S-ORAM: A Segmentation-based Oblivious RAM

Jinsheng Zhang*, Wensheng Zhang*, and Daji Qiao**
*Department of Computer Science
~Department of Electrical and Computer Engineering
lowa State University

ABSTRACT

As outsourcing data to remote storage servers gets popular, protect-
ing user’s pattern in accessing these data has become a big concern.
ORAM constructions are promising solutions to this issue, but their
application in practice has been impeded by the high communi-
cation and storage overheads incurred. Towards addressing this
challenge, this paper proposes a segmentation-based ORAM (S-
ORAM). It adopts two segment-based techniques, namely, piece-
wise shuffling and segment-based query, to improve the perfor-
mance of shuffling and query by factoring block size into design.
Extensive security analysis shows that S-ORAM is a provably highly
secure solution with a negligible failure probability of O (N~ log N).
In terms of communication and storage overheads, S-ORAM out-
performs the Balanced ORAM (B-ORAM) and the Path ORAM
(P-ORAM), which are the state-of-the-art hash and index based
ORAMs respectively, in both practical and theoretical evaluations.
Particularly under practical settings, the communication overhead
of S-ORAM is 12 to 23 times less than B-ORAM when they have
the same constant-size user-side storage, and S-ORAM consumes
80% less server-side storage and around 60% to 72% less band-
width than P-ORAM when they have the similar logarithmic-size
user-side storage.

1. INTRODUCTION

Along with the increasing popularity of outsourcing data services
to remote storage servers, arise also security and privacy concerns.
Although encrypting data content has been a common practice for
data protection, it does not fully eliminate the concerns, because
users’ data access pattern is not preserved and researchers have
found that a wide range of private information could be revealed
by observing the data access pattern [12].

To address this issue, more and more efficient constructions have
been developed to implement oblivious RAM (ORAM) [6], which
was originally proposed for software protection but also is a prov-
able solution to data access pattern preservation. Among these ef-
forts, hash based ORAMs [6,8-11,13,15,20] utilize hash functions
(including ordinary hash functions, cuckoo hash functions, bloom
filters, etc.) to distribute data blocks to storage locations when data

is stored or shuffled and to look up intended data blocks when data
is queried. In comparison, index based ORAMs [16—19] maintain
index structures to record the mapping between data blocks and
locations and facilitate data lookup at the query time.

Though a large variety of techniques has been proposed and adopted,
most existing ORAM constructions are still not applicable in prac-
tice because of the high communication and/or storage overheads
incurred. Particularly, hash based ORAMs require a large extra
storage space at the server side to deal with hash collisions; hence,
access pattern privacy usually has to be preserved via heavy data re-
trievals and complicated data shuffling. Index based ORAMs rely
on index structures to avoid the above problems. However, they
fail to provide an efficient solution with which the index structures
can be stored in a space-efficient manner and meanwhile can be
searched and updated in a time-efficient manner. This limitation
has also impeded their applications in practice.

We propose a novel ORAM scheme, called segmentation-based
oblivious RAM (S-ORAM), aiming to bring theoretical ORAM con-
structions one step closer to practical applications. Our proposal is
motivated by the observation that a large-scale storage system (e.g.,
a cloud storage system such as Amazon S3 [2]) usually stores data
in blocks and such a block typically has a large size [18], but most
existing ORAM constructions treat data blocks as atomic units for
query and shuffling, and do not factor block size into their de-
signs. S-ORAM is designed to make better use of the large block
size by introducing two segment-based techniques, namely, piece-
wise shuffling and segment-based query, to improve the efficiency
in data shuffling and query. With piece-wise shuffling, data can
be perturbed across a larger range of blocks in a limited user-side
storage; this way, the shuffling efficiency can be improved, and
the improvement gets more significant as the block size increases.
With segment-based query, S-ORAM organizes the data storage at
the server side as a hierarchy of single-segment and multi-segment
layers, and an encrypted index block is introduced to each segment.
With these two techniques at the core, together with a few supple-
mentary algorithms for distributing blocks to segments, S-ORAM
can accomplish efficient query with only O (log N) communication
overhead and a constant user-side storage, while existing ORAM
constructions have to use a larger user-side storage to achieve the
same level of communication efficiency in query.

Extensive security analysis has been conducted to verify the se-
curity of the proposed S-ORAM. Particularly, S-ORAM has been
shown to be a provably highly secure solution that has a negligible
failure probability of O(N~'°8 V) which is no higher than that of
existing ORAM constructions.

In terms of communication and storage overheads, S-ORAM out-
performs the Balanced ORAM (B-ORAM) [13] and the Path ORAM
(P-ORAM) [19], which are the best known theoretical hash-based
and practical index-based ORAMs under small local storage as-
sumption, respectively. Particularly, under practical settings [18]
where the number of data blocks N ranges from 22° to 236 and the
block size is 32 KB to 256 KB, (i) the communication overhead
of S-ORAM is 12 to 23 times less than B-ORAM when they have
the same constant-size user-side storage; (ii) S-ORAM consumes
80% less server-side storage and around 60% to 72% less band-
width than P-ORAM when they have the similar logarithmic-size
user-side storage.

The rest of the paper is organized as follows. Section 2 briefly re-
views existing ORAM constructions. In Section 3, the basic system
model and threat model are described, and a formal security defi-
nition is provided. Our proposed S-ORAM is described in detail
in Section 4. The subsequent Section 5 provides the security and
overhead analysis as well as the comparisons between S-ORAM
and two representative existing ORAM constructions. Finally, Sec-
tion 6 concludes the paper.

2. RELATED WORK

In the past decades, there are numerous ORAM schemes proposed
to hide user’s pattern of access to remote data storage. We roughly
classify them into two categories based on the data lookup tech-
nique used. From each category, one representative ORAM with
the best performance among its peers is chosen to be compared
with S-ORAM in Section 5.3.

e Hash based ORAMs: A number of ORAMs [6,8-11,13,15,
20] belong to this category. With hash functions used for
data lookup, these ORAMSs require facilities such as buck-
ets and stashes to deal with hash collisions. To the best of
our knowledege, the Balanced ORAM (B-ORAM) [13] pro-
posed by Kushilevitz et. al. achieves the best asymptotical
communication efficiency among hash based ORAMs.

e Index based ORAMs: For ORAMs [16-19] belonging to this
category, an index structure is used for data lookup. There-
fore, it requires that the user-side storage stores the index,
which is feasible only if the number of data blocks is not
quite large. When the user-side storage cannot afford to store
the index, it can outsource the index to the server in a way
similar to storing real data blocks at the cost of increased
communication overhead. The Path ORAM (P-ORAM) [19]
proposed by Stefanov et. al. is a representative scheme in
this category.

