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Abstract

An important type of heterosis, known as hybrid vigor, refers to the enhancements in the 

phenotype of hybrid progeny relative to their inbred parents. Although hybrid vigor is extensively 

utilized in agriculture, its molecular basis is still largely unknown. In an effort to understand 

phenotypic heterosis at the molecular level, researchers are measuring transcript abundance levels 

of thousands of genes in parental inbred lines and their hybrid offspring using RNA sequencing 

(RNA-seq) technology. The resulting data allow researchers to search for evidence of gene 

expression heterosis as one potential molecular mechanism underlying heterosis of agriculturally 

important traits. The null hypotheses of greatest interest in testing for gene expression heterosis 

are composite null hypotheses that are difficult to test with standard statistical approaches for 

RNA-seq analysis. To address these shortcomings, we develop a hierarchical negative binomial 

model and draw inferences using a computationally tractable empirical Bayes approach to 

inference. We demonstrate improvements over alternative methods via a simulation study based on 

a maize experiment and then analyze that maize experiment with our newly proposed 

methodology. This article has supplementary material online.
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1. Introduction

Heterosis exists when the expected value of a hybrid phenotype differs from the average of 

the expected phenotypic values of the hybrid’s parents. The most interesting and useful form 

of heterosis, known as hybrid vigor, occurs when hybrid progeny display a mean phenotype 

that is superior to both parental phenotypic means. This heterosis phenomenon was 

scientifically documented in plants by Darwin (1876) and has long been used to improve 

agricultural production. One classic example involves hybrid maize offspring that are taller, 

faster to mature, and yield considerably more grain than their inbred parents (Hallauer and 

Miranda, 1981; Hallauer et al., 2010).
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Depending on whether large or small values of a phenotype are favorable, hybrid vigor can 

occur if the mean phenotype of a hybrid is greater than both parental means or less than both 

parental means. We refer to the former as high-parent heterosis (HPH) and the latter as low-

parent heterosis (LPH). Note that heterosis, HPH, and LPH are similar to the quantitative 

genetics concepts of dominance, overdominance, and underdominance. However, the various 

forms of dominance are usually reserved for describing the association of mean phenotype 

with homozygous and heterozygous genotypes at a single genetic locus. Heterosis involves a 

comparison of inbreds (simultaneously homozygous at many loci) and hybrids 

(simultaneously heterozygous at many loci). For simplicity, throughout the remainder of the 

article, we will use the term extreme heterosis (EH) to describe the situation where the 

hybrid mean is more extreme than the parental means, i.e. we say there is EH if and only if 

either HPH or LPH holds.

Despite intensive study and successful use of heterosis in agriculture, the basic molecular 

genetic mechanisms remain poorly understood (Chen, 2013). One potential explanation, is 

EH of gene expression, i.e. enhanced (or suppressed) expression of one or more genes in 

hybrids compared to their inbred parents. Gene expression heterosis has been investigated in 

maize by Swanson-Wagner et al. (2006) and Springer and Stupar (2007) and EH of gene 

expression is conceptually depicted in the right column of Figure 1b in Chen (2013).

Recently, Ji et al. (2014) introduced an approach to assess gene expression heterosis using 

microarray data under the assumption that these data are continuous. They built a normal 

hierarchical model for microarray measurements of transcript abundance that allows 

borrowing of information across genes to estimate means and variances. They introduced an 

empirical Bayes framework that first estimates model hyperparameters, then estimates the 

posterior distribution for gene-specific parameters conditional on those hyperparameters, 

and finally computes heterosis probabilities based on integrals of regions under this 

posterior. This development was necessary due to the composite null hypotheses in tests for 

heterosis. These hypotheses, which many available methods do not fully accommodate, 

remain a challenge in the transition from continuous measurements of transcript abundance 

to count-based measurements that arise from RNA sequencing (RNA-seq) technology. 

Building on the work of Ji et al. with the normal data model, we construct a hierarchical 

model based on a negative binomial data model. We also utilize an empirical Bayes 

approach to obtain estimates of the hyperparameters and the posterior distributions for the 

gene-specific parameters conditional on those hyperparameters.

