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Abstract 

Strain-induced   phase transformation (PT) in the zirconium (Zr) sample under 

compression and plastic shear in a rotational diamond anvil cell (RDAC) is investigated using 

the finite element method (FEM). The fields of the volume fraction of the   phase, all 

components of the stress tensor, and plastic strain are presented. Before torsion, PT barely occurs. 

During torsion under a fixed applied force, PT initiates at the center of the sample, where the 

pressure first reaches the minimum pressure for strain-induced    PT, dp , and propagates 

from the center to the periphery and from the symmetry plane to the contact surface. Salient 

increase of the shear friction stress and pressure at the center of a sample, so-called pressure self-

multiplication effect observed experimentally for some other materials, is predicted here for Zr. 

It is caused by much higher yield strength of the   phase in comparison with the   phase. 

Except at the very center of a sample, the total contact friction stress is equal to the yield strength 

in shear of the mixture of phases and the plastic sliding occurs there. Due to the reduction in 

sample thickness and radial material flow during torsion, the   phase can be observed in the 

region where pressure is lower than dp , which may lead to misinterpretation of the experimental 

data for dp . For the same applied force, torsion drastically promotes PT in comparison with the 

compression without torsion. However, the PT process in RDAC is far from optimal: (a) due to 

the pressure self-multiplication effect, the pressure in the transformed region is much higher than 

that required for PT; (b) the region in which PT occurs is limited by the pressure dp  and cannot 

be expanded by increasing a shear under a fixed force; and (c) the significant reduction in 

thickness during torsion reduces the total mass of the high-pressure phase. These drawbacks can 

be overcome by placing a sample within a strong gasket with an optimized geometry. It is shown 

that, due to strong pressure heterogeneity, characterization of    and    PTs based on 

                                                           

 Corresponding author.  

Email addresses: vlevitas@iastate.edu (Valery Levitas);  fengbiao11@gmail.com (Biao Feng); 

mkamrani@iastate.edu (Mehdi Kamrani). 
LA-UR-18-23858 



2 

 

the averaged pressure contains large errors. The obtained results, in addition to providing an 

improved understanding of the strain-induced PTs, may be beneficial for the optimum design of 

experiments and the extraction of material parameters, as well as optimization and control of PTs 

by varying the geometry and loading conditions. 

 

Keywords: Strain-induced phase transformations, Zirconium, High pressure, Rotational 

diamond anvil cell, Plasticity.   

I. INTRODUCTION  

Phase transformations (PTs) under high pressure and plastic shear are widespread in 

nature (e.g. as a mechanism of deep earthquakes [1-3]), physical experiments, and modern 

technologies. A rotational diamond anvil cell (RDAC), in which a large plastic shear in the 

sample without a hydrostatic medium is imposed by the rotation of anvils under a fixed axial 

compressive load [4-8], is utilized to study the effect of the plastic shear on PTs under high 

pressure. The introduction of plastic shear into the diamond anvil cell (DAC) leads to numerous 

exciting phenomena: (1) a significant reduction of transformation pressure by a factor of 2-5 in 

Refs. [8-11] and even by a factor of nearly 10 (Refs. [5,12]), in comparison with those under a 

hydrostatic or nearly-hydrostatic condition; (2) the substitution of reversible PTs by irreversible 

ones [7,8,13], which allows one to retain high-pressure phases for possible practical applications; 

(3) the appearance of new high-pressure phases [4,8,11,13,14], which could not be obtained 

without plastic shear; (4) a reduction in a transformation pressure hysteresis sometimes to zero 

[8,9]; (5) fast, strain-controlled rather than time-controlled kinetics, in which plastic strain plays 

the role of a time-like parameter [7,8,10,13]. 

An important point in understanding PTs under high pressure is their classification, 

which is introduced in [10] and [13]. When surrounded by a liquid or gaseous medium, the 

sample in a diamond anvil cell is under the hydrostatic condition and PTs are considered to be 

pressure-induced. Without hydrostatic media or above the solidification pressure of the 

transmitting medium, the sample is under non-hydrostatic stresses or stress tensor; PTs under 

nonhydrostatic conditions but below the yield strength are considered as stress-induced PTs. If 

PTs occur while the sample is subjected to plastic deformation, e.g. during a thickness reduction 

under compression in DAC or torsion in RDAC, the PTs are classified as strain-induced ones 

[10,13]. While pressure-induced and stress-induced PTs start at pre-existing defects, which serve 

as pressure and stress tensor concentrators, strain-induced PTs occur at new defects continuously 

created during plastic flow [10,13]. For example, dislocations as the main type of defects are 

generated and densely pile up at the grain boundaries or other obstacles during plastic flow, 

which provides a strong stress concentration. Resultant local stresses at the stress concentrators 

may be much higher than the applied pressure and may reach the level required for PTs, which 

causes a significant reduction of transformation pressure (see analytical treatment in [10,13] and 

phase field simulations in  [15,16]) in comparison with the PT pressure under the hydrostatic 
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condition. Our focus here is on the plastic strain-induced PTs under pressure. Multiscale 

continuum thermodynamic and kinetic theories to characterize strain-induced PTs were initially 

proposed in [10,13]; the current state is presented in a short review in [17]. In particular, at the 

microscale, a plastic strain-controlled pressure-dependent kinetics (see Eq. (7)) is obtained by a 

coarse graining of the nanoscale theory. This kinetic equation is included in macroscale theory 

and used to study the coupled plastic flow and strained-induced PTs in DAC [18-21] and RDAC 

[22-25], using FEM. 

