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In this report we describe an approach to the reconstruction of 
flaws, not merely their detection. This will give us the ability to 
obtain much xoore information about the nature of the flaw. By "flaw" 
we mean virtually any departure of the medium from a standard condi­
tion, which is known a priori, such as may be produced not only by 
a crack but also by conductivity in homogeneities produced by 
stresses, magnetite build-up, etc. Our appro~ch is very much in 
the spirit of contemporary work in inverse methods in electromagnetics 
[1-3] and electromagnetic-geophysical prospecting [4-11]. 

The method of solving this problem is based on minimizing the 
square of the error between the actual measured data and that pro­
duced by the model-system, the model-output (this error is often 
called the residual). The parameters that are varied to produce the 
optimum model, in the least-squares sense, are, of course, the con­
ductivities that are assigned to each cell in the mesh of Figure 1. 

Thus, mathematically, we wish to determine a set of unknown 
parameters a ., .j=l, . . . , M, where M is the number of cells in 
the mesh, frdm a set of data, e., i=l, ••• , N, where ei are the 
voltages induced into the N sen§ing coils. The e. are functionally 
related to the a. in a known way; that is 1 

J 

*This work was supported by the Naval Surface Weapons Center (Code 
R34), White Oak Labs, Silver Spring, MD 20910, under Contract No. 
N6092l-81-C-0302. 
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(1) 

Hence, given the cr. we can calculate the e. by treating this as 
a "forward" problem. r6e equations (1) that detine the forward prob­
lem are determined by using electromagnetic theory. 

But it is the voltages, e., that are the given data, so we must 
invert the system, (1), to det~rmine the cr .• We do this by minimizing 
the error function J 

(2) 

Iterative methods are comm:mly used to carry out the minimiza­
tion of (2). The iterative method successively improves a current 
model, i.e., a current estimate of the cr., until the error measure, 
(2), is small and the parameters are staBle with respect to reason­
able changes in the model. 

The success of this method of inversion depends largely on the 
availability of suitable numerical algorithms for carrying out the 
least-squares solution of (1). Any algorithm chosen must contend 
with the fact that the problem as posed in (1) and (2) is generally 
quite ill-conditioned, which means that small variations in input 
data can produce quite large variations in the solution. The com­
mercially available FORTRAN packages, LINPACK [12] and MINPACK [13], 
contain well-written codes for least-squares algorithms, and these 
codes served as the basis of the numerical experiments to be de­
scribed in this report. LINPACK consists of linear equation-solving 
algorithms, and MINPACK contains nonlinear least-squares algorithms. 

These experiments indicate that the inversion method works quite 
well on simulated flaws, even when the data is corrupted by as much 
as 20%; this is quite important in applications. Another nice feature 
is that once the nonlinear inversion algorithm has converged, it is 
possible, using the techniques of linear inverse theory, to assess 
the errors and resolution in the estimate of the final rrodel. The 
objective is to determine which features of the rrodel are well­
resolved and important to the interpretation of the data and which 
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features are irrelevant, in the sense that the data neither support 
nor reject their inclusion in the model. This is also quite useful 
in eddy-current NDE. 

THE MODEL 

We introduce the following notation 

E1 ,2(r,z) = Electric field in region 1 or 2, with flaw present 

EO (r,z) Electric field with flaw absent, due to exciting coil. 

Then we have the following basic integral equation for computing E 
in the flawed region, which is in region 2: 

E2 (r,z) +jW].lOOO If G22(r,Ziri,Z')E2(r',Z,)(::(r',z') -l)r'dr'dz' 

Flaw 

(3) 

In addition, we have the integral relation for computing the 
perturbed electric field at the probe coil (which lies within 
region 1): 

jW].lOOo If G12 (r,Zi r ',Z')E2 (r', z') • 

Flaw 
Of 
(o(r', z') - l)r'dr'dz' 

o 
(4) 

When this equation is integrated over the probe coil we get the 
perturbed EMF. If we assume that the probe coil is uniformly and 
densely wound with n turns per unit area (in the r-z plane), we get 
for this EMF: c 

EMF -21Tn 
c If (5) 

Probe Coil 

Finally, the electric field, EO' that is produced by the excit­
ing coil is given by 
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(6) 

where ~O is the exciting coil current density, n is the density of 
turns ~n the exciting coil, and 10 is the curren~ carried by the coil. 