The remainder of the paper proceeds as follows. Section 2 presents the proposed hierarchical 

model, an empirical Bayes method of estimating the parameters, and the calculation of 

posterior probabilities of EH. Section 3 presents a simulation study based on a maize 

experiment and compares our approach to alternative methods. Section 4 analyzes a maize 

experiment where hybrid vigor is well established and identifies genes demonstrating EH of 

expression. Section 5 summarizes the work and suggests directions for future research.

Niemi et al. Page 2

J Agric Biol Environ Stat. Author manuscript; available in PMC 2016 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Empirical Bayes identification of gene expression heterosis from RNA-

seq read counts

We consider an RNA sequencing (RNA-seq) experiment that involves at least three genetic 

varieties: two parental varieties and a cross between these two varieties called the hybrid. 

For each variety, replicate RNA samples are isolated and assessed for quality. 

Complementary DNA (cDNA) libraries, consisting of short cDNA fragments derived from 

RNA, are constructed. Then, next generation sequencing technology is used to determine the 

reads, or nucleotide sequences, in the cDNA libraries. These reads are processed using 

bioinformatic algorithms to match the reads to genes, or specific gene transcripts, exons, 

microRNAs, etc. The results of read processing are summarized by a gene × sample matrix 

of counts. See Datta and Nettleton (2014) for more details on RNA-seq experiments and data 

from a statistical perspective, and see Paschold et al. (2012) for the biological background 

behind the use of RNA-seq to study gene expression heterosis.

To use RNA-seq counts to identify genes displaying EH of expression, we build a 

hierarchical model to borrow information across gene-variety means and across gene-

specific overdispersion parameters, estimate the hyperparameters using an empirical Bayes 

procedure, and calculate empirical Bayes posterior probabilities for EH.

2.1 Hierarchical model for RNA-seq counts

Let Ygvi be the count for gene g = 1, …, G, variety v = 1, …, V, and replicate i = 1, …, nv. 

We assume

(1)

where NB(ξ, eψ) indicates a negative binomial distribution with expectation ξ and variance ξ 

+ eψξ2, and ind indicates the observations are conditionally independent. As shown in 

equation (1), our data model involves gene-specific overdispersion ψg and a mean that 

depends on the gene-variety combination through μgv and on the sample though γvi. The μgv 

terms are of primary scientific interest; the γvi terms are normalization factors that account 

for differences in the thoroughness of sequencing from sample to sample.

Following Ji et al. (2014), we reparameterize the gene-variety mean structure into the 

genespecific parental average (φg), half-parental difference (αg), and hybrid effect (δg). For 

our heterosis study where V = 3, we let v = 1, 2 indicate the two parental varieties and v = 3 

indicate the hybrid. The reparameterization is

We assume a hierarchical model for the gene-specific mean parameters and overdispersion 

parameters. Initially, we assume the parental averages, half-parental differences, hybrid 

effect, and overdispersion parameters follow normal distributions, i.e.
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Empirical plots of estimated values of αg and δg for our maize data set (described in Section 

4) suggest that the distribution of these parameters are more peaked near zero and have 

heavier tails than a normal distribution allows. For differential expression between the two 

parental phenotypes, we would expect many genes to have small effects and only a few 

genes to have relatively large effects. For these many genes with small effects, we might 

expect the hybrid to act similar to its parents and therefore also have many genes where the 

hybrid effect is small and only a few genes where this hybrid effect is large. For these 

reasons, we also assessed Laplace (or double exponential) distributions for the half-parental 

difference and hybrid effect and thus implement a Bayesian LASSO (Park and Casella, 

2008; Hans, 2009), i.e.

where α ~ La(η, σ) has a probability density function given by La(α; η, σ) = exp(−|α − 

η|/σ)/2σ with expectation η and variance 2σ2. Whether using normal or Laplace 

distributions, we assume a priori independence amongst the parental averages, half parental 

differences, hybrid effects, and overdispersion parameters.

