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ABSTRACT 

Onion Creek, a 2nd order stream in central Iowa, is the focus of research on stream 

channel stability and sediment movement.  A field survey of Onion Creek (Chapter 2) 

found 24.5% of the total streambank length was severely eroding and some reaches of 

the stream had up to 50% severely eroding streambanks.  Hydrologic factors such as 

watershed size, stream channelization, and flow restrictions were more significant than 

riparian land use in explaining the incidence of severely eroding streambanks.   

An analysis of channel movement on Onion Creek from 1939 to 2009 (Chapter 3) 

found significant local changes, with landowners straightening stream channels in some 

sections and meander migration dominated by increases in stream extension in others.  

This predominance of channel extension in meandering sections indicates a stream that 

is adjusting to excess hydrologic energy.   

Streambank erosion was directly measured on a subset of streambanks using 

erosion pin plots measured from October 2011 to April 2013 (Chapter 4).  A drought 

during much of this period caused low levels of change, but study sites did show freeze-

thaw destabilization during winter months followed by moderate erosion by fluvial 

entrainment in the springs of 2012 and 2013. 

Water quality was measured at the outlet of Onion Creek between March 2012 and 

April 2013 (Chapter 5).  An analysis of the loads and concentrations of sediment, 

phosphate and total phosphorus, and nitrate and total nitrogen exported from Onion 

Creek is presented.  Finally, sediment loads discharged from Onion Creek are compared 

to estimates of sediment eroded from streambanks.
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CHAPTER 1. GENERAL INTRODUCTION 

Introduction 

Sediment is a major cause of impaired water quality.  Water-borne sediment can 

decrease gross primary productivity (O'Conner et al. 2012), impair stream ecology 

(Zimmerman 2003), and cause bed disturbance and reservoir siltation (Lawler and Dolan 

1992, O'Conner et al. 2012).  Further, sediment in water is a carrier of phosphorus, 

which in excess, has a negative effect on water quality and stream ecology (Laubel et al. 

2003, Kronvang et al. 2012, Zaimes et al. 2008a, b).   

Sediment loads can come from many sources, including surface runoff, gullying, and 

bed and bank erosion.  Even when conservation measures decrease sediment loads from 

surface runoff and gully erosion, high sediment levels may persist, likely due to 

streambank erosion (Schilling et al. 2011).  A review of several recent studies found that 

streambank erosion can contribute between 17 and 92% of the total sediment load in 

streams (Belmont 2011).  Palmer (2008) obtained similar results in a survey of Iowa 

streams.   

Excessive streambank erosion often occurs as a result of channel instability.  Across 

much of the landscape, extensive land use change and stream straightening have 

increased stream slope and hydrologic loads.  These changes increase the likelihood that 

a channel will destabilize and undergo a decades-long evolution towards a channel more 

in equilibrium with the changed agricultural landscape (Schumm et al. 1984).  During 

this evolution, a stream contributes a large amount of sediment from its bed and banks 

(Schumm et al. 1984), seen in the high proportion of sediment from streambank erosion 



2 

in the previous paragraph.  Although the concept of channel evolution and its attendant 

streambank erosion are well-established, it is important to increase the knowledge of 

the triggers, processes, and specific effects of that erosion.  With this knowledge, we 

should be able to better recommend practices to lessen the negative effects of 

streambank erosion.   

Project Description 

We have chosen the Onion Creek watershed as a case study of stream channel 

stability and sediment movement.  The watershed is 5700 hectares with 42 km of stream 

channel.  It is located on Wisconsin glacial till and flows through Boone and Story 

Counties in Iowa into Squaw Creek, a tributary of the Skunk River, which flows into the 

upper Mississippi in southeastern Iowa.  A previous study of the Squaw Creek 

watershed, using RUSLE calculations for erosion from surface runoff combined with a 

sediment delivery ratio calculation, estimated that the Onion Creek watershed had the 

highest rate of sediment delivered per acre (0.134 tons/acre) compared to Squaw 

Creek's six other sub-watersheds (Wendt 2007).  Wendt also conducted a survey of 

streambank condition on Onion Creek and found that it was not significantly more or 

less stable than the rest of the stream channels in the other sub-watersheds of Squaw 

Creek.  However, she noted that bank erosion on Onion Creek was of serious concern in 

some areas and recommended stabilizing the channel by establishing perennial buffers 

and minimizing cattle access (Wendt 2007). 
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In response to these findings, the Iowa Department of Agriculture and Land 

Stewardship (IDALS) started a project encouraging in-field and riparian conservation 

practices to decrease the amount of sediment and nutrients exported from the Onion 

Creek watershed.  To determine if these conservation practices are having an effect on 

stream condition and nutrient loads, IDALS partnered with Iowa State University to 

monitor sediment sources and water quality.  Erosion from gullies and streambanks are 

the sediment sources being monitored.  Suspended sediment, total nitrogen, nitrate, 

total phosphorus, and dissolved phosphate are the water quality parameters being 

measured.  Many years of monitoring will be required to achieve a comprehensive 

picture of the effects of conservation measures on Onion Creek.  This thesis offers 

preliminary results showing the state of Onion Creek as a case study on the general state 

of lower-order Iowa streams. 

Thesis Organization 

This thesis is arranged into six chapters.  The first chapter is a general introduction 

to topics covered.  The second chapter, “Effects of hydrological and stream-scale factors 

on streambank erosion within the Onion Creek watershed,” presents the results of a 

channel assessment of Onion Creek, examining the influence of various factors on the 

incidence of streambank erosion.  The third chapter, “Channel movement and change on 

Onion Creek, 1939 to 2009,” examines stream movement on a decadal scale, while the 

fourth chapter, “Freeze-thaw action and deposition on Onion Creek streambanks,” 

presents results from a shorter time-scale monitoring of severely eroding streambanks.  
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The fifth chapter, “Water, sediment, and nutrient export from Onion Creek,” examines 

the water quality of Onion Creek over one year and relates it to estimates of sediment 

loads described in the previous chapters.  The sixth and final chapter provides a general 

summary and conclusion to the thesis. 
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CHAPTER 2. EFFECTS OF HYDROLOGICAL AND STREAM-SCALE FACTORS ON 
STREAMBANK EROSION WITHIN THE ONION CREEK WATERSHED  

Abstract 

A field survey was conducted on Onion Creek, a 2nd order stream in central Iowa.  

The survey consisted of a Rapid Assessment of Stream Conditions Along Length 

(RASCAL), in which the riparian land use, points of interest for sediment and water 

movement, and severely eroding stream banks were mapped throughout the length of 

Onion Creek.  24.5% of the total bank length was severely eroding with up to 50% 

severely eroding banks in certain reaches.  Severely eroding streambanks were more 

prevalent in areas with narrower perennial buffers, in meandering sections downstream 

of channelized reaches, and more downstream stream reaches. A lower percentage of 

stream banks were severely eroding on channelized reaches and upstream of flow 

restrictions such as bridges, culverts, and drop structures. No significant relationship was 

found between riparian land use and streambank erosion.   

Introduction 

Sediment and the phosphorus it carries are major causes of diminished water 

quality (Lawler and Dolan 1992, O'Conner et al. 2012) and cause bed disturbance and 

reservoir siltation (O'Conner et al. 2012).  There is a growing body of evidence that much 

of the sediment and phosphorus delivered to the surface waters from agricultural 

landscapes originates from stream bed and bank erosion (Sekely et al. 2002, Wilson et 

al. 2008).  Belmont et al. (2011), in a review of various studies, reported from 17 to 92% 

of sediment in streams originated from streambank erosion.  In a study of the Neal Smith 
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Prairie Refuge in central Iowa, where large portions of the watershed have been 

converted to perennial vegetation, sediment export has remained high due to high rates 

of bank erosion, which accounted for 14-64% of exported sediment (Palmer 2008, 

Schilling et al. 2011).  Accelerated bank erosion is the result of the combined actions of 

altered watershed hydrology, sediment accretion from historical agricultural erosion of 

uplands, and riparian land management (Rakovan and Renwick 2011, Schilling et al. 

2011, Zaimes et al. 2008).  In some conditions, streambank erosion has been estimated 

to exceed stream transport capacity, resulting in significant channel storage (Bull 1997).  

The resulting suspended and bedded sediment negatively affects stream integrity and 

ecology (O'Conner et al. 2012).   

One potential factor increasing bank erosion is a historic increase in stream power.  

During European settlement of the Midwest, streams were channelized for faster water 

removal.  This channelization continued into the 1950s (Yan et al. 2010) and even the 

1970s (Simon and Rinaldi 2006).  Channelization is the process of straightening and 

aligning a stream channel (Schum et al. 1984).  Immediately following channelization, 

this decreases the turbulence of the water and reduces erosion (Hooke and Yorke 2010, 

McKenny et al. 1995, Nanson and Hickin 1986, Schilling and Wolter 2000).  However, the 

removal of the natural meanders reduces the hydraulic roughness of the stream system, 

shortens stream length, and increases stream gradient (Langbein and Leopold 1967, 

Thorne et al. 1998).  The increased gradient and decreased roughness increases velocity 

and sediment transport capacity which lead to channel incision and destabilization of 

the stream system (Nanson and Hickin 1986, Schumm et al. 1984, Simon and Hupp 
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1987).  Further, conversion of forest and prairie to row crops has increased the amount 

of water flowing into streams during storm events (Fitzpatrick et al. 1999, Gilliam and 

Skaggs 1986, Raymond et al. 2008, Schilling et al. 2008).  This increased stream power 

then erodes vulnerable bank material (Sekely et al. 2002, Simon and Rinaldi 2000, Simon 

and Darby 1997, Zaimes et al. 2004).  Many studies have found that stream power is the 

variable most correlated with streambank erosion, as sediment transport capacity is 

proportional to stream power (Darby and Thorne 1996, Hooke 1979, Julian et al. 2012, 

Lawler and Dolan 1992).   

However, sediment contribution from bank erosion depends on both sufficient 

stream power and the availability of erodible soil.  Several studies have reported lower 

than expected sediment loads for observed discharges, possibly resulting from 

exhaustion of easily erodible soil (Lawler and Dolan 1992, Zaimes et al. 2006).  Once 

banks are destabilized, bed and bank degradation is more influenced by factors 

controlling bank processes, such as bank height and slope (Darby and Thorne 1996).  

Further, substantial bank erosion can occur even during low flows (Zaimes et al. 2006).   

Despite numerous studies on streambank stability and erosion, factors which affect 

the rate of erosion remain unclear.  Fall 2010- spring 2011, an assessment of riparian and 

bank characteristics within the Onion Creek watershed was conducted to assess the 

effect of hydrological, streamside, and watershed-scale variables on streambank erosion.  

This assessment adds to the knowledge of what conditions promote greater streambank 

stability and should inform land managers in the watershed of best management 

practices for mitigating streambank erosion in Onion Creek and similar watersheds.   



9 

Methods 

Study Site 

This study is being conducted in the 5700 ha Onion Creek watershed (Figure 1) in 

central Iowa (42° N, 93° W).  Of all the subwatersheds of Squaw Creek, Onion Creek has 

the highest estimated sediment load per acre (Wendt 2007).  As a result, the Iowa 

Department of Agriculture and Land Stewardship initiated a project within the 

watershed focusing on conservation measures to improve water quality (see Chapter 1).  

Onion Creek is a second-order, 42 km stream system in Boone and Story Counties in 

Iowa, flowing through Wisconsin glacial till. Of Onion Creek’s 5700 ha watershed, 86.6 % 

is planted in corn and soybean rotations.  There are some forested areas near the 

watershed outlet, and a small amount of pasture and suburban development.  Onion 

Creek enters Squaw Creek just upstream of Ames, Iowa.   

Stream Survey 

A survey of Onion Creek was conducted in fall 2010 and spring 2011.  Ideally, the 

survey would have been conducted over a short period of time, but snow filled the 

channel and cut short our field work when we had completed 40% of the assessment in 

the fall.  The remaining stream was surveyed the following spring.  The assessment 

utilized the protocol Rapid Assessment of Stream Conditions Along Length (RASCAL), 

developed by the Iowa Department of Natural Resources and roughly following the 

methods of Schilling and Wolter (2000).  The protocol consists of walking the entire 

length of Onion Creek and its tributaries, noting the riparian land use and recording the 
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location of severely eroding streambanks.  Severely eroding streambanks were defined 

as banks with very low vegetation cover, severe vegetative overhang, and fallen trees 

and slumps (NRCS 1998).  We did not differentiate between severely eroding and very 

severely eroding banks, as the methods to distinguish between the two do not reliably 

predict differences in erosion rates (Palmer 2010).  In addition to the location of the 

eroding streambanks, we recorded their length, height, and general characteristics 

(vertical or not, slumps present or not).  We also marked the location of points of 

interest for sediment and water flow, such as tile outlets, sediment deposits, log jams, 

and bridges and drop structures.  These points of interest and bank erosion points were 

marked on GPS devices and subsequently projected using ArcMap™ (ESRI 2012). 

Within ArcMap, the stream course was digitized from 2009 color-infrared aerial 

photos viewed at 1:1500 scales (Iowa Department of Natural Resources 2009a, b).  The 

stream was divided into segments based on riparian land use, with a stream segment 

length of 20-30 times the stream width, following Magner et al. (2008).  In several 

locations the stream segment was shorter where restricted by confluences, bridges, or 

changes in land use.  This resulted in 214 segments ranging in length from 34 to 667 

meters, and an average length of 191 meters with a standard deviation of 96 m.  These 

lengths were comparable to those used by researchers using fixed-segment lengths for 

similar studies (Burkart et al. 2004, Schultz et al. 1995, Kronvang et al. 2012, Nellesen et 

al. 2011, Zaimes and Schultz 2011).  Stream segments of this length will adequately 

capture the sinuosity of a reach of stream and in channelized reaches will show the lack 

of sinuosity.  Of the 42 km of stream, 0.7 km was dominated by beaver activity with 
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deep, stagnant water and 0.4 km was in culverts or under bridges.  These reaches were 

excluded from further analysis.  

Factors Studied 

Values were assigned for several factors to each stream segment as follows:  

% eroding streambank: The length of eroding banks within each stream segment 

was summed and divided by the total bank length (segment length X 2) to provide a 

value for % eroding streambank.  This was used as the dependent variable in 

subsequent statistical analysis.   

Bank factors: 

Riparian land use: Four major types of riparian land use were identified: Grass 

(ungrazed), pasture, grass-tree mix, and tree-shrub mix.  Row crop, though originally 

noted as a riparian land use type in our survey, was not included in the final land use 

classification.  This is in contrast to Wendt (2007), whose riparian land use 

classification was based on the dominant land use in the 55 meters on each side of 

the stream, resulting in cropland dominating as a land use category in much of the 

first order channels.  However, for this study these sections were combined with 

those originally categorized as grass, as we assumed that the vegetation 

immediately adjacent to the stream is most relevant when assessing streambank 

stability (Peacher 2011).  As a result, the riparian land use of “Grass” includes grass 

buffer widths ranging from 11 to 169 meters. 

Width of riparian land use: The shortest distance from the two edges of the riparian 

land use on each side of the stream was estimated using Esri’s ArcMap™’s Measure 



12 

tool on 2009 infrared photos. This was usually from row crop to row crop, though 

occasionally the edge was suburban development.  This was averaged throughout 

each stream segment to get a representative width.  