Equations (3)-(6) constitute the model system. The algorithm 
for using the system consists of first computing the incident field, 
EO' at the flaw, by (6); this is the right-hand side of (3). For a 
g~ven distribution of flaw conductivity, 0f(r,z), (3) can be solved 
numerically. Its solution, the electric f~eld, E2, in the flawed 
region is the source term for (4), which produces the perturbed elec­
tric field at the probe coil in region 1. The integral of the per­
turbed electric field produces the perturbed EMF, (5), which is then 
compared with the measured EMF to determine if the assumed flaw con­
ductivity, 0f(r,z), is "close" to the actual (though unknown) flaw 
conductivity. The problem is really nonlinear because (3) involves 
the product of two unknowns, 0f(r,z) and E2(r,z). Thus, some form 
of iteration is required, in which one starts with an assumed distri­
bution for 0f(r,z), and then hopes to converge to a final acceptable 
value. 

The discretization of the problem via the method of moments is 
based on the use of a mesh, as shown in Figure 1. In order to reduce 
(3) to an algebraic system, we expand E2 (r,z) and (O~OO - 1) in pulse 
functions that are defined with respect to this mesh: 

N c 
l: E,P,(r,z) 

j=l J J 

N 
c 

l: o,P,(r,z) 
j=l J J 

(7a) 

(7b) 

where N is equal to the number of cells in the mesh, and P,(r,z) is 
the jthcpulse function, which is defined by J 

P,(r,z) 
J 

1 

o 

(r,z) in jth cell 

otherwise (8) 
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The jth expansion coefficients, 
of the fields over the jth cell. 
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E. , 
J 

a., are the constant values 
J 

Because E2 and (af/aO - 1) have identical expansions in non­
overlapping pulse functions, it follows that their product does also: 

N 
c 

L E.a.P.{r,z) 
j=l J J J 

(9) 

The discretized version of (3) and (6) is the vector-matrix equation 

(10) 

while the discretized version of (4) and (5) is the vector-matrix 
equation 

EMF = T [aE] (ll) 

The expressions for the matrices above and other detailed cal­
culations can be found in [14]. 

NUMERICAL EXPERIMENTS AND RESULTS 

The theory of inversion involves two components, a theoretical 
r~del that is based on a rigorous application of electromagnetic 
theory, and numerical algorithms that effectively implement least­
squares theory. Each of these has been dealt with, and now we illus­
trate how the method works for the reconstruction of computer simu­
lated flaws. 

All numerical experiments were run in double precision on the 
PRIME S50-II and IBM 370 machines. The double precision data word 
on the PRIME occupies 64 bits, of which 47 are the mantissa and 16 
the exponent. The effective precision is about 14 digits. The IBM 
double precision word has a 56 bit mantissa, which allows an effec­
tive precision of about 17 digits. Precisions such as these are 
required for meaningful computations, because the condition number 
of the Jacobian matrix is phenomenal--on the order of 1012 • Even 
with this large condition number, the computations produced excellent 
results; in the worst case the reconstructions were exact to at least 
three places on the PRIME, and five places on the IBM. This verifies 
that the algorithms in the LINPACK and MIN PACK packages tend to work 
better in higher precision. 

The physical system that was modeled is shown in Figure 1. It 
consists of a fixed exciting coil and a single probe coil that can 
be moved axially. This system is typical of a common flaw detection 
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scheme. The mesh on which the discretization is defined is also 
shown. It consists of six rows of ten cells, and spans the entire 
tube wall-thickness. The starting position of the probe coil is at 
the left edge of the mesh, and the final position is at the right 
edge. The probe coil is stepped through fifty equal intervals between 
these limits, thereby generating a total of 100 real and imaginary EMF 
values that are used in the least-squares inversion. 