2.2 Empirical Bayes

Initial attempts to perform a fully Bayesian analysis via Markov chain Monte Carlo 

(MCMC) failed due to high computational costs and poor mixing in the resulting chains. For 

example, we implemented the model in the statistical software Stan (discussed at the end of 

this section), ran the MCMC on a simulated data set with 10,000 genes for 2 months on a 

state-of-the-art linux server, and obtained potential scale reduction factors (Gelman and 

Rubin, 1992) that suggested we would need to run at least ten times as long to obtain 

convergence. Although there are certainly improvements that could be made to decrease 

computational costs and improve mixing, we opted for an empirical Bayes approach. This 

approach may be a reasonable approximation to a fully Bayesian approach when estimating 

models with large numbers of genes as the posterior distributions for the hyperparameters 

may be tightly peaked.

We categorize the parameters of the model in Section 2.1 into gene-specific parameters θ = 

(θ1, …, θG) where θg = (φg, αg, δg, ψg), normalization factors γ = (γ11, …, γV nV), and 

hyperparameters π = (η, σ) where η = (ηφ, ηα, ηδ, ηψ) and σ = (σφ, σα, σδ, σψ). We obtain 

estimates for the hyperparameters and then base gene-specific inference on the posterior 

conditional on these estimates.

To obtain normalization factors  we use the weighted trimmed mean of M values (TMM) 

method of Robinson and Oshlack (2010). We use edgeR to obtain genewise dispersion 

estimates, , and the generalized linear model methods to obtain estimates for the 
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remaining gene-specific parameters, i.e.  (Robinson et al., 2010). Using 

 we estimate hyperparameters for the location and scale parameters in 

the hierarchical model using a central method of moments approach. For example, 

 (and similarly for  and ) and 

 and  (and similarly for  and ) for the 

model assuming Laplace distributions.

Conditional on the estimated normalization factors  and hyperparameters  we perform a 

Bayesian analysis to re-estimate the gene-specific parameters and describe their uncertainty. 

Equation 2 shows that conditional on  and  the gene-specific parameters are independent 

and therefore conditional posterior inference across the genes can be parallelized. In this 

equation, the densities for αg and δg will depend on whether we are assuming normal or 

Laplace distributions.

(2)

To perform the conditional posterior inference on the gene-specific parameters, we used the 

statistical software Stan (Stan Development Team, 2014b) executed through the RStan 

interface (Stan Development Team, 2014a) in R (R Core Team, 2014). Stan implements a 

variant of MCMC called Hamiltonion Monte Carlo (Neal, 2011) to obtain samples from the 

posterior in equation (2). We ran 4 simultaneous chains with random initial starting values 

for 1000 burn-in (and tuning) iterations followed by another 1000 iterations retaining every 

fourth sample (to reduce storage space) for inference. We monitored convergence using the 

potential scale reduction factor and effective sample size (ESS) for φg, αg, δg, and ψg 

(Gelman and Rubin, 1992). If the minimum ESS was less than 1000, we reran the chains 

with double the iterations for both burn-in and inference. We continued this restarting and 

doubling until we obtained minimum ESS greater than 1000 for all parameters.

2.3 Gene expression heterosis

In the maize context that motivates this work, we are interested in extreme heterosis (EH), 

i.e. either low-parent heterosis (LPH) or high-parent heterosis (HPH), in gene expression. 

For a specific gene g, LPH occurs when expected expression in the hybrid is less than the 

expected expression of either parent, i.e. µg3 < min{µg1, µg2} or, equivalently, δg < −|αg |, 

and HPH occurs when expected expression in the hybrid is greater than the exptected 

expression of either parent, i.e. µg3 > max{µg1, µg2} or, equivalently, δg > |αg |. We evaluate 

these probabilities based on empirical Bayes estimates of their posterior probabilities, e.g.,

(3)
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where  is the mth MCMC sample from the empirical Bayes posterior, and I(A) is 

1 if A is true and 0 otherwise. HPH probability is defined similarly with the inequality 

reversed and without the negative sign. We construct a ranked list of genes according to the 

maximum of the gene’s LPH and HPH heterosis probabilities. Geneticists can use this list to 

prioritize future experiments to understand the molecular genetic mechanisms for heterosis.