Hydrological factors: 

Floodplain width:  Average floodplain width was estimated using floodplain soils as 

boundaries (Iowa Cooperative Soil Survey and IDNR Geological Survey 1998). In one 

case, a complex of floodplain soils was roughly parallel to but somewhat offset from 

an Onion Creek tributary (Figure 2).  Since these soils do not form without the 

presence of flowing water and no abandoned channel which could have formed 

these soils was noted during survey, we assumed that a mapping or projection error 

caused the offset and used the width of these floodplain soils to estimate floodplain 

width. 

Stream order:  Each stream segment was classified by stream order using the 

Strahler stream classification system (Strahler 1954). 

Watershed size:  Watershed size at each stream segment was estimated in ArcSWAT 

using the downstream endpoint of each segment as the outlet.  Three m bare earth 

digital elevation models (DEMs) accessed from the Iowa Geological and Water 

Survey, DNR (2010, 2011) were used in watershed delineation.   

Change in watershed size:  As a potential measure of the effect of large increases in 

stream flow, we calculated the percentage change from the watershed size of the 

stream segment just upstream of the one being studied. 
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Gradient:  Average stream gradient within each segment was calculated using Dilt’s 

tools within ArcMap™ (ESRI) (<http://arcscripts.esri.com/ details.asp?dbid=16305>), 

using the 3 m DEMS used in the watershed assessment above. 

Sinuosity: Sinuosity was calculated by dividing each stream segment’s length by the 

straight line distance between its endpoints.   

Channelization:  Stream segments were assigned a nominal variable (yes or no) for 

channelization (channel straightening and alignment) (Simon and Hupp 1987) based 

on a lower sinuosity threshold of 1.25 (Yan et al. 2010). 

Stream-level variables 

Because stream segments are not entirely independent variables as assumed in 

standard regression analyses (Haan 2002), we also evaluated the effects of factors 

characterizing upstream and downstream reaches.  

Distance from nearest upstream confluence: To assess the influence of a stream 

confluence on downstream streambank erosion, the distance from the upstream 

end of each segment to the closest upstream confluence was measured for any 

second order stream (19.5 of the 41 km). 

Distance from nearest flow restriction: To assess the effect of engineered structures 

restricting water flow on streambank erosion, we measured the distance from the 

segment endpoint to the nearest upstream and downstream flow restriction, 

creating two data points for each segment.  Flow restrictions were bridges (unless 

specifically marked as not being control points), culverts, drop structures, field 
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crossings, dams, and any other point noted as control points.  When a segment did 

not have an upstream flow restriction, it was not analyzed, removing 3.3 km of 

stream.  When a stream segment was just upstream or downstream of a flow 

restriction, the distance from the flow restriction to the segment endpoint was 

given a value of zero for that factor (upstream or downstream, as appropriate).  

When a stream segment was bisected by a flow restriction, it was given a value of 

zero for both variables and the stream distance from the flow restriction was 

measured to each adjacent segment.  When a segment had an upstream confluence 

prior to any flow restrictions, the distance to the flow restriction on the tributary 

with the larger watershed size was used as it was assumed this would have a greater 

effect.   

Distance below channelized reach: The stream length from the upstream end of 

each reach to the nearest upstream channelized reach was calculated. Stream 

segments which didn’t have an upstream channelized reach were not included, 

removing 2.2 km of stream.  When measuring upstream beyond a confluence, the 

tributary with the larger watershed was used.   

Length of upstream channelized reach: The length of the upstream channelized 

reach was measured for each stream segment.  For this assessment, all culverts and 

bridge underpasses were considered to be part of a channelized reach if the stream 

segments on each side of these structures were channelized.   
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 Analysis of Factors’ Effect on Streambank Erosion 

The correlation of potential causative variables with the dependent variables was 

assessed using R (R Development Core Team 2011).  A correlation matrix of all factors 

was generated to examine trends in the distribution of values for those factors, remove 

factors which had an R2>0.75 with any other factor, and carry out a bivariate analysis of 

each factor’s effect on % severely eroding streambank.   

A best-fit model was built using a stepwise multiple linear regression of explanatory 

factors’ effect on % eroding streambank.  In addition to the factors mentioned above, we 

also included two potential interaction effects in our model building:  Upstream 

channelized reach length with channelization and distance from upstream channelized 

reach with channelization. These interaction effects were included because we expected 

channelized and meandering reaches to behave differently in response to upstream 

channelized reaches.  

Because of the difference in stream lengths, we weighted our stream segments 

according to their length when carrying out regression analyses.  After construction of 

the final statistical model, the residuals of % streambank erosion were plotted based on 

distance of the stream reach from the mouth of Onion Creek (Haan 2002) to test for 

autocorrelation of streambank erosion in nearby stream segments.   

In our analysis, we used an overall α-value of 0.1.  However, as the number of 

factors analyzed increases, the probability of random numbers producing a significant 

correlation for any one of those factors increases when using the multiple tests of 

stepwise regression.  To counteract this effect, we performed a Bonferroni correction, 
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which takes the original α value and divides it by the number of factors being analyzed.  

In our case, we are studying 13 factors and two interaction effects, so our corrected α 

value is 0.1/15=0.0067=αcorrected.  This is a conservative means of analyzing our results 

which increases the likelihood of failing to detect relationships which do exist.  However, 

this factor is used to avoid implying confidence our analysis method does not warrant.  

While α values greater than 0.0067 may indicate a significant relationship, I suggest that 

future research examine that relationship and will not report such results as significant.   

Results 

General Stream Characteristics 

1799 points of interest were mapped along 41 km of stream.  The most common 

mapped points were sediment bars and islands (764), gullies (132), log jams (155), 

animal crossings (147), riffles (142), and tile outlets (115).   

1676 severely eroding streambank segments were noted, for a total length of 20.1 

km and an average of 24.3% of total bank length severely eroding (Figure 3).  93% of the 

eroding streambanks on Onion Creek were vertical, 73% had slumps at the time of 

sampling, and 14% cut into valley walls.  The average bank height was 2.05 m.  Based on 

estimates from NRCS's Erosion and Sediment Delivery Worksheet's (1998) of a recession 

rate of 0.122 meters/year and an average soil density of 1.36 Mg/cubic meter, severely 

eroding streambanks in Onion Creek contribute 5100 cubic meters or 6800 Mg soil to 

the stream system in an average year.   
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Correlation Analysis 

On Onion Creek and its tributaries, 15.5 km of the stream flowed through grass, 10.2 

km through a grass/tree mix, 12.1 km through trees/shrubs, and 3.0 km through pasture 

(Figure 4).  There was significant collinearity between the factor of riparian land use and 

other factors (Table 1).  Trees/shrubs and Grass/tree mix reaches were more prevalent 

on the downstream end of the watershed while Grass and Pasture were clustered on 1st 

order streams.  Average riparian land use widths, or the distance between row crops on 

each side of the stream, were 54 m for Grass, 153 m for Grass/tree mix, 188 m for 

Trees/shrubs, and 199 m for Pasture.  

In addition to having a narrower vegetation width, roughly 72% of grass reaches 

were channelized, compared to 24% of grass/tree, 17% of tree/shrub, and 10% of the 

pasture reaches (Figure 5).  16 km of the total 42 km were channelized.  The longest 

continuously channelized stream reach is 3.7 km and the longest stream reach without 

any straightening was also 3.7 km.  The tree/shrub section had a 60% higher gradient 

than the grass section (p<0.001) and the grass/trees section had a 40% higher gradient 

than grass reaches (p=0.0035). A significant number of stream flow restrictions were 

identified (Figure 6).  Most of the factors had some collinearity, but none had an 

R2>0.75, so we included all factors in our subsequent analysis. 

A significant bivariate relationship was found between % eroding streambank and 

the following variables: Riparian land use, stream order, watershed size, channelization, 

distance from downstream flow restrictions, and distance below upstream channelized 

reaches (Table 1). The bivariate regression between riparian land use and % eroding 
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streambank illustrated that forested reaches (Grass/tree mix and Trees/shrubs) had 8% 

more eroding streambank than the grass reaches, while pasture was not statistically 

different from any other riparian land use group (Figure 7).  27% of second-order 

streambanks were severely eroding, compared to 21% of 1st order streambanks.  With 

every 530 ha increase in watershed size, severely eroding streambanks increased by 1%.  

19% of streambanks in channelized reaches were severely eroding, compared to 26% in 

unchannelized reaches.  A stream segment increased in % severely eroding streambank 

by 1% every 490 m upstream of a flow restriction.  Finally, severely eroding streambank 

increased by 1% with every 365 m increase in the distance from an upstream 

channelized reach. 

Multiple Linear Regression of Factors in Relation to % Eroding Streambanks 

The best overall model created using stepwise addition and elimination of factors, 

explained 28.8% of the variance in % severely eroding stream bank.  The model 

contained six factors: width of riparian land use, watershed size, distance to downstream 

flow restrictions, channelization, length of upstream channelized reach, and an 

interaction effect between channelization and length of upstream channelized reach 

(Table 2).  The model for the amount of severely eroding stream bank for a given reach 

of stream is shown below:   

% severely eroding streambank= 20.6 – 0.03 * [meters width of riparian land use] + 
0.0025 * [watershed size (hectares)] + 2.47 * [km upstream from a downstream flow 
restriction] + 4.1 * [km of upstream channelized stream reach] - if channelized, (2.5 + 
5.5 * [km of upstream channelized stream reach]) 
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To explain this equation, for every 400 ha increase in watershed size, bank erosion 

increased by 1%.  For every 400 m increase in distance from a downstream flow 

restriction, bank erosion increased by 1%.  In other words, closer to a downstream flow 

restriction, stream banks were less likely to be severely eroding.  Channelized reaches 

had 2.5% less erosion than the non-channelized reaches.  With every 240 meter increase 

in upstream channelized reach, the % eroding streambank increased by one percentage 

point.  The interaction effect of the upstream channelized reach and channelization was 

that if a stream reach was channelized, the rate of streambank erosion would decrease 

by 1.3 % for every 240 meters upstream channelized reach (p<0.001).  This interaction 

effect counteracted the marginal effect of the upstream channelized reach factor when a 

stream was channelized.  In other words, an upstream channelized reach increased 

erosion, but only in reaches that were still meandering.  There was no substantive 

autocorrelation among the residuals of this model.   

Finally, though width of riparian land did not have a significant zero-order 

correlation with % severely eroding stream bank, it was significant when included in a 

multiple linear regression model, once collinearity among land use width, watershed 

size, and channelization was resolved.  With every 33 meter increase in the width of 

riparian land use (or every 17 meter increase in distance from row crop), erosion 

decreased by 1%.  Although it may seem illogical to include width of riparian land use in 

a model that does not include land use, all land uses were perennial vegetation, so their 

width, or the distance from the stream to row crops was still considered a meaningful 

factor even if the type of perennial vegetation was not included.   
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The inclusion of the above factors to the multi-factor model decreased the effect of 

vegetation to such an extent that it was no longer significant.  The forested reaches still 

had a greater % of eroding streambank than the grass section, but rather than the 8% 

difference of the bivariate analysis, if riparian land use were included in the model, 

forested reaches only increased the eroding streambank by 4.8% (Grass/tree mix-

P=0.012) and 2.9% (Trees/shrubs-P=0.20) over the grass land use.  Pasture again was not 

significantly different from other land uses.  Theses contrasts did not meet the 

Bonferroni-corrected α value of 0.0067 and so were not included in the model.   

Other factors which were significant in our bivariate analysis were not significant 

when added to the final model.  The distance from the upstream channelized reach lost 

any significance once the channelization factor was included in the model.  This is likely 

because all but the most upstream channelized segments were given a value of zero for 

the distance from upstream channelized reach, so segments with lower distances from 

upstream channelized reaches were more likely to be channelized, and thus have less 

erosion.  Stream order was significant when included in the place of watershed size in 

the model.  However, the two factors are different ways of explaining stream size.  When 

watershed size is included in a model with stream order, stream order no longer has a 

substantial correlation with bank erosion.  Other variables, such as floodplain width, 

change in watershed size, and distance from upstream confluence were not significant in 

the bivariate or the multiple linear regression, indicating that either they do not have an 

effect on streambank erosion, or that either the variability of these variables within this 
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watershed, and/or measurement errors inherent to this study, did not allow detection of 

a significant effect on erosion. 

Discussion  

The objectives of this study were to quantify the extent of streambank erosion in 

the Onion Creek Watershed and assess the effects of riparian and watershed-scale 

variables as controlling factors in that erosion.  In Onion Creek and its tributaries, 24.3% 

of the banks were severely eroding.  This is similar to Wendt’s (2007) study of random 

reaches on Onion Creek, which found less than 40% severely eroding streambank on 

90% of surveyed reaches.  As a comparison, Zaimes et al. (2008) found an average of 

25% severely eroding bank length in a watershed with a similar land use to Onion Creek 

and Tufekcioglu (2012) found an average of 23% severely eroding stream length on other 

lower-order Iowa streams with largely row-crop watersheds.  These numbers are all 

close to but somewhat higher than the 20% cutoff below which a stream can be 

considered stable (Simonson et al 1994).  Below a 20% severely eroding streambank 

level, erosion that occurs will not overwhelm a stream system but will instead provide 

important structural diversity (Florscheim et al. 2008, Piégay et al. 2005).  Because Onion 

Creek's % of severely eroding streambank is near the 20% level, it is relatively healthy 

according to the metric of Simonson et al., especially given that our survey of severely 

eroding streambanks was conducted in the months following a major flood in the Onion 

Creek watershed (Barnes and Eash 2012).  However, there are significant reaches of the 
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creek with values much higher than 20% (Figure 3), indicating these sections are not in 

equilibrium.   

In the model of streambank erosion created from this study, important factors were 

width of riparian vegetation, watershed size, distance to downstream flow restrictions, 

channelization, length of upstream channelized reach, and an interaction effect between 

channelization and the length of upstream channelized reach.   

The factor which explained the most variation in percent eroding streambank was 

watershed size.  Prestegaard (1988) and Lawler et al. (1999) also noted the importance 

of watershed size in bank erosion and a multi-stream study in Canada that related 

increasing stream size with increased rates of channel movement (Nanson and Hickin 

1986).  As to the width of riparian land use, many researchers have found no significant 

correlation between riparian vegetation width and streambank recession rates (Laubel 

et al. 2003, Kronvang et al. 2012).  However, the data from Onion Creek indicates a 

significant negative correlation between riparian vegetation width and the extent of 

streambank erosion.  While stream water only contacts the roots and shoots of 

vegetation right on the bank, a possible explanation for our results is that vegetation not 

directly in contact with stream water will have a hydrological effect on the stream bank.  

Nearby perennial vegetation will remove more water from the soil than an annual 

cropping system, stabilizing streambanks by increasing the matric suction of the soil 

(Simon and Collison 2002).  The wider the zone of perennial vegetation is, the greater its 

hydrologic effect.  In addition to any potential hydrologic stabilization, a wider zone of 

perennial vegetation will increases wildlife habitat (Bentrup and Kellerman 2004), and 
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reduce pollution from overland flow (Bren 1998, Lee et al. 2003, Tomer et al. 2003).  This 

latter function would help reduce the high delivered sediment load within Onion Creek 

predicted by Wendt (2007).   

Another significant factor explaining streambank erosion within Onion Creek was 

channelization. Yan et al. (2010), in discussing historical decreases in sinuosity, 

mentioned how straightening meandering channels increases channel slope and thus 

likely increases erosion.  According to traditional models of channel evolution, this 

erosion will occur within channelized reaches (Schumm et al. 1984, Simon and Hupp 

1987).  However, at the site of channelization, streams are straight, with lower 

turbulence, counteracting the increase in gradient.  As a result, many studies have found 

less erosion and channel migration in straighter stream sections (Hooke and Yorke 2010, 

Robbins and Simon 1983, Schilling and Wolter 2000), similar to the survey on Onion 

Creek.  Palmer (2008), in attempting to explain increased erosion in lower-watershed, 

forested sections of Walnut Creek in central Iowa, speculated that perhaps the increased 

erosion was a result of the increased stream power caused by a large amount of 

channelization upstream of those forested sections.  This relationship was inferred in our 

results with the inclusion of “Upstream channelized reach length” in our multiple linear 

regression model of streambank erosion.   

