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I. INTRODUCTION 

The use of magnetic storage techniques in digital memory applications 

has been extremely successful. Magnetic memory elements are generally 

simple nonvolatile electrically passive structures permitting highly 

reliable operation at low cost, low power, and high speed. For some time, 

the possibility of using the controlled motion and interactions of 

magnetic domain boundaries to propagate, store, and process digital 

information has been envisioned. Lossless transfer of information is 

obtained by the simple displacement of the domain boundaries; fan-out 

or gain is easily produced by the expansion of an existing domain. 

Various techniques and materials allow binary information to be stored 

as the presence or absence of domains of reversed magnetization with an 

initially saturated magnetic background, permitting these information-

bearing domains co be controllably stepped along some collection of paths 

under the action of a time-varying magnetic field. Streams of information 

propagate along these paths with means provided for introducing and 

removing domains and for sensing the stored domains as they propagate 

past input and output locations. Some of these techniques permit logic 

and gating functions to be performed within the memory medium either 

through the mutual interaction of domains or domain walls or by their 

interaction with an applied magnetic field. 

It has been possible to produce the action described above by using 

thin magnetic films (1-4) and single crystal platelets exhibiting a 

uniaxial magnetic anisotropy (5, 6). In the case of thin magnetic films, 

a uniaxial anisotropy is produced in the plane of the film. Magnetization 
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also lies in the plane of the film and a magnetic domain is seen to be an 

isolated reverse magnetization area bounded by a domain wall. Due to 

anisotropy inherent in the film itself, the disparity in the propagation 

modes for the easy and hard directions exists (4). Complete generality 

in the propagation and interactions of magnetic domains, however, demands 

that the magnetization be aligned to lie normal to the surface of the 

film. Furthermore, it would be useful if the magnetic properties were 

isotropic in the plane of the film. Cylindrical magnetic domains 

exhibited in the single crystal platelets, such as orthoferrites, meets 

these conditions. 

The approach using cylindrical magnetic domains in device applica­

tions has currently received considerable attention. The properties of 

the materials used require the magnetization to lie normal to the surface 

of the plate. The modes of operation of devices constructed from such 

materials are classified according to the effect of wall motion coercivity 

(7). In the case of very high wall motion coercivity, the application of 

applied field determines the initial domain configuration which is then 

maintained by coercivity. For very low wall coercivity, on the other 

hand, the saturation magnetization, wall energy, plate thickness, and 

bias field determine the domain size and shape. Between these two 

extremes, there is a continuum of intermediate modes. The work in this 

thesis will concern only the low coercivity mode and specifically, rigjit 

circular cylindrical domains in the plates of uniform thickness. When 

observed by means of the Faraday effect, cylindrical domains have the 
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appearance of bubbles and therefore are colloquially referred to as 

"bubbles 

A theory of cylindrical cagnetic domains has been formulated by 

Thiele (7, 3) and investigated experimentally by Bobeck and the others 

(5, 6, 9). The static analysis has been presented in detail (5, 7, 8), 

but the dynamic analysis has not yet been given explicitly in the liter­

ature. The dynamic theory is plagued by such intractable constructs as 

integrals of elliptic integrals. Consequently, recourse to graphical 

methods or numerical procedures is required to provide the general picture 

of domain dynamics. In analysis of both statics and dynamics, it is 

commonly assumed that domain walls are cylindrical, have zero width, and 

have a definite energy per unit area which is independent of wall 

orientation or curvature, and that the magnetization lies perpendicular 

to the surface of the place. The validity of these assumptions has been 

discussed by Thiele (7). Consequently, the domain structure model used 

in this thesis will be within the range of this validity of these 

assumptions. 

Domains in materials with required properties are maintained in the 

preferred cylindrical form by an overall uniform bias field applied normal 

to the platelet surface. This bias field is directed antiparallel to the 

magnetization of the domain and has a magnitude which is within the 

stability range. An increase in the bias field decreases the domain 

diameter and vice versa. Now if the bias field is nonuniform and not 

symmetrical with respect to the center of the domain, the domain will 

experience a net unbalanced force due to different values of bias field 
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at each point of the wall. This unbalance force combined with the stiff­

ness of the domain wall causes the domain to move as entity in the direc­

tion of the net force. For example, if the bias field is a linear function 

of X only, the domain will move in the direction of decreasing bias field 

magnitude provided that the driving force is greater than the domain 

coercivity. As the domain moves, the magnitude of the average bias field 

effective on the domain decreases and if the dornain is allowed to travel 

a sufficient distance, it will reach a point where it will run into a 

strip domain. Cylindrical magnetic domain can be manipulated, therefore, 

by producing local field gradients that do not allow the domains to run 

out of the stable bias field range. 

When a uniform field gradient is applied, the domain will experience 

a force attempting to move it toward a position of reduced bias. The 

propagating velocity of the domain will be constant provided AH > (8/TT)H^, 

where is the wall coercivity and AH is the maximum difference in the 

applied field across the domain diameter. In practice the applied local 

field to a cylindrical domain, however, is not simply a uniform gradient. 

In this case the response will be complex and could involve a change in 

domain size and shape, motion at a nonuniform rate, or even the collapse 

of a domain. Experimentally, it has been observed (10) that the shape 

of domains changes as they propagate and the domain motion is highly 

nonuniform with velocity varying widely with position along the propagat­

ing channel. Since demand for high data rates is essential in device 

applications, the study of domain dynamics under nonuniform field gradient 

allows one to see how domain propagation fails at higher frequencies in 



5 

a given structure under dynamic conditions and thus will be a useful aid 

in the design of propagating structures. 

To study the domain dynamics, the effect of the additional non-

uniformities is taken into account by Fourier decomposition of the 

2-average z component of the applied field at the domain with respect 

to angle, where the z direction is normal to the plane of the platelet. 

The additional energy term arising from this nonuniform field is added 

to the total domain energy and then the total energy variation is calcu­

lated. Since "wall mass" is negligibly small in practical cases, the 

kinetic energy term is ignored and only the dissipation is considered. 

The method used to take dissipative effects into account is to compute 

the power dissipation produced by a general variation in domain shape 

using the wall dissipation equation and then to set this equal to the 

power produced by the variation. When this is done, the constant term 

of the applied field determines domain size, the 9 term translates the 

domain, and the n0 terms, for n ̂  2, deform the domain. The results show 

that the domain propagates st nonuniform rate and the magnitude of domain 

velocity depends on the variation of the applied field except for the 

case of uniform field gradient. Assuming uniform coercivity and neglect­

ing the coupling terms, formulae for change in domain size and shape have 

been established. 

In order to utilize cylindrical domains in shift registers, memories, 

and logic circuits, motion of domains in discrete steps is required at 

specific times. Therefore, highly localized fields are needed. Such 

fields can be produced by current-carrying conductor circuit or all 
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permalloy propagating circuit. In the first case, thin film techniques 

are used to fabricate the conductive loops placed flat on a platelet 

surface. The circuit is operated wich a biphase propagating source. 

An array of permalloy dots are used to introduce an asymmetry into the 

conductor pattern so that directionality is achieved. These asymmetry 

permalloy dots, which provide low energy sites for the domains, places 

domains in a consistent preferred position prior to each propagating 

phase. In the case of all permalloy propagating circuit, the permalloy 

is used to interact with, and thereby propagate domains in the platelet. 

There are two such general classes of circuits. The first class, devised 

the angelfish circuit, utilizes the fact that a cylindrical domain can be 

modulated in size by increasing or decreasing the bias field. Motion is 

achieved by maneuvering this pulsating cylindrical domain in and out of 

asymmetrical energy traps. In the second method of permalloy circuit 

propagation an in-plane rotating field acting on a structured permalloy 

pattern generates traveling positive and negative magnetic poles to 

selectively attract and repel and thereby control the domain motion. A 

variety of permalloy patterns are suitable and commonly used are T-bar 

and Y-bar. 

Of these various methods of domain propagation, T-bar or Y-bar 

propagation seems to be suitable for practical applications. The reasons 

lie in the elimination of the need for a fabrication of small current-

carrying conductors, the relative ease in generating drive fields at low 

power levels, and the logic capabilities inherent in this mode of propaga­

tion, Consequently, the dynamic phenomena of this type of domain propaga-
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cion are investigated in this thesis. The magnetic fields produced by 

magnetized permalloy bars induced by the applied transverse uniform 

rotating field are calculated. With such fields domain translation and 

change in domain size and shape are investigated using previously cal­

culated equations. The calculation shows that the velocity of domain 

translation is highly nonuniform due to highly nonuniform field gradient. 

Domain size and shape also change when the domain is in motion. Varia­

tion of the width of permalloy bars shows that the narrower one has 

higher initial driving field and more uniform speed. 

Finally, in this thesis the force exerted by a permalloy bar on a 

magnetic domain is discussed. Without applying the tranverse rotating 

field, there exists a magnetostatic interaction between bubble domains 

and permalloy films. Since the permalloy films serve as localized flux 

closure paths thereby reducing the magnetostatic energy, the cylindrical 

domain prefers a position in contact with the permalloy. Consequently, 

there exists a force exerted by permalloy films on a cylindrical domain. 

In order to evaluate the force, the permalloy film is assumed to be thin 

enough so that the magnetization induced in the permalloy by the bubble 

field is in the plane of the film. The radial bubble field is determined 

by integrating the magnetic field from a circular current loop over the 

bubble thickness and then changing the source by the standard method. 

The resulting field is a function of the complete elliptic integrals of 

the first and second kind. Magnetization induced in the permalloy is 

approximated by idealized and linearized model of M-F curve. The result 

of numerical calculation of the force is given in this thesis. Jt shows 
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that there exists an attractive force on the bubble when the bubble is 

approaching to the pernailoy and that the force reaches maximum just 

after the leading edge of the dooain is at the position in contact with 

the pernailoy. In the reverse, to pull the bubble completely off the 

permalloy film a large amount of external force is needed to counter­

balance this force. Consequently, the force due to the magnetostatic 

interaction also affects the propagation of cylindrical domains in 

permalloy circuit. Extra power input is needed especially at which the 

bubble is about completely off the permalloy. Calculation of the force 

used here is also useful in designing the wedge-shaped films in the 

"angelfish" circuit- The radial bubble field can be used in designing 

domain detector using magnetoresistive detection. 



9 

II. LITERATURE REVIEW 

Magnetic domain behavior in single-crystal magnetic oxides has been 

studied extensively over the last several decades. These investigations, 

both theoretical and experimental, are an attempt to better understand 

these materials and their complex domain structures. Recently, magnetic 

domains in single-crystal oxides have been utilized in memory logic 

devices. Extensive studies of cylindrical magnetic domains have been 

accomplished by the Bell Telephone Laboratories group and the others. 

Cylindrical magnetic domains are required to have the following properties 

(5, 11): (1) the domains exist in a plate of magnetic materials of 

uniform thickness, (2) the magnetization in the plate lies normal to the 

surface of the plate by uniaxial anisotropy, (3) domain-wall width is 

small compared to domain diameter, (4) wall-motion coercivity is suffi­

ciently small so that domain size and shape are independent of coercivity. 

The material requirements are also determined from a combination of such 

engineering requirements as cost, room temperature operation, the avail­

ability of materials, and the restrictions arising from the static 

stability and mobility condition (7, 8). 

