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I. INTRODUCTION 

The model theory of the strong interaction which has been widely 

studied in recent years is quantum chromodynamics (QCD). QCD is a 

theory in which many calculations are very difficult to carry out. As 

W. Marciano and H. Pagels (1) have said: "QCD is a Lagrangian field 

theory in search of a solution. Nothing comparable to the Feynman 

rules and the perturbation approximation series in QED exists for the 

bound state physics of QCD. There may even be difficulties in precisely 

defining the theory. According to QCD all the strongly interacting 

particles are bound states of permanently confined constituents called 

quarks. Yet no one has ever proven the existence of a single bound 

state ...." In view of the lack of a solution to the problem of bound 

states in QCD, perhaps a nea approach is in order. 

In classical mechanics one learns that many problems may be solved 

easily if an appropriate change of variables is employed. If one were 

to apply the change-of-variables approach to the bound-state problem in 

QCD, one would prefer to use some set of variables in which bound states 

are most naturally described. One method of deciding what specific type 

of new variables to choose for hadron problems is to study the resonances 

produced in two-body scattering. 

Examination of scattering data, e.g., TN shows that if one plots 

2 the angular momentum (£) versus the mass squared (m ), the resonances 

tend to be located on straight lines, Regge trajectories. This grouping 

of the resonances into families tends to indicate that angular momentum 
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is an important quantity. In an attempt to calculate the masses and 

widths of these particles, it might prove useful to choose a set of 

variables in which angular momentum plays a prominent role. 

In classical mechanics there is a system of variables which 

historically has been defined for bound-state two-body systems, and 

which uses angular momentum as one of the canonical momenta of the 

system. This set of coordinates and momenta is the action-angle 

variables. These classical quantities are Hamilton-Jacobi variables 

where the Hamiltonian of any system is a function only of the action 

variables, i.e., of the momenta (2). This property simplifies dynamical 

calculations. Furthermore, while these variables were developed for 

bound states of systems, their definition has been extended (3) to 

scattering states by analytic continuation. Thus, the action-angle 

variables may be applied to "quasi-bound" states (scattering states) as 

well as to the traditional bound states. 

Since these variables can have angular momentum as a fundamental 

momentum (having a canonically conjugate variable associated with it), 

and since these variables have proven useful in the past for the study 

of the bound states of systems, they might prove useful for studying 

the hadronic resonances. 

Before one can begin to calculate hadronic masses using action-

angle variables it is necessary to understand them as quantum-mechanical 

objects. This thesis will treat the action-angle variables as operators 

in the context of nonrelativistic quantum mechanics. This is the first 
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step towards calculating hadronic processes using the concept of action-

angle variables. 

Quantum mechanical transformation theory has not been extensively 

investigated. Dirac (4,5) has considered using operators to effect 

transformations, and, in addition, has also considered using a quantum 

action-function, S(q,qQ,t), to generate a transformation. His discus­

sions of transformation theory are very general. 

P. Jordan (6,7,8,9) has considered the problem of carrying out a 

general Hamilton-Jacobi transformation using generating functions 

(S(a,q) and 5(3,q), where a is the new momentum, g the new coordinate 

and q the old coordinate). Jordan does mention action-angle variables, 

J and w, but only defines the operator J in terms of a spectral decom­

position (J = h Z |n'>n'<n']). The defiziition of J given by Jordan is 

correct but not useful, since application of this definition requires 

knowledge of the wavefunctions, <q'|n'>, i.e., of the solutions of 

Schrodinger's equation. Van Vleck (10) has applied Dirac's transforma­

tion theory (5) and shown that expectation values become averages in 

the classical limit. Van Vleck also briefly considered the problem of 

carrying out a quantum Hamilton-Jacobi transformation, but he does not 

consider action-angle variables. 

Some authors have treated specific quantum systems using action-

angle variables. The harmonic oscillator has been treated by Dirac (11). 

A calculation which was designed to find "proper angular-momentum" 

variables has been carried out by Biedenham and Brussard (12). Their 
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proper angular variables are related to the action-angle variables Jg 

and which will be discussed in Chapter III. 

There has been a series of authors who have concerned themselves 

with the problem of defining angle variables for harmonic oscillators 

quantum mechanically. Jordan (9) and Susskind and Glowgower (13) have 

pointed out the difficulties of specifying the conncutator of an angle 

variable with its canonically conjugate momentum. Carruthers and 

Nieto (14), Levy-Leblond (15), and Newton (16) have considered this 

problem and recommended various solutions. The problem of defining 

angle variables is relevant because the action-angle variable, w, is 

an angle variable. A new treatment of this problem is found in Leacock 

(17) and at various points in this thesis. 

As far as the author has been able to determine, while the above 

authors have treated various specific aspects of the problem of defining 

action-angle variables quantum mechanically, no author has developed a 

general definition of these variables. The purpose of this thesis is 

to define action-angle variables quantum mechanically. The quantum 

analogue of classical Hamilton-Jacobi action-angle-variable theory is 

constructed. The methods developed here are general and may be gener­

alized to apply to quantun^-relativistic problems. 

The action-angle variables constitute a system of coordinates and 

momenta in which the Hamiltonian is a function only of the momentum. 

This is the case classically and is the case quantum-mechanically if the 

action-angle variables are properly defined. Classically, action-angle 

variables are useful if one wants certain specific information, e.g.. 
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the frequencies of a system. Quantum mechanically, we will see that 

these variables are useful if one wants certain specific information, 

e.g., energy levels. For example, the energy levels of the bound states 

of strongly interacting particles may be most easily found using action-

angle variables. 

The thesis is organized as follows. Chapter II is a brief review 

of the classical concepts and of the properties quantum action-angle 

operators should possess. We then apply these properties to the problem 

of using the classical transformation equations to deduce the corre­

sponding quantum transformation equations, thus defining the action-

angle operators for the system under consideration. After considering 

eigenvalue spectra and action-angle wavefunctions, we apply these con­

cepts to a series of examples. This series includes the harmonic 

oscillator in Chapter II and in Chapter III includes the plane rotor, 

9-motion or angular problem, and the radial part of a three-dimensional 

harmonic oscillator. 

We return in Chapter IV to the general problem of defining action-

angle variables quantum mechanically. The approach involves using a 

quantumr-mechanical Hamilton-Jacobi eigenvalue equation to define a 

quanfum generating function. The quantum generating function is used 

to govern the transformation to quantum action-angle variables. This 

method is applied in Chapter V to three examples, one of which is untreat-

able using the method of Chapters II and III. 
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II. CLASSICAL AI^ALOGUE THEORY 

A. Classical Action-Angle Variables 

In classical mechanics, Hamilton-Jacobi theory provides a mechanism 

by which problems may be solved using coordinate transformations (2). 

One transformation which has proven useful historically is the trans­

formation from a set of coordinates and momenta p and q to the action 

angle variables, J and w. Under this change of coordinates all Ea.mil-

tonians in classical mechanics are functions of J only; they are inde­

pendent of w. Since the transformation is canonical, Hamilton's equa­

tion of motion are preserved. We begin by defining the classical 

generating function, W(q,J). 

A classical canonical transformation may be carried out using a 

generating function which is a function of the old coordinate, q, and 

the new momentum, J. This function, W(q,J), gives the old momenta, p, 

and new coordinate, w, as: 

p = 3WCq,J)/3q , (2.1) 

w = 3W(q,J)/3J . (2.2) 

From Eqs. (2.1) and (2.2) it is possible to find one set of coordinates 

in terms of the other: 

q = f(J,w) , 

p = g(J,w) , 
(2.3) 

J = h(p,q) , 

w = i(p,q) 
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Equations (2.1), (2.2) or (2.3) are the equations of the canonical 

transformation. In order to carry out such a transformation it is 

necessary to find the generating function W(q,J). 

The first step in finding W(q,J) is to find the associated function, 

WQ(q,E),from which W(q,J) is found after defining J(E). The function 

WQ(q,E) satisfies the time-independent Hamilton-Jacobi equation. Given 

a Hamiltonian of the form: 

^ p2 + V(q) = E (2.4) 

where m is the mass, p is the momentum, V(q) is the potential and E is 

the energy, from Eq. (2.1), a differential equation for ^^(qjE) may 

be obtained under requirement: 

Wo(q,E(J)) = W(q,J) . (2.5) 

Using Eqs. (2.5) and (2.1) in Eq. (2.4), we obtain the time-independent 

Hamilton-Jacobi equation for the generating function: 

1 f 3W (q,E) 

Equation (2.6) may be solved by quadrature, and we obtain: 

WQ(q,E) = 
'9 1/2 

2m[E - V(q')]^/^dq' . (2.7) 
qn 

Equations C2.6) and (2.7) define WQ(q,E) up to a constant. It is now 

necessary to define J(E) so that W(q,J) may be obtained, and the trans­

formation from p and q to J and w may be determined. 
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In order to define J(E) we use a method, advocated in Ref. 3, 

which uses a contour integral of the momentum, p. From Eq. (2.4), p 

may be regarded as a function of q and E: 

p(q,E) = 2m[E - V(q)]^^^ . (2.8) 

We assume for the moment that V(q) describes a potential well, and 

there are two values of q, q_|_ and q_ such that: 

p(q^,E) = p(q_,E) = 0 . (2.9) 

The q_j_ and q_ are the classical turning points. 

Next, following Ref. 3, we allow q to be complex. On the complex 

q plane, Eq. (2.8) may be written: 

p(q,E) = /gCq,E)(q - q^)(q - q_) . (2.10) 

In the form (2.10), q_^ and q_ are seen to be square root branch points 

of the function p(q,E). We connect q_j_ and q_ with a cut and choose 

that branch of p(q,E) which is positive along the bottom of the cut. 

This is illustrated in Figure 1. 

Using this definition of pCq,E), J(E) is defined as a contour 

integral: 

J(E) = p(q,E)dq , (2.11) 
c 

where the contour c is shown in Fig. 1. The contour c is chosen so 

that J(E) is the integral of p(q,E) around one cycle of the q-motion. 

The contour must be chosen so that it encloses only q_^, q_ and the cut 

connecting them; it does not enclose any other singularities of p(q,E). 
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A In q ' 

Re 

4 0- . 

C 

4 

C 

Figure 1. The q'-plane path, C, is used in defining J where q^ and q_ 
are given by p(q+,E) = p(q_,E) = 0. The function p(q,E) has 
a cut from q^ to q_ with signs as shown- The contour, C, is 
chosen so that traversing once around the contour is 
equivalent to traversing one cycle of the q-motion 
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Combining the definition of J(E), Eq. (2.11), with the expression 

for WgCq.E), Eq. (2.7), we obtain W(q,J) from Eq. (2.5): 

W(q,J) = WQ(q,E(J)) . (2.12) 

Equation (2.12) along Eqs. (2.1) and (2.2) specify the canonical 

transformation from p and q to J and w. 

Having defined J(E) and found W(q,J), we can use Eq. (2.2) to find 

w, the coordinate which is canonically conjugate to J: 

w s (q,J) . (2.2) 

w has the property that the change it undergoes over a cycle of the q 

motion is one. The change. Aw, in w around one cycle of the q-motion 

is defined as: 

Aw = 1^ dq (2.13) 

where c is the contour used to define J and is given in Fig. 1. The 

integral around c is interpreted as an integral over one cycle of the 

q-motion. Using Eqs. (2.2) and (2.11) with Eq. (2.13) it quiclcly 

follows that 

Aw = 1 (2.14) 

around the cycle. The result (2.14) is a characteristic of action-

angle variables. Had we defined J differently, Eq. (2.14) would be 

replaced by some other relation. This property that Aw = 1 will be 

important when we begin to consider the quantum theory. 
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We now have the basis of Hamilton-Jacobi theory using action-

angle variables- A main importance of action-angle variables lies in 

the fact that the Hamiltonian, H'(J), depends on J only: 

E = H(p,q) ^ E = H'(J) . (2.15) 

Thus, the transformation of p and q to J and w causes the coordinates, w, 

to be ignorable. Since transformations carried out using a generating 

function, W, are canonical, Hamilton's equations of motion hold and we 

have (2): 

H = If - • 
(2.16) 

dJ 3H' . 
d? = -37- = ° ' 

where v is the classical frequency of oscillation of the system. This 

simple form of Hamilton's equations is another reason that a (p,q) to 

(J,w) transformation is desirable. We now proceed to see what 

features a quantum Hamilton-Jacobi theory should have. 

B. Quantum Hamilton-Jacobi Theory, I 

There is a close connection between classical and quantum mechanics 

with the salient features of one appearing in the other. In particular, 

if it is possible to solve problems in classical mechanics using trans­

formation theory then one may be able to solve quantum mechanical prob­

lems using the same technique. 

By analogy with classical mechanics, we have as our goal a quantum 

canonical transformation theory which would take us to a system of 
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coordinates in which the Hamilconian is a function only of the new 

momenta. The wavefunction will be seen to take on a correspondingly 

simple form. In this section we will consider a one-dimensional 

sys tern. 

Before beginning, a few comments on notation are in order. First, 

all classical objects will have a "c" subscript (e.g., q^, p^, ...). 

All eigenvalues will have one prime " ' ". Operators will be unprimed. 

We will use a Dirac bra-ket notation (4). For example, suppose we have 

the operator q with a state |q'>; 

q|q '>  =  q ' |q '>  • (2.17) 

Similarly, with E and the state |E'>: 

E|E'> = E'1E'> . (2.18) 

Also, e.g., 

<q'|qE|E'> = q'E'<q'|E'> . (2.19) 

Commutators will be designated by square brackets : 

[p,q] = H/i . (2.20) 

The Hermitian conjugate will be denoted by a "+". Finally, the connec­

tion of a bra-ket to a wavefunction, is given by, for example: 

<q'lE'> = *(q',E') . (2.21) 

Let us assume that we have a system whose classical transformation 

equations can be written in the form: 

^c " ^c^"^c'V ' (2-22) 
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Pc = • (2-23) 

We would like to find analogous quantum equations : 

q = f(J,w) , (2.24) 

P = g(J,w) . (2.25) 

We impose the following conditions, A through F, on the quantum 

equations (2.24) and (2.25). Condition A is that the quantum equations 

(2.24) and (2.25) must reduce to the corresponding classical equations 

in the limit of Planck's constant n going to zero. Condition B is that 

both sides of Eqs. (2.24) and (2.25) must be Hermltian. We assume that 

p, q and J, w are Hermitian and have: 

q = q"*" = f(J,w) = (f(J,w)) , (2.26) 

p = p"^ = g(J,w) = (g(J,w))'*" . (2.27) 

Condition c requires that both sides of Eqs. (2.24) and (2.25) satisfy 

the same commutation relation: 

[p,q] = Ig(J,w), f(J,w)] . (2.28) 

In order to calculate the commutator (2.28) directly we need infor­

mation concerning the commutator of J and w. Since J and w are assumed 

to be a canonically conjugate set of coordinates and momentum, their 

commutator is: 

[J, = ±2?g . (2.29) 

Equation (2.29) is chosen so that it avoids problems in the definition 

of angle variables as discussed in Refs. 9, 15 and 17. 
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Condition D requires that if the quantum Hamilton!an in terms of 

p and q is H(p,g) then after the transformation (2.24) and (2.25) the 

Hamiltonian, H'(J), must be independent of the new coordinate w: 

H(p,q) = H(g(J,w), f(J.w)) = H'(J) . (2.30) 

Condition E states that given classical Hamiltonians H^(p^,q^) and 

H^(J^) such that, from Eqs. (2.22) and (2.23) we have: 

then we require that 

H-K) 
a'(J) —^ B^(J^) . (2.32) 

Equation (2.32) also aids in interpreting J and w as the quantum 

analogues of the classical objects. 

Classically, if the change in w^, Aw^, is calculated around one 

cycle of the motion, then this change is one. We interpret this to 

mean that the state of the system is invariant when goes to w^ + 1. 

Quantum mechanically we require a similar invariance. We require 

that the wavefunction be invariant under the translation, w' -+ w' + 1: 

+ 1|J'> = <w'iJ'> . (2.33) 

Equation (2.33) is the only boundary condition which we place on the 

wavefunctions <W'1j'>. 

As a result of this boundary condition on the wavefunction we are 

able to place a restriction on the form of Eqs. (2.24) and (2.25). p 

and q are the fundamental observables. We require that if the system 
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is unchanged by w' w' + 1, then the matrix elements of q and p should 

be unchanged: 

<w' + l|q| J'> = <w'|q|j'> , 

(2.34) 
<W' + l|p| J'> = < W ' I P | J ' >  

Equation (2.34) places a restriction on the form of f(J,w) and g(J,w). 

Specifically, let us suppose that both f(J,w) and g(J,w) can be written 

in the forms : 

p = f(J,w) = f^(w)f2(J) , 

(2.35) 

q = g(J,w) = g^(w)g2(J) 

Functions of operators of the form (2.35) are called well-ordered by 

Dirac (4) and their matrix elements are easily found. 

For p, we substitute Eq. (2.35) into (2.34) and have from Eq. (2.17) 

<w' + l|f^(w)f2(j)|j'> = f^(w' + l)f2(J')<w' + liJ'> , (2.36) 

<^'|f^Cw)f2(J)|J'> = f^(w')f2(J')<w'iJ'> • (2.37) 

As a result of the boundary condition, Eq. (2.33), and the invariance 

of the matrix elements (2.34) we have: 

f^(w' + 1) = f^(w') . (2.38) 

Similarly for q = we find 

g^(w' +1) = g^(w') . (2.39) 
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The final requirement, condition F, which we place on the transformation 

equations (2.24) and (2.25) is that they satisfy Eq. (2.34). 

Inspection of expressions (2.35) shows that p and q are not neces­

sarily Hermitian because J and w, being conjugate coordinates, do not 

commute. This inadequacy of the forms (2.35) is easily remedied as 

we now show. 

For the examples which we will consider, both f^(w) and g^(w) have 

the form The exponential, e~^^™, clearly satisfies the cyclic 

property (2.38) and (2.39). Furthermore, as a result of Eq. (A.29), 

f(J)e^^™ = e^^™ f(J + 2?E), the reverse ordering of Eq. (2.35) is 

also allowed for this exponential: 

p = fgCJ) = fgCJ) fi(w) 

(2.40) 

q = ggXJ) e"^^^ = g3(J) g^(w) 

Combining Eqs. (2.35) and (2-40) we find that p and q can be written 

in the following forms which will prove useful when we work out examples: 

p = f"^CJ) + e'^^^^fCJ) 
(2.41) 

q . g+CJ) . 

The forms of p and q given in Eq. (2.41) are useful because they 

satisfy the cyclic property (2.38) and (2.39) (which is condition F) and 

because they are manifestly Hermitian which is required of p and q by 

condition B. 
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The conditions A through ? which we inpose on the canonical trans­

formation equations are designed to insure that p and q will remain 

Hermitian, will continue to satisfy the same classical limit and will 

have appropriate commutation relations. These conditions also require 

that the Hamiltonian in terms of J will be independent of w and have 

the correct classical limit. Also the transformation equations must be 

invariant when matrix elements between <w* | and | J'> are calculated and 

w' is replaced by w' +1. These requirements allow us to assert that 

the operators J and w which are defined by p = f(J,w) and q = g(J,w) 

are the quantum analogues of the classical coordinates and momentum. 

Having imposed a boundary condition on the wavefunction 

we are now able to calculate both the form of the wavefunction and the 

eigenvalues of J- This calculation completes our first specification of 

quantum mechanics in terms of J and w. A more general formulation will 

be given in Chapters IV and V. 

Having Eqs. (2.29) and (2.33), we can find the wavefunction 

<w'jJ'>. The effect of J on a state |j'> as we have seen is: 

J|J'> = J'I J'> 

Therefore, we have: 

<w'|j|j'> = J'<W'!J'> . (2.42) 

Under the assumption that J and w form a canonically conjugate set we 

have consistent with Eqs. C2.29) and (2.33): 
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J = f (2.43) 

where we are assuming a Schrodinger representation. Since <w'jJ*> 

satisfies an appropriate periodic boundary condition (3) we have: 

• (2.44) 

Combining Eqs. (2.42), (2.43) and (2.44) we find: 

|-^<w'|j'> = J'<W'|J'> . (2.45) 

The solution of Eq. (2.45) is: 

<ïj'|j'> = A J'W ^ (2.46) 

If we now impose the condition (2.33) on Eq. (2.46) we have 

<w'jj'> = <w' + I 1 J '> 

or in terms of Eq. (2.46) 

A ei/S J'"' = i J-("•+!) . (2.47) 

Equation (2.47) will hold only if 

J' = 2?%! . n = 0,±1,±2,±3, ... (2.48) 

Combining Eqs. (2.46) and (2.48) we have 

<w'|j'> = <w'12Trnn> = A n = 0,±1,±2,±3, — (2.49) 

Equations (2.48) and (2.49) are general and hold for systems described 

by action-angle variables, defined using the transformation equations 
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of the form (2.24) and (2.25). This completes our basic specification 

of J - w quantum mechanics. 

The physics of J - w quantum mechanics lies in finding the trans­

formation equations. Once they are found,the allowed energy levels of 

the system are easily found. Let us assume that we have found the system 

Hamiltonian in terms of J: H'(J). Using Eq. (2.42) we have: 

<w'1H'(J)|J'> = H'(J')<w'|j'> 

= E' (2iT5n)<w' I J'=2:r5n> (2.50) 

= E^<w'|j'=2?H> (2.51) 

From Eqs. (2.48), (2.50) and (2.51) we have 

E^ = a'(2%5n) , n = 0,±1,±2, ... . (2.52) 

Equation (2.52) is a general statement which holds for any system for 

which J is Hermitian. The allowed energy levels of the system are 

given by Eq. (2.52). Thus, the transformation from p and q to J and w 

not only provides the Hamiltonian H*(J), but also gives immediately the 

energy levels. This is one important reason for considering the action-

angle variable Hamilton-Jacobi transformation. 

