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ABSTRACT 
 

 
The present study investigates cellular mechanisms underlying the pathogenic role of 

ubiquity proteasome system (UPS) dysfunction in dopaminergic degeneration following 

exposure to Parkinsonian neurotoxins.  Mutations or overproduction of α-synuclein have 

been shown to be associated with familial Parkinson’s disease (PD), and wild type α-

synuclein is the major component of Lewy bodies, the protein inclusion bodies characteristic 

of PD.  The organochlorine pesticide dieldrin has been implicated as an environmental risk 

factor for PD.  The gene-environment interaction between α-synuclein and dieldrin impaired 

the proteolytic function of UPS leading to profound formation of α-synuclein aggregates, and 

enhanced apoptotic cell death in dopaminergic neuronal N27 cells.  Proteasome inhibition by 

MG-132 elicited severe dopaminergic neurotoxicity in both an immortalized dopaminergic 

cell model of Parkinson’s disease (N27 cells) and primary mesencephalic culture.  

Stereotaxic injection of MG-132 into the substantia nigra resulted in marked nigrostriatal 

degeneration in vivo, as demonstrated by prominent loss of nigral dopamine neurons and 

depletion of striatal dopamine.  The proteasome inhibitor MG-132 was utilized as a 

pharmacologic tool to mimic UPS dysfunction in the remaining studies to investigate the 

molecular and cellular mechanisms underlying UPS impairment-induced dopaminergic 

degeneration. Proteasome inhibition by MG-132 depolarized mitochondrial membrane 

potential, caused mitochondrial release of proapoptotic molecules, and triggered apoptotic 

cell death exclusively proceeding through the mitochondria-dependent pathway in N27 cells.  

Caspase-3-dependent proteolytic cleavage of PKCδ into catalytic fragment (PKCδ-CF) and 

regulatory fragment (PKCδ-RF), plays a crucial role in MG-132-induced dopaminergic 
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apoptosis; ROS generation was not found to be important in MG-132-related cell death.  

PKCδ proteolytic cleavage resulted in a substantial increase in its kinase activity.  The 

PKCδ-specific inhibitor rottlerin, but not SOD mimetic MnTBAP, significantly alleviated 

caspase-9 and -3 activation, indicating that proteolytically activated PKCδ amplified 

mitochondrial apoptosis cascades.  In agreement, mitochondrial translocation of PKCδ-CF 

led to caspase-3 activation and DNA fragmentation.  Suppression of PKCδ proteolytic 

cleavage by caspase-3 cleavage resistant mutant PKCδD327A effectively inhibited MG-132-

induced activation of mitochondrial apoptosis.  Further study into the mechanisms of 

proteasome inhibition activating mitochondrial apoptosis yielded some exciting new 

findings.  The mitochondria may be a key sensor of polyubiquitin stress because 

ubiquitinated proteins preferentially accumulate in mitochondria as compared to cytosol.  

Additionally, overexpression of ubiquitinK48R mutant effectively rescues cells from MG-132-

induced mitochondrial apoptosis without altering antioxidant status of cells, whereas 

ubiquitinK63R mutant augmented the proapoptotic effect of MG-132.  Additionally, 

ubiquitinK48R conferred neuronal resistance to a variety of dopaminergic neurotoxins that 

impair UPS including dopamine, MPP+ and dieldrin.   

These results suggest that UPS impairment consequent to neurotoxin exposure plays a 

crucial contributory role in dopaminergic degeneration and that exposure to neurotoxic 

agents and gene-environment interactions could elicit dopaminergic neurotoxicity by 

converging to impair UPS function.  Additionally, the findings of this work not only provide 

novel insights into cellular mechanisms of ubiquitin stress in dopaminergic neuronal cells but 

also serve as a foundation for future study ascertaining biochemical and functional links 
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between UPS dysfunction and mitochondrial apoptosis in the degenerative process of 

Parkinson’s disease.  
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CHARPTER 1:  GENERAL INTRODUCTION 

Dissertation organization 

 

Alternative thesis format is used for this thesis, which includes modified version of 

several manuscripts either published, or to be submitted for publication. It contains a general 

introduction, 5 research papers, a general conclusion and an acknowledgement. References 

for each individual section are listed at the end of corresponding chapters, with the 

background and literature review part as an exception, as the references for this part are are 

listed together with those for the general conclusion part. In the general introduction part 

(Chapter I), an introduction provides concise information for the current knowledge of the 

etiopathogenesis of Parkinson’s disease and describes the overview of the research objective.   

Background and literature review I provides background information of the Parkinson’s 

disease, particularly focusing on a dysfunctional ubiquitin proteasome system in the 

etipathogenesis of Parkinson’s disease.  This part has been accepted for publication by the 

journal of Pharmacology & Therapeutics (114: 327-344, 2007). Background and literature 

review II of the charpter summarizes the current knowledge regarding pathophysiological 

roles of α-synuclein in the dopaminergic degeneration, and this part is to be published as a 

book chapter in Parkinson's Disease Pathogenic and Therapeutic Insights from Toxin and 

Genetic Models (editors Richard Nass and Serge Przedborski,  Elsevier Inc.). Charapter II 

“Dieldrin induces ubiquitin-proteasome dysfunction in α-synuclein overexpressing 

dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death” is a research 

paper published in Journal of Pharmacology and Experimental Therapeutics (315: 69-79, 

2005). Charpter III “Proteasome Inhibitor MG-132 Induces Dopaminergic Degeneration in 

Cell Culture and Animal Models” has been published in Neurotoxicology (27: 807-815, 

2006). Charpter IV “Mitochondria are key sensor of polyubiquitin overloading stress and 

polyubiquitination sites Lys-48 and 63 differentially regulate the stress-induced apoptotic cell 
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death”, charapter V “Proteasome inhibitor MG-132-induces mitochondria apoptosis via 

proteolytic activation of PKCδ in dopaminergic neuronal cells” and charapter VI “Novel 

neuroprotective role of Lysine48 polyubiquination site of ubiquitin during neurotoxicants-

induced ubiquitin-proteasome dysfunction in Parkinson’s disease models” are research 

papers to be submitted to Journal of cell biology, Journal of biological chemisrty, and 

Journal of neurochemistry respectively. 

This dissertation contains the experimental results obtained by the author during his 

Ph.D study under the supervision of his major professor, Dr.Anumantha G. Kanthsamy.  
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Introduction 

 
Parkinson’s disease (PD) is a common neurodegenerative movement disorder 

characterized by selective degeneration of dopaminergic neurons in the substantia nigra.  

Neurochemical and neuropathological analyses clearly suggest that oxidative stress, 

mitochondrial dysfunction and impairment of ubiquitin-proteasome system (UPS) are major 

mechanisms of dopaminergic degeneration because mitochondria dysfunction, increased 

oxidative markers, defects in mitochondrial electron transport and presence of protein 

aggregations are consistently observed in PD patients (McNaught and Olanow 2003; 

Betarbet et al. 2005; Moore et al. 2005; Przedborski and Ischiropoulos 2005).   Additionally, 

numerous studies conducted in cell culture, animal models and post mortem human brain 

tissues have demonstrated that apoptotic cell death is the major form of cell death responsible 

for selective and irreversible loss of nigral dopaminergic neurons(Heidenreich 2003; Tatton 

et al. 2003; Vila and Przedborski 2003). 

Epidemiological studies imply both environmental neurotoxins and genetic 

predisposition (genetic mutations) as risk factors for PD (Di Monte 2003; Warner and 

Schapira 2003), though the mechanisms underlying selective dopaminergic degeneration 

remain unclear.  Several genes involved in UPS, mitochondrial function and oxidative stress 

are mutated in familial PD (McNaught and Olanow 2003; Betarbet et al. 2005).  Post mortem 

and experimental studies in cell culture and animal models suggest pathogenic roles of 

impaired proteolysis by the ubiquitin-proteasome system (UPS) in PD.  Evidence for a causal 

role of dysfunctional UPS in PD includes reduced proteasomal activities (McNaught et al. 

2003), selective loss of proteasome subunits in substantia nigra of post mortem human brain 
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samples (McNaught et al. 2002), and mutation of several genes involved in the UPS 

degradation pathway including Parkin and Uch-L1 (McNaught and Olanow 2003; Moore et 

al. 2005).  As a defining pathology of PD, Lewy bodies contain a variety of proteins 

including α-synuclein, ubiquitin, proteasome subunits, some chaperone proteins, signaling 

proteins like kinases and some neurofilament proteins.  Accumulation of ubiquitinated 

proteins in the protein aggregates indicates the failure of the clearance of target proteins by 

UPS.  In animal models, it has been shown that exposure to proteasome inhibitors results in 

dopaminergic degeneration and formation of protein aggregates, which recapitulate the 

characteristic abnormalities of PD (McNaught et al. 2004).  

 α-Synuclein is the major component of Lewy bodies, thus α-synuclein overproduction 

or mutations may cause familial PD (Cookson 2005).  However, studies with transgenic 

animal models suggest α-synuclein overproduction alone is not sufficient to induce 

dopaminergic neuron loss, thus implicating environmental influences as possible factors 

contributing to PD pathogenesis.  The organochlorine pesticide dieldrin has been implicated 

as risk factor for PD, due to its presence at detectable levels in post mortem brain of PD 

patients, especially in substantia nigra and caudate nuclei tissues(Fleming et al. 1994; 

Corrigan et al. 1998; Corrigan et al. 2000).  Experimental studies have demonstrated the 

relatively selective toxicity of dieldrin to dopaminergic neurons (Sanchez-Ramos et al. 1998; 

Kitazawa et al. 2001), and depletion of brain dopamine in animal models treated with 

dieldrin (Sharma et al. 1976; Heinz et al. 1980).  Our initial study demonstrated that α-

synuclein overproduction and dieldrin exposure impaired UPS function and sensitized 

dopamine neuronal cells to apoptotic cell death, suggesting essential pathogenic roles of UPS 

dysfunction underlying the gene-environment interaction in PD (Sun et al. 2005).  In 
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addition, studies showed that exposure to some commonly used Parkinsonian neurotoxins 

including MPTP/MPP+, rotenone, 6-OHDA, and dopamine compromises UPS function (Sun 

et al. 2007).  Nevertheless, it is unclear whether impaired UPS contributes to dopaminergic 

degeneration or if it is secondary to other cellular events such as mitochondrial dysfunction 

and oxidative stress.  To date, cellular mechanisms underlying proteolytic stress-induced 

dopaminergic neurotoxicity consequent to UPS impairment remain to be characterized.  

Recent findings demonstrated that proteasome inhibition resulted in mitochondria 

dysfunction followed by increased mitochondria ROS generation and failure to remove 

defective mitochondria (Sullivan et al. 2004).  In agreement, decreased abundance of several 

proteins involved in mitochondria function, reduced respiratory capacity, and elevated 

oxidative stress were revealed in mitochondria from midbrains of Parkin (an E3 ligase) 

knock-out mice (Palacino et al. 2004).  These observations clearly suggest that UPS-

mediated proteolysis is essential for maintaining normal mitochondria function.  In support 

of this view, overexpression of Parkin prevents mitochondria swelling and apoptosis 

cascades, suggesting the presence of putative substrates of UPS in mitochondria (Darios et al. 