 In this paper, we will study the strain-induced PT in zirconium (Zr) from the    phase to 

the    phase under compression and torsion in RDAC. Zr has widespread applications in various 

areas such as the space and aeronautic industry (e.g. in space vehicle parts due to its excellent 

resistance to heat), nuclear industry (e.g. for cladding of nuclear reactor fuels due to its low 

neutron-capture), and biomedical industry (e.g. dental implants and other restorative practices, 

knee and hip replacements, and surgical appliances, due to its high wear resistance). At normal 

pressure and temperature, Zr has a hexagonal closed-packed (hcp) structure (   phase). When 

the pressure is increased at room temperature, in the pressure range of 0.25-7 GPa [27-37], the 

martensitic PT from the    to    phase occurs. With a liquid medium (4:1 ethanol:methanol), 

    PT is observed at around 7 GPa [31], which is considered as a pressure-induced PT. 

With large plastic shear, plastic strain-induced     PT occurs at 2 GPa [29]. While subjected 

to high pressure torsion (HPT) treatment under unconstrained conditions,     PT is detected 

at 1 GPa [32] during compression before torsion; during torsion, this PT occurs at a pressure as 

low as 0.25 GPa [33]. The main problem in [32] and [33] is that the pressures reported are 

defined as the total force over the contact area, while the pressure distribution is strongly 

heterogeneous; see [26] and below. The initiation of     PT was observed at intermediate 

pressures between these extremes in [29,31-33]. For instance, it occurs around 6 GPa under 

nonhydrostatic compression in a multi-anvil system [35]; Olinger and Jamieson obtained PT 

transition pressure at 3.9 GPa and suggested that the differences in PT pressure for Zr in a broad 

range is due to either shear stresses or oxygen content [34]. 

At ambient pressure as the temperature is increased from room temperature to 1135 K, 

the   to the bcc   PT takes place. At ambient temperature and under a hydrostatic loading, the 

 phase transforms to the bcc   at 30 GPa, but the   phase is unstable and disappears after 

unloading. The addition of 2.5wt.% Nb to Zr causes significant decrease (at least 30 times) of the 

transition pressure from the   to  phase [33].   Recently, the   phase has been 

experimentally stabilized at normal pressure after 5 turns of the plunger at 3 GPa [38]. This 

pressure [38] is averaged over the contact surface as the ones in [32,33]. The stabilized   phase 

was later obtained by unconstrained HPT along with the   phase at 1 GPa [32] and even 0.25 

GPa [33].  While there has been significant developments in HPT (see a review [39]), and HPT 

is broadly used to study the PTs in Zr, the only available information is an averaged pressure 

(force per total initial area) and number of turns for initiation of    and    PTs.  Thus, 

the system is considered as a black box. Any information on the fields of pressure, plastic strain, 
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and volume fraction of phases in the Zr sample during HPT, which is necessary for 

understanding actual physical, thermodynamic, and kinetic processes of interaction between PT 

and plasticity, is absent.   

In our preceding paper [26], the    strain-induced PT is in Zr under compression in 

DAC was studied. The obtained results have been utilized for the qualitative analysis 

interpretation of known experimental data on pressure-, stress-, and strain-induced   , 

  , and    PTs in Zr under compression and HPT, but without having a solution for 

HPT for Zr. In the current paper, the strain-induced    PT in Zr under compression and 

torsion in RDAC will be studied with the same material parameters as in [26]. While there are 

FEM studies in RDAC [22-25], these all focus on the generic material parameters, and none are 

based on the real materials. Here, we performed the first study of PT in the real material (i.e. Zr) 

in RDAC. The results obtained will be used in comparison with those for DAC [26], to interpret 

the experimental phenomena, and to suggest how to improve PT conditions in RDAC.  

 

II. PROBLEM FORMULATION 

Geometry and boundary conditions  

As in[26], the geometric parameters of RDAC that are generally accepted in experiments (e.g. in 

[5-7]) will be used in our FEM simulation. Typically, the flat [5-7] contact surface of an anvil is 

used for pressures under 50 GPa, while a bevel angle of 8.5
o
 for the anvil contact surface is used 

for multi-megabar pressures [41]. A flat diamond anvil is utilized (see Fig. 1c) in our model 

because the maximum pressure is below 5 GPa (see Fig. 2). The sample is initially pre-indented 

to a thickness of 50 m at 150 mr   . Due to the symmetry, a quarter of the sample and anvil 

structure is considered (see Fig. 1a). To avoid divergence of the computations due to the 

penetration of finite elements between diamond and sample if the sharp angle at point C is used, 

a smooth corner is included in the geometric schematic (see Fig. 1b). 

The boundary conditions for a quarter of a structure in Fig. 1a are as follows: 

(1) The normal stress n  is applied at the top surface of the anvil. In the course of torsion, the 

rotation is applied to the top surface of the anvil with a constant normal stress n . 

(2) The radial displacement ru  and shear stresses rz  and 
z  are zero at the symmetry axis 

0r   (the lines AB and BG for the anvil and the sample, respectively).  

(3) At the contact surface between the anvil and sample (the line BCD), the combined Coulomb 

and plastic friction model, which will be introduced below in this section, is used.  

(4) At the symmetry plane 0z   (the plane GH), the radial shear stress 0rz  , and the 

circumferential displacement and the axial displacement are both zero 0zu u   . 