2.4 Implementation in ShrinkBayes

In addition to the approach above, we utilized ShrinkBayes to estimate EH probabilities with 

two modifications described here. ShrinkBayes utilizes integrated nested Laplace 

approximation (INLA) (Rue et al., 2009) in combination with empirical Bayes ideas (van de 

Wiel et al., 2014). One limitation with inferential methods based on INLA is that all 

distributions, except for the data distribution, must have tails as light or lighter than the 

normal density. Thus, we cannot implement the Laplace priors for the half-parental 

difference (αg) and the hybrid effect (δg) and instead use normal priors in this situation. An 

additional limitation is that INLA provides approximations to marginal posteriors for 

parameters or linear combinations of parameters, but not an approximation to the full 

posterior. Since we are interested in non-linear quantities such as P (δg > |αg ||y), we cannot 

compute these directly using ShrinkBayes. Instead, for ShrinkBayes, we calculate EH 

probabilities conditional on posterior means for the half-parental difference and hybrid 

effect, i.e.  and  For example,

HPH probability is defined similarly with all inequalities reversed. As before, we construct a 

ranked list of genes according to the maximum of the gene’s LPH and HPH heterosis 

probabilities.

We will use the term eBayes to refer to the approach defined in Sections 2.1–2.3 and add 

parenthetical labels “normal” and “Laplace” to specify whether we are assuming normal or 

Laplace distributions for half-parental differences and hybrid effects.

3. Simulation study based on a maize experiment

To assess the efficacy of our method to identify genes demonstrating EH, we used a maize 

data set with parental varieties B73 and Mo17 and the hybrid variety (B73 × Mo17) 

(Paschold et al., 2012) to determine realistic parameter values for a simulation study. Section 

4 describes the maize dataset in detail. We compared our method to approaches using the R 

packages edgeR, baySeq (Hardcastle and Kelly, 2010; Hardcastle, 2012), and ShrinkBayes 

(van de Wiel et al., 2014).

3.1 Constructing simulated data

We used the methods described at the beginning of Section 2.2 to obtain normalization 

factors  and gene-specific parameter estimates  for all genes using the edgeR package 

(Robinson et al., 2010) from Bioconductor (Gentleman et al., 2004) applied to the maize 
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data on 27,888 genes with average count at least one and at most two zero read counts for 

each variety across the four replicates. This analysis produced sample-specific normalization 

factors of  = (0.074, −0.059, −0.074, −0.014, −0.014, −0.124, 0.093, 0.063, 0.021, −0.037, 

0.049, 0.021). The gene-specific parameter estimates were treated as the true parameter 

values for the simulation study so that our simulated datasets mimicked the existing structure 

among the gene-variety means of the original maize data.

Using these parameters and normalization factors, we simulated data according to the 

negative binomial model in equation (1) independently for each gene. For each simulation, 

we analyzed a subset of 25,000 genes selected randomly from genes with simulated counts 

at least one on average and with at most two zeros for each variety across replications. We 

repeated this simulation process 10 times for each of 4, 8, and 16 replicates per variety, 

reusing normalization factors when necessary.

For a particular gene, the truth was determined via the estimated values for αg and δg 

Specifically, if  the gene was considered to have EH. For many heterosis genes, the 

value of  was only slightly larger than . Thus there are many genes in these simulated 

data sets that are considered to have EH, but whose signal in the simulations will be 

extremely small. Conversely, there are many non-heterosis genes whose value of  was 

only slightly smaller than  but whose simulated data will look similar to many EH genes. 

Therefore, we expect it will be difficult to accurately identify EH genes, but believe this 

level of difficulty is representative of real applications.

3.2 Alternative methods

We compared our method to that of Ji et al. (2014), which assumes normality in the 

response, by modeling the logarithm of the RNAseq count plus one adjusted by the 

normalization factor, i.e. log(Ygvi + 1) − γvi. Use of the normalization factor here provides 

two advantages: 1) counts are properly adjusted for the thoroughness of the sequencing of 

the sample and 2) for genes with no count variation within variety (which actually occurs in 

our maize data set), use of the normalization factors allows the approach of Ji et al. to still 

execute.