A general requirement for the existence of cylindrical domains with 

magnetization perpendicular to a thin plate of material is > 1 

(8, 12), where is the uniaxial anisotropy field and is the saturation 

magnetization. Cylindrical domains are only observable when the plate 

thickness and domain diameter are some small multiple of the characteristic 

length, L = (7, 8), where is the wall energy density. The 
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ratio of domain-wall width to this characteristic length is (T7/2) 

(13). Consequently, the assumptions that the magnetization lies only 

along the plate normal, domains do not spontaneously nucleate, and the 

wall has negligible width improve as is increased. However, 

from the point of view of device design it is not desirable for the 

anisotropy field to be much greater than 4-%^. The reason for this is 

provided by general mobility relation. Under the assumption of Gilbert 

damping, the wall mobility can be expressed as = u\y\kjcxa^ (14), 

where A is the exchange constant, O. is the Gilbert damping constant, 

and 'vj is the gyromagnetic ratio. Since the wall width is defined by 

-2'^ = 4TTA/O"^ (13), the wall mobility may be written in the form, 

= lyl-t^/CiTr . It can be seen that for a given amount of damping, the 

wall velocity will be proportional to the wall width. Therefore, the 

preferred value of when high domain mobility is desired is some small 

multiple of 4ttM^. 

There are a number of different classes of magnetic materials that 

will support isolated circular domains covering a several-orders-of-

magnitude range of diameters. The desired domain diameter, commensurate 

with present technological ability to construct control structures, is 

in the 1 ̂ m-to-10 ^^m range. Ideal circular domain device materials are 

homogeneous and have the desired properties intrinsically. Published 

articles on bubble domain materials have described work with single 

crystals of orthoferrites (5, 6, 15), hexagonal ferrites (16), and 

magnetic garnets (17-21). The main parameters involved in determining 

bubble diameter, d, are the magnetic exchange energy, the uniaxial 
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Esagnetocrystalline anisotropy, K^, and the magnetization, of the 

% -2 
crystal and generally can be expressed as dcC . The 

orthoferrites meet most of the requirements for bubble domain devices. 

Their principal deficiency is a high ratio. As a result the 

diameter is generally larger than desirable. Suitable ratios are 

realizable in the hexagonal ferrites; however, bubble domain mobility 

is disappointingly slow (22). The magnetically uniaxial garnets are in 

some respects a compromise. The mobility values are intermediate to 

those of the hexagonal ferrites and the othoferrites (22, 23). 

Two important features toward device applications of the cylindrical 

domains are the behavior of domain size under variations in temperature 

and domain-wall mobility. If a bubble domain device is to operate in 

an enviroment that permits temperature excursions, the influence of those 

changes on the domain diameter must be established to determine the 

temperature limit for reliable performance. Moreover, for fixed values 

of bubble diameter and applied field gradient, the maximum data rate 

attainable in bubble devices is determined by the domain mobility (22). 

The temperature dependence of the domain diameter has been studied in 

a number of rare-earth orthoferrites by Rossol (24). All the materials 

measured show that the domain diameter increases with decreasing the 

temperature. The Sm-Tb mixture, which has the smallest cylindrical 

domains, has the largest fractional change in diameter with temperature. 

The least temperature sensitive of the materials is YFeO^. Heinz et al. 

(23) have measured the temperature dependence of the domain diameter in 

a Gd:YIG film. It shows that the domain diameter of this garnet is 
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significantly less influenced by temperature change than is that of 

orthoferrites. Wall mobilities in bubble materials have been measured 

by modulation of the equilibrium position of the domain wall (25), by 

transient bubble collapse technique (22), by observation of the response 

of a domain wall in the strip domain configuration to an impulse field 

(26), by investigation of the translational dynamics of a domain moving 

around the circumference of a permalloy disk (27), and by direct measure­

ment of the velocity of a domain in a known field gradient (23, 28). 

Room temperature values of mobility for several orthoferrites fall in 

the range from 100-1000 cm/sec-Oe (25). Therefore, the temperature 

dependence of the mobility has substantial differences among them. 

Domain-wall mobility in "YFeO^ has been observed to have values from 

6000 cm/sec-Oe at 300°K to 50000 cm/sec-Oe at 77°K (29). Wall mobility 

in magnetically uniaxial garnets has the value a little smaller than 

orthoferrites (22, 23). 
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III. ANALYSIS AND APPLICATION OF PROPAGATION 

OF CYLINDRICAL MAGNETIC DOMAINS 

A. The Static Theory of Magnetic Bubble Domains 

The static theory of cylindrical magnetic domains which provides 

conditions governing the size and stability of circular cylindrical 

domains in the plates of uniaxial magnetic materials was developed by 

Thiele (7, 8). Figure 1 shows the model for the domain structure from 

which the theory was developed. The model represents a single isolated 

domain in a plate of magnetic material of uniform thickness, h, and an 

infinite extent of the plane, r^ = <», Everywhere within the material 

the magnetization has a uniform saturation magnitude, M^, directed along 

the downward plate normal (-z direction) within the domain and along the 

upward plate normal elsewhere within the material. The domain wall is 

assumed to be independent of z and to have a width which is negligible in 

comparison to the domain radius. It is assumed that the domain wall 

energy density, is taken to be independent of both orientation and 

curvature. The spatially uniform applied bias field, H, is taken positive 

when directed upward, the direction tending to collapse the domain. In 

order for the domains of the types to be considered here to exist, the 

material is required to have that 

K > 27tM^ (la) 
u s 

or 

H > 4rrM 
k 1 s 

(lb) 
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where K is the uniaxial anisotropy constant and H, (=2K /M ) is the 
u Tc u s 

uniaxial anisotropy field. 

The domain radius function, r^(6), which is expanded in the series 

r. (6) = r + Ar — z, Ar cos Ln(0 - 8 - A0 )j (2) 
D 0 o T n n n n=l 

describes the domain size and shape. The Ar and AG describe small 
n n 

variations in domain size and shape from a circular domain of radius 

r^(0) = r^. Since only near circular domains are of interest here, 

the condition 

CO 

IZGL » UR^I + Z N|AR^| (3) 
n=l 

is imposed to assure that the radius is single-valued and smooth. 

The total domain energy, 

=1 = + 2% (4) 

is the sum of three terms. The wall energy, E^, is the product of the 

wall energy density and the wall area. The applied field interaction 

energy, E , is proportional to the product of the domain volume and the 

external field interaction energy. The last term, E^, is the internal 

magnetostatic energy of the domain. The variation in the total energy 

when the Ar and A9 are varied is 
n n 



ID 

SE oE^ 

n=0 n n 

2 2 
CO CO _ o E_ 5 E 

2 ^ - %T 5r ^o ^ ~^cr oS ^o 
n=0 n m n m 

+ (sëraG-^o AGnAe^^j + 0] (5) 
n m 

where in the energy derivatives the indeoendent variables, Ar and 69 , 
n n 

have been abbreviated as r^ and for compactness, the subscript o 

refers to evaluation of the partial derivatives at the circular domain 

state, r^(9) = r^, and 0^ refers to terms of order three and higher. 

The first partial derivatives of the energy, (cE„/or ) and (ôE„/30 ) , 
1 no 1 no 

are the generalized forces of the system, while the second derivatives 

of the energy determine the stability conditions. 

The derivatives of the total energy with respect to Ar^ and A0^ 

are obtained by differentiating the integrals which form the terms of 

Equation 4 and evaluating the resulting integrals for the case of a 

strictly circular domain. The result of the total energy variation 

expression, Equation 5, is (7) 

2r 

AE_ = [2rrh7 + 4TTr hM H - (2Trh^) (4n-M^)F (-^)jAr 
T w OS s n o 

2r 

1 9 SF(-^)_ 2 
+ jL^-hM^H - (4TTh) (4-}r) ——J (Ar^) 

a (-:%) 
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2r 

+ — Z {— ha n + 2iThM H - (2nh) (4TTM ) 
Z . T w s s 

n=l o 

SFC-sS) 

2r 

+ h(4TTM^) •— [L ( (57-)^) - L (0)]}(Ar + 0. (6) 
s n n zr n n 3 

o 

where F(x) and L (x) are functions of complete elliptic integrals of 
n 

the first and second kind. Since the stability of the domains is only 

of interest here when the equilibrium condition is satisfied, the force 

equation may be used to eliminate the applied field from the second 

variations. To write the energy variation expression in a normalized 

form, energy is measured in units of 4(2rTM^) (rrh^), the applied field is 

measured in units of the magnetization, H/4ITM^, and the wall energy is 

written in terms of the characteristic length of the material 

(7) 

s 

The resulting normalized form of energy expression is 

4(W) (Fh^) 

+ 2(n2-l)(|)[i-S„(i)](^)^}+03 (8) 
n=2 
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where d is the domain diameter, 2r^, S^^x) is a function of F(x), and 

S (x) is a function of L (x), F(d/h) and S (x) are defined as the force 
n n n 

and stability functions, respectively. The force function and stability 

functions from n=C to n=10 are plotted in Figure 2. 

The domain is in equilibrium when all of the first order variations 

of the total energy with respect to the Ar^ and are zero. By inspection 

of Equation 8, it can be seen that the domain is in equilibrium when it 

is a circular cylinder having a diameter which is a solution to the 

normalized force equation, 

s 

Solutions to the equilibrium problem may be discussed either in terms 

of the equivalent fields as was done by Bobeck (5) or in terms of 

Equation 9 with graphical method done by Thiele (7). By either methods, 

it shows that a stable cylindrical domain can be obtained by choosing 

proper thickness, h, and the applied bias field, H. Figure 3 shows an 

example of cylindrical domain size as a function of an applied field. 

The sign of the second variation of the total domain energy 

produced by a weak variation in shape characterizes the stability of 

a cylindrical domain. In the equilibrium energy expression. Equation 8, 

the only nonzero quadratic coefficients are the coefficients of the 

2 
(Ar^) , n ̂  1. As required by the cylindrical symmetry of the system, 

the domain is completely metastable with respect to angle. Consequently, 

from Equation 8 it can be seen that the domain is stable with respect 

to an arbitrary variation in shape when 
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^ h " ^ ° (10a) 

and 

[ ̂  > 0 , n '•• 2 (lOb) 

or 

^o<h' (IOC) 

Since the stability functions have the property (Figure 2), 

^ (11) 

the condition for total stability reduces to 

(12) 

This determines the upper and lower limits on cylindrical domain 

diameters which are boundaries of the region of possible device operation. 

Figure 4 is a plot of these diameters measured in units of the character­

istic length, as function of the thickness measured in units of -t. 

The smallest stable domain attainable is about d/h=l,2 and -t,/h=0.3, or 

<mi. " 4 t (13) 

More thorough discussions of stability considerations were given by 

Thiele (8,30). 
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B. Dynamics of Magnetic Bubble Domains Under 

Nonuniform Applied Field 

1. General energy variation expression 

The static theory of magnetic bubble domains provides the equilibrium 

and stability conditions of circular cylindrical domains. The generalized 

force. Equation 9, determines the size of the bubble domains and Equation 

12 provides the stable range of the bubble domains. Cylindrical domains 

may, however, be propagated by gradients in any of the independent 

parameters which determine the total domain energy (31). These parameters 

are the applied field, H, the plate thickness, h, the saturation magnet­

ization, , and the wall energy density, The domain radius, r^, is 

not an independent parameter for domains in equilibrium but is determined 

once the other parameters are specified. In most device applications, 

cylindrical domains are most easily propagated by gradients in the applied 

field (6, 9). Consequently, the following analysis of the domain dynamics 

will be devoted to the case that the bubble domains are propagated by 

gradients in the applied field. 

The bubble domains are maintained in the preferred cylindrical form 

by an overall uniform bias field applied normal to the platelet surface. 