2.1 B-ORAM

In B-ORAM, the server-side storage is organized as a hybrid hier-
archy with a total of % layers, where each layer consists of
log N equal-size sublayers. For the top O(loglog N) layers, the
bucket-hash structure [6] proposed by Goldreich and Ostrovsky is
deployed and the remaining layers are cuckoo-hash structures with
a shared stash [8]. Since each layer is extended to multiple sublay-
ers, the shuffling frequency is reduced while the query overhead is
increased; a balance is struck between the query and shuffling over-
heads. The randomized shellsort [7] is selected as the underlying
oblivious sorting algorithm for the shuffling process. In theory, the

2
amortized communication overhead of B-ORAM is O (lcl)(g)glogNN)

blocks per query. In practice, however, the overhead is on the mag-
nitude of log® N due to a large constant ignored in the above big-O
notation; particularly, querying one data block may require the user
to access at least 1000 data blocks, which may not be acceptable in
many practical applications.

2.2 P-ORAM

In P-ORAM, the server-side storage is organized as a binary tree
in which each node contains a constant-size bucket for storing data
blocks. Initially, data are randomly stored at leaf nodes, and an
index structure is maintained to record the mapping between the
IDs of data blocks and the IDs of the leaf nodes storing the blocks.
Based on the index, a data query process retrieves all blocks on
the path that contains the query target block and then moves the
target block to the root node. In addition, a background eviction
process is performed after each query process, to gradually evict
blocks from the root node to nodes of lower-height so as to avoid
or reduce node overflowing. The index can also be outsourced to
the server and stored in a similar binary tree. Besides, to keep
bucket size constant at each node, a user-side storage whose size
is a logarithmic function of the number of data blocks is needed
to form a stash. P-ORAM achieves a communication overhead of

(0] % - w(1) blocks per query, where Z is data block

size and w(1) is a security parameter. Though the communication
overhead is considered to be acceptable in practice [19], the over-
head of server-side storage, which is about 32N blocks, may pose
as a big cost to the user.

Note that, other ORAM constructions such as the partition based
ORAM [18], PrivateFS [21], and the single-round ORAM [22], ei-
ther are based on different user-side storage assumptions than ours
or focus on aspects other than bandwidth and storage efficiency,
which is the main focus of our work. Due to these prominent dif-
ferences, we do not compare them with our proposed S-ORAM.

3. PROBLEM STATEMENT

3.1 System Model

Similar to existing ORAM constructions [6, 8-11, 13, 15, 20], we
consider a system composed of a user and a remote storage server.
The user exports a large amount of data to store at the server, and
wishes to hide from the server the pattern of his/her accesses to the
data. Data are assumed to be stored and accessed in the unit of
blocks, and the typical size of a block ranges from 32 KB to 256
KB [18]. Let N denote the total number of data blocks exported by
the user. For simplicity, we assume log NV is an even number.

Each data request from the user, which the user wishes to keep
private, can be one of the following types:

e read a data block D of unique ID ¢ from the storage, denoted
as a 3-tuple (read, i, D); or

e write/modify a data block D of unique ID ¢ to the storage,
denoted as a 3-tuple (write, i, D).

To accomplish a data request, the user may need to access the re-
mote storage multiple times. Each access to the remote storage,
which is observable by the server, can be one of the following types:

e retrieve (read) a data block D from a location [at the remote
storage, denoted as a 3-tuple (read, I, D); or

e upload (write) a data block D to a location [at the remote
storage, denoted as a 3-tuple (write, [, D).

3.2 Threat Model

We assume the user is trusted but the remote server is not. Particu-
larly, the server is assumed to be honest but curious; that is, it be-
haves correctly in storing data and serving users’ data accesses, but
it may attempt to figure out the user’s access pattern. The network
connection between the user and the server is assumed to be secure;
in practice, this can be achieved using well-known techniques such
as SSL [4].

‘We inherit the standard security definition of ORAMs [6, 18, 19] to
define the security of our proposed ORAM. Intuitively, an ORAM
system is considered secure if the server learns nothing about the
user’s data access pattern. More precisely, it is defined as follows:

Definition Let £ = ((op1,i1, D1), (op2,i2, D2), ---) denote
a private sequence of the user’s intended data requests, where each
op is either a read or write operation. Let A(Z) = ((op!, 1, D1),
(oph, 12, D3), - -+) denote the sequence of the user’s accesses to
the remote storage (observed by the server), in order to accomplish
the user’s intended data requests. An ORAM system is said to be
secure if (i) for any two equal-length private sequences Z and ¥ of
the intended data requests, their corresponding observable access
sequences A(Z) and A(y) are computationally indistinguishable;
and (ii) the probability that the ORAM system fails to operate is
negligibly small, i.e., O(N~ &™),

4. SCHEME

4.1 Overview

The design of S-ORAM is motivated by the observation that a
large-scale storage system usually stores data in blocks and such a
block typically has a large size. To the best of our knowledge, most
existing ORAM constructions treat data blocks as atomic units for
query and shuffling, and do not factor block size into their designs.
The recently proposed index-based ORAM constructions [5, 16—
19] have used large-size blocks to store indices to improve index
search efficiency; still, more opportunities wait to be explored to
fully utilize this feature.

S-ORAM is designed to make better use of the large block size to
improve the efficiency in data shuffling and query, which are two
critical operations in an ORAM system. Specifically, we propose
the following two segment-based techniques:

o Piece-wise Shuffling. In S-ORAM, each data block is seg-
mented into smaller pieces, and in a shuffling process, data is
shuffled in the unit of pieces rather than blocks. As we know,
data shuffling has to be performed at the user-side storage in
order to achieve obliviousness. With the same size of user-
side storage, shuffling data in pieces rather than blocks en-
ables data perturbation across a larger range of blocks. This
way, the shuffling efficiency can be improved, and the im-
provement gets more significant as the block size increases.

o Segment-based Query. To improve query efficiency, S-ORAM
organizes the data storage at the server side as a hierarchy of
single-segment and multi-segment layers. In each segment,
an encrypted index block (with the same size as a data block)
is introduced to maintain the mapping between data block

IDs and their locations within the segment. This way, when
auser needs to access a block in a segment, he/she only needs
to access two blocks - the index block and the intended block.
By adopting this technique together with supplementary al-
gorithms for distributing blocks to segments, S-ORAM can
accomplish efficient query with only O(log N') communica-
tion overhead and a constant user-side storage, while existing
ORAM constructions have to use a larger user-side storage to
achieve the same level of communication efficiency in query.

The following sections elaborate the details of the proposed S-
ORAM construction, emphasizing on the above two techniques.

4.2 Storage Organization and Initialization

4.2.1 Data Block Format

Similar to existing ORAMs, S-ORAM stores data in blocks, and a
data block is the basic unit for read/write operations by the user.
A plain-text data block can be split into pieces and each piece is
z = log N bits long, where N is the total number of data blocks.
The first piece contains the ID of the data block, say ¢, which is also
denoted as d;,1. The remaining pieces store the content of the data
block, denoted as d; 2, d; 3, - -+, di,p—1. Before being exported
to the remote storage server, the plain-text data block is encrypted
piece by piece with a secret key k, as shown in Figure 1:

¢i,0 = Ex(r;), where r; is a random number;

cii1 = Ex(ri ®diny);

ci2 = Ex(cin @ di2); (1)
ci,p—1 = Ex(ci,p—2 ®di,p_1).