2003). In addition, the neuroprotective role of Parkin against the challenge of numerous 

neurotoxicants has been repeatedly and extensively documented.  The present studies 

investigate cellular mechanisms underlying the pathogenic role of ubiquitin-proteasome 

system (UPS) dysfunction in dopaminergic degeneration by examining ubiquitination-related 

biochemical abnormalities of mitochondria and its potential involvement in mitochondria-

mediated apoptotic cell death in cell culture models of PD. 
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Background and Literature Review I  

 

Environmental Neurotoxic Chemicals-Induced Ubiquitin Proteasome Dysfunction 

(UPS) in the Pathogenesis and Progession of Parkinson’s Disease 

 

Parkinson’s disease (PD), originally documented by James Parkinson in 1817, is the 

second most common neurodegenerative disorder.  The disease affects over one million 

people in North America (Lang & Lozano, 1998), and four million worldwide (von Bohlen 

und Halbach et al., 2004).  The neuropathological and neurochemical changes of PD are 

characterized by prominent loss of pigmented dopamine (DA) neurons in the substantia nigra 

pars compacta region, the presence of intracellular proteinaceous inclusions in the remaining 

DA neurons, and profound striatal DA depletion.  The typical clinical symptoms of PD 

include bradykinesia, resting tremors, rigidity and postural instability (Dauer & Przedborski, 

2003).  These major signs manifest when less than 60% of DA neurons remain in SNpc, and 

greater than 80% loss of striatal DA (Dauer & Przedborski, 2003).  Additionally, several 

autonomic symptoms such as salivation, constipation, loss of smell, bladder disturbances, 

cardiovascular dysfunction are noted during the very early stages of PD (Magerkurth et al., 

2005; Chaudhuri et al., 2006). 

Etiology studies involving monozygotic and heterozygotic twins implicated a major 

role of environmental factors and a minor role of genetic factors in PD pathogenesis (Tanner, 

2003; Warner & Schapira, 2003).  The etiopathogenesis of PD, which has been researched 

intensively during the past several decades, is becoming increasingly understood, particularly 

after the finding that accidental MPTP exposure led to Parkinsonism in humans (Langston & 

Ballard, 1984).  Subsequent studies showed that MPTP consistently produces key signs of 

PD in mice and nonhuman primates, which yielded critical insight into PD pathogenesis, 
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including mitochondrial dysfunction, oxidative stress and cell death mechanisms (Dauer & 

Przedborski, 2003; von Bohlen und Halbach et al., 2004; Bove et al., 2005). Several 

epidemiological studies showed environmental factors such as rural living, well-water 

drinking, prolonged pesticide/insecticide exposure and metal exposure increase the risk of 

developing PD (Di Monte et al., 2002; Lai et al., 2002). 

Toxicological studies showed that subacute exposure to the common pesticides 

rotenone and paraquat induces behavioral and pathological changes characteristic of PD in 

animal models (Dauer & Przedborski, 2003; von Bohlen und Halbach et al., 2004; Bove et 

al., 2005; Dinis-Oliveira et al., 2006). The positive association between environmental 

neurotoxicant exposure and PD indicates the important role of environmental factors in the 

process of nigrostriatal degeneration in PD.  Clinical and toxicological studies will generate 

needed experimental data to determine the putative causal role of environmental 

dopaminergic neurotoxins in PD etiopathogenesis.   

In addition to environmental factors, increased levels of extrasynaptic dopamine and 

its auto-oxidation products in striatum could also be detrimental to neurons, as intrastriatal 

injection of dopamine or repeated methamphetamine  (inducer of dopamine release) 

administration causes degeneration of nigrostriatal projection in rodents (Bozzi & Borrelli, 

2006).  Due to the structural similarity to dopamine, 6-hydroxyl dopamine (6-OHDA) could 

be actively absorbed into catecholaminergic neurons through dopamine transporters (DAT) 

or norepinephrine transporters (NET).  6-OHDA was the first compound identified capable 

of eliciting selective dopaminergic neurotoxicity, which has been well-characterized in 

rodents and nonhuman primates (Bove et al., 2005).  Currently, MPTP and 6-OHDA models 

are commonly used for studying PD pathogenesis, or for evaluating neuroprotective agents 

for PD (Kanthasamy & Kaul, 2006). 

During the last 10 years, several gene mutations have been found to be associated 

with familial PD.  The finding of α-synuclein mutation in familial PD has lent more support 
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for the contribution of genetic factors to PD, especially after the finding that wild type α-

synuclein is the major component of Lewy bodies in both familial and sporadic PD.  

Although less than 10% of PD cases are heritable, genetic information acquired from familial 

PD has yielded clues to the possible molecular mechanisms of PD pathogenesis.  

Characterization of the normal function and subcellular localization of the gene products 

implicates mitochondrial dysfunction/oxidative stress (PINK 1, DJ-1, Parkin, and LRRK2) 

and ubiquitin proteasome system (UPS) impairment (Uch-L1, Parkin and α-synuclein) as key 

events associated with PD (Moore et al., 2005).  Post-mortem analysis of PD brains and 

toxin-induced studies in PD models have yielded consistent and explicit evidence supporting 

the pathogenic role of mitochondria dysfunction, and the resulting oxidative injury, in PD 

(Bove et al., 2005).  Dopamine metabolism (both enzymatic and auto-oxidation) and 

mitochondrial complex I inhibition represent the two major processes leading to ROS 

generation in dopaminergic neurons; the promotion of ROS generation by the mitochondrial 

complex I inhibitors MPP+, rotenone, and 6-OHDA has been demonstrated to produce key 

features of PD in vitro and in vivo (Shen & Cookson, 2004; Bove et al., 2005).  Much 

attention has been directed toward the role of oxidative stress in PD; however, the 

importance of UPS dysfunction in the pathogenesis of PD is also gaining recognition 

(Betarbet et al., 2005).  This review summarizes the recent progress with regard to the 

involvement of UPS impairment in neurotoxin-induced dopaminergic degeneration in vitro 

and in vivo.  

 

Ubiquitin proteasome system (UPS):  UPS is the principal cellular proteolysis machinery 

involving ubiquitin, cascades of enzymes for ubiquitination, and the proteolysis complex 26S 

proteasome (Glickman & Ciechanover, 2002).  Numerous proteins participating in a variety 

of cellular processes, such as the cell cycle, signal transduction, and apoptosis, normally 

undergo proteolytic degradation in UPS.  
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Ubiquitin, a highly conserved 76-amino acid protein, contains seven internal lysine 

residues (Lys 6, 11, 27, 29, 33, 48, and 63).  Five out of the seven lysine residues (Lys 6, 11, 

29, 48, and 63) are believed to generally serve as a site for polyubiquitin chain extension 

(Kirkpatrick et al., 2005).  However, a study by Peng and coworkers suggests 

polyubiquitination could occur at all seven internal lysine residues (Peng et al., 2003).  

Polyubiquitin chains via lys 6 and lys 63 linkage, and monoubiquitin are involved in 

signaling processes other than proteolysis, such as DNA repair, inflammatory response, 

protein trafficking and protein translation (Pickart & Fushman, 2004).  Polyubiquitin chains    

Figure 1: Proteolytic degradation by ubiquitin proteasome system (UPS). 
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specifying degradation by the proteasome are predominately formed via lysine residue 48 

(K48) linkage; these are the most abundant forms of polyubiquitin chains.  Some evidence 

suggests that the polyubiquitin chains of lys 11 and lys 29 linkage could also target proteins 
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for proteasome degradation (Pickart & Fushman, 2004).  Ubiquitination and 

polyubiquitination involve activation and transfer of ubiquitin to targets, in which a cascade 

of enzymes, E1 (ubiquitin activating enzyme, Uba), E2 (ubiquitin conjugating enzyme, Ubc), 

and E3 (ubiquitin ligase), are essential for the formation of the isopeptidyl bond between the 

carboxyl group of glycine 76 of ubiquitin and the ε-amino group of an internal lysine residue 

(Glickman & Ciechanover, 2002; Passmore & Barford, 2004; Pickart & Eddins, 2004).  

Bioinformatic analysis of the human genome indicated that human cells have more than 40 

E2 and 500 E3s (Sun & Chen, 2004).  E3s are characterized by the presence of either a 

HECT (Homologous to E6-AP Carboxy Terminus) domain or RING (Real Interesting New 

Gene) finger.  Parkin, a recessive gene mutation identified in early onset PD, belongs to E3 

ligase of the RING domain family (Shimura et al., 2000; Zhang et al., 2000).  

Tagging target proteins with K48 polyubiquitin is essential for their recognition and 

degradation by the 26S proteasome complex (Fig.1).  The 26S complex is made up of the 

functionally and structurally distinct 20S core particle and 19S regulatory particle (also called  

proteasome activator 700, PA 700).  The proteasome 20S core particle contains two inner β-

rings and two outer α-rings.  In mammalian cells, the inner β-ring possessing proteolytic 

activities consists of seven homologous β subunits (β1-β7).  Five major types of proteolytic 

activities of the proteasome are predicted based on its cleavage of chromogenic substrates: 

chymotrypsin-like (C-L), trypsin-like (T-L), peptidyl-glutamyl peptide-hydrolyse (PGPH), 

branched chain amino acid-preferring (BrAAP), and small neutral amino acid-preferring 

(SNAAP) activity (Groll & Huber, 2004).  Seven homologous subunits α1-α7 comprise the 

outer α-ring, which associates with the base of the 19S regulatory particle.  Six homologous 

ATPase (Rpt1-6) and three non-ATPase subunits (Rpn1, 2 and 10) constitute the base of the 

19S regulatory core.  The lid of 19S regulatory core is made of eight non-ATPase subunits, 

Rpn 3, 5-9, 11, and 12 (Glickman & Ciechanover, 2002). Rpn 10 (S5a, its human 

counterpart) has high affinity for poly-ubiquitinated proteins, and is essential for recognition 
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and degradation by the 26S proteasome, which mediates ATP- and ubiquitin-dependent 

degradation (Hartmann-Petersen & Gordon, 2004).  In addition, the 20S proteasome could 

associate with ATP-independent proteasome activator 28 (PA 28 or 11 S) at one or both 

ends, and the binding of PA 28 could exponentially increase the speed of proteolysis of the 

20S proteasome. The biological role of the 20S-PA 28 complex, which likely mediates 

ubiquitin-independent degradation, including the removal of oxidatively modified proteins 

(Davies, 2001), is not as well  understood as 26S proteasome (Rechsteiner & Hill, 2005). 

 

UPS dysfunction in PD: As is the common defining feature of several neurodegenerative 

diseases, aggregation of misfolded proteins during neurodegeneration is evocative of 

deficient protein processing and degradation, although the relevance of protein aggregation to 

neuronal death or survival is still uncertain.  As a defining pathology of PD, cytoplasmic 

protein aggregates, known as Lewy bodies, contain a variety of proteins including α-

synuclein, ubiquitin, proteasome subunits, chaperone proteins, and neurofilament proteins 

(von Bohlen und Halbach et al., 2004).  Accumulation of the ubiquitinated proteins in Lewy 

bodies is indicative of incomplete clearance of the target proteins by UPS.  In line with the 

idea of defective UPS in PD pathogenesis, post mortem analysis of sporadic PD brain 

samples demonstrated relatively low proteasomal activities in the substantia nigra region 

(McNaught et al., 2003).  The reduction in proteasome activity in this region may be 

attributed to the profound loss of 20S proteasome core components, and proteasome 

activators PA700 and PA28 (McNaught et al., 2002a).  

 Association of several genes involved in the UPS degradation pathway with familial 

PD has provided compelling evidence for possible involvement of defective UPS in PD. 