In addition to the approach of Ji et al., we modified two existing RNA-seq approaches, 

edgeR and baySeq, for use in the heterosis context. For each method, we attempted to 

provide a measure of the strength of EH for each gene such that large values of this measure 

indicate support for EH. edgeR can be used to test for differential expression between any 

two varieties based on the fit of a negative binomial log-linear model (Robinson and Smyth, 

2007; Robinson et al., 2010). To construct a measure of EH, we computed the maximum 

likelihood estimates of the µgv parameters for all genes using edgeR’s built-in Fisher scoring 

algorithm, and then used likelihood ratio tests to calculate two p-values for each gene: pg1 

for testing Hg01 : μg1 = μg3 and pg2 for testing Hg02 : µg2 = µg3. Then, for each gene, we 

defined a new p-value denoted as pg and set to pg = 1 if the estimate of μg3 falls between the 

estimates of μg1 and μg2 and pg = max{pg1, pg2}/2 otherwise. For all relevant significance 

thresholds ω near 0, it can be shown that rejecting the null hypothesis of no EH for gene g 
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whenever pg ≤ ω results in a test that is asymptotically size ω. We then use 1 − pg as a final 

measure positively associated with strength of evidence for EH.

baySeq allows for a wider range of hypotheses for each gene, including H* : µg1 = µg2 = µg3, 

H* : µg1 = µg2, H* : µg1 = µg3, H* : µg2 = µg3, and H* : all µg ’s are distinct. In a technique 

similar to our application of edgeR, we used the posterior probabilities of these hypotheses 

to construct a measure of EH for each gene. We set this measure to zero if the maximum 

likelihood estimate, calculated using edgeR, of μg3 is between the maximum likelihood 

estimates of μg1 and μg2. Otherwise, the measure is the sum of the posterior probabilities of 

H*g2 and H*g5, the two hypotheses that allow for EH.

3.3 Results

For the methods in Sections 2 and 3.2, we sorted genes according to the computed measure 

of the strength of evidence for EH. From these sorted lists, we constructed receiver-

operating characteristic (ROC) curves to evaluate the ability of these methods to distinguish 

genes with EH, as defined in Section 3.1, from those without EH. A representative set of 

ROC curves is shown in Figure 1.

The ROC curves indicate modest performance, e.g. for a false positive rate of 5%, the best 

performing methods only achieved a true positive rate of just over 15%. This is consistent 

with our expectation discussed in Section 3.1 due to the low signal-to-noise ratio in these 

simulated data.

For this simulation, we can see that the approaches based on the model in Section 2.1, i.e. 

eBayes and ShrinkBayes, provide the best true positive rate for a given false positive rate. 

Also, as expected, as the sample size increases, our ability to distinguish genes with EH 

from genes without improves.

Figure 2 provides the area under the ROC curve (AUC) below a false positive rate of 0.1 

across the 10 simulations for each of the 3 different sample sizes.

Similar to the single ROC curve, the eBayes and ShrinkBayes methods appear to outperform 

the other methods in terms of AUC. This improvement ranges from about a 20% 

improvement over Ji et al. to about a 100% improvement over edgeR (which was not 

designed for heterosis testing).

With 4 replicates per variety, there does not appear to be much of a difference between 

ShrinkBayes and the eBayes approaches, but as the number of replicates increases, the 

eBayes approaches appear to improve relative to ShrinkBayes. Two differences exist 

between the ShrinkBayes and eBayes approaches that could explain the difference in AUC: 

1) ShrinkBayes utilizes a different empirical Bayes approach for estimating both the 

hyperparameters and the gene-specific parameters and 2) the measure of EH is slightly 

different due to INLA not providing a full posterior.

There also appears to be a pattern of the eBayes (Laplace) systematically performing better 

than eBayes (normal). We suspect this is because the Laplace distributions are better 
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approximations to the true underlying distribution for these parameters, and we discuss this 

in Section 5.