Thus, the encrypted data block (denoted as D; and hereafter called
data block for brevity) has the following format:

D; = (ci0,Cin,Ciz2, + ,Ci,P—1). 2

It contains P pieces and has Z = z - P bits.

z bits z bits
i
Plain-text Block |d,.’1 :i| d;, | d,, | ~~~~~~ | d, py |
14»79 b —d b
ET[) Ek'([) E (D E D E (D
D, | Cio | Cin | Ciz | Cis | """ |Cl4P—l |
'
Zbits (Z = z[P)

Figure 1: Format of a data block in S-ORAM.

4.2.2 Server-side Storage
S-ORAM stores data at the remote server in a pyramid-like struc-
ture as shown in Figure 2. The top layer, called layer I, is an array
containing at most four data blocks. The rest of the layers are di-
vided into two groups as follows.

_____ e
Layer 2 [1]o]o]o][o][o]p]p]D]
23
Tier I :
(single-segment
layers)
Layer L, []l\Dl [o]o]
A\
9 Litl
_____ S
30og’ N
LayerL, +1 l[lgl |D [|D| Ii,l
Tier 2 L :[#W segments
(multi-segment ' log
layers)
3dog’ N
LayerL, l]lgl |D]|D| ID‘

w, = L, segments
: log® N

Figure 2: Organization of the server-side storage.

941
A
,
oo - [o[D]
~ Data ID | Location [Access bif|
> 0 9 0
g |l Lo
< H
S 0] 1200 | 0 [s | Cooss | s | woe e [cas.rmi|
b 1 5 0
3 6 42 0
w205 J2 AT 0]

Figure 3: Structure of a T1-layer.

T1 (Tier 1) Layers: Single-Segment Layers. Tl-layers refer to
those between (inclusive) layer 2 and layer L1 = |2loglog N |. As
illustrated in Figure 3, each T1-layer consists of a single segment,
which includes an encrypted index block I; and 2'+! data blocks.
Among the data blocks, at most half of them are real data blocks
as formatted in Figure 1, while the rest are dummy blocks each
with ID 0 and randomly-stuffed content. The index block has 2'**
entries; each entry corresponds to a data block in the segment which
consists of three fields: ID of the data block, location of the data
block in the segment, and access bit indicating whether the block
has been accessed since it was placed to the location.

T2 (Tier 2) Layers: Multi-Segment Layers. T2-layers refer to those
between (inclusive) layer L; + 1 and layer L2, where L2 = log N.
Each T2-layer consists of W; = [IO;TIN] segments, and each T2-
layer segment has the same format as a T1-layer segment except
that a T2-layer segment contains 3 log? N data blocks.

Note that, in the above storage structure, a segment (regardless
whether at a T1-layer or T2-layer) contains at most 3log® N data

blocks. Therefore, the index block of a segment has at most 3 log2 N
entries. As each entry contains three fields: ID of the data block
(needing log N bits), location of the data block in the segment
(needing log(3 log? N) bits), and access bit, an index block needs
at most 3log® N[log N +log(3log® N) + 1] bits. In practice, with
N < 23 which is considered large enough to accommodate most
practical applications, the size of an index block is less than 32 KB,
which can fit into a typical data block assumed in the existing stud-
ies of practical ORAM schemes [18].

4.2.3 User-side Storage

The user organizes its local storage into two parts: cache (tempo-
rary storage) and permanent storage. Cache is used to buffer and
process (including encrypt and decrypt) data blocks downloaded
from the server. We assume that the size of the cache is aZ bits
where « is a constant. In the S-ORAM design presented in this
section, we set « = 2. This design can be conveniently adapted
to other configurations of cache size, as will be discussed in Sec-
tion 5.3.

Permanent storage stores the user’s secret information, including
(i) a query counter keeping track of the number of queries that have
been issued, (ii) a secret key k, and (iii) a one-way hash function
H;(-) for each T2-layer I, which maps a data block to one of the
segments belonging to the layer. Note that, the size of permanent
storage is much smaller than that of the cache, since only several
hundreds of bits are needed to store the query counter, secret key,
and hash functions.

4.2.4 Storage Initialization
The user initializes the S-ORAM system as follows:

e [t randomly selects a secret key k and a one-way hash func-
tion Hr, (-) of layer Lo, i.e., the bottom layer.

e N plain-text data blocks are encrypted into blocks D; where
i =1,---, N with the secret key k in the format illustrated
by Figure 1. In addition, 2N dummy blocks are randomly
generated and encrypted also with key k.

e N real data blocks and 2N dummy blocks are uploaded to
layer Lo of the server storage in a delicate manner to ensure
that (i) each real data block D; of unique ID 1 is distributed
to segment Hr,, (i) at layer Lo, (ii) each segment is assigned
with exactly 3log® N data blocks, and (iii) data blocks dis-
tributed to the same segment are randomly placed within the
segment. Note that, a process like data shuffling elaborated
in Section 4.4.4 can be adopted to distribute and place the
data blocks to satisfy the above properties.

4.3 Data Query

As formally described in Algorithm 1, the process for querying a
data block D; of ID t consists of the following four phases.

In Phase I, the user retrieves and decrypts all data blocks stored at
layer 1, attempting to find Dy in the layer.

In Phase II, each non-empty T1-layer [is accessed sequentially.
Specifically, the index block I; of the layer is first retrieved and de-
crypted, and then one of the following two operations is performed:

e If D; has not been found at any layer prior to layer [and
I; indicates that Dy is at layer [, record the location where

Algorithm 1 Query data block D; of ID ¢.

1:

W N

Vo nh

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20

21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:

41:
42:
43:
44
45:

found < false
/* Phase I: access layer 1 ¥/

: Retrieve & decrypt blocks in layer 1
: if D, is found in layer 1 then found < true

/* Phase I1: access Tl-layers */

: for each non-empty layerl € {2,--- , L1} do

Retrieve & decrypt I; — index block of the layer
if (found = false At € I;) then
Set the access bit of D; to 1in I;
Re-encrypt & upload I,
Retrieve & decrypt D;
Encrypt & upload a dummy block D
found < true
else
Randomly pick a dummy D, with access bit 0
Set the access bit of D;/ to 1in I;
Re-encrypt & upload I;
Retrieve D/
Re-encrypt & upload D,/
end if
end for
/* Phase III: access T2-layers */
for each non-empty layerl € {L1 + 1,--- , L2} do
if (found = false) then
s <+ H; (t)
else
s is randomly picked from {0, --- ,W; — 1}
end if
Retrieve & decrypt I} — index block of segment s
if (found = false Nt € I}) then
Set the access bit of D; to 1 in I}
Re-encrypt & upload I}’
Retrieve & decrypt D;
Encrypt & upload a dummy block D
found < true
else
Randomly find a dummy D,/ with access bit 0
Set the access bit of D/ to 1in I}
Re-encrypt & upload I}
Retrieve D/
Re-encrypt & upload D,/
end if
end for
/* Phase IV: wrap up */
if (D; is found in layer 1) then
Encrypt & append a dummy block D to layer 1
else
Re-encrypt & append D to layer 1
end if

Dy resides, set the access bit of the location to 1, and re-
encrypt and upload I; to save cache space. Then, retrieve Dy.
Meanwhile, a dummy block D is generated and uploaded to
the location where D; was retrieved.

e Otherwise, the location of a dummy block D, whose access
bit in I; is O (i.e., it has not been accessed since last time
it was distributed to its current location) is randomly picked
and recorded. After the block’s access bit is set to 1 in [;,
I; is re-encrypted and uploaded. Then, D,/ is retrieved, re-
encrypted, and uploaded to its original location.