Mutation of Parkin, a RING domain E3 ligase, has been suggested to account for 50% of 

autosomal-recessive early onset PD (Jain et al., 2005).  Physical interaction between Parkin 

and the 26S proteasome subunit Rpn 10 (S5a), which is required for the proteasomal 
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recognition of polyubiquitin chain tagged substrates, supports the idea that Parkin plays a 

role in UPS degradation (Sakata et al., 2003).  The accumulation of Parkin-specific 

substrates, as a consequence of the loss of E3 ligase activity in Parkin mutants, might 

underlie the neurotoxicity of the Parkin mutant to dopaminergic neurons.  Putative Parkin 

substrates include α-synuclein (Shimura et al., 2001), synphilin-1 (Chung et al., 2001), Pael-

R (Yang et al., 2003), p38/JVT-1 (Corti et al., 2003; Ko et al., 2005),  α/β tubulin (Ren et al., 

2003), CDCrel-1 (Zhang et al., 2000), synaptotagmin IX (Huynh et al., 2003), and far 

upstream binding protein 1 (Ko et al., 2006).  Accumulation of these protein substrates may 

very well promote protein aggregation, which is a hallmark of UPS dysfunction in the CNS.  

Transgenic and knockout animal models have revealed the functional consequences 

of specific mutations in PD.  Recent studies showed that nigral dopamine neurons are well-

preserved in Parkin knockout (KO) mouse and Drosophila models, but these animals suffer 

from some neurochemical, mitochondrial and behavioral deficits relevant to PD pathogenesis 

(Goldberg et al., 2003; Palacino et al., 2004).  However others have failed to reproduce the 

similar neurochemical and behavioral phenotype in mice, suggesting that Parkin knockout 

may not be an ideal model for future PD etiopathological studies in mice (Perez & Palmiter, 

2005). The exact reason for this discrepancy between studies is not clear, but perhaps the 

noticeable neuronal cell death may occur during the late stages of life in Parkin KO animals 

(Shen & Cookson, 2004).  This suggestion may explain the observed reduction in dopamine 

uptake in striatum and midbrain regions without nigral degeneration in asymptomatic human 

Parkin heterozygotes (Khan et al., 2005).  

Typically, Parkin increases neuronal resistance to a variety of neuronal stimuli 

including dopamine (Jiang et al., 2004), proteasome inhibitor (Chung et al., 2004), 

mitochondrial inhibitors (Darios et al., 2003), 6-OHDA (Darios et al., 2003) α-

synucleinopathies (Petrucelli et al., 2002; Oluwatosin-Chigbu et al., 2003; Haywood & 

Staveley, 2004; Lo Bianco et al., 2004; Yamada et al., 2005; Haywood & Staveley, 2006), 
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tauopathies (Klein et al., 2006), overexpression of Pael-R (Yang et al., 2003), p38/JVT-1 (Ko 

et al., 2005), and manganese (Higashi et al., 2004). Altered degradation  (Wang et al., 2005) 

or nitrosylation of Parkin (Chung et al., 2004; Yao et al., 2004) likely contributes to 

nigrostriatal dopaminergic degeneration in sporadic PD by neutralizing Parkin’s 

neuroprotective function. 

Among the four ubiquitin carboxyl-terminal hydrolases (Uch-L1-4) found, Uch-L1 

actually possesses both deubiquitin and ligase activities (Liu et al., 2002) and is neuron-

specific (Nishikawa et al., 2003).  Mutation of Uch-L1 was recently discovered in a rare case 

of familial PD (Leroy et al., 1998).  The relevance of Uch-L1 mediated 

ubiquitination/deubiquitination or its mutation to dopaminergic degeneration is still not clear.  

There is evidence that hydrolase activity of Uch-L1 likely confers neuronal resistance, and 

the mutation diminishing the hydrolase activity may be a risk factor for PD development 

(Leroy et al., 1998; Nishikawa et al., 2003).  The disease-related Uch-L1 mutant has been 

shown to render cells more prone to formation of aggresomes in response to proteasome 

inhibitor treatment (Ardley et al., 2004).  Oxidation of Uch-L1, which is seen in PD brains, 

has been shown to cause the reduction of its hydrolase activity (Nishikawa et al., 2003; Choi 

et al., 2004).   

α-Synuclein is thought to have a significant role in PD pathophysiology.  In sporadic 

PD, fibrillar α-synuclein is the major structural component of Lewy bodies.  Additionally, α-

synuclein mutations, including gene locus triplication, A30P, A53T, and E46K, have been 

found in some familial PD cases (Bennett, 2005). Studies attempting to investigate 

synucleinopathies using transgenic animals or virus-mediated overexpression revealed 

significant variability in reproduction of  the pathological and behavioral deficits 

characteristic of PD, and none of the models actually shows the nigral neuronal loss (Maries 

et al., 2003; Fernagut & Chesselet, 2004).  Variation in the α-synuclein levels likely underlies 

the observed variability (Maries et al., 2003; Fernagut & Chesselet, 2004), or possibly 

 



 14 

additional neurotoxic challenge is necessary for α-synuclein to induce nigrostriatal 

degeneration (Fernagut & Chesselet, 2004).  The critical role of α-synuclein in PD 

physiopathology was also underscored by α-synuclein upregulation in MPTP animal models 

(Purisai et al., 2005) and the increased resistance of nigral dopamine neurons to MPTP in α-

synuclein knockout mice (Dauer et al., 2002; Klivenyi et al., 2006).  The neurotoxicity of α-

synuclein is now generally believed to be partially attributed to its inhibition of proteasome 

activities.  Proteasome inhibition by wild–type, and more effectively by oxidated-, mutant- or 

oligomeric-α-synuclein has been demonstrated in cell-free systems, cell cultures and animal 

models (Ghee et al., 2000; Tanaka et al., 2001; Snyder et al., 2003; Lindersson et al., 2004; 

Chen et al., 2005; Cole et al., 2005; Chen et al., 2006).  Other possible interpretations of the 

neurotoxicity of α-synuclein include loss of function due to mutation or oligomerization, 

fibrillation (Sidhu et al., 2004), or increased penetration of the cell membrane by the 

oligomerized α-synuclein (Volles et al., 2001; Volles & Lansbury, 2002; Furukawa et al., 

2006).  Recently, we showed that overexpression of α-synuclein in a nigral dopaminergic cell 

line reduced proteasome activity (chymotrypsin-like) and protected against chemical-induced 

neurotoxicity up to 12hr, and then exacerbated the neurotoxic response (Sun et al., 2005).   

 

Etiological agents involved in UPS impairment in PD: Although less than 10% of PD 

cases are heritable, genetic information acquired from familial PD cases has yielded clues to 

understanding the possible molecular mechanisms of PD pathogenesis.  The identified PD 

genes implicate defective UPS, mitochondrial dysfunction and oxidative stress in PD 

pathogenesis.  Mitochondrial deficit and oxidative injury have consistently been 

demonstrated as key features in PD pathogenesis by post mortem analysis of PD brains and 

experimental studies utilizing dopaminergic toxins.  Since PD is primarily a sporadic 

disorder, the predominant etiological roles of dopaminergic neurotoxins and UPS 

dysfunction must be elucidated.  The following section summarizes the current knowledge 
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regarding the effects of putative dopaminergic neurotoxins on UPS components and/or 

function, and how proteasome inhibition alters neuronal vulnerability to the toxins.  

MPP+ and MPTP: The critical importance of α-synuclein in the pathogenesis of PD is 

underscored by its involvement in both familial and sporadic PD, and its upregulation of 

expression in response to the classical dopaminergic neurotoxin MPP+/MPTP challenge in 

vitro and in vivo (Gomez-Santos et al., 2002; Kalivendi et al., 2004; Purisai et al., 2005).  α-

Synuclein upregulation has been shown to be associated with exacerbated mitochondrial 

pathology in MPTP-challenged α-synuclein transgenic mice (Song et al., 2004).  Knockdown 

or knockout of α-synuclein in rodents confers resistance to neurotoxicity of MPTP (Dauer et 

al., 2002; Drolet et al., 2004; Hayashita-Kinoh et al., 2006; Klivenyi et al., 2006).  It remains 

to be determined whether modulation of neuronal vulnerability by α-synuclein is related to its 

capacity for proteasome inhibition (Moore et al., 2005). Although conventional dosing of 

animals with systemic administration of MPTP fails to produce Lewy body-like pathology, 

continuous MPTP infusion via minipump has recently been shown to be more effective at 

producing UPS dysfunction and protein aggregation.  However, proteasome inhibition and 

nigrostriatal degeneration are markedly attenuated in α-synuclein knockout mice (Fornai et 

al., 2005), implying that proteasome inhibition mediated by α-synuclein may be important in 

MPTP neurotoxicity. It is important to recognize that high abundance of α-synuclein at 

neuronal synapses suggests an important physiological function of this protein in CNS 

(Lotharius & Brundin, 2002). 

Experimental evidence indicates α-synuclein may play a role in synaptic plasticity, 

neurotransmission, and neuroprotection (Di Rosa et al., 2003; Sidhu et al., 2004). We showed 

that overexpression of α-synuclein protects against Parkinsonian toxin MPP+-induced 

apoptotic cell death by suppressing the proteolytic activation of the proapoptotic kinase 

PKCδ in dopaminergic cells (Kanthasamy et al., 2003; Kaul et al., 2005).  Additionally, our 

recent study demonstrated that overexpression of α-synuclein in a nigral dopaminergic cell 

 

http://www.dict.cn/search/index.php?q=exacerbate
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line reduced proteasome activity (chymotrypsin-like) and enhanced chemical-induced 

neurotoxicity, which exacerbated the neurotoxic response (Sun et al., 2005).  In general, α-

synuclein appears to be protective against neurotoxic responses of environmental toxicants at 

the early stages of exposures, but the toxicity is exacerbated when α-synuclein loses its 

protective function.   

 To examine the intrinsic link between mitochondria dysfunction and proteasome 

inhibition, Hoglinger and colleagues demonstrated that exposure to MPP+ leads to the 

reduction of hydrolase activities of the proteasome in rat primary mesencephalic culture via 

ATP depletion (Hoglinger et al., 2003).  However, a similar MPP+ treatment paradigm by 

Sawada and coworkers yielded opposite results with regard to proteasomal activity changes 

(Sawada et al., 2004).  Further detailed analysis is necessary to resolve these discrepancies.  

Possibly, upregulation of UPS function could occur adaptively as a stress response to restore 

cellular homeostasis by eliminating the oxidized or misfolded proteins.  Suppression of 

proteasomal degradation could conceivably exacerbate neurotoxicity of MPP+ due to the 

accumulation of damaged proteins, as previously reported (Hoglinger et al., 2003).  A recent 

study showed that MPTP exposure leads to both functional and structural alterations of 

proteasome in nonhuman primates, similar to effects observed in sporadic PD (Zeng et al., 

2006).  

 A decrease in the availability of soluble Parkin has been linked to increased risk of 

PD (Wang et al., 2005). Although soluble Parkin could shift to the insoluble form as a 

consequence of aging (Pawlyk et al., 2003), the process could be precipitated by neurotoxin 

insults, such as MPP+, which cause the reduction in the soluble fraction of Parkin, elevation 

in the insoluble fraction, and promotion of Parkin aggregation (Wang et al., 2005).  It is still 

unclear whether altering the solubility of Parkin is related to its S-nitrosylation, which has 

been seen in PD brains and MPTP mouse models.  Both solubility alteration and S-
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nitrosylation could compromise the possible neuroprotective function of Parkin (Chung et al., 

2004; Yao et al., 2004).  