(5) Other surfaces in Fig. 1a not mentioned above are stress-free. 
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    (a)                                                                 (b)                                                          (c) 

FIG. 1. (a) A quarter of the sample and the anvil in the initial undeformed state with the 

geometric parameters, (b) the geometry of a quarter of the sample, (c) a RDAC schematic. 

 

Material model  

It was found in [42] for a wide range of materials (metals, rocks, pressed powders, etc.) 

that above some level of plastic strain, initially isotropic polycrystalline materials deform as 

perfectly plastic and isotropic; their yield surface is independent of accumulated plastic strain 

and plastic strain history. Because the maximum pressure is around 5 GPa, we can also neglect 

the pressure dependence of the elastoplastic properties (similar to [22-26,37]). Thus, isotropic 

and perfectly plastic behavior with the von Mises yield condition is assumed for the Zr sample. 

The elastic properties and yield strength are considered to be phase-volume-fraction-dependent. 

The model for Zr here is basically identical to the 2D model in [26] but will be used for more 

general 3D loading. A system of equations considering coupled elasto-plasticity and strain-

induced PT is summarized as follows. 

Kinematic decomposition of the symmetric part of the velocity gradient d : 

 1 1
,

3
e t ps




    d F F ε I d                                                (1) 

Where εe



 is the objective Jaumann time derivative of the elastic strain;  is the second-rank unit 

tensor; is the transformation volumetric strain for a complete PT; and c is the volumetric 

fraction of the high-pressure ( ) phase.                                                                  

Hooke's elasticity law: 

    
1

tr , tre rr zz
E

          ε I                                   (2)                          

Where Young’s modulus   1 21E c E cE    and Poisson’s ratio   1 21 c c     ; in this paper, 

subscripts 1 and 2 represent the low- and high-pressure phases, respectively.      

Von Mises yield condition for a two-phase mixture: 

ctt  

I

t



6 

 

   
0.5

1 2

3
: 1 ,

2
i y y yc c c   

 
     
 

s s                                     (3) 

Where s is the deviator of the Cauchy stress  .  

J2 flow rule in the plastic region: 

   p, ,d si y c          0        (4) 

in the elastic region: 

       p, 0di y c                                                    (5) 

Where 
 
is the effective stress and λ is a parameter that is determined by iterative satisfaction 

of the yield condition. 

Equilibrium equation: 

0,                                                                 (6) 

In the micro-scale theory [10,13], the strain-controlled kinetic of strain-induced PTs can be 

characterized as: 

     

 

2

1

2

1

1

10 ,

1

y

d d r r

y

y

y

c p H p c p H p
dc

k
dq

c c









 



 

    (7) 

where k is the kinetic parameter; 
dd

h

d

d
pp

pp
p








  and rr

h

r

r
pp

pp
p








  are the dimensionless 

characteristic pressures for direct and reverse PTs; dp  is the minimum pressure below which 

direct strain-induced PT (direct indicates the PT from low-pressure to high-pressure phase) is 

impossible; rp  is the maximum pressure above which reverse strain-induced PT (reverse 

indicates the PT from high-pressure to low-pressure phase) cannot occur;  and  are the 

pressures for direct and reverse PTs under the hydrostatic condition, respectively; H is the 

Heaviside step function; and

 

q is the accumulated plastic strain, defined as 
1/2(2 / 3 : )d dp pq  .  

 

Friction model  

In the Coulomb friction model, no relative displacement will occur between surfaces in 

contact as long as the friction stress   is smaller than the critical friction stress defined as 

crit c  , where   is the friction coefficient and c  is the normal contact stress. This critical 

friction stress should be redefined for the elastoplastic materials because, when the magnitude of 

the friction stress   reaches the yield strength in shear, y (e.g. 3y y   in the von Mises 

yield criterion), relative slipping can occur even if c  . In this paper, the critical friction 

stress is defined as   min ,crit c y c    and   is considered to be constant for the simplest 

i


d

hp r

hp
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case. Yield strength in shear is considered to be dependent on PT evolution as 

    1 21y y yc c c     , where 1y  and 2y  are the yield strengths in shear of the low- and 

high-pressure phases, respectively. In the generalized axisymmetric models, the three-

dimensional friction stress τ along the contact surface is composed of rz along the radial 

direction and 
z  along the circumferential twist direction as  

0.5
2 2| |τ rz z     .  

Redefinition of the critical friction stress as   min ,crit c y c    results in a sudden change of 

contact conditions between cohesion and sliding. This may cause convergence issues in the FEM 

methods in the iterative process, especially for our model, where a large slipping can happen. 

Hence, to mitigate this problem, a small elastic reversible tangential slip eu  
is substituted for the 

cohesion condition [43]. In other words, the contact relative displacement is decomposed into 

elastic (reversible) sliding eu and plastic (irreversible) slipping su  as c e su u u  . The elastic 

sliding can be physically interpreted as the elastic deformation of the thin contact layer, while 

slipping corresponds to the plastic flow in this layer. In this paper, critu  is considered to be equal 

to 0.5% of the average element length for the fine-mesh discretization. 