In Phase III, each non-empty T2-layer [is accessed sequentially as
follows.

e If D, has not been found at any layer prior to layer [, segment
s = H;(t) of layer [is picked to access. The index block
I} of the segment is first retrieved and decrypted to check
whether D; is at this segment. If so, the access bit of D,
is set to 1 in I before I} is encrypted and uploaded; then,
Dy is retrieved, a dummy block is generated and uploaded
to D;’s original location. Else, the user randomly selects a
dummy block D/ in this segment whose access bit in I} is
0; after the access bit of Dy is setto 1, I}’ is re-encrypted and
uploaded; then, Dy is retrieved, re-encrypted and uploaded.

e If D, has already been found at a layer prior to layer [, a seg-
ment is randomly selected from layer [and the user randomly
selects a dummy block D,/ in this segment whose access bit
in I} is 0. After the access bit of Dy is set to 1, I} is re-
encrypted and uploaded. Then, D, is retrieved, re-encrypted
and uploaded.

Finally in Phase IV, the user wraps up the query process to ensure
that Dy is at layer 1, i.e., the top layer. To achieve this, the user
first checks whether D; has been found at layer 1. If so, encrypt
a dummy block D and append it to layer 1; otherwise, D; is re-
encrypted and appended to layer 1.

4.4 Data Shuffling

A critical step in S-ORAM is data shuffling which is used to perturb
data block locations. It may occur at all layers of the storage hier-
archy. Specifically, data shuffling at layer { ({ = 2,--- ,La — 1) is
triggered when the total number of queries that have been processed
is an odd multiple of 2! (i.e., a multiple of 2' but not a multiple of
2!*1y. At this moment, layer [is empty because: (i) it was empty
immediately after data shuffling for some layer ', where I’ > [, has
completed; (ii) since then, only 2 queries have been processed, and
during this course no data block has been added to this layer. Dur-
ing data shuffling at layer [, all data blocks in layers {1,--- ,—1}
are re-distributed randomly to layer [, and dummy blocks may be
introduced to make layer [full. Data shuffling at layer Lo, i.e., the
bottom layer, however, is triggered when the total number of pro-
cessed queries is any multiple of 272 it re-distributes all real data
blocks and selected dummy blocks in the entire hierarchy to fully
occupy the bottom layer.

4.4.1 Preliminary: A Segment-Shuffling Algorithm
Compared to existing ORAM schemes, S-ORAM utilizes the user
cache space more efficiently to speed up data shuffling. Specifi-
cally, the user cache is divided into four parts:

e 7, which is a buffer to store a permutation of up to 2m? in-
puts and thus needs 2m? log(2m?) bits, where m is a system
parameter.

e By, Bi, and Bs, which are three buffers and each may tem-
porarily store up to 2m? data pieces.

Recall that the size of a data piece is z bits and the size of user
cache is aZ. Therefore, the following relation shall hold between
m, z, a, and Z:

2m? - [log(2m?) + 3z] < aZ. 3)

Data shuffling in S-ORAM is based on a segment-shuffling algo-
rithm (as shown in Algorithm 2). It is able to shuffle n (< 3log® N)
data blocks with a communication cost of O(n) data blocks, by
setting the system parameter m to v/1.51og N, under the follow-
ing practical assumptions: (1) N < 23¢ which is considered large
enough to accommodate most practical applications [18]; (2) the
size of Z is between 32 KB and 256 KB which is typically as-
sumed in practical ORAM schemes [18]; and (3) & = 2 meaning
that a small local cache of two data blocks is assumed. It is easy to
verify that, under these assumptions, Equation (3) holds. Moreover,
as n < 3log? N = 2m?, 7 is large enough to store a permutation
of the IDs of n data blocks, and By, B, and By are large enough
to store n data pieces, which are required in the algorithm.

The segment-shuffling algorithm has two phases. Phase I processes
the first two data pieces of all n blocks as follows. After the first
two pieces of all n blocks are retrieved, IDs of the blocks are ob-
tained and permuted according to a newly picked permutation func-
tion, and then re-encrypted using the key and newly-picked random
numbers. After that, the new random numbers are uploaded after
being encrypted, which is followed by the uploading of the shuffled
and re-encrypted block IDs.

In Phase II, the remaining pieces of all n blocks are retrieved, shuf-
fled according to the new permutation function (picked in Phase I),
re-encrypted, and then uploaded back to the server. This phase runs
iteratively and the (v + 1)-st pieces are retrieved and processed
at the v-th (v = 1,--- , P — 2) iteration. Particularly, when the
(v 4 1)-st pieces are retrieved, two encrypted versions of the v-th

Algorithm 2 Segment-Shuffling of Blocks (D;,, -+, D;,,).
/* Phase I: shuffling first two pieces of all blocks */

: Retrieve (¢;,,0,¢ " ,Ci,,0) 10 Bo

: Decrypt Bo to (74,0, ,Ti,,0) using k

: Retrieve (¢iy 1, , ¢, 1) t0 B1

: Decrypt Bi to (i1, - ,in) using k and By

Store (41, ,in) in B

: Pick & store a random permutation in 7

: Permute By to (i}, - - ,i,,) according to 7

: Generate, re-encrypt & upload entries of a new index block
based on B> and m

9: for each ¢} in B> do

10: Randomly picks ré;

11: Encryptr}, toc}, , using k, and upload it
J 3’
12: Encrypt i} to ¢}, ; using k and ¢,
3’ 3’
13: end for

14: Upload Bs to designated locations
/* Phase I1: shuffling remaining pieces of all blocks */
15: foreachv € {2,--- ,P — 1} do

16: Retrieve (Ci; v, 4 Cin,w) to Bo

17: foreachj € {1,--- ,n} do

18: Decrypt Ci;w tO di_j,v using k and Cijw—1 in By
19: Replace Cijv—1 in By by Cij v from By

20: Replace Cijv by dij v in By

21: end for

22: Permute By to (dj; ,, -, di;) according to
23: Encrypt (dif o, ,di) in Bo using k and B>
24: Replace B> by Bo

25: Upload B; to designated locations

26: end for

pieces are present in the user cache. Using the key and the older
version of the v-th pieces, the plain-text embedded in the (v +1)-st
pieces are obtained; then, the pieces are permuted, and re-encrypted
using the same key and the newer version of the v-th pieces, before
being uploaded back to the server. At the end of the iteration, two
encrypted versions of the (v+1)-st pieces are left in the user cache,
which will be used in the processing of the (v + 2)-nd pieces in the
next iteration.