Rotenone: Mitochondrial inhibition by rotenone leads to suppression of proteasomal 

activity through ATP depletion, as in the case of MPP+ (Hoglinger et al., 2003).  However, if 

the cellular energy status is partially maintained, cells retain the capacity to upregulate 

proteasomal activity as a defense mechanism to deal with cellular stress caused by prolonged 

rotenone exposure.  Increases in proteasomal activity were found to be concurrent with 

elevation of ubiquitinated proteins and ROS generation (Zeevalk & Bernard, 2005).  

Proteasome function could vary adaptively as a secondary response to the altered cellular 

redox status. However, increases in 4-hydroxy-2-nonenal (HNE)-modification of cellular 

proteins, including the proteasome itself, impairs proteasome function during oxidative stress 

(Okada et al., 1999).  As a result of mitochondrial inhibition by rotenone, ROS production 

could lead to oxidative modification of the β-subunits of the proteasome, thus affecting its 

proteolytic capacity (Shamoto-Nagai et al., 2003), and potentially leading to protein 

aggregations. 

Along with the ATPase subunit of 19S regulatory particles, Rpt6 (S6’) is one of the 

major intracellular targets for ROS attack, and its oxidation diminishes its ATPase activity 

and lessens the capacity of the 26S proteasome to remove ubiquitinated substrates (Ishii et 

al., 2005).  Exposure to rotenone (10 nM to 10 µM) for 24 hr results in significant and dose-

dependent reductions in proteasomal activity in SK-N-MC neuroblastoma cells; persistent 

suppression of proteasome activity was also observed following prolonged rotenone exposure 

(Wang et al., 2006). A recent study showed that chronic rotenone exposure causes selective 

nigrostriatal degeneration concurrent with dysfunctional UPS, DJ-1 oxidation, and α-

synuclein accumulation in vivo (Betarbet et al. 2006). 

Despite the association of UPS alterations with neurotoxicity of rotenone as described, 

addressing whether the UPS deficit represents the secondary consequence of rotenone 
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toxicity, or if it actively participates in rotenone-induced dopaminergic degeneration is 

experimentally difficult.  Overexpression of α-synuclein has an inhibitory effect on 

proteasome degradation; overexpression also increases the vulnerability of dopaminergic 

neurons in C. elegans to rotenone (Ved et al., 2005).  The E3 ligase activity of Parkin is 

central to its neuroprotection against a diversity of neuronal insults including rotenone (Wang 

et al., 2005), suggesting a pathogenic role of defective UPS in rotenone-induced neuronal cell 

death (Darios et al., 2003).  Also, mitochondrial-localized Parkin likely harbors the 

neuroprotective function against neurotoxicity elicited through induction of mitochondria 

dysfunction, since overexpression of Parkin confers resistance to a broad range of 

neurotoxins (Darios et al., 2003; Wang et al., 2005).  Similar to MPP+/MPTP, rotenone also 

induces solubility changes (Wang et al., 2005) and S-nitrosylation of Parkin (Yao et al., 

2004), both of which diminish the ligase activity of Parkin.  Loss of Parkin function increases 

the susceptibility of mice to rotenone-induced nigral dopaminergic neuronal death, which 

might involve microglia activation (Casarejos et al., 2006).  Despite the known 

neurprotective action of Parkin protein, Parkin knockout mice show only minor behavioral 

and neurochemical defects, and no apparent nigral dopaminergic neuronal loss (Goldberg et 

al., 2003)  The mechanism underlying this paradoxical finding is not entirely clear.  Some 

compensatory responses in Parkin knockout animals may compensate for the protective 

function of Parkin. 

Paraquat: Case control and epidemiological studies indicate that paraquat could be an 

environmental neurotoxin associated with increased risk of developing PD (Bove et al., 2005; 

Dinis-Oliveira et al., 2006).  CNS accumulation of paraquat had been debated due to the 

impermeability of the blood-brain barrier to paraquat.  However, active CNS uptake of 

paraquat has been demonstrated via a dopamine transporter (Shimizu et al., 2001) or L-

neutral amino acid transporters (McCormack & Di Monte, 2003). Systemic administration of 

paraquat results in nigrostriatal degeneration (Brooks et al., 1999; McCormack et al., 2002), 
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accompanied by the upregulation and aggregation of α-synuclein in vivo (Manning-Bog et 

al., 2002).  In vitro incubation of α-synuclein with paraquat expedites the fibrillation process 

(Uversky et al., 2001b), though it is unknown how this is related to altered vulnerability of 

nigral neurons to paraquat, as α-synuclein transgenic mice studies have yielded inconsistent 

outcomes (Manning-Bog et al., 2003; Thiruchelvam et al., 2004).  Inhibition of proteasome 

activity by paraquat has been reported in SH-SY5Y neuroblastoma cells (Ding & Keller, 

2001b).  The paraquat-induced proteasome inhibition apparently contributes to oxidative 

stress-related neuronal cell death, since upregulation of proteasome function induced by 

transient exposure to low dose proteasome inhibitors renders cells more resistant to the 

neurotoxicity of paraquat (Lee et al., 2004).   Conversion of soluble and functionally-

competent Parkin into inactive and insoluble Parkin seems to occur in response to a broad-

spectrum of neuronal insults, including paraquat, implying that the loss of Parkin function 

may also contribute to paraquat-induced nigral neuronal death (Wang et al., 2005).  

Dopamine: Although depletion of striatal dopamine represents the key neurochemical 

feature of PD, neurotoxicity of dopamine, which is elicited via oxidative stress, and 

formation of metabolic intermediates such as neuromelanin and dopamine-o-quinone during 

the process of dopamine metabolism, have been linked to the pathogenesis of PD (Jimenez 

del Rio & Velez-Pardo, 2000; Barzilai et al., 2001; Asanuma et al., 2004).  The interaction 

between α-synuclein and dopamine appears to be  very important and complicated in PD 

pathogenesis; α-synuclein appears to participate in maintaining dopamine homeostasis, as 

observed by its roles in regulation of TH activity (Perez et al., 2002), vesicle storage and 

release of dopamine (Abeliovich et al., 2000; Cabin et al., 2002; Lotharius & Brundin, 2002; 

Yavich et al., 2004), dopamine uptake by DAT (Wersinger & Sidhu, 2003) and the vesicular 

dopamine transporter VMAT2 (Lotharius et al., 2002).  Cell-free in vitro studies have yielded 

crucial insight into the involvement of dopamine in synucleinopathies.  Covalent 

modification of α-synuclein by metabolites of dopamine and other catecholamines inhibits α-

 



 20 

synuclein fibrillation (Conway et al., 2001), and facilitates its oligomerization process 

(Cappai et al., 2005), thus favoring its presence in the soluble, toxic oligomer form.  

Destabilization and breakdown of α-synuclein fibrils by dopamine may be partially 

responsible for its preference for the oligomer form rather than the fibrillar form (Li et al., 

2004).  A recent study indicated that interaction between C-terminal amino acid residues 

125-129 of α-synuclein and the dopamine metabolite dopaminochrome possibly explains the 

altered α-synuclein kinetics in the presence of dopamine (Norris et al., 2005).  

A study by Keller and colleagues demonstrated that elevated extracellular dopamine 

levels cause proteasome inhibition, which could be alleviated by suppressing dopamine 

uptake or synthesis (Keller et al., 2000), suggesting that excess intracellular free dopamine 

levels adversely affect proteasome function.  To further support this idea, a pharmacological 

inhibitor of tyrosine hydroxylase (the rate-limiting enzyme for dopamine synthesis) 

upregulates proteasome activity in PC12 cells (Yoshimoto et al., 2005), though the 

pathophysiological relevance of proteasome modulation by dopamine remains to be 

determined.  Proteasome inhibition by dopamine might contribute to its effects in several 

areas: 1) Elevation of the α-synuclein protofibril level in the presence of dopamine likely 

potentiates proteasome inhibition by α-synuclein, as the oligomeric α-synuclein is a more 

effective inhibitor than the monomeric form (Snyder et al., 2003; Lindersson et al., 2004).  2) 

Dopamine-derived ROS compromises proteasome function, which could be alleviated by 

antioxidants (Keller et al., 2000). 3) The dopamine oxidation product aminochrome is also 

among the candidates exerting strong inhibitory effects on the proteasome in dopaminergic 

neurons (Zafar et al., 2006).  4) Neuromelanin, which is synthesized from dopamine 

metabolites, interferes with the proteolytic capacity of the 26S proteasome by depleting 

structural component of the 19S regulatory particles, likely via promotion of ion-mediated 

oxidative stress (Shamoto-Nagai et al., 2006). 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10790763&query_hl=9&itool=pubmed_docsum
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Given the neuroprotective role of Parkin against neurotoxicity produced by a range of 

dopaminergic neurotoxins, Parkin may also play an essential role in dopamine detoxification 

within dopamine-producing neurons. This concept was substantiated by the observation that 

Parkin suppresses dopamine-induced apoptosis in human neuroblastoma cells (Jiang et al., 

2004), and that nigral expression of the Parkin substrate CDCrel-1 causes nigral degeneration, 

depending on dopamine synthesis (Dong et al., 2003).  However, the neuroprotection 

conferred by Parkin against dopamine neurotoxicity might be at the expense of Parkin, since 

dopamine facilitates the conversion of soluble Parkin into the insoluble form, as detected in 

PD brains (Wang et al., 2005). A recent study by LaVoie and coworkers revealed that 

insolubility, oligomerization, and functional inactivation of Parkin are concurrent with 

dopamine-related covalent modification of Parkin, implying that Parkin inactivation either by 

endogenous dopamine, or due to gene mutation, represents the unifying mechanism 

mediating the selective nigral dopamine neuronal death in sporadic and familial PD (LaVoie 

et al., 2005). 

 6-OHDA: Severe oxidative stress following 6-OHDA exposure could mediate 

proteasome failure, as in the case of dopamine, and cells could actively promote degradation 

in response to mild oxidative stress in order to remove oxidatively damaged proteins, as 

manifested by elevated proteasome activity (Hoglinger et al., 2003; Elkon et al., 2004) and 

increased ubiquitinated proteins (Elkon et al., 2001).  Inhibition of the increase in proteasome 

function potentiates the neurotoxicity of 6-OHDA, presumably by abolishing UPS-related 

detoxification (Hoglinger et al., 2003).  A study with 6-OHDA-induced rat models of PD 

revealed the association of nigrostriatal degeneration with ubiquitin upregulation in 6-

OHDA-injected striatum, indicating the involvement of UPS in the nigrostriatal degeneration 

process (Pierson et al., 2005).  As previously described, alteration in Parkin solubility occurs 

in response to a variety of stimuli, including 6-OHDA, suggesting that common mechanisms 

might be responsible for the change in Parkin (Wang et al., 2005).  Although neuroprotection 
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against the dopaminergic neurotoxicity of 6-OHDA by exogenously introduced Parkin has 

been well documented in in vitro and in vivo studies (Darios et al., 2003; Jiang et al., 2004; 

Vercammen et al., 2006), the neuroprotective role of endogenous Parkin at the physiological 

level following 6-OHDA challenge remains unknown.  In fact, Parkin inactivation does not 

increase susceptibility of nigral neurons to 6-OHDA treatment (Perez et al., 2005). 