The physical parameters of the model are typical of real systems. 
The inner radius of the tube is 0.310", and the outer radius, 0.375". 
The length of the mesh is 0.50" in the z-direction, thereby giving a 
cell resolution of 0.05" by 0.011". The probe coil's inner radius is 
0.05", outer radius 0.100", and its length is 0.50", the same as the 
mesh. The exciting coil is centered on the mesh in the z-direction 
(neither of these last two items is a requirement of the inversion 
method). The density of turns of the exciting coil is 2xl06 turns/m, 
which is comparable to that of 20 gauge copper wire. The probe coil 
has an inner radius of 0.100", outer radius of 0.26", and a length of 
0.250". Its tum density is 2xl07 turns/m, which is comparable to 30 
gauge copper wire. The tube conductivity is 3.5xl07, which is equal 
to the conductivity of aluminum, and the frequency of operation is 
1kHz. 

In Figure 2 we show a simulated flaw (the "original") at the top 
and its reconstructed version at the bottom. The real (R) and imag­
inary (I) parts of the perturbed EMF, as measured by the probe coil 
when it is moved across the mesh, are shown in the middle of the 
figure. This EMF curve is actually an interpolation based on the 
fifty probe coil positions. In this figure, and the next two, we 
simulate the flaw by letting crf = 0 at the flaw location, and cr f = cro 
off of the flaw. Thus, accord~ng to (7) (b), cr, = -1 if the jth cell 
lies on the flaw, and cr, = 0, otherwise. J 

J 

Note, in Figure 2, that because the original flaw is placed sym­
metrically in the mesh, the E~W is symmetrical about the center of 
the mesh, also. The reconstruction is clearly perfect (to at least 
three significant digits), indicating that the least-squares inversion 
algorithms work quite well in this model. We must be careful to note, 
however, that in Figures 2-6 we have considered only original flaws 
that are defined on the same mesh as that used for reconstruction; 
i.e., each part of the flaw is constant over a full cell of the recon­
struction mesh. We consider the more general case, in which the flaw 
may be defined on a different mesh than that used for reconstruction 
(say, one with smaller cells, or cells that are displaced from the 
cells of the reconstruction mesh) in Figures 7, 8. This will test the 
ability of the model to resolve, as well as invert, data. 

TO satisfy ourselves that the 
tained in Figure 2 were not due to 
metrical flaws of Figures 3 and 4. 

excellent results that were ob­
symmetry, we considered the asym­

Again, the reconstruction was 
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111111111 
RECONSTRUCTED FLAW 

POSITION OF 
PROBE COIL 

Figure 2. Illustrating a symmetrically placed flaw (top), the real 
(R) and imaginary (I) parts of the EMF induced into the 
probe coil (center), and the reconstructed flaw (bottom). 
The flaw consists of the darkened cells. The reconstruc­
tion is exact to at least three significant digits. 
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POSITION OF 
PROBE COIL 

Figure 3. Illustrating the reconstruction of an asymmetrically 
placed flaw. The interpretation of the figure is the 
same as of Figure 2. 
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Figure 4. Illustrating the reconstruction of another asymmetrically 
placed flaw. 
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perfect to at least three significant digits. It should be noted 
from these three examples that the more concentrated the flaw, the 
greater is the peak. of the EMF curve. 

A crucial test of inversion in highly ill-conditioned systems 
has to do with corrupted data. The question is, does the recon­
struction "follow" the corrupted data, or does the result lose all 
significant figures? In order to test our model's response to cor­
rupted data, we performed the following numerical experiment. We 
assigned to each cell in the mesh a number between 0 and 1, chosen 
at random by using the FORTRAN random number generator. Then the 
model EMF that is produced by this "flaw" is computed. This "true" 
data is then corrupted by adding to it the same data multiplied by 
either 0.01, 0.10, or 0.20, and then using this as the "measured" 
EMF. Figure 5 shows the results of this experiment. There we show 
the original flaw, consisting of the sixty randomly chosen cell con­
ductivities, followed by the reconstructed flaw, simulated by the 
sixty values of computed cell conductivities, for the case of 1%, 
10%, and 20% corrupted data. 