In this paper, a linear relation 
s ek u  , where sk  is the contact stiffness, is considered. The 

contact stiffness can be determined from 
crit s critk u   to be s crit critk u . Therefore, sk  depends 

on the normal stress n  and the yield strength in shear 
y . The complete system of equations for 

the combined Coulomb and plastic friction is as follows: 

Decomposition of contact relative displacement into elastic sliding and irreversible slipping: 

,u u uc e s        (8) 

Critical shear stress: 

  min , ,crit c y c        (9) 

Yield strength in shear: 

  1 2( ) 1 ,y y yc c c          (10) 

Elastic sliding vector:  

, ( )

, ( )
( )

crit
e c y

c

crit
e c y

y

u
if c

u
if c

c

 


 



 



  



u τ

u τ

   (11) 

Sliding rule: 

below the critical shear stress: 

 
0.5

2 20, | |u τs rz z critif                 (12) 

at the critical shear stress: 
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, ( )

, ( )
( )

s

s c y

c

s

s c y

y

if c

if c
c

 


 



 



  



u
u τ

u
u τ

            (13) 

 

 

Material parameters and numerical procedure  

The material parameters used for diamond and Zr in this paper are the same as those used 

in [26]. The diamond is considered as an isotropic elastic material with the bulk modulus B and 

Young’s modulus E of 443 GPa [44] and 1048.5 GPa [45], respectively. Therefore, based on 

Hooke’s law, Poisson’s ratio   is 0.1055. The Young’s modulus, Poisson’s ratio, [46] and yield 

strength [47] for Zr phases are as follows: 

For the   phase: 1 90.9 GPaE  , 1 0.344   and 
1 180 MPay   

For the   phase: 2 113.8 GPaE  , 2 0.305   and 
2 1180 MPay   

The transformation pressures for pressure- and strain-induced PTs strongly depend on 

impurities such as elements of oxygen and nitrogen [30], the initial mechanical state of the 

material, and the measurement conditions. As discussed in the Introduction, there is an essential 

scatter of transformation pressures in literature. Significant corrections to the PT pressures in [33] 

were suggested in [26] due to operating by the averaged pressure (force per unit initial area) 

while the pressure distribution is strongly heterogeneous. We use dp =1.7 GPa and rp =-2 GPa 

for direct and reverse strain-induced PTs, respectively. For pressure-induced PTs, we accept d

hp

=7 GPa and r

hp =-3.7 GPa for direct and reverse strain-induced PTs, respectively. The kinetic 

parameter is considered k=10. Based on the experimental data given in [48], the transformational 

volumetric strain is 0.014t   . 

ABAQUS FEM code [43] was used in our simulations. To solve the strain-controlled 

kinetics Eq. (7), the ABAQUS user subroutines [43] USDFLD and HETVAL are used. In these 

subroutines, the thermal strain and temperature are treated as transformation strain and the 

volume fraction of high-pressure phase c, respectively. To implement the friction model defined 

in Sec. II, the user subroutine FRIC [43] in ABAQUS is used. 

 

 

III. STUDY OF COUPLED PLASTIC FLOW AND PHASE 

TRANSFORMATIONS  

III.1 Distribution of the pressure and volume fraction of the   phase 
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(a)  

 

(b) 

 

(c) 

 

FIG. 2. Distributions of the volume fraction c of the high-pressure   phase of Zr (a),  pressure p 

(b), and accumulated plastic strain q (c), for 0 100 mr   , before and during torsion 

under the applied constant stress n  =27.6 MPa. Designations of the rotation angles: 1:   

=0.0; 2:  =0.16; 3:  =0.32; 4:  =0.48; 5:  =0.64; and 6:  =0.8 radians. The white 

line in (a) corresponds to the pressure equal to dp . 

 

In this section, we will discuss the plastic flow and strain-induced    PT in Zr during 

torsion under a fixed axial compressive load. Fig. 2 presents the evolutions of the volume 

fraction c of the  phase of Zr, pressure p, and accumulated plastic strain q in the part of the Zr 

sample for 0 100 mr    with a rising rotation angle. 

The applied compressive stress on the top surface of the upper anvil is n =27.6 MPa, as shown 

in Fig. 1c. If the resultant force is divided by the area of the flat surface of an anvil, an averaged 
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pressure on the sample surface is  
2

0.0276* 1.05 0.15 1.35 GPa. Because there is an additional 

inclined contact surface between the diamond and the sample, it should be even smaller. If we 

consider the horizontal area with radius corresponding to point D, the mean pressure is 

  
2

0.0276* 1.05 0.15 .047 0.784   GPa. 

     The white lines in Fig. 2a correspond to pressure dp p , which is the minimum pressure for 

strain-induced PTs to the high-pressure phase, and on the left and right sides of these lines, 

pressures are higher and lower than dp , respectively. Fig. 2a shows that the sample thickness 

reduces significantly when the sample is compressed under n =27.6 MPa without rotation, 

leading to a plastic deformation in the entire sample. Although the pressure at the center is higher 

than the minimum pressure for    PT, dp , the volume fraction of the   phase there is 

lower than 0.0883; therefore, the PT is not visible and the color of the volume fraction in the 

entire sample is dark blue. With such a small volume fraction, the   phase should not be 

detected in an experiment under compression either. This is consistent with experiments in [33] 

because an averaged pressure here, 0.784 GPa, is smaller than 1 GPa, at which the   phase was 

not detected under compression. The phase transformation starts at the center of the sample, 

where the pressure reaches the dp  first, and it propagates from the center to the periphery with 

an increase in rotation angle as the white line with a pressure of dp  moves to the periphery. 