Our observations within Onion Creek also indicate a relationship of decreased 

erosion approaching a downstream flow restriction.  These observations are in line with 

Martin and Pavlowsky (2011), who found that just upstream of dams, stream segments 

were more likely to be accumulating sediment and less likely to be migrating. Simon and 



24 

Darby (2002) and Julian et al. (2012) also found that erosion was reduced upstream of 

grade control structures.  However, caution should be taken in interpreting these results 

as a prescription for drop structures and other stream grade control structures, since if a 

stream is already destabilized, there may be increased erosion downstream of such 

structures (Simon and Darby 2002).   

Other factors which we thought may be important explanatory factors for the 

extensiveness of severely eroding streambanks were not included in the multiple linear 

regression model.  Chief among these was the type of riparian land use.  Riparian 

vegetation type is often a primary concern in bank restoration and our failure to find a 

significant effect of vegetation type contrasts with a good deal of other research in Iowa 

and Missouri.  For example, a study on a central Iowa stream using the same RASCAL 

assessment found the lowest bank erosion rates in riparian forest buffers, as compared 

to row crops, pasture, and grass (Zaimes et al. 2006).  Other studies have also supported 

these results, showing forested reaches to be most effective in reducing erosion as 

compared to pasture and row crops (Laubel et al. 1999, Zaimes et al. 2008), and in some 

studies, more effective than grass buffers (Kronvang et al. 2012).  

In addition to studies of the overall effect of riparian vegetation, other studies have 

shown the benefits of specific vegetation types.  Several studies have demonstrated that 

woody riparian vegetation will increase streambank stability due to the relative strength 

of tree roots (Simon et al. 2006, Simon and Collison 1992), their hydrologic stabilization 

of bank soils (Bosch and Hewlett 1982), and insulation from freeze-thaw destabilization 

(Stott et al. 2111).  Further, the deep tree roots of many riparian species have been 
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found to be useful in bank stabilization (Simon et al. 2006, Tufekcioglu et al. 1999).  The 

effect of tree root strength was visually noted in our assessment, as tree roots were 

better able to slow the rate of recession compared to pasture grass (Figure 8).  

However, the optimal species composition is subject to considerable debate 

(Montgomery 1997).  Figure 8 also shows tree roots being undermined by the channel 

depth.  When a stream cuts below the rooting zone of riparian vegetation, the tensile 

strength provided by roots is no longer effective, as noted by Thorne et al. (1998).  

Further, Tufekcioglu et al. (2003) documented greater amounts of fine live roots in 

riparian soils dominated by switchgrass (Panicum virgatum L.) compared to poplar 

(Populus x euroamericana “Eugenei”), indicating that grass roots may provide greater 

streambank stability than woody species.  In the field, many studies have found reaches 

with riparian forests to have greater rates of streambank erosion (Boothroyd et al. 2004, 

Davies-Colley 1997, Murgatroyd and Ternan 1983, Trimble 1997).  This observation has 

been attributed to the destabilizing weight of large trees along banks (Thorne et al. 

1998), the turbulent effect of large woody debris (Abernethy and Rutherfurd 1998, 

Ebisemiju 1994, Trimble 1997), and the shading of undergrowth vegetation leading to 

exposed, vulnerable banks (Keim and Schoenholtz 1998).  Allmendinger et al. (2005) 

have further noted that grassy riparian vegetation promotes more sediment deposition 

than forest because dense stands of grass will better trap flowing sediment.  Trimble 

(1997) has gone as far as promoting the removal of trees in favor of grass to reduce 

sediment export from streams.   
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In contrast to the studies above, data from Onion Creek found that riparian land use 

was not correlated with the incidence of streambank erosion.  Moreover, an apparent 

bivariate relationship between riparian land use and streambank erosion was no longer 

significant when other factors such as watershed size and channelization were 

considered.  The relationship between riparian land use and streambank erosion 

warrants further study, but researchers should be aware of other factors which may 

cause both a change in vegetation and erosion frequency.  Landowners may prefer grass 

along a channelized reach to maximize row-crop acreage and trees are a more common 

riparian land use along larger water bodies.  Both of these trends were seen on Onion 

Creek and a careful consideration of multiple factors and an awareness of the social and 

economic causes of riparian land use should lead to a clearer picture of the causes of 

increased erosion.   

In the RASCAL survey, two important points of interest were sediment bars and log 

jams.  These are factors we did not consider in our analysis but which may be quite 

important when examining movement and storage of sediment in stream systems.  The 

frequency and size of sediment bars can be a sign of sediment overload from overland 

flow or other upstream sources and can also show a stream’s stage in the channel 

evolution process, with more bars in an aggrading channel and less in an incising one 

(Schumm et al. 1984).  Log jams are also potentially important factors in stream 

hydrology and sediment movement (Figure 9), creating structural diversity and locally 

increasing the turbulence and erosiveness of a stream (Anderson et al. 2004, de Paula et 

al. 2011, Murgatroyd and Ternan 1983, Sovell et al. 2000, Trimble 1997). 
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Unfortunately, there were no a priori criteria assigned to designate a log jam or 

sediment bar and the degree to which flow was restricted by log jams was not recorded.  

While the work of de Paula et al. (2011), where researchers noted the length and 

diameter of each piece of woody debris, is likely too precise for stream assessment such 

as RASCAL, some intermediate level of precision, such as an estimate of the percent of 

bankfull area blocked by a logjam, could be useful in the analysis of the effect of large 

woody debris in a stream system.  

Similarly, in future RASCAL assessments, a size cutoff should be established for 

deciding whether to mark sediment bars, and ideally, the height, length, and width of 

the bar should be noted along with defining characteristics.  Further, to avoid variation in 

the data set caused by inundation of sediment bars, the assessment of all reaches should 

be carried out as much as possible at similar flow levels, ideally at ones low enough to 

note major sediment bars.  By more carefully surveying sediment bars and log jams, 

better conclusions could be made about their relation to bank and channel instability. 

Soil type is another potentially important factor in the rate and nature of 

streambank erosion (Hooke 1980, Knapen et al. 2007, Schilling et al. 2009, Simon and 

Rinaldi 2000), but it was not considered as an explanatory variable in this study since 38 

of Onion Creek’s 42 km were bordered by Coland and Spillville, two very similar alluvial 

soil mapping units (Iowa Cooperative Soil Survey and IDNR Geological Survey 1998).  

However, it is nearly certain that there is actually more variation in streambank soils 

than is shown on the Soil Survey.  For example, Schilling et al. (2009), in a study on bank 

soils in Walnut Creek in central Iowa, noted that the channel had cut through multiple 
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alluvial members, including paleosols and post-settlement alluvium and that each 

alluvial member would have a different resistance to bank erosion.  Though we have not 

yet completed a survey of bank soils, we have found evidence of soil types other than 

Coland and Spillville, noting horizons with high clay content and strong angular blocky 

structure. Soil mapping units do not appear to accurately represent the alluvial members 

present on the streambanks of Onion Creek and similar stream systems and an analysis 

of the effect of soil type may require a field assessment of actual streambanks.   

A final issue with the RASCAL survey is a lack of precision in the erosion assessment. 

One of the major markers of severe erosion is bare banks (NRCS 1998), which indicate 

vegetation has been washed away.  However, in densely forested reaches, shade from 

trees may prevent an understory from growing.  This lack of vegetation may cause banks 

to be more vulnerable to erosion, but it does not necessarily mean that banks are 

actively eroding.  In a study on streams throughout Iowa, banks marked as severely 

eroding in riparian forest buffers had lower recession rates than other riparian land uses 

(Zaimes et al. 2008).  The forests on Onion Creek are not planned riparian forest buffers 

and it is possible average recession rates of eroding streambanks may not follow a 

similar pattern to that seen by Zaimes et al. 2008.  Other pin plots established on banks 

mapped as severely eroding have shown effectively the same rate of bank recession 

throughout vegetation types (Willet et al. 2012).  However, banks mapped as severely 

eroding may not all have the same recession rate of 0.122 meters/year given by the 

NRCS (1998), but vary depending on vegetation type or other stream characteristics. The 

use of RASCAL to assess stream conditions is, in some regards, just a starting step in the 
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analysis of stream and bank conditions. In our final multiple linear regression model, 

only 29% of the variation in severely eroding streambank incidence was explained, 

leaving 70% unexplained by the factors we used.  By combining a RASCAL survey with 

assessment methods at other temporal or spatial scales, researchers should be able to 

better explain the erosion occurring on a stream system.   

Summary and Conclusions 

Approximately one quarter of Onion Creek streambanks were severely eroding.  In 

analyzing the variation in the distribution of these severely eroding streambanks, we 

created a five-factor model showing greater amounts of erosion when a stream segment 

had a narrower buffer from row crop, a greater distance above a downstream flow 

restriction, a larger watershed, and if the reach was not channelized, when preceded by 

a longer upstream channelized reach.  This indicates that, at least in Onion Creek, the 

effect of vegetation type on erosion is not as pronounced or apparent as that of 

hydrologic factors.  Streambank stability and erosion should be checked on other 

streams and using other assessment methods to gain a better picture of the way in 

which streambanks are affected by their riparian and hydrological conditions.   
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Figure 2: A section of Onion Creek overlaid on soils data.  The western tributary was 
assigned floodplain width values based on the floodplain soils to the south. 

Zaimes, G.N., R.C. Schultz, and T.M. Isenhart. 2008. Stream bank soil and phosphorus 
loss under different riparian land-uses in Iowa. J. Am. Water Resour. Assoc. 
44(4):935-47. 
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Figure 1: Onion Creek and tributaries, traced on ESRI's Arcmap™ from 2009 infrared 
photos. 
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Figure 4:  Percent severely eroding streambank, according to a RASCAL survey conducted 
fall 2010-spring 2011. 

Figure 3:  Riparian land use of Onion Creek and tributaries, based on fall 2010-spring 
2011 survey, checked using 2009 infrared photos. 
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Figure 5: Sinuosity, measured as the ratio of stream length to distance between stream 
segment endpoints.  Error bars show a 90% confidence interval.  Grass sinuosity values 
are significantly less than the other riparian land use types (p<0.001). 

Figure 6: Flow restrictions on Onion Creek and its tributaries (bridges, culverts, drop 
structures and other points noted as flow restrictions are shown in red). 
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Table 1: Individual r2 values showing correlation among % severely eroding streambank 
and explanatory factors, with  p-values shown in parentheses.  Values for which there is 
>90% confidence (α<0.0067) are bolded.  
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Figure 7: % Eroding streambank for all surveyed riparian land use types.  Error bars 
represent the 90% confidence interval. Grass/tree mix and Trees/shrubs have essentially 
the same value, but both are significantly different from Grass (p<0.001). 

Table 2: Standardized regression coefficients of each factor of the final multiple linear 
regression model represent the amount of variation explained by each factor in the 
model.  The coefficient of multiple determination (0.29) is not the sum of the 
standardized regression coefficients because of substantial multicollinearity among the 
explanatory factors.  All factors have a p-value <0.001.   

Correlation coefficients of factors in the multiple linear regression model 

Factor 

Standardized 
regression  
coefficient (r2)  

Width of riparian land use 0.07 

Watershed size 0.11 

Distance from downstream flow restriction 0.07 

Channelization 0.30 

Length of upstream channelized reach 0.10 

Interaction effect: Length of upstream channelized reach, if 
segment is channelized 

0.17 

Coefficient of multiple determination (R2) = 0.29   
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Figure 9: One of the larger log jams on Onion Creek.  Photo taken March 2011. 

 
Figure 8:  Tree roots stabilizing bank soils.  The 10-foot high bank, however, was 
deeper than the tree's roots.  Photo taken August 2012. 
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CHAPTER 3. CHANNEL MOVEMENT AND CHANGE ON ONION CREEK, 1939 
TO 2009 

Abstract 

An analysis of decadal stream movement is presented for Onion Creek, a 2nd order 

Iowa stream. Changes in channel length and position are assessed using aerial 

photographs from 1939 and 2009 and channel evolution stage is determined by 

examining channel cross sections.  Total stream length increased just 1.5% but there 

were significant local changes in channel length and position.  Channelization (channel 

straightening and alignment) significantly reduced channel length and sinuosity in 

certain sections of the stream.  Natural meander migration also occurred and channel 

extension was the most common result of that meandering.  This predominance of 

meander extension and channels in the threshold and aggrading stages of the channel 

evolution process indicates a stream that is adjusting to excess energy.  Stream reaches 

which were channelized prior to 1939 moved less in the next 70 years as did 

downstream reaches and those with narrower floodplains.   

Introduction 

The previous chapter described the effect of riparian vegetation, channelization and 

other factors on streambank erosion and deposition.  However, these effects were 

observed at very short temporal scales.  As noted by Couper (2004), studies based on 

short temporal scales should be aware of larger-scale processes, which may complement 

or counteract processes occurring during the short temporal scales.  To better assess 
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channel dynamics on Onion Creek, a longer-term analysis of change in stream channel 

morphology was warranted. 

Three major ways in which stream morphology changes over time are meander 

migration, anthropogenic channelization, and channel evolution (Schumm et al. 1984).  

Channelization is the practice of digging a new, relatively straight channel, removing all 

meanders from a stream reach (Simon and Hupp 1987).  In Yan et al.'s (2010) 1939-2002 

study on the South Fork of the Iowa River, 28% of the change in the channel position of 

the main channel and 47 and 64% of the change in two of its tributaries occurred as a 

result of channelization in the 1950s, causing a reduction of sinuosity throughout the 

studied stream system.  Channelization results in a decrease in channel length, an 

increase in channel gradient, and a decrease in channel roughness.  The reworking of a 

stream channel during channelization also often includes the digging of new drainage 

ditches to further accelerate the removal of water.  Dredging and channelization increase 

stream power, which can destabilize stream systems (Schumm et al. 1984).   

Meandering occurs as outside bends in the stream are undercut by the water 

column, causing the bend to move outward and downstream. The movement of 

meander bends can result in a number of different changes in channel position, 

conceptualized by Martin and Pavlowsky (2011) (Figure 1).  The classic meander bend 

will extend until its ends eventually meet each other and form a cutoff.  In a translation 

movement, the bend will migrate downstream as sediment collects at the upstream end 

of the meander bend, pushing the water column away from the old channel location (da 

Silva et al. 2006).  Occasionally, a buildup of sediment in the center of a relatively 
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straight reach will create a megabar.  In response, the channel migrates laterally, creating 

a new bend (Martin and Pavlowsky 2011).  Meandering does not usually occur at the 

same rate on all sections of a river, but is focused on certain rapidly moving active 

reaches, while other, usually straighter reaches, remain more stationary (McKenny et al. 

1995).   

Unlike channelization, meandering is a natural process, but the rate at which it 

occurs can be affected by human activities.  The conversion of permanent cover such as 

forests and prairies to row crops causes an increase in the amount of water streams 

convey (Schilling et al. 2008).  This additional water along with hydrologic alterations 

such as channelization, dredging, and tile drainage accelerate the rate and extent of 

meander migration and generally destabilize a stream channel (Knox 2006, Martin and 

Pavlowsky 2011, Schottler et al. 2013, Schumm et al. 1984).   