Metals: Ferrous/ferric iron and manganese: Epidemiological, case control and post 

mortem studies have suggested the possible involvement of heavy metals in the etiology of 

PD (Uversky et al., 2001a).  Of the metals suspected to be involved in development of PD, 

iron attracts more attention than others;  numerous studies have indicated that overload of 

nigral iron is involved in PD pathophysiology (Berg et al., 2001; Wolozin & Golts, 2002; 

Kaur & Andersen, 2004).  The pathogenic roles of iron in PD have been researched 

intensively, with particular focus on its involvement in synucleinopathies and oxidative 

stress.  Fe (III) and Fe (III)-related ROS have been shown to induce α-synuclein aggregation 

in vitro (Hashimoto et al., 1999; Golts et al., 2002) and in cell cultures (Ostrerova-Golts et 

al., 2000). 

In a systematic analysis of several metals, Uversky and colleagues showed that 

incubation with metals such as aluminum (III), copper (II), iron (III), cobalt (III), and 

manganese (II) markedly promoted the conformational change and fibrillation of α-synuclein 

in cell free systems (Uversky et al., 2001a).  Oxidation of α-synuclein catalyzed by transition 

metals Fe (III) or Cu (II) favors the formation of the α-synuclein oligomer, which has an 

inhibitory effect on proteasome (Cole et al., 2005).  In addition, iron-mediated ROS 

(Shamoto-Nagai et al., 2006) also contribute to proteasomal inhibition following Fe (II) 

exposure in cell culture (Ding & Keller, 2001b; Lev et al., 2006; Shamoto-Nagai et al., 

2006), whereas Fe (II, III) exposure appears to increase 20S proteasomal activity in cell-free 

in vitro systems (Amici et al., 2002).  The negative effect of Fe (II) on UPS function is also 

illustrated by the decrease in Parkin solubility in the presence of Fe (II) (Wang et al., 2005).    
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Occupational and clinical studies have suggested that manganese exposure also 

causes PD-like syndromes, although brain lesions caused by Mn accumulation are mostly 

confined to the globus pallidus, instead of the nigrostriatal system as in PD (Olanow, 2004; 

Jain et al., 2005).  In vitro incubation of α-synuclein with Mn enhances the formation and 

stabilization of α-synuclein intermediates with partially folded conformation (Uversky et al., 

2001a; Andre et al., 2005); the interaction between α-synuclein and manganese may be 

important for the neurotoxicity of manganese, since α-synuclein overexpression renders cells 

more susceptible to manganese-triggered cell death (Pifl et al., 2004).  As the major 

component of the pesticide Maneb, which is linked experimentally to nigral degeneration, 

manganese ethylene-bis-dithiocarbamate triggers cytotoxicity in mesencephalic neuronal 

cells, concurrently with α-synuclein aggregation and reduction of proteasomal activity (Zhou 

et al., 2004).  Rescue of dopaminergic neuronal cells from manganese cytotoxicity by Parkin 

suggests the causal association between impaired UPS degradation and manganese-induced 

cell death, even without significant change in the proteasomal peptidase activity (Higashi et 

al., 2004). 

Dieldrin and other pesticides: With regard to pesticides and PD etiology, the 

organochlorine pesticide dieldrin, in addition to rotenone, paraquat and Maneb, is of 

particular concern based on post mortem analysis of PD brains and epidemiological and 

experimental studies (Kanthasamy et al., 2005).  Higher levels of dieldrin were detected in 

many PD brains as compared to control brains (Fleming et al., 1994; Corrigan et al., 2000; 

Kanthasamy et al., 2005).  Dieldrin is selectively neurotoxic to dopamine neurons in primary 

mesencephalic culture (Sanchez-Ramos et al., 1998) and to dopaminergic cells (Kitazawa et 

al., 2001).  Previous studies by our lab showed that dopamine oxidation may play a role in 

the increased sensitivity of dopaminergic cells to dieldrin toxicity (Kitazawa et al., 2001), 

and that proteolytic activation of protein kinase C delta (PKCδ), an oxidative stress-sensitive 

kinase, contributes to the neurotoxicity of dieldrin (Kanthasamy et al., 2003; Kitazawa et al., 
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2003).  Dieldrin also negatively affects the proteasomal activity, with significant loss of 

chymotrypsin-like proteasomal activity and profound α-synuclein aggregation; as observed in 

dopaminergic cells after exposure to sublethal concentrations of dieldrin.  The dieldrin-

induced UPS dysfunction appears to contribute to apoptotic cell death in dopaminergic cells, 

since cumulative proteasomal inhibiton by the interaction between α-synuclein and dieldrin 

exacerbates UPS dysfunction and the neurotoxicity of dieldrin (Sun et al., 2005). α-Synuclein 

oligomerization facilitated by dieldrin likely contributes to sensitization of the neuronal cells 

to dieldrin-induced UPS deficit and cell death (Uversky et al., 2001b). A study by Wang and 

coworkers showed that exposure to six of 25 pesticides examined, including rotenone, ziram, 

diethyldithiocarbamate, endosulfan, benomyl, and dieldrin, caused decreases in proteasomal 

activity at nM to µM concentrations in cell culture.  However, none of the six pesticides had 

an inhibitory effect on the peptidase activity of isolated 20S proteasome (Wang et al., 2006), 

which implies that some common cellular events mediate proteasomal inhibition resulting 

from pesticide exposure.  

Table 1. Summary of key findings regarding the effects of environmental toxins on UPS 
Neurotoxins Key findings and model systems 
MPTP α-Syn ↑ (nonhuman primates)a1;  PA ↓ (mice, non-human primates) a2,3; Susceptibility 

↓ in α-Syn KO (Mice) a4, 5, 6;  Susceptibility ↑  in Tg α-Syn (Mice)a7;  Parkin 
nitrosylation ↑ (mice) a8, 9

MPP+ α-Syn ↑(NB)b1, 2;  Parkin solubility ↓ ( NB, mice)b3 l;  PA↓ (MC)b4 m or PA ↑ (MC)b5

Rotenone PA ↓ (MC, mice)b4 ,c1 or PA ↑ with ubiquitin conjugates ↑ (MC)c2;  Proteasome 
oxidation (NB)c3 ;  Parkin nitrosylation ↑(mice)a8,9;  Parkin solubility ↓ (NB)b3; 
Susceptibility in Parkin KO ↑ (mice)c4; α-Syn ↑ (mice)c1

Paraquat PA ↓ (NB)d1; Protection by increased PA (neocortical neurons)d2; Parkin solubility ↓ 
(NB, mice)b3

Dopamine α-Syn fibrillation ↓ (CFiv)e1 &  oligomerization ↑ (CFiv)e2; α-Syn fibril breakdown ↑ 
(CFiv) e3; PA ↓ (PC) e4, 5; Parkin solubility ↓ (NB)b3; Parkin modification  & 
inactivation (neuronal cells)e6;  Protection by Parkin overexpression (NB)e7

6-OHDA PA ↓ (PC)f1 or PA↑ (MC or PC)b4, f1 with ubiquitin conjugates ↑ (PC)f2;  Ubiquitin ↑ 
(rat)f3;  Parkin solubility ↓ ( NB, mice)b3;  Protection by Parkin (NB, PC, rat)e7, f4, 5; No 
change in susceptibility in Parkin KO (mice)f6

Irons Fibrillation (CFiv)g1; Oligomerization, Oxidation of α-Syn and resulting PA ↓ 
(CFiv)g2;  PA ↓ (NB)d1,g3, 4; Parkin solubility ↓( NB)b3

Manganese Increased susceptibility by α-Syn overexpression (NB)h1; PA no change (NBh2 or 
decrease (NB)h3; Protection by Parkin (NB)h2

Dieldrin PA ↓ (neuronal cells)i1,2; ubiquitin conjugates ↑ & ↑ susceptibility by α-Syn 
overexpression (Neuronal cells) i1
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Note: α-Syn: α-synuclein; PA: proteasomal activity; KO: Knockout; Tg: Transgenic; NB: Neuroblastoma; MC: 
Mesencephalic culture; CFiv: Cell-free in vitro; PC: PC12 cells;  ↑: Increase;  ↓: Decrease;  a1Purisai, et al., 2005;  a2Fornai, 
et al., 2005;  a3Zeng et al., 2006;  a4Dauer et al., 2002; a5Drolet et al., 2004; a6Klivenyi,  et al., 2006; a7Song  et al., 2004; 
a8Chung  et al., 2004; a9Yao  et al., 2004; b1Gomez-Santos et al.; b2Kalivendi et al., 2004; b3Wang et al., 2005; b4Hoglinger et 
al., 2003; b5Sawada et al., 2004; c1Betarbet et al., 2006; c2Zeewalk and Bernard 2005; c3Shamoto-Nagai et al., 2003; 
c4Casarejos et al., 2006; d1Ding and Keller, 2001; d2Lee et al., 2004; e1Conway et al., 2001; e2Cappai et al., 2005; e3Li et al., 
2004; e4Keller et al., 2000; e5Yoshimoto et al., 2005; e6Lavoie et al., 2005; e7Jiang et al., 2004; f1Elkon et al., 2004; f2Elkon et 
al., 2001; f3Pierson et al., 2005; f4Darios et al., 2003; f5Vercammen et al., 2006; f6Perez et al., 2005; g1Uversky et al., 2001a; 
g2Cole et al., 2005; g3Lev et al., 2006; g4Shamoto-Nagai et al., 2006; h1Pifl et al., 2004; h2Higashi et al., 2004; h3Zhou et al., 
2004; i1Sun et al., 2005; i2Wang et al., 2006 

 

Figure 2: The chemical structures of repin, curcumin and several proteasome 
inhibitors:  lactacystin, MG132, epoxomicin, and S-341. 

 

 



 26 

Expo e 

to neurotoxic effects of 

proteas

sure to environmental proteasome inhibitors as risk factor for PD. Proteasom

inhibitors have been used as an important class of anticancer drugs.  The promising potential 

of UPS as the target for drug development in cancer has evoked unprecedented enthusiasm in 

the search for proteasome inhibitors of natural origin or synthetic analogs (Kisselev & 

Goldberg, 2001; Tsukamoto & Yokosawa, 2006).  The proteasome inhibitor bortezomib (PS-

341) has recently been approved by the FDA for multiple myeloma treatment, while some 

other inhibitors, such as clasto-lactacystin β-lactone, have entered clinical trials (Voorhees & 

Orlowski, 2006).  Diverse synthetic proteasome inhibitors, which structurally fall into 

different categories:  peptide aldehyde, peptide boronates, and peptide vinyl sulfones, have 

been generated for biomedical and biochemical research (Myung et al., 2001).  Meanwhile, 

an increasing number of proteasome inhibitors have been derived from natural sources such 

as bacteria, fungi and plants.  Lactacystin, epoxomicin and belactosin (Fig. 2) are examples 

of proteasome inhibitors produced by bacteria of the Actinomycetes family (Myung et al., 

2001; Tsukamoto & Yokosawa, 2006). These bacteria are universally present in soil, and 

some species can infect the soil-associated parts of plants.  The fungus Apiospora montagnei, 

the source of proteasome inhibitors TMC-95A, B, C and D (Kisselev & Goldberg, 2001; 

Groll & Huber, 2004), has been shown to infect wheat (Koguchi et al., 2000) and green tea 

plants (Nam et al., 2001).  A long list of natural compounds capable of inhibiting either 

proteasomal activity or ubiquitin-activating enzyme (E1), ubiquitin ligases (E3) or 

deubiquitinating enzymes have been isolated from diverse sources (Tsukamoto & Yokosawa, 

2006).  The structural profile of the natural compounds provides important clues for synthesis 

of new chemical entities sharing a similar active pharmacophore.  