As shown in Figure 3, an increase in the bias field decreases the domain 

diameter and vice versa. Now consider the reaction of a cylindrical 

domain subjected to a nonuniform rather than uniform field- The response 

will be complex and could involve changes in size and shape, motion at a 

nonuniform rate, or even the collapse of a domain. Consequently, except 

the case in which a uniform field gradient is applied, it is convenient 
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to treat the dynamic problem locally. The domain configuration at any 

instant will be the same as shown in Figure 1, except" the applied field. 

Under the same assumptions as in the static case, only the component of 

the applied field normal to the platelet surface will interact with the 

domain. Suppose in addition to the uniform bias field that a nonuniform 

z-average z-component field is applied and has the form of 

H = - i (K + H, r cos 6 + H.r^ cos 2 9) (14) 
a z o 1 2 

where 0 is the angle measured from the +x direction and i^ is the unit 

vector along the +z direction. It can be seen that is the average 

field at the center of the domain and and account for the linear 

and quadratic field gradients, respectively. More general form of the 

applied field can be obtained by an infinite Fourier series expansion. 

Here only terms up to the second order will be considered. The coordinate 

system of this field is considered to follow the domain movement with the 

origin at the center of the domain so that the magnitude of changes 

during the domain propagation. 

When the nonuniform field is applied, only the applied field inter­

action energy term, E^, will be different from the static case in the 
n 

total energy Equation 4, The same radius Equation 2 will be used in 

the calculation of E^ in the dynamic case. The magnetization of the 

platelet may be written as 

M = 1 - 2u[r^(9) - r] } u(z + |-)u(-z (15) 
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where u(x) is the unit step function, 

' 0 , X < 0 

u(x) = "N 2 ' X = 0 (16) 

[ 1 , x > 0 

The interaction energy of the magnetization with the externally applied 

E = - ^ M •  H  = - I ; R M H r d r d & d z  (17) 
H "v a i. "O "0 s* 

Substituting the expression for the applied field. Equation 14, and the 

magnetization configuration. Equation 15, into the applied field inter­

action energy expression. Equation 17, yields 

^2n , 
Ey = Mg j J J {l-2u[r ,^(e) -r]}u(z + j) u ( -z + 2 ) 

0 0 

(H^ + H^r cos e + H, cos 2 8) r dr d© dz (18) 

Changing the order of integration and then integrating, it becomes 

2 , 2 3 
E% = -MghH^ J r^(6)de - J M^hH^ j r^(9)cos6de 

1 4 
M hH_ J r (0)cos20d9+ constant (19) 
® 0 

+ Eg + E^) -r constant (20) 

where 

0 
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2rr 
r^(0)cos 0 d9 
D  

(22) 
0 

2rr 
r^(9) cos 29 dô 
D  "2 ^ 

(23) 
0 

The infinite constant is independent of the àr and A9 and does not 
n n 

contribute to the derivatives of the energy. 

The derivatives of the applied field interaction energy are computed 

by substituting the wall shape expression. Equation 2, into the energy 

expression. Equation 19, or Equations 21-23. Evaluation of the first 

and second partial derivatives of the energy for r^(@) = r^ (see 

Appendix A) yields 

(24b) 

(24a) 

dr 
n 

) = 2rrh M H , n 1 
o so 

(24c) 

2 
) = 2-r h M H cos 9, 
o o s 1 "1 

(25a) 

cos (n0 - m9 ) , n,m Zr i 

(25b) 
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2 
< ÏTW \ ' " ®1 <25c) 

n m o 

^4 3 
( -— ) = 2TTr hM H_ cos 29„ (26a) 

o o s 2 2 

_.2 2 f àn-omH2<.c^o^2 + 

( ) . < -, (2sh) 

'n^ n 1 3rrr*'hM H [c ,ô ^ cos 29. 4- 6 ,^ cos (n© -m0 )] , 
^ o s 2 ci nl i n,in+2 n m 

n,m ̂  1 

3 
( SrSr ) = - ^^0™s''2^m2°n2 ^^2 <^60) 

n m o 

where 5 is the Kronecker delta function. All the other first and 
mn 

second derivatives of the applied field interaction energy are zero. 

Now adding these derivatives into the total energy variation 

expression for the static case. Equation 6, yields the general energy 

variation under the nonuniform applied field which can be summarized as 

9 9 2r 
= [2rrkT^ + 4TTr^hM^(H-H^) - (277h ) (4nM ) F (Ar^) 

2r 

1 2 2 
+ — [4TThM^(H-H^) - (4Trh) (4t7M^) —— ] (Ar^) 

2r 

1 Z r -T 0 9 oF(-^) 
+ 7 2 {— ho- n +2TThM (H-H ) - (2TTh)(4TTM ) 
2 r w S O S' 2r 

n-l o a 

+ h(4TTf^) -L^(0)l)(ir^)2 
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- [Znr^hM^H^ cos ] (Ar^) 

- 7 [8nr hM K cos© 1 (Ar ) (Ar ) 
^ O S jL i 1 o 

1 ce CO 

- T Z {L2rrr hM H^c ,, cos (nô -m& )" (Ar ) (Ar ) 
n=l m=l ° s 1 n,n^l n m ' a' m' 

- (2TTr^hM H, c ^6 , sin 9, ) (Ar ) (A9 ) ] 
o s X ni mi X n m 

- [ 2rrr^hM^H2 cos Ze^] (Ar^) 

- 12TTr\M^H2 cos 262] (Ar^) (Arg) 

- ̂  Z Z {[3nr^hM K.(ô ^6 ,cos26 +ô ._cos(n9 -mB ))] 
^ 1 O S 2 ni ml 1 n,m+2 n m 

n—X m—i ' — 

(Ar^) ter^) - sir. 26^ »r^) (A9^)) 

(27) 

By inspection of Equation 27, it is appropriate to note the significance 

of some of the terms. The term -ôCArOE^/ôr^) l/ô9- = -Ar, (o^E^/P^r^ôe, ) 
1  f i  J L  O  i .  J L  H  l i e  

is a torque tending to turn a domain into the direction in which the 

force tending to move the domain is most positive. On the other hand, 

^ 2 2 2 
the term -oLAr2(ôE^/3r2)^l/ô92 = -Ar2(3 ^h^^^2^^2^o ^ torque tending 

to turn a domain into the direction in which the force tending to deform 

the domain is most positive. 

2. Bubble domain dissipation 

The preceding section treated forces arising from the total energy 

variation of the system. In order to set up equations for translation. 
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size change, and deformation of domains, it is necessary to add a kinetic 

energy term to the other energy terms and to add a term accounting for 

the domain dissipation as the wall moves. The "wall mass" is negligibly 

small in practical cases, so that the kinetic energy term may be ignored 

and the domain dynamics may be proceeded to the matter of dissipation. 

The method used to take dissipative effects into account is to compute 

the power dissipation produced by a general variation in domain shape 

using the wall dissipation equation and then to set this equal to the 

power produced by the variation. 

Wall motion in many magnetic materials is describable in terms of 

a wall motion coercivity and a wall motion mobility. In some ferrites, 

there exists a linear relationship between wall velocity and drive field 

provided that the drive field is sufficiently low (32, 33), In uniaxial 

hexagonal ferrites, such as barium ferrite, the wall velocity is a non­

linear function of drive field (34). On the other hand, orthoferrites 

and garnets are characterized by a linear relationship between wall 

velocity and drive field (22). However, it will be assumed here that 

each segment of 180° domain wall in bubble materials has the velocity-

drive field relation, 

where v is the local wall velocity in a direction normal to the wall, 
n 

H is the total local field component parallel to the magnetization, 
z 

is the wall motion coercivity, and is the wall mobility. 
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Consider now a portion of the domain wall as shown in Figure 1 with 

the applied local field, which is positive when it lies in the positive 

z direction. The power input per unit area from the local field to an 

inward moving (decreasing r^) segment of the domain wall is independent 

of the details of the magnetic configuration within the wall and is 

Since the "wall mass" has been assumed to be negligible, the wall inertial 

effects can be disregarded in evaluation of power output. Therefore, the 

power input must be equal to the power dissipated per unit wall area. 

Eliminating in Equation 29 from Equation 28 results in 

It will be assumed that the wall coercivity is uniform over the wall and 

is independent of the direction of wall motion. Thus in evaluation of 

total domain wall dissipation, is considered as a constant force 

opposing the motion at each segment of domain wall. The total domain 

dissipation can be obtained by integrating the dissipation density over 

the domain area, 

where da is the differential wall area. Since for a circular domain. 

(29) 

(30) 

(31) 

(32) 
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where i is the unit vector in the radial direction and v, is the 
r a 

velocity of the domain. Equation 31 becomes 

^diss = I + r <") 
0 W 

Setting r^(8) = r^ yields 

'^dis. = J" ^ (34) 

0 ^ 

Now for a circular domain, 

V, . Ï = 
'd r dt 

œ ôr (0) dAr ôr (0) 9A0 

" ^ôÂr ^o dt ^ÔÂ0 ^o dt 
n=0 n n 

<*> dAr 

= Z cos[n(0-0^)l (35) 
n=0 

Substituting Equation 35 into Equation 34 and carrying out the integration 

yield 

dAr _ 00 dAr 

•"diss ' ["c [|-dfl + n =, l"5rl ^ 

1 dAr « . ® dAr _ 

+ [(-diT) + i ]] (3«) 

Equation 36 shows that there are two characteristic types of dissipation: 

one contribution is proportional to the square of the wall velocity, and 

one contribution is proportional to the absolute value of the wall velocity. 

These can be understood physically. In one form of dissipation the 
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dissipative drag force which acts on the wall is proportional to the wall 

velocity. The rate of energy loss is equal to this force times the 

velocity and is, therefore, proportional to the square of the velocity. 

The second type of dissipation involves a fixed loss energy per unit 

distance of wall travel, independent of velocity. The amount of energy 

given up by the wall is proportional to the displacement of the wall, 

so that the power loss is proportional to the wall velocity. The propor­

tional constants for these two types are related to wall mobility and 

coercivity, respectively. 

3. Bubble domain velocity 

As stated in the preceding sections, a bubble domain may propagate 

when a field gradient is applied. In the case of a uniform gradient, 

motion of a bubble may have a constant velocity. When the applied field 

gradient is nonuniform as in the most practical cases, the response will 

be complex and could have nonuniform domain velocity and change in domain 

size and shape. These can be analyzed by taking dissipative processes 

into account to set the sum of the power dissipation. Equation 36, and 

the rate of energy change from variation. Equation 27, equal to zero. 

The domain radius function. Equation 2, describes the domain shape 

in the plane of the platelet. The Ar and A9 describe small variations 
n n 

from a circular domain of radius r, (0) = r . Each individual variation 
D O 

of Ar^ has different effect on domain. Figure 5 shows the schematic 

diagram for domain shape variations by Ar^ from n=0 to n=3. It can be 

seen clearly that from the point of view of the total domain, Ar^ variation 
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accounts for change in domain size and Z,r, variation accounts for 

translation of domain while Lx 's for n - 2 account for deformation of 
n 

domain shape, specifically Ar^ for elliptical shape variation. In this 

section, translation of domain will be discussed and change in size and 

shape will be discussed in the next two sections. 