A destabilized stream system will often go through a characteristic process of 

channel evolution to adjust to its new hydrological conditions.  This process was 

characterized by Schumm et al. (1984), further developed by Simon and Hupp (1987) 

and others, and proceeds as follows: Following channelization or other changes which 

increase the amount or intensity of water flowing through a stream channel, the stream 

bed will typically incise until the banks reach a threshold height of bank stability.  At this 

point, the beginning of the threshold stage, mass failures of bank materials produce high 

levels of sediment which is then carried away by the stream.  The threshold stage is 

followed by the aggradation stage, in which sediment supply and stream power become 

more balanced, sediment from mass failures begins to accumulate in the bed of the 



45 

channel in alternating bars, and a meandering thalweg develops.  In the final 

restabilization phase of the channel evolution process, this meandering thalweg matures 

and forms a new meandering stream in quasi-equilibrium with its environment.   

This process of evolution is a model and streams may change differently depending 

on soil type, land use, and other factors (Andrews 1984, Nanson and Hickin 1986).  Still, 

by comparing a stream channel's current condition to the model, an assessment can be 

made of that channel's stability (Simon and Darby 1997, Zaimes et al. 2006). 

In addition to an assessment of channel evolution stage, there are several different 

ways of measuring changes in channel morphology.  In the very long term, studies of 

floodplain form and sediment deposits can be used to interpret a stream's history at 

levels up to 15,000 years, as described by Lawler (1993).  At a shorter time scale and 

requiring less field work, researchers have also compared changes in streams using aerial 

photos.  On large rivers, mappers trace the banks of the channel and determine the 

change in channel width over time, such as in Bartley et al.'s (2006) study of the 140 km 

Daintree River in Northern Australia.  Another method, used by Yan et al. (2010), 

measures change in the position of the channel centerline.  This method was also used 

to measure change in Squaw Creek and its tributaries by Wagner and Gobster (2005).  

Results from Wagner and Gobster's study indicated that channelization and reductions in 

sinuosity have occurred in the Squaw Creek watershed during the last seventy years.  

Our study focuses on Onion Creek, one of the tributaries of Squaw Creek.  This study 

quantifies the changes Onion Creek has undergone in the past decades and analyzes the 

characteristics of meander migration on the creek.  This should aid in the interpretation 
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of our stream survey from the previous chapter and strengthen our recommendations 

on conservation measures for the watershed.   

Methods 

As part of an assessment of current stream conditions, the 2009 Onion Creek stream 

channel was traced from color-infrared aerial photographs (Iowa Department of Natural 

Resources 2009a, b).  Aerial photographs taken spring 1939 were developed into a 

mosaic by the Iowa Department of Natural Resources (2006a, b), downloaded from the 

Iowa State University GIS facility, and traced to create the 1939 stream map. Where 

county images overlapped, the ortho-rectified images for Boone County were used 

rather than the less precise geo-rectified Story County images.  The same 1:1500 scale 

was used in both sets of photographs.  The 2009 channel map was broken into stream 

segments with lengths 20-30 times the stream width (Chapter 2).  The 1939 stream 

channel map was divided into segments with endpoints in the same location as in the 

2009 channel map in order to better compare changes in length and sinuosity (Figure 2).  

The major differences in mapping methods between the 2009 and the 1939 stream 

course was the higher resolution of the 2009 photographs.  Also, headwaters and other 

locations of interest on the 2009 photographs could be field-checked, but no such option 

was available for the 1939 photographs.  When the 1939 channel was unclear because 

of concealing tree cover or when it was ambiguous where the stream started, those 

sections of the 1939 channel and their 2009 counterparts were not included in 

subsequent comparisons. 
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Following Yan et al. (2010), we used the feature-to-polygon tool on ESRI’s ArcMap 

9TM to show the area of land the stream had moved across. Polygons created using this 

tool were classified according to the type of movement: undetermined, channelization, 

and meandering.  The undetermined class was used where it was difficult to 

differentiate between mapping and digitization errors and stream movement, when the 

1939 stream course was unclear because of tree cover, and for most polygons less than 

200 m2 (0.02 ha).  Polygons were classified in the channelization group where newly dug 

ditches in the stream channel removed meanders, leaving behind a relatively straight 

stream reach.  When the polygons created were due to natural meandering, they were 

further classified according to the scheme used by Martin and Pavlowsky (2011) (Figure 

1):  If the channel length decreased by more than 10%, it was labeled as a cutoff, if it 

increased more than 10%, an extension.  When channel length didn’t change, if the 

channel shape was shifted up or downstream it was labeled as a translation and if the 

change in the channel position was more of a lateral shift, a megabar.  

The sinuosity of each stream segment was calculated by dividing the stream 

segment length by the linear distance between segment endpoints.  The change in 

sinuosity from 1939 to 2009 was calculated for each stream segment.  Also, the 

percentage change in each segment length from 1939 to 2009 was recorded and the 

absolute value of that change was calculated and reported as channel activity.  To 

compare these results with those from a 2010-2011 survey of eroding streambanks and 

riparian characteristics (Chapter 2), the effect of factors noted in the previous chapter 

(watershed size, floodplain width, and sinuosity) on change in length and channel 
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activity was examined.  Any sections channelized between 1939 and 2009 were removed 

from this examination, since the change in channel length was not due to the erosional 

and depositional processes of meander migration, but to the digging of a ditch.  In doing 

this, the focus of analysis was on change which occurred as a result of natural meander 

migration.  When segments were not clearly mapped in 1939, these segments were 

removed from the analysis as well.  As a result, the analysis of the change in channel 

length and channel activity was carried out on 30 of the 42 total stream km.   

As another method of analyzing decadal change, channel evolution stage (Simon 

and Hupp 1987) was assessed using channel cross sections, an analysis of bank 

characteristics, and evidence of channelization.  Cross sections were measured at 33 

points throughout the channel April 2013.  In these cross sections, channel depth was 

measured every 0.5 meters moving across the stream channel. The presence or absence 

of mass wasting was assessed during a survey conducted fall 2010-spring 2011.  

Channelization was assigned as a characteristic when the stream shape was essentially 

straightened and broken into “new” and “old” channelization.  New channelization had 

occurred between 1939 and 2009, while old channelized reaches were already 

straightened in 1939 and remained relatively straight until 2009.  The width: depth ratio 

of each cross section was calculated and the difference in width: depth ratios among the 

above channelization groups was analyzed using Microsoft Excel spreadsheet software.  

Photos were taken at each cross section to aid in assessing the channel characteristics.  

From this data, we assigned a channel evolution stage to each assessed stream reach, 

following Simon and Hupp (1987). 
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Results and Discussion 

As mentioned in the methods, certain sections of the 1939 stream channel were not 

possible to map accurately, as tree cover obscured the channel location.  They and their 

2009 counterparts, which had a cumulative length of 4.3 km (10% of the total channel 

length), were not included in comparisons of sinuosity and channel movement.  Also, 

544 meters of first-order channels existed in 1939 but not 2009, most of which (508 m) 

was from one tributary.  Although field work to verify 1939 channel endings was not 

possible, this suggests that those channels were likely buried in tile.  One 273 meter long 

tributary mapped in 2009 did not exist in 1939.  This increase represents a lengthening 

of 1st order channels (Figure 3).   

Despite the loss of channel length at the ends of tributaries between 1939 and 

2009, on the 90% of the channel examined, the total length of the Onion Creek channel 

system increased by 1.5% from 1939 due to a 2% increase in the length of segments 

which existed in both 1939 and 2009.  First order channel length of the Onion Creek 

stream system increased by 8 % and second order channel length decreased by 4%.  This 

corresponds to an increase in average sinuosity for first order channels and a decrease 

for second order.  Looking at the average sinuosity of the entire stream, for segments 

that existed in both time periods, the average sinuosity (1.4) was effectively the same, 

unsurprising given the small change in total length.  These results contrast with Wagner 

and Gobster (2007), who found that the entire Squaw Creek stream system had a 4% 

decrease in stream length for channels that existed in 1939,  but an overall length 

increase of 9%.  This length increase was from extension of headwaters, which 
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counteracted stream length lost as a result of a 12% decrease in sinuosity (Wagner and 

Gobster 2007).  On a different lower-order Iowa stream system, Yan et al. (2010) also 

saw a decrease in channel sinuosity from 1939 to 2002. 

Though overall, Onion Creek’s stream length changed by just 1.5% from 1939 to 

2009, there were substantial changes in local stream length and morphology (Figure 4).  

Forty-three percent of the 2009 stream segments were essentially the same as in 1939 

(2009 length was between 90.01 and 110% of the 1939 length). Generally, these sections 

did not have a balance of extension and cutoffs as much as a complete lack of 

movement (Figure 5).  Fifty seven percent of the stream channel substantially changed 

in length.  Nineteen percent of the 2009 stream was shorter than its 1939 equivalent, 

largely due to channelization (90% or less of the 1939 length) (Figure 2).  Thirty-three 

percent had 110-150% the length than the 1939 stream, and 5% had over 150% of the 

length of their 1939 counterpart (Figure 6).  After removing stream segments which 

experienced channelization between 1939 and 2009, the average increase in stream 

segment length in 2009 was 11% and the average channel activity was 16%.  In other 

words, the average stream segment that only experienced meander migration between 

1939 and 2009 changed in length by 16%.  That change was more likely to be an increase 

in length as meander bends extended.   

Classification of polygons created by overlaying the 1939 and 2008 channel confirm 

results from the analysis of change in channel length.  The sum area of undetermined 

polygons was 7 ha.  Eleven ha, or 39% of the determined polygon area was due to 

channelization.  Of the 61% of the polygon area from meander migration, the greatest 
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total polygon area was from extension.  Extension, which increases channel length, 

accounted for 7.5 ha or 27% of the determined polygon area.  Translations (4.1 ha, 15% 

of the polygon area) and megabars (2.8 ha, 10%), which result in no net change in 

channel length, created the next largest polygon areas.  Finally, cutoffs of meander 

bends, which decrease channel length, accounted for 1.4 ha of polygon area, just 9% of 

the total determined polygon area. 

The various types of channel movement are clustered in zones throughout Onion 

Creek (Figure 4).  As mentioned above, most reductions in sinuosity and stream length 

were due to anthropogenic channelization.  Most of this channelization occurred on a 

long second-order section of the southern tributary of Onion Creek (Figure 2).  A 1.5 km 

section of some of highest percent increases in stream length (Figure 6) is just 

downstream of this channelized reach.  This is unsurprising, as the channel has 

dissipated energy concentrated in the channelized reaches by increasing the length and 

decreasing the gradient of downstream reaches, also seen by Palmer (2008) and in 

Chapter 2 of this thesis.  On the rest of the stream, zones of channel length increase are 

interspersed with relatively stable reaches such as that shown in Figure 5.  This pattern 

of active and stable reaches has been reported in several other studies (Knox 2006, 

Martin and Pavlowsky 2011, McKenny et al. 1995). 

As noted above, channelization in certain sections of the stream system and 

extension of meanders in others resulted in little change in the average stream length 

and sinuosity on Onion Creek.  Seeing a similar lack of change in sinuosity and stream 

length in their studied river system, Martin and Pavlowsky (2011) attributed this to a 
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self-organizing process of a system in equilibrium, as new meanders extend and others 

are cut off.  Similarly, according to the channel evolution model (Simon and Hupp 1987) 

a stable sinuosity and stream length indicate a stream which has not been disturbed or 

has recovered from disturbance.  

However, the changes on Onion Creek do not indicate stability.  Where stream 

length and sinuosity decreased, it was usually because of the creation of a new 

channelized reach.  This is stage 2 of Simon and Hupp’s (1987) channel evolution model, 

which tends to be followed by incision, bank erosion, and channel instability.  When the 

stream was allowed to migrate naturally in response to hydrological pressures, the 

dominant type of channel movement was channel extension.  In other words, when 

changes are occurring as result of the energy-balancing process of meander formation, 

the stream is creating more meanders and increasing in length and sinuosity, which 

decreases the channel gradient.  Over time, a straightened stream will move towards its 

original sinuosity to return to a quasi-equilibrium condition (Schumm et al. 1984).  

Although meander migration has increased sinuosity on Onion Creek in the past 70 

years, landowners have dug new ditches to counteract this process.  The average 

sinuosity has remained the same and the channel slope remains higher than its pre-

modified condition.  Because of this, Onion Creek has likely not reached equilibrium, 

especially as extensive changes in land use and drainage accentuate channel instability 

(Schottler et al. 2013, Schumm et al. 1984).   

The analysis of channel evolution stage also showed a stream that was not in 

equilibrium.  Most of the analyzed cross sections showed a stream in the threshold or 
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aggradation phase of the channel evolution process (Simon and Hupp 1987), as seen in 

extensive slumping and near-vertical banks (Figure 7).  These phases are also associated 

with meander belt development, which is seen in the way extension dominates meander 

migration.   

As mentioned above, 43% of the channel stayed essentially the same length (Figure 

5).  Many of these inactive reaches were already channelized in 1939 (Figure 8) or 

started out straight as recently dredged drainage ditches.  Such cases represent 

channelization, but channelization which was not included in the quantitative 

assessment of change, as it occurred prior to 1939.  The effect of that channelization can 

be seen in that the channelized reaches in Figure 8 have seen little change, while the 

section to the west, which still had some meander bends in 1939, saw those bends 

migrate and amplify.  On the 30 km of analyzed stream, the average increase in channel 

length was 8 % less for reaches which were straightened in the 1939 photos (p=0.022), 

and the channel activity, or absolute value of the change in segment length, was 10 % 

less for channelized reaches ( p<0.001), a trend of inactivity on straight reaches similar to 

that seen by McKenny et al. (1995).   

We were not able to make many conclusions about variability in the width: depth 

ratios because of the small number of cross sections taken and the high variability in 

their dimensions.  Among the channelization groups, reaches which were channelized 

before 1939 and remained straight until 2009 had lower width: depth ratios than those 

that had never been channelized, but no other comparisons were significantly different 

(Figure 9).  This indicates, again, that channelization destabilizes a stream, though it was 
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interesting that sections channelized more recently had width: depth ratios nearer those 

that had never been channelized.  It is difficult to compare width:  depth ratios found on 

Onion Creek with that of other literature, as the value of a stable width: depth ratio 

depends on the parent material and hydrology of a site (Schumm et al. 1984).  Still, the 

fact that the channels appear to be in the threshold and aggrading phase of the channel 

evolution model and the extending meanders of the stream channel indicate that the 

cross sections noted here are not stable.   

This assessment was carried out to observe Onion Creek at a broader temporal scale 

than the previous chapter and compare the results of analyses at these two scales.  

Chapter 2 noted that streambank erosion was more prevalent in stream reaches with a 

narrower buffer, a greater distance above a downstream flow restriction, a larger 

watershed, and when preceded by a longer upstream channelized reach.  Because buffer 

vegetation, buffer width, and flow restrictions changed between 1939 and 2009, the 

effect of these variables on the degree of change from 1939 to 2009 could not be 

analyzed according to our methods.   

