1.804 (l-e""̂ 9t) + ,̂ 5̂ p.u 
d. exQ 

A computer program which utilizes the Runge-Kutta method was used to 

obtain the time solution of Equations l6, 17, l8, 19, 53> and 54. The 

time solution is obtained in each period by using different parameters 

in the specified period. The results are tabulated in Tables 1 and 2. 

Additional run is made by setting K and equal to zero, and t equal 

to 0.15 second to see if it is possible to neglect the controller signal. 

The additional results are tabulated in Table 5. 



Table 1. Time solution of slip, angular rotor position, and internal voltage with damping power and 
governor responses 

Time 
second 

ck A> 

6l-5g 

dP 

&1 ôg ô, ôg 

Elec deg Elec deg Elec deg 

E" ,E 1 

p.u 

E" ,E 1 

p.u p.u 

Ea2 

p.u 

0 

0.0001 

0.0002 

0.0003 

0.0004 

0.0005 

0.0006 

0.0007 

0.0008 

0.0009 

0.001 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.055 

0.040 

0 0 
-6  

1058x10 1150x10 

2272x10"̂  1826x10 

3427x10""̂  2226x10 

46 2̂x10 

598x10 

736x10 

874x10 

1071x10 

1177x10 

-6 

-5 

-5 

-5 

-5 

-5 

,-5 

•3 
1334x10 

70.8x10 

128.8x10"̂  

186.3x10 -3 

-3 243.8x10"̂  220.8x10 

-6  

- 6  

-6 

-6 
2530x10 

280xl0~5 

308xl0~5 

335x10"5 

364x10"̂  

386x10"̂  

409x10*5 

5%5xl0̂  

110.4x10"5 

165.6x10"̂  
-3 

-5 
295x10 ̂  

348.8x10' 

396x10"̂  

473. 8x].0 

-3 

-3 

-3 

270x10 

321.2x10 

366.0x10""^ 

441.6x10 

0 

-92x10" 

1-C.KJ e I A1U 

+23x10"̂  

+25x10 

9.8000 7.500 2.300 
) 

•6 
9.8020 7.504 2.298 

) 

•6 
9.8072 7.5060 2.3012 

•5 9.8100 7.507 2.3030 
•5 9.8160 7.510 2.3060 
•5 9.8350 7.519 2.3140 
5 9.8500 7.428 2.3220 
5 9.8710 7.540 2.3310 
5 9.893 7.549 2.344 
5 9.907 7.559 2.348 
5 10.001 7.602 2.399 
-3 10.240 7.640 2.600 
-3 10.370 7.710 2.550 
-3 10.6%) 7.895 2.764 

11.012 8.181 2.831 

-3 
11.710 8.700 3.010 

-3 12.101 8.860 3.241 
-3 12.802 9.200 3.602 
-3 13.529 9.697 3.832 

1.1100 

I.0637 

I.OI834 

0.9784 

0.9301 

0.8878 

0.8453 

0.8041 

0.7636 

0.7238 

0.6847 

0.6815 

0.6780 

0.6750 

0.6714 

0.6686 

0.6658 

0.6623 

0.6595 

1.000 -0.2450 

0.9444-0.2591 

0.89133-0.2730 

0.84055-0.28831 

0.7919 -0.3033 

0.7452 -0.3187 

0.70031-0.3438 

0.6570 -0.3504 

0.6153 -0.3667 

0.5750 -0.3835 

0.5399 -0.4oo6 

0.5359 

0.5300 

0.5254 

0.5220 

0.5195 

0.5153 

0.5119 

0.5089 

-0.2650 

-0.2845 

-0.3043 

-0.3245 

-0.34508 

-0.3660 

-0.3874 

-0.4092 

-0.4134 

-0.4541 

-0.4773 

vx 
CT\ 



Table 1 (Continued) 

Time 
second 

1o 1o 

5i-5g 

1o 

&1 5]_-6g 

Elec deg Elec deg Elec deg 

E" ,E1 E" ,E' 

p.u p.u 
"I 
P.U 

E'. 