C. The Harmonic Oscillator 

In order to illustrate these ideas we will now apply them to the 

harmonic oscillator using a method similar to that of Dirac (11). The 

Hamiltonian for the harmonic oscillator is : 
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2  1 2  2  H = ^ , (2.53) 

[p ,q]  =  f  

where we have chosen a system of units in which twice the mass (2m) is 

one and where is the frequency. The classical equations of trans­

formation are (18): 

•Ic ° sxa(2™^) 

(2.54) 

A'c 
Pc ' 

which give 

®c'lr •'c • 

We assert that the quantum transformation equations are: 

1 /F , 4- . 
9  =  2 Ï / ™  ( a  - * )  

(2.55) 

P  =  2  + a j  

where 

a = r"™ /j" , 

(2.56) 

+ /%+ i2Trw a = /J e 

We can check that Eq. (2.55) satisfies conditions A, B, C and F by 

inspection. First, in the limit of fi ^ 0, [/j, = 0, and 
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Eq. (2.55) reduces to Eq. (2.54) (condition A). Second, Eqs. (2-55) 

are Henaitian by inspection (condition 3). Third, Eqs. (2.55) are of 

the form (2.41) and so the cyclic condition F is satisfied. Fourth, 

the commutator of q with p can be calculated using Eq. (2.29). We have 

from Eqs. (2.55) 

[ P ' S ]  =  2  +  a ) '  2  ( 3 ^  -  * ) ]  

= -Â- 2[a\a] . (2.57) 

Using Eq. (2.29), Eq. (2.57) becomes : 

^ t/ .a]  = i  e"'".  e '"™ /T]  

. i Î/Ï /5+ . /J e"™} . (2.58) 

In Ref. 17, it is shown that the Hilbert space: |j'> = ]2rKn> must be 

restricted to those states having J' s 0. For this restriction of the 

Hilbert space it follows that 

/T = . (2.59) 

Substituting Eq. (2.59) into Eq. (2.58) and using Eq. (2.29) we have: 

^ Ia^,a] = I . (2.60) 

Substituting Eq. (2.60) into Eq. (2.57) we have; 

[p,q] = Y (2-61) 

and condition C is satisfied. [Note that for J' < 0 a minus sign 
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occurs on the RHS of Eqs. (2.57), C2.58) and (2.51) resulting in 

Ip»q] = -H/i which is clearly unphysical. See Ref. 17 for details.] 

As a result of the restriction of the Hilbert space to states 

having J* > 0 and as a result of Eq. (2.59), Eq. (2.56) may be written 

as: 

a = e-iZ'* Vj , 

Î ' JJ e"™ . (2.62) 

The forms (2.62) will simplify many expressions. 

We now verify that the Hamiltonian, H', depends on J only. We 

substitute Eq. (2.55) into Eq. (2.53) and obtain: 

H = p^ + i = \ /Ç (a + a"^ 

C O r  I  +  ,  4 -  ,  +  +  +  +  = {aa + aa + aa + aa -aa + aa + a a — a a } 
OT 

= {aa"*" + a"^a} . (2.63) 

From Eq. (2.62) a a = J and from Eq. (2.60) aa = a a + 2-îi. Sub­

stituting these identities in Eq. (2.63) we obtain: 

H = p^ + -^ w^q^ = {J + TrS} . (2.64) 

Equation (2.64) shows that the Hamiltonian is independent of w. Also 

in the limit of fi -»• 0, J J^, and Eq. (2.64) becomes: 

S 0 
H' = {J + ^ J = H. . (2.65) 

ZTT c c 
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so that the quantum Hamiltonian reduces to the classical Hamiltonian, 

as desired (condition E). Thus, Eqs. (2.64) and (2.65) verify con­

ditions D and E by showing that H'(J) is independent of w and that H(J) 

has the right classical limit. We have now satisfied all of the con­

ditions (A-F) which we imposed earlier, and conclude that Eqs. (2.55) 

and (2.56) constitute a valid (p,q) to (J,w) transformation where J, w 

are the quantum action-angle variables. 

The energy levels of Eq. (2.64) are given by substituting Eq. 

(2.64) into Eq. (2-50) and obtain: 

w'lH'(J)iJ' = {2zHn + TEKW'!J'> (2.66) 

n = 0,+l,+2, — 

where we have restricted ourselves to the n > 0 part of the Hilbert 

space as discussed earlier. The reader will recognize these as the 

harmonic oscillator eigenvalues which can be obtained by other methods. 

The procedure which we have followed entailed finding the classical 

transformation equations in the form 

Pc = 

(2.67) 
'c = 

Once this was done, corresponding quantum equations were asserted: 

p = fg^J.w) 

(2 .68)  
q = g2(J,w) 

We then verified that Eq. C2.68) had the six desired properties. One 
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of the most important properties is that the quantum Hamiltonian be 

independent of w: 

Since we had already determined that the possible eigenvalues of J are 

J' = 2TrEn (n = 0,4-1,4-2, ...), the harmonic oscillator energy levels were 

given by inspection: 

The method employed here works for the harmonic oscillator, and 

will now be applied to other problems. In each case the procedure is 

the same. We assert (or find) the transformation equations. We verify 

conditions A through F for the physical Hilbert space. Finally, the 

energy levels are given by inspection. This procedure works for systems 

having simple classical transformation equations. 

E(p,q) H'(J) (2.69) 

E' = H'CJ' = 2?gn) 
u 

(2.70) 
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III- SIMPLE QUANTUM SYSTEMS 

A. Separation of Variables 

In the previous chapter the idea of transforming from a set of 

coordinates and momenta (p,q) to a corresponding set of action-angle 

coordinates and momenta (J,w) was introduced. The six quantum conditions 

which such a transformation must satisfy were specified. In this chapter 

we will apply the same concept and set of conditions to the problem of 

motion in a central field. The Hamiltonian in spherical polar coordinates 

and momenta, which we will transform, is: 

H(r,P . e,P,p,P ) = (2mr^)'"^{P r4 + sin"^8 P^ sin9 P^ + pj/sin^9} 
L V Ç t t V V Y 

+ V(r) . (3.1) 

We will make our transformations in three steps: 

(1) P,,4 » , 

(2) Pg,9 ^ Jg,Wg , (3.2) 

(3) Pp,r J^,w^ 

We are able to make the transformation to action-angle variables in 

this way because the full Hamiltonian (3.1) may be separated into three 

partial "Hamiltonia" each of which depends on only one coordinate and 

its canonically conjugate momentum: 

E ?l . (3.3) 

L^(P-,e) s sin"^9 P, sine P. + P'^/sin^e , (3.4) 
B 0 w 9 
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H^(P^,r) 5 (2mr^){p^r'p^ + L^'} + V(r) . (3.5) 

2 2 ' In Eqs. (3.4) and (3.5) and L are the constants of separation 

which connect Eq. (3.3) to Eq. (3.4) and Eq. (3.4) to Eq. (3.5), respec­

tively. In quantum mechanics these separation constants take the values 

2 2 2 of the eigenvalues of L and L respectively, hence the primes on P' 
Z 9 

,  ^ 2 '  and L . 

In carrying out the transformations listed in Eq. (3.2) we will 

use the procedure given in Chapter II. We will consider a transformation 

valid only if it satisfies all six conditions (A-F) which we established. 

These conditions will guide us through the exançles of this chapter. 

B. Rotor 

In this section we will carry out steo one of Eq. (3.2): P,,ô -» 
9 

The "Hamiltonian" given by Eq. (3.3) may be interpreted as a 

particle rotating around the origin on a circle, as a "rotor". The 

procedure which we will follow for the rotor is to list the classical 

transformation equations, then the corresponding quantum equations, 

then verify the six conditions, and finally give the "energy levels" of 

2 
L^. While the rotor is trivial to transform in this way, it is instruc­

tive, and, more importantly, prepares the ground for more complicated 

transformations. 

2 The classical transformation equations and "Hamiltonian", L^, are: 
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'c ° ^=",c ' (3-7) 

SO 

= pf = (J /2:r)^ . (3.8) 
z (p ipc 

We assert that the quantum canonical transformation equations and 

Hamiltonian have the same form as the classical expressions : 

P = J / 2 z  ,  (3.9) 
0 * 

X2tw ^ 
e^ = e * , (3.10) 

= pj = (J /2?)^ . (3.11) 
z 0 9 

We are assuming 

[P e^] = n 
i> 

The conditions which we have demanded that the transformation 

equations and Hamiltonian satisfy are quickly verified. In the limit 

fi ->• 0, that is in the limit of 

* ^ 

2 i9 i2%w^ 
The forms e and e are used in order to avoid problems of 

defining angles as discussed in Jordan (9), Leacock (17), and Levy-Leblond 
(15). 
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"à ^ 

it is clear that the quantum expressions (3.9), (3.10) and (3.11) become 

the classical expressions (3.6), (3.7) and (3.8) (conditions A and E). 

The Hamiltonian is clearly independent of as required (condition D). 

The Eqs. (3.9) and (3.10) are of the form (2.41) (cyclic in w with 

period 1), hence condition F is satisfied. The commutator of the left 

hand sides of Eqs. (3.9) and (3.10) is: 

[Pa,ef*] = S e'* . (3.12) 

After the substitution of Eqs. (3.9) and (3.10) into Eq. (3.12) we find; 

i2Tw i2%w 
[J./2j,e *] = 2%K e ^ . (3.13) 

Equation (3.13) is true because of the assumed canonical nature of J 
i27TW 

and e ; so Eq. (3.12) is verifeid. Under the assumption (3.10), 

(3.12) and (3.13) are equal and condition C is verified. Finally, under 

the assumption that p , J,, <i> and w. are Hermitian we have: 
?  9  9  

P. = p^ = (J /2%) = (J /27T)"^ , (3.14) 
4) * * à 

. 2?iw 4-
(e^'^) = ( e ^) . (3.15) 

Both sides of Eq. (3.14) are clearly Hermitian and thus condition B is 

satisfied. For Eq. (3.15) both sides are unitary with the Hermitian 

conjugate of the left side of Eq. (3.15) equal to the Hermitian 
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conjugate of the right side of Eq. (3.15). In the context of the rotor 

we will consider Eq. (3.15) as satisfying condition B. If one prefers, 

the real and imaginary parts of Eq. (3.10) may be considered separately: 

COS* = (cos*)^ = cos(2Tw ) = (cos(2%w ))^ 
9 9 

(3.16) 

sino = (sinp)"'" = sin(2%w ) = (sin(2™,))^ 
0  9  

Whether one chooses Eqs. (3.15) or (3.16), the relationship between 9 

and w, remains the same and condition B is considered satisfied. 
9  

This completes the verification of conditions A-F. Hence, we con­

sider Eqs- (3.9) and (3.10) as defining a valid transformation from 0 and 

P, to the action-angle variables and w,. The only items left to 
4 )  9  

2 
consider for the rotor are the allowed states and eigenvalues of L^. 

As in other action-angle calculations the wavefunction is: 

i2'mnw' 
~ <tf ' 12Trfiin> = e ' » (2.49) 

®  9  9  

m = 0,±1,=2, — 

Since the six conditions are valid for all states, all values of m are 

allowed. In contrast, for the harmonic oscillator the commutator (con­

dition C) was valid only for states having 2-fin i 0. Here, we have no 

such restriction. 

Having the states (2.49) and the allowed values of m, we can now 

2 
calculate the eigenvalues of L^. This is done using Eqs. (2.49) and 

(3.11): 
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<WML^1J:> = /2T)^|J'> (3.17) 
? z 9 d p 0 

= (J!/2i:)^<w'lJ!> (3.18) 
0 0 0 

=  ( S m ) I =  2 ? R m >  .  ( 3 . 1 9 )  

Hence 

L^(j;) = (5m)^ m = 0,±1,±2, ... . (3.20) 
z 0 

This completes our treatment of the rotor. We have found the valid 

transformation equations from 4) and P, to J and w,. We have found the 
9 ? 9 

2 2 
form of in terms of and have found the eigenvalues, . Having 

2 found the eigenvalues of we can proceed to step two, the transforma­

tion of Pg and 9 to and w^, since we now know the values of the 

separation constant connecting the i problem and the 6 problem. 

C. The e-Motion, 

Having solved the ({)-motion and found the separation constant which 

connects the ç-motion to the 9-motion, we now proceed to the 9-problem. 

As in the harmonic oscillator and the p-problem, the basic conditions 

required of a (p,q) to (J,w) transformation remain the same. In this 

problem, however, we will not be able to simply assert the form of the 

quantum transformation equations based on the classical equations. A 

derivation based on the commutation requirement and the w^-independence 

2 of L (J ) is needed, and is given in Appendix A in its entirety. After 
d 

2 finding the form of L (J^) and the transformation equations, the 

verification of conditions A through F may be completed, and the 
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2 eigenvalues of L (J.) found. These eigenvalues provide the connection 

which we will later use between the 9 and 6 motions and the radial 

notion. 

We begin by listing the classical total angular momentum and 

9-transfornation equations (18): 

^} = + P^/sin^e , (3.21) 
c 8 9 

= (J. + J")2/4?2 , (3.22) 
c 9 

cose^ = sin i sin(-2'irWg + 2Trw^^) , (3.23) 

P sine = ((J- + J")/2-) sin i cos(-2-tw^ + ^rw^ ) ,(3.24) 
9 C U 0 w V C 

COS i = P /L = J7(J. + J") , (3.25) 
<p C Q 3 0 

sin i = (1 - p2/L2)l/2 = (1 - j2/(J. + J")2)l/2 .(3.26) 
* c 0 ? 6 

w,^ is a constant determined by initial conditions. We need to define 

J" and begin by noting that J„ is defined by Bom (18) : 
0 dc 

J. = 2?(L2)l/2 _ 2?(p2)l/2 . (3.27) 
3C C <p 

The signs of the two square roots must be chosen. We choose the sign 

2 1/2 of (L^) to be positive so that this quantity, is interpreted as 

2 1/2 
the length of the angular momentum vector. This sign of (P^) is also 

chosen to be positive so that will be positive, will have a range 

of values from 0 to 2%L^, and will be interpreted as the "quantity of 

9-motion." equal to zero is the interpreted as the angular momentum 
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2 2 vector being oriented along the z-axis with = P^. Finally, for the 

2 1/2 above choice of signs we define 2?[P,] = J", where J" is real and 
0 0 9 

positive so that (3.20) follows. 

The task at hand is to convert the above classical expressions 

into valid quantum operator equations with respect to the quantum 

"Hanii Itonian" : 

L^(P^,8) 5 sin'^9 P^ sine ?. + Pr^/sin^9 . (3.4) 
8  S e p  

Since the part of the problem has been solved (see the rotor 

calculation), we need only note that P, and J enter only through their 
Ç 0 

eigenvalues P' and J' (or J" = Ij'l). 
0 à 0 6 

If one studies Eqs. (3.23) and (3.24) one observes that, by analogy 

to the harmonic oscillator, two operators b and b"*" may be defined as: 

-i2TTWg 
b = e " f(J,,J?) , (3.28) 

* 

4. iZlTW 
b^ = f (J,,J") e " , (3.29) 

9 9 

such that 

cosa = (b - b^)/2i (3.30) 

P, sine = [b(J, + J") + (J. + J")b^l/4? . (3.31) 
9  3  0  d p  

Before the canonical transformation (3.30) and (3.31) may be called 

complete, f(J^,J') must be specified. 
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2 In Appendix A the calculation for the form of f(J.,J") and L is 

2 
given, using three requirements. First, the requirement that L 

V Y 

be independent of is used. Second, we require that the commutator of 

the right hand side of Eq. (3.30) with the right hand side of Eq. (3.31) 

be the same as the commutator of the left hand side of Eq. (3.30) with 

the left hand side of Eq. (3.31). This requirement involves substituting 

the transformation equations into: 

[Pg sin6, cose] =-Y (^ - cos^6) , (3.32) 

and finding a restriction on the form of f(J-,J"). Finally, we require 
0 9 

that the quantity f(Jg ,J^)f'^(Jg ,J|^) have positive eigenvalues since it 

is positive definite. This condition leads to the conclusion that 

JZ ^ 0 for physically allowed states. Using these three requirements 

it is shown in Appendix A that: 

f = ([(Ja + J")2 - J"2]/[(J, + J")2 - , (3.33) 
V 0 p so 

I?(J.,J") = (J. + J" + ?5)2/4?2 _ 1/4 , (3.34) 
y p y 0 

where the physical Hilbert space is restricted to states |J',J'> where 
V Y 

J' = 2-Hn,, n. = 0,1,2,3, J' = 2rfim, m = 0,±1,±2, ... and where 
u d " 0 

J" = |j'|. As shown in the Appendix, if we use the notation: 
(j! 9 

J' + J" = 2Tfi£ , (3.35) 
0 9 

then the physical Hilbert space may be chosen to be: 
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Z  S  j m j  ,  £ = 0 , 1 , 2 , 3 , . . .  

n = 0,±1,±2, — . (3.36) 

For this choice of the physical Hilbert space we have: 

f(J^,J") = f'^CJ ,J") (3.37) 
s 9 9 Ç 

which simplifies Eqs. (3.28) and (3.29) to: 

-±2tk^ 
b . e "fcjg.j;) , 

iZTTW. 
b = e (3.38) 

2 Since we have now specified f(J ,J') and L (J.), we can verify the 
8 Y 5 

six conditions which we imposed on a set of transformation equations. 

•x- ^ By expressing cose and sine in terms of P^, P^, P^, x, y and z, the 

reader may verify that 

Pg sine = (P sine)"^ , 

(3.39) 

cos 9 = Ccos6) 

Under the assumption that J = and w = w^, it follows that both 

sides of the transformation equations (3.30) and (3.31) are Hermitian 

which is condition A. In the limit of K ->• 0 and J^, J", v., P, , 9 going 

to their corresponding classical variables, the quantum expressions 

(3.30), (3.31) and (3.34) reduce to the corresponding classical expres­

sions (3.23), (3.24) and (3.22). Thus, conditions B and E are satisfied, 

2 as required. L (Jg,J") is independent of w„, which is condition D. 
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The comnutator of sin9 with cosS, Eq. (2.32), is satisfied when 

calculated in terms of J. and w^ using the transformation equations, 

which is condition C. Finally, since the quantum transformation equa­

tions (3.30) and (3-31) are of the exponential form (2.41), their matrix 

elements are invariant under w' ->• w' + 1, and thus condition F is 
U U 

satisfied. This completes the verification of conditions A-F and we 

conclude that the quantum action-angle variable transformation equa­

tions (3.30) and (3.31) are a valid set of canonical transformation 

equations with respect to the physical Hilbert space (Eq. (3.36)). 

2 Having verified conditions A-F, we may now allow L (J^) to act on a 

state IJg,J^> and find its eigenvalues. Using Eq. (3.34) we find: 

^ [(j; + - %V]|j;,j^> . (3.40) 

Since J' + J' = 2ÎTH£ for the physical Hilbert space we have: 

+  i ) | J ^ J : >  
3 ? y 9 

or 

L^' = K^£(£ + 1) where 2 = 0,+l, 2, ... , (3.41) 

2. 5 I ML 

2 The finding of the eigenvalues of L completes the 6-problem. 

We now relist the relevant equations for future reference. 

Angular momentum squared (old coordinates): 

I?(8,Pg,*,P ) = sin'^9 Fg sine + P^^/sin^0 ; 
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wavefunction (old coordinates): 

, ç ' )  ;  :  =  0 ,  1 ,  2 ,  . . .  >  [ m l  ,  

m = 0,±1,±2, ... 

angular momentum squared (new coordinates): 

if (J.,J") = (J. + ^'1 + n5)2/4?2 _ 1/4 
0 0 0 9 

wavefunction (new coordinates): 

i/S(J>:+J>') 

Jg = 2?Bng , ng = 0, 1, 2, ... 

J' = 2-lim , m = 0,±1,±2, — , 
<r> 

Quantum canonical transformation (between old and new coordinates): 

cose = (b - b^)/2i , 

P. sine = [b(J, + J") + (J + J")b'^]/4ir 
9  3  Ç  C O  

-i2rw 
b = e ® f(J,,J") 

V P 

i2™ 
b . Hl^,rp e 

f W g . j p  =  { t ( j g  +  j ; ' ) ^ - j f i / [ ( j . + j ; ) 2 - , V i } i / 2  .  
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Eigenscates (old coordinates): 

L ^ l 2 m >  =  2 ( 2  +  l ) K ^ l 2 n D >  

L 2ia> = mfi 2m> 
z' 

Eigenstates (new coordinates): 

L^|n^ni> = (n^ + m") (n^ + m" + DE^jn^n^ , 

L^|ngn> = nfi|njjîn> , 

J j n  s £ >  =  a  2 ? K | a . m >  ,  
a o DO 

i ngm> = m2?R | n^nO , 

where m" = |m|. (See Eqs. (3.9)-(3.11) for the ô transformation 

equations.) 

Reviewing what has been done so far in this chapter, we find that 

the angular part of the central force problem has been completed. We 

have transformed quantum mechanically from P,, 6, and 9 to J. , w. , 
0 C O Ç 

J. and w , which was our original aim. In the process of this canonical 
w V 

2 transformation we have found L (J\) and L (J.,J") and have found their 
z 9 9 0 

eigenvalues and eigenfunctions. We thus have systematically replaced 

the old operators and eigenfunctions with new operators and eigen­

functions. In both cases, however, the eigenvalue spectrum of the 

2 9 
observables, and L~, remains the same as it must. 
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2 Since we now have the eigenvalues of L , we have the values of the 

separation constant connecting the angular coordinates and the r-motion 

in Eq. (3.5). We will now proceed to the r-problem using the information 

gathered thus far. 

D. The Radial Problem 

At the beginning of this chapter it was stated that we would treat 

in succession the three separate parts of a full three-dimensional 

spherical potential, Hamiltonian. Having completed the angular problems 

we now treat the "radial" Hamiltonian. 

The Hamiltonian given by Eq. (3.3) is for 2m = 1: 

H^(r,Pp = r"^ r^ P^ + L^'/2mr^ + V(r) . (3.5) 

9 f 2 
L~ is the eigenvalue of L , the total angular momentum, and has values 

R^Z(x + 1) for I = 0,1,2,3, — . The kinetic part of Eq. (3.5) may be 

rewritten in terms of P^r + R/2i. This quantity is chosen at this 

point since it is Hermitian as can be shown by writing it in terms of 

X, y, z, P , P , P and verifying that: 
X y z 

CP^r + ^ ) = CP^^ + 4 ̂ (3.42) 

where 

[P^,r] = Y • (3.43) 

By rewriting Eq. (3.5), using P^r + K/2i, we obtain: 
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H(r,P^) = r"^ ! Pr^ + ̂  j r"^ + (L^' + j fi^)/r^ + V(r) .(3.45) 

2 2 ' Substituting H Z ( Z  +  1 )  for L we have: 

H(r,Pp = r"^^ V + 5^(2 + + V(r) . (3.46) 

An advantage to the form (3.46) of H(r,P^) is that (P^r + S/2i) is 

a combination which proves to be convenient. The convenience lies in 

the fact that for the first example which we will consider, the three-

dimensional harmonic oscillator, one of the transformation equations 

involves (P^r + K/2i) explicitly because the classical transformation 

equations involve "P^r" and (P^r + E/2i) is the quantum analogue of 

this classical quantity. 