4.4.2 Shuffling a Tl-layer1 (2 <1< L)

When a Tl-layer [is to be shuffled, all the blocks belonging to
the layers above shall be shuffled and distributed to layer [, which
has 4 + 22F1 ... 4+ 2 = 2!*1 _ 4 blocks in total. The user first
generates 4 extra dummy blocks to make the total number of blocks
to be shuffled be 2'*!. Then, the segment-shuffling algorithm is
invoked to shuffle these blocks to layer (.

4.4.3 Shuffling a T2-layer 1 (L1 <1 < L)

Similar to a T1-layer, when a T2-layer ! (excluding the bottom layer
L») is to be shuffled, all the blocks belonging to the layers above
shall be shuffled and distributed to layer /. The total number of
these blocks is w = 44221 4. . .42l +l 390041 3911
which is less than 3 - 2'. Note that, among these blocks, the number
of real data blocks is at most 2 as data shuffling is triggered every
2! queries.

Before shuffling, the user updates the hash function H;(-) used for
layer [. Then, it uploads a dummy block to the server, and requests
the server to make 4 - 2! — w copies of the dummy block to be
temporarily stored at layer [. This way, the total number of data
blocks to be shuffled becomes 4 - 21, among which there are at most
2! real data blocks.

Data shuffling at layer [consists of the following three rounds of
scanning and two rounds of oblivious sorting.

Round I: Scanning. Data blocks are retrieved, labeled, re-encrypted,
and then uploaded. Labeling obeys the following rules: (i) Each
block is labeled with a tuple of two tags; (ii) Each real data block
of ID i has H;(%) as its first-tag and its second-tag is the index of
the layer where it was retrieved; (i) Dummy blocks are labeled in
such a way that exactly 3log? N dummy blocks have j as their
first-tag for each j € {1,---, (1057211\1]} while all other dummy
blocks have oo as their first-tag. All dummy blocks have oo as the
second-tag.

Round II: Oblivious Sorting. All the labeled blocks are sorted
obliviously (using the oblivious data sorting scheme presented in
Section 4.4.5 and the Appendix) in the non-descending order based
on the tag-tuple. Particularly, a block with a smaller first-tag should
precede ones with larger first-tags; blocks with the same first-tag
are sorted in the non-descending order based on the second-tag.
This way, real data blocks are sorted to precede dummy blocks.

Round III: Scanning. The sorted sequence of blocks is scanned
and divided into segments each containing 3log® N blocks. A
counter is used to facilitate the process. Specifically, the follow-
ing rule is applied when a block is scanned:

o If the block is the very first one or it has a different first-tag
from its immediate predecessor, it becomes the first one of a
new segment, and the counter is reset to 1.

e Otherwise: If the counter is less than 3 log2 N, the counter is
incremented by 1. If the counter has already reached 31og? N,
the block is considered redundant and hence its first-tag is re-
labeled as oo.

Round IV: Oblivious Sorting. This round sorts all the redundant
blocks (i.e., those with oo as the first-tag) to the end of the se-
quence. Similar to Round II, this is achieved by obliviously sorting
the blocks in the non-decreasing order based on the tag-tuple. Then,
the redundant blocks are removed.

Round V: Scanning. This round is to rebuild an index block for
each segment. For each segment formed in the previous round, the
segment-shuffling algorithm is applied to distribute the 3log® N
data blocks back to the server.

4.4.4 Shuffling the Bottom Layer L

Every time when the number of queries is a multiple of 222 = N,
layer L2 needs to be shuffled, which means the entire storage shall
be shuffled and all blocks from every layer shall participate in data
shuffling. Hence, the total number of blocks to be shuffled is w’ =
4422 ool 3ottty 3.0ty 30902 < 6N

Similar to the shuffling of other T2-layers, there are also three
rounds of scanning and two rounds of oblivious sorting to accom-
plish layer Lo shuffling. To be more specific, Round I scanning and
Round II oblivious sorting are performed on w’ < 6N blocks in-
stead of 4-2' blocks in T2-layer shuffling. After Round II oblivious
sorting, only the first 4N blocks participate in Rounds III, IV, and
V; therefore, they are identical to the ones in T2-layer shuffling.

4.4.5 Oblivious Data Sorting

Existing oblivious sorting techniques for ORAMs with constant lo-
cal storage either incurs high asymptotical overhead (e.g., Batcher’s
sorting network [3] incurs O(n log? n) communication overhead)
or large hidden constant behind the big-O notations (e.g., AKS sort-
ing network [1] incurs ¢ - nlogn communication overhead with
¢ > 10® and randomized shellsort [7] incurs > 24 - nlogn over-
head), which significantly impede their practical efficiency. Hence,
a more practically efficient sorting method is needed.

In S-ORAM, we develop an m-way oblivious sorting scheme based
on the m-way sorting algorithm in [14]. It sorts data in pieces rather
than blocks, which exploits the user cache space more efficiently
and thus achieves a better performance than the afore-mentioned al-
gorithms, particularly when the block size is relatively large (which
is common in practice [18]). Modifications have also been made to
the original m-way sorting algorithm to ensure the obliviousness
of data sorting. Details of the proposed m-way oblivious sorting
scheme are omitted due to space limitation. Please refer to the Ap-
pendix for a complete description.

S. ANALYSIS
5.1 Security Analysis

To prove the security of S-ORAM, we describe three lemmas be-
fore presenting the main theorem.

LEMMA 1. When shuffling a T2-layer 1, the probability that
more than 1.5log? N real data blocks are distributed to any given
segment is O(N 108),

PROOF. When shuffling a T2-layer [as in Section 4.4.3, up to 2!
real data blocks are mapped (by a hash function) to [IO;%N] seg-
ments uniformly at random. In the following proof, we first assume
the number of real data blocks is 2! and compute the probability
that there exists a segment with at least 1.51log® NN real blocks.