However, we saw lower amounts of both erosion and change in channel length on 

channelized reaches and noted substantial meander migration on already meandering 

reaches (Figure 6), confirming the effect of channelization on stream dynamics.  The 

percent change in channel length and channel activity in this period both decreased with 

increasing watershed size (p<0.001 for both statistics).  This contrasts with the results of 

the previous chapter as well as with the results of other researchers such as the 21 year 

study by Nanson and Hickin (1986), who saw increased channel migration with 
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increasing watershed size. This could be due to variation in the units of analysis. Stream 

segments had lengths 20-30 times the bankfull width. Downstream reaches, having 

wider channels, had longer segment lengths and so would require a greater amount of 

bank erosion to substantially increase that length. Also, upstream reaches of Onion 

Creek are generally more channelized and so erosion will act to reintroduce meanders to 

these reaches, following the channel evolution process (Simon and Hupp 1987).  The 

downstream sections are also adjusting to the changed hydrology of Onion Creek, but 

were historically less channelized, so their adjustment process may be characterized less 

by channel migration and more by widening.  A final reason for the difference between 

the two chapters’ results is potential errors in the characterization of severely eroding 

streambanks.  The downstream reaches are more likely to be forested, which causes 

shady, bare banks, which may falsely appear to be eroding.  Whatever the reason for the 

difference in conclusions between the two scales of analysis, that difference calls for 

caution when interpreting results at either scale of analysis.   

Though floodplain characteristics had no significant effect in Chapter 2, an increased 

floodplain width was correlated with average increase in stream segment length and 

increased channel activity (p<0.001).  Martin and Pavlowsky (2011), seeing similar 

results, concluded this was due to the confining nature of their bedrock valley walls.  

Except for at the far downstream portions of the watershed, valley walls consisted of 

glacial sediment rather than bedrock, but the relation seen indicates these valley walls 

also confine and slow channel movement.  Also, where the stream bed reaches bedrock, 

the stream cannot easily expand bankfull area, and so if the stream is not restricted by 
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the bedrock valley walls, it is more likely to migrate to deal with excess stream energy. 

The restricting effect of valley walls was not seen at the shorter time scale of Chapter 2, 

possibly because the marking of eroding streambanks may not accurately portray the 

rate of channel movement, as in narrower valleys, the stream is likelier to butt against 

valley walls which then appear to be rapidly eroding, but are actually slowing both 

erosion and channel movement.  Further work examining the actual erosion rate of 

valley walls may be necessary to assess this factor. 

Looking at a direct comparison between the measures of channel change in Chapter 

2 and 3, stream segments which had a greater increase in segment length between 1939 

to 2009 were likely to have a higher percentage of severely eroding bank length than 

other stream segments in the 2010 stream survey (r2=0.037, p=0.017).  There was a 

similar but less significant relationship with channel activity (r2=0.023, p=0.061).  These 

results indicate that processes causing change in the channel in the last 70 years 

continue to be in effect on the present-day stream channel.  However, the small 

correlations, as well as the contradictions seen in results in regards to watershed size 

and floodplain width, indicates that one method of analyzing channel activity cannot be 

taken as a proxy for the other. In other words, the rate of past erosion and channel 

change may not relate to current or future change.   

Beyond this, the metric of change in channel length may not fully encompass that 

change.  Although all the types of channel meandering in Table 1 occur through 

streambank erosion, only extensions and cutoffs result in a change in channel length and 

when the two occur together, their effect on channel length will cancel each other out, 
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despite the fact that this would be indicative of greater channel activity.  Many of the 

sections with no apparent change did actually have little change (Figure 5), but there 

were stream segments where channel activity was not captured because of cutoffs 

(Figure 8).  Again, bank erosion may cause channel widening rather than meander 

migration.  Finally, as noted above, the assessment of the eroding streambanks may not 

accurately assess the rate of bank erosion, something that will be explored as this 

project continues and in the following chapter. 

Summary and Conclusions 

From 1939 to 2009, average sinuosity and stream length stayed essentially the same 

on Onion Creek.  Locally, there were zones of significant channelization and extension-

dominated meandering, while 43% of the stream showed very little movement (Figure 

5).  In regard to sections that weren't altered by channelization between 1939 and 2009, 

meander migration which changed channel length was greater in areas with greater 

sinuosity, wider floodplains and smaller watersheds.  The first result confirms the 

relationship with sinuosity shown in the one-time stream survey of the previous chapter, 

while the latter two show differences which were not found by or contradict the results 

of the previous chapter.  In other words, watershed size and floodplain characteristics 

effect channel movement measured at the 70-year timescale differently than that 

measured at one point in time, emphasizing the importance of using multiple means of 

analyzing change in a stream system.  Finally, the predominance of extension as a 

meander movement type and channels largely in the threshold stage of the channel 
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evolution process indicates that Onion Creek is adjusting to an excess of stream energy, 

suggesting continued channel instability.  Riparian conservation practices on Onion Creek 

would do many useful things, including intercepting sediment and nutrients and 

providing habitat, but these conservation practices may not fully protect stream banks 

because of the destabilizing excess stream power.   
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Figure 1: Models of meander migration from Martin and Pavlowsky (2011). 
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Figure 2: A section of Onion Creek channelized between 1939 and 2009.  Green dots 
show the endpoints of 1939 stream segments and red dots show the endpoints of 2009 
stream segments.  The fall 2010-spring 2011 survey showed a low percentage of severely 
eroding streambanks in this section. 

Figure 3: Onion Creek stream course.  Red sections show areas not mappable for 1939.  
Dashed section (mainly one tributary) shows channel headwaters lost since 1939, green 
section (one tributary) shows a headwater extended since 1939. 
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Figure 4: 2009 stream course, color-coded to show difference in length from 1939 course. 
Sections not mappable in 1939 are not shown. 

 
Figure 5: A first-order stretch of the Onion Creek stream system.  This stretch is 
representative of stream sections which changed by less than 10% in length from 1939-
2009, with little apparent meander migration.   
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Figure 7: A second-order section of Onion Creek with numerous slumps falling or fallen 
into the channel.  Photo taken October 2012.   

 

 
Figure 6: A second-order length of the Onion Creek stream system.  2009 channel shows 
extensive creation and extension of meander bends in the past 70 years.  



64 

Figure 8: 1939 and 2009 Onion Creek stream course, overlaid on a 1939 aerial photo 
(Iowa Department of Natural Resources 2006, 1).  A cutoff is circled in green, extensions 
in red.  Two oxbows removed from the stream by channelization are circled in yellow.   

 
Figure 9:  Width:depth ratios of channel cross sections on Onion Creek.  A represents 
stream sections channelized before 1939 and remaining relatively straight in 2009, B 
represents stream sections channelized before 1939 but which developed meanders and 
increased by over 10% in length by 2009, C represents stream sections channelized 
between 1939 and 2009, and D shows cross sections that did not appear to be 
channelized before or after 1939.  Only A and D were significantly different.   
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CHAPTER 4. FREEZE-THAW ACTION AND EROSION ON ONION CREEK 
STREAMBANKS 

Abstract 

A one and a half year study of erosion and deposition on severely eroding 

streambanks was conducted on Onion Creek, a central Iowa stream.  A survey of 

streambank erosion on Onion Creek was followed by installation of erosion pin plots on 

a subset of severely eroding streambanks.  These pin plots were measured October 

2011, March 2012, October 2012, and April 2013.  A subset of these pins was measured 

once a month and after major storms.  A drought through much of the study period 

caused low water levels and low levels of streambank erosion.  During winter months, 

the sub-aerial process of freeze-thaw action led to full or partial burial of many lower 

pins.  Erosion by fluvial entrainment was measured on lower pins in the springs of 2012 

and 2013, adding an estimated 1030 Mg of sediment to the stream system in 2012, with 

an additional 1290 Mg added from January to April 2013.  South-facing erosion pins saw 

more activity as a result of freeze-thaw action during the second winter period but no 

significant differences were found between aspects in the summer or first winter 

periods.  Adjacent vegetation and longitudinal pin position were not related to total 

erosion or erosion activity, though this may be due to the low amount of measured bank 

erosion.   

Introduction 

Suspended sediment and phosphorus are major causes of water quality impairment.  

Landscape-level conversion from perennial to annual vegetation, extensive drainage 
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systems, and straightening of stream channels have altered the hydrology of Iowa 

streams and greatly increased channel instability (Schilling et al. 2008, Schottler et al. 

2013, Schumm et al. 1984, Simon and Rinaldi 2000).  This instability causes streambank 

erosion to contribute up to 92% of the sediment load of a stream system (Belmont et al. 

2011).  One Iowa study estimated that 14-64% of suspended sediment loads come from 

streambank erosion (Palmer 2008). 

Other factors may also affect the rate of channel recession.  North-facing banks 

were found to be more susceptible to freeze-thaw collapse than south-facing by Reid 

(1985), although Gatto (1995) suggested south-facing banks may experience more 

frequent freeze-thaw events.  More generally, other researchers have found that factors 

such as discharge rates, bank soil type, and a stream’s stage in the channel evolution 

process have an important effect on the rate of stream bank erosion (Schilling et al. 

2011, Willet et al. 2012, Van Haaveren and Jackson 1993, Zaimes and Schultz 2011). 

Although high rates of bank erosion are often caused by watershed-scale channel 

instability and increased peak discharge, streambank erosion may be mitigated with 

proper riparian management.  Although there is some dispute about the optimal 

riparian land use (Montgomery 1997), planting a buffer of dense, deep-rooted 

vegetation has been found to reduce the rate of streambank erosion (Brown 1943, 

Haygarth et al. 2009, Prosser 2000, Schilling et al. 2011, Zaimes et al. 2008).   

Because of the importance of streambank erosion to water quality, we are 

monitoring bank and channel instability on Onion Creek, a central Iowa stream.  Onion 

Creek is the focus of an Iowa Department of Agriculture and Land Stewardship (IDALS) 



67 

watershed project, as the watershed contributes high levels of sediment to downstream 

water bodies (Wendt 2007).  Two major objectives of the IDALS Onion Creek Watershed 

Project are to assess streambank recession rates under different riparian land uses and 

to present an assessment of stream channel instability.  In Chapters 2 and 3, stream 

channel instability in Onion Creek was measured at two temporal scales: using a rapid 

assessment of stream channel condition along length (RASCAL) and an analysis of multi-

decade change in channel position and length.   

Another, shorter-term method of measuring streambank change is erosion pin plots.  

According to Saynor and Erskine (2006), erosion pins were first used by Ireland et al. 

(1939) to measure erosion on gully banks.  In this method, steel pins are installed 

horizontally into a bank and the change in the length of the exposed pin is used to 

measure the amount of erosion or deposition on that bank.  This method gives a high 

temporal and spatial resolution (Zaimes et al. 2006), accurate within 5 mm with operator 

variance (Simon et al. 1999).  A disadvantage of erosion pins is they measure change at 

one point on a bank and often neglect change on the bed, toe, and top of a bank, where 

pins are seldom placed (Figure 1, from Bartley et al. 2006).  It has also been suggested 

that frost action or other disturbances may change a pin position (Couper et al. 2002), 

though this was not found to be a major factor in several studies (Couper et al. 2002, 

Hooke 1979, Stott et al. 2011).  More seriously, erosion or deposition can entirely 

remove or bury a pin, increasing measurement error.  Couper et al. (2002) discussed 

possible methods in the case of burial, one of which, used by Willet et al. (2012), is to 

give the exposed pin length a value of zero, ignoring any burial beyond the initial 
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covering of the pin.  This method underestimates deposition, as it does not account for 

further deposition after pin burial.  For pins which have eroded away, researchers usually 

give an exposed pin length slightly less than the actual length of the pin, assuming that 

before the entire pin is entirely exposed, its own weight will pull it out of the bank (Kang 

2012, Lawler et al. 1999, Willet et al. 2012, Zaimes et al. 2004, 2006, 2008).  This, again, 

likely underestimates total bank activity, as erosion could have occurred beyond the 

length of the pin.   

Even with these limitations, erosion pins are an efficient means of measuring short-

term changes in streambanks.  To that end, we installed and measured erosion pin plots 

on a sample of severely eroding streambanks in the Onion Creek stream system.  This 

short-term measurement complements the results of the RASCAL stream survey from 

Chapter 2 and the historical assessment of channel movement from Chapter 3, provides 

an estimate of recession rate of severely eroding streambanks in Onion Creek, and 

determines the effect of land use and other riparian factors on that recession rate.   

Methods 

Onion Creek is a second-order, 42 km stream system in Boone and Story Counties in 

Iowa, flowing through Wisconsin glacial till.  Its watershed is 5,700 hectares, 86% of 

which is in row crops, which are concentrated in the upper portions of the watershed.  In 

fall 2010 and spring 2011, the riparian land use and location of severely eroding 

streambanks was mapped through the length of Onion Creek and its tributaries in a 

RASCAL survey following the methods of Schilling and Wolter (2000) (See Chapter 2).  
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Severely eroding streambanks were defined as banks with very low vegetative cover, 

severe vegetative overhang, and fallen trees and slumps.  Banks with these 

characteristics are estimated to erode at 0.12 m (0.4 feet) per year (NRCS 1998).   

Following methods used in similar studies in the Northeastern Missouri Claypan 

Region (Peacher 2011, Willet et al. 2011), we randomly picked 9 surveyed stream 

reaches ranging from 375 to 403 meters within each riparian land use of Grass, Grass-

Tree Mix, and Tree-Shrub Mix on each side of the channel. Surveying both sides of the 

stream in each ~400 m reach, this resulted in a total bank length of ~7200 meters per 

land use.  Pasture sites were not included since they did not cover enough stream length 

to be representatively studied.  One site originally mapped as Grass was occasionally 

used as a pasture, resulting in only eight reaches with Grass as their riparian land use.  In 

selecting the reaches, we made an effort to have a balance of first and second-order 

stream reaches for each riparian land use type.  However, because grass dominated the 

upper reaches of the stream channel and forest the lower, the study design was not 

completely balanced between stream order and land cover type.   

Erosion pin plots were installed in summer 2011 and measured October 2011, 

March 2012, October 2012, and April 2013, resulting in measurement of change through 

two winters and one summer season.  A subset of the biannually monitored pins was 

chosen for a more intensive monitoring, similar to the methods of Lawler et al. (1999).  

Two random stream reaches within each of the three riparian land uses, representing 

313 of the total 1609 pins, were more intensively monitored.  On these reaches, we 

measured pin lengths after each major flow event and once a month when high flows 
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did not occur. This monitoring was initially intended to assess the effect of individual 

flow events, but also allowed the assessment of the effect of bank soil desiccation during 

a drought and freeze-thaw action during winter.  These intensively monitored sites were 

measured a total of 19 times during the 18-month monitoring period.   

Random placement of pin plots throughout a stream reach can capture subtle 

changes and is more likely to note sediment storage (Kronvang et al. 2012).  However, 

because the focus of our study was on the sediment contribution of streambank erosion, 

we focused on erosion occurring on severely eroding streambanks.  Similar to the 

methods of Willet et al. (2012), we installed pin plots on randomly chosen eight-meter 

long stretches of severely eroding banks until 20% of the severely eroding bank length 

within each 375 to 403 meter long reach was pinned.  If a section of eroding streambank 

selected was 8 meters long or shorter, we pinned the entire length.  The location of the 8 

meter stretch within an eroding length was also randomly selected, thereby 

incorporating the influence of longitudinal location on erosion rate (eg. within a stream 

meander) (da Silva et al. 2006, Hooke 1980). 

On each pin plot, we installed 76.2 cm long, 6.2 mm diameter rolled steel pins.  This 

length was used because longer pins may stabilize streambanks (Hooke 1979) and 

shorter pins are more likely to be lost in a major erosion event (Kang 2012).  One row of 

pins was inserted at ½ bank height for banks less than one meter in height, two rows at 

1/3 and 2/3 bank height for banks from one to two meters high, and ¼, ½, and ¾ bank 

height for banks over two meters in height.  At a few sites, mainly valley walls over 4 

meters, it was not possible to place pins throughout the full height of the bank, and so 
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the pins were placed at 1, 2, and 3 meters from the bed, leaving the upper parts 

unmonitored.   