We will now consider the three-dimensional harmonic oscillator. 

The process which we will follow is essentially the same as was used 

for the one-dimensional harmonic oscillator, the rotor, and the 6-motion 

2 
for L . Our aim as always is to find valid quantum transformation 

equations and the eigenvalue spectrum of the relevant "Hamiltonian". 

Equation (3.68) is the form of the "Hamiltonian" which we will use 

for the example of the three-dimensional harmonic oscillator with 

V(r) = 1/4 cj^r^: 

H ( r , P ^ )  =  r " ^ f  P ^ r  4 -  ^  j  r ~ ^  +  f i ^ ( Z  +  1 / 2 )  ̂ / r ^  +  1 / 4  w ^ r ^  

( 3 . 4 7 )  

As in the other problems which we have considered, we begin by listing 
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the classical transformation equations and Hamiltonian: 

H = + L^/R^ 4- I 
c rc c c 4 

' It (ZJrc + hz ' 

(3.48) 

P r = f cos 2?(w - w „) , (3.49) 
r c r ru 

Y ur^ - H^/w = f^ sin 2?(w^ - w^Q) , (3.50) 

« C  '  è ( ( ^ r c  +  ^ e c  +  -  " a c  +  ' i f  ) • 

This form of the transformation equations relies on defined as: 

J  -  -  '  
rc 

= t ' j • ".52) 

where is found using the integral of around one cycle of the 

motion. The branch of P^ which is chosen is pictured in Figure 1 (with 

positive signs on the bottom of the cut. Using this branch of with 

a counterclockwise direction of integration,is defined to be a 

positive quantity. In Eq. (3.52), the positive square root is chosen for 

2 1/2 [L 1 which is consistent with the branch of P which we have chosen, 
c r 

and which is consistent with the choice of sign made for the classical 

angular problem (Chapter III, Section C). 

We begin the quantum process by defining an operator d such that: 

i2%w 
d = f(J , J: + J') e , (3.53) 

Tu 0 
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-i27rw 
à = e ^ f(J , J" + j:) , (3.54) 

r u V 

f(J^, + Jp H ^ {[2Jp + - [j^ + 

(3.55) 

where J' + J" is discussed in Chapter III, Section C on the angular 
O 0 

momentum problem. 

Using the d operator we assert that the quantum transformation 

equations are: 

P^r + -^ = Y + d) » (3.56) 

Y wr^ - H/w = + (d^ - d) . (3.57) 

We assert that Eqs. (3.56) and (3.57) are the quantum analogues of 

the classical transformation equations (3.52) and (3.53), and we now 

demonstrate the validity of the assertion. Since P^r + K/2i is Hernitian, 

we have: 

(P^r + H/2i) = (P^r + K/2i)' = j (d"*" + d) = [ (d" -5- d) ]"*" , 

( Y ~ B/w) = C Y - H/u))"^ = + (d"*" - d) = [ + ~ (d^ - d)] . 

Thus, the quantum transformation equations have both sides Hermitian and 

condition B is satisfied. Condition C is that both sides of the 

transformation equations satisfy the same commutator. 
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12 The commucator of P^r + fi/2i and y wr - H/u is: 

[ P ^ r + î  1  =  f  H  .  ( 3 . 5 8 )  

Substituting the quantum forms (3.56) and (3.57) into the LES of Eq. 

(3.58), one obtains after simplifying: 

& • (3-59) 

Substituting the expressions for d',d, Eqs. (3.53) and (3.54) into Eq. 

(3.59) we have 

-i2?w i2Tw , 
e  ^ f f e  ^  -  f  f  =  —  H  .  ( 3 . 6 0 )  

CL) 

±2iiw 
Using Eq. (A.29), f(J^)f (J^)e ^ = f(J^ + 2%5)f (J^ + 2%K), Eq. (3.60) 

becomes : 

f(J + 2-fi) f"^(J + 2%&) - f'*'(J ) f(J ) = — H . (3.61) 
r r r r w 

The quantum Hamiltonian, H, as given by Eq. (3.47) is a positive 

definite quantity and, hence, has positive eigenvalues. Referring to 

the form of f(jp as given by Eq. (3.55), the left hand side of Eq. 

(3.61) will have positive eigenvalues only for those states having 

> 0. We will call this the restricted or physical Hilbert space. 

It is important to note that for the physical Hilbert space, f(J^) = 

f^(J ). This will simplify some expressions. Substituting the form of 
^ i2%w 

f, Eq. (3.55) into Eq. (3.61) and using the commutator [J , e ] = 
i2Trw ^ 

21:5 e we have: 
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^ {[2(J + 2%G) + J: + J" + _ [2J + J' + J" + ?K]2} = -^ H 
Z'l r so r c 0 w 

or 

H = -^ [2Jr + Jg + + 3%g] . (3.62) 

2 
Thus, the commutator of (P^r + fi/2i) with (1/2 ur - H/u) is 

verified providing the Hamiltonian has the form given in Eq. (3.62). 

The form of the Hamiltonian (3.62) is correct as may be seen by directly 

substituting the quantum transformation equations (3.56) and (3.57) into 

the quantum Hamiltonian, H(r,P^), as given in Eq- (3.62). Thus, condi­

tion C is satisfied. Condition D is that the quantum Hamiltonian 

H (J , Jl + J") be independent of w , w and w . The form of the quantum 
r 9 9 r 0 9 

Hamiltonian (3.62) clearly satisfies this condition. Condition E 

requires that the quantum Hamiltonian, H(J^, + J^), Eq. (3.62), 

reduce to the classical Hamiltonian, H(J^^, + J^^), as given in 

Eq. (3.48) . In the limit of K - 0 where J' ^ J , J" + J" + J. + J" , 
r rc 3 9 5c oc 

this is the case. Condition A (that the quantum equations have the 

correct classical limit) is easily verified for the physical Hilbert 

space. In the R 0 limit where J' J , J' ^ J. and J" J" , 
^ r rc 9 9c 4» ôc 

f(J', J' + J") becomes f (J , J + J" ) and in the limit of w' w , 
R 9 C TTC 9C YC IT ITW 

the quantum equations (3.78) and (3.79) become the corresponding classical 

expressions (3.71) and (3.72). Finally, condition F which requires that 

2 the matrix elements of (P^r + K/2i) and (1/2 wr - H/u) be invariant 

under the translation in w^, w^ w^ + 1, is satisfied since the 

quantum transformation equations depend only on exponentials of w^ and 

hence are of the form (2.37). 
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This completes the verification of conditions A through F for the 

restricted Hilbert space. We therefore conclude that the quantum 

transformation equations which we have given are a valid set, and 

define and w^ as being the quantum analogues of the classical 

variables. 

Since we have found the form of the Hamiltonian, H(J , J' + J"), 
r o 9 

we may now find its eigenvalues for the restricted Hilbert space, 

(J^ > 0). Allowing the Hamiltonian to act on a state |j^,jg,j^> we 

have: 

= •§• C2j; + (3.63) 

where = 2%5n^, n^ = 0, 1, 2, ... and where = 2%52, Z = 0, 1, 

2, ... (as given by the angular problem in Chapter III, Section C). 

Using these values of the eigenvalues the energy levels E are: n ^ , x  

E „ = Ew(2n +2 + 3/2) . (3.64) 
n^ ,Z r 

This completes our treatment of the three-dimensional harmonic oscillator 

since we have asserted and verified the transformation equations and 

have found the energy levels of the quantum Hamiltonian, HCJ^, + J^). 

In addition to completing the radial part of the three-dimensional 

harmonic oscillator, we have now completed an entire three-dimensional 

problem. We have transformed from , 6, , 3, P^ and r to , w^, Jg, 
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w-, and using the following transformation equations and 

'Haaiil tenia": 

, (3.65) 

Pa sine = (b - b^)/2i , 

cosS = [b(Jg + J^) + (Jg + J^)b'^]/47r , 

b = e ® {[(Jg + !X I)^ - j^]/[(j5 + jj^!)^ -

= sin"^e P. sine P^ + pj/sin^9 = (J. + |j I + rE)^/4T7^ - yn^ 

(3.66) 

1 2 2 for V(r) = ^ (J r : 

P^r 4- n/2i = Y (d" H- d) , 

I - G/" '  i  ' (3.67) 

-i2Ttw , 2 2 1/2 
d = e {[2J^ + Jg + + -fi] - [Jg + + TK] } , 

H(Pj.,r) = r"^(P^r + H/2i)^ r"^ + (L^' + ~ S^)/r^ + ^ oj^r" 

= (2Jr ^ ^9 + 1^4! 3*5) 

These are valid transformation equations and satisfy conditions A-F for 

the following eigenfunctions: 
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= !2-Hn^, 2TrH(Z - m), 2-Rin> , 

= 0, 1, 2, 3, ... , (3.68) 

£ ,  =  0 , 1 , 2 , 3 ,  . . .  >  I m |  ,  

= 0,±1,±2,±3, — 

With respect to the states (3.68), (3.65)-(3.67) are equivalent to the 

2 2 
equations given earlier in this chapter. The eigenvalues of L^, L and 

are found by allowing these operators to act on a state (3-68): 

Jl. j^> = sV|j;, j;, JJ> (3.69) 

L^lr, j;, j^> = 5^a + i)2|j;, j;, J^> (3.70) 

J:, J:> = iSL (2a + 2 + 3/2) | J', J^, J'> . (3.71) 
V Q 6 X t V V 

From Eqs. (3.65)-(3.67) it is clear that we have systematically 

replaced each operator in the old system with an operator in the new 

system. Thus, action-angle variables are a valid set of variables 

(operators) with which to do quantum mechanical calculations. It is 

important to note that for potentials which depend only on r, the entire 

angular calculation remains valid. Thus, Eqs. C3.65), (3.66), (3.69) and 

(3-70) remain the same for all potentials VCr). These angular equations 

may be viewed as a different way of treating angular motion. 

The radial equations listed are valid only for the three-dimensional 

harmonic oscillator. For other potentials, other transformation equa­

tions will result- It is not clear whether all potentials may be 
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treated using the techniques we have employed so far. There is one 

potential which seems intractable using these methods, the Coulomb 

potential. 

E. Comments on the Coulomb Problem 

In all the problems which have been done so far, it has been pos­

sible to write the classical transformation equations in the form; 

gç.(q.p) = s^CJ.w) 

(3.72) 

Having the classical forms C3.72) we were then able to assert or derive 

the corresponding operator relations. Turning now to the Coulomb 

potential, the classical Coulomb Hamiltonian and transformation equations 

are (18) : (2m = 1) 

0 T2 „ 2 2 
H  • P  + I R - - S  =  —  ( 3 . 7 3 )  

' / r CJ +J. + JJ^ 
r e p  

r = ad - z cos u) (3.74) 

u - t sin u = 2TTW^ C3-75) 

CJ + J, + 
a = ^^ (3.75) 

2? g 

n (Ja + 
£ = 1 J . (3.77) 

(Jr + Je + J*) 
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Since Eqs • (3.74) and (3.75) constitute a transcendental trans­

formation equation,it has proven impossible to put it conveniently into 

the form (3.72). This inability to find a suitable expression means that 

we are unable to use the method which we have ençloyed so far on the 

Coulomb problem. Although in principle one can find the transformation 

equations, this author has been unable to do so and asserts the need for 

an alternate technique. This technique will begin to unfold in the fol­

lowing chapter. 
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IV. A QUANTUM TRANSFORMATION THEORY 

A. The HamiIton-Jacobi Eigenvalue Equation and W^Cq'jE*) 

The method that we have been using thus far to make the (p,q) to 

(J,w) transformation has several drawbacks which make a more general 

method desirable. First, it applies only to systems having classical 

analogues since we are "updating" the classical transformation equations 

to find the corresponding quantum expressions. Second, the method works 

only when the classical equations are algebraically simple. In the case 

of the Coulomb problem, the difficulty of manipulating the classical 

equations means that the method of Chapters II and III is useless. 

Finally, it would be convenient to have a method which is sufficiently 

general that a computer could carry out the transformation. The method 

of Chapters II and III is difficult to program. Thus, at least at 

present, it appears that a more general method is desirable. 

In order to develop another method of performing (p,q) to (J,w) 

trans formations we will rely on two ingredients. First, classical 

mechanics will be used to guide the development and notation. Second, 

Dirac (4,5) and Jordan (6,7,8,9) have considered various forms of 

transformation theories. In the initial development we will follow the 

general transformation methods discussed in Dirac's Section 32 (4). We, 

of course, modify his methods to suit our particular problem. It will 

be seen that these two ingredients combine to form a theory which is 

more general and less dependent on algebraic manipulations than the 

earlier method. We begin this development by reviewing the classical 

mechanics that was introduced in Chapter II. 
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In classical mechanics a generating function (2) governs the 

transformation from one set of canonical coordinates to another. As 

was discussed in Chapter II, Section A, for action-angle variables, the 

transformation takes the form: 

Pc ° — = 3i ".1) 

3K^(q,J) 
(2 .2)  

where (q ,E ) = W (q ,J (E )) and where W (q ,J ) is Hamilton's 
u o  o c  o c c o  c o o  

characteristic function which satisfies the Hamilton-Jacobi equation: 

' Pc + 

SW ^ 
+ V(q^) = E^ (2.6) 

c " 

in units where the mass m obeys 2m = 1. The above equations are con­

verted to the corresponding quantum expressions by properly defining 

quantum w and J. 

In order to generalize the classical theory, we begin by writing 

the wavefunction, <q'[E'>, in a manner similar to that used by Dirac 

and Jordan (see Refs. 4-9): 

iW (q',E')/H 
<q'[E'> = e (4.1) 

where all primes denote eigenvalues. Equation (4.1) defines the 

function W^Cq^E'). We use Eq. (4.1) with a time-independent 
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Schrodinger's equation so that a differential equation for results. 

Using a Hamiltonian of the form: 

H = + V(q) . (4.2) 

Schrodinger's equation is: 

<q'|H|E'> = E'<q'|E'> 

<q'|p^ + V(q) |E'> = E'<q'|E'> . (4.3) 

Using <q'|p|E'> = ^ g^<q'|E'> (see Ref. 4) with Eq. (4.3) and the 

wavefunction, Eq. (4.1), we have: 

H 3\(q*,E') / 3Wn(q',E') 
+ V(q')y <q'lE'> = E'<q'|E'> .(4.4) 

Canceling the wavefunctions, <q'|E'>, from both sides of Eq. (4.4) and 

using the notation: 

04 dq 

we obtain: 

+ + • (4-5)  

Equation (4.5) has the property that, for H = 0, it becomes the 

classical Hamilton-Jacobi equation, Eq. (2.2), for the function 

" o c K ' V -

WQ(q',E') and Eq. (4.5) reduce to Hamilton's characteristic 

function and the classical Hamilton-Jacobi equation, respectively. 
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This classical liait suggests designating Eq. (4.5) as a quantum 

mechanical HamIton-Jacobi eigenvalue equation. This is an "eigenvalue 

equation" because its solution, WQ, is a function of the eigenvalues, q' 

and E', and not a function of the corresponding operators. 

Let us suppose that Eq. (4.5) has been solved and its general 

solution, WQ, has been found. The wavefunction <q'lE'> has boundary 

conditions imposed on it (for physical reasons), and therefore has 

corresponding boundary conditions imposed on it. The two sets of 

boundary conditions are related by Eq. (4.1). For example, we often 

require the wavefunction to be zero at some point, qg (e.g., the origin 

or infinity). As q' approaches q^ we have: 

iW (q',E')/K 
lim <q']E'> = e =0 . (4.6) 

q'-xiQ 

Therefore, 

lim Wo(q',E') ^ +i® . (4.7) 

q'-HÎO 

Thus the requirement that the wavefunction vanishes at a certain point 

leads to the conclusion that WQ(q',E') must have a positive infinite 

imaginary part at that point. Other boundary conditions on are 

handled similarly. 

Having solved the differential equation (4.5) and satisfied the 

physical boundary conditions imposed on W^, we now need to find the 

operator associated with WQ(q',E'). 
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Let us assume that the Eamilton-Jacobi eigenvalue equation has 

been solved for W^Cq'jE'). If we were working with classical mechanics 

we would then find E^(J^), substitute it into ^QC^^C'^C^' and hence find 

the full generating function W^(q^,J^). Having the generating function, 

the coordinate, w^, and the momentum, p^, are then given by derivatives 

of the generating function with respect to and q^, respectively. 

Quantum mechanically we would like to carry out a similar procedure. 

This procedure could be carried out providing a definition of J' existed 

which was analogous to the classical contour integral definition, 

(Eq. C2.ll)). Such a contour integral definition requires knowing the 

quantum analogue of the classical momentum function, p^(q^,E^), as in 

Eq. (2.1). Classically, this quantum momentum function may be found 

using the form of the Hamiltonian or from: 

where 

In order to find the quantum analogue of the classical momentum 

function, p^(q^,E^), we will use the following procedure. First, we 

will find the function of operators, W^CqjE), which is associated with 

WQCq',E'). Then we will define an operator, p, as a derivative of 

WpCqjE) such that [p,q] = h/i. Finally, we will find the function of 

eigenvalues, p (q',E'), which is associated with p. Since p has 

commutator n/i with q and is found using WQ(q',E') and WQ(q,E), we will 

assert that p (q'E') is the quantum analogue (in eigenvalue form) of 
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* 
the classical momentvm. This p (q*,E') will be used to define J' as a 

contour integral from which the quantum analogues of the classical 

quantities, W^(q^,J^), and w^, will follow. 

We begin this process by finding the function of operators 

which is associated with WgCq'.E'). To do this we use the notion of a 

well-ordered function of operators (4). An operator, M(q,E), is a well-

ordered function of two operators q and E if all occurrences of q 

appear to the left of all occurrences of E. In general M(q,E) takes 

the form: 

M(q,E) = I d Cq) f , (E) + 
ij ^ 

aCq,X) b(E,X) dX .  (4.8) 

The inçortant feature is that q appear to the left of E. For the sake 

of illustration we assume that a well-ordered operator, M(q,E), may be 

written in the form: 

M(q,E) = d(q) f(E) , (4.9) 

while keeping in mind that the more general form (4.8) is allowed and 

implied. 

The utility of well-ordering a function of operators, M(q,E), lies 

in the fact that it can be related to a corresponding function of 

eigenvalues, M(q',E'), by the relation: 

<q'|MCq,E)|E'> = <q'] dCq)f (E) |E'> C4.10) 

= dCq')f(E')<q'|E'> 

= MCq',E')<q'lE'> . (4.11) 
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We now apply the concept of a well-ordered function of operators to 

define the function W^CqjE) which corresponde to WQCO'.E'), the solution 

of the Hamilton-Jacobi eigenvalue equation. 

Let us assume that WgCq'.E') can be written in a well-ordered form: 

WpCq'.E') = g(q') h(E') . (4.12) 

The function of eigenvalues, WgCq'.E'), is connected to the well-ordered 

function of operators, W^CqjE), by: 

<q'|WQ(q,E)|E'> = <q'lg(q)h(E)jE'> (4.13) 

= g(q*)h(E')<q'lE'> 

= WQ(q',E')<q'|E'> . (4.14) 

Equations (4.13) and (4.14) establish the desired relationship and 

define the ftmction of operators, WQ(q,S): 

WQ(q,E) 5 gCq) h(E) (4.15) 

from the corresponding function of eigenvalues. This function of 

operators will now be used to define an operator p which we will even­

tually call the quantum momentum. 

Having defined the operator function, "W^, we can define the 

operator, p, as in classical mechanics: 

3W Cq,E) 3g(q) 
p = -Sq— = — hCE) . W.13) 

p is interpreted as a well-ordered function of the operators q and E, 

which we will eventually designate as the momentum. We may also 
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relate p to a function of eigenvalues, p , in the same way that we 

VgCq.E) and related W (q,E) and W (q',E'): 

<q'lplE'> = <q' 
3g(q)  

oq 
h(E) E'> 

h(E')<q'lE'> 
oq (4.14) 

wnere 

= p (q',E')<q'|E'> 

P*(q',E') 5 h(E') (4.15) 

We now calculate the commutator of p and q by relating p to 

Y . For states satisfying appropriate boundary conditions (4) we 

have 

<q' H ? 
i 5q 

(4.16) 

Since we have wavefunctions in an exponential forsi, Eq. (4.1), we 

can relate P ^ easily. Using Eqs. (4.16) and (4.1) we have: 

<q' h 3 
i 3q 

i/H Wg(q',E') 
(4.17) 

'B (q ' )  
3q' h(E')<q'lE'> (4.18) 

Comparing Eq. (4.18) to the matrix element, <q'|p|E'>, Eq. (4.14), we 

K : 
see that p and — have the same matrix elements with respect to 

<q'| and |E'>. We thus conclude that: 
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p - f ^ • W-19) 

Using Eq. (4.19) it follows that: 

[p»q] = pq -  qp = j  (4.20) 

when p is defined by Eq. (4.13). 

The importance of relating p to 4—^ is easily seen. First, as 
X  s q  

we have seen the commutator of p and q is ^ . Second, Dirac (4) has 

shown that for states satisfying suitable boundary conditions ^ is 

Hermitian, hence p defined by Eq. (4.13) is Hermitian. With a correct 

commutator and hermiticity we assert that p is the momentum canonically 

conjugate to q. From this assertion, it follows that p (q',E') is the 

"eigenvalue" analogue of the classical momentum function p^(q^,E^). 

p (q',E') is the object which will be used to define the eigenvalue, 

J'. Before defining J', we will study the quantum Hamilton-Jacobi 

eigenvalue equation, p*(q*,E') and related equations in more detail, 

since they differ from their classical counterparts and since this 

treatment is different from the "normal" treatment in quantum mechanics. 