Consider now an initially circular domain in which only dAr^/dt 

is nonzero. In this case, the rate of energy change from Equation 27 

becomes, 

ffl -
dt dAr^ dt 

2. 
' • — (37) 

In Equation 37, the second order terms including the coupling terms 

have been neglected under the condition of Equation 3 in order to 

evaluate the absolute value of domain velocity. Also evaluation has 

been considered in the direction of which the domain velocity is maximum 

(6^=0) because there exists a torque to turn the domain into this 

direction as mentioned before. Setting the sum of Equation 37 and the 

power dissipation. Equation 36, due to dAr./dt equal to zero yields 

2H dAr. 1 dAr^ „ 

L if l^i + ̂  ] 

9 dAr 
- i-dTl = ° (33) 

The driving field of which the magnitude is defined by 
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= 2r^H^ (39) 

orientates in the direction in which the bias decreases most rapidly, 

i.e., in the positive x direction according to Equation 14. In fact, 

is the naxinum field difference across the circular domain due to 

linear gradient field. Thus, Equation 38 becomes, 

2H , dAr 
4 (RZ^ + |—R-I ) - AH, = 0 (40) 

11 uC X 
• W 

A variation in Ar^ can be identified with 

dAr, 

|VJ = I-^1 (41) 

where v^ is the circular domain propagating velocity. Consequently, 

Equation. 40 implies 

Iw 8,. , . 8 
2 

v,| = -S- (AK^ - - H ) , AH. > r (42a) 

jv.l = 0 , AHL < - H (42b) 
Û' 1 TT C 

This shows that in order to have a bubble domain in motion, the driving 

field, AK, , has to be larger than (8/TT)H^. The domain will propagate in 

the direction in which the bias field decreases most rapidly. Comparison 

of Equation 28 and 42 shows that it is possible to define a domain mobility 

and coercivity in terms of the wall mobility and coercivity as 

-d = 2 (43) 

«cd = ; «C 
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if is taken to be the drive field. 

Equation 42 has been used to calculate the bubble domain velocity 

(5-9) when a uniform field gradient is applied. In the case of non­

uniform gradient, caution has to be taken in using Equation 42 to compute 

the domain velocity. As defined in Equation 14, the magnitude of the 

applied field may change as the domain moves because the coordinate 

system of the applied field follows the center of the circular domain. 

Consequently, the magnitude of the drive field may change as the domain 

propagates, so that the domain velocity varies along the propagation 

channel. In order to calculate the domain velocity under nonuniform 

field gradient it will be necessary to know the variation of the applied 

field along the propagation channel. 

4. Bubble domain size 

The domain size variation will be considered in two cases. First 

the equilibrium size of stable domain can be determined by using the 

general force Equation 9 with the total applied field. On the other 

hand, small variation in domain size from equilibrium can be determined 

by using the radial stability functions. The same dissipation function 

may be used in both cases. 

For the first case, setting all the dAr^/dt except dAr^/dt equal 

to zero in Equation 36 yields the dissipation produced by a size change 

^ dAr dAr 

^dlss - + r "dT ̂  "df 

where the upper sign in front of is for an expanding domain. The 

rate of energy change due to Ar^ in Equation 27 is 
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dE _ n J' A K-H 

dT ' ÎT + K- ï;S^ - •'<?> ' -TT 
s 

Setting the sua of Equations 45 and 46 equal to zero yields the equation 

for deceraining the domain diameter 

- ^ n f e r r  f ^ = 
w s s 

where d(d) = 2d(r^) = 2d(Ar^). This differential equation thus shows 

that the domain diameter relaxes toward a value which is the solution 

to the general force equation as in the static case, Equation 9, except 

that H has been replaced by a composite bias field, The bias 

field, determines the equilibrium domain diameters, the stable and 

the unstable ones, for zero coercivity. NCHJ since the sign of +H^ must 

be determined in each case, there is a small continuous range of stable 

solutions about both the stable and unstable diameters. In other words, 

coercivity produces two stable range of solutions rather than one stable 

solution point and one unstable solution point. The large diameter 

solutions to the force equation for H-H TK and H-K -H bound the solution 
o c o c 

range which brackets the zero coercivity stable solution and similarly 

the small solutions to the force equation for H-H 4H and H-H -H bound 
o c o c 

the solution range which brackets the zero coercivity unstable solution. 

Figure 6 shows an example of solutions to the force equation in the 

presence of coercivity. P and Q represent the stable and unstable solutions 

for zero coercivity, respectively. The large diameter solutions for 

K-H +K and H-K -H are marked P, and ? , respectively, while the small 
oc oc + — ^ •' 
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diameter solutions for K-K -rK and H-H -H are marked Q, and Q , 
o c o c + — 

respectively. Coercivity stabilizes domains having diameter between 

?_^ and ?_ and between Q_^ and Q_. Small diameter coercivity stabilized 

solutions have been observed in the process of carrying out the mobility 

measurement (22, 35). 

For the second case, the energy variation expression. Equation 27, 

may be considered as an expansion of energy about the domain diameter 

which is the solution to the force equation. Consequently, the rate 

of energy change using Equation 27 and neglecting the coupling terms is 

dt oûr dt 
o 

- - «T,h<2-Kf) J [ ̂  - -jf (48) 

Using the same procedures by setting the sum of Equations 45 and 48 

equal to zero yields 

1 dAr - ? . Ar H 
" = r - S^(r) • —^ + 7-^ (49) 

^ (47rM ) dt d •" h o h ' r 4TTM 
w s os 

Thus the domain radius relaxes towards 

:!:o I = !.. . h i 

I I ^ ! 
(50) 

Therefore, coercivity stabilizes the domain for departures in radius 

from equilibrium up to this value. Defined by the usual time factor, 

exp (-t/?): the relaxation time is 
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r 
o 

d 

h 
(51) 

Equation 50 may be used to limit the magnitude of coercivity for a domain 

to have a defined variation range. As in the first case, the diameters 

bounding the solution range bracketing the zero coercivity solutions may 

also be computed by Equation 50, 

5. Bubble domain shape variation 

The domain shape variation in the presence of dissipative processes 

can be considered by Ar^ variation for n ̂  2, The applied field discussed 

has been considered only up to the second order term. Also to characterize 

the effect of coercivity in limiting the attainment of stable movable 

cylindrical domains it is necessary only to consider the elliptical shape 

variation mode (n=2) in addition to the size (n=0) and translation (n=l) 

modes (7,30 ), Thus, only the elliptical shape variation will be consid­

ered here. For higher order modes, the similar procedures can be applied. 

The power dissipation produced by the elliptical shape variation is 

from Equation 36 

where the upper sign is for positive dArg/dt, The rate of change of 

domain energy due to Arg, again negleting the coupling terms, is from 

Equation 27 

(32) 
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5 
de 

d6r2 

dt 

l 
= 12nh(2TTM^) Cj)r ^ 

3 dAr 
-f -r hM H- -7-^ 
— o s 2 dt 

d 
S2(h) ! -dl"-

(53) 

where the term produced by has been computed in the direction in which 

the domain is most elliptical (©2 = 0 and 02 = 90°). The upper sign is for 

positive àLr^fà-t (02 = 0), while the lower sign is for negative d6r2/dt 

(02=90°). Defining 

AH. = 2r H„ 
2. o 2 

(54) 

and setting the sum of Equations 52 and 53 equal to zero yield 

-> dAr. 

|J. 4TTM dt 
w s 

h -
o s 

H 

— rr ATTM 
(55) 

For both cases, positive and negative the domain shape variation 

amplitude thus relaxes towards 

~^2 

r 
o 

+ 4  *c 
STTM rr 4rTM 

(56) 

The relaxation time is 

U 4TTM 
'^w s 

(57) 
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is the maximum field difference on the circular domain wall due to 

the applied second order field. This drive field causes the initially 

circular domain to become elliptical as shown in Figure 5c. The ratio 

of the difference in ellipse semiaxes to their average, can be 

computed by using Equation 56. It can be seen from Equation 56 that 

coercivity stabilizes the domain for variation amplitude due to the 

second order field up to this value. In practical materials, is 

small for keeping velocity high. Consequently, in device applications, 

it is necessary to keep the nonlinear term of the applied field as small 

as possible in order to avoid false information. 

6. Discussions 

The preceding sections have discussed the dynamics of the magnetic 

bubble domains under the nonuniform applied field. With the applied 

field of Equation 14, three modes of motion including size change (n=0), 

translation (n=l) and elliptical shape variation (n=2) have been discussed 

separately in the presence of dissipative processes. These provide some 

general and simplified picture of propagation of bubble domains. It 

will be emphasized here that the domain has been considered initially in 

circular shape. All the parameters used and defined previously are on 

the basis of initial domain radius, r . As noted before, the domain will 
0 

propagate in the direction in which the gradient is maximum and will move 

to the place where the total energy is minimum. During the propagation, 

the domain may change its size and shape in addition to translation. Under 

the assumption that these variations are sufficiently small compared to 
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the domain diameter, the energy expression remains valid at any point of 

the propagation channel. Consequently, all the previous discussions may 

be applied locally provided that the drive field varies along the 

propagation channel. Under nonuniform field gradient, the translational 

velocity of domains, unlike the uniform case, will not be constant and 

its magnitude depends on the variation of the applied field. 

The second variation of the energy with respect to Ar^ and A0^ 

determines the stability of the domain. Since the stiffness of the domain 

with respect to externally applied forces is proportional to the coefficient 

of the bilinear form which is the second variation of the energy, the 

matrix formed by these coefficients is called the stiffness matrix (7). 

The stiffness matrix is composed of three independent submatrices: radial, 

angular, and mixed stiffness matrices. Inspection of Equation 27 shows 

that with nonuniform applied field there are two kinds of stiffness 

matrices, radial and mixed. Unlike the static case, the radial stiffness 

matrix consists of off-diagonal elements in addition to diagonal elements. 

Since the mixed stiffness matrix exists, the system is not completely 

metastable with respect to angle. The preceding analysis of domain size 

change, shape deformation, and domain translation has neglected the coupling 

terms which is the off-diagonal elements of the radial stiffness matrix 

under the assumption that Ar^ variations are sufficiently small compared 

to the equilibrium domain radius. Also it was considered on the basis of 

local evaluation so that the previous analysis may still be applied at 

any point along the propagation channel. If all the coupling terms are 

included, the analysis will be much more complicate. 
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The crudest approximation in the previous analysis, however, comes 

from wall coercivity, In calculation of the total domain dissipation, 

the wall coercivity was considered to have the same magnitude and the same 

velocity-drive field relation. Equation 28, at each segment of domain wall. 

In most magnetic materials, coercivity is never uniform and in many cases 

depends on the direction of wall motion (30). Also varies as wall 

moves (32). Consequently, the total domain dissipation. Equation 36, 

should include the nonlinear coercivity coupling terms which appears even 

in the lowest order. The nonlinear coupling terms tend in general to 

couple in additional modes even if only one dAr^/dt is nonzero. Thus, 

Equations 49 and 55 become rather crude approximation because nonuniform 

coercivity introduces nonlinear mode coupling. In device application, 

the most important factor is the domain propagation velocity. Equation 42 

provides the domain velocity-drive field relation. Measurements on a 

number of orthoferrites (28) showed that the linear relation can be 

applied approximately for large drive fields using dynamic coercivity 

instead of the domain coercivity defined in Equation 44. The magnitude 

of dynamic coercivity is appreciably higher than and depends on 

materials and treatments of materials. Nonetheless, the discussion of 

the effects of dissipative processes in terms of dissipation equations 

accounts correctly for the effects of coercivity to lowest order without 

being required to examine the coupling of modes or the origins of 

coercivity. The results obtained do provide a general picture of the 

dependence of the effect of coercivity on the various domain parameters. 