Again, the results are excellent. We don't, of course, expect 
to reconstruct the original flaw by using corrupted EMF data. We are 
happy, though, to see that the reconstructed flaw "tracks" the origi­
nal flaw, in the sense that it departs by almost exactly 1%, 10%, or 
20% from the original. Such stability in the face of a very ill­
conditioned system attests to the excellence of the LINPACK and 
MINPACK algorithms. 

The same results that are shown in Figures 2-5, are obtained 
with either the linear or nonlinear algorithms~ The reason for this 
is that in (10) ~he term involving the matrix G is much smaller than 
the first term, A. Thus, the solution of the equation is E Z EO' and 
when this is substituted into (11) we see that the Jacobian matrix is 
constant, so that the nonlinear algorithms may be replaced by the 
simpler linear ones. 

Our inversion method was also tested in the presence of a known 
irregularity. The case we present is where there is a notch. The 
results are presented in Figure 6. 

When we generated and reconstructed on different grids, the non­
linear least-squares algorithms were no longer adequate. In this 
case it was important to impose the proper constraints on the cr,. 
Thus when we used the nonlinear programming routine VMCON [15],Jwe 
got the results shown in Figures 7 and 8. VMCON uses the variable 
metric constraint method of Powell. 

The results of the numerical experiments have been very good 
and suggest that the method can be used as the basis for the develop­
ment of an engineering prototype system. 
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Ie 

Figure 5. Illustrating the reconstruction of random flaws with per­
turbed EMF data: (a) 1% perturbation, (b) 10% perturba-
tion, (c) 20% perturbation. 
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Figure 6. Illustrating the reconstruction of a flaw in the presence 
of a known irregularity (notch). 
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ORIGINAL FLAW AND GRID 
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I 

o 
I 

+0.05 
I 

-0.134 -0.134 
0.174 -0.174 

0.269 -0.269 

RECONSTRUCTED FLAW AND GRID 

POSITION OF 
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Figure 7. Illustrating the reconstruction of a flaw that was gener­
ated on a finer grid. The reconstruction grid is five 
times as wide as the generation grid. 
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Figure 8. Illustrating the reconstruction of a flaw that was gener­
ated on a finer grid. The reconstruction grid is two 
times as wide as the generation grid. 
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DISCUSSION 

E.K. Miller (Lawrence Livermore National Laboratory): It seems 
almost startling that the range of the matrix can be so ill­
conditioned and yet seem so insensitive to noise and the data. 
Do you have any explanation for why this is so? 

D.L. Sabbagh (Analytics, Inc.): No, I don't. 

H.A. Sabbagh (Analytics, Inc.): I can't answer precisely, but my 
guess is that in the least squares process, you never invert a 
matrix. You consistently use QRD compositions and factoriza­
tions. I think that is a system that apparently maintains this 
sort of stability. The matrices are so ill-conditioned that you 
don't even talk about inverting them. Now we did note the fol­
lowing: When we ran it on my prime 550 in double precision (the 
prime maintains 47 to 48 bits of mantissa, and gives you 16 bits 
in the exponent), we were accurate to at least 3 decimal places 
and generally much better than that. When David ran it on his 
IBM 370, which maintains almost 56 bits, which corresponds to 
perhaps 17 decimal digits, he got 3 to 4 digits more. The Min­
pac routine is coded in such a way that you expect to get better 
efficiency with better precision. But, to answer the first part 
of the question, my guess is that it simply has to do with us­
ing the factorizations and all that QRD composition. 

D.L. Sabbagh: You never solve a least squares problem by solving 
the normal equations, and you never find the generalized in­
verse. You do the QRD composition. That's the numerical way 
to do them. And the Minpac routine is an implementation of the 
Levenberg Marcory algorithm that is very good. 

H.A. Sabeagh: We found out one other thing: When we try to gene­
rate and reconstruct on different grids, it all worked very 
well. When we reconstructed and generated on the same grid, 
we were able to reconstruct perfectly. When we did it on oppo­
site grids, the Minpac didn't work at all, and that's when we 
decided we finally had to use correct constraints. Everything 
was unconstrained at that point. When we constrained the nor­
malized conductivity to lie between the correct values, every­
thing fell into place and the last results that David showed 
you used a constrained programming. 

D.L. Sabbagh: Not only programming, but also a variable metric 
method. 