•k 
B. p (q',E') and the Ricatti Equation 

* 
We have introduced p (q',E') and have asserted that it is the 

quantum analogue of the classical momentum, p^(q^,E^). Before using 

p Cq'jE') to define quantum action-angle variables we examine briefly 

st 
the mathematics of p (q',E'). An understanding of this function is 

necessary if one is to understand why and how it is used to define the 

quantum action variable. 
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From the definition of p (q',E*), Eq. (4.15), it follows that: 

* 3W_(q',E') 
P Cq'.E') = "gq, . (4.21) 

In the Hamilton-Jacobi eigenvalue equation, Eq. (4.5), only the first 

and second derivatives of WQ(q',E') are used. Substituting p (q',E*) 

as given by Eq. (4.21) and its first derivative (with respect to q') 

into the RamiIton-Jacobi eigenvalue equation, Eq. (4.5), we obtain a 

differential equation for p (q',£'): 

f P* + P*^ + V(q') = E' , (4.22) 

where 

* _ 3p*(q',E') 
?q = 

Equation (4.22) is a generalized Ricatti equation and is sufficient to 

define p*(q',E') uniquely everywhere in the complex q'-plane, provided 

that a boundary condition is specified at a regular point, q^, of 

p*(q',E'): 

P*Cq'=qQ, E') = p* . (4.23) 

The Ricatti equation, Eq. (4.22), has a simple classical limit. 

In the classical limit with h -»• 0, the Ricatti equation becomes: 

Pc , Ch 0) . (4.24) 

Equation (4.24) is identical to the classical Hamiltonian, Eq. (2.4), 

(with 2m = 1) and, hence, Eq. (4.24) defines the classical momentum 
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function p^(q^,E^). Thus, p (q',E') does become p^(q^,E^) in the 

îfc 
classical limit. This also aids in the interpretation of p (q',E') as 

the quantum analogue of the classical momentum function. 

The Ricatti equation, Eq. (4.22), can be generalized to encompass 

different types of coordinates. This is done using the quantum 

Hamiltonian in the form: 

p f(q)p + V(q) = E . (4.25) 

This form of the Hamiltonian applies to one-dimensional Cartesian 

coordinates Cx,p^) where f = 1. It applies to angular coordinates 

where f = 1 for ((?,p^) and where f = sin9, when the coordinate is 9 

and the momentum is p^. For the radial part of spherical polar 

2 coordinates f is equal to r . The reader may verify these specifica­

tions of f(q) by referring to the Hamiltonia which were treated in 

Chapters II and III, Eqs. (2.53), (3.3), (3.4), and (3.5). 

Using the commutator of p with f(q) as given by Dirac (4): 

[p,f(q)] = f , 

the Hamiltonian, Eq. (4.25), becomes : 

( i W ft ° ^ • (4-26) 

Using the wavefunction in the form (4.1) we obtain the generalized 

Hamilton-Jacobi eigenvalue equation: 

+ + (4.27) 
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where the subscript "q" denotes differentiation with respect to q, i.e., 

5W (q',E') 3V(q',E') 

''oq ' ' "oss ' 

Substituting p (q',E') as defined in Eq. (4.21) into Eq. (4.27) we 

obtain a generalized Ricatti equation of the form: 

f - p  + p ^  +  T T f  p  =  E '  -  V ( q ' )  ,  ( 4 . 2 8 )  
1 q 1 X q 

where 

* 3p*(q',E') 
Pq 3? 

Before proceeding to use p (q*,E*) to define quantum action-angle 

variables, we will present some of the basic mathematics associated 

with Ricatti equations and their solutions. The reader is referred to 

Refs. 19, 20 and 21 for more complete treatments. 

Since Eq. (4.28) is a generalized Ricatti equation if any 

particular solution y can be found, the general solution has the form; 

p*(q) = • (4.29) 

Substituting Eq. (4.29) into the generalized Ricatti equation, Eq. 

(4 .28 ) ,  we  ob t a in  t he  d i f f e r en t i a l  equa t ion  fo r  u (q ) .  

•T  -  (2y  +  ^ -^ f )u  =  1  .  (4 .30 )  
1 3q it q 

Equation (4.30) may be solved by quadratures (19): 
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u(q) = u = +e-iB(q)/E |  le^(q') /Kdq, 

(4.31) 
j a (q ' )  5  

where 

B(q) ( - 2y - f i f )dq"  ,  (4 .32 )  
a(q') ^ ^ 

where a(q) is a contour in the q' plane from a point q^ to the point q, 

and where C is a constant of integration with respect to q ' (but may in 

general depend on E'). Using the definition of u(q), Eq. (4.30) and 

p (q) as given in Eq. (4.29) we have 

* iB(q)/K 
P (q) = y(q) 4 . (4.33) 

C + i  £B( , ' ) / f i  j q .  

a(q) " 

Equation (4.33) reduces the solving of the generalized Ricatti 

equation (4.28) to the finding of any particular solution of Eq. (4.28). 

All other solutions are obtained by adjusting the parameter C in Eq. 

(4.33). 

A particular solution of Eq. C4.28) may be found by inspection if 

f(q) and VCq) are sufficiently simple. If VCq) and y f^ can be 

expanded as power series (e.g., 

V(q )  =  I  )  
2=0 

then there exists a power series of form: 
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y(q) = I gn (4.34) 
2=1 

which satisfies the generalized Ricatti equation (4.28), and hence Eq. 

(4.34) is a valid particular solution. More general equations must be 

studied on a case by case basis. 

A full discussion of the singularities of solutions first-order 

nonlinear differential equations is beyond the scope of this paper. 

A good discussion may be found in Ince, Chapter 12 (19). For our 

purposes it is sufficient to point out that solutions of Ricatti 

equations may have both poles and branch points. Such solutions may 

have fixed poles and fixed branch points whose location and type can 

be determined by inspection of the differential equation. (Their 

location may depend on values of parameters of the differential 

equation (e.g., E' in Eq. C4.28).) Solutions of Ricatti equations may 

also have movable poles (but no movable branch points) whose locations 

depend on the boundary conditions imposed and on parameters in the 

differential equation. 

For the purposes of the discussions which follow it is sufficient 

to notice that since the branch points are fixed a simply connected 

region, 5, in the conçlex q-plane can be found in which the solution 

of a Ricatti equations, p (q), is regular, single valued, analytic and 

has only poles as singularities. Thus, it will be reasonable to define 

integrals of p (q) within the region S. We will always assume (or 

prove) that we are operating within such a region. 
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With these general considerations we will now proceed to apply, 

p (q',E'), the quantum momentum eigenvalue function, to the problem of 

defining w and J, the action-angle variables. We will follow closely 

the classical theory. There will, however, be differences since 

p (q',E') is very different from p^^q^^E^) except when K ->• 0. 

C. J' - the Action Variable 

In classical mechanics the •momentum function, p^(q^,E^), is used 

t o  de f ine  J ^ ,  t he  c l a s s i ca l  ac t i on  va r i ab l e .  We  w i l l  now u se  p  ( q ' ,E ' )  

to do exactly the sane thing quantum mechanically. After defining 

JCE), the quantum action-variable operator, we will continue to follow 

classical mechanics and define W(q,J), the generating function, and w 

irfiich is the operator canonically conjugate to J. 

Let us suppose that from a Eamiltonian, the corresponding 

Hamilton-Jacobi "eigenvalue" equation and the corresponding Ricatti 

equation have been found and solved yielding p (q*,E'). Let us further 

*  ,  _ ,  *  
suppose that a boundary condition, p Cq' =qQ, £•") = Pg, has been imposed 

on p Cq'jE')- (This boundary condition is imposed on physical grounds 

and is normally obtained from the boundary condition imposed on 

W^CqHaving imposed the boundary condition, p (q',E') is now 

uniquely specified. We will not define J', the eigenvalue of the operator 

J, as the integral around the closed contour D: 

P p*(q' ,E')dq' .  (4.35) 

Equation (4.35) defines J' once the contour D is specified and the direc­

tion (around D) in which the integral is to be evaluated is specified. 
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The two choices which we need to make are largely conventional. In 

classical mechanics, one chooses a particular branch of the function 

p^(q^,E^) (in Fig. 1, this corresponded to choosing signs along the 

bottom of the cut). Next one chooses the contour, which normally 

encloses the classical turning points and the cut between them, but 

which encloses no other singularities of p^(q^,E^). Finally, one 

chooses the direction (around the contour) in which the integral is to 

be  eva lua t ed .  I n  o rde r  t o  ma in t a in  t he  co r r ec t  c l a s s i ca l  l im i t  f o r  J ' ,  

one must make a corresponding set of choices quantum mechanically. 

We have argued that p (q',E') becomes p^Xs^'E^) in the classical 

limit. Instead of using the wavefunction to impose a boundary condition 

on p (q',E'), one may use the classical limit. This is done by choosing 

a point q^ at which both p*(q*,E') and p^^q^^E^) are defined (or their 

limits are defined in the limit of q' -+ q^ and q^ q^). Assuming that 

one  has  spec i f i ed  p^^q^ ,E^ ) ,  one  now chooses  t he  bounda ry  cond i t i on  fo r  

p*(q',E') such that in the classical limit one has: 

P*(qg ,E ' )  p^(qg ,E^) . (4.36) 

Again, once such a boundary condition has been imposed p (q',E') is 

uniquely determined. If one imposes a boundary condition on p (q',E') 

by some other method, Eq. C4.36) should be verified or should be used 

to choose the branch of p^(qQ,E^) with which the classical is 

defined. The reason that one uses such limits is to guarantee that in 

the classical limit J' will become J . 
c -
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We emphasize here that p (q',E') is the physical quantum momentum 

e igenva lue  func t ion .  Fo r  example ,  when  u s ing  p  ( q ' ,E ' )  t o  de f ine  J ' (E ' ) ,  

it must satisfy all physical boundary conditions imposed on it which may 

be  pos s ib l e ,  i n  some  ca se s ,  on ly  a t  d i s c r e t e  va lues  o f  E ' .  

Assuming that p (q',E') and p^(q^,E^) have been specified such that 

p^(q^,E^) is the classical limit of p (q',E'), we now choose the contour 

D and the direction of integration. First, we choose the quantum direc­

tion of integration to be the same as the corresponding classical 

direction. For example, if we were calculating the quantum analogue of 

Fig. 1, we would choose the counterclockwise direction. 

In order to choose the contour, two considerations are important. 

First, in the classical momentum function p^X4^,E^) is normally defined 

as having a cut between the two classical turning points on the real 

axis (as was discussed briefly in Chapter II). The contour is chosen 

to enclose this cut. The quantum contour must enclose at least that 

segment of the real axis which terminates on the classical turning 

points. (We will call this segment the classical region.) 

The other consideration which is important is the singularity 

structure of p (q',E'). As discussed in Appendix C, at an eigenstate 

of the system, for some simple potentials (The harmonic oscillator and 

Cou lomb  po t en t i a l s  a r e  d i s cus sed  i n  Append ix  C ,  i n  de t a i l . ) ,  

p  ( q ' ,E ' )  ha s  po l e s  on ly  on  t he  r ea l  ax i s  w i th  a  s e t  o f  po l e s  be tween  

the classical turning points, with at most one pole to the right of the 

classical region, and with at most one pole to the left of the classical 

region. While such a simple singularity structure will probably occur 
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only for simple potentials, the methods of Appendix C will aid in the 

cho ice  o f  t he  con tou r  and  eva lua t i on  o f  t he  i n t eg ra l  de f in ing  J ' .  

With the understanding that the singularity structure of p (q',E') 

must be studied on a case by case basis, and with a desire to maintain 

the classical limit, we choose the quantum contour to be identical to 

the classical contour. This contour will enclose the segment of the 

real axis between and including the classical turning points. 

We have decided that for systems having a classical analogue, we 

will normally choose the contour and direction of integration to be the 

saae as the corresponding classical contour and direction of integration. 

We have  dec ided  a l so  t ha t  t he  bounda ry  cond i t i on  i nçosed  on  p  (q ' ,E ' )  

should be chosen so that p^^q^,E^) is given in the classical limit. 

These considerations are sufficient to specify the elements of the 

integral, Eq. (4.35), which we are using to define J'. As a result of 

t h i s  de f in i t i on  we  ob t a in  f rom Eq .  ( 4 .35 )  J '  =  J ' (E ' ) .  

We interpret the E' in J'CE') as the eigenvalue of the Hamiltonian 

(i.e., the energy eigenvalue) obtained by allowing the Hamiltonian to 

act on a physically allowed state. Recall that J* is the eigenvalue of 

the operator J. 

Having now discussed the definition of J'(E'), we will now assume 

that we have found J' = J'(E') for some system using the above definition. 

Having J', we will now use this object to define the operator J, the 

canonically conjugate operator w, and the eigenstates | J'>. This 

will complete the quantum discussion of our formal action-angle variable 

theory. 
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We conclude this section with an addendum on the properties of 

p (q',E') at an eigenstate of the system. This will be useful when we 

eva lua t e  t he  con tou r  i n t eg ra l ,  Eq .  ( 4 .35 ) ,  wh ich  de f ines  J ' (E ' ) .  

The normal requirement that a wavefunction must satisfy in order to 

consider it a physically allowed state is normalizability. This require­

ment in general will demand that the wavef unction <q ' [ E '> have a 

certain asymptotic behavior. This asymptotic form of the wavefunction 

can be interpreted as applying to p (q',E'). Since p (q',E') is the 

derivative of Wg(q',E') and since the wavefunction, <q'|E'>, is the 

exponential of (i/H)W^(q',E') we have: 

P*(q ' ,E ' )  =  -  iK  <q r | g ,>  ^  «q ' iE '»  .  (4 .37 )  

For bound state problems (for which one has V(q')>E', for q' real and 

|q'l large) one can make general statements about the sign of the 

product <q'!e'> ^9(<q'|E'>)/8q' (for q' real and |q'| large) at an 

e i g e n s t a t e  o f  t h e  s y s t e m .  T h e s e  s t a t e m e n t s  w i l l  a p p l y  w h e n  < q ' | E i s  

a real function of q' and E' for real q' and real E' and when the 

boundary condition on <q' |E'> is <q' [E'> 0 when |q'| ->• l®. 

These statements will refer to a simple potential for which at two 

po in t s  on  t he  r ea l  q ' - ax i s ,  q_^  and  q_ ,  (q^  >  q_ )  V(q^ )  =  V(q_)  =  E ' .  

Between and q_ we assume that on the real axis, V(q') < E'. For 

q- < q_ we demand V(q')<E' and for q* < q^ we demand V(q') > E', on the 

real q'-axis. By specifying the potential in this way on the real 

axis, the relative size of V(q') and E' in an interval determines the 

behavior of the wavefunction, <q'|E'>, in that interval. 
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At an eigenstate of the system the product <q'lE'>3(<q* |E'>)/3q' 

and hence the product <q'|E'> ^3(<q'lE'>)/3q' has the following signs 

(19 ,22 ) .  Fo r  q '  r ea l  and  q '  >  t h i s  p roduc t  i s  nega t ive  and  fo r  q '  

real and q' < q_ this product is positive providing one is in the region 

where V(q*) > E* (inside the potential hill). When <q'|E'> is not a 

phys i ca l l y  a l l owed  wave func t ion  o f  t he  sys t em,  f o r  l a rge  q*  ( i . e . ,  

iq'I ->• ®), the product is positive for q* real and q' > q^, and/or the 

product is negative for q' real and q* < q_. Thus, we conclude that at 

an eigenstate of the system and only at an eigenstate of the system, 

i n s ide  t he  "po t en t i a l  h i l l "  (VCq*)  >  E ' )  on  t he  r ea l  q ' - ax i s  p  (q ' ,E ' )  

is positive imaginary for q* real and q' > q_^, and is negative imaginary 

when q' is real and q' < q_. Both of these conditions must be 

satisfied at an eigenstate. If the boundary condition on the wave-

function is changed, these conditions change. For example, in central 

potential it is normally demanded that the wavefunction vanish at the 

origin. If q_ is positive, then at an eigenstate p (q',E') must be 

negative imaginary in the interval (0,q_) on the real q'-axis. Such 

changes in these conditions must be studied on a case by case basis. 

The importance of these conditions is that they allow one to 

quickly decide whether a certain energy E' corresponds to an eigen-

energy of a system. This will prove very useful in a practical sense 

when we calculate J'(E') for the Coulomb problem in Chapter V. 
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D. The Operators 

Let us assume tha t  we  have  found J*(E') for some Hamiltonian where 

E' are the eigenvalues of energy for that system. Using classical 

mechanics as a guide we will now define the operators which correspond 

to the classical objects, J^, w^, W(q^,J^). We will define these 

ob jec t s  w i th  r e spec t  t o  wave func t ions  o f  t he  sys t em <q ' ]E '>  (o r  

Let us assume that J' = J'(E') has been found and let us further 

assume that J' = J'(E') may be inverted to yield 

E '  =  E 'CJ ' )  .  (4 .38 )  

Using the substitution. (.4.38) at the eigenvalues of energy, the function 

Wg(q',E'), Eq. (4.4), may be transformed to W(q',J') by: 

WQ(q ' ,E ' ( J ' ) )  =  WCq ' , J ' )  -  ( 4 .39 )  

Using the wavefunction, Eq. (4.1), and Eqs. (4.38) and (4.39), we can 

redesignate the physical states of the system as: 

iW (q ' ,E ' ) /H  iW(q ' , J ' ) /H  
<q ' ]E '>  =  e  =  e  =  <q ' |  J ' > .  (4 .40 )  

<q ' | J ' >  i s  i n t e rp re t ed  a s  t he  wave func t ion  o f  t he  sys t em desc r ibed  

using the states [J'> where E' = E'(J') from Eq. (4.42). Recall 

J ! J '>  =  J ' | J ' > .  

Using the wavef unctions, <q'|E'> and <q'|j'>, we define the 

operators, J(E) and H(J), as: 

<q ' | j (E ) |E '>  5  J ' (E ' )<q ' |E '>  (4 .41 )  
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<q'lH(J)lJ'> 5 E'(J')<q'|J'> (4.42) 

J(E) or simply J is the action-angle operator and H(J) is the Hamiltonian 

operator written in terms of the operator J. Since H (J) is independent 

of w, the coordinate conjugate to J, a Hamilton-Jacobi transformation 

has been effected, using the operator J. 

Using the well-ordered operator function W^Cq^E) the well-ordered 

ope ra to r  W(q , J )  i s  de f ined  u s ing  Eq .  (4 .42 )  a s  ( s ee  Eq .  ( 4 .15 ) ) :  

Since each occurrence of E is to the right of q in W^, each J will be 

to the rig^it of every q, causing W(q,J) to be a well-ordered operator 

function. For the sake of this discussion, using Eq. (4.43), we rewrite 

W as : 

where a more general well-ordered form as in Eq. (4.8) is allowed (and 

implied). 

We can now find the operator w. By analogy to the classical theory 

and the definition of p, we define the canonically conjugate operator 

to J as: 

WQ(q, E=HCJ)) = g(q)h(H(J)) (4.43) 

WCq,J)  (4.44) 

W(q , J )  =  g (q )  k ( J )  (4.45) 

w 
3W(Q,J )  

3J 
C4.46) 

or using Eq. (4.45): 

w (4 .47 )  
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With wavefunctions of the form <q* i j ' >  the eigenvalue function w (q*,J') 

is defined as: 

<q ' lw j j '>  =  w*(q ' , J ' )<q ' I J '>  ,  (4 .48 )  

=  g (q ' )  - ^^^^<q ' | j ' >  ,  (4 .49 )  

so 

w*(q ' , J ' )  =  g (q ' )  .  (4 .50 )  

Earlier we defined p as p = 3Wg(q,E)/3q. Since WQ(q,E) = W(q,J), 

we can update our definition with 

3W-(q ,E )  3WCq, J )  Bg(q )  

^  ^  - V "  °  - i r -  '  — •  w - : "  

Using wavefunctions of the type <q'|j'> we can also find Pj(q',J') 

using WCq,J) from Eq. (4.45): 

<q ' ! ? 1J '> = <q ' k(J) ! J'> 
oq 1 

=  k ( j ' )<q ' | j ' >  
C74 

=  P * ( q ' , j ' ) < q * | j ' >  .  (4 .52 )  

where 

P*(q' ,J')  = k(j ' )  

The earlier p (q',E') is equal to p.(q',J') using E' = E'(J') or 

J' = J'(E'). Thus both p and w are defined using W(q,J) in the same 
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way as and are defined using W^(q^,J^). This parallel construction 

gives us confidence that the quantities, p and w, have been defined in a 

reasonable way. 

One way to increase our confidence in J and w is to verify that 

they have the proper commutation relation. If J and w are a canonically 

conjugate coordinate and momentum, they have commutator fi/i. This can 

be shown using the same method that we used for p and q. The commutator 

of V and J is calculated using the <q'|J*> wavefunction (4.40), provided 

tha t  i t  s a t i s f i e s  su i t ab l e  bounda ry  cond i t i ons  ( a s  g iven  i n  Di r ac  (4 ) ) .  

For acceptable states we have: 

<q' 
i 3J 

(4.53) 

Using the exponential form of the wavefunction, exp[(i/n)W(q\J)], Eq. 

(4.53) becomes 

J ' >  =  < q ' | j ' >  (4 .54 )  

Using W(q',J') = gCq' )kCJ') ,  Eq. C4.54) is: 

<q' I ±. 
i 3J 

J'> = g(q')  (4.55) 

Since right hand sides of Eqs. (4.49) and (4.55) (which gives <q']w]J'» 

are equal, we equate the operators: 

I -L 
^ i 3J 

(4 .56 )  

Using Eq. C4.55) we quickly verify that: 

[ J ,w]  =  Jw - wJ = Y (4 .57 )  
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Thus, J and w have the proper commutation relation and we conclude they 

are canonically conjugate. 

We also note that (23) 

t J ,  =  [ J ,  

n=0 n=0 

" , . n-1 

' - I, # 
n—i. 

= 2.E ''"'J' 

= 2,S _ 

This commutator will be more useful than Eq. (4.57) because of the dif­

ficulties defining angle variables mentioned earlier (9). 

In addition, for states satisfying suitable boundary conditions, 

(-H/i)5/3J is Hermitian and since w is equal to this operator w is 

Hermitian. 

We have argued earlier that p Cq',E'), WQ(q',E') and J*(E') all 

have correct classical limits. From these limits we conclude that 

W(q',J'(E')) = WQ(q',E') has the correct classical limit. In addition, 

we conclude that E'(J') and w' = w Cq',J') have correct limits since 

they are derived from objects having correct classical limits in the 

same way as the classical derivation is done. 

In order to aid in the interpretation of w as the quantum analogue 

of  the  c lass ica l  ang le  var iab le ,  we  ca lcu la te  the  change  in  w (q ' , J ' )  
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around the contour D which is used to define J'(E'). We interpret this 

as the quantum analogue of the classical calculation which shows that 

the change in around one cycle of the classical motion is one. 