P.U 

0.045 529x10 
-3 

493x10"^ +35.2x10' -3 19.121 9.995 

0.050 612.8x10' -3 572.5x10 +40.5x10 -3 17.363 10.315 

0.100 107.3x10' 
-2 

100.2x10""^ +71xl0-2 35.152 24.959 

0.150 166.2x10' 158x10""^ +82xl0""2 71.899 58.709 

0.350 2.4374 2.3348 +0.1025 201.33 185.31 

0.550 1.0560 1.0130 +0.0 43 280.13 262.20 

0.750 -0.5880 -0.5018 -0.0862 290.9 277.0 

0.950 -2.184 -2.233 +0.049 228.8 213.9 

1.15 -4.021 -4..00C -0.0210 119.99 106.60 

1.35 -3.624 -3.638 +0.0140 89.90 77.50 

1.55 -2.238 -2.228 -0.0100 47.32 36.20 

1.75 -I.5202 -1.5122 -0.0080 31.78 21.58 

4.126 

7.048 

10.19$ 

13.190 

16.02 

17.93 

13.90 

14.90 

13.39 

12.40 

11.30 

10.20 

O.6565 

O.6533 

0.6201 

0.5897 

0.7329 

0.8595 

0.9009 

0.9476 

O.9989 

1.0132 

1.0597 

I.O838 

0.5051 

0.5027 

0.4810 

0.4500 

O.5707 

0.7001 

0.7599 

0.7978 

0.8309 

0.8597 

0.8923 

0.9246 



Table 2. Time solution of slip, angular rotor position, and internal voltage without damping 
power and govenor responses 

51 S2 V52 81 S2 6l-62 EVEqn Ed'n EÂP 
eCO° "!• * ^ Glee deg Elec deg Elec deg p_u p_u p_u 

0 

0.0001 

0.0002 

0.000$ 

0.0004 

0.0005 

0.0006 

0.0007 

0.0008 

0.0009 

0.001 

0.005 

0.010 

0.015 

0.020 

0.025 

0.050 

0.035 

0.040 

o 
-6 -6 

0 

1072x10 1162x10 -90x10 
-6 

2725x10 

5639x10 

-6  

-6 

-6  

- 6  

9.800 

9.802 

1992x10"""" +753x10"° 9.8099 

2425. 4xl0""^+1213. 6x10^. 8216 

4899x10 

6i3.7xlo"5 
S-5 

-6  

772x10 

892x10 

1175x10 

2620x10"" +217.9x10 3.8310 

290.7x10"^ +323x10"^ 9.8417 

341x10"^ +431x10""^ 9.8600 
-5 

-5 

,-5 

362x10" 

391x10 

+530x10""^ 9.8822 

+728.4xlo"^9.8945 

1209x10 

1397.9x10 

79.6x10 

l4o.8xlo""^ 

421.7x10 ^ +777.3x10""^9.9210 

"5442.6xl0_D 

s-3 
+955.3xl0"^10.1095 

63.9x10""^ +15.7x10"^ 10.3490 
s-3 123.7x10 " +17.1x10 ^ 10.499 

187.9x10"^ 167.5x10"^ +20.4x10"^ II.69O 

244.8x10"^ 220x10 

300.1x10271x10 

358.7x10 
-5 

400x10 

475x10 

•o 

-3 

321x10 ^ 

361x10""̂  

431x10"̂  

+24.8x1012.121 

+29.1x1012.789 
-3 +37.7x10 

,-3 +59x10 

+44x10 -5 

13.112 

13.995 

14.720 

7.500 

7.505 

7.5070 

7.5110 

7.5163 

7.5201 

7.5300 

7.5510 

7.5600 

7.5672 

7.6730 

7.6950 

7.7950 

7.809 

8.000 

8.500 

8.710 

8.929 

9.4oo 

2.300 

2.297 

2.3029 

2.3106 

2.3147 

2.3216 

2.3300 

2.3312 

2.5345 

2.3538 

2.4363 

2.6540 

2.7040 

5 .881 

4.121 

4.289 

4.402 

5.066 

5.320 

1.1100 

1.0635 

1.01830 

0.9779 

0.9300 

0.8871 

0.8453 

0.8042 

0.7633 

0.7237 

0.6842 

0.6812 

0.6780 

0.6751 

0.6712 

0.6689 

0.6655 

0.6620 

0.6580 

1.000 

0.9440 

0.89127 

0.84034 

0.7914 

0.7450 

0.7003 

0.5571 

0.6153 

0.5750 

0.5390 

0.53 55 

0.5301 

0.5250 

0.5221 

0.5192 

0.5150 

0.5117 

O.50S3 

-0.2450 

-0.2591 

-0.2728 

-0.28825 

-0.3030 

-0.3188 

-0.3435 

-0.3503 

-0.5669 

-0.3835 

-0.4000 

-0.2650 

-0.2843 

-0.3041 

-0.3242 

-0.3450 

-0.5660 

-0.4035 

-0.4091 

-0.4136 

-0.4540 

-0.4771 



Table 2 (Continued) 