During rotation, the thickness of the sample significantly reduces, causing an increase of the 

pressure gradient due to the simplified equilibrium equation 

  

2





c

rzp
r h


                                (14) 

 

where h is the sample thickness and c

rz   is the friction shear stress on the contact surface in the 

radial direction. Another reason for a rising pressure gradient in the transforming region is the 

increase in shear stress rz  (see rz  in Fig. 6a or 7a) due to material hardening during PT. Fig. 2c 

presents the evolution of the plastic strain q. Because the plastic shear strain is large near the 

contact surface at the periphery of a sample, the maximum plastic strain is localized there as well 

(see fig. 2c). At r=0, the shear stress and strain are zero, and thickness reduction in this region is 

mostly caused by the radial flow of material near the symmetry plane. Small plastic straining 

near the contact surface at the sample center leads to a slow PT rate there (Eq. (7)). According to 

Figs. 2a and 3, for compression before torsion under the applied normal stress of n =27.6 MPa, 

there is be no detectable PT near the contact surface, and there is only a small region of a slightly 

transformed phase at the center of the sample. However, during torsion under the same normal 

stress, PT evolves and completes in a large region of the sample which includes the contact 

surface. 
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    Fig. 3 plots the pressure and the volume fraction of the high-pressure phase along the contact 

surface. Due to the symmetry, the pressure gradient is zero at the center-line z axis. In the 

untransformed region at the periphery, the pressure gradient is almost constant because the 

friction shear stress rz  (see in Fig. 7c) in Eq. (14)  is constant. The pressure gradient in the two-

phase region increases because the yield strength increases with the volume fraction c, which, in 

turn, varies along the contact surface. The increase in pressure and the pressure gradient during 

the rotation shown under constant applied force in Fig. 3 is caused by friction stress growth 

during phase transformation and thickness reduction during material radial flow. This was 

observed in experiments on different materials [8, 9, 11]
 
and referred to as the pressure self-

multiplication effect. Thus, our prediction of the pressure self-multiplication effect in Zr has 

conceptual confirmation for PTs in KCl and fullerene [8, 9, 11]. In return, this increase in 

pressure intensifies the PT rate in this region; see Eq. (7). While the pressure reaches its 

maximum in the central region of the contact surface, the volume fraction of the   phase in this 

region is relatively small due to the relatively small plastic deformation in this region. With an 

increasing rotation angle, there is a significant material flow from the center to the periphery and, 

consequently, a significant thickness reduction. During this radial material flow, the two-phase 

zone flows into the region with pressure lower than dp . According to Figs. 2a and 3, the   

phase can be found in the region where pressure is lower than dp ; there, the PT cannot occur. If 

dp  is defined as the minimum pressure in the transformed region, this may lead to significant 

misinterpretation of experiments. 

 

 

 

FIG. 3. Distributions of volume fraction c of the high-pressure phase and pressure p at the 

contact surface between diamond and sample for 0 100 mr    before and during torsion 
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under the applied constant normal stress n  =27.6 MPa. 1:  =0.0, 2:  =0.16, 3:  =0.32, 

4:  =0.48, 5:  =0.64, 6:  =0.8 radians.  

 

As in traditional in HPT, the averaged pressure is used to describe the pressure for PT 

and it is from the total applied compressive force divided by the contact surface. At room 

temperature, the martensitic PT from the    to    phase occurs and is reported in the pressure 

range of 0.25-7 GPa [27-37], among which HPT is mostly used.  

Similar to the PT under compression in DAC [26], in RDAC Fig. 3 demonstrates that PT 

cannot be characterized by the averaged pressure, as this was done in all previous experimental 

papers (e.g., [32,33,36]). During torsion at a constant averaged pressure, the maximum pressure 

grows from 1.8 GPa to 4.0 GPa in Fig. 10 while average pressure (0.784 GPa) does not change, 

i.e. by a factor of 2.2. It is slightly larger than a factor of 2, which was estimated for DAC in [26]. 

While the geometry of a sample in RDAC differs from that in HPT, some qualitative conclusions 

should be the same. During compression, the minimum pressure for the strain-induced PT dp

=1.7 GPa is reached at the averaged pressure of 0.784 GPa, which is 2.2 times lower. It is lower 

than the upper bound of 3, estimated in [26], due to the effect of the inclined part of the sample, 

which is absent in HPT. This multiplier 3 was used in [26] to correct the magnitude of dp  for 

   PT based on the averaged pressure in [32,33]. The maximum pressure after torsion 

exceeds an averaged pressure of 0.784 GPa by a factor of 5. This factor should be used to correct 

the minimum pressure for strain-induced PT dp  for    transformation based on the 

averaged pressure in [32,33]. Strong heterogeneity in all fields and difference in geometric 

conditions (which are very seldom specified), is one of the important sources of explanation of 

the strong scatter in transformation pressures for    PT in Zr in  [27-37]. 

Rotation above some critical angle is not effective. The amount of high-pressure phase 

cannot grow anymore because the region with pressure larger than dp  is limited and PT is 

almost completed in it. Also, the thickness of a sample reduces with rotation, the high-pressure 

phase flows to the region where dp p , and reverse PT occurs. Increasing the applied normal 

stress n  is a way to increase the span of the transformed region. Fig. 4 shows the distributions 

of the volume fraction of the high-pressure phase and pressure in the sample for three different 

applied normal stresses for the rotation angle  =0.8. The span of the transformed region 

increases and PT advances further at the center of the contact surface when the applied normal 

stress increases from 27.6 MPa to 28.1 MPa and to 28.6 MPa, which correspond to the final 

thicknesses of 12.6 μm , 12.18 μm , and 11.94 μm , respectively. 