Specifically, we calculate: 

* 
Aw = 

and using Eqs. (4.48)-(4.50) 

dq 
,  3  3W(q ' , J ' )  

9q' 3J' 
(4.58) 

Now, using W(q',J') = g(q')k(J'), Eq. (4.58) becomes: 

* 
Aw = ,  ,  32(q ' )  3k(J ' )  

3? ÏT-
(4.59) 

3J '  jL  
dq '  k ( J ' )  

3q 
(4.60) 

Using the definition of p (q',J') and the fact that p^(q',J') 

we have: 

=  p  (q ' ,E ' )  

. * 3 dq '  p  (q ' ,E ' )  (4.61) 

From the definition of J' we have: 

= 3J^ J' (4.62) 

or 

Aw = 1 (4.63) 
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* 
Equation (4.63) is interpreted as the total change in w (q',J*) around 

the contour D. Classically, the change in around the classical 

contour is one, leading to the conclusion that the system is unchanged 

when is increased by one. Quantum mechanically, we interpret 

* * 
Aw =  1 ,  Eq .  (4 .63) ,  a s  mot iva t ing  an  in te rpre ta t ion  of  w (q  , J  )  in  

which the wavefunction which describes the system is unchanged when 

w (q',J') increases by one. Let us define w' = w (q',J') and introduce 

the bra j. For an allowed state of the system we interpret Aw = 1 

as motivating the following boundary condition. 

<w' | j '>  =  <w'  4-  1 | J '>  .  (4 .65)  

Equation (4.63) is the statement of the boundary condition which we 

impose on the wavefunctions <w'|j*>. It states that these wavefunctions 

are periodic in w' with period one. This relation is basic to quantum 

action-angle variables. 

For periodic wavefunctions we have (4): 

<w' I 3 
i 3w 

J '>  =  •  (4 .66)  

The operator CR/i)3/3w is Hermitian (4) and may be related to the 

opera to r ,  J ,  prov id ing  J  i s  Hermi t ian .  ( J  wi l l  be  Hermi t ian  i f  J ' (E ' )  

is real.) Thus, when J is Hermitian, for a proper choice of the phase 

fo r  <w' I  (4 ) ,  we  have :  

J - f ^ 

Expression C4.67) is the SchrOdinger representation for J clearly this 

J is canonically conjugate to w. Having the boundary condition on the 
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wavefunction and J in this form, we may now calculate the wavefunctions 

<w' | j '> ,  and  f ind  the  poss ib le  e igenva lues  J ' .  

The eigenvalues and eigenfunctions of J are found by calculating 

<w' | j | j '> :  

<w' ! J I J '>  =  J '<W'IJ*>  .  (4 .68)  

Combining Eqs. (4.66), (4-67) and (4.68) we find: 

| ^<w' ! J '>  = J '<W' | J '>  .  (4 .69)  

The solution of Eq. (4.69) is: 

<w' | j '>  =  ^  g i /K J 'v '  ^ (4 .70)  

Equation (4.70) will satisfy the boundary condition (4.65) if and only 

i f :  

J' = 2-Hn , n e {0,il,±2, ...} . (4.71) 

These results, Eqs. (4.70) and (4.71), are general and apply to all 

systems having J Hermitian. Equation (4.71) gives the possible values 

of J'. Some of these values of J' may not be consistent with the 

definition of J', Eq. (4.39), and hence must be excluded for a given 

system under consideration. Such decisions limiting the allowed values 

of J' must be made on a case by case basis. 

An advantage in using action-angle variables is that if the 

integral defining J' = J'(E') (where E' is an eigenvalue of energy) can 

be  eva lua ted ,  and  i f  J '  =  J ' (E ' )  can  be  inver ted  to  g ive  E '  =  E ' ( J ' ) ,  

then the quantum energy levels of the system are given by: 
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E'  =  E ' ( J ' )  

E ' (2TRn)  n G {0 ,±1 ,±2 ,  . . . }  (4 .72)  

Thus, the energy levels of the system are given by inspection once 

J'(E') and E'(J') have been found. Equation (4.72) gives the energy 

levels of the system. If any of the values of n are inconsistent with 

the definition of J'(E'), Eq. (4.39), they must be excluded for the 

system under consideration. (This limitation will occur, e.g., in the 

Coulomb problem which we will treat in Chapter V. In the Coulomb case 

the  a l lowed  va lues  a re  n^  =  0 ,1 ,2 ,  . . .  . )  

Having found the eigenfunctions and eigenvalues of J, we now con­

clude our formal presentation of quantum action-angle variables. In 

Chapter V we will apply these concepts to the rotor, harmonic oscillator 

and Coulomb problems. We now list the relevant equations: 

Wavefunction: <q'|E'> 
iWQ(q ' ,E ' ) /G 

e 

Hamilton-Jacobi eigenvalue equation: 

E 

* * 
Definitions of  p  (q ' ,E ' )  and p :  p  (q ' ,E*)  

3Wo(q ' ,E ' )  

3Wo(q,E) 
P aq 
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Ricacti equation for p (q 

K 3p*(q ' ,E ' )  
+  p*(q ' ,E ' )^  +  V(q ' )  =  E '  

Definition of J': J' = J'(E') = f p (q',E')dq' 
• 'D 

Hamiltonian in J: J' = J'(E') E' = E'(J') 

<q ' lH |E '>  =  E '<q ' |E '>  

<q ' | s ( j ) | j '>  =  E ' ( j ' )<q ' | j '>  

Definition of W(q,J) and W(q',J'): W(q',J') = W^Cq',E'(J')) 

W(q ,J )  =  WQ(q ,H(J ) )  

Definition of w, p, w (q',J'), and p (q',J') 

w 
5W(Q,J)  

3J  

(•where w (q',J') = w') 

W(q ,J )  
3q 

3WQ(q ' .E ' )  
P 3q 

<W'+I1J'> = <W'IJ'> 

Possible eigenvalues of J': J' = 2Tfin -1,0 
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Possible energy levels of H(J): 

E '  =  E(J ' )  where  J '  =  2?Kn as  above  
n 

Commutation relations: [p,q] = 5/i 

[ J ,  e " ' " ]  =  e"™ 

Hermitian operators: p, q, J, w 

where q and J are Hermtian by assumption 

Classical limits: W^Cq'jE') W^Cq^jE^) 

p*(q ' ,E ' )  Pc^ '^c '^c^  

J' J 
c 

q' q^ by assumption 

W(q ' , J ' )  -V W^(q^ , J^ )  

w' -»• w 

E ' ( J ' )  -  E ( J )  = H 
c c c 

If one glances through the above set of expressions, one sees that 

the objects which we have defined have correct classical limits, and 

commutation relations. The basic variables are Hermitian. The wave-

function, <w'|j'>, has the correct boundary condition and the Hamil-

tonian, HCJ), is independent of w. We have in the context of this 

theory satisfied conditions A through E and have satisfied the essence 

of condition F (invariance of matrix elements under w*'^w* + 1). Thus, 
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the theory satisfies the basic requirements that we earlier imposed on 

a set of quantum transformation equations. We conclude that this 

canonical transformation theory is reasonable-

In the next chapter, we will apply these theoretical constructs 

to three problems. The rotor will provide an exercise in the formalism, 

and the harmonic oscillator and Coulomb problems will demonstrate the 

power of action-angle variables to find energy levels. These examples 

will reaffirm our assertion that the quantum action-angle variables 

have been defined in a reasonable way. 
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V. THREE APPLICATIONS OF THE GENERAL THEORY 

In the last chapter a quantum transformation theory was developed, 

and action-angle variables were defined quantum mechanically. In this 

chapter we will apply our transformation theory to three systems, the 

rotor, the harmonic oscillator, and the Coulomb problem. The rotor is 

a simple example which will provide an exercise in using these trans­

formation techniques, and the harmonic oscillator and Coulomb problems 

will demonstrate the power of these variables in finding energy levels. 

We will follow the general procedure of the last chapter. 

The method of defining quantum mechanical action-angle variables, 

J anri w, developed in the last chapter can be applied to the rotor 

which we discussed earlier in Chapter III. For the rotor it will be 

possible to find simple expressions for all relevant quantities: J, w. 

We begin by remembering that Schrodinger's equation for the rotor 

i s  ( see  Eq .  (3 .3 )  o r  Eq .  (3 .8 ) ) :  

A- Rotor Revisited 

p , p, WQ , W and H(J). 

C5.1) 

Relating to the wavefunction in the usual way: 

<c ' |E '>  
iWQ(9 ' ,E ' ) /K 

(5.2) e 

we obtain the quantum Hamilton-Jacobi eigenvalue equation: 
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K 3^ 
0 . / '""o , _ „ 

i  34 '2  \  so '  
+  — = E '  .  (5 .3 )  

Defining p (?',£') as: 

3W^(*',E') 

96' P*(*',E') = . (5.4) 

Equation (5.3) becomes the appropriate Ricatti equation: 

I  5P +  p*(* ' ,E ' )2  =  E '  .  (5 .5 )  
1. oç 

Comparing Eq. (5.5) to the Ricatti equation (4.26), we see that and 

V(ç)') are both zero. Equation (5.5) is easily solved since a particular 

solution is: 

p  =  5  k  (5 .6 )  

where we choose the positive square root for In Chapter IV, we 

stated that once a particular solution to a Ricatti equation has been 

found  the  genera l  so lu t ion  fo l lows  ( see  Eqs .  (4 .31) ,  (4 .32)  and  (4 .33) ) .  

Using the above particular solution, the general solution of the rotor 

is: 

p  (* ' ,E ' )  =  k  +  (5 .7 )  
- 2 i k « '  

2kC - e 

where C is a constant (or more generally may be a function of E*) 

which is chosen so that p ($',E') satisfies a given boundary condition. 
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Note that p (o',E') has poles where C = (1/2 k)exp(-2ikô'/H). This 

pole structure is illustrated in Figure 2. 

The physical boundary condition which is imposed on the wavefunc-

tion, <* ' I E'>, is that it be periodic with a period of 2ir. This boundary 

condition may be applied to p (4',E') by noting (see Appendix C) that 

56'  
r , \  -  I  1  _ 5<6 ' |E '>  

* -  »  , ,  

(C.3)  

From this form of p (*',E') it follows that if the wavefunction is 

'k 
periodic, then p (4',E') must also be periodic with a period of 2?. 

Applying this restriction to p (<)',£'), Eq. (5.7), it follows that k 

must have the values (Hm)/2 where m = 0,±1,±2, or a subset of 

these values. 

After choosing values of C and E' (or k), the location of the 

poles of p (i',E') are fixed. A path in the ô'-plane may be chosen on 

which  to  in tegra te  p  (* ' ,E ' )  to  y ie ld  WQ ( (J ) ' ,E ' ) .  In tegra t ing  p  (? ' ,£ ' )  

f rom ÔQ to  o '  one  f inds  (24) :  

fi I \ 
WQ(ç ' ,k ,C)  =  k( j '  +  I" ln (  2kC -  e  I + Cg . (5.8) 

Using Eq. (5.8) with the exponential form of the wavefunction, 

Eq. (5.2), <6'IE'> have been found, with: 

?  C _ /  &  k 6  '  -  &  k * '  .  
<* ' lE '>  =  e  °  2kC e  -  e  ]  .  (5 .9)  

J 
The reader may verify that these wavefunctions satisfy Schrodinger's 

equation (5.1) and that WQ(6',k,C) satisfies the Hamilton-Jacobi 

eigenvalue equation (5.3). 
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•à im 0 ' 

-R/k 

ln(2kC) Re  t> '  
• 

Figure 2. 6'-plane poles of p (<?',£'), Eq. (5.7), for k real and C real 



85 

Since the rotor is a simple problem, we could now inroose a 

boundary condition on the wavefunction and find the energy eigenvalues. 

However, since our purpose is to use our action-angle formalism, we 

instead define J' (or J'(E')) which will be used to find the energy 
V  9  

eigenvalues. Before defining J^, we review the definition of the 

classical for this problem. 

Classically, is defined as the integral of PcC^c'^c^ from 0 

to 2? : 

J 
c 

r2? 
p  ($  ,E  )d6  .  (5 .10)  

0 

The integral from 0 to 2- is interpreted as an integral over one cycle 

of the ô^-motion, since the configuration of the physical system is 

considered to be the same when is 0 or is 2%. Quantum mechanically 

we define J' in an analogous manner. 
9 

We define J' as the integral of p (o' ,E ' )  f rom 0  to  2? :  

r2T7 * 
p (4 ' ,E')d*'  . (5.11) 

This integral is again considered to be an integral over one cycle of 

the physical motion as in the classical case. Using p (o',E') as given 

in Eq. C5.7), J' is: 
9 

2kC - e 
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= [W^(o ' ,k ,C) ] -^  
° 0 

where WQCO '.IC .C ) is given by Eq. (5.8). As noted earlier, k has the 

values niH/2, m = 0,±1,±2, ..., or a subset of these values. Using these 

values of k in Eq. (5.8) for yields 

J :  =  [W_(* ' ,k ,C) ]2^  =  2 -k  =  2%,^  .  (5 .12)  
0 0 0 

Thus, 

£ •  = ( i )  .  ( 5 . 1 3 )  

Note that Eqs. (5.12) and (5.13) are independent of the constant C which 

determines the initial conditions of the motion. 

In Chapter IV, the general theory for action-angle variables states 

that the possible values of J' at an eigenstate of the system are: 

J' = 2%Bm , m = 0,±1,±2, ... . (5.14) 

Equating these values of J* with J' as given in Eq. (5.12) we find: 
9 

2TrKm = 2TI /E* = 2:rk (5.15) 

where we restrict m to nonnegative values because has been 

chosen to be positive. Thus, the eigenvalues of E' are: 

E' = (5m)^ , m = 0, 1, 2, ... . (5.16) 
m 

We may check that the energy eigenstates (5.16) are reasonable by 

no t ic ing  tha t  fo r  k  as  g iven  in  Eq .  (5 .15) ,  the  wavefunc t ion  <6 ' |E '> ,  
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Eq.  (5 .9 ) ,  sa t i s f i es  the  boundary  condi t ion ;  

<o '  |E '>  =  <6 '  +  2? |E '>  .  (5 .17)  

Thus, our eigenstates do not lead to an inconsistency with regard to 

the wavefunction <*'|E 

Having found the eigenvalues of energy, at the eigenstates and 

W-( (J ) ' ,k ,C) ,  we  wi l l  now f ind  W(o ' , J ' ,C) ,  the  func t ion  and  the  
u 9 9 

Hamiltonian H(J ). We will follow the procedure of Chapter IV. Using 
9  

W ( (? ' ,k ,C) ,  Eq .  (5 .8 ) ,  and  E ' ( J ' ) ,  W(a ' , J ' )  i s  g iven  by :  
U  9  9  

I  J:  
J: fi f j '  - 2 y \ 

W(9 ' , J ' ,C)  =  ^  '  +  -  Inf  ^  C -  e  j+CQ .  (5 .18)  

E ' ( J^ )  and  Eq .  (5 .18)  fu rn i sh  the  connec t ion  be tween  s t a tes  of  the  form 

<ô ' !E ' >  and  <c5 ' l j '> :  

I  W(Ô',J: ,C)  
= e" « 

= . (5.19) 

Using states of the form <4!*]J^> the Hamiltonian, H(J^), is defined 

f rom E '  ( J ' )  :  

= (È)  <*'1- '?  •  " .20)  
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From Eq. (5.20) it follows that: 

2 

H(J j )  =  [  ̂  )  .  (5 .21)  

The energy levels of Eq. (5.21) are, of course, given by E'(J^) in 

Eq. (5.15), using the values of J' given in Eq. (5.14). 

In order to find the operator, w, the well-ordered operator func­

tion W($,J.) must be found. This is done by expanding W((j',J',C), Eq. 
p 0 

(5.18), about a regular point ô' = 6^: 

27: i 2=0 II dô' • ? 4)'=ÔQ 

+ C„ . (5.22) 

I f  in  Eq .  (5 .22)  we  demand  tha t  in  any  te rm a l l  '  appear  to  the  l e f t  

of all , then the operator function is found by replacing each p ' by 

* and J' by J, since for each term we have: 
0 0 

<4 ' | f (* )g(J , ) | J '>  =  f (o ' )g (J ' )<4 ' | J '>  .  (5 .23)  

Using this device, Eq. (5.22) produces the operator function: 

' 2? i 2=0 2! d*' \ ? •' 

+  C„  .  (5 .24)  

From Eq. (5.24) and the definitions of p^ and w given in Chapter IV we 

have: 
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3W(*,J ,C) 
w = , (5.25) 

3W(Ô,J  ,C)  
P, = âf- • (5.26) 

As a more concrete example, let us choose C = -l/2k = - -/J'. For this 
<) 

choice, W((j',J',C) becomes after simplification: 
i> 

W(* ' , J ' ,C)  =  Y ln [cos  (  J '  6 ' ) ]  +  C,  .  (5 .27)  
^ X 67rn p L 

where + ln(-2). In the sense of the well-ordered series (5.24), 

Che operator functions may be written as: 

W(0 ,J^ ,C)  =  Y In  [cos  (  2^  J^)  ]  +  .  (5 .28)  

From the definitions of p and w we have: 
9  

p, . - I tan ( jfg J^) . . (5.29) 

"  °  " i M  ' M V • (5.30) 

Using the exponential forms of the wavefunction in terms of WQ(o',J^,C) 

and W(o',J',C), we have for the above choice of C the following 

wavefunctions : 

^ ^ • (5.32) <(6 ' IE '> = e ^ cos 

2?K 

C, 

(5.31) 

H 
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These wavefunctions and the operators, W(ô,J ,C), p and w depend on 
9  9  

the above choice of C. 

As a second example, if one evaluates the integrals defining 

W($ ' , J ' ,C)  and  J '  as  func t ions  o f  C and  then  takes  the  l imi t  o f  C go ing  
Y 9 

to zero, the operator functions and wavefunctions take on familiar 

forms : 

i . (5-33) 

^ , (5.34) 

Pç = 27 • (5-35) 

w = ^ , (5.36) 

<6 ' | J '>  =  e  ^  e^"^  ^  ,  (5 .37)  

c 
<6 ' |E '>  =  e  .  (5 .38)  

Comparing the operators W($,J^,C), p^ and w for these two choices of 

the constant C, one sees that the operator functions depend on the 

choice of C (the boundary condition) with which they were obtained. 

Since the procedure involves finding W($',J') and then using it to find 
9  

WC<^>,J , ) ,  Po .  and  w,  th i s  wi l l  be  a  genera l  f ea tu re  o f  a l l  prob lems  
9 0 

treated using these techniques. 
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While the rotor may be treated by traditional methods, it also 

provides a simple application of the full action-angle variable fonaalisin. 

Its simplicity does however obscure the power of action-angle variables. 

The power of action-angle variables to find energy levels of systems is 

demonstrated for the harmonic oscillator and Coulomb problems in the 

next sections. 

B. Harmonic Oscillator Revisited 

The rotor has provided a fairly complete illustration of the 

application of the methods of Chapter IV. An example which shows how 

action-angle variables can be used to find quickly and easily the 

energy levels of a system is the harmonic oscillator. We now apply the 

methods of Chapter IV to find J'(E') for the harmonic oscillator at 

eigenstates of the system. Having found J'(E'), the energy levels 

E^(J') of the system follow immediately. 

We begin our discussion of the harmonic oscillator by giving the 

* 

appropriate Ricatti equation. From Eq. (4.22) with V(q') = -^ w x 

the Ricatti equation which defines p (x*,E') is: 

?• p* + p*^ + f = E' (5.39) 
1 X 

where 

P* = gfr Cp*(x',E')) 

Equation (5.39) defines p (x',E') which will be used to define J'(E') 

Before defining J*(E'), some properties of p (x',E') are worth 

d i scuss ing .  F i r s t ,  in  the  f in i t e  x ' -p lane  the  so lu t ion  p  (x ' ,E ' )  o f  
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Eq.  (5 .39)  has  no  branch  po in t s ,  p  (x ' ,E ' )  may have poles in the finite 

x'-plane whose locations depend on E' and the initial conditions 

iz^osed on p (x',E'). By studying the truncated equation (n/i)p^ + p 

= 0, one observes that the residue of each pole of p (x',E') in the 

finite x'-plane is S/i. At an eigenstate of the system (see Appendix 

C), p Cx',E*) has poles on the real axis between the classical turning 

points (x' = ±(4E'/u^)^^^. p (x',E') also has a pole at infinity. 

There are no other singularities of p Cx',E*) at an eigenstate of the 

system. Finally, as discussed in Chapter IV, Section C, at an eigen­

s ta te  of  the  sys tem,  p  (x ' ,E ' )  i s  pos i t ive  imaginary  fo r  x '  (x '  

real) and p (x',E') is negative imaginary for x' -® (x' real). 

These general features of p (x',E') will be used when we evaluate the 

contour integral which defines J'(E') at an eigenstate of the system. 

Consistent with Chapter IV, Section C, we define J'(E*) as a 

contour integral: 

J 'CE ' )  5  p*(x ' ,E ' )dx '  ,  (5 .40)  
Jc 

where the direction of integration is taken to be counterclockwise, 

and where the contour C is identical to the classical contour. Specif-

2 1/2 
ically, C encloses the classical turning points (x' = ±(AE/co ) ) and 

the real axis between them, p (x',E') is the solution of the Ricatti 

equa t ion  (5 .39) .  We now eva lua te  the  in tegra l ,  Eq .  (5 .40) .  

As discussed earlier and in Appendix C, at an eigenstate of the 

harmonic oscillator, the only singularities of p (x',E') are on the 

real axis between the classical turning points and at x' = ±». In our 
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evaluation of the integral, Eq. (5.40), we distort the contour and 

enclose the singularity of p (x',E') at x' = ±®. 

In order to carry out this calculation we make the transformation, 

X* =  S  Under  th i s  t rans format ion ,  the  in tegra l  def in ing  J ' (E ' )  

becomes : 

J ' (E ' )  -  p  (S ,E ' )  ^  (5.41)  
Cg s-

where the integral around Cg is taken in the clockwise direction and 

where  Cg enc loses  on ly  the  po in t  S  =  0  (which  cor responds  to  x '  =  ±®) .  

Applying the Residue theorem to Eq. (5.41), J*(E') becomes: 

(5.42) J ' (E ' )  =  27r i  Res (p*(S ,E ' ) /S^)  
S=0 

In order to evaluate Eq. (5.42), we now need only find p (S,E') at 

S — 0. 