4. Searching for gene expression heterosis in the maize experiment

We used our method to analyze a maize data set (Paschold et al., 2012) of RNA-seq gene 

expression in parental lines B73 and Mo17 and the hybrid genotype (B73×Mo17) with a 

total of 39,656 genes. Each variety had four biological replicates measured with Illumina 

methodology and equipment. Reads were mapped to the whole reference genome using the 

short reads aligner, NOVOALIGN. For more specifics, please see Paschold et al. (2012).

We analyzed the data using all the methods compared in the previous section. The 

computation time on a desktop with two 4-core 3.6GHz Intel Xeon processor was 14 

seconds for edgeR, 1.3 minutes for Ji et al., 10 hours for the eBayes approaches, and 17 

hours for baySeq. In the eBayes approach, the vast majority of the time is spent on 

independent MCMC analysis for each gene. Thus we parallelized this step using doMC 

(Analytics, 2014) and plyr (Wickham, 2011). When parallelized across 5 cores, the eBayes 

approaches took about 2.5 hours. ShrinkBayes took 12 hours on a cluster node with two 8-

core 2.6GHz Intel Haswell E5-2640 v3 processors where the code was also parallelized 

across 5 cores.

For the eBayes (Laplace), we estimated the hyperparameters to be ,

, and . We then 

performed independent MCMC analysis for each gene conditional on these 

hyperparameters. As with the simulation study, we ran 4 chains simultaneously and doubled 

the number of MCMC iterations until each gene-specific parameter had an effective sample 

size above 1,000.

Figure 3 provides point estimates of the gene-specific parameters from the initial edgeR 

estimation step and after the eBayes (Laplace) procedure described in Section 2.2. This 

figure shows shrinkage for large absolute estimates of αg and δg from the edgeR estimation 

toward  and  which are both approximately zero. The figure also shows decreased values 

for the overdispersion parameter with larger decreases for high and low values of 

overdispersion. Finally, very little, if any, shrinkage is observed for φg estimates.

With posteriors for all parameters, we can calculate empirical Bayes posterior probabilities 

for LPH and HPH. For each gene, the quantity of interest is the maximum of these two 

probabilities. For each gene with a high probability of either HPH or LPH, the magnitude of 

the effect is of interest, thus we calculate

(4)

This estimated effect size is the difference between hybrid mean and the nearest parent with 

negative values indicating LPH and positive values indicating HPH. If the hybrid mean is 

estimated to be between the parents, this effect is defined to be zero.
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Figure 4 provides a volcano plot, in this case a bivariate histogram, to visualize the 

maximum of the probabilities of LPH and HPH versus estimated effect size.

The figure shows a ridge at an effect size of zero for probabilities below 0.5. Above a 

probability of 0.5, we see a prototypical volcano pattern, with increased EH probability 

corresponding to larger estimated effect sizes and no estimated effect sizes near zero for 

genes with high EH probability. We also see asymmetry, with larger negative effect sizes 

than positive effect sizes due to genes with hybrid counts near zero and relatively high 

parental counts. Genes with high estimated posterior probabilities of EH and large estimated 

effect sizes are candidates for further investigation.

5. Discussion

Geneticists speculate that gene expression EH is one possible explanation of hybrid vigor of 

traits, such as plant height or grain yield. Existing methods for identifying differential gene 

expression based on RNA-seq data are not directly applicable for detecting EH genes. Ji et 

al. (2014) introduced an empirical Bayes approach based on a hierarchical model for 

microarray data. We followed their approach, modified to allow for RNA-seq read counts as 

measures of transcript abundance. We developed an empirical Bayes approach based on 

obtaining estimates for hyperparameters followed by MCMC to estimate gene-specific 

parameters. The empirical Bayes posteriors can be used to estimate posterior probabilities of 

high and low parent heterosis. Through a simulation study, we demonstrated that this 

method outperformed alternative methods, and performed comparably well with a similar 

model in ShrinkBayes, which estimates the posterior via INLA. We then demonstrated the 

use of the methodology on a maize experiment in which phenotypic heterosis is well known.