If the same stresses n  were applied to the DAC without torsion, PT would not even 

reach the contact surface. Therefore, superposing torsion in the RDAC significantly reduces the 

normal force, i.e. the averaged pressure, for having a large transformed region. Reduction in 
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force also reduces normal stresses and deformations in the anvils. Therefore, the RDAC is 

preferable over the DAC in high-pressure experiments. 

 

FIG. 4. (a) Distributions of the volume fraction c of the   phase and (b) pressure p for

0 100 mr   , under applied constant normal stress n =27.6 MPa (1) , n =28.1 MPa (2), 

and n =28.6 MPa (3) after a rotation of  =0.8 radian. 

 

Despite the advantages in the PT process in RDAC compared to those in DAC, there are 

clear drawbacks. Thus, pressure in the transformed region is much higher than the minimum PT 

pressure dp . Such a pressure is not required for PT but could not be avoided for the geometry 

under consideration. Second, the region in which PT occurs is limited by the condition p> dp  

and cannot be increased by increasing shear under fixed force. Third, significant reduction in 

thickness during torsion reduces the total mass of the high-pressure phase. Fourth, the 

transformed material can flow to the region with p< dp  during rotation; then the reversed PT 

may, in principle, occur. The way to overcome these drawbacks is to use the sample within a 

strong gasket, optimize the geometric parameters of the gasket, and achieve nearly-homogeneous 

pressure distribution within the sample, which does not change obviously during torsion and PT.  

After a simplified analytical optimization, this was demonstrated in experiments for PT from 

hexagonal to superhard wurtzitic boron nitride [7]. This was later achieved in FEM simulations 

in RDAC  [23]. 

 

III.2 Distribution of the normal and shear stresses 

Fig. 5 presents the evolution of the distribution of the normal stresses rr , zz , and   in the 

sample before and during rotation. The distributions of rr  and   are almost identical. 

Because the deviation of zz  from rr  and   is limited by the yield strength, the general 

tendency in the evolution of normal stresses in Fig. 5 is close to that for pressure evolution in Fig. 
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2c. At the center, all normal stresses and their radial gradients significantly increase with a rising 

rotation angle due to material hardening during PT and the thickness reduction during material 

radial flow. Stress zz  is nearly unchanged along the thickness, excluding the very central part of 

the sample. In contrast,  rr  and   reduce along the sample thickness due to the reduction of 

the shear stress rz  from the maximum at the contact surface to zero at the symmetry plane (See 

Fig. 6). Thus, the magnitude of the difference zz rr  (and 
zz   ) should increase from the 

contact surface to the symmetry plane to satisfy the yield condition. 

 

 
(a) 

 

 
(b) 

 
(c) 

FIG. 5. Distributions of normal stresses rr (a), zz (b), and   (c) in the sample for 

0 100 mr    before and during torsion under the applied constant normal stress n  

=27.6 MPa. 1:  =0.0, 2:  =0.16, 3:  =0.32, 4:  =0.48, 5:  =0.64, 6:  =0.8. 
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(a) 

 

 
(b) 

FIG. 6. Distribution of shear stresses rz (a) and 
z (b) in the sample for 0 100 mr    before 

and during torsion under the applied constant normal stress n  =27.6 MPa. 1:  =0.0, 2: 

 =0.16, 3:  =0.32, 4:  =0.48, 5:  =0.64, 6:  =0.8. 

 

 The evolution of shear stresses rz  and 
z  in the sample during torsion is presented in Fig. 6.  

Due to symmetries, the radial shear stress rz  at the symmetry plane (z=0) and at the symmetry 

axis (r=0) is zero. It increases from the symmetry plane to the contact surface, where it reaches 

its maximum. Distinct from rz  with a large gradient along the thickness, the circumferential 

shear stress 
z  is almost unchanged along the thickness. During PTs, material hardening, which 

increases with an increasing volume fraction c, induces an increase in the shear stresses and their 

gradient in the transformed region. During compression before torsion, rz  reaches the yield 

stress in shear of the   phase in the major part of the contact surface (Fig. 7), which causes a 

constant pressure gradient in Fig. 2. During torsion, 
z  increases, causing the reduction of rz  

to maintain the total shear stress at the contact surface  
0.5

2 2

rz z     equal to the yield 
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strength in shear. The total shear stress reaches about 6.5 times the yield strength in shear of the 

  phase in the nearly fully-transformed region in Fig. 7, which is close to the ratio of the yield 

strengths of the   and   phases. In the major region, except at the center of a sample, the   is 

equal to the yield strength in shear, indicating that the plastic sliding is allowed there (see Fig. 7).   

 

 

(a) 

 

(b) 

 
(c) 

FIG. 7. Distributions of dimensionless friction shear stresses 
1rz y  (a) and 

1z y  (b), yield 

stress in shear 1( )y yc  , and total shear stress 1y  (c) at the contact surface of the 

sample for 0 100 mr   , before and during torsion under the applied constant normal 

stress n  =27.6 MPa. In (a) and (b), 1:  =0.0, 2:  =0.16, 3:  =0.32, 4:  =0.48, 5: 

=0.64, 6:  =0.8.  

 

III. 3. Contact sliding, deformation of an anvil, and reduction in sample thickness 
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The relative radial displacement d  and relative circumferential rotation angle   between the 

sample and the diamond anvil at the contact surface is shown in Figs. 8a and 8b, respectively. 