In order to find p (S,E'), we apply the transformation, x' = S 

to the Ricatti equation which defines p (x',E'). Under this transforma­

tion, the Ricatti equation (5.39) becomes: 

5  *  E '  1  2  1  . . .  
7 P - - - y  n + - w —7 (3.43) 
^ ^ S 4 S 

where 

A solution of Eq. (5.43) is: 
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p*(S ,E ' )  =  -1+  I S° (5.44) 
^ n=0 ° 

where 

. - f 

bo = 0 

''i ° (- f - è j 

= 0 

^3 " - 4 - i 

''j ° • 4 ' - i ^ "î 'o-Î - d '  ' 3 - 3  •  

Earlier it was stated that at an eigenstate of the system p (x',E') 

is positive imaginary for x' -M (x' real) and p (x',E') is negative 
* 

imaginary for x' (x' real). As applied to p (S,E'), this means 

that for IS | 0 (S real), p (S,E') must be positive imaginary for S 

positive and negative imaginary for S negative. By Eq. (5.44), in the 

neighborhood of S = 0, p (S,E') % ioj/S. For u real and positive, this 

boundary condition is clearly satisfied and p (S,E') is the solution of 

the Ricatti equation near S = 0 at an eigenstate of the system. [Note 

that other solutions of Eq. (5.43) exist. For example, one could have 

A = -iw/S, but such a solution fails to satisfy the physical boundary 
* 

condition imposed on p (S,E*) at an eigenstate of the system.] 
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Having found the appropriate form of p (S,E') near S = 0, we can return 

to  the  prob lem of  eva lua t ing  the  in tegra l  def in ing  J ' (E ' ) ,  Eq .  (5 .40) .  

The  res idue  of  p  (S ,E ' ) /S^  a t  S  =  0  i s :  

Res(p*(S ,E ' ) /S^)  
S=0 

iE _G_ 
0) " 2i 

(5.45) 

Using this residue with J'(E') as given by Eq. (5.42) we have: 

J ' (E ' )  =  2? i  Res(p*(S ,E ' ) /S^)  
S=0 

+ 2. 
I ^ 

At an eigenstate of the system we have evaluated the integral 

defining J'(E'). From the general theory of Chapter IV we have: 

J' = 2Tlin , n = 0,±1,±2, 

Equating 2';T6n with J'(E') as given in Eq. (5.46), we have: 

(5 .46)  

(5 .47)  

2%hn = %= (ir - T (5.48) 

Thus, 

E' = 
n 

2-5 
w 

(n + 1/2) n = 0, 1, 2, (5 .49)  

where n is restricted to non-negative values so that E^ will be 

positive (see below Eqs. (5.52), (5.53), and Ref. 17). From Eqs. 

(5.46)-C5.49), we have; 

E '  =  -  (J '  +  1 /2  h)  
u 

(5 .50)  
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Note that the energy levels, Eq. (5.40), are the same as those found in 

Chapter II, Eq. (2.66). Also, the classical limit of J'(E') is the 

same as  tha t  found  in  Chapte r  I I ,  Eq .  (2 .65) .  

By evaluating the integral which defines J'(E'), we have found 

the energy levels of the system, Eq. (5.49). We mist note that the 

contour distortion technique only is possible at an eigenstate of the 

sys tem.  When p  (x ' ,E ' )  does  no t  sa t i s fy  the  boundary  condi t ions  fo r  an  

eigenstate, there are in general other poles in the x'-plane which will 

contribute to J'(E'). Only at an eigenstate is the pole structure 

simple, as discussed in Appendix C. 

Before leaving the discussion of the evaluation of the integral, 

Eq. (5.40), which defines J'(E'), we note that this integral may be 

evaluated in another way which helps to illustrate why J'(E') is 
* 

2-fin. As discussed in Appendix C, p (x',E') may be related to the 

wavefunction <x'|E'> by: 

- f • (5-51) 

From Eq. (5.51) it follows that a simple zero of the wavefunction 

corresponds to a simple pole of p (x',E') with residue K/i. As dis­

cussed in Appendix C, the wavefunction may have zeros on the real 

x'-axis between the classical turning points at an eigenstate. Asso-

elated with each of these zeros there is a pole of p (x',E'). Let us 

assume that there are n such poles of p (x',E') located between the 

c lass ica l  tu rn ing  po in t s .  The  con tour  C used  to  def ine  J ' (E ' )  in  

Eq. (5.40) encloses these n poles and we can apply the Residue theorem 
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Co evaluate the integral (5.40). We have: 

J ' (E ' )  =  f  p*(x* ,E ' )dx '  
•"C 

a * 
= ZiTi I Res p (x'=x' E') (5.52) 

2=1 

= 2- f in  ,  n  =  0 ,  1 ,  2 ,  . . .  (5 .53)  

where the n poles are assumed to be at x' = x^, x^, x^, ..., x^. 

Thus, the statement that J'(E') is 2-Kn where n = 0, 1, 2, ... is 

a statement that at an eigenstate of the harmonic oscillator the wave-

function has n zeros. J'(E') is then an object which counts the zeros 

of the wavefunction (for the harmonic oscillator) and relates the 

number  o f  ze ros  to  the  energy  e igenva lue ,  E ' .  

At this point in the calculation, we could continue the process 

and find WQ(q',E'), , W(q',J'), W(q,J), p, p*(q',J'), w and 
yip 

w  (q ' , J* ) .  Such  a  ca lcu la t ion  might  be  ins t ruc t ive  and  would  dup l ica te  

other solutions of the harmonic oscillator (23). We, therefore, 

forego this process in order to point out that we have found the energy 

levels of the system without carrying out the full transformation to 

action-angle variables. For practical calculations, the advantage in 

using action-angle variables lies in the fact that certain information 

(energy levels) can be found without a full solution of the problem. 

The formalism guarantees that the quantities listed above may be found 

if desired. These quantities do not need to be found if one wishes to 

find the energy levels. We remark that the quantum process of finding 

the energy levels without solving the full problem is the exact 
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analogue of the process followed in classical action-angle variables 

where the system frequencies are found without solving the full motion. 

We emphasize that if the singularity structure had been complicated, 

if the boundary conditions at the relevant singularities had been dif­

ficult to apply, or if the relevant residues had been energy (E') 

independent, the procedure which we employed might not have given the 

energy levels so easily. While the energy levels of a general potential 

might be difficult to find using action-angle variables, the procedure 

worked well for the harmonic oscillator. As we will see in the next 

section, this procedure also works well for finding the energy levels 

of the Coulomb problem. 

C. Coulomb Potential 

The harmonic oscillator and rotor have provided examples of problems 

in which the energy levels of systems can be found using action-angle 

variables (without necessarily finding the wavefunction <q'[E '>). We 

now treat the radial Coulomb problem using the same techniques as were 

employed for the harmonic oscillator. We find the energy levels of 

the attractive Coulomb potential without solving Schrodinger's equation 

for  the  wavefunc t ion  <q ' |E '> .  

We begin our treatment of the Coulomb problem by giving the 

appropriate Hamiltonian. We assume that the angular part of the Coulomb 

2 2' 
problem has been completed yielding the eigenvalues of L : L = 

2 2 ' H £(£+1) for £ = 0, 1, 2, ... . With these values of L , the radial 

attractive Coulomb Hamiltonian is : C2m = 1) 
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H(r,P ) = ^ P + ^ ^ * (5.54) 
r r r 

Using the wavefunction in the exponential form: 

|w (r',E') 
<r'|E'> = e" ° . (5.55) 

A substitution is made into the Schrodinger's equation based on Eq. 

(5.54) in order to obtain the HamIton-Jacobi eigenvalue equation: 

- "Orr f T V-®r • 
i r r r 

where = 3^Q(r',E')/3r'^ , and where = SWQ(r',E')/3r'. This 

equation for ^^(r'jE*) will now be used to find the Ricatti equation 
* 

for the quantum momentum eigenvalue function p (r',E'). Defining 

p*(r',E') as: 

* 3W (r',E') 
P (r'.E") E - ° 

3r' 

we have the Coulomb Ricatti equation: 

H5pV,E-) + 25 JL E') + p*(r'.E')2 = £• . ^ 

i 3r' i r' r' r' 

(5.57) 

•k 
which has been obtained by substituting p (r',E'), into the Hamilton-

Jacobi eigenvalue equation. 

"k 
Before defining J'(E') in terms of p (r',E') two points need to 

be made about p (r',E*) which solves Eq. (5.57). First, (for E' real 

and negative) as discussed in Appendix C, at an eigenstate of the 
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systen p (r',E') has a pole at the origin, and may have poles on the 

real axis between the classical turning points (the points r_j_ and r 

for which the right hand side of Eq. (5.57) is zero). Second, the 

poles in the classical region (between r_^ and r_) each have residue n/i. 

This is shown by studying Eq. (5.57) in the neighborhood of a pole 

where the right hand side of Eq. (5.57) can be neglected. 

These considerations are important because at an eigenstate the 

quantum singularity structure is very similar to the classical struc­

ture. Classically, in the finite plane the momentum, p^(r^,E^), has 

a cut between the classical turning points and a pole at the origin. 

The action variable J is defined as the integral around a contour 

which encloses onlv the cut and is taken in a counterclockwise direc­

tion. The branch of is chosen which is positive along the 

bottom of the cut (as in Figure 1). For this definition is posi­

tive. Normally, the integral is evaluated by distorting the contour 

so that it encloses only the point at infinity and the origin (3). 

The residue theorem is then applied to these two points. This is the 

method which we will use quantum mechanically. 

Quantum mechanically we define for the Coulomb problem as the 

integral of p (r*,E') around a contour, D, (in a counterclockwise 

direction) which encloses the real line from one classical turning 

point to the other and which also encloses the turning points r_^ and 

r themselves. In order to evaluate this integral, we first assume 

that we are at an eigenstate of energy, E', (where E' is real and 

negative). Next, as in the harmonic oscillator, we assert that at 
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this eigenstate there are n poles on the real axis in the classical 

region. Each of these poles has residue H/i and by the residue theorem: 

where n = 0, 1, 2, ... . This is the same result as was obtained for 

the harmonic oscillator and may be interpreted as stating that there 

a given eigenstate. Next we connect as given by Eq. (5.58) to the 

corresponding energy eigenvalue, £*. This is done by distorting the 

contour, D, in the same way as the contour is distorted in the classical 

problem (3). 

As shown in Appendix C, the singularities at an eigenstate are 

in the classical region on the real axis, at the origin and possibly 

at infinity (which we investigate below). Thus, the distorted contour 

will enclose the singularity at the origin and the point at infinity. 

This distorted contour is equivalent to two individual contours which 

enclose the origin and the point at infinity providing that the integral 

is now taken in a clockwise direction. 

The integrals which define in this way may be evaluated using 

"k 
the residue theorem once p (r',E') has been found at r' = 0 and at 

r' = =. Calling the distorted contours DQ and the integrals which 

now define J' are; 

» 

(5.58) 

are n simple zeros of <r']E'> between the classical turning points at 

r 

J 
r 

0 

p*(r',E')dr' + p*(r',E')dr' (5.59) 
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where the integrals around DQ and are now to be taken in a clockwise 

direction. 

The integrals around and can be evaluated using the residue 

theorem. The change of r' = S (dr* = - S dS) is performed on the 

integral around changing it to an integral around S = 0 on a contour 

D^. With this change of variables in Eq. (5.59) becomes: 

J' = 
r 

p*(r',E')dr' + f - P*(S,E')S"^ dS . (5.60) 

»0 

Using the residue theorem we have: 

J' = - 2?i Res[p*(r',E')] + 2:ri Res[p*(S,E')S"^l . (5.61) 
^ r'=0 S=0 

Evaluating the integral has now been reduced to finding the residues 

of p (r',E') and p (S,E')S ^ at r' = 0 and S = 0, respectively. These 

residues may be found easily once the Coulomb Ricatti equation is solved-

In order to evaluate the residues which now define J^, we need to 

solve the Coulomb Ricatti in ways which yield solutions which are valid 

near r' = 0 and S = 0 (r' = =), such that these solutions satisfy the 

physical boundary conditions which we will impose on them. A solution 

of the Coulomb Ricatti equation (5.57), valid near r' = 0 is: 

P*(r' , E ' )  =  - ^ +  I E  r'° , (5.62) 
n=0 

where 

C„ ^ "0 2ifi(l + Z )  
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c, = 
'1 15(3 + 22) 

1 
^ xfi(k + 2  +  2 1 )  ^(k-l-£) * ^ ^ 

For the sake of the discussions which follow we will call this solution 

* 
pQ since it is valid near r =0. 

Using the change of variables r' = S we can study the behavior 

of p (r',E*) near S = 0 or r' = ». Using this transformation of 

variables the Coulomb Ricatti equation becomes : 

K 3p (S,E') _ 2K 1 p*(s,E') -^p*(S,E')^ = - ̂  + H^£(2+l) -
i 3S i S S S S 

(5.63) 

Equation (5.63) has as a particular solution: 

a. ® 

p (S,E') = ^ b (5.64) 
n=0 ° 

where 

bg = + i5 , < = /-E' > 0 , for E' > G , 

••l " 2i7- f  •  

- E^1(Z+1) + bj - iS b 

''2 ° 2Ï 



10^ 

- I 

* 
We will call this solution Pg for the discussion which follows. 

* * 
As discussed in Chapter 17, solutions like Pg and p^ are not the 

m o s t  g e n e r a l  s o l u t i o n s ,  b u t  a r e  c o r r e c t  i n  t h e  n e i g h b o r h o o d  o f  r *  = 0  

and in the neighborhood of S = 0 providing they satisfy appropriate 

boundary conditions. As was discussed in Chapter IV (or see Appendix C), 

for an eigenstate of a system, if one has S'<V(r*), then between the 

origin and the left classical turning point, r_ (where E' = 

* * 
p (r ,E') 2iust be negative imaginary. We can check that pg satisfies 

this condition by noting that in the limit of r' 0 (r' real, positive), 

PQ or p Cr',E*) as given by Eq. C5-62) is negative imaginary. Thus, 

* 
Pg is the valid physical solution near r = 0. In Chapter IV, the con-

dition imposed on p (r',E') in the region between the right classical 

turning point, (where E' = V^^^(r_j_)), and positive infinity, is that 

'k 
p (r',E') must be positive imaginary. We may check that Pg is valid 

* 
near S = 0, because in the limit of S 0 (S real, positive) Pg or 

* 
p CS,E') as given by Eq. C5.64) becomes i< which is positive imaginary. 

Thus, Pg is physically valid near S = 0 (or r = »). The two 

solutions, PQ and Pg, which we have found are valid near r' = 0 and 

S = 0, respectively, at an eigenstate of the Coulomb potential. {We 

note that other p solutions exist at r = 0 and S = 0 besides Pg(r',E') 

and pgCS,E'), but these solutions do not satisfy physical boundary 

conditions.] 
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Since we have found solutions which are valid at r' =0 and S = 0 

(r' = =o) , we can now return to the definition of which is given in 

Eq. (5.61) as the sua of two residues. The two residues of interest 

are: 

Res[p*(r',E')] = Reslp*] = - ifi£ , (5.65) 
r'=0 r'=0 

Res[p*(S,E')S"^] = Res[p* S"^] = ^ . (5.66) 
S=0 ^ S=0 1 

Putting these residues into as given in Eq. (5.61) we find: 

= - 2?E2 + ^ - 2TrH , (5.67) 

= - 2-fiil + - 2?R . (5.68) 

Equations (5.67) and (5.68) give = J^(E'). They can be inverted 

to give E ' = E ' ( Jp : 

2 2 

2 E' ^ ? . (5.69) 
(j; + 2?G2 + 2?&) 

Expression (5.69) is the desired relation between the physical eigen­

values E' and J\ Note that it is an exact quantum mechanical result. 

Using Eq. (5.22) we can find the energy levels. We have evaluated 

the integral defining two mathematically equivalent ways. One way 

produced as in Eq- (5.68) and the other way produced = 2~Hn^, 

n^ = 0, 1, 2, ... (which is also given by the general theory of Chapter 

IV). Since these ways are equivalent, the energy levels are found by 
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stibsticuting = 2~fin^ into E'(J^): 

2 2 
E' = —^ r where %,n = 0, 1, 2, ... . (5.70) 

(27rKn^ + 2irfi£ + 2ufi) 

The reader will notice that these are the exact Coulomb bound state 

energy levels in agreement with other calculations. E^, Eq. (5.70), 

also has the correct classical limit (3): 

: ^ 
' "rc + •'oc + 

The fact that we have found the correct quantum energy levels and have 

maintained the correct classical limit gives us confidence that was 

defined in a reasonable way. 

From Eq. (5.70) we see that the exact quantum energy levels of the 

system have been found without solving for the wavefunction <q'{E'>. 

For this problem, finding the energy levels involved using the defini­

tion of J'(E') in terms of p (r',E'), and then finding the two 

relevant residues of p (r',E'). Thus, the energy levels have been 

found without solving SchrOdinger's equation, and without finding the 

quantum momentum function p (r',E') for all r '. 

At this point in the calculation we could go on to find WQ(r',E*), 

W(r',jp, WQ(r,E), W(r,J), w, H(J^), p and the various wavefunctions. 

However, we have accomplished what we set out to do. We have found the 

Coulomb energy levels without carrying out the full canonical trans­

formation. This is analogous to the classical use of action-angle 

variables which gives E^^J^) without reference to w^. For problems 
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which have a simple singularity structure (like the Coulomb problem), 

the use of action-angle variables to find energy-levels is a quick way 

to find the energy eigenvalues without any approximations. 

D. Concluding Remarks 

In this dissertation we have defined action-angle variables 

quantum mechanically using two methods. First, we used the classical 

transformation equations as a guide in the choice of a set of quantum 

transformation equations. We accepted this set of equations as valid 

if it satisfied certain conditions, not the least of which was pro­

ducing a Hamiltonian independent of the coordinates w. This method 

worked well for systems having simple classical transformation equations, 

and did produce correct energy levels for all systems considered. 

However, the method failed when applied to the Coulomb problem. 

The second and more general method involved starting with 

Schrodinger's equation and an exponential form of the wavefunction. 

From these a quantum Hamilton-Jacobi eigenvalue equation was found. 

From this eigenvalue equation a Ricatti equation was found whose 

solution p Cq',E') is the quantum analogue of the classical momentum 

p^Cq^,E^). J' was defined as a contour integral of p Cq',E'). 

The definition of J' and a consideration of the boundary conditions 

appropriate for p (q',E') led us to the definitions of the quantum 

generating functions WQ(q,E) and WCq,J). These generating functions 

allowed us to define p and w, the operators canonically conjugate to q 

and J, respectively. We verified the desired properties of p and w. 

We found the appropriate boundary condition for the wavefunction <w'|j'>. 
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We found the eigenvalues of J and the operator H(J) with its eigen­

values, the energy levels of the system. This method is more powerful 

than the earlier "classical-update" method. In particular, this second 

method gave us the energy levels of the Coulomb problem which the 

earlier method was not able to do. We emphasize that the second method 

(Chapter IV) is con^jletely general, i.e., it is applicable to any 

quantum system. 

The central expression of the quantum action-angle variable theory 

proposed here is the definition of the action-variable eigenvalue J' 

in terms of the energy eigenvalue E', i.e., the definition J'(E'). 

Although we must solve the Hamilton-Jacobi eigenvalue equation for 

A ik 
p (q',E') in order to find J'CE'), it is not necessary to know p (q',E') 

at all points q* (e.g., p (q',E') must be known only at the origin 

and infinity for the Coulomb problem) in order to find J'(E ' ) and the 

energy levels of the system. In contrast, finding energy levels using 

SchrCdiager's equation requires a knowledge of the wavefunction 

<r'|E'>, throughout the region of interest (e.g., from r' = 0 to r' = » 

for the Coulomb problem). Thus, in principle, one can find the 

energy levels of a quantum system without finding a complete solution 

of the equation of motion, i.e., without finding a complete solution 

of Schrodinger's equation. 

While quantum action-angle variables are equivalent to normal 

"p-q" quantum mechanics, the strength of these new variables lies in 

their ability to calculate energy levels without carrying out a full 

canonical transformation. The analogous use is made of them in 
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classical mechanics. These variables are ideally suited to calculate 

bound state energy levels, and may be generalizable to systems which 

have no classical analogue. It is in the context of carrying out 

bound state energy level calculations for systems for which traditional 

methods have failed, that action-angle variables may find their greatest 

utility. 
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VI. APPENDIX A: ANGULAR PROBLEM 

As given in Chapter III, the hypothesized quantum transformation 

equations are: 

cos6 = (b - b^)/2i , (3.30) 

^6 = è [KJs + JJ' + «3 + . C3-3W 

-i2?Wa 
b = e " f(J,,J") , (3.28) 

^ 9 

i2%w 
= f (jg.jp e ® , (3.29) 

where J" = |j'| = 2%hm", m" = 0, 1, 2, ... . 
9 9 

2 
It is desired to find L (J ,J") and the function f so that conditions 

a 9 

A-F are satisfied. This is done by first rewriting the "Eamiltonian" 

2 L (3.4) so that is is a function of cos0 and Pg sinG only so that we 

2 
can use the transformation equations (3.30) and (3.31) directly. L is 

defined by 

2 ^ L = P sine P + . (3.4) 
sine ® ® sin 8 

In the rewriting process we use the following commutators: 

[P ,cos6] = - 4 sine , (A.l) 

[Pg,sin6] = Y cose , (A.2) 
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[Pg,P^] = [P^,cos0] = [P^,sine] = 0 , (A.3) 

2 
[L^,sine] = y (P^ cos6 + cosS P^ + T ) • (A.4) 

2 
We begin to rewrite L in terms of Pg sin6 and cose by multiplying both 

2 sides of L by sin9: 

sinG l?" sinS = P. sin6 P^ sin9 + P'^ (A.5) u y 0 

= (Pg sin9)2 p,2 _ (A.6) 

The left side of Eq. (A.6) may be rewritten using Eq. (A.4) to yield: 

sinS sine = y (sin^B + 1?" sin^9 + sine[L^,sine] - [L^,sin6]sin6) 

= Y (2L^ - cos^e Z? - cos^e + 2h^cos^9) . (A.7) 

Using Eq. (A.7) on the LHS of Eq. (A.6) we now have an expression which 

9 2 
depends only on I T ,  P^ , P. sin6 and cose: 

•[} - p'2 = y [cos^eCL^ + (L^ + T- K^)cos^e] - J H^cos^e 
9 Z 4 4 4 

+ P sine P„ sin9 . (A.8) 
5 c 

Equation (A.8) is now in a form into which both Eqs. (3.30) and (3.31) 

may be substituted. Also to save writing we introduce the notation 

J = J. + J" . (A.9) 
9 * 

Expression (A.8) contains only sine and cos6 so we may now use Eqs. 