To maintain consistency, pins were inserted to leave approximately 10 cm exposed, 

though all initial lengths were measured at installation to incorporate any variability in 

installation.  If greater than 15 cm was exposed when pins were re-measured, pins were 

reset to again leave approximately 10 cm exposed.   

During measurement, pins assessed as buried were given a length of zero, as if they 

had been just buried with no additional sediment deposition.  This underestimates 

sediment deposition, but avoids the confusion of multiple pins in one location and 

prevents an overestimate of erosion.  If a second pin had been installed, this would 

count erosion of recently deposited sediment as a net sediment contribution to the 

stream. Until the pins were re-exposed, no data was entered for these pins at 

subsequent measurements. When we were unsure if a pin was eroded away or buried, it 

was replaced, and no value was entered for the change in exposed length.  Changes in 

pin length for each period, whether negative or positive, were averaged to give an 

estimate of net erosion.  Because any change on an erosion pin represents sediment 

movement, and thus bank instability, the absolute value of change on each pin was 

averaged to give “bank activity“ (Couper et al. 2002). Finally, the streambank recession 

rate, total eroding bank length and height, and NRCS (1998) estimates of soil bulk 

density were used to estimate the sediment contribution from stream erosion.  For all 

these statistics, 95% confidence intervals were calculated using Microsoft Excel 

spreadsheet software. 
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In addition to determining the streambank recession rate and its sediment 

contribution, the effect of pin position, aspect, and riparian land use on the recession 

rate were analyzed. Pins were assessed based on their vertical position (upper, middle, 

lower) and the longitudinal position of pins along the eroding streambank (da Silva et al. 

2006).  We also measured each pin plot’s aspect and assessed its effect on streambank 

erosion, as the level of solar exposure has been found to be important in the 

destabilization of banks during winter months (Gatto 1995, Reid et al. 1985). We used 

the linear model function on R (R Development Core Team 2011) to analyze the effect of 

these factors on both net erosion and bank activity.   

 Results and Discussion 

Streambank Erosion Summary and Seasonal Variation   

In total, 4800 measurements of pin length change were made as part of the 

biannual observations. 5300 measurements were made of the intensively measured pins 

on 19 separate dates.  On average, the overwhelming majority of the pins saw very little 

change, with little difference by season (Figure 2).  Deposition was slightly more 

common in the first winter period, with an average deposition of 1.7 +/- 0.2 cm (this and 

all subsequent error ranges give 95% confidence intervals).  In the summer and second 

winter period, there were some moderate flows, which resulted in an average of 0.9 +/- 

0.3 cm of erosion in summer and 0.8 +/- 0.3 cm of erosion in the second winter.  The 

cumulative change throughout the entire period was effectively zero.  The difference in 

erosion between the two winter periods is likely due to higher flows from snow melt in 
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March 2013.  Average bank activity was 3.4 +/- 0.2 cm in the first winter biannual 

measurement period, 3.7 +/- 0.3 cm in the summer biannual period, and 3.5 +/- 0.3 cm 

in the second winter period.   

The intensively monitored pins showed a pattern of erosion and deposition that is 

consistent with the biannual pins, but provides a much more detailed picture of 

deposition than that suggested by the biannual monitoring (Figure 3). In the second 

winter period, the intensively monitored pins exhibited a similar pattern of deposition as 

that seen in the first winter period, but this change was not captured in the biannual pin 

measurements, as snow melt had eroded away much of the deposited sediment before 

biannual measurements of all pins occurred in April 2013.  This contrast shows the value 

of more frequent measurement, as we were able to capture a cycle of deposition and 

erosion which otherwise would have been missed.   

The intensively monitored erosion pins also showed a more complete picture of 

bank erosion than the biannually measured pins.  In 2012, the majority of erosion 

measured by the intensively-monitored pins occurred from February 29 through May 

4th, 2012, when erosion pins, on average, showed bank recession of 1.8 cm (+/- 0.7 cm).  

In the second winter period, 2.3 cm (+/- 0.5 cm) of erosion was measured on the 

intensively monitored pins between Jan 31 and April 5, double that found using the 

biannually collected data.  Using these recession estimates, a standard bulk density of 

1.36 Mg/m3 (NRCS 1998), a measured total of severely eroding stream length of 20.1 

km, and an average bank height of 2.05 m, this results in 1030 Mg (+/-380 Mg) of net soil 
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lost to the stream from March to October 2012 and 1290 Mg (+/- 410 Mg) of soil from 

October 2012 to April 2013.   

Estimates of soil erosion from streambanks using this methodology depend on a few 

simplifying assumptions.  First, in this calculation, we are disregarding periods of 

deposition and summing only intervals in which the recession rate was positive.  We are 

using this method because deposition was observed to come from bank collapse and not 

storage of fluvial sediment from upstream, as will be discussed later.  A second 

assumption we are using in our estimates of sediment loads is that streambanks not 

identified as severely eroding in our survey were assumed to not have contributed any 

sediment, which is undoubtedly an underestimate.  However, bank erosion tends to 

follow a distribution where most of the sediment comes from severely eroding sections 

(Laubel et al. 1999, 2003, Kronvang et al. 2012).  Finally, our approach uses a bulk 

density estimate of 1.36 g soil cm-3, as per the USDA-NRCS’s Erosion and Sediment 

Delivery protocol (1998).   

For the majority of the time erosion pins were measured on Onion Creek, the 

watershed experienced a severe drought.  The Onion Creek watershed received 88 cm of 

precipitation from October 2011 to March 2013, 22 cm less than the historical average.  

Data for October 2011-November 2012 from a weather station two km south of the 

Onion Creek watershed were obtained from the National Climatic Data Center: NOAA 

<www.ncdc.noaa.gov/>.  Data from this site were not available December 2012 to 

March 2013, so data from a weather station six km southeast of the Onion Creek 

watershed were obtained from the Iowa Environmental Mesonet: 
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<http://mesonet.agron.iastate.edu/>.  As a result of this low precipitation, discharge was 

less than 0.1 m3/second and usually zero from July 2, 2012 to January 2013, except for a 

four hour period following a storm in early August. 

As a result of this drought, erosion recorded for both spring periods was relatively 

small.  Streambank erosion estimates during this study period (1.88 cm in 2012, 2.3 cm 

so far in 2013) are much lower than the NRCS estimated erosion rates for severely 

eroding streambanks of 12.2 cm per year, reflecting the effect of drought and 

subsequent low water flows.  Studies of severely eroding streambanks in similar lower-

order, agriculturally-dominated watersheds in the Midwestern United States also found 

recession rates which were higher than those seen in Onion Creek: 5.6 cm/year (Peacher 

2011), 10 cm/year (Zaimes et al. 2008), and 22 cm per year (Tufekcioglu et al. 2012).   

Looking at studies of banks which were not severely eroding, Bear et al. (2012), in a 

study of streams in the Loess Flats and Till Plains ecoregion of Iowa, measured bank 

erosion of 6.7 cm per year in sites with pasture as a riparian land use.  Two studies of 1st 

and 2nd order streams flowing through glaciated, agriculturally dominated terrain in 

Denmark found 2.4 cm bank erosion per year (Kronvang et al. 2012) and 1.1 cm bank 

erosion per year (Laubel et al 2003).  However, these three studies used erosion pins in 

randomly chosen locations rather than severely eroding streambanks, so their averages 

represent the entire length of a stream, rather than the sites of highest erosion.  Since 

the bulk of streambank erosion comes from a small subset of severely eroding banks, 

with little activity on other stream reaches (Laubel et al. 1999, 2003, Kronvang et al. 

2012), the fact that these studies still found similar or higher rates of bank erosion than 
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those seen on Onion Creek underlines the effect of drought on streambank erosion 

rates.   

Erosion activity on Onion Creek was also lower than in similar studies of severely 

eroding streambanks.  Compared to the annual activity of 7 cm measured on Onion 

Creek, Couper et al. (2002) measured 13.4 cm annual bank activity in a larger-order river 

in the midlands of England, and Zaimes et al. (2008) measured an average bank activity 

of 17.2 cm in a study of lower-order streams in agricultural landscapes similar to the 

Onion Creek watershed in central Iowa.  Again, the small values seen on Onion Creek are 

likely a result of drought conditions.  

The timing of bank activity in Onion Creek is similar to that seen by many other 

researchers.  On Onion Creek, there were periods of deposition in both the first and 

second winter periods due to freeze-thaw loosening of streambanks. Freeze-thaw action 

is a sub-aerial process in which needle ice expands, then melts in soil, disrupting the 

macrostructure of soil and leading to bank collapse.  Evidence for freeze-thaw action can 

be found in pin activity that occurred despite the stream being entirely dry or frozen.  

Additionally, where deposition was noted, the soil had a similar structure and color to 

the bank soils above it, rather than the structure-less sediment expected with fluvial 

deposition.  Further, much of the deposition was observed in the winter, again pointing 

to freeze-thaw action.  Although Prosser et al. have noted that bank desiccation can 

have a similar soil-loosening effect to freeze-thaw action (2000), very little change was 

observed during the drought in the summer of 2012 (Figure 3).   
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Freeze-thaw action creates an easily eroded layer of soil and erosion of this layer of 

freeze-thaw destabilized soil often provides the majority of sediment contributions from 

streambank erosion (Couper et al. 2002, Ferrik and Gatto 2005).  On Onion Creek 

streambanks, all observed bank erosion occurred during the springs of 2012 and 2013.  

Bear et al. (2012) also found the bulk of bank erosion on a southern Iowa stream 

occurred in the later winter and early spring and attributed this to spring storm flows 

entraining freeze-thaw loosened soil.  Other researchers (Lawler et al. 1999, Willet et al. 

2012, Stott et al. 2001, and Zaimes et al. 2006) found similar results, again attributing 

their results to winter-freeze-thaw action followed by high flow events in the spring.   

Pin Position 

Vertical pin position was found to influence bank activity but not net erosion in each 

biannual period.  In the first winter period, the upper pins had 0.7 cm less activity than 

the lower pins’ 3.8 cm (p=0.004), and the middle pins had 0.5 cm less (p=0.047).  In the 

summer period, there was an average of 4.8 cm erosion activity for the lower pins, 3.3 

cm for the middle pins, and 2.9 cm for the upper (p<0.001 for all summer comparisons 

of vertical pin positions).  In the second winter period on the lower pins, 0.6  cm more 

erosion activity was measured than the upper pins’ 3.2 cm (p=0.033), while the middle 

pins were not significantly different from either set.  For each biannual interval and for 

change from October 2011 to April 2013, the effect of vertical pin position on net 

erosion was not significant (p>0.05).  Looking at bank activity across all the periods, the 

lower pins had an average bank activity of 7 cm, the middle  1.2 cm less than the lower 

pins (p=0.004), and the upper 1.7 cm less than the lower pins (p<0.001). 
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This pattern of bank activity can be explained by sub-aerial processes loosening soil 

on the upper banks with subsequent deposition lower on the bank (Figure 4A, C). The 

greater activity within the lower pins in the summer and second winter period point to 

fluvial action as the main erosion agent during these periods, with limited spring flows 

entraining the particles at the base of the bank which were already detached by freeze-

thaw action (Zaimes et al. 2006, Laubel et al. 2003, Lawler, 1986).  This was supported by 

field observations.  In many of the places where we noted erosion, it usually occurred as 

moderate erosion on the base of the bank, rather than as a result of mass wasting 

(Figure 4).  Only one or two instances of mass wasting were observed, which is not 

surprising given the low water flows.  These conditions were unlikely to cause enough 

incremental disturbance to destabilize bank soils.  Further, drought conditions resulted 

in low water content in bank soils, which likely increased bank stability through higher 

matric suction (Simon et al. 2000).   

Longitudinal pin position was not found to have a significant effect on the rate of 

bank erosion or on erosion activity for any of the biannual measurement periods or for 

overall change.  This is in contrast to the results of Hooke (1980) and da Silva et al. 

(2006), who found that the downstream end of an eroding meander bend will erode 

faster than the upstream end.  The reason we did not see any significant relation is likely 

because little erosion occurred throughout our study period.   

Aspect 

Streambank aspect did not affect bank erosion or activity as observed during 

biannual measurements in the first winter period or in the summer period.  However, 
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higher erosion rates were observed in the second winter period on south facing banks 

(0.013 cm more erosion for every degree closer to due south, p<0.001) as well as more 

total activity (0.010 cm more activity for every degree closer to due south, p<0.001).  

This relationship was not significantly affected by vegetation cover or stream order. 

Similar results were observed in the intensively monitored pin plots (Figure 5, 6).  

There was no difference in streambank erosion or activity between south-facing and 

north-facing pins until the second winter, when less erosion was observed in north-

facing pins.  Similar to the biannual measurements, a difference in erosion activity within 

intensively-monitored pins was only observed for a short interval during the winter of 

2012-2013.   

Past research has found aspect to have an important effect on streambank erosion, 

though the results have been inconsistent.  Reid (1985) observed greater erosion on 

north-facing banks, attributing the result to more severe cold.  On the other hand, Gatto 

(1995) predicted that south-facing banks would be more vulnerable to freeze-thaw 

action, as direct solar exposure on the south-facing banks will cause more frequent 

changes in temperature.   

It is likely the effect of aspect will be different under different conditions, and our 

data illustrates that aspect may only be important in some cases.  There was little snow 

cover the winter of 2011-2012, while in the 2012-2013 winter, snow covered some 

banks almost all the time from November to March.  It is possible that in the 2012-2013 

winter, the south-facing banks experienced faster melting of snow, while the north-

facing ones had a longer duration of snow cover.  This snow, as suggested by Reid (1985) 
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could have reduced the freeze-thaw action by insulating the soil from temperature 

variation.  However, the difference was only seen on one measurement date.  Further 

research under a range of conditions is needed to determine the effect of aspect.   

Riparian Land Use 

Riparian land use was not observed to be an important factor for any of the 

measurement periods for either the biannually- or intensively-measured pins.  However, 

since there was little overall erosion and activity during our measurement period 

(Figures 2, 3) care should be exercised in extrapolating these results to periods of greater 

stream flow and streambank erosion.  Other studies which did see higher rates of bank 

erosion than those reported here have also not found difference between riparian land 

use groups (Schilling et al. 2011, Willet et al. 2012).  However, riparian land use has been 

found to effect rates of bank recession by many other researchers.  Zaimes et al. (2008) 

found increased rates of bank erosion in streams with row crops or pasture as a riparian 

land use, compared to grass or forest buffers and other researchers have also noted that 

banks that were more protected by vegetation erode less (Prosser et al. 2000, Stott et al. 

2001, Tufekcioglu et al. 2012).  However, the main process seen in this study was freeze-

thaw colluvial actions on banks.  We did not find that vegetation had an effect on this 

process, but as this study continues, we will likely observe more substantial erosion 

events and be better able to determine the effect of riparian land use and other factors 

on the rate of that erosion.   
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Summary and Conclusions 

Because of a drought and resultant low stream flows, average streambank erosion 

on severely eroding streambanks in Onion Creek, as measured using erosion pins at two 

temporal measurement scales, was very low from fall 2011 through spring 2013.  

Observed streambank erosion was 1.8 cm during the spring of 2012 and 2.3 cm from 

January to early April 2013, much less than the 12.2 cm recession rate predicted by the 

Natural Resource Conservation Service and less than that found by researchers studying 

change in similar stream systems.  During this period, there was significant deposition of 

soil due to the sub-aerial process of freeze-thaw action during two winter periods, 

followed by minor fluvial entrainment of that sediment in one or two early spring flows.  