C, Analysis of Bubble Domain Permalloy Propagating Circuit 

1. Calculation of magnetic field produced by permalloy bars in tlic 
propagating circuit 

The cylindrical magnetic domain will propagate, if a highly localized 

gradient field is applied. Such field can be produced by current-carrying 

small conductor loops (6, 36, 37) or by isotropic permaloy overlay mag­

netized by applying transverse magnetic field (6, 9). The simplest and 

easiest way, however, to manipulate domains is to use permalloy overlay 

circuit. Even in a current drive propagating circuit, an array of 

permalloy dots is used to introduce an asymmetry into the pattern (36, 37). 

The transverse magnetic field applied to magnetize permalloy overlay has 

no direct effect on the domains due to high uniaxial anisotropy of the 

platelet materials. Thus the induced magnetic poles on permalloy bars 

provide a local field gradient to move domains. 

There are two general classes of permalloy circuit used in manipula­

tion of domains. The first class, the angelfish circuit, utilizes the 

fact that a cylindrical domain can be modulated in size by increasing or 

decreasing the bias field. With domain in and out of asymmetrical energy 

traps created by wedge-shaped permalloy films, bubble domain motion is 

achieved. The most common and effective way, however, is the second 

method of propagation. An in-plane rotating field acting on a structured 

permalloy pattern generates traveling positive and negative poles to 

selectively attract and repel and thereby control the motion of a 

cylindrical domain. One commonly used suitable pattern is the T-bar 

structure (6, 9). Recently, an alternative circuit element, the Y-bar, 
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has been proposed and developed (38). One major advantage in the operation 

of Y-bar is that the Y-bar arrangement has four stable positions of about 

equal pole strength. The T-bar, on the other hand, lacks a well-localized 

pole position in the center of the T. For this reason, Y-bar might 

provide a speed advantage. 

Consider now a pattern of T-bar structure for straight line 

propagation of cylindrical domains. Figure 7 shows one complete cycle 

of domain propagation from position A to position E and the corresponding 

directions of the applied transverse rotating field. If the transverse 

field is applied along the long dimension of a bar, the demagnetizing 

field of the bar is minimal and strong magnetic poles are formed at the 

ends of the bars. If the transverse field is applied across the short 

dimension of a bar, the large demagnetizing effect opposes formation of 

any appreciable pole strength. Thus the magnetic poles attracting or 

repelling cylindrical domains provide a local field gradient to fulfill 

domain motion. To complete one cycle of motion, it requires four steps 

of jump, A-B, 3-C, C-D, and D-E, as shown in Figure 7. It, however, can 

be classified into two categories, A-B, C-D, and B-C, D-E, if the magnetic 

poles induced in the permalloy bars by the field from the domain are 

neglected. Each period needs two of each type of step. In the following, 

field produced in each type will be computed. 

Consider first the propagation of a domain from the center to the 

end of the T-bar, A-B in Figure 7. Figure 8 shows both top and side 

views of the configuration and the coordinate system from which the 

field will be calculated. The origin of the coordinate system is at the 
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center of T-bar. Magnetic pole strength induced at the ends of the bar 

is denoted by to distinguish it from the saturation magnetization of 

domain To simplify the calculation, the magnetic field will be 

computed at the center of the doi^ain along the x direction instead of 

LWO dimensional field. For high uniaxial anisotropy of domain material, 

only the z-component of the magnetic field is of interest here. Under 

the assumption of cylindrical domain walls (no bulging) the magnetic field 

at any x acting on the domain may be evaluated by z-component of its 

average value over the platelet thickness, h. Thus, 

— 1 
H = - ! a (z)dz (58) 

0 

This, in fact, is the difference in scalar magnetic potential between 

the top and the bottom surfaces of the platelet. Although it consists 

of many repeated pattern of Figure 7 in actual devices, only the field 

produced by the nearest neighboring magnetic poles will be considered 

here as in Figure 8. 

Since the thickness of the permalloy overlay usually is negligibly 

small compared to the other dimensions, the magnetic pole strength at 

the ends of the bar will be considered to be concentrated at z=0. Thus, 

the 2-component magnetic field at any x average over the platelet 

thickness will be 
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s - r 2 ^ n  a  M  t  ,  

H, . = è; dz I r —— 
A-B h J Ç la Ly^+z^+(b-hs)^' [y^+2^+(b-h>r)^]'^ 

s + 2  

M  t  

-- r ] (59) 

-a Ly^+z^+Cb-x)^! [y^-T-/+(b-x)^Y^ 

Exchanging the integrals and integrating over z yield 

M t a 
s° ' dy { 

^ -a [y^-i-(b-hc)^+(s+|:?1- [y^+(b-bc)^+(s+|+h)^l^ 

] 
[y^+CD-x)^+(s+|-Hi)^'l ̂  ry^+CD-x)^+(s+ 

(60) 

Integrating over y results in 

M t [a+ Ja^-r(h+x)^+(s+|-)^";l -a+ Ja^+(b-f-x)^+(s+ 

i-a-t-Ja^-h(b-Hc)^+(s+^)^][ a+J a^+(b+x)^+(s+^4+i)^] 

La+ Ja^+C£>-x)^+(s+[ -a+ Ja^+(b-x)^+(s+j i 

[-3-rJa^+ (b-X)(s+1--Hi)[ a+Ja''-r(h-x)^+(s+^ \ 

(61) 

Similar calculation can be used for the second case from the end 

of the T-bar to the end of the neighboring bar, B-C in Figure 7. As 

shown in Figure 9, the magnetic poles induced at the T-bar will be assumed 

to be concentrated at the top of the center bar. For convenience, only 

x-dependent field will be computed. Thus, the z-component magnetic field 

at any x average over the platelet thickness in this case will be 
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, ""2+'' a K tziu 
1  .  r  r *  S O  

•J -, ,2, 2 2.312 
. Ç, -a L (c-+x-u) -ra +z j 

s + 2 

a M c z du 

- - } (62) 
-a L (c-x-Ki)^+a^+2")^^^ 

Exchanging the integrals and integrating over z yield 

M t a 

^B-C ,2 2^,^.t.2Ji r, , \2._2,,_,c.^\2TL 

1 

a [ (CTX-U) +a +(S-!Y) ] ̂ [ (c+x-u) +a +(S+^4H) ] 

+  :  - ]  
L (c-x+u)*'-fa^+(s+|-fh)^]''^ [ (c-x+u)^+a^+(s+J )^"1 ̂  

(63) 

2 

Integrating over u results in 

M _ t L (c-f^+a)-f 7(c-hc-ra)^-ta^-!-(s4-|-)^] 

(c-f^i-a)+ y(c+x-a)^+a^+(s+J )^] 

[ (c-Hc-a)+ J(c-h{-a)^4a^+(s4Y+h)^J L (c-x+a)+ ̂ (c-x+a)^+a^+(s+|+h)^1 

L (c-fx+a)+^(c+x+a)*'+a^+(s+|-Hi)'^][ (c-x-a)+ ̂(c-x-a)^+a^+(s-f-^-fh)^ j 

L (c -x -a )+ J ( c -X -a ) ̂-ra (s-r̂ ) ̂ 1 
(64) 

L (c-x+a)+^(c-x+a)^+a^+(s+^) J 

Equations 61 and 64 provide an approxiiaate solutions of simplified 

X-dependent z-component z-average niagnetic field along the propagating 

channel. More complete forms are needed to solve the periodic pattern 
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of permalloy propagating circuit. However, these equations seem to be 

enough to characterize the behavior of the fields and also simplify tlie 

analysis of domain motion. 

2.  Analysis  of  domain motion in  the permalloy c i rcui t  

With the applied fields of Equations 61 and 64, domain motion will 

be discussed in this section. As mentioned previously, the analysis of 

domain motion includes domain translation and change in domain size and 

shape. It has been assumed that the applied field has the form of 

Equation 14, so that in order to match this form Equations 61 and 64 

will be expanded at any by Taylor's series 

f (x)  = f (x^)  + Z (x-x^)^ (65)  
n=l 

where f(x) represents either H or H because both have been considered 
B-C 

to be functions of x only. By comparing Equations 14 and 65, the coef­

ficients of Equation 14 can be identified at any with 

= - f(x^) (66) 

= - f'(Xg) (67) 

%2 = - 4 (68) 

In Equation 66, the r-dependent term has been disregarded because it 

simplifies the analysis and moreover, it is closer to fit the actual 

field produced by the permalloy bars. 

The domain size is determined by the general force equation. Setting 

Equation 47 equal to zero yields the equilibrium domain diameter. Since 
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the direction of the magnetic field produced by the magnetized permalloy 

bars is opposite to the initially applied uniform bias field, the domain 

will expand during the propagation along the channel. Figure 10 and 

Figure 11 show the variation of K 's for H and H _ , respectively, 

for b=5a, c=4a, and s-ft/2=0.1h . Since the field is dependent on the 

width of the permalloy bars, the variation for several values of the 

ratio of a to h is also shown in the figures. It can be seen that the 

domain diameter is increasing either from A to B or from B to C. For 

domain moving from A to B, it seems to have a drastic change in domain 

size when a domain is approaching B. It is undesirable to have the 

composite bias field below the strip-out field. Although Figure 10 

shows that at the end, point B, the composite bias field may be below 

the strip-out field, it should be considered that the field beyond point B 

increases again and the average field for a domain is not the same as in 

the center of the domain. Consequently, the figure at both ends has less 

significance for the determination of domain size. The variation of the 

width of the permalloy bar with the ratio of a to b remaining the same 

shows that the larger the width, the smaller the change in size except 

at the end. For the case of domain moving from B to C, there is no 

drastic change in field at the end and the difference of change in size 

by the variation of width is smaller than the first case. It shows the 

same trend as in the first case for the change in size with the variation 

of the width. It is desirable to have change in domain size during the 

propagation as small as possible. 
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The most important factor in discussion of domain propagation is 

domain velocity. The absolute value of domain velocity has been defined 

in Equation 42. The driving field must be larger than (8/n)H^ in 

order to have domain in motion. The magnitude of was defined in 

Equation 39. In the case of the applied field, or Hg_g, can 

be calculated according to Equation 67. Since most magnetic materials 

used for bubble device applications have small coercivity, it will 

be considered here that is negligibly small and remains constant when 

domain is in motion. It also will be assumed here that the domain 

velocity is proportional to the driving field AH^ with the proportional 

constant remaining the same and independent of the magnitude of the 

driving field. Although the diameter of domain will change during the 

propagation, the driving field defined in Equation 39 will be used 

according to the proper fixed domain diameter, such as initial diameter 

of circular domain. With these assumptions, it can be seen that the 

magnitude of domain velocity is proportional to or gradient of the 

applied field. 

Domain motion in permalloy propagating circuit has been so far 

considered to be straight line propagation. The applied field produced 

by the permalloy bars has been calculated for variation of x only. 

Consequently, the direction of domain translation is along the direction 

of maximum velocity. Figures 12 and 13 show the negative of the first 

derivative of the applied field and Hg_g, respectively. Both 

figures show that the domain velocity is not constant and in fact, is 

increasing from the start to the finish. It should be noted that they 
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have less significance at the ends as stated in the case of domain size 

change. It can be seen that the change of velocity is smaller at the 

start. The initial velocity is larger for smaller ratio of a to h in 

both cases. The initial velocity is important for domain pulling out of 

the stable positions produced by the isotropic permalloy which will be 

discussed in the next chapter. The velocity change is comparatively 

smaller for the narrow width of permalloy bars. It is desirable to have 

domain velocity as large and uniform as possible. 