Fig. 8 shows that the radial and circumference slip exists everywhere except the central region of 

the contact surface, where the cohesion condition holds. Material flows from the center to the 

periphery, and the slope of radial slip displacement d increases with an increase in the radial 

coordinate. The tendencies of the relative radial displacement d and relative circumferential 

rotation angle  are very similar. The relative circumferential rotation angle   is defined as  =

diamond sample  , in which diamond  (or 
sample ) is the rotation angle of diamond (or sample) with 

respect to the symmetric plane (z=0). Initially, before the rotation starts,   is zero everywhere at 

the contact surface. With the rotation angle  =0.16 radians, Fig. 8b shows that the cohesion 

zone between the diamond and sample surface is localized in the region of 20 mr   , and 

beyond the this region, the relative circumferential rotation   increases with a rising radial 

coordinate. At the periphery, the circumferential sliding is larger than that at the center, which is 

caused by a lower contact stress c  at the periphery and a larger circumferential displacement of 

the anvil at the periphery. In addition, with the increase of the rotation angle  , the cohesion 

region decreases and   increases at the non-cohesion zone. Fig. 7 shows that the friction stress 

is equal to the yield strength in shear in most of the contact region, which means that the plastic 

sliding occurs almost everywhere at the contact surface. This result shows the importance of 

taking plastic sliding along the contact surface into account. Without this plastic friction 

condition, radial and circumferential sliding would be suppressed, the sample thickness would be 

artificially increased, and the pressure distribution would be changed as well.  

  

 

  

 
(a) 

 
(b) 

FIG. 8. Distributions of radial d  (a) and relative circumferential rotational angle   (b) between 

the sample and the diamond anvil at the contact surface for 0 100 mr    before and 
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during torsion under applied constant normal stress n  =27.6 MPa, 1:   =0.0, 2:  =0.16, 

3:  =0.32, 4:  =0.48, 5:  =0.64, 6:  =0.8. 

 

 

FIG. 9. Relative z-displacement of the points of the contact surface with respect to the point C in 

Fig. 1a with increasing anvil rotation, i.e. evolution of the deformed profile of the 

diamond-sample contact surface. 

 

As mentioned, although diamond is very rigid (the Young’s modulus of diamond is 1045.5 GPa, 

which is 11.5 and 9.2 times larger than those of the   and   phases, respectively) and the 

maximum normal stress is below 4 GPa, because the contact surface of the diamond with the 

sample is long compared to the final thickness of the sample, the bending of a diamond anvil 

cannot be neglected. Fig. 9 shows the evolution of the deformed profile of the diamond-sample 

contact surface. 

The maximum deformation of an anvil along the symmetry axis reaches 0.4 μm  after 

compression before torsion and increases from 0.4 to 0.5 μm  during torsion due to redistribution 

of the contact stresses. As the contact normal stress becomes larger at the center of the sample 

(see Fig. 2) and slightly smaller at the periphery, the evolution of the deformation of the anvil 

repeats this trend. Moreover, there is a change in the pressure gradient at the broad interface 

between transformed and non-transformed regions (see Fig. 3), which coincides with a slight 

change in the slope of the diamond contact surface profile at this point. The final thickness of the 

sample at the center-line for a rotation angle of 0.8 and applied n  =27.6 MPa is around 12.6 

μm , and Fig. 9a gives the thickness of the sample at the periphery (r=100) 0.32 μm  

 2 0.16μm , or 2.5% smaller.  
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The variation of the sample thickness h at the symmetry axis (r=0) and the maximum 

dimensionless pressure
max 1yp  in the sample during rotation is shown in Fig. 10. Under 

compression, the sample thickness reduces to 28.61 μm . The slope of the thickness reduction is 

large at the initial stage of rotation and decreases as the rotation angle increases. This is 

qualitatively consistent with the analytical solution for torsion under a fixed load without PT 

[10,13]. In addition, because the yield strength increases during PT, this also suppresses 

thickness reduction. Fig. 10 also shows that, during torsion, the maximum pressure increases due 

to the increase in the yield strength and friction stress during PTs. Note that without PT, the 

pressure distribution does not change during torsion, which has been obtained analytically 

[10,13], numerically, [49] and experimentally [8,11].  

 
FIG. 10.  The variations of the sample thickness h and the dimensionless maximum pressure 

max 1yp   in the sample during torsion under applied constant normal stress n  =27.6 

MPa. 

 

IV. CONCLUDING REMARKS 

 

The main problem in studying the PTs during HPT with metallic anvils for all materials 

with RDAC for most materials including Zr is that the only available information is the averaged 

pressure (force per total initial area) and number of turns for initiation of    and    

PTs.  That means that the system is considered as a black box. At the same time, the fields of 

pressure, plastic strain, and volume fraction of phases in the Zr sample during HPT, which are 

required for understanding actual physical, thermodynamic, and kinetic processes of interaction 

between PT and plasticity, are unknown.  

In this paper,    PT in Zr coupled to plastic flow under a fixed applied compressive 

force and torsion-induced large plastic shear strains in the RDAC are investigated by using FEM. 