;= V ,,-X S \ 
P.U P.U P. VL p.U 

0.045 529.7x10 473.2x10"^ +56.5x10""^ 16.012 10.001 6.011 0.6560 0.5047 

0.050 601.9x10 500.1x10"^ +0.1018 18.817 10.775 8.042 0.6526 0.5020 

0.100 1.149 1.022 +0.127 40.321 26.00 14.321 0.6200 0.4807 

0.150 1.750 1. 590 +0.162 78.152 61.972 16.180 0.5872 0.4501 

0.35 4.7000 4.7801 -0.081 260.32 240.25 20.07 0.7324 0.5702 

0.55 4.766 4.906 -0. i4o 377.70 363 . 50 14.20 0.8592 0.7000 

0.75 3.952 3.820 +0.132 480.60 461.00 19.60 0.8996 0.7593 

0.95 1.4o4 1.524 -0.120 500.40 587.0 13.40 0.9429 0.7973 

1.15 -2.250 -2.320 +0.130 589.23 570.33 18.90 0.9889 0.8300 

1.35 -7.513 -7.413 -0.100 44o.8o 427.50 13.30 1.0112 0.8723 

1.55 -9.184 -9.296 +0.112 209.52 190.95 18.57 1.0569 0.8992 

1.75 -11.012 -10.918 -O.O94 59. $0 46.60 12.70 1,0717 0.9239 

1.95 -12.998 -13.078 +0.08 -8.0 -25.1 17.1 1.0996 0.9598 



Table 3. Time solution of slip, angular rotor position, and internal voltage with damping power 
and governor responses and neglecting controller signal 

— ? ? v> zx vk \ s 
0.15 166.2x10 2 158xl0""2 +82x10 71.899 58.709 13.190 0.5897 0.4500 

0.35 2.8720 2.7260 +0.1460 221.92 205.49 16.43 0.7330 0.5708 

0.55 1.3882 1.3362 +0.520 $10.75 292.50 18.25 0.8595 0.7006 

0.75 -0.7980 -O.6912 +0.1068 331.30 317.10 14.2 0.9000 0.7594 

0.95 -2.482 -2.535 + .053 279.00 264.00 15.0 0.9477 0.7978 

1.15 -4.323 -4.301 -0.0220 170.10 156.70 13.4 O.9989 0.8309 
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Fig. 6. Swing curve in terms of angular difference between the two machines 
for 3-<f) short circuit at the middle of one of the transmission lines 
(fault cleared at 0.15 sec) 
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Fig. 7. Swing curve in terms of slip difference "between the tvo machines 
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VII. CONCLUSIONS 

General equations describing the behavior of synchronous machines 

following a disturbance in a system network have been developed. These 

equations illustrate how the damping power is flux linkage and angular 

rotor position dependent. The field damping is very effective at the 

instant of short circuit due to the rapid decrease of the internal 

voltage components in the first few cycles of disturbance. This 

immediately implies the transient stability limit of the system to be 

more likely to increase due to the slow increase in 5,^ as shown in Fig. 6. 

and the synchronous machines will have more chance for relief from the 

sudden disturbances. The governor responses are more effective during 

the subsequent swings according to the time lags of the governor and 

controller. This is clear from Fig. 6, 7 , since the amplitudes of 5 

and the slip 6* decrease rapidly in magnitude till,equilibrium is 

reached. However the amplitudes in the subsequent swings without taking 

damping into account are decreasing very slowly due to the sustained 

oscillations and the system is not known to be stable until two seconds 

and the transient stability limit will be lower and lower. Therefore 

the damping power and governor responses play an important rule in 

increasing and judging the stability of the system and they should be 

taken into consideration. 
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