Change in domain shape, specifically elliptical change, can be 

determined by Equation 56. The shape-changing driving field, AHg, has 

been defined in Equation 54. In Equation 56 domain coercivity acts as 

a dragging force to stabilize the domain shape variation. In the case 

of the applied field, or Hg_^, the driving field can be calculated 

by Equation 68. Consequently, the elliptical shape can be determined 

by examining the second derivative of the applied fields. Figures 14 

and 15 show the negative of the second derivatives of ^ and ^ 

along the propagating channel. Both figures show that the elliptical 

variation is smaller at start of the domain translation. Variation of 

the width of the permalloy bars shows that domain shape change is smaller 

for narrow permalloy bars. In Figure 15 it also can be seen the 

possibility of exchanging the directions of major and minor semiaxes 

of the ellipse. Since most magnetic materials used for platelet have 

small domain coercivity in order to have high translating domain velocity, 

it is desirable to have driving field, AH2, as small as possible. It 
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should also be noted that if the applied field is biased at the elliptical 

run-out, the factor l/[(t/h)-S2(d/h)] in Equation 56 becomes infinite. 

Therefore, this factor should be taken into account in evaluation of 

domain shape variation. 

3. Discussions 

The magnetic cylindrical domains can be propagated by applying 

localized field gradient and permalloy propagating circuit provides the 

field gradient to move domains by applying transverse rotating magnetic 

field. The fields, however, produced by the magnetic poles at the ends 

of the permalloy bars do not provide uniform field gradient. At each 

step the field gradient changes slowly at the start of the domain 

translation and changes drastically when approaching to the end. Con­

sequently, the velocity of domain propagation is not constant and it 

increases when a domain is approaching to the end of the permalloy bar. 

Simultaneously, change in domain size and shape is accompanying with 

domain motion. Experimentally, Rossol (10) has observed these phenomena 

using stroboscopic observation of domain motion in T-bar structure. It 

is desirable to have a circuit to provide uniform field gradient and to 

have this field gradient as large as possible within the range of stable 

bubble domain. For the permalloy-bar circuit, the initial velocity seems 

to be too small to operate at high frequency rate. If the elliptical 

change in domain shape is too large, it increases the detection difficulty 

and possibly gives the false information. Permalloy circuit does have this 

problem if the second order derivative of the applied field is too large. 
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It has been assumed that the doniain wall energy is isotropic in the above 

analysis. Delia Torre and Dirayan (39) have shown that anisotropy of wall 

energy exists in orthoferrites. This anisotropy of wall energy causes 

doniains initially to be elliptical. Using energy variation expression, 

the ellipticity of domain resulted from this anisotropy can be calculated 

(see Appendix B). Therefore, evaluation of change in domain shape should 

include this effect in addition to the change due to nonuniform field 

gradient. Permalloy propagating circuit, however, does provide a simple 

and easy way to manipulate the bubble domain. 

The effect on the variation of the applied field by the width of 

permalloy bars has been considered in the above analysis. Several values 

of the width have been compared. It showed that the wider permalloy bars 

have smaller change in domain size, but the narrower bars have more 

uniform velocity, higher initial velocity, and smaller deformation. Since 

the most important factor in practical applications is domain velocity, it 

is better to have narrow width of permalloy bars in the propagating circuit. 

Preparing the periodic thin permalloy film circuit, such as T-bars, is 

accomplished by the standard photolithographic techniques. It still has 

limitation of linewidth in the etching of permalloy films. Recently a 

technique based on electroless deposition has been developed (40). There­

fore, a circuit of narrow linewidth is currently attainable. From 

circuitwise consideration permalloy propagating circuit is more suitable 

for bubble materials having small domain size in order to operate at high 

data rates. Garnets and hexagonal ferrites have smaller domain diameters 

than orthoferrites. However, the selection of materials for bubble devices 
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which operate* at high data rates requires consideration of the domain-

wall mobility as well as the domain diameter. For fixed drive field 

orthoferrites have highest domain-wall velocity. Comparison of data 

rates of these materials has been investigated by Bobeck (22). 

The analysis of domain motion has been considered only for straight 

line propagation.. The domain velocity defined in Equation 42 is the 

maximum velocity in the direction of maximum driving field. It was 

noted before that in general energy variation expression. Equation 27, 

there is a torque to turn a domain into the direction of maximum driving 

field. Thus, for a straight line propagation a domain moves with its 

maximum velocity. In the practical bubble devices, the bubble does not 

always propagate in a straight line. When the bubble changes its 

propagating direction, such as turning the corner, time is required to 

recover its maximum speed in the new direction. Consequently, the bubble 

may possibly be trapped at a corner position when the bubble devices are 

operating at high data rate. This could be one of the reasons which 

cause the failure of faster domain propagation at sharp angle turn. 

A periodic permalloy propagating circuit, such as T-bar and Y-bar 

structures, has symmetric pattern which can be used to propagate the 

bubble in both directions. For the purpose of unidirection propagation 

the permalloy elements can be modified to have directionality using the 

fact that the permalloy elements serve as localized flux closure paths 

thereby reducing the magnetostatic energy. This may provide a speed 

advantage. The Y-bar structure has the advantage over T-bar structure 

for its having four about equal pole strength positions, but consideration 
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that in Y-bar circuit domain has to change its direction of propagation 

in a single period should be taken into account. Comparison of permalloy 

propagating circuit with current conductor circuit may show that current 

conductor circuit can provide more uniform field gradient and higher 

velocity at the expense of complexity of circuit preparation. 

Û. Analysis of Force Exerted by a Permalloy Bar on a 

Magnetic Domain 

la the previous analysis of bubble domain motion, the effect of 

permalloy system on domain motion has not been considered. Without 

applying the transverse rotating field, there exists - magnetostatic 

interaction between bubble domains and permalloy films. A magnetic 

cylindrical domain prefers a position in contact with the permalloy, 

because the permalloy serves as localized flux closure paths thereby 

reducing the magnetostatic energy. In other words, there is a force 

exerted by a cylindrical domain on a permalloy film. This force will 

affect the domain motion in the permalloy propagating circuit. 

Now consider the change in energy when a magnetic object of 

permeability is placed in a magnetic field whose free magnetic pole 

sources are fixed. Initially the magnetic field due to a certain 

distribution of free magnetic charges exists in a medium of permeability 

The initial magnetostatic energy is (in Gaussian units) 
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where B = u, H . Then with the sources fixed in position an object of 
o ^o o 

permeability and volume is introduced into the field, changing the 

field from to H. The energy now has the valus 

^ J H ° B d^x (70) 

where B = The difference in the energy can be written as 

W  =  i r r ( H * B - H  * 8  ) d \  
orr " o o 

" It J"® • \ - »• + èr J"® V"® - (71) 

Since V X (H + H^) = 0 because of no current source, this inqilies 

H + H = - V ̂  (72) 
o m 

Thus the second integral of Equation 71 becomes 

Integration by parts yields 

I = |- J . (B - B )d\ = 0 (74) 
cJiT ^ tn o 

since 7 • (B - B^) = 0 because the source charge is assumed unaltered 

by the insertion of the permeable object. Consequently, the energy 

change is 

Since outside V^, B = the integration will be only over the volume 

of the object. It becomes 
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W = - ̂  J d \  (76) 

If the medium surrounding the permeable body is free space, then 

= 1. Using the definition of magnetization M, Equation 76 can 

be expressed as 

W = - i J M . d\ (77) 

where M is the magnetization of the object. 

Equations 76 and 77 show that a permeable body will tend to move 

towards regions of increasing provided There will be a 

change in the energy ôW by imagining a small generalized displacement 

of the body 5x. Since the magnetic charges are held fixed, there is 

no external source of energy and the change in field energy must be 

compensated for by a change in the mechanical energy of the body. This 

means that there is a force acting on the body 

= - (g) 

In order to calculate the force exerted by a cylindrical domain 

or bubble on a permalloy film, the permalloy film will be assumed to 

be thin enough so that only the radial field produced by a bubble is 

effective for the magnetization induced in the permalloy. The radial 

bubble field is determined by considering to be the same as the field 

due to a thin cylindrical current sheet with the height of the bubble 

thickness. First the magnetic field from a circular current loop is 

calculated. This field then is integrated over the entire bubble 
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thickness. Converting the current source to the magnetization using 

the standard method yields the radial bubble field. Figure 16 shows 

the coordinate system used to calculate the radial field from a bubble. 

The domain is assumed to be circular with radius r^. Appendix C shows 

that the radial conçonent of the field from a current loop is (in 

Gaussian units) 

H = \ [ ( ^ ) E(k) - K(k) ] (79) 
P 1-k^ 

where I is the current, z is the distance above the plane of the loop 

at which the field is calculated, p is the radial distance, K and E 

are the complete elliptic integrals of the first and second kind, 

respectively, and k is the modulus of the elliptic integrals. Integrating 

over the entire bubble thickness h and then converting the current to the 

magnetization yield the radial bubble field which is given by (Appendix C) 

r ^ K(k ) - E(k ) 

"p - klK(kl)] 

K(k ) - E(k ) 

- [2( —) - kgKCkg)] } (80) 

where is the magnetization of the bubble, 

2 4r p 
Ki = T (81) 

+ (rQ + P) 

and 

2  4 r  p  
k. = 2 (82) 

(z+h)^ + (r +p)^ 
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Snow (41) has calculated the magnetic field from a thin cylindrical 

current sheet using different approach. Similar result of Equation 80 

also has been obtained by the others (27). Figure 17 shows the radial 

field from a bubble for three different radii of domains for the case 

2 = O.lh , As can be seen in the figure, the radial field is strongest 

at the vincinity of the domain wall. 

In order to calculate the force using Equation 78, the magnetiza­

tion induced in the permalloy by the radial bubble field has to be 

determined. Since permalloy is a ferromagnetic material, there is a 

nonlinear functional relationship between the magnetization M and the 

applied field H. This phenomenon of hysteresis implies that M is not 

a single-valued function of E. This complicates the problem to determine 

the magnetization of permalloy. If the radial bubble field is much 

larger than the coercivity and demagnetizing field induced by the bubble 

field, the magnetization of the permolloy film will be saturated. The 

idealized hysteresis loop of permalloy is almost rectangular and the 

coercivity is usually very small so that a linearized and single-valued 

M-H curve will be used to approximate the magnitude of the magnetization 

when the bubble field is smaller than the demagnetizing field. The 

equations for the demagnetizing factors of a planar film can be computed 

from formulae given by Osborn (42) for a general ellipsoid. Approximating 

the thin film permalloy with dimension length (-t) X width (w) x thick­

ness (t) of a flat ellipsoid (43), the demagnetizing factors for 

> w » t are 



10.0 
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\ = 0 - e2)%(K(k) -̂ E(k) ̂ (83) 

e 

= (1) Xk)-(l-aW) («4) 

^ ^ e ^ a - e ^ f  

where 

e^ = 1 - (|.)2 (85) 

and K and E are the complete elliptic integrals of the first and second 

kind, respectively, and k = [ l-(w/'L)^] "/[ l-(t/t )^] ̂ is the modulus. 

As stated before, t is small enough so that the magnetization is in the 

plane of the film and need not be considered. 