(3.30) and (3.31). Using Eqs. (A.9), (3.30) and (3.31), cos^9 and 
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Pg sinB P. sine may be expressed in terms of b and J as: 

cos^9 = - ̂  (bb - bb"*" - b'*"b + b^b"'") , (A. 10) 

P„ sine P^ sine = —^ (bJbJ + bJ^ + Jh^h^J + Jb'^Jb"'") .(A. 11) 
® ® lÔTT^ 

tiZ'HW^ ±i2'nWg 
Using [Jg,e e , we have the following useful com­

mutators : 

[b,J] = 2%Kb , (A.12) 

[b'^,J] = - 2:rKb"^ , (A. 13) 

[J,bb"^] = [J,b\] = 0 . (A. 14) 

Using Eqs. (A.12)-(A.14) with Eq. (A.11) we obtain after manipulation: 

P^ sine P^ sine = —^ [J(J + 2?5)bb + bbJ(J + Zirïi) - SirVbh 
^ ® 32%^ 

+ J(J + 2:rl5)b''"b''" + b'*'b''"j(j + 27t5) -

+ 2(J + 2:rK)^b'^ + 2J^%] . (A. 15) 

Combining Eqs. (A.10) and (A.15) we have part of the RES of Eq. (A.8): 

P sine P sine - y fi^cos^ = —[ (J + ?K)^b + bb(J + TTH)^ 
® ® ^ 32?"^ 

+ (J + irfi) ̂ b b + b b (J + ttK) ̂  

+ 2(J^ + 4TrKJ - TT^H^)bb''' 

+ 2(J^ - 5Tr^^)b'''b] . (A. 16) 
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2 Continuing to rewrite the RHS of Eq. (A. 8), we multiply cos S by 

2 12 
(L + — H ) and use Eq. (A. 10) to fona: 

Y (cos^9(L^ + "I 5^) + (L^ + I" H^)cos^9) = - { (L^ + J fi^)bb 

+ bb(L^ + J + J + b'^b'^CL^ + j H^) 

- (L^ + X fi^)bb"^ - bb'^CL^ + ^ - (L^ + ^ H^)b'''b 
4 4 4 

-b%(L^ + ^sS} . (A. 17) 

If we add Eq. (A.17) to Eq. (A. 16) we obtain the right hand side of 

2 + 
Eq. (A.8) in terns of L , J, b, and b : 

Pg sin6 Pg sin9 - fi^cos^B + y [cos^9(L^ + ^ fi^) + (L^ + fi^)cos^9] 

= —^ [-4-^(L^ + I" fi^) + (J + %H)2]bb + bb[-47r^(L^ + j fi^) 
32? 

+ (J + -fi)^] + [-4:r^(L^ + -^ H^) + (J + Trfi)^]b^b'^ 

+ b%'^[-4Tr^a^ + I" H^) + (J + rrfi)^] + [4 ^(1? + j H^) 

+ 2(J^ + 4?HJ - ?^^)Ibb""" + [4?^(L^ + R^) + 2(J^ - 5?V) jb^ 

+ bb'^[4?^(L^ + J nhl + h'^h[ATT^(L^ + ^ R^) ] . (A. 18) 

Before simplifying Eq. (A. 18) it is important to know the effect of 
±i2iTw ±i2'7Tw 

f(J ,J")e and of e f(J.,J") on states !We have 
V Y V y V y 

required that the following boundary condition be satisfied by <w'|j'> 

for action-angle coordinates : 

<w' + 1|J'> = <w'|j'> . (A.19) 
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Under this boundary condition it follows that (4) we have for Hermitian 

J: 

H 3 
I 3  ̂

and also that (4): 

<W'|J|J'> = f G^<w'|j'> , (A.21) 

= • (A. 22) 

Using Eqs. (A.19), (A.21) and (A.22) we have: 

<W'!J'> = (A. 23) 

J' = 2?Eii n = 0,±1,±2, 

Using Eq. (A.23) we have the following: 

= <w'|j' ± 2?M> . (A.24) 

From Eq. (A.25) it follows that: 

e±i2^]j,> ^ |j, ^ 2?K> . (A.25) 

Also 

f(j)|j'> = f(J') |J'> . (A.26) 

Using Eqs. (A.25) and (A.26) we evaluate f(J)e 

<w'|f(J)e-^^'^lJ'> = <w'lf(J)|J' ± 2%H> 

= f(J' ± 2?K)<w'I J' ± 2%R> . (A.27) 

(A. 20) 
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We also evaluate e f(J ± 2TE) : 

|e-^2TTw ^ 2-H)1j'> = f(J' ± 2:Tfi)<w'|e"^^™|j'> 

= f(J' ± 2?H)<y'|j' ± 2?E> . (A.28) 

Comparing Eqs. (A.27) and (A.28) it follows that: 

^ix27w + 2?E) = f(J) e"^^™ . (A.29) 

Equation (A.29) is a general result which is valid without respect to 

the specific type of action-angle variables under consideration (i.e., 

without respect to Jg, J^, w^, w^, etc.). 

Equation (A.29) can now be used to reduce the SHS of Eq. (A.18), 

since bb, b b , b b bb may now be simplified. For example, bb is: 

• 9 -i2%Wg 

bb = e ' 

Using Eq. (A.29) in Eq. (A.30) we obtain: 

-iAfrw 
bb = e ® f(J. - 2%5, J") f(J.,J") . (A.31) 

V 0 u 0 

Similarly, b b , b b and bb become: 

+ + + + i4?w 
b b = f (J.,J") f (J. - 2%Ii, J") e , (A. 32) 

CO 0 <P 

bb"^ = f(J. + 2,5, J") f'^(J. + 2%K, J") , (A. 33) 
y 0 " 0 

= f'^(jg,jp f(Jg,Jj) , (A. 34) 

2 2 
Now, the left side of Eq. (A.18) is equal to L - P' from Eq. (A.8). 

2 
One of our goals has been to find L as a function of Jg only, and hence 
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2 2 2 2 
L must be independent of w . Since P' = J] /4~ , this independence 

3 9 0 

will occur only if the right hand side of Eq. (A.18) is independent of 

w^. Referring to Eqs. (A.31-(A.34), the right hand side will be 

independent of w only if the coefficients of all terms containing bb or 

b'%'*' are zero. This condition yields: 

^ (J„ + J" + ttK)^ 
4 4%: * * 

= —^ (J + . (A.35) 
4? 

2 Thus we have now found L as a function of which was one of our goals. 

2 We will now use L (J„) to find the form of f. Once we have found 
3 

the form of f, we will have specified the transformation equations. 

Using Eq. (A.35) to reduce Eq. (A.18), and then substituting Eq. (A.18) 

into the RHS of Eq. (A.8) we obtain: 

- P'2 = ^ [(j2 + 37rKJ)bb'*" + (J -r 2%5)(J - -H)b'^b] (A.36) 
® Sir 

where bb"^ and b'^'b are given in Eqs. (A-33) and (A.34). From the rotor 

we have: 

J'/2tt = P: (A.27) 

where |J'| = J" so that J'^ = J"^. Using 1?(J ), Eq. (A.35), the expres-
9 9 9 9 c 

S ions for bb"*" and b'^b, and Eq. (A. 37), one obtains from Eq. (A. 36): 

1 1 jf 1 + 
—T (J + TK) - — H -z = —T I (J + 3'n-KJ) f(J + 2TH) f (J. + 2TH) 
4%^ 4 4%^ ® ^ 
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4- (J + 2?G)(J - -fi)f'^(Jg)f(Jg)] .(A.38) 

Equation (A.38) cannot be simplified without additional information. The 

additional information which we use is the commutator: 

[P sine, cose] = - 4 (1 - cos^e) (A.39) 
o 1 

which must be satisfied if our transformation equations are to be con­

sidered valid (condition C). We use this commutator to determine the 

form of fCJgjJp by substituting the expressions for Pg sine and cos6 

(in terms of b and b"^) as given by the transformation equations (3-30) 

•J" ^ 
and (3.31). From this commutator we find a relation between bb and b b 

which determines f(J ,J")- One obtains from the commutator: 
9 9 

(J + 3?R)bb* = 4TT1Î + (J - TrK)b''"b . (A.40) 

Putting Eq. (A.40) into Eq. (A.38) (which we could not simplify earlier) 

one finds : 

KJ + -K)^ - [ZTTKJ + (J + TrK)(J - %K) ]B% 
4*2 * 4*2 

= [ZTTHJ + (J + TTH) (J - TK) ] 
4? 

X f'^(J ,J') f(J.,J!) . (A.41) 
y 9 U 9 

The left side of Eq. (A.41) will be equal to the right side of Eq. 

(A.41) only if f'''(J ,J")f(J .J") has the form: 
9 Q U ® 
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+ - jf 
f f = (A.42) 

J - TTTÎ 

(Je + 

We now consider the eigenvalue spectrum. First Eq. (A.43) may be 

evaluated for a state |J' J>: 
' 9 $ 

(j; + - jf 

V 9 

Equating Eqs. (A.44) and (A.45) we have the product f'f expressed in 

terms of the eigenvalue J': 
6 

CJ: + J")^ -
f (j;,j")f(j;,j") = —§—^^ (A.46) 

V 0 . i (J ' + joy -
6 6 

(where J" > 0). 
9 

Before we take a square root in Eq. (A.46) and obtain f(J',J") it 
9 9 

is important to consider the spectrum of values which may have. The 

left hand side of Eq. (A.46) is a positive definite quantity and hence 

is positive. The right hand side of Eq. (A.46) is positive only for 

those states having J'>OorJ*< -2J". We choose those states having 
9 0 

Jg > 0 as the physical Hilbert space because in the classical limit we 

require tha.t J* be a positive quantity (since is a positive quantity 

as is discussed in Chapter III, Section C). In the classical limit with 
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J, ^ -2J^, J! becomes a negative quantity which we regard as unphysical. 

Thus, the physical Hilbert space consists of those states having Jg 2 0 

(For a related and more comprehensive discussion see Ref. 17.). 

For the allowed or physical Hilbert space f'''(Jp,Jpf (J^ ,J^') is 

greater than zero and f(J',J') is real. Thus we define f(J-,J") for 
U Y U Ç 

the physical Hilbert space as; 

1- cjj + - .V 

1/2 

(A-47) 

and have: 

Having restricted the Hilbert space and determined the form of 

f(J ,J"), we can now verify the commutator of P sin6 with cos6, Eq. 
9 6 0 

(A.39). After manipulating this commutator (A.40) was found: 

(J + 3?Ii)bb' = 4TT5 + CJ - -K)b b (A.40) 

Using the form of f which we have found, and the definitions of b and 

b"*" we have after manipulation of Eq. (A.40): 

(J + 3%Ii)fO + 2%K, J")f ^ + 2?G, J") 
9 93 p 

= 4TrH + (J - irH)ff'^ .(A.48) 

Using the form of f we have: 

(J + 3itK) 
r CJ + 2?K) - J"^ 

6 

CJ + 2ITK) - TT^R^ 

1 J = 4TrK + CJ - ?K) ~2 ^2 . (A.49) 
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From Eq. (A.49) one finds: 

(J + 2%R)2 _ j"2 j2 _ j„2 
^ = 4%S + 

J + ?S J + -fi 

+ 4?2s2 _ J"2 
(A.50) 

J + %K 

Clearly, both sides of Eq. (A.50) are equal and the commutator of 

Pg sine with cos9 is verified for the physical Hilbert space. This is 

condition C. 

The six conditions imposed on a set of transformation equations 

have been verified for the restricted Hilbert space. In this space the 

2 eigenvalues of L may be found using Eq. (A.35): 

L^1J:,J'> = + J" + %K)2/4_2 _ 1 . (A.51) 
' 0 P 4u- c P 4 CO 

2 
Defining J' + J" = i2%S = 2-:rfiCn + m") the eigenvalues of L are: 

0 0 9 

2 
L ^ '  =  ( H ^ a + j )  - ^ K " )  =  K ^ £ ( £  +  1 )  .  ( A . 5 2 )  

Since both n and m" have allowed values : 0, 1, 2, ...» it follows 
9 

2 
that Z  has allowed values : 0, 1, 2, ... and L has the spectrum: 

L^' = Aa + 1) = S^CO, 2, 6, 12, ...) . (A.53) 

2 
Having found the eigenvalues of L and the transformation equations 

from Pg and 6 to and w„, the problem is completed. As in the 

harmonic oscillator and rotor, the procedure was to use the classical 

transformation equations to deduce the quantum equations and to verify 
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that the transformation equations and Hamiltonian, H(J), have certain 

properties. On the physical Hilbert space the eigenvalues of H(J) 

2 (or L (Jg) in this case) were finally determined-
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VII. APPENDIX B: TOO-DIMENSIONAL HARMONIC OSCILLATOR 

The planar oscillator is easily done using the procedure employed 

for the three-dimensional oscillator. The classical Hamiltonian and 

transformation equations are: (2m = 1) 

P^ 1 
H  =  P ^ + - ^  +  - A ^  ( B . l )  
c c ^ 4 

J.^ 
P, = -r— (Rotor) , (B.2) 

oc ZTT 

where J" = > 0, real for J' real 
i 4» à 

= 2%%^^ (Rotor) , (B.3) 

(B.4) 

0 1 9 9 1/9 
WP-/2 = JL Sia(2.w,,) + S(J,,.J,c)/w 

(B.5) 

In analogy with the three-dimensional harmonic oscillator is 

defined as: 

J = y< — H -
PC 2 W c $c 

The action variable J is defined using the branch of P which is pc c 

pictured in Figure 1, positive along the bottom of the cut. The direc­

tion of integration is chosen to be counterclockwise and, hence, 
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2 is a non-negative quantity. The sign of the square root of is chosen 

to be positive which is consistent with the branch of chosen, and 

2 1/2 with the interpretation of [P^^] , as the length of the angular 

momentum vectors. For these choices of sign it follows that is 

positive which is consistent with (B.l) (where P , p and P. are real 
c ç)C 

quantities). 

The quantum Hamiltonian is: (Zm = 1) 

1 1 2 2 
H = — PpP + —-^r + — u 0 (B.6) 

P 3 4 

where P* is the eigenvalue of P., the rotor momentum, in a state 
<? 9 

<t|)' |P^ = Sm> where m = 0,±1,±2, ... . 

Furthermore, from the quantum rotor we also have: J" = 2? P'. 
0 9 

In analogy to the classical we introduce the quantum 

= 2-J" = + /J'^ = 2- /P'^ . (B.7) 
0 Ô 0 

From the rotor the eigenvalues of J^' are 2?Sm", where m" = 0,1,2,3, ... . 

The introduction of J" is necessary because P' enters in the Hamiltonian 
0 9 

2 2 2 
(B.6) as ?' /p . "P* " is a positive quantitv. Thus, J" is the square 

9 9 9 

root of a positive quantity. We choose the plus sign for this square 

root by analogy to the plus sign chosen in the corresponding classical 

expression. 

Given the quantum Hamiltonian (B.6) and the classical transforma­

tion equations (B.1)-(B.5) we can now obtain the quantum transformation 

equations. By analogy to Eq. (B.4), Eq. (B.5) and the three-dimensional 
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harmonie oscillator, we assert that the quantum transformation equations 

are: 

Po = I (d"^ + d) (B.8) 

w . 1 , H(J ,J") 
2 0 = ^ (d - d) + (B.9) 

(B.IO) 
-i2%w 

d = e P 
^ Ç 

Using the fact that Pp and p are Heraitian planar-polar coordinates, it 

can be shown that the left-hand side of Eqs. (B.8) and (B.9) are 

Hermtian. The right-hand side of Eqs. (B.8) and (3.9) are clearly 
iZiTw 

Hermitian. Since d"^ is of the f e , it follows from Eq. (2.41) 

that both ' IPp I J'> and 1^ p^|j'> are invariant under <i)'| ->• 
p p ' 2 ' p P 

<jjp + ll. Similarly Eqs. (B.8) and (B.9) are invariant under cj^ -r 1, 

Equations (B.8) and (B.9) will have the correct classical limit if 

Since as shown in the rotor, J' has as its classical limit we assert 
0 oc 

that f(J ,J") has the form: 

f(J ,J") = ^ f(2J + . (B.12) 
P ({) ZTT P 9 ? 

We will consider Eq. (B.12) correct if all of the conditions demanded 

of a set of transformation equations in Chapter II are satisfied. 
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Having asserted f as in Eq. (B.12), both Eqs. (B.8) and (B.9) now 

have the correct classical limits. 

Using Eqs. (B.8) and (B.9), H(J ,J") may now be calculated. We 
P 9 

begin by rewriting the quantum Hamiltonian (B.6) so that it is a 

function of ?p and p^. We multiply Eq. (B.6) by p on both sides; 

pHp = Pp Pp + P'^ + y 
0 4 

oHp = (pp)^ + p'^ + ^ p^ 
0 4 

(B.13) 

Using [P,p] = fi/i, we have: 

Y (p^H + Ho^) + = pHp CB.14) 

Combining Eqs. (B.13) and (B.14), we obtain an expression in the 

desired form: 

CO 2 
H + H^ Y P^ ] = u)(Pp)^ + Y P^ + wP , 2  (B.15) 

Note that Eq. (B.15) contains only P P and o as needed. Into Eq. (B.15) 

2 we substitute the quantum forms of Pp and p , Eqs- (B.8) and (B.9), and 

find that the left side of Eq. (B.15) is equal to: 

2 
h^w + *2 P^H + E "2 [d H + Hd — dH — Hd] + 2 + h w 

(B.16) 

Similarly the right side of Eq. (B.15) is: 

w(Pp) + y p^] + oiP 
2 J 

=  - y  ( d d  +  d d  4 -  d d  +  d d ) +  wP ' 
i  4  0  
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2 
— y (dd + dd — dd - dd)+ —— 

4 0) 

+ ^ (d"'"H + Hd"^ - dH - Hd) (B-17) 

2 1 
= + —— + (d H + Hd"'" — dH - Hd) 

0 u Zx 

+ I (dd"^ + d'^d) . (B.18) 

Equating Eqs. (3.17) and (B.18) we find: 

2 
— + = w?'^ + -T (dd"^ + d'^d) . (B.19) 
w ? Z 

From the definition of d, d"*", Eq. (B.IO) we have 

d'd = f'(Jp,J") fCJp,Jp , (3.20) 

,  -±2 tw ,  i lzv 
dd = e P ff e ^ . (3.21) 

Using Eqs. (B.20) and (3.21) we have: 

DD"^ = f(J + 2?5, J") f'^(J + 2TK, J") . (3.22) 
P  0  p  9  

Putting Eqs. (3.20) and (3.22) into Eq. (3.19) we find: 

2 
— + = wP'2 + f If(J + 2?5) f^^J + 2%K) 4- f+(J )f(J )] .(3.23) 

t i î  (p z  p p p 0 

We can use the definition of f, Eq. (3.12) in Eq. (3.23), once we have 

found those states for which f(J + 2-K) and f(J ) are real or 
P  P  

imaginary. This determination is made with fixed J^. We allow f to 

act on a state |j!,j*>. 
9 0 
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1 2 ? 1/2 

, 2 , 1/2 
f(j^ + 2:TG)|j;,j;> = _[(2j;+4r5 + jp -j;2] |j;,j;> .(B.25) 

From Eqs. (B.24) and (B.25), with J^' S 0, we have: 

J' > 0: f(J') real if J' > 0 or J' < - J" 
^ P p p 0 (B.26) 

f(J^ + 2?S) real if Jj > -2rfi or < - (J" + 2-S) 

For states not covered in Eq. (B.26),f(J') and f(J' + 2?5) are pure 
P P 

imaginary. Since f(J') and f(J' + 2?5) are not always both real or 
P P 

imaginary, with respect to a state |j^,j^> we have four possibilities; 

both real, both imaginary or one real and the other imaginary. With 

respect to these possibilities we have from Eq. (B.12): 

f(J') real: ff"^ = ^ I(2J + J")^ _ j"2] , (B.27) 
p ^^2 p 6 0 

fCJ') imaginary: ff"^ = --^•[(2J + J")^ - J"^] , (B.28) 
0 , Z 0 0 0 4? 

f(J' + 2%R) real: f(J + 2TrH)f"'"(J + 2-5) = [(2J + 4?Ii + J")^ 
p p p 4^2 p 6 

- J"2] . (B.29) 
<? 

f(J' + 2-ïrH) imaginary: f(J + 2?K)f^(J + 2?H) = - [(2J + 4?K 
P P P 4w P 

+ J")2 - J"2] .(B.30) 
0 

1/2 
For the four cases we now use Eq. (B.7), J" = 2%(P!) , and Eqs. (B.27) 

9 0 

-(B.30) in Eq. (B.23) to find H. 
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Case 1: both fCJ^) and fCJ^ + 2?K) real: 

2 
— + h^w = uP'- + -Ar [(2J + J")2 _ j"^ + (2J + 4-S + J")2 _ j"2] 
^ 9 g_'' D <J p p 9 0 

(3.31) 

Solving Eq. (B.31) for H we have: 

H = ± (2Jp + + 2?%) . (B.32) 

Case 2: both f(J') and f(J' + 2?n) imaginary: 
P  P  

2 
— + h^w = wP'2 - ̂  [C2J + J")2 - + (2J + 4?R + J")2 - J"2] 
0) Oil 

(B.33) 

From Eq. (B.33) we find: 

1/2 
H  =  ± ^ { ( 2 J  +  J "  +  2 : r H ) ^  -  2 J " ^  +  B t t V }  .  ( 3 . 3 4 )  

Z- p 0 9 

Case 3: f(J') real with f(J' + 2rK) imaginary: 
P  0  

2 
— 4- h^cu = wP'2 + [(2J + J")2 _ jf - (2J + 4-R + J")- + J"2] 

01 6 3 0 6 P 0 9 

(B.35) 

From Eq. (B.35) we obtain: 

9 9 o 1/2 
H = ± 4?R(2J + J") - 2?^%^ + J"^} . (B.36) 

Zrr P 6 9 

Case 4: f(Jp) imaginary but f(J^ + 2?H) real: 

2 
— + h^w = jP'2 + -\ I- (2J + J")2 + J"^ + (2J + 4?K + J")2 _ J"2] . 
w 9 P 6 6 p ? 9 

(3.37) 
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From Eq- (B.37) we find: 

9 7 , 1/2 
H = ± ^ {4-fi(2J + J") + 4TrV + J" } . (B.38) 

6 " p Ç 0 

In the classical limit where E ->• 0 and J' J , J" -+• J" , H must p pc' 6 (pc' 

become as given by Eq. (B.l). Cases 2, 3, and 4 all fail this test. 