The increased susceptibility of dopaminergic neurons 

ome inhibitors raises great concern if our potential exposure to environmental (i.e., 

sources from bacteria/fungi contaminated foodstuffs, environmental contamination from 

chemical/pharmaceutical industries, etc.) proteasome inhibitors poses additional risk for 
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development of PD.  In this regard, infection of the brain with Nocardia asteroid, a 

bacterium of the Actinomycetes family, causes nigral dopaminergic degeneration and 

Parkinsonism in animal models (Tam et al., 2002).  Also, consumption of Russian knapweed 

(Acroptilon repens) results in nigral degeneration in horses.  One of the suspected active 

ingredients responsible for the degeneration process, repin (Fig. 2), shares a similar lactone 

structure as a well known proteasome inhibitor lactacystin (Stevens et al., 1990; Fenteany et 

al., 1994).  Very recently, we tested whether repin inhibits proteasome activity in 

dopaminergic cells and found a significant inhibition of proteasome activity (unpublished 

observation).  Paradoxically, the proteasome inhibitor curcumin (Fig. 2 has been shown to be 

protective in various neurodegenerative models (Yang et al. 2005), suggesting certain 

proteasome inhibitors may target other signal transduction pathways (for example: NF-kB) to 

exert their neuroprotective action.  

Recently, systemic administration of the naturally occurring proteasome inhibitor 

epoxom

Summary. The effect of various neurotoxicant exposures on UPS and activation of key 

icin or peptide proteasome inhibitor PSI in rodents produced some key behavioral 

and pathological features of PD (McNaught et al., 2004).  The proteasome inhibitor-treated 

animals showed striatal dopamine depletion, degeneration and cytoplasmic inclusions in key 

brain regions including nigra, locus ceruleus, dorsal motor nucleus, and nucleus basalis of 

Meynert, and the affected animals were also responsive to the antiparkinsonian drug l-dopa 

(McNaught et al., 2004).  Unfortunately, recent studies show that the proteasome inhibitor-

induced model is not easily reproduced in other laboratories (Kordower et al., 2006; 

Manning-Bog et al., 2006).  

 

biochemical mechanisms associated with degenerative processes in the dopaminergic system 

are summarized in Fig. 3.  Neurotoxic insults could converge to impair the proteolytic 

efficiency of the ubiquitin proteasome system either by targeting the 26S proteasome or 
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interfering with the ubiquitination step.  Neurotoxins such as 6-OHDA, dopamine, MPP+, 

rotenone, paraquat, or iron could augment intracellular ROS production and oxidative stress.  

dopaminergic degeneration. 

Figure 3: Mechanisms of neurotoxicant-induced proteasome dysfunction and 

Neurot  green 
line) o ction 
and oxidative stress. Sustained elevat ms the proteolytic efficiency of the 
proteasome, and oxidative modificat me also contributes to compromise 

roteasome, and oxidative modification of the subunits of the proteasome may also 

oxic agents impair the proteolysis function of UPS either by targeting the 26S proteasome (solid
r interfering with ubiquitination.  1) Neurotoxicant exposure can augment intracellular ROS produ

ion of protein oxidation overwhel
ion of the subunits of the proteaso

proteasome function.  2) Mitochondria inhibition by neurotoxicants causes loss of intracellular ATP, thus 
adversely affecting ATP-dependent proteasome degradation.  3) Oligomerization of α-synuclein and 
upregulation of α-synuclein expression have inhibitory effects on the proteasomal activities.  4) Nitrosylation, 
reduced solubility or covalent modification of Parkin diminishes its ubiquitin ligase activity, and Uch-L1 
oxidation reduces Parkin’s hydrolase activity.  Proteolytic stress or accumulation of particular substrate proteins 
resulting from UPS dysfunction interferes with normal mitochondrial function, or induces endoplasmic 
reticulum stress and eventually leads to the demise of dopaminergic neurons (solid red lines).  Additionally, 
mitochondrial dysfunction, neurotoxicity of α-synuclein or oxidative stress can expedite the dopaminergic 
degeneration process independent of UPS (red dashed line). 

 

Sustained elevation of protein oxidation overwhelms the proteolytic capacity of the 

p

contribute to proteasome dysfunction.  Mitochondrial inhibition by neurotoxins such as 

MPP+, rotenone, paraquat, and dieldrin can deplete intracellular ATP levels, and thus 
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adversely affect ATP-dependent proteasomal degradation.  Oligomerization of α-synuclein 

following exposure to metals, pesticides, dopamine or dopamine metabolites, and 

upregulation of α-synuclein expression (e.g.; MPTP, MPP+, and rotenone exposure) have 

inhibitory effects on the proteasomal activities.  Nitrosylation (e.g., via MPTP or rotenone 

exposure), altered solubility (e.g. MPP+, rotenone, paraquat, 6-OHDA, or iron treatment) or 

covalent modification of Parkin (dopamine) diminishes its ubiquitin ligase activity, and Uch-

L1 oxidation reduces its hydrolase activity.  Thus, the interplay between UPS and 

mitochondrial dysfunctions promotes the degenerative processes in dopaminergic neurons.   

In addition to the various neurotoxic agents described, aging could be an additional 

factor leading to gradual decline in ubiquitin-proteasome function  (Chondrogianni & Gonos, 

2005). 

oupling of proper protein folding in the endoplasmic 

reticulu

 Impaired UPS degradation has been consistently observed in aged human or animal 

tissues including the central nervous system  (Ding & Keller, 2001a; Gray et al., 2003).  The 

decreased proteolytic capacity of UPS from oxidative stress has been hypothesized to be one 

of the fundamental changes promoting neurodegeneration  (Ding et al., 2006; Halliwell, 

2006).  A study by Zeng and colleagues showed dramatic reduction in proteasome activities 

in aged animals in a brain region-specific manner, with substantia nigra being most severely 

affected, suggesting the contributory role of aging-related UPS dysfunction in nigrostriatal 

degeneration (Zeng et al., 2005). 

As important degradation machinery, UPS also plays a crucial role in the removal of 

unfolded/misfolded proteins.  C

m with UPS-mediated protein degradation in the cytosol provides a reliable quality 

control system for intracellular proteins (Sitia & Braakman, 2003).  However, interference 

with protein folding in the ER, or failure of proteasome degradation could result in the 

accumulation of unfolded protein, which triggers an unfolding protein response, such as 

upregulation of HSP 70 and other cytosolic chaperone proteins.  In the ER accumulation of 

unfolded proteins could trigger an ER-stress response, such as upregulation of ER-localized 
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chaperone proteins Bip.  Profiling of gene expression in primary neuronal cells showed that 

exposure to proteasome inhibitors upregulated the expression of chaperone proteins (Yew et 

al., 2005), whereas the failure of upregulation of chaperone proteins in dopamine neurons 

was suggested to sensitize the neurons to apoptotic cell death upon proteasome inhibition 

(Rideout et al., 2005).  Misfolding and aggregation of Parkin substrate Pael-R appears to 

trigger ER stress and thus promotes nigral dopamine neuron death (Imai et al., 2002).  A53T 

α-synuclein also promotes cell death partially via ER stress in PC12 cells (Smith et al., 

2005).  The unfolded protein response is extensively observed in dopaminergic cells 

challenged with PD mimetics 6-OHDA, MPP+ and rotenone, which also supports the 

involvement of UPS dysfunction in PD development (Chen et al., 2004; Holtz & O'Malley, 

2003; Ryu et al., 2002).    

 

Puzzles and future directions: Data derived from genetic and biochemical analyses have 

implied that a defective UPS may play a contributory role in nigrostriatal degeneration.  

Consistent with this idea, UPS impairment is observed in dopaminergic neurotoxicity 

provoked by neurotoxins including MPTP/MPP+, dopamine, 6-OHDA, metals, rotenone, 

paraquat and dieldrin.  Altered UPS function might occur as a secondary response to 

nigrostriatal degeneration, or it may be a key cellular event responsible for degeneration 

(Zeng et al., 2006).  In order to establish the effect of dysfunctional UPS on nigrostriatal 

degeneration, several important questions must be addressed.  Firstly, could suppression of 

UPS degradation effectively model PD?  Proteasome inhibitors can produce some features of 

PD, particularly the formation of proteinaceous inclusions in cell culture, and cell death 

(McNaught et al., 2002b; McNaught et al., 2002c; Rideout & Stefanis, 2002; Ardley et al., 

2003; Rideout et al., 2004; Tanaka et al., 2004; Bandopadhyay et al., 2005).  However, it is 

undetermined whether systemic administration of proteasome inhibitors would yield a 

promising and reproducible PD model in vivo.  McNaught and coworkers, and other 
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researchers have reported that systemic administration of proteasome inhibitors generates 

models characterizing the key features of PD (McNaught et al., 2004; McNaught & Olanow, 

2006; Schapira et al., 2006).  However, other labs failed to reproduce the behavioral, 

pathological or neurochemical alterations characteristic of PD in mice, rat and monkey 

models using protocols similar to those of McNaught and coworkers (Bove et al., 2006; 

Kordower et al., 2006; Manning-Bog et al., 2006).  Unfortunately, only one out of the six 

studies listed provided information on the nigral proteasomal activity in animals receiving 

proteasome inhibitor treatment (Schapira et al., 2006).  To resolve the apparent discrepancy, 

blood brain barrier permeability of the compounds and nigral/striatal UPS function must be 

monitored in future research to ensure that systemically-administered proteasome inhibitors 

indeed impair UPS degradation.  In contrast, stereotaxic delivery of proteasome inhibitors to 

substantia nigra or striatum produces nigral dopaminergic degeneration, as demonstrated by 

several groups including ours (McNaught et al., 2002b; Miwa et al., 2005; Zhang et al., 2005; 

Sun et al., 2006), suggesting the improved reproducibility in modeling PD with this regimen 

compared to systemic administration. 

The second important question is whether dopaminergic neurons are more vulnerable 

to proteasome inhibition, since UPS deficit is the common feature of several 

neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, prion disease, 

and PD.  The presence of protein inclusions in the affected brain regions has been commonly 

observed in these neurodegenerative disorders (Ding & Keller, 2001a; Halliwell, 2006).  The 

protein aggregations universally observed in different neurodegenerative diseases are clear 

signs of proteolysis in neurons.  The major constituents of the protein aggregations, such as 

β-amyloid protein, α-synuclein, Huntingtin, mutant SOD and prion, have been shown to 

hamper proteasome function  (Ding et al., 2006; Widmer et al., 2006).  Additionally, the 

involvement of defective UPS function as a common feature of neurodegeneration was also 
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highlighted by the fact that several E3 ligases have been implicated in the pathogenesis and 

progression of different neurodegenerative disorders (Ardley & Robinson, 2004). 

In addition to nigrostriatal damage, several other brain regions including locus 

correlu

ubiquitin ligase activity of Parkin fits into the 

hypoth

s, Basilis Megalaris, and nucleus accumbens are affected in PD.  The extent of 

proteasomal dysfunction in these brains regions needs to be determined. If nigral 

dopaminergic neurons are truly more susceptible to UPS dysfunction, this will provide 

important clues for ascertaining the precise mechanism responsible for selective nigral 

dopaminergic degeneration.  Thus far, the studies addressing this issue have yielded 

inconsistent results.  A study by Mcnaught and colleagues showed that the proteasome 

inhibitor lactacystin and Uch-L inhibitor ubiquitin aldehyde elicit more significant 

neurotoxicity in mesencephalic dopamine neurons than in GABAergic neurons (McNaught et 

al., 2002c).   In contrast, Kikuchi and coworkers reported that dopamine neurons appear to be 

slightly resistant to proteasome inhibition by epoxomicin compared to GABAergic neurons 

in primary mesencephalic culture (Kikuchi et al., 2003).  By using a variety of proteasome 

inhibitors, Reaney and colleagues showed that dopamine neurons are moderately more 

susceptible to proteasome inhibition (Reaney et al., 2006).  This study agrees with the finding 

that tyrosine hydroxylase-positive neurons in embryonic mesencephalic culture preferentially 

undergo apoptotic cell death upon proteasome inhibition, possibly due to failure of 

upregulation of HSP70 (Rideout et al., 2005).   