Although our method appears to hold some advantage over existing methods, we believe our 

approach can be improved by refining the hierarchical model for the gene-specific parameter 

distribution. Figure 5 shows marginal and bivariate histograms for eBayes (Laplace) 

posterior means for the gene-specific parameters.

These figures show departures from marginal model assumptions, e.g. normality 

assumptions for φg and ψg, and independence assumptions for (φg, ψg) and (αg, δg). The plot 

of φg versus ψg shows a pattern where the mean overdispersion decreases as the mean 

expression level increases. The plot of αg versus δg shows a rotated V pattern where δg 

appears to be equal to |αg|. This V pattern is consistent with Mendel’s Law of Dominance 

where the hybrid has mean expression equal to the parent with higher mean expression.

In addition to improving the hierarchical distribution, we believe better estimates of the 

parameters of this distribution, i.e. the hyperparameters, will also improve detection of gene-

expression heterosis. Our current method, based on moment matching of essentially 

independently estimated gene-specific parameters, provides consistent estimators as the 

number of replicates per variety increases. But typically the number of replicates per variety 

is quite small. In our data there are only four replicates per variety, and therefore asymptotic 

justifications are deficient. There are a variety of alternative estimation approaches to 

explore, e.g. expectation-maximization algorithms or fully Bayesian approaches. 
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Notwithstanding these improvements, we believe our approach is a computationally efficient 

method that can immediately aid scientists who are interested in identifying candidate genes 

involved in a genetic mechanism of heterosis.

This paper has focused on statistical methods for detecting EH in gene expression using 

RNA-seq data. EH at the transcript level is only one of multiple molecular genetic 

mechanisms that may play roles in establishing hybrid vigor. Complementation (Paschold et 

al., 2012), allele-specific expression (Bell et al., 2013; Wei and Wang, 2013), and other 

complex forms of genomic and epigenetic interaction (Chen, 2013) are all plausible as 

mechanisms partially responsible for phenotypic heterosis. Further study of these 

phenomena using modern genomic technologies and appropriate statistical methods should 

enhance our understanding of hybrid vigor.
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Figure 1. 
Example ROC curves for false positive rates below 0.1 for the approaches using Ji et al., 

edgeR, and baySeq described in Section 3.2, the ShrinkBayes approach described in Section 

2.4 and the eBayes approach described in Section 2.2 using both normal and laplace 

distributions for the half-parental difference and hybrid effect.
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Figure 2. 
Area under the ROC curves (AUC) below a false positive rate of 0.1 for 3 different replicates 

per variety for the approaches using Ji et al., edgeR, and baySeq as described in Section 3.2, 

the ShrinkBayes approach described in Section 2.4 and the eBayes approach described in 

Section 2.2 using both normal and laplace distributions for the half-parental difference and 

hybrid effect. Each line is a different simulation while the blue box indicates mean AUC 

(plus or minus one standard error).

Niemi et al. Page 14

J Agric Biol Environ Stat. Author manuscript; available in PMC 2016 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Two-dimensional histogram of point estimates from edgeR and posterior means from 

eBayes (Laplace) along with the y = x diagonal.
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Figure 4. 
A bivariate histogram of the maximum of the LPH and HPH probabilities versus estimated 

effect size defined in equation (4) for the B73 × Mo17 maize experiment using eBayes 

(Laplace).
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Figure 5. 
Marginal and bivariate histograms of posterior means for gene-specific parameters for the 

B73 × Mo17 maize experiment.

Niemi et al. Page 17

J Agric Biol Environ Stat. Author manuscript; available in PMC 2016 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Empirical Bayes identification of gene expression heterosis from RNA-seq read counts
	2.1 Hierarchical model for RNA-seq counts
	2.2 Empirical Bayes
	2.3 Gene expression heterosis
	2.4 Implementation in ShrinkBayes

	3. Simulation study based on a maize experiment
	3.1 Constructing simulated data
	3.2 Alternative methods
	3.3 Results

	4. Searching for gene expression heterosis in the maize experiment
	5. Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