Hence, we choose Eq- (B.32) as the Hamiltonian: 

H = ±  ( 2 J  + J" + 2^H) (B.39) 
2.1 p 9 

where f(J*) and f(J' + 2?K) are both real. For this choice of the 
P  P  

Hamiltonian we have the right classical limit and have a Hamiltonian 

which is independent of w^. Thus, conditions D and E in Chapter II are 

verified. 

The Hamiltonian as given by Eq. (B.32) has not been completely 

specified since an overall sign has not been chosen. In order to choose 

this sign, we refer to the quantum Hamiltonian (B.6): 

1 P'^ 1 2 2 
H = — PpP + —— + — ij 0 . (B.6) 

p P "  4 

This Hamiltonian may be rewritten in the form: 

H = AA + aa + Bp (B.40) 

where 

A = — Pp 
P  
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S = Y up 

Written in this form, H(?,p) is the sum of three terms each of which is 

positive definite and hence each of which will have positive eigenvalues. 

Hence, H(?,p) will have positive eigenvalues. 

H(jp,jp, as given in Eq. (B.32), must also have positive eigen­

values if we are to conclude that we have made a valid cononical trans­

formation. From Eq. (B.26) we have restricted our Hilbert space to 

states !J ' , J '> such that: 
' 0 0 

J' > 0 or J' < - CJ" + 2?K) . (B.41) 
P à 

Allowing H(J ,J") to act on states of satisfying Eq. (B.41) we have: 
P 0 

(zj; + ^ • «.42) 

Putting the values of Eq. (B.41) into Eq. (B.42) we find that the 

positive sign must be chosen for > 0 and the negative sign must be 

chosen for J' < - (J" + 2%R): 
P 

H(J ,J") = -r ^ (2J -r J" + 2T K) for J' > 0 (B.43) 
p ij) 2? P 9 P 

H(J ,J") = - ̂  (2J + J" + 27H) for J' < - (J" + 2M K) . (B.44) 
P p Z? p p P 9 

In order to make a choice between Eqs- (B.43) and (B.44) we need one 

more physical condition. For this we will use the commutator of Po 

w 2 
with Y P 

The commutator of Pp with -j p^ is calculated using [P,p] = n/i 

and is: 
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[Pp , Y P"] = ( Y P^) • (B.45) 

Satisfying Eq. (B.45) using the transformation equations (B.8), (B.9), 

(B.IO) and CB.2) will verify condition C (commutation of the transforma­

tion equations) and will further restrict the Hilbert space and thus 

make a choice between the Hamiltonians given in Eqs. (B.43) and (B.44). 

Substituting the transformation equations into Eq. (B.45) (with both 

f (J ' )  and  fCJ'  +  2%K) rea l )  we  f ind:  
P P 

[ I W'*' + d), (d''' - d) + i  ̂ (d* - d) 

+ w . (B.46) 

From Eq. (B.46) we obtain: 

- [d'^,d] + [d'^,S] + [d,H] = - Hd^ + fid + ^ H . (B.47) 

Using the definitions of d, d"^ and H we can calculate each term on the 

left of Eq. (B.47). We now use the Hamiltonian as given in Eq. (B.32) 

with both signs and the definition of d"^, Eq. (B.IO), to find: 

1 4_ . i2TW 
•5— [d »H] = [f (J ) e ^ y ± (2J + J' + 2T H )] 
ZoJ P Z? p Ç 

i2?w 
= ± f^(J )[e P, J 1 

P P 

= ± Kd"'" . (B.48) 

Similarly, we find: 

[d,H] = ± fid . (B.49) 
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Finally, we calculate - [d'*',d] using the definitions of d and d"*", 

Eq. (B.IO): 

, , -, -i2?w i2 TTw 
- ̂  [d^d] = - {f (Jp)f(Jp) - e ^ f^(Jp)f(Jp) e 0} 

(B.50) 

Using Eq. (B.28), f(J )e^^^ = f(J + 2?R), Eq. (B.50) becomes: 

- ̂  Id'^,d] = - ̂  f\j )f(J ) - f'^CJ + 2:rK)f(J + 2rE) 
ZX Zl 0 p P p 

We have restricted ourselves to states for which both f(J ) and 
P 

(B.51) 

fCJp + 2~H), and we thus obtain: 

- ̂  [d\d] = - ̂  I ^ 
4% 

{(2J + J")2 _ j"2 _ (2j + 4?5 + J")2 + J"2} 
P O O  P  9  9  

= - -TT {2J + J" + 2%n} . (B.52) 
-X P 9 

We have now calculated the three terms on the left side of Eq. (B.47). 

We now substitute Eqs. (B.48), CB.49) and (B.52) into their respective 

positions in Eq. (B.47) and find: 

? Hd"*" ± Hd - {2J + J" + 2?5} = - Sd"^ + Kd + H . (B.53) 
TTX p 9 XW 

The left side of Eq. (B.53) will equal the right side of Eq. (B.53) pro­

viding we choose the plus sign in Eq. (B.32) and hence choose Eq. (B.43) 

but reject Eq. (B.44) for the Hamiltonian: 

H(J ,J'*) = -T- (2J + J" + 2%S) for states with J' > 0 . (B.43) 
p 9 ZTT p 0 p 
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Thus the commutator of Pp with -j will be satisfied if and only if 

the Hamiltonian is chosen as in Eq. (B.43) and the Hilbert space is 

restricted to those states having J' s 0. 

Satisfying this commutator completes the verification of conditions 

A-F as given in Chapter II. We conclude, then, that the transformation 

equations (B.8), (B.9), (B.IO) and (B.12) define a valid transformation 

from P and p to and for the restricted or physical Hilbert space. 

Having completed our treatment of the transformation equations, we can 

now find the energy levels of HCJ^,jp. 

We find the energy levels of H(Jp,J^) using Eq. (B.43). Allowing 

H(J ,J") to act on a state |J',J'>, we have; 
P  ?  P  9  

a(j,,j;)|j;.j;> = |r (2J; + J; + 

= E'|J',J'> (B.5A) 
n' p 9 

where J' = 2-Hn , n = 0,1,2, ... and J" = 2-fim", m" = 0,1,2, ... . 
P  P  P  9  

Hence, the energy levels are: 

E' = fito(2n + m" + 1) . (B.55) 
n p 

Gathering together the transformation equations, Hamiltonian, 

energy levels and Hilbert space we have: 

Pp = Y (d"*" + d) , 

. 1 
2 ^ 2i w 
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1 2 1/2 ^^"^0 
d = ^ [(2J, + jp ] e 

J = + /jp" = + i ; 
(? * 2- * 

1 PjZ 1 , , 
H(P,p) = — PpP +•—— + — u p 

P  P  4 

aUp.J*) ' IT + UJ + 2'M : 

1j',J '> restricted to J' >0: 
P 0 P 

Jp = 2?Sn^ , Hp = 0,1,2,3, ... 

J" = 2-fiia" , m" = 0,1,2,3, — ; 
V 

E = hu(2n + m" + 1) 
n p 

This completes the treatment of the planar harmonic oscillator. 

All six conditions placed on a set of transformation equations have been 

verified. The Hamiltonian H(J ,J') is independent of all coordinates 
P  0  

and its energy levels have the trivial form (B.55) which agrees with 

normal quantum calculations. This calculation does show that it is 

possible to carry out the Cp,q) (J,w) transformation for a simple 

planar system. 



135 

VIII. APPEÎJDIX C: LOCATION OF POLES OF p*(z',E') 
USING ZEROS OF THE WAVEFUNCTION 

In order to evaluate the integral for J ( E ' ) ,  it is helpful to know 

as  m u c h  a s  p o s s i b l e  a b o u t  t h e  l o c a t i o n  o f  t h e  s i n g u l a i r l t i e s  o f  p  ( z ' , E ' ) .  

This is most easily done by retreating to our knowledge of the wavefunc­

tion <Z'1E'> since, e.g., a zero of the wavefunction will be located at 

the same place as a pole of p (z',E'). This may be seen by noting that 

p (z',E') is defined via WQ(Z',E') where: 

iW-(z',E*)/K 
<z'|E'> e " , (C.l) 

* dW (z',E') 
P (z',E') —^ . (C.2) 

Using Eqs. (C.l) and (C.2) we have: 

p*(z',E') = ( Y) <rtr> dT «z'|E'» . (C.3) 

From Eq. (C.3) it is clear that if <z'jE'> is analytic at a point z^, 

has nonzero derivatves and is itself zero at that point, then p (Zg,E') 

will have a pole at ZQ with residue H/i. 

The advantage of studying the zeros of <z'|E'> instead of p (z',E') 

itself is that the wavefunction satisfies a second-order differential 

equation. The problem of locating the zeros of solutions of second-

order differential equations has been studied extensively and we need 

only refer to the relevant theorems. The mathematical discussion below 

follows in Ince (19) (see especially Chapter 21). The reader is 

referred to that source for a more complete treatment. 
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Any "self-adjoint" equation of the fora: 

^ [h(S) ^ ] + k(S)w = 0 (C.4) 

can be transformed to: 

.2 
—^ w + D(h)w = 0 (C.5) 
dh 

where dS = hdh and 

d(h) - h(S)k(S) . (C.6) 

The theorems which we will use as invariant trader such a transforma­

tion are written for equations of the form (C.5). As we will later dis­

cuss, this general form of the differential equation (C.5) is very useful 

to physicists since most Schrodinger's equations can be put in that 

form. Thus, the locations of many of the zeros of solutions of 

Schrodinger's equations may be found using the methods which we are 

now presenting. 

W e  now quote from Ince (19), Chapter 21 (pp. 513-515) three 

theorems which depend only on D(z) and the properties of w(z). For 

proofs and background material on these theorems, the reader is referred 

to the above reference. These mathematical results are reproduced here 

as a convenience to the reader for the discussions which follow. 

Four theorems which depend only on D(z) and properties of w(z) are: 

Theorem A: "If w(z) is a solution which is real on a segment (a,b) of 

the real axis ; if, further, T is a region symmetrically 

situated with respect to the real axis, and such that every 
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line perpendicular to the real axis which cuts the region 

cuts its boundary in two points and neets (a,b) in an 

interior point; and if finally Re{D(x)} s 0 throughout T, 

then w(z) can have no complex zero or extremum (i.e., 

w dw/dz # 0) in T." 

Theorem B: "On the real axis, if throughout the interval (a,b), either 

ReD(z) S 0 or ImD(z) does not change sign, then there can 

be at most one zero of w in that interval (where w is 
dz 

a real function of z)." 

Theorem C: "Let the region T be as before, and let w(z) be a solution, 

real on the segment (a,b) and such that in (a,b) w ^ has a 

fixed sign; let Im{D(z)} have this sign throughout that 

part of the region T which lies above the real axis, then 

w(z) can have no complex zero on extremem in T." 

The following theorem is a direct result of theorem C; 

Theorem D: Let the region T be as before, and let w(z) be a solution, 

real on the segment (a,b) such that in (a,b) w ^ has a 

fixed sign; let Im{D(z)} have the opposite of this sign 

throughout that part of the region T which lies below the 

real axis, then w(z) can have no complex zero or extremum 

in T. 

The final theorem which we will quote here deals with "the zero-free 

star." We consider a point a at which D(z) is regular but not zero. 

We define (following Ince (19)): 

z = a + r e^® , (C.7) 
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(z-a)^D(z) = P(z) + iQ(z) , (C.8) 

D(z) = g^(z) + ±82(2) » (C.9) 

where P, Q, and are real functions of z. 

The curves P(z) = 0, Q(z) = 0 intersect at a with tangents having 

angles 5^ and with respect to the real axis given by: 

P = 0: g^(a)cos29^ - gg^ajsinZS^ = 0 , 

Q = 0: g^Ca)cosZe^ + g^(a)sin2S2 = 0 - (C.IO) 

Following Ince (19), the star originating at a is the set of 

straight line segments (rays) from a to p(6) where p(9) is defined as 

follows. Starting at the point a, move in the direction S along a ray 

until Q changes sign. If along the ray P(z) has been positive or 

changed sign, then p(6) is the point at which Q changes sign. If P(z) 

has been negative only, then one continues along the ray until P(z) 

changes sign and that point is defined as p(0). If a singular point or 

zero of D(z) is located within the star, then it is excluded by a 

rectilinear cut going away from a. Given the above, the region of the 

plane which is excluded from the star consists of at least those points 

with P > 0 which lie between the branch of Q = 0 in P > 0 and the 

tangent to Q = 0 at z = a. This is illustrated in Figure 3. The 

theorem relating to the star is: 

Theorem E: "If 2 = a is a zero of w then this product does not 

vanish at any point of the star belonging to a, including 

the nonsingular points of its boundary." 
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Figure 3. Illustration of a star. The line, l, is the tangent to the 
curve, Q = 0, in the region having P > 0. The shaded region, 
B, is excluded from the star. The cut, C, begins at a 
singular point or zero of D(z) and is also excluded from the 
star 
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The importance of these theorems to physicists lies in the fact 

that virtually all one-dimensional Haailtonians can be written in the 

form of Eq. (C.4) and transformed to the form (C.5) : 2m » 1 

w  + ( E  -  V ( 2 ))w = 0 , (C.ll) 
dz^ 

D(z) = (E - V(z)) . (C.12) 

From Eq. (C.ll) for real E we have: 

Re{D(z)} = "V (E - Re V(z)) 
S 

Im{D(z)} = —^ Im V(z) . (C.13) 
fi 

Knowing the potential allows one to apply the theorems. First, 

normally, physical potentials are real on the real axis. From this 

fact we have that solutions of Eq. (C.ll) can be found which are real. 

Also we have (z = x + iy); 

Im D(z) = 0 for y = 0, z = x , (C.14) 

Re D(z) = (E - V(x)) for y = 0 . (C.15) 
H 

On the real axis we can use Eq. CC.15) to denote two regions for a 

potential as illustrated in Figure 4: the classical region for which 

E > V and the nonclassical region in which v > E. Using Theorem B. 

in the nonclassical region, on the real axis, the wavefunction w(z) 

(where w(z) = <z' |E'>, z = z') can have at most one zero or extremum, 
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V(x) 

Figure 4. A typical simple potential 
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that is one zero of w(x) ^ is at x = infinity (Ref. 22). It follows, 

dw 
then, that for an eigenstate, w — does not change sign in a nonclassical 

region. Also, for an eigenstate (of a potential as in Figure 4) in the 

right nonclassical region, w ^ is negative and in the left nonclassical 

region w is positive (where we have assumed that the zero of w ^ is 

at X = infinity). 

For a real potential, we see that Eq. (C.14) has Im D(z) = 0 on 

the real axis, for E real. Let us suppose that in the right nonclassical 

region Im D(z) < 0 for y > 0 and Im D(z) > 0 for y < 0 (i.e.. In D(z) < 0 

above the real axis and Im D > 0 below the real axis). From Theorems 

C and D it follows that there are no zeros in this nonclassical region 

above or below the real axis, for any eigenstate of the system. Similar 

statements can be made about the left nonclassical region (i.e., above 

and below the real axis) as will be seen when we analyze the harmonic 

oscillator. 

These and other ideas are most easily illustrated with some 

examples. The first one which we will consider is the harmonic oscil­

lator. For this potential we have: 

2 
—-y + (E — — tj^z^)w = 0 , (C.16) 
dz 4 

where 2m = 1, K = 1, and where E is real and positive. From Eq. (C.16) 

we have: 

D = E - 7 (C.17) 
4 
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Re D (C.18) 

In D (C.19) 

The various D regions are illustrated in Figures 5 and 6. 

Let us assume that Eq. (C.16) has been solved for real w(z) . Then, 

using Theorem A, it follows from Figure 6 and Eq. (C.18) that the region 

TQ has no complex zeros or extremum for any energy, E. Applying 

Theorems C and D to regions T^, Tg, T^ and T^ (see Figures 5 and 6), it 

follows that at an eigenstate these regions have no zeros of w 

From Theorem B, it follows that at an eigenstate on the real axis with 

2 1/9 
|Re| > (4E/w ) ", the only zeros are at Re(z) = infinity. Thus, at an 

eigenstate the zeros of w(z) are restricted to be at Re(z) = infinity 

2 1/2 2 1/2 
and on the real axis in the interval ((4E/w ) , -(4E/w ) ). There 

are no other zeros in the complex plane. Hence, form Eq. (C.3) p (z',E') 

may have poles only at Re(z) = infinity and on the real axis in the 

classical region. When one is not at an eigenstate of the system, 

p (z',E') is allowed to have poles off the real axis in regions T^, T^, 

T^ and T^ of Figure 5. Thus, an eigenstate has a simpler singularity 

An example in which the "star" technique is useful is the Coulomb 

potential. When placed in the form of Eq. (C.5), Schrodinger's equation 

for the radial coordinate is : 

for p (z',E') 

dz z z 
(C.20) 
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In D > 0 Im D < 0 

f-

Im D < 0 Im D > 0 

Figure 5. Regions of Im D as given by Eq. (C.19). Noce that the lines 
X = 0 and y = 0 have Im D = 0 

Re D 0 
Re D 

A y 

< 0 

Re D 0 
T, 

Re D > 0 

Figure 6. Regions of Re D as given by Eq. (C.18). Note that the curves 
and C2 have Re D = 0. The points, q+ and q_, are the 

classical turning points where q^ = =(4E/w2)l/2 
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where E is real, 2m = 1, S = 1, g > 0 (and real), and where L = 2(2 + 1), 

( Z = 0 ,  1 ,  2 ,  . . . ) .  T h e  r e a l  a n d  i m a g i n a r y  p a r t s  o f  D ( z )  a r e :  

. E - '• ( 2  . r e") , (C.21) 
r r 

Im D = 2L xy gy 

(x^ + y 2)2 + y2 

2L cos9 sin9 _ g sinS 22) 

For E < 0, there are two classical turning points on the real axis, 

and (z_^ > z_), where D(z^) = D(z_) = 0. Between z_ and z_^. 

Re D > 0, and Re D ^ 0 for all other points on the real axis (excluding 

the point z = 0). In the region on the real axis having z > z_^ (to 

-f-
the right of z ), Re D < 0 and Theroem 3 tells us that w — will have 

at most one zero. Let us assume that this zero is at z = a (on the 

real axis). From the definition of the star using Eqs. (C.8) and (C.9) 

and the equations for Re D and Im D, Eqs. (C.21) and C(.22), the star 

for the Coulomb problem is defined by: 

(z - a)^{E - ̂  = P(z) + iQ(z) . (C.23) 
z z 

From Eq. (C.23) we find: 

P(z) = E[(x-a)^ - y^] —^ (x^(r-a)^ - x^y^ + 4xy^(x-a) + y^ - y~(x-a)^) 
r 
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+ [x(x-a)^ - + 2y^(x-a)] ( C . 2 4 )  
r 

Q(z) = 2Ey(x-a) —^ [2xy^ - 2:qr(x-a)^ + 2x^y(x-a) - 2y^(x-a)] 
r 

+ -^ [y^ - y(x-a)^ + 2xy(x-a)] ( C . 2 5 )  
r 

The star originating at x = a as generated by Eqs. (C.24) and (C.25) is 

pictured in Figure 7. Referring to Theorem E, we see that there are no 

zeros of we to the left or right of the shaded regions in Figure 7, 

excluding the cut on the real axis which begins at where D(z_j_) = 0. 

At an eigenstate a -»• +», and there are no zeros of w off the real axis 

in the finite z plane. At an eigenstate the only zeros of w are on the 

real axis between z_ and z^, i.e., in the classical region. 

On the real axis, the intervals from z_^ to +® and from z_ to 

each have Re D < 0 (see (Eq. (C.21)). In these intervals w(z) has at 

most one zero. The zeros of w are at z = 0 and z = a = +» for an 

eigenstate. Thus, the zeros of w ^ and the poles of p (z',E') in the 

finite z'-plane are only allowed on the real axis between z_ and z^, 

at z = 0 and at z = a = +» at an eigenstate. 

The point z = a = += can be studied more closely in order to 

verify that there are no zeros of w ^ "above" or "below" that point. 

This is done by transforming Schrodinger's euqation (C.20), using 

( C . 2 7 )  
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-f 

Figure 7. Illustration of the star at the zero, x = a, for the radial 
Coulomb problem with 0 > E > -(g^/AL). The cut, C, which 
begins at the right classical turning point, r+, and the 
shaded region are excluded from the star. The line, 2, is 
the tangent to Q = 0 at z = a (in the region having P > 0) 
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Re D(S) = t ^ E cos46 - Lt ^ cos26 + gt ^ cos3S , (C.28) 

In D(S) = - t"^ E sin4e + Lt"^ sin2e - gt"^ cos36 . (C.29) 

At S = 0, we have Im D(S) > 0 for 9 = ~/2 and Im D(S) < 0 for 9 = - %/2. 

dw 
On the real axis the sign of w — is negative for z ±®. Thus, at 

S = 0, the sign of w is thus negative since it is negative in the 

limit of S -»• +0 and S -0 (i.e., z ^ ±«). The sign of w ^ is given 

by: w — = - S w — . Thus, w — is positive at S = 0. With this 

dw 
assignment of the sign of w — and Theorems C and D, there are no 

zeros of w ^ on the line through S = 0 with 9 = ±T/2, at an eigen­

state of the system. This completes the specification of the zeros of 

w at an eigenstate. Thus, all of the zeros of w for the attractive 

Coulomb potential at an eigenstate are limited to the real axis in the 

classical region, plus one at z = 0 and one at x = +» (S = 0). 

This completes our treatment of the Coulomb problem. Other problems 

and potentials are similarly handled. If severe difficulties arise, a 

reference to consult is Ince (19), Chapter 21. While we do not say that 

for all physical potentials, ei gens tat es have all zeros of w ^ on the 

real axis, a trend does seem to exist and a proof of such a proposition 

would be quite convenient when one attempts to evaluate the contour 

integrals which define J'(E') at an eigenstate. 
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