Figure 18 shows the demagnetizing factors of and as a function 

of film thickness. It shows that the demagnetizing factors are almost 

proportionally increasing with thickness of the film. As the film 

thickness gets larger, the formulae can not be applied any more. The 

corresponding demagnetizing fields along the film length and width are 

given, respectively, by 

and 

(87) 

where is the saturated magnetization of permalloy. Now suppose 

that 4rTMgj of the bubble material is 100 Gauss and of permalloy 

4 
is 10 Gauss. Comparison of the radial bubble field (Figure 17) with 

the demagnetizing field of permalloy film (Figure 18) shows that 

permalloy film can only be saturated at the vicinity of domain wall 
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when the bubble is across the film length. Consequently, the approxima­

tion using linearized M-H curve will be used to determine the mn^neti/.a-

tion. 

Substituting the calculated radial bubble field. Equation 80, and 

the approximate magnetization into Equation 78 yields the force exerted 

by a bubble on a permalloy film. Two cases of the force, bubble across 

the film length and width, will be computed. These forces are given by 

I X ' = x-rb 
1 i 

F.(x) = 7 r t M(x',y)H (x',y)i dy (88) 
^ ^ -a ^ " x'=x-b 

^ x ' = x+a 

F̂ (x) _ tpM(x',y)Hp(x',y) 
- 0 

dy (89) 
x' = x-a 

where x is the distance between the centers of the bubble and the 

permalloy film, and the film dimension is length (2b) X width (2a) X 

thickness (t ). Numerical calculation of Equations 88 and 89 can then 
P 

be performed. Figures 19 and 20 show plots of and F^, respectively, 

exerted by a permalloy film of a/r^ = 0.7. Two cases of different bubble 

radii, r^/h = 0.5 and r^/h = 0.25, are also shown in these figures. 

It is clear from Figure 19 that a bubble initially at the outside 

of permalloy film and across the length of film would experience an 

attractive force pulling it towards the permalloy. This attractive force 

will reach maximum just after the leading edge of the bubble domain 

passes one end of permalloy film. It decreases till the point where 

the center of the bubble right at the end edge of permalloy and then 

increases again to the other peak, which is a little less than the 
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maximum, when the trailing edge of the bubble domain just before passes 

the end of permalloy. The attractive force goes to zero when the centers 

of the bubble and the film coincide. Whether or not the bubble reaches 

the center of film is dependent on the coercivity of the material which 

for the discussion of this figure shall be assumed negligible. Once 

the bubble at the center of permalloy film, an external force is required 

to move the bubble out from the permalloy film. Consequently, when a 

bubble is propagating in a permalloy circuit, an extra force is required 

to pull the domain out of lower magnetostatic energy position due to the 

effect of the interaction between bubble and permalloy. In a T-bar 

propagating circuit such as shown in Figure 7, it can be seen from 

Figure 19 that the force required to move a bubble out from position A 

to B is rather small without considering the effect of the vertical bar 

of the T. This force, however, is required much larger to move the bubble 

out from position B to C. Therefore, the initial driving field for each 

step of domain propagation in the permalloy circuit has to be large enough 

to overcome the force exerted on the bubble by the permalloy in addition 

to the coercivity of the bubble. This becomes more important when the 

bubble device is operating at higher data rates. The improved Y-bar 

arrangement of permalloy propagating circuit having a we11-localized 

pole over T-bar provides higher driving field for moving bubble out of 

position 3, so that it may possibly operate at higher data rates than 

T-bar arrangement. 

For the case of a bubble moving across the width of a permalloy 

bar. Figure 20 shows that the same attractive force exists to pull the 
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bubble towards the permalloy bar. The magnitude of this force is 

smaller than the first case due to higher demagnetizing factor across 

the width of the permalloy film. The force has only one peak instead 

of two at the point where the leading edge of bubble domain just passes 

the edge of permalloy film. A large amount of external force is also 

required to pull bubble completely off the permalloy. This implies that 

the applied driving field in permalloy propagating circuit (from position 

C to D in Figure 7) should be larger than this pull-off in order to have 

bubble propagation. It is interesting to note that in Figure 20 there 

exists two stable positions of the bubble with respect to the permalloy 

film, one at each side of the center. It can be seen in the figure that 

an external force is required to move bubble from one stable position to 

the other. This bistable condition for bubbles can be used to provide 

permalloy rail coupled channel system (44) by optimizing the width of 

the permalloy film. 

For the purpose of bubble propagation at high data rates, it is 

desirable to have the pull-off force as small as possible so that the 

applied field is at the least expense of energy. It can be seen from 

Figures 19 and 20 that the maximum pull-off force is smaller for 

smaller domain radius because the radial bubble field is smaller as 

shown in Figure 17, The nominal radius of bubbles commonly used in 

permalloy propagating circuit is around r^/h = 0.3 (9, 38), instead of 

the preferred value given by Thiele (7). Equations 88 and 89 shows 

that decreasing the magnetization might decrease the pull-off force. 

For very thin film the demagnetizing factor is approximately proportional 
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to the thickness of permalloy film as shown in Figure 18. Increasing 

the thickness may provide less magnetization but the force is also 

proportional to the thickness so that increasing thickness does not help 

to decrease the pull-off force. It, however, provides stronger pole 

strength at the ends of permalloy bars and accordingly produces larger 

driving field. It is clear that the maximum of the pull-off force 

occurs at the time when a bubble is about completely off the permalloy. 

Consequently, a rather large initial driving field is required at each 

step, such as from B to C in Figure 7. This gives the advantage for 

current-conductor drive circuit because of the limitation of all 

permalloy circuit yielded by its circuit configuration and natural 

property. After a bubble moves out a permalloy bar and when it approaches 

to the other one, the magnetostatic interaction acting as an attractive 

force forces the bubble towards the permalloy. This also results in the 

increase of bubble propagating speed in addition to the increase produced 

by the applied nonuniform gradient field. 

Since the domain wall of bubbles is assumed to be cylindrical, the 

domain has reflection symmetry through the central plane of the platelet. 

It is possible to use permalloy circuit at both sides, top and bottom, 

of the platelet to propagate cylindrical magnetic domains. The circuit 

pattern of permalloy for both sides may be designed to be complement to 

each other. Thus, the bubble will ride at least above or underneath the 

permalloy all the time in propagation. The force induced by the magneto-

static interaction is considerably small when the bubble stays above 

or underneath the permalloy conçared to the force required to pull it 
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completely off the permalloy. Consequently, using both sides of the 

platelet for permalloy propagating circuit nay provide speed advantage. 

Moreover, it possibly doubles the strength of applied driving field. 
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IV. SUMMARY AND CONCLUSIWS 

Theroetical study of dynamic behavior of cylindrical magnetic 

domains, specifically propagating in the permalloy circuit, has been 

established in this research. The main results of the study are 

summarized as follows : 

1. A cylindrical magnetic domain will experience a forcc attempting 

to move it towards a position of reduced bias when a localized field 

gradient is applied. If the applied gradient is nonuniform, the response 

could involve motion at a nonuniform rate and change in size and shape. 

Using Fourier decomposition of the applied field and considering in 

the presence of dissipative processes, the results show that the constant 

term of the applied field determines domain size, the 0 term translates 

the domain, and the n8 terms, for n ̂  2, deform the domain. The domain 

velocity expression. Equation 42, has the same form as the case of 

uniform field gradient, but the driving field varies at each point of 

propagating circuit so that domain motion is at highly nonuniform rate. 

Calculation of the magnetic fields from practical permalloy propagating 

circuit shows that the applied localized field is never uniform. 

Consequently, the domain velocity is nonuniform accompanying with changes 

in domain size and shape which was confirmed by the experimental 

observation (10). 

2. Since the permalloy propagating circuit is currently seen as 

most attractive for device applications, calculation of magnetic field 

produced by magnetized permalloy bars has been made. The variation of 

the calculated fields for two types of discrete step of domain propagation 
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shows generally that initial driving field is much smaller than the 

field at the rest of the time. Due to the magnetostatic interaction 

between magnetic do'-ai.n and highly permeable permalloy films, there 

exists a force exerted on the bubble by the permalloy bar. Calculation 

of the force shows that a large amount of excernal force is needed to 

pull the bubble completely off the permalloy. The starting position of 

the bubble for most propagating steps in the permalloy circuit is at 

the end of the permalloy bar (see Figure 7) so that an extra initial 

force is needed to overcome the pull-off force in order to propagate 

the bubble. In device applications, operation at high data rates is 

desirable. Therefore, the propagating circuit is preferable to have 

large initial driving field. Study of the effect on the magnetic field 

by the variation of the width of the permalloy bars shows that the 

narrower ones have larger initial driving field. Consequently, from 

circuit-wise consideration, permalloy propagating circuit is more suitable 

for smaller bubble domain size in order to operate at hi^ frequency rate, 

3. In this study coercivity has been assumed to be uniform and 

independent of the direction of wall motion. Under this assumption a 

domain propagates in the direction in which the domain velocity is 

maximum, i.e., the direction in which the bias field decreases most 

rapidly. Therefore, for a straight line propagation, a domain translates 

with its maximum speed. This can be seen in general energy variation 

expression that there exists a torque to turn the domain into this 

direction. When the domain changes its propagation direction, such as 

turning a corner, time is required to recover its maximum speed in the 
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new direction. Moreover, at the step to turn the corner in the 

permalloy propagating circuit only the magnetized pole at one side of 

the domain provides the local magnetic field gradient. The driving field, 

and thereby the velocity, are smaller than at the rest of the steps. 

Consequently, operating at higher frequencies, the domain propagation 

fails, and the domain becomes trapped at a corner position. The design 

of the corner is thus the first obstacle to faster domain propagation 

in the permalloy propagating circuit. 

4. For the purpose of faster domain propagation, it is undesirable 

to have magnetostatic interaction between the bubble and the permalloy 

film, especially at the start of each propagating step. Calculation of 

pull-off force shows that decreasing the ratio of the domain radius to 

the thickness decreases the pull-off force (Figure 19 and Figure 20). 

This magnetostatic interaction force is unavoidable in the permalloy 

circuit, but the force is considerably smaller when the bubble stays in 

contact with the permalloy compared to the force required to pull it 

completely off the permalloy. Since the domain has reflection symmetry 

through the central plane of the platelet, it is possible to use both 

sides of the platelet for permalloy propagating circuit. If the circuit 

pattern at both sides is designed to be complement to each other, the 

bubble would ride at least one side of the permalloy all the time in 

propagation. This may help to decrease the power wasted in cancelling 

the pull-off force and thereby to increase the domain speed. It also 

approximately doubles the driving field. Study of this magnetostatic 
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interaction is useful in designing permalloy rail coupled-channel 

system (44) and the calculated radial bubble field. Equation 80, also 

helps in designing the magnetostatic detector for bubble dorains (45). 
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VII. APPENDIX A 

Evaluation of the first and second partial derivatives of the 

applied field interaction energy will be treated here. There are three 

terms, E^, E^, and E^, in the energy expression. Equation 20. Since 

the same procedures can be applied to calculate the partial derivatives 

with respect to Ar and A0 for all three terms, only evaluation of e1 
n n n 

will be illustrated in the following. 