Both of these processes were more prominent at the base of the streambanks, and to a 

very minor extent in the late winter of 2013, on south-facing banks.  Results to date 

reinforce the usefulness of erosion pins for monitoring the recession rate of severely 

eroding streambanks, especially when that monitoring includes an intensive-

measurement component.   

Because of the low amount of measured erosion, we did not make any conclusions 

about the effect of riparian land use on streambank erosion. We will continue to monitor 

changes in the pins installed on Onion Creek as stream flows increase and examine how 

those changes are related to riparian land use and other riparian characteristics.   
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Figures 

 

 

Figure 1: From Bartley et al. (2006), showing little change at the site of an erosion pin 
despite significant bed erosion and deposition on the opposite bank. 
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Figure 2: Histograms of change in pin lengths for each season (A-C) as well as the overall 
change October 2011-April 2013 (D). 
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Cumulative Change: October 2011-April 2013
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Figure 3: Cumulative deposition (negative) and erosion (positive), Oct 2011-April 2013.  
The continuous line shows measurement of change on our intensively measured pins and 
the black dots show average change for all pins, measured biannually. Error bars show a 
95% confidence interval of the change from the previous measurement date. 
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Figure 4: Freeze-thaw action and fluvial entrainment on one Onion Creek streambank.  
A:  Buildup of freeze-thaw-loosened soil at the base of a streambank, January 10, 2012.  
B:  Following spring storm flows, June 7, 2012.  C.  Freeze-thaw deposition in the second 
winter period, January 17, 2013.  D. Fluvial entrainment following snow-melt flows, April 
25, 2013.   

 



89 

 
Figure 5: Cumulative deposition (negative) and erosion (positive) for intensively 
monitored pins. South-facing pins had aspects from 91-270 degrees; north-facing pins 
had aspects from 0-90 and 271-360 degrees.  Error bars show a 95% confidence interval 
of the change from the previous measurement date.  

 
Figure 6: Erosion activity for intensively monitored pins.  Error bars show a 95% 
confidence interval. 
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CHAPTER 5. WATER, SEDIMENT AND NUTRIENT EXPORT FROM ONION 
CREEK 

Abstract 

Water quality was measured on Onion Creek between March 2012 and April 2013, a 

period in which significant streambank erosion was measured.  An analysis of the loads 

and concentrations of sediment, phosphate and total phosphorus, and nitrate and total 

nitrogen exported from Onion Creek is presented, showing concentrations frequently 

above EPA recommended criteria. Finally, a comparison is made between sediment loads 

and streambank erosion for one storm event in spring 2012 and for the entire water 

sampling period.  

Introduction 

Streambank erosion is a major contributor to sediment in streams (Belmont et al. 

2011, Walling et al. 2005).  This sediment causes impaired water quality (Laubel et al. 

2003, Simon and Klimetz 2008, Zaimes and Schultz 2011).  In 2007, Wendt estimated 

sediment export from Onion Creek, a second-order stream in central Iowa, based on a 

RUSLE assessment and a sediment delivery ratio calculation.  According to this estimate, 

677 Mg of sediment from sheet and rill erosion was delivered annually to the confluence 

of Onion Creek with Squaw Creek.  Wendt also surveyed streambank erosion along 15 of 

the 42 km of Onion Creek and reported that streambank erosion was not particularly 

severe compared to the six other watersheds she had studied, but that it could still be a 

major source of sediment.  As described in Chapter 2, a Rapid Assessment of Stream 

Channel Along Length (RASCAL) survey of both sides of all 42 km of Onion Creek (for 84 
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km total bank length) conducted Fall 2010-Spring 2011 estimated that 24.3% of the total 

length of streambanks, averaging 2.05 m in height, were severely eroding.  Severely 

eroding streambanks were defined as banks with very low vegetative cover, severe 

vegetative overhang, and fallen trees and slumps.  Banks with these characteristics are 

estimated to erode at 0.122 m/year and have a bulk density of 1.36 Mg/m3, according to 

estimates used by the NRCS (1998).  Based on these estimates, bank erosion from Onion 

Creek adds 6800 Mg/year to the stream system (see Chapter 2); over ten times the 

amount of sediment Wendt estimated would come from sheet and rill erosion.  Erosion 

pin plots measured from March 2012 to April 2013 showed two periods of bank erosion 

totaling 4.1 cm.  Assuming this erosion is representative of the 24.3% of the stream 

channel mapped as severely eroding, erosion from streambanks between March 2012 

and April 2013 added 2320 Mg of sediment to Onion Creek (Chapter 4).  Assuming a 

sediment delivery rate of 80% (NRCS 1998), this represents 1850 Mg of sediment from 

streambank erosion reached the confluence of Onion Creek and Squaw Creek between 

March 2012 and April 2013.  This level of sediment from bank erosion is much less than 

that predicted based on our bank survey, likely as a result of a severe drought (see the 

US Drought Monitor:  <http://droughtmonitor.unl.edu>).  Still, this sediment is a 

significant threat to water quality.   

However, calculations made by Wendt and in Chapters 2 and 4 of this thesis may 

give an inaccurate measure of sediment export from Onion Creek.  For example, in a 

multi-decade study, roughly one quarter of the sediment loads from upland, gully, 

streambank, bluff, and bed erosion did not reach the outlet of a Wisconsin creek due to 
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floodplain and channel storage (Fitzpatrick et al. 1999).  Similar results were noted by 

Bull (1997) and Walling et al. (2002).  Wendt’s estimates for sediment contributions from 

surface runoff included a sediment delivery factor (NRCS 1998) to estimate the amount 

of sediment reaching the confluence of Onion Creek and Squaw Creek.  However, this 

factor depends on broad, simplifying assumptions.  Sediment from sheet and rill erosion 

is largely delivered to channels through gullies, and the connectivity and size of those 

gullies has a large effect on their ability to deliver sediment to a channel (NRCS 1998).  

Further, gullies themselves are important sources of sediment (Foster 2005, Ohde 2011) 

which have not been studied within the Onion Creek watershed.   

With respect to stream bank erosion estimates, the erosion pin plots we used to 

measure streambank recession may neglect or overemphasize certain sections of 

streambank activity (Bartley et al. 2006, Kronvang et al. 2012).  Also, a focus solely on 

erosion ignores bed, bank, point bar, and floodplain storage which can occur before 

suspended sediment leaves a channel (Walling 2005, Trimble 1983, 1999, Walling 2005, 

Kronvang et al. 2012).   

In general, the relationship between gross erosion and sediment yield is highly 

complex, and the calculation of a sediment delivery ratio requires “[c]onsiderable 

technical judgment” (NRCS 1998).  Trimble and Crosson (2000) have noted that because 

of the difficulty of accurately calculating a sediment delivery ratio, any such calculation 

requires validation to determine the amount of sediment actually exported from a 

stream system.   
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Because of uncertainty in the estimates for both erosion and sediment delivery, we 

have begun a long-term project monitoring suspended sediment loads exported from 

Onion Creek.  As phosphorus and nitrogen also have a significant effect on water quality 

(Iowa Department of Agriculture and Land Stewardship et al. 2012), we are also 

monitoring their concentrations and loads.  Data from the first year of monitoring is 

presented in this chapter.   

Methods 

Data reported here includes samples collected in Onion Creek between March 1st, 

2012 and April 12, 2013. Periodic water samples were collected every two weeks 0.75 

km upstream of the confluence of Onion Creek and Squaw Creek.  These periodic 

samples were collected by hand from the thalweg of the stream channel. Samples were 

assayed for suspended sediment, nitrate-nitrogen, total nitrogen, dissolved phosphate, 

and total phosphorus.  Nitrate samples were preserved with sulfuric acid to a pH < 2.  

Stream stage was measured at the time of each sampling.   

Storm flow has been found to carry large portions of the sediment loads within 

small streams such as Onion Creek, so periodic sampling alone likely would not capture 

important sediment movement events (Horowitz et al. 1990, Lawler and Dolan 1992, 

Kronvang and Bruhn 1996).  To supplement periodic samples, we installed a Teledyne 

ISCO 6712 (Teldyne ISCO, Lincoln, NE) automatic water sampler at the same sampling 

location to collect samples from storm flow.  The sampler was installed in accordance 
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with USGS recommendations for automatic water samplers detailed in Edwards and 

Glysson (1999). 

Stream stage was recorded every 5 minutes from April 2, 2012 to Aug 14, 2012, 

using a Teldyne 750 model area velocity flow module (Teldyne ISCO, Lincoln, NE).  The 

automatic water sampler was removed during winter to protect it from low 

temperatures and was removed early fall 2012 due to a lack of flow. Sensor readings 

from the area velocity module were validated using the periodic stage measurements.  

Stream discharge was estimated over a range of stream stages using a Marsh McBirney 

Flo-mateTM 2000 stream velocity meter.  Stage measurements were converted to 

discharge using a stage-discharge curve developed according to procedures described by 

Turnipseed and Sauer (2010). 

 The automatic water sampler was programmed to collect water samples whenever 

the stage increased 5 cm above base level, following methods described by Kronvang et 

al. (1997). This base level was reset to the current stage at least once every two weeks to 

account for changes in base flow throughout the year. Once water sample collection was 

started sampling continued for the next four days, filling one bottle every 3 hours for the 

first 33 hours, then every 6 hours for the next two and a half days.  At completion of the 

sampling cycle, water sampling was restarted immediately if water levels were still above 

base flow stage. 

Suspended sediment concentration was measured by filtration (Standard Test 

Methods 1997).  A 50 mL sub-sample was vacuum-filtered through an oven-dried, pre-

weighed 0.45 μm cellulose membrane filter, which was then dried and weighed to 
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calculate the suspended sediment.  For periodic samples, three water samples from each 

date were assayed individually.  For storm samples, only one bottle of stream water was 

collected every three or six hours, so suspended sediment concentration was assayed on 

three subsamples.  For all samples, 50 mL of deionized water was filtered through three 

separate filters as a control.   

Filtered samples were analyzed for dissolved phosphate using the ascorbic acid 

photometric method from Murphy and Riley (1962) with modifications from the 

American Public Health Association (1998).  The filtered deionized water from 

suspended sediment analysis was used as a tare sample in this phosphate assessment to 

correct for any phosphate introduced during the filtering process.  Nitrate-nitrogen was 

analyzed using second-derivative spectroscopy as per the method of Crumpton et al. 

(1992).  Nitrate-nitrogen was assayed on filtered samples to prevent the high levels of 

sediment in storm samples from interfering with the spectrophotometer, again 

measuring the nitrate content of filtered deionized water as a tare.  Total nitrogen and 

phosphorus were analyzed using persulfate digestion (American Public Health 

Association 1998).  Digested samples were analyzed using the methods described above 

for nitrate and dissolved phosphate.   

When the concentration of total nitrogen was less than nitrate-nitrogen, likely due 

to losses of gaseous N prior to collection of the field samples, the measured nitrate-

nitrogen value was used for total nitrogen.  Several measured total phosphorus 

concentrations were lower than those for dissolved phosphate.  This only occurred with 

samples with relatively low levels for both phosphate and total phosphorus and was 
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likely a result of a lack of precision at the low end of our standard curves or 

contaminants introduced during our filtration process.  As this difference never 

exceeded the 95% confidence interval for our sample values, all dissolved phosphate and 

total phosphorus values were considered to be the best possible estimate and left as 

measured.   

Concentration and discharge values were multiplied to calculate loads exported 

from Onion Creek to Squaw Creek.  95% confidence intervals were calculated using 

Microsoft Excel spreadsheet software for concentrations of individual water samples and 

also multiplied by the discharge to illustrate the precision of load estimates.  The 

concentration of sediment and nutrients between sampling times was estimated using a 

simple linear interpolation method (Kronvang and Bruhn 1996).  When the automatic 

water sampler was not installed, the concentration and discharge measured when taking 

periodic samples was used for the entire two-week period.   

Relationships between sediment and nutrient concentrations were analyzed by 

testing their covariance using the linear model function on R (R Development Core Team 

2011).  For a direct comparison between sediment exported and streambank erosion, 

the total length of severely eroding streambanks were surveyed and their recession rate 

was measured using erosion pins (Couper et al. 2002, Lawler et al. 1999, Zaimes et al. 

2008) over the same time period (Chapter 4).  The rate of sediment loss from these 

streambanks was then compared to the total flux of sediment exported from Onion 

Creek.   



97 

Results and Discussion   

Sediment and Nutrient Concentrations and Loads 

Figures 1-4 show the cumulative discharge of water, nitrate-nitrogen, total nitrogen, 

dissolved phosphate, total phosphorus, and suspended sediment from Onion Creek from 

March 1, 2012 to April 12, 2013.  From July 5, 2012 to January, 2013, stream flow 

stopped as a result of drought conditions (Figure 5, also see the US Drought Monitor:  

<http://droughtmonitor.unl.edu>).  When rainfall occurred during this period, the storm 

flow was quite short.  For example, a storm on August 8th caused the dry stream to rise 

to a level that triggered sampling by the automatic water sampler, but the streambed 

was dry within four hours. 

As estimated from periodic sampling, sediment and nutrient exports from Onion 

Creek to Squaw Creek from March 2012 to April 2013 were 435 +/- 12 kg dissolved 

phosphate, 574 +/- 14 kg total phosphorus, 42 +/- 0.5 Mg NO3
—N, 46 +/- .05 Mg total 

nitrogen, and 80 +/- 30 Mg suspended sediment (95% confidence intervals given for 

these and all subsequent statistics).  Adding storm samples, loads for this same period 

were 465 +/- 50 kg dissolved phosphate, 810 +/- 30 kg total phosphorus, 66 +/- 2 Mg 

NO3
—N,  73+/- 4 Mg  total nitrogen, and 480 +/- 115 Mg suspended sediment.  The totals 

with and without storm samples are significantly different for all nutrients and sediment.  

Especially for sediment, much of the annual loads moved during major storm events, 

particularly the storm flow which peaked on April 15, 2012 (Figures 1, 3, and 6).  In 

comparing flux estimates using grab sampling versus event sampling, Kronvang and 

Bruhn (1996) found that the sampling method which would give the most accurate and 
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time-efficient measure of total phosphorus and total nitrogen loads was periodic 

samples every two weeks, supplemented with more frequent sampling during high flow 

periods, as this method better captures the high variability seen during storm flow 

compared to simple periodic sampling. Lawler and Dolan (1992) and Zaimes et al. (2006) 

found similar results for sediment loads.  Therefore, the data set that includes both 

storm and periodic samples was deemed to best represent total flux from Onion Creek. 

Observed nutrient concentrations on Onion Creek exceeded proposed USEPA 

ecoregional criteria (2002) on most sampling dates.  Total phosphorus in periodic 

samples exceeded the USEPA’s recommended concentration limit of 76 μg/L on eight out 

of the twelve periodic sampling dates, and frequently rose to levels above 1000 μg/L 

during storm flows.  Nitrate-nitrogen levels were above 2.2 mg/L (USEPA 2002 

recommended parameter) from March 1, 2012 to July 5th, 2012, reaching a peak of 19.5 

ppm nitrate-N on June 7, 2012.  The spring of 2013, when flows returned, the nitrate 

concentrations again returned to levels above the USEPA’s recommended parameters.  

Suspended sediment concentrations were high at times, with a maximum of 2000 mg/L 

on April 15, 2012.  As a comparison, Zaimes and Schultz (2011) measured a maximum of 

81 mg/L on a similar central Iowa stream.  However, these samples were intentionally 

collected during base flow.  High suspended sediment concentrations on Onion Creek 

were noted for just a brief period during one storm flow and the average suspended 

sediment levels for all water samples was 82 mg/L, quite similar to that reported by 

Zaimes and Schultz.   
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Annual sediment loads are relatively small for the 5700 ha Onion Creek watershed.  