Under the compression with the normal applied stress n =27.6 MPa (corresponding to the 
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averaged pressure in a sample of 0.784 GPa), the sample thickness reduces by 44%. PT starts in 

the region near the symmetry plane in the center of the sample, where the maximum pressure 

exists. The maximum plastic strain is localized at the contact surface at the periphery due to a 

large shear deformation, but PT cannot occur there because the pressure is lower than the 

minimum pressure for strain-induced PT, dp . During the rotation of an anvil at fixed force, the 

radial shear (and twisting) stress increases at the center of a sample due to a stronger   phase 

and corresponding to material hardening of the  +  phase mixture during PT, and the sample 

thickness reduces due to the material radial flow. This leads to a drastic increase in the pressure 

gradient and pressure at the center of sample. In this manner, we reproduced the pressure self-

multiplication effect observed experimentally for other materials [8,9,11] with the stronger high-

pressure phase. Thus, our prediction of this effect for    PT in Zr is conceptually justified. 

With an increasing rotation angle, PT propagates from the center toward the periphery. In the 

major region, except at the center of a sample, the total contact friction stress   is equal to the 

yield strength in shear, which means that the plastic sliding is allowed. Relative slip between the 

sample and the diamond increases, and the pace of thickness reduction decreases during rotation. 

Due to the radial material flow, the   phase can be observed in the region where pressure is 

lower than the minimum pressure for strain-induced PT, dp , which may lead to misinterpretation 

of the experimental data for determination of the minimum PT pressure. Because the axial load is 

fixed, the region at the center of a sample with dp p  does not essentially grow, imposing a 

limitation on the maximum mass of transformed material. Further increase in rotation is not 

effective because while there is some small increase in the amount of transformed material in the 

region with dp p , thickness of this region reduces and reverse PT in the region with rp p  is 

possible. To obtain a larger transformed region, a larger normal stress must be applied to 

increase the region with dp p .  

Although diamond is a very rigid material and the pressure is low, deformation of the 

diamond is not fully negligible due to its relatively large radial dimension. Thus, for a rotation 

angle of 0.8 and applied n  =27.6 MPa, the thickness of the sample at the center is 12.6 μm , and 

at the periphery (for r=100) it is 0.32 μm , or 2.5% smaller. This, in turn, affects the pressure 

distribution. 

By comparison between the process with rotation and without rotation of an anvil, we 

find that the volume fraction of the   phase is very small at the small normal applied load, but 

after torsion at the same load (i.e. the averaged pressure), a large transformed zone and volume 

fraction of the   phase can be obtained. If an increase in the volume fraction of the   phase in 

DAC is desired, the only way to produce plastic straining is to increase the applied load n , 

which leads to higher pressure in both diamond and sample, in comparison to PT in the RDAC. 

This is the main reason for reporting the experimental PT pressure difference with and without 

torsion, e.g. in [32,33]. We would like to stress that the physics, mechanics, and kinetics of PT in 

DAC and RDAC are identical because we use the same equations and the same minimum PT 
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pressure dp . The difference is in the behavior of the system sample-loading device, which 

results in different pressure-accumulated plastic strain trajectories.   

It is evident (e.g. from Fig. 3) that the PT process in RDAC, despite the potential 

advantage in comparison with DAC, is far from optimal. Thus, due to the much stronger high-

pressure phase and pressure self-multiplication effect, the pressure in the transformed region is 

much higher than the minimum PT pressure dp . Such a high pressure is not required for PT but 

could not be avoided. The region in which PT occurs is limited by the condition p> dp  and 

cannot be increased by increasing the shear under a fixed force. A significant reduction in 

thickness during torsion also reduces the total mass of the high-pressure phase. A way to 

overcome these drawbacks is to place the sample within a strong gasket, optimize the geometric 

parameters of the gasket, and achieve nearly-homogeneous pressure distribution within the 

sample, which does not vary essentially during torsion and PT. This was achieved in experiments 

for PT from hexagonal to superhard wurtzitic boron nitride (based on a simplified analytical 

optimization) [7] and in FEM simulations in [23]. 

Similar to the PT under compression in DAC [26], obtained results for torsion in RDAC 

demonstrate that PT cannot be characterized by the averaged pressure, which is traditional in 

HPT. During torsion at the fixed averaged pressure, the maximum pressure grows from 1.8 GPa 

to 4.0 GPa (Fig. 10), i.e. by a factor of 2.2. This is slightly larger than a factor of 2, which was 

estimated in [26]. Further torsion leading to completion of PT at the center of a sample should 

lead to further increase in the maximum pressure. While the geometry of a sample in RDAC 

differs from that in the high-pressure torsion, some qualitative conclusions should be the same. 

Thus, under compression, the minimum pressure for the strain-induced PT dp =1.7 GPa is 

reached at the averaged pressure of 0.784 GPa, which is 2.2 times lower. It is lower than the 

upper bound of 3, estimated in [26], due to the effect of the part of the sample outside of the flat 

anvil surface, which is absent in the high-pressure torsion. This multiplier was used in [26] to 

correct the magnitude of dp  pressure for    PT based on the averaged pressure in [32,33]. 

The maximum pressure after torsion exceeds an averaged pressure of 0.784 GPa by a factor of 5. 

This factor should be used to correct the minimum pressure dp  for    PT based on the 

averaged pressure in [32,33]. Also, strong heterogeneity in all fields and difference in geometric 

conditions (which are very seldom specified), is one of the important sources of explanation of 

the strong scatter in transformation pressures for    PT in Zr in  [27-37]. 

The results obtained in this paper enhance understanding of the complex conditions under 

which strain-induced PT in the Zr sample occurs in the RDAC. They will be beneficial for the 

design of experiments and extraction of material parameters, as well as optimization and control 

of PTs by varying the geometry and loading conditions. 
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