Noting 

Br (6) 
= cos n (0 - 0 ) (A-1) 

and 

3r n 
n 

Sr (0) 
gg n Ar^ sin n (0 - 0^) (A-2) 
n 

and differentiating E„ yield 

^ = 2hMgH^ j r^(0) cos n(0 - 0 )cos 0 d0 (A-3) 
n 0 

2 
= 2hM^H^ j r^(8) n Ar^ sin n(0 - 0 )cos 0 d0 (A-4) 

n 0 

2 1 
a C 2n 
r—r~— = 4hM H, \ r, (0)cos m (0 - 0 )cos n (0 - 0 )cos 0 d0 
or or si". D m n 
" ° ° (A-5) 

2 1 
a Ey 2rr 

r r — =  2 h M  H  J {2r (0)Ar Ar n m sin n(0 - 0 )sinm (0-0 ) 
GO GO 5 1*^. D ntn n m 
n m 0 

2 
- r (9)Ar ô n m cos in(0 - 0 )}cos0d0 (A-6) 

b n mn m 



S2 

aV ,2rr 

STST = J i2r.^(9)Ar^rasinx (9 -GJ. cos n(9-6J 
n 31 0 

+ rr(0) c^_ n sin n(9 - 6^) j cos 6 dS (A-7) 

where is che Kronecker delta funccion. To evaliiate these integrals, 

it is convenient to transform rhe integrands by using the trigonometric 

identities, 

sin X cos y = Y [sin(x-ry) -f- sin(x-y)] (A-8) 

cos X cos y = 2 Lcos(x-fy) 4- cos(x-y)] (A-9) 

sin X sin y = ̂  [cos(x-y) - cos (x-i-y)] (A-10) 

and then to calculate the integrals by using the following definite 

integrals, 

Itx 0 , in ^ n 
i cos nx cos n X dx = { . ̂  (A-11) 

77, m = n ? : 0  

0 , m ? n 
sinmx sinnx dx = 1 , „ (A-12) 

r r , i n = n # 0  

cos mx sin n X dx = 0 (A-13) 

"o 

Evaluation of Equations A-3 through A-7 for r^(G) = r^ yields 

2 n  r^ 
(r^) = 2hM H, • — {cos[ (n+l)0 - n6 j +cos[ (n-l)0 - n9 ]}d0 
or o s 1 z n n" 

n 0 

0 , n = 0, n - 2 

2 (A-14) 
I 2Trr h% K, cos S, , n=l 
I o s J. i 
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(r~) = 0 , for all n (A-15) 
38 o 
n 

.2" r. 
(r—j—) = 4hM J -T-{cosL (nmi)e - (me +ne )] 

m ° s - 0 an 

T- cos[ (m-n)ô - (icB^ - n6__^)j}cos w d0 

/• 0 , m = n 

n=0, nF=l 

"o'"''s"l 1̂ ' n=l, m=0 

( 2T7r hM H, cos (nS -n© ) , j n-m| =1, n,m?̂ 0 
o s 1 n tïï 

^ 4TTr^hN_5, cos 6i , (A-16) 

^^4 
(-,o -VQ ) = 0 , for all n, u (A-17) 

n m  ° 

2TT r̂  

(âTaë"), 6̂̂ r.{sin[(n+l)8-nŜ ] 

n m 0 

+ sin[(n-l)9 - nô ]} d& 
n 

0 , n,m^ 1 

i-2rrr^hM^H^ sin 8^ , n = m = 1 
(A-18) 

applying the sane procedures to the other two terms, and E^, the 

resulting nonzero terms were shown in Equations 24 and 26. 
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VIII. APPENDIX B 

The domains observed in orthoferrites are never precisely circular 

but always have some degree of ellipticity. In the orthoferrites 

2 
» 2 so that the magnetization lies rigidly along the plate normal 

and the wall width is narrow as compared to the domain diameter. The 

applied field energy, E^, and the internal magnetostatic energy, E^, 

terms of the total energy expression. Equation 4, thus make no con­

tribution to producing the domain anisotropy. Therefore, the anisotropy 

results from an anisotropy in the wall energy density Considering 

the wall energy density to be independent of wall curvature and the wall 

to be orientated with its normal perpendicular to the plate normal, the 

wall energy density is given by (39, 46) 

— 1 
a = a + — tc cos 2v (B-1) 
w w 2 w 

where is the isotropic wall energy density and v is the angle between 

the wall normal and the x-axis (see Figure B-1). Equation B-1 implies 

that the wall energy is maximized when the wall normal lies along the 

x-axis. 

The total wall energy is 

E = h è (J ds (B-2) 
w f w 

where s is arc length along the curve describing the domain shape in 

the plane. It can be seen from Figure B-1 that v is related to 9 by 

9 = p + V (B-3) 



Y 

wall norma] 

domain wall 

-4 

Figure B-1, Coordinate system used in consideration of anisotropy wall energy 
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Using donain radius function r.^(0). Equation 2, cos? can be expressed by 

ar.ce) ,  , 

Thus, 

COS 2v = cos (28-2?) 

3r ^ or 
2(̂ )" 2r ~ 

= cos 28 ^ cos 26 + sin 28 

and the differential arc length, 

O 9 3-
ds = [r; + d6 (B-6) 

When Equations B-1, B-5, and B-6 are substituted into Equation B-2, 

the total wail energy expression becomes 

A-' + 

. 2TT ^ or _ -

+ 2 28 

- 2 28 - r^sin28)[r2 + (^)^1 "^1 dG 

(B-7) 

The first term in Equation B-7 is identical to the isotropic wall energy 

expression and the second term representing entirely the effect of wall 

energy anisotropy. 

The effect of the anisotropy term can be evaluated by obtaining 

all the first and second derivatives with respect to Ar and AS of 
n n 
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the expansion of r (0) for the case of a strictly circular domain, 
D 

r^(9). The same technique and notations as in Appendix A are used to 

calculate these partial derivatives. The first derivatives with respect 

to Ar and A9 are 
n n 

and 

a#) 
oE 2rr or. cr, cr -, 3r „ , 

n On " 
or 

2û cr or. o(r^) ^ or _ , 

+ 2 " sf ~â'~ Î 
On n 

S(̂ ) 2 Sr 2 

- 2 — CSe" - -b + (gF") ] ' 
n 

- 2 (âë^) §7" ̂ 26 - r^ sin 20) (rg + } d9 

(B-8) 

n On n 

o^b 
, Ztt or or S(—) o Br „ , 

+ 2 i BT "si—  ̂  ̂ =°s2e 
On n 

. Sr̂  
 ̂ Q ) or. « r̂.  ̂

-  ̂  i f -  < i r  •  ' b +  ( â ë " )  ]  '  

- arL<55^"=°^2e-r|^sin2S) + 
n 

(B-9) 

respectively. Setting r, (0) = r , or,/o0 = 0, and carrying out the 
D 0 b 

integration by using those definite integrals shown in Appendix A yield 



98 

— 3rr 
^âT^o = -no - T" ^ «2 

n 

and 

(#0 = ° <®-"> 
n 

where 6 is the Kronecker delta function. The remaining derivatives 
on 

can be computed by the entirely similar manner and the results are 

2 
o E __ _ 2 

(-—^—) = -— h cr no + 7^— hAo" mn{ô,ô, cos 29 
ôr br o r w mn 4r w ml nl 1 
n m o c 

- 6 .ry cos(n0 - mô ) } (B-12) 
n,n^ n m 

(â7ir\ = 3nhAa„ (B-13) 
n n 

and 

(srfr'o = » 
n m 

It can be seen that contributions from O" are the same as in the 
w 

isotropic case. Equation 6, so that adding the terms of Equations B-10 

through B-14 in to Equation 6 yields the total energy expansion for 

the anisotropic case. The domain is therefore in equilibrium when the 

force equation for the isotropic case with a =g is solved and inclusion 
WW 

of the effect of ùn^ terms and the second order energy variation solves 

the elliptical equilibrium problem. It also can be seen that there 

2 
exists a torque, -ô[Ar2(ôE^/ôr2)^j/BÔ2~ 

to turn an elliptical domain into the direction in which the force 

tending to make the domain elliptical is most positive. 
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To solve the equilibrium problem, the gradient of total energy is 

set to be equal to zero. It yields that the stable equilibrium is 

obtained when r^ is the stable solution to the isotropic force equation 

with c" = c , 6 =0, and =0 for all n, and Ar =0 for n = 0 and 
w w n n n 

n odd. The remaining even Ar^ can be determined by using matrix theory. 

However, the elliptical change in donain shape can be determined easily 

to the lowest order. The Ar„ contribution from tc is added to the 
I w 

normalized energy variation expression. Equation 8. Setting this equal 

to zero with r^ being the stable solution to the isotropic force equation 

yields 

ë" ̂ h • - 4 " ̂ ° 
O h 

where 
à y  

(B-16) 
4t7M 

s 

Thus, the eilipticity due to anisotropic wall energy is given by 

Ar, 
2 1 à l  

(B-17) 
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IX. APPENDIX C 

With the coordinate system as shown in Figure 16, the vector magnetic 

potential from a circular current loop is 

0 [r^+p^-2r p cos ^ + 2^] 

where a^ is the unit vector in the i direction. Since there is no i 

dependence, the integral can be evaluated at a point on the ^ = 0 axis. 

Each contribution to the vector A from the individual differential 

current elements is a vector which is parallel to the current element. 

This means that as the integration is performed, the components in the 

X direction will cancel out. Since 

a; = -a sin d + a cos i (C-2) 
© X y 

The vector magnetic potential expression becomes 

A = : ^ (C-3) 

^ ® [fg + p - 2r^ p cos i' +z J ̂  

Introducing the parameter 

,2 t'oP 

and making the change of variable «5'=29, it is possible to evaluate 

the vector magnetic potential as : 

 ̂̂  ̂  (-̂ )̂  [ ("I - l)K(k) 1" E(k)] (C-5) 



101 

where K and E are the complete elliptic integrals of the first and 

second kind. It is clear that the vector A is only in the i direction. 

Since 

3 = V X A (C-6) 

the radial component of B can be calculated by (in cylindrical 

coordinates) 

3A , 

By using the formulae (47) 

SK ̂  E _ K 

k(l-k^) ^ 

BE E -K 

Sk k 

(C-8) 

(C-9) 

Equation C-7 becomes 

1 _ k: 

B = [ =- E(k) - K(k)] (C-10) 
P  c r ?  0 *  1  -  k ^  

o 

Consequently, the radial component of magnetic field from a thin 

cylindrical current sheet of height h can be evaluated by integrating 

over the entire height. It becomes 

,zth 1 - ̂  

H = L f- E(k) - K(k)]kz'dz' (C-11) 

o " ~ 1 - k 

From Equation C-4, 

4r p 
z'dz' f—dk (C-12) 

k 
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thus Equation C-II becomes 

. 2 
r 1 k. , 1 - ̂  

where 

H = - — (-r)̂  r  ̂[-T ( #-)E(k) - -y K(k)]dk (C-13) 
P c P k2 1 _ ^2 ^2 

2 p 
K = -Ô (C-14) 

" 2: +(r̂  + p)-

ana 

2 p 
K  = r 2 (C-15) 

(z-rhr + (r -rp) 
o 

Rearranging and integrating of Equation C-13 yield 

-4 - _ ii .!ô % p£rk)-(i-k̂ ):<(k) _ i E ( k )  

' k\i.A : 1.k' ̂ 

.  . _ 1-^(^3 I 

,^2 

c P 
'k. 

2 r ^ E(k,)-K(kT) 

E(k_) -K(k_) 
- L2 ^ ^  - k^ KCkpi (C-16) 

Now the change of source from the current sheet to the magnetization 

of the bubble may follow the standard method which is 

2 M = — (C-17) 
s c 
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where the factor of 2 comes from the fact that the bubble is located 

in a platelet of opposite magnetization. Consequently, the total 

radial magnetic field from a bubble of thickness h is given by 

H 
P 

r , E(k)-K(k.) 
= 4»̂  {[2 \ - \ K(k̂ )! 

E(k ) -K(k ) 

[2 ^ — - k^ KCkg)]] (C-18) 