The third question of interest is how the 

esis of mitochondrial dysfunction in PD.  The ligase activity of Parkin is vital to its 

neuroprotection against a broad range of neuronal insults, as previously discussed.  A small 

portion of Parkin associated with the mitochondrial membrane likely mediates the 

degradation of mitochondrial substrates, and thus suppresses mitochondrial apoptotic events 

(Darios et al., 2003).  Loss of mitochondrial proteins participating in electron 

transfer/oxidative phosphorylation, compromised mitochondrial respiration, and cellular 
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detoxification in Parkin knockout mice provide some evidence for the roles of Parkin in 

preserving mitochondrial physiological function (Palacino et al., 2004; Periquet et al., 2005), 

although the precise underlying mechanisms remain to be elucidated.  Intriguingly, studies in 

Drosophila by two independent groups indicate Parkin likely functions downstream of 

PINK1, implying cross-talk between Parkin and PINK1 in the same signaling pathway which 

maintains mitochondrial structure and function (Clark et al., 2006; Park et al., 2006).  Future 

efforts should focus on understanding how Parkin substrates fit in the mitochondria 

hypothesis, since none of these putative substrates are actually mitochondria-resident 

proteins.  In this regard, Drosophila appears to be an alternative model organism to dissect 

the various pathways involved in dopamine degeneration, including those related to Parkin 

and other pathways (Bilen & Bonini, 2005; Cauchi & Van Den Heuvel, 2006; Whitworth et 

al., 2006).  Intensive studies with the fly model have yielded novel insight into the 

mechanisms underlying dopaminergic degeneration, which includes modeling dopamine 

neuron loss in adult flies expressing α-synuclein (Feany & Bender, 2000), modeling of 

involvement of chaperone proteins  (Auluck et al., 2002; Auluck et al., 2005), oxidative 

stress (Meulener et al., 2006; Yang et al., 2005b) in dopamine neuron survival and death, 

interaction of Parkin and PINK1 in maintenance of normal mitochondria function (Yang et 

al., 2003; Park et al, 2006), and neuroprotection of Parkin. However, one of the problems 

with the fly models overexpressing α-synuclein or Parkin is toxicity in the flies; this is likely 

the result of the excess proteins overwhelming UPS.  Validation of results from the fly 

models with mammalian models will advance our understanding of PD pathogenesis, and 

contribute to the development of potential manipulation strategies. 

Finally, a detailed analysis of key overlapping biochemical signaling associated with 

mitochondria and UPS will help us to elucidate the possible interactive role of mitochondrial 

and UPS dysfunctions in many neurodegenerative diseases, including PD. 
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Background and Literature Review II 

 

Role of α-Synuclein in Neuroprotection and Neurotoxicity of Dopaminergic Neurons 

 

Abstract: α-Synuclein is a presynaptic protein that may participate in neuronal 

plasticity, neurotransmission and maintenance of dopamine homeostasis; although the exact 

physiological function remains unclear. As the major component of Lewy bodies, the 

hallmark of the Parkinson’s disease (PD), α-synuclein also plays a crucial role in the 

pathogenesis of PD. A number of α-synuclein mutations are associated with some familiar 

PD.  Examination of the effects of α-synuclein on neuronal viability has yielded discrepant 

results, indicating that the role of α-synuclein varies depending on multiple factors such as 

expression level, cell types and duration of neurotoxic insults. Among varieties of cell lines 

used for PD studies, we adopted immortalized rat mesencephalic dopaminergic neuronal 

cells, N27 cells, as an experimental model for studying cell death mechanisms in PD. Using 

this cell model, we demonstrated that PKCδ (protein kinase C delta), a member of novel 

PKC isoform, proteolytically activated to induce apoptosis in dopaminergic cell death 

following exposure to Parkinsonian neurotoxicants such as MPP+ (1-methyl-4-

phenylpyridinium ion), 6-OHDA (6-hydroxyl dopamine), manganese and dieldrin.  

Overexpression of human α-synuclein in N27 cells protects cells from MPP+ toxicity and 

acute dieldrin treatment, presumably via interaction with PKCδ and BAD. However, α-

synuclein significantly potentiates the neurotoxicity of prolonged dieldrin treatment in N27 

cells, possibly involving α-synuclein misfolding and aggregation.  The opposing roles of α-
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synuclein observed in the ncies previously reported 

in several cell types.  Herein, we first mmarize previous studies that examined 

n r 

observation on the effect of neurotoxicants on wild type and α-synuclein-overexpressing 

cells.  W

 N27 cells are in agreement with discrepa

su

europrotective as well as neurotoxic effects of α-synuclein and then describe ou

e also demonstrates how N27 cells can be used as an experimental model system to 

ascertain the physiological and pathological roles of α-synuclein in dopaminergic 

degeneration. 

 

α-Synuclein was originally identified in cholinergic vesicles of Torpedo californica, 

the Pacific torpedo ray (Maroteaux et al., 1988). The protein was named as α-synuclein, 

because of its predominant cellular localization at synapse and the nuclear envelope of 

neurons. Subsequently, the mammalian homologue of the Torpedo synuclein was isolated 

currently known that both α- and γ-synuclein belong to the same gene family which also 

includes β-synuclein and synoretin (Suh and Checler, 2002). All the synuclein family 

proteins contain the KTKEGV consensus domains. Human α-synuclein, a natively unfolded 

protein with 140 amino acids, consists of 3 structurally distinct motifs: an N-terminal 

amphipathic region, a central NAC domain, and a C-terminal acidic tail (Recchia et al., 

charged phospholipids (Cookson, 2005). Upon binding to lipid, native unfolded α-synuclein 

changes to an α-helix configuration. All three point mutations of α-synuclein: A30P, E46K, 

and A53T, are exclusively located in this region. The E46K and A53T mutations of α-

and named as γ-synuclein.  α-Synuclein is highly expressed in the central nervous system, 

especially in the substantia nigra, caudate nucleus, amygdala, and hippocampus.  It is 

2004). As shown in Fig. 1, the N-terminal amphipathic region, containing a majority of the 

repeats of the KTKEGV consensus sequence, has the capacity to associate with negatively 
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synuclein potentiate its lipid binding and accelerate filament formation, while A30P reduces 

the binding capacity and slows down the formation of fibrillar species.  This suggests that the 

amphipathic helix conformation favors the formation of α-synuclein aggregation (Choi et al., 

2004). 

Fig. 1 Structural features of human α-synuclein proteins.  The three structural domains of 
α-synuclein include a N-terminal amphipathic region (1-65), a central NAC domain (66-90), 
and a C-terminal acidic tail (91-140). The majority of the signature consensus domains 
(imperfect KTKEGV sequence, black solid box) of synuclein family proteins are located at 
the N-terminus. A30P, E46K and A53T are the 3 human mutations associated with familial 
PD. The acidic C-terminus contains several amino acids (Y125, S-129, Y133 and Y136), that 
could bear post-translational modifications such as phosphorylation and nitration. 

 

The highly negatively charged C-terminal tail of α-synuclein has several 

phosphorylation sites: Tyr-125, 133 and 136, and Ser-129. Approximately 90% of α-

synuclein in the urea-insoluble fraction prepared from brain samples of synucleinopathy is 

phosphorylated on Ser-129 (Fujiwara et al., 2002). The post-translational modifications in the 

C-terminus include the nitration on Tyr-125, 133 and 136, and possible glycosylation at an 

unidentified position. The inhibitory effect of the acidic C-terminus on aggregation is based 

on the observation that the C-terminal truncated form of α-synuclein more readily forms 

fibrillar filaments (Murray et al., 2003).  Central NAC (Non-Aβ component) region (66-95) 

initially was identified as a major component secondary to Aβ in Alzhemier’s plaques. The 

NAC domain of α-synuclein, which is absent from β- and γ-synuclein, is hydrophobic, and 

amyloidgenicity of NAC is crucial for formation of the β-sheet structure of α-synuclein. 
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Likely, β-sheet structure promotes oligomerization of protein to form the so-called protofibril 

and the subsequent filament, which eventually lead to the protein aggregation in Lewy bodies 

(Bodles et al., 2001; Giasson et al., 2001). 

uptake 

 

by DAT and VMAT in the dopaminergic system.  Neurochemical studies revealed 

regulatory roles of α-synuclein in presynaptic vesicle formation and maintenance (Cabin et 

al., 200
 

postulated to function as a chaperone protein (Ostrerova et al., 1999).  Protein-protein 

Physiological function of α-synuclein 

Currently, the physiological function of α-synuclein is under intense investigation. 

Consistent with its high expression at the presynaptic terminals, α-synuclein has been 

thought to play a role in synaptic transmission.  It is postulated that α-synuclein may play a l 

role in dopamine synthesis, vesicle transport and release of dopamine including dopamine 

impairment in paired stimuli-triggered dopamine release at the nigrostriatal terminals, and 

reduced striatal dopamine levels in α-synuclein knock-out mice (Abeliovich et al., 2000).  

Similarly, suppression of α-synuclein expression reduces the number of synaptic vesicles, 

especially the vesicles of reserve pool in hippocampal neurons, suggesting the important 

2). A recent study by Larsen and colleagues indicated that α-synuclein interferes with 

secretory exocytosis of transmitter release (Larsen et al., 2006). In line with α-synuclein’s 

role in neurotransmission, knockout or mutation of α-synuclein has been shown to lower the 

capacity of the dopamine storage pool (Yavich et al., 2004). Modulation of phospholipase D2 

by α-synuclein in clathrin-mediated endocytosis for the presynaptic vesicle recycling has 

been suggested to be the underlying regulatory role of α-synuclein in the process (Lotharius 

and Brundin, 2002a).  

 

Chaperone activity of α-synuclein 

Because of its homology and interaction with 14-3-3, α-synuclein has also been 
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interactions often dictate much of the cellular signaling influenced by α-synuclein within 

various cellular systems. Indeed α-synuclein has been shown to regulate the activity and 

function of several proteins associated with dopamine homeostasis and cellular signaling 

(Table 1).   

 

Table 1: Summary of Proteins that Interact with α-Synuclein. 
PROTEIN REFERENCE 

PLD2 (Phospholipase D 2) (Jenco et al., 1998; Payton et al., 2004) 

UCH-L1 (Ubiquitin Ligase 1) (Liu et al., 2002) 

Parkin (Choi et al., 2001; Oluwatosin-Chigbu et al., 2003; 
Shimura et al., 2001) 

Synphilin (Engelender et al., 1999; Ribeiro et al., 2002) 

14-3-3 (Ostrerova et al., 1999) 

PKC, BAD, ERK (Ostrerova et al., 1999) 

Elk-1/Erk-2 Complex (Iwata et al., 2001b) 

MAPK (Iwata et al., 2001a) 

Tubulin (Alim et al., 2002) 

Cytochrome Oxidase IV ( COX IV) (Elkon et al., 2002) 

Dopamine Transporter (DAT) (Kobayashi et al., 2004) 

Aβ, Tau (Jensen et al., 1997; Yoshimoto et al., 1995) 

Calmodulin (Lee et al., 2002a; Martinez et al., 2003) 

Protein kinase C  δ (Kaul et al., 2005a) 

PP2A (Peng et al., 2005) 

 

 

Tyrosine hydroxylase and dopamine synthesis 

Tyrosine hydroxylase (TH) is the rate limiting enzyme in the synthesis of dopamine, 

and is activated when phosphorylated on any of its serine residues: Ser 19, Ser 31 and Ser 40.  