Let us consider a particular segment, and define X1, -+, X, as
random variables such that
1 the i"real block mapped to the segment,
Xi = : “
0 otherwise.
Note that, X1, -, X4 are independent of each other, and hence
_ _ 1 _ log?N _
for each X;, Pr[X; = 1] = o N S Let X =

Zil X;. The expectation of X is

2 4 log® N
E[X]=E |} Xi| =Y E[X]=2"- 25~ =log’ N.
i=1

i=1
®)
According to the multiplicative form of Chernoff bound, for any
j > E[X] = log® N, it holds that
Pr|[at least j real data blocks in this particular segment]

o1 log® N 6
=Pr[X > jl < <?>)

where § = log+N By applying the union bound, we can obtain
Pr[3 a segment with at least j real data blocks]
ol -1 log® N 7
<—5—=- .
log” N < 8)

Further considering that 2 < N, it follows that

Pr[3 a segment with at least 1.5 log2 N real data blocks]

N e? log? N —log N ®)
< log? N <1.51-5> = oW)

‘When the number of real blocks is less than 2l, obviously, the
above probability is also O(N '8N Therefore, the lemma is
proved. [J

LEMMA 2. (Failure probability of S-ORAM). The probability
that the S-ORAM construction fails is O(N~"°¢ ™). Particularly,
a data query or shuffling process will never fail on any T1-layer; a
data query or shuffling process on a T2-layer may fail with proba-
bility O(N~ & M),

PROOF. The S-ORAM construction fails if a query or shuffling
process fails.

A data query process fails only if: (Q1) the process fails to find the
target data block; or (Q2) the process fails to find a non-accessed
dummy block on a layer when it needs to retrieve one according to
the query algorithm. As the storage server is assumed to be honest,
case (Q1) will not occur. Case (Q2) will not occur when the query
process is accessing a T1-layer, due to the following reasons: Each
layer [contains 2! blocks, among which the number of dummy
blocks is at least 2'; since the data blocks in the layer are shuffled

once every 2’ queries, there must exist at least one non-accessed
dummy block for each of the 2! queries.

A data shuffling process for layer [fails only if: (S1) layer overflow
occurs, i.e., the process tries to store more data blocks to the layer
than its capacity; or (S2) segment overflow occurs when layer [is
a T2-layer, i.e., the process tries to store more than 3log® N real
data blocks to a segment. As discussed in Sections 4.4.2, case (S1)
will not occur when shuffling a T1-layer [because the total number
of blocks to be shuffled is 2/, which is the capacity of the layer.
According to Section 4.4.3, case (S1) will not occur when shuffling
a T2-layer [, because Round IV of the shuffling algorithm marks
and removes redundant blocks to make the total number of blocks
less than the capacity of the layer.

Hence, we only need to study the probability for cases (Q2) and
(S2) to occur on a T2-layer.

Case (Q2) occurring on a T2-layer [means that a query process fails
to find a non-accessed dummy block on a segment of the layer. This
can only happen in one of the following two scenarios: (i) more
than 1.5log? N real data blocks are distributed to this segment, or
(ii) more than 1.5log? N dummy data blocks are accessed from
this segment since last time the blocks were shuffled. According
to Lemma 1, scenario (i) occurs with probability O(N ™18 V). As
the selections of dummy blocks during the query processes are also
randomly distributed among all segments of the layer, which is the
same as the distribution of real data blocks to the segments during
the shuffling process, the probability for scenario (ii) to occur is
also O(N ') Hence, the probability for case (Q2) to occur is
O (N~ log N) .

When case (S2) occurs on a T2-layer, there must be at least one
segment of the layer distributed with more than 3log® N blocks.
The probability that this case occurs is smaller than the probability
that at least one segment of the layer is distributed with at least
1.5log® N blocks, which is O(N '8 Hence, the probability
for case (S2) to occur is also O(N '8 %),

To summarize, the probability that the S-ORAM construction fails
isO(N~—'eN) O

LEMMA 3. (Random and non-repeated location access in S-
ORAM). In S-ORAM, a query process accesses locations from each
non-empty layer | (I > 1) in a random and non-repeated manner.
Here, the non-repeatedness means that, a data block is accessed
for at most once between two consecutive shuffling processes that
involve the block.

PROOF. When layer [is a T1-layer, there are two cases. Case
1.1. If the query target data block D; has not been found at any
layer prior to layer [, and layer [contains Dy, D; is accessed. Due
to the randomness of the hash function H;(-) used to distribute
data blocks to locations, the location of D; is randomly distributed
among all the locations of layer /. Hence, the access is random.
Also, D; must not have been accessed since last time it was in-
volved in data shuffling; otherwise, the block must have been a
query target of an earlier query and then moved to layer 1 already.
Hence, the access is also non-repeated. Case 1.2. Otherwise, a non-
access dummy block is randomly selected to access, which makes
the access to be random and non-repeated.

When layer [is a T2-layer, there are following cases. Case 2.1. If
the query target D, has not been found at any layer prior to layer
I, a segment s = H;(t) of layer [is picked to access. Due to
the randomness of the hash function H;(-), the selection of s is
random. Then:

e If D, is in segment s, the block is accessed. As the shuffling
process randomly permutes blocks within the same segment,
the access of D, within segment s is random. The access is
also non-repeated due to the same reasoning as in Case 1.1.

e If D, is not in segment s, a non-accessed dummy block is
randomly picked to access in the segment. Hence, the access
is random and non-repeated.

Case 2.2. If the query target D, has already been found above
layer [, a segment s is randomly selected and a non-accessed dummy
block is randomly picked from the selected segment to access. Hence,
the access is random and non-repeated. [

THEOREM 1. S-ORAM is secure under the security definition
in Section 3.2.

PROOF. Given any two equal-length sequence ¥ and 7 of data
requests, their corresponding observable access sequences A(Z)
and A(¥) are computationally indistinguishable, because of the fol-
lowing reasons:

e Firstly, according to the query algorithm, sequences A(Z)
and A(%) should have the same format; that is, they contain
the same number of accesses, and each pair of corresponding
accesses have the same format.

e Secondly, all blocks in the storage of S-ORAM are random-
ized encrypted and each block is re-encrypted after each ac-
cess. Hence, the two sequences cannot be distinguished based
on the appearance of blocks.

e Thirdly, according to the query algorithm, the j-th accesses
G =1,---,|A(Z)|) of the A(Z) and A(%) are from the same
non-empty layer of the storage; and according to Lemma 3,
the locations accessed from the layer are random and non-
repeated in both sequences.

Also, according to Lemma 2, the S-ORAM construction fails with
probability O(N~'°8 ™) which is considered negligible and no
larger than the failure probability of existing ORAM constructions [6,
8-11,13,15-20]. O

5.2 Overhead Analysis

We analyze the overhead of S-ORAM including bandwidth con-
sumption (i.e., communication overhead), user-side storage over-
head, and server-side storage overhead.

The server-side storage in S-ORAM is no more than 6N - Z bits.
Note that a storage of at most 6V - Z bits is needed only when shuf-
fling layer Lo, i.e., the bottom layer; for all other layers, a storage
of at most 3V - Z bits is needed. The user-side storage is constant;
specifically, it is 2 - Z bits.

The bandwidth consumption consists of two parts: query overhead
Q(N) and shuffling overhead S(N), which are analyzed next. The
query overhead includes the retrieval and uploading of up to four
data blocks for layer 1 and two data blocks (i.e., an index block and
a data block) for each non-empty layer. Hence, the maximum com-
munication cost Q (V) is the retrieval and uploading of 2log N +2
blocks per query.