Looking at a ten year study of two ~5000 ha watersheds, in central Iowa, Schilling et al. 

(2011) calculated an average sediment export of 1.6 Mg/ha*year for a watershed 

dominated by row crops and 1.4 Mg/ha*year for a watershed with some prairie 

restoration.  In contrast, Onion Creek’s export was 0.08 Mg sediment/ha*year, about 5% 

of the export seen by Schilling et al.  Results similar to those observed for Onion Creek 

were reported in the 1160 ha Galbæk Stream watershed, which saw 0.08 Mg sediment 

exported/ha*year, though the exported phosphorus was 0.034 kg P/ha*year (Kronvang 

et al. 1997), roughly three times the 0.09 kg/ha*year observed on Onion Creek.  The 

Galbæk Stream watershed was intensively farmed and drained like Onion Creek, but was 

in Denmark, which averages 72 cm annual precipitation, similar to the 68 cm of 

precipitation seen in the Onion Creek watershed in 2012 (Data from a weather station 

two km south of the Onion Creek watershed was obtained from the National Climatic 

DataCenter: NOAA <www.ncdc.noaa.gov/>). 

Relation of Sediment and Nutrient Concentrations 

Observed patterns in the concentration of nitrate and total nitrogen were not 

significantly related to total phosphorus, dissolved phosphate, or sediment 

concentrations.  However, both total phosphorus and dissolved phosphate concentration 

was correlated with suspended sediment concentration.  This correlation was stronger 

for total phosphorus, with 65% of the variation in total phosphorus concentrations 

explained by the concentration of suspended sediment (p<0.001). This relationship of 

sediment to total phosphorus follows a pattern documented in many other studies (e.g. 
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Laubel et al. 2003, Kronvang et al. 2012).  In contrast, only 18% of the variation of the 

concentration of dissolved phosphate was explained by sediment concentration 

(p<0.001).  As dissolved phosphate is not attached to sediment, this relationship may 

indicate that desorption of phosphate from sediment occurs within Onion Creek.  Jin et 

al. (2006) showed that phosphate desorption from sediments occurred rapidly in the 

first 20 minutes after sediment suspension and sorption and desorption reached 

equilibrium within 10 hours.  Similarly, Kronvang et al. (2012) found that phosphorus 

attached to sediment became bioavailable while being transported in surface water and 

Wildman and Hering (2011) noted dissolved phosphate levels rising subsequent to 

sediment re-suspension (2011).  The correlation noted between sediment and dissolved 

phosphate concentrations in Onion Creek samples also suggests a rapid conversion 

between dissolved and sediment-adsorbed phosphate.   

Relation of Bank Erosion to Discharge and Sediment Loads 

The survey of eroding streambanks identified 20.1 km of severely eroding 

streambanks with an average height of 2.05 m within Onion Creek.  Using NRCS (1998) 

guidelines, we estimate these soils have an average annual recession rate of 12.2 cm, a 

bulk density of 1.36 Mg/m3, and an 80% sediment delivery rate, which results in an 

estimated annual average of 5500 Mg of sediment delivered to the outlet of Onion 

Creek.  Wendt (2007) estimated the average annual surface runoff adds another 677 Mg 

of sediment to the Onion Creek stream outlet.  These estimates of sediment loads were 

both higher than the observed flux from March 2012 to February 2013: 440+/-100 Mg, 

even though they do not include sediment from gully erosion.  However, the Onion 
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Creek watershed experienced drought conditions for much of the year, so it is not 

surprising that measured suspended sediment loads were much lower than that 

predicted for an average year.  

Because we directly measured streambank erosion rates over the water sampling 

period, we are able to compare measured bank erosion with measured suspended 

sediment export.  The majority of the suspended sediment delivery occurred during one 

storm event (Figures 3, 6).  Storm flow peaked early April 15th, 2012, as a result of a 5.8 

cm rainfall occurring over a four hour period on April 14th, 2012 (data from the National 

Climatic Data Center: NOAA <www.ncdc.noaa.gov/>).  This was the first and most rapid 

storm event of 2012 (Figure 1) and was responsible for the majority of sediment loss 

from streambanks.  From April 12-17, 1.15 cm +/- 0.55 cm of erosion was measured 

using pin plots on a subsample of severely eroding streambanks on Onion Creek.  With a 

total length of 20.1 km severely eroding streambank, an average severely eroding bank 

height of 2.05 m, and an estimated bulk density of 1.36 Mg/m3, this translates to 340-

950 Mg of sediment lost from severely eroding streambanks.  During that same period, a 

flux of 360-590 Mg of suspended sediment was estimated using samples collected with 

the automatic water sampler (95% confidence interval given for both statistics).  There is 

no significant difference between sediment eroded and sediment exported during this 

storm flow.  However, because of the high variance of the erosion pin data, it is unclear if 

this is a validation of the erosion pin data.   

Beyond this one particular storm, severely eroding streambanks eroded 4.1 cm from 

March 2012 to April 2013, producing an estimated 2320+/-650 Mg of sediment.  During 
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that same period, 480 +/- 115 Mg of suspended sediment left Onion Creek, or 21% of 

the total sediment lost from severely eroding streambanks.  However, additional 

sediment likely entered the channel from surface runoff and gully erosion from March 

2012 to April 2013.  Because of this, less than 21% of the sediment eroded from severely 

eroding streambanks left the Onion Creek watershed.   

Although bank soils erode directly into the stream, that sediment does not 

immediately reach the outlet.  The NRCS sediment delivery calculator (1998) estimates 

that 80 to 100% of sediment eroded from streambank will reach a channel outlet, but in 

fact, sediment removed from a streambank by fluvial entrainment may be stored in the 

floodplain, bed, and point bars of a channel (Walling 2005, Trimble 1983, 1999, Walling 

2005, Kronvang et al. 2012).  Particularly in dry years, vegetation which grows along the 

bed can catch and store fine-grained sediment for several years (Walling et al. 2002).  

Although there was water flowing in Onion Creek when streambanks eroded, the banks 

and bed were largely dry from fall of 2011 to early spring of 2012.  Anecdotally, July-

September 2012, we noted areas where about 2 cm of sand and silt covered the crowns 

of grasses growing along the bed, indicating channel storage of sediment (Figure 7).   

Although at least 79% of the sediment eroded from Onion Creek streambanks over 

this observation period has not reached the outlet, the eroded sediment is now 

detached and structureless and is quite likely to move downstream.  Despite noting 

significant channel storage, Walling et al. (2002) found that 57-86% of eroded sediment 

left their study watershed within a year.  Though the storm flow of April 12-17, 2012 has 

been treated as a major event, Onion Creek has had and will have larger storm events.  
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The bank and channel dynamics which will occur in a larger storm may cause a higher 

proportion of eroded bank sediment to be delivered to the outlet, as found by Bull 

(1997).  The Onion Creek channel is still evolving and is currently largely in a widening 

phase, in which most of the sediment eroded from banks will eventually be exported 

from the channel (Schumm et al. 1984 and Chapter 3 of this thesis).  Future channel 

adjustments will also reflect any changes in watershed hydrology and climate patterns.  

The high degree of variability in these driving factors, even within a relatively small 

watershed, emphasizes the necessity of detailed, long-term records of sediment and 

nutrient flux to be able to link changes in management to watershed exports.   

Summary and Conclusions 

The primary objective of the described monitoring was to estimate total sediment 

and nutrient flux from the Onion Creek Watershed and compare values with measured 

sediment loss from severely eroding stream banks.  This chapter merely provides a 

foundation for this work, as it reports results for just one atypically dry year.  As such, 

results likely provide an estimate of annual sediment and nutrient export at the lower 

end of possible ranges and are lower than values reported from similar watersheds in 

the region.  Nitrogen concentrations were higher in the spring and exhibited significant 

seasonal variability.  Sediment, and to a lesser extent phosphorus, was largely 

transported during storm flows.  65% of the variation in total phosphorus concentrations 

was explained by variation in the suspended sediment concentration, indicating much of 

the phosphorus is transported adsorbed to sediment.  Finally, 79% of the sediment 
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estimated to have been eroded from stream banks was not delivered to the outlet of 

Onion Creek, suggesting significant channel storage.  This work provides estimates of 

nutrient and sediment dynamics during a significant regional drought, useful for 

comparison with a range of future stream flow levels.   
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Figures 

 

 
Figure 2:  Cumulative nitrogen loading from Onion Creek.  Both total nitrogen and 
nitrate roughly follow the water discharge. 

 
Figure 1:  Cumulative water discharge from Onion Creek.  Most water movement 
occurred in the spring of 2012, followed by a long period of very little discharge from 
Onion Creek.  February-April 2013, water flow returned as result of snow melt and 
late winter rain.   
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Figure 3:  Cumulative sediment loading from Onion Creek.  The bulk of sediment 
exported happened on a single day, April 15, 2012, after a storm event which 
delivered 5.8 cm of rain in 4 hours on April 14, 2012 (Data from the NOAA) (Figure 6). 
 

 
Figure 4:  Cumulative phosphorus and dissolved phosphate export from Onion Creek.  
A substantial portion of the total phosphorus is not in the form of dissolved 
phosphate. 
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Figure 5:  Monthly precipitation March 2012 to March 2013 plotted with historical 
averages.  Historical averages and precipitation records for March to November 2012 
are from a weather station two km south of the Onion Creek watershed and were 
obtained from the National Climatic DataCenter: NOAA <www.ncdc.noaa.gov/>.  Data 
from this site were not available December 2012 to March 2013, so data from a 
weather station six km southeast of the Onion Creek watershed were obtained from 
the Iowa Environmental Mesonet: <http://mesonet.agron.iastate.edu/>).   
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Figure 7:  Vegetation growing on the bed of Onion Creek, August 2012. Vegetation on 
the bed had been present for several months.   

 
Figure 6:  Discharge and suspended sediment concentration near the outlet of Onion 
Creek, April 13, 2012 to April 17, 2012.  
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CHAPTER 6: GENERAL CONCLUSIONS 
 

Streambank erosion involves numerous factors.  Despite extensive research there is 

still considerable uncertainty about how these factors affect bank stability and under 

what conditions those factors are more or less important.  A better understanding of the 

causes, processes and effects of bank erosion is needed in order to make 

recommendations for practices to protect riparian areas, aquatic ecosystems and water 

quality in agricultural landscapes.  This thesis has attempted to add to that 

understanding.   

The first part of this study examined current conditions along Onion Creek, a second 

order Iowa watershed located on the Des Moines Lobe landform region.  This consisted 

of a Rapid Assessment of Stream Conditions Along Length (RASCAL), in which the 

riparian land use, points of interest for sediment and water movement, and severely 

eroding streambanks were mapped throughout the length of Onion Creek.  In this 

assessment, 115 tile outlets, 764 sediment bars, and 164 gullies were found.  24.5% of 

the total bank length was characterized as severely eroding, defined as having very low 

vegetative cover, severe vegetative overhang, and fallen trees and slumps.  This is not a 

particularly high incidence of bank erosion, but the stream still serves as a case study to 

examine which factors cause increased bank erosion, especially as certain stream 

sections were more unstable, with up to 50% severely eroding streambank length.  In 

examining factors which contributed to higher amounts of severely eroding 

streambanks, greater amounts of erosion were seen in areas with narrower perennial 

buffers, in meandering sections downstream of channelized reaches, and more 
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downstream stream reaches.  We also found that a lower percentage of streambanks 

were severely eroding on channelized reaches and upstream of human-made flow 

restrictions such as bridges, culverts, and drop structures.  We did not find a relationship 

between the type of riparian land use and bank erosion.   

The second part of our study examined historical movement of the Onion Creek 

channel.  Over 70 years, natural meandering was extending and increasing the sinuosity 

of the channel, though this increase in sinuosity and stream length was counteracted by 

anthropogenic stream straightening.  Meander migration was more prominent in 

reaches with a higher starting sinuosity, wider floodplains, and in the upper parts of the 

watershed.  The lack of overall change gives an appearance of stability, as a stream 

system in equilibrium will generally maintain its length and sinuosity.  However, this 

average obscures instability which is apparent when looking at specific sections of the 

stream.  In areas where stream straightening had not occurred, the stream system was 

increasing in length and sinuosity, which is characteristic of a stream which has not 

reached equilibrium with the energy of the water flowing through it.  This conclusion of 

instability is supported by an analysis of the channel evolution phase of Onion Creek and 

the results of the first part of our study.  Again, on average, 24.5% of streambanks were 

severely eroding, which is a sign of a stream near stability.  However, some reaches had 

up to 50% severely eroding streambanks, which is not a sign of a stream in equilibrium 

with its hydrology.  Reaches with high amounts of severe erosion were also found to 

have some of the most rapidly increasing stream length in the historical analysis. 
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The third part of our study examined erosion and deposition on Onion Creek 

streambanks from October 2011 to April 2013, using erosion pin plots.  A drought during 

much of this period resulted in a relatively low amount of erosion, so we were not able 

to examine the effect of the factors used in analyzing the RASCAL assessment.  We did 

observe substantial freeze-thaw destabilization of streambanks during each winter 

period.  In early spring flows caused by rain and snow melt, much of this destabilized soil 

was removed by fluvial entrainment, contributing 2320 Mg of sediment to the stream.   

The final part of this study examined sediment and nutrient loads exported from 

Onion Creek.  Nutrient concentrations regularly exceeded ecologically healthy limits.  

Total phosphorus levels were usually above the USEPA’s recommended concentration of 

76 ppb, and rose above 1000 ppb during storm flows, and nitrate levels were above the 

USEPA’s recommended concentration of 2.2 ppm the majority of the time water was 

flowing.  However, because of drought conditions, transport of nutrients and suspended 

sediment was relatively low.  For example, Onion Creek sediment flux was 5% of the 

annual suspended sediment loads reported for similar watersheds in the region.  Of the 

2320 Mg sediment contributed by streambank erosion, at least 79% did not reach the 

channel outlet, indicating that erosion from Onion Creek streambanks has at least a 

year-long residence time.   

In contrast to many other studies, research presented in this thesis did not show a 

dramatic effect of riparian vegetation type on the rate of streambank erosion.  This 

should not be interpreted to mean that the type of vegetation along a streambank is 

unimportant.  A structurally diverse perennial buffer provides numerous benefits, 
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including interception of sediment and nutrients from surface runoff, recreation, 

alternative revenues, and aquatic and terrestrial habitat. This study did not examine 

these riparian functions or how they were affected by different management strategies.  

However, they should be kept in mind when planning riparian management to mitigate 

streambank erosion.  Ideally, management strategies will be implemented which 

improve all of these functions.   

This thesis is a small part of a project dedicated to improving water quality by 

decreasing sediment and nutrient loads exported from Onion Creek.  Water quality 

measurements from Onion Creek show high concentrations of nutrients and sediment, 

warranting conservation measures.  Conservation measures such as riparian buffers 

strips, grassed waterways, and managed wetlands should reduce the input of sediment 

and nutrients from field and gully sources.  However, the factors which affected the 

incidence of severely eroding streambanks in our study were largely hydrological, 

involving channelization and watershed position.  Further, large-scale conversion of the 

landscape to row crops has intensified storm flows and nutrient and sediment loads, as 

has the pervasive altering of drainage, which can be seen with the 115 tile outlets found 

on Onion Creek in our RASCAL survey.  These changes to the landscape are extensive and 

their negative effects are difficult to surmount.  As we move forward with this project, 

we will continue to look for ways to reduce the damaging effects of excessive 

streambank erosion and improve water quality, but the solution likely requires more 

than just a change in riparian management.   