When shuffling a T1-layer [of 2" data blocks, each data block is
processed once in the user cache. Hence, the communication cost
is the retrieval and uploading of 2! blocks.

When shuffling a T2-layer [of n = 4 - 2! data blocks or the bottom
layer Lo of n < 6N data blocks, the shuffling process includes
three rounds of scanning and two rounds of oblivious sorting. The
scanning rounds can be integrated into the oblivious sorting rounds.
Specifically, Round I (scanning round) can be performed side-by-
side with the segment-sorting (line 2 of Algorithm 3) of Round II
(oblivious sorting round). Round III (scanning round) can be per-
formed concurrently with the last step of merging (line 19 of Algo-
rithm 5) in Round II. Similarly, Round V (the third scanning round)
can also be performed concurrently with the last step of merging in
Round IV (oblivious sorting round). This way, the shuffling cost
becomes the cost for two rounds of oblivious sorting.

Next, we compute the cost of m-way obliviously sorting n data
blocks. With Algorithm 3, n blocks are divided into 5> subsets
of equal size. These subsets are sorted at the user cache and then
recursively merged into a large sorted set by Algorithm 5. During
each merging phase, every m smaller sorted subsets are merged
into one larger sorted subset. Thus, there is a total of log,,, 5 — 1
merging phases needed to form the final sorted set. Let G(m, s)
denote the number of times that each block is retrieved and then
uploaded during a merging phase, where m smaller sorted subsets
are merged into one larger sorted subset and each smaller subset
contains s data blocks. We have the following recursive relation:

G(m,s) =G (m, %) t2. ©)

This is because, during the merging phase, each block should (i)
perform another phase of merging in which smaller subsets each
containing s/m blocks are merged into subsets of s blocks (line
10 in Algorithm 5), incurring G(m,) times of retrieval and up-
loading for each block, and then (ii) perform steps 13-20 in Algo-
rithm 5, incurring 2 times of retrieval and uploading of each block.
Hence, each data block should be retrieved and uploaded for

log,, 5 —1

T(n) = Z G(m,2m') = (logm g - 1)2 (10
i=1

times during the entire shuffling process.

As shuffling is performed periodically at layers, the amortized shuf-
fling overhead consists of the following:

e Each Tl-layer [(2 < I < L) is shuffled once every time
when an odd multiple of 2’ queries have been made, and
each of the 2! data blocks at T1-layer [is scanned once for
every shuffling. Hence, the amortized overhead is S;(N) =
;i% = 1 block scanning per query.

e Each T2-layer [(L1 <l < Lz), except the bottom layer L,
is shuffled also once every time when an odd multiple of 2!

queries have been made, and two rounds of oblivious sorting

are performed on 4 - 2" data blocks. Hence, the amortized
1 l

overhead is S;(N) = %ﬁ‘”) = 4-T(4- 2" block

scannings per query.

e The bottom layer Lo is shuffled every time when a multi-
ple of NV queries have been made, and two rounds of oblivi-
ous sorting are performed. The first oblivious sorting is per-
formed on w < 6N blocks and second one is performed on
4N. Hence, the amortized overhead is at most Sr,(N) =
SNAON) | ANTON) — 6. T(6N) + 4 - T(4N) block
scannings per query.

Therefore, amortized shuffling overhead S (V) is:

SV =SSN+ 3 SN+ S0 (N) = O (logsN) _
=2

2
=Tkt log=m

To summarize, the bandwidth consumption for S-ORAM is Q (N)+
S(N) =0 (log3N).

log2 m

5.3 Overhead Comparison

We now compare the performance of S-ORAM with that of B-
ORAM and P-ORAM from both theoretical and practical aspects.
The theoretical results of bandwidth, user-side storage and server-
side storage overheads are denoted as 73, T, and T, and the prac-
tical results as Py, P, and Ps, respectively. The practical settings
used here are as follows: the number of data blocks /N ranges from
229 t0 236 and the block size ranges from 32 KB to 256 KB, which
are similar to the practical settings adopted in [18]. In the compar-
isons, system parameter v in S-ORAM may be set to a value other
than 2. If o # 2, the scheme presented in Section 4 can be modified
to accommodate this by simply setting parameter m to the largest
integer satisfying Equation (3).

5.3.1 S-ORAM vs. B-ORAM

In order to compare S-ORAM with B-ORAM, the user cache size
is set to 512 KB in both constructions. As shown in Table 1, the
bandwidth consumption of S-ORAM is 12 to 23 times less than that
of B-ORAM under practical settings, while the server-side storage
overhead of S-ORAM is about 75% of that of B-ORAM. The im-
provement in bandwidth efficiency is attributed to two factors: (i)

S-ORAM B-ORAM

log® N logZ N
T O(log2(§ log N) Z) O(logglogN) Z)
T, 0(2) 0(2)
Ts O(N - Z) O(N - Z2)
P, | clog? N - Z(0.599 < ¢ < 0.978) | > %lee’ N . 7
P. 512 KB 512 KB
P <6N-Z >8N-Z

Table 1: Performance Comparison: S-ORAM vs. B-ORAM

| | S-ORAM | P-ORAM |
(o] 3 O 2
Ty O(log2l(§ 1ivgN)) Z) O(% i Z) ' “J(l)
T. 0(2) O(og N - Z) - w(1)
Ts ON-2) ON-2)

Table 2: Theoretical Performances: S-ORAM vs. P-ORAM

N =27 N=2%

S-ORAM P-ORAM S-ORAM P-ORAM
P,(Z =32KB) | 0.394log? N-Z | 1.170log® N - Z | 0.4561log® N - Z | 1.24710g® N - Z
Py(Z =64KB) | 0.334log” N-Z | 1.090log® N - Z | 0.4561log” N - Z | 1.1571log® N - Z
Py(Z =128KB) | 0.334log® N - Z | 1.0211og”> N - Z | 0.3921log® N - Z | 1.0791log® N - Z
Py(Z =256 KB) | 0.2591log” N - Z | 0.9591og” N - Z | 0.392log” N - Z | 1.0111log® N - Z

log® N log® N

Pe 10g2 N-Z log(Zg Tog N) Z 10g2 N-Z log(Zg log N) Z

P, <6N-Z 32N - Z <6N-Z 32N - Z

Table 3: Practical Performances: S-ORAM vs. P-ORAM

the query overhead of S-ORAM is only 2log N blocks while the

overhead of B-ORAM is liéoizglzvv; and (ii) the shuffling algorithm
of S-ORAM is more efficient than that of B-ORAM. In addition,
the failure probability S-ORAM is O(N~'°8 V) which is asymp-

totically lower than that of B-ORAM which is O(N ~'°&'°e V) [13],

5.3.2 S-ORAM vs. P-ORAM

To fairly compare the performance of S-ORAM and P-ORAM,
their user-side storage sizes are both set to around log? N blocks
and their failure probabilities are set to the same level: O(N 198 V),
For this purpose, the security parameter w(1) of P-ORAM has to

be set to and the user-side storage size of P-ORAM is

log2 N
loggZ/log N)>
set to % - Z bits; the user-side storage size of S-ORAM
is expanded to logZ N - Z bits. Note that, mgéozg/% - Z >
log? N - Z as long as Z < N (which is usually true in practice).
Table 2 shows the theoretical performances of both S-ORAM and
P-ORAM and Table 3 is the practical performance comparison of
these two ORAMs. From Table 3, it can be seen that S-ORAM
outperforms P-ORAM in both bandwidth efficiency and server-side
storage efficiency. It requires 80% less server-side storage and con-
sumes around 60% to 72% less bandwidth than P-ORAM.

6. CONCLUSION

In this paper, we propose a segmentation-based ORAM (S-ORAM).
S-ORAM adopts two segment-based techniques, namely, piece-

wise shuffling and segment-based query, to improve the perfor-

mance of shuffling and query by factoring block size into design.

Extensive security analysis shows that S-ORAM is a provably highly
secure solution with a negligible failure probability of O(N =108 V),
In terms of communication and storage overheads, S-ORAM out-

performs the Balanced ORAM (B-ORAM) and the Path ORAM

(P-ORAM), which are two state-of-the-art hash and index based

ORAMs respectively, in both practical and theoretical evaluations.

7. REFERENCES

[1] M. Ajtai, J. Komlos, and E. Szemeredi. An O(nlogn)
sorting network. In Proc. STOC, 1983.

[2] Amazon. http://aws.amazon.com/s3/. In Amazon S3, 2006.

[3] K. E.Batcher. Sorting networks and their applications. In
Proc. AFIPS, 1968.

[4] A. O. Freier, P. Karlton, and P. C. Kocher. The secure sockets
layer (SSL) protocol version 3.0. In RFC 6101, 2011.

[5] C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova, and
D. Wichs. Optimizing ORAM and using it efficiently for
secure computation. In Proc. PETS, 2013.

[6] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious RAM. Journal of the ACM, 43(3),
May 1996.

[7] M. T. Goodrich. Randomized shellsort: a simple oblivious
sorting algorithm. In Proc. SODA, 2010.

[8] M. T. Goodrich and M. Mitzenmacher. Mapreduce parallel
cuckoo hashing and oblivious RAM simulations. In Proc.
CoRR, 2010.

[9] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving
access of outsourced data via oblivious RAM simulation. In
Proc. ICALP, 2011.

[10] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Oblivious RAM simulation with efficient
worst-case access overhead. In Proc. CCSW, 2011.

[11] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Privacy-preserving group data access via
stateless oblivious RAM simulation. In Proc. SODA, 2012.

[12] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: ramification, attack and
mitigation. In Proc. NDSS, 2012.

[13] E. Kushilevitza, S. Lu, and R. Ostrovsky. On the (in)security
of hash-based oblivious RAM and a new balancing scheme.
In Proc. SODA, 2012.

[14] D.-L. Lee and K. E. Batcher. A multiway merge sorting
network. IEEE Transactions on Parallel and Distributed
Systems, 6(2), February 1995.

[15] B. Pinkas and T. Reinman. Oblivious RAM revisited. In
Proc. CRYPTO, 2010.

[16] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious
RAM with O((log N)?) worst-case cost. In Proc.
ASIACRYPT, 2011.

[17] E. Stefanov and E. Shi. ObliviStore: high performance
oblivious cloud storage. In Proc. S&P, 2013.

[18] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious
RAM. In Proc. ASIACRYPT, 2011.

[19] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In Proc. CCS, 2013.

[20] P. Williams and R. Sion. Building castles out of mud:
practical access pattern privacy and correctness on untrusted
storage. In Proc. CCS, 2008.

[21] P. Williams, R. Sion, and A. Tomescu. PrivateFS: a parallel
oblivious file system. In Proc. CCS, 2012.

[22] P. Williams, R. Sion, and A. Tomescu. Single round access
privacy on outsourced storage. In Proc. CCS, 2012.

Appendix
We present the details of the proposed m-way oblivious sorting al-
gorithm in this Appendix.

As shown in Algorithm 3, to sort a set D of n blocks, the m-way
oblivious sorting algorithm works recursively as follows: if n <
2m?, a segment-sorting algorithm similar to the segment-shuffling
algorithm is applied to sort the n blocks at the communication cost
of O(n) blocks; otherwise, the n blocks are split into m subsets
each of - blocks, the m-way oblivious sorting algorithm is applied
to sort each of the subsets, and finally a merging algorithm is used
to merge the sorted subsets into a sorted set of n blocks.

Algorithm 3 m-way Oblivious Sorting (D: a set of data blocks)
1: if (|D| < 2m?) then
2 Apply Algorithm 4 to sort D
3: else
4 Split D into m equal-size subsets of blocks Dy, - - - , Dy,—1
5: foreachi (0 <i<m —1)do
6
7
8
9:

Apply Algorithm 3 to sort D;
end for
Apply Algorithm 5 to merge Do, - -+ , Dm—1
end if

Next, we describe the segment-sorting algorithm (Algorithm 4) and
the merging algorithm (Algorithm 5) The segment-sorting algo-
rithm is based on the segment-shuffling algorithm (Algorithm 2)
with the following revisions: (1) The segment-sorting algorithm
sorts blocks that are labeled with tags. The format of a labeled
block is slightly different from the one shown in Figure 1; partic-
ularly, the encrypted tag is inserted as an extra piece before the
encrypted block ID. (2) While the segment-shuffling algorithm can
randomly pick a permutation function to shuffle pieces and blocks,
the segment-sorting algorithm must permute pieces and blocks ac-
cording to the non-decreasing order of tags. (3) The segment-
sorting algorithm does not need to re-construct index blocks.

Algorithm 4 Segment-Sorting of Blocks (D;,, - , D;,,).
1-5: the same as in Algorithm 2
6: Construct a permutation function that sorts Bs in the non-
decreasing order
7: the same as in Algorithm 2
8: blank
9-14: the same as in Algorithm 2
15: foreachv € {2,--- , P} do
16-26: the same as in Algorithm 2

Finally, Algorithm 5 formally presents the merging algorithm.

Algorithm 5 Merging Sorted-subsets of Blocks (Do, - - - , Dim—1)

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:

AR A

/* Regroup blocks */

. 8:|D0‘
: foreachi (0 <i<m—1)do

foreachj (0 <j<m-—1)do
Add D;[j], Di[m + j] - -+ , Di[s — m + j] to D;
end for

: end for

/* Recursively merge regrouped blocks */

:foreachj (0<j<m—1)do

if |[D)| < 2m? then
Apply Algorithm 4 to sort D
else
Apply Algorithm 5 to merge sort D
end if
end for
/* Merge sorted blocks */

foreachi (0 <i< 2 —1)do
foreachj (0 <j7<m—1)do
Add Dj[im], - -+, Djlim + 2m — 1] to Dy
end for
end for
foreachi (0 <i < > —1)do

Apply Algorithm 4 to sort D;’
end for