Various protein kinases like MAPK and ERK1/2 regulate this reversible phosphorylation of 

TH on otein kinase A phosphorylates TH on Ser 31 and residue Ser 31 (Royo et al., 2004).  Pr
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Ser 40 

he modulating dopaminergic neurotransmission.  Chaperone proteins 14-3-3 and 

α-synuclein have been suggested to interact with tyrosine hydroxylase, and exert opposite 

regulatory effects ferential 

interaction of 14-3-3 with phosphorylated TH stabilize the protein to its active conformation, 

and th activity for dopamine synthesis; whereas association of α-

synuclein with dephosphorylated TH likely sup its 

inactive form (Sidhu et al., 2004a).  Additionally, ation 

of PP2A b α ation of TH, a

dopamine synthesis (Peng et al., 2005).   Due to its chaper uclein has also 

been postulated to directly interact with kinases associated meostasis such 

as MAPK and PKCs (Baptista et al., 2003; Iwata et al., 2001a; Ostr  

Furthe   familial α-synuclein m own to affect 

dopamine hom  in both cell culture and an ration 

(Lotharius et al., 2002; Orth et al., 2004).  This effect of  can 

lead to excessive release or production of DA. Excessive DA production can result in the 

rmation of free radicals due to auto-oxidation of DA, which can be deleterious to the 

neurons (Jenner, 2003; Lotharius and O'Malley, 2001; Luo et al., 1998).  

other cellular events maintaining dopamine homeostasis, such as modulation of the plasma 

and Ca++-dependent protein kinase C (PKC) modulates activity of TH in other models 

(Albert et al., 1984; Cahill et al., 1989; Kobori et al., 2004; Sura et al., 2004).  Recently, we 

showed PKCδ negatively regulates TH-ser40 phosphorylation and dopamine synthesis via 

phosphatase 2B (Zhang et al., 2007). We noted that α-synuclein overexpression suppresses 

PKCδ levels (unpublished observation), but it is yet to be determined whether PKCδ have 

any role in t

 on TH activity and dopamine synthesis (Sidhu et al., 2004a).  Pre

us maximizes enzymatic 

presses TH activation by stabilizing TH in 

 Peng and coworkers showed that activ

y -synuclein results in the dephosphoryl nd thus decreased 

one activity, α-syn

with dopamine ho

erova et al., 1999). 

rmore, overexpression of utants have been sh

eostasis imal models of dopaminergic degene

α-synuclein on DA metabolism

fo

 

Vesicular transport and trafficking 

In addition to its regulatory role of TH activity, α-synuclein also participates in the 
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membrane dopamine transporter (DAT). Dopamine, once synthesized, is stored in lipid-

bound synaptic vesicles that protect the dopaminergic neurons from its auto-oxidative effects. 

In dopamine neurons, sequestration of cytosolic dopamine into synaptic vesicles by vesicular 

monoamine transporter 2 (VMAT2) is essential for the neurons to avoid the neurotoxicity of 

dopamine (DA).  The uptake and storage of dopamine in the synaptic vesicles is regulated by 

the vesicular monoamine transporter 2 (VMAT2) (Weihe and Eiden, 2000).  VMAT2 also 

attenuates the neurotoxicity of MPP+, a known dopaminergic toxin, by sequestering it safely 

in synaptic vesicles (Gainetdinov et al., 1998a) Human positron emission tomography (PET) 

studies have revealed an enhanced loss of VMAT2 in dopaminergic neurons, indicating that 

vesicular dysfunction might be an important contributing factor in PD (Lee et al., 2000).  α-

Synuclein negatively controls dopamine release by acting on VMAT2 activity through its 

inhibitory action on phospholipase D 2 (PLD2) (Lotharius and Brundin, 2002b; Sidhu et al., 

2004b).  Overexpression  of human A53T α-synuclein mutant has been shown to down-

regulate the expression of VMAT, thus impairing the vesicular storage and cytosolic 

accumulation of dopamine (Lotharius et al., 2002). Also, disruption of the integrity of the 

vesicular membrane, presumably as the result of the formation of α-synuclein protofibrils, 

has been suggested to account for the cell type-specific neurotoxicity in dopamine neurons, 

since α-synuclein overexpression appears to dissipate the proton gradient across the vesicle 

membrane and remarkably elevates the cytosolic dopamine level (Mosharov et al., 2006).  

 

Dopamine transporter function 

The dopamine receptor (DAT) belongs to the Na+/Cl--dependent transporter family of 

monoamine transporters involved in dopamine homeostasis through clearance of excess 

neurotransmitter from the synaptic clefts  (Gallant et al., 2003; Mortensen and Amara, 2003). 

Similar to α-synuclein, DAT is expressed in the pre-synaptic terminals and is crucial for 

effectiv ansmission in dopaminergic nerve terminals e maintenance of dopamine neurotr
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(Chen 

R 

have been found in patients of familial PD (Kruger et al., 1998; Polymeropoulos et al., 1997; 

Zarranz uplication of the α-synuclein locus has also been 

found 

and Reith, 2004; Gainetdinov et al., 1998b).  DAT function involves the 

phosphorylation of certain N-terminal residues by various protein kinases including PKC, 

resulting in redistribution of the transporter between the plasma membrane and the cytoplasm 

(Daniels and Amara, 1999; Foster et al., 2002; Melikian and Buckley, 1999; Pristupa et al., 

1998).  Recent studies have shown that over-expression of the human wild-type α-synuclein 

led to a reduction in DAT activity due to reduced DA uptake, but not due to DAT trafficking 

or transcriptional regulation (Wersinger et al., 2003a).  The opposite effect of α-synuclein on 

DAT-mediated dopamine uptake has been reported; α-synuclein attenuates the activity of 

coexpressed DAT, and suppresses the dopamine-related oxidative stress in the neurons 

(Wersinger et al., 2003b; Wersinger and Sidhu, 2003). However, other studies have shown 

that α-synuclein positively regulates DAT activity and enhances the neurotoxicity of 

dopamine and MPP+ (Lee et al., 2001). 

 

α-Synuclein mutations in Parkinson’s disease 

Several lines of evidence suggest that, in both sporadic and familial forms of PD, 

protein aggregates within dopaminergic neurons of the substantia nigra are a common 

feature.  Although several proteins have been found in the Lewy bodies, fibrillar α-synuclein 

is the major component of the intracellular protein inclusions (Choi et al., 2001).  Familial 

PD has been linked to missense and genomic multiplication mutations of the α-synuclein 

gene.  Autosomal dominant mutations in the α-synuclein gene have been shown to be 

associated with familial PD.  Three different missense mutations, A53T, A30P, and E46

 et al., 2004).  Triplication and d

in several families with PD (Chartier-Harlin et al., 2004; Singleton et al., 2003). 

Though the gene triplication/duplication occurs in rare cases of PD,  gene multiplication 

apparently may result in the elevation of the α-synuclein protein level and insoluble protein 
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aggregates, which may mediate PD pathogenesis (Hofer et al., 2005; Johnson et al., 2004; 

Miller et al., 2004).  A recent study also linked α-synuclein promoter’s susceptibility to 

sporadic PD (Pals et al., 2004).  These studies clearly suggest that overproduction of α-

synuclein can be a risk factor for PD.    

 

α-Synuclein phosphorylation  

The Ser-129 phosphorylation appears to be a very important post-translational 

modification associated with Lewy bodies (Anderson et al., 2006), and the pathological 

relevance of the modification is manifested by its role in promoting α-synuclein fibrilliation 

or ubiquitination (Anderson et al., 2006; Hasegawa et al., 2002). Ser 129 is constitutively 

phosphorylated in transfected HEK293 and PC12 cells; this may be mediated by kinases such 

as casein kinase (CK I and CK II) and kinase down stream of the G-protein coupled receptors 

(GPCRs) (Okochi et al., 2000; Pronin et al., 2000).  α-Synuclein interaction with PLD2 is 

important for regulation of vesicle release of dopamine into the synaptic environment, and 

Ser-129 phosphorylation can attenuate this interaction, thus altering dopamine homeostasis 

(Lotha rs have also suggested that vesicle 

traffick

rius et al., 2002). Recently, however, investigato

ing could be PLD2 independent (Abeliovich et al., 2000).  Y39, Y125, Y133 and 

Y136 tyrosine residues are well conserved in all the α-synuclein homologues, as well as in 

the β-synuclein paralogs, indicating that these residues are important in synuclein 

functioning. Activation of Pyk2/RAFTK in COS7 cells can phosphorylate α-synuclein via 

the src kinase family of enzymes, and this tyrosine phosphorylation can serve as a 

neuroprotective mechanism in the case of deleterious nitrosylation of synuclein at Y125 

(Nakamura et al., 2002; Takahashi et al., 2003). Tyrosine phosphorylation has also been 

suggested to have an effect on the regulation of synaptic vesicles in lieu of the fact that Tau, 

synuclein and src PTK members interact with each other at various levels of cellular 

signaling (Lee et al., 1998; Trojanowski and Lee, 2000). Hypothetical suggestions regarding 
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the importance of these interactions are based on the fact that tau might help bring Src-PTKs 

in close proximity to α-synuclein and then lead to tyrosine phosphorylation, which plays an 

important role in the development of synaptic plasticity (Clayton and George, 1999).  

Recently, Wakamatsu and colleagues reported accumulation of phosphorylated α-synuclein 

in dopaminergic neurons of transgenic mice that express human α-synuclein (Wakamatsu et 

al., 2007).   It has been reported that substitution of Ser-129 of α-synuclein with alanine 

(S129A) reduces the formation of intracellular protein aggregation (Smith et al., 2005b).  

Phosph 29 leads to an increase in formation of its insoluble 

aggrega

orylation of α-synuclein at Ser-1

ted oligomers. Further, serine hyperphosphorylated forms have been isolated from 

human brain tissues, transgenic mice and fly neurons (Fujiwara et al., 2002; Kahle et al., 

2002; Neumann et al., 2002; Takahashi et al., 2002). 

 

α-Synuclein aggregation 

Several studies have linked ubiquitin proteasomal dysfunction to α-synuclein 

aggregation in primary mesecenphalic neurons, dopaminergic neuronal cells and in animal 

models (McNaught et al., 2002a; McNaught et al., 2002b; Rideout et al., 2001, Sun et al., 

2006).  Extensive studies also suggest various factors that could promote α-synuclein 

aggregation. First, as the major component, α-synuclein tends to self-aggregate; cross-linking 

of nitrated tyrosine by dinitrated bond can form urea/detergent-insoluble dimers or trimers of 

α-synuclein (El-Agnaf et al., 1998b; Giasson et al., 2000; Souza et al., 2000; Takahashi et al., 

2002). Transglutaminase, found in Lewy bodies, has been shown to induce intramolecular 

cross-linking of α-synuclein (Andringa et al., 2004; Junn et al., 2003). Mitochondrial 

inhibition has also been shown to result in the formation of α-synuclein aggregation in cell 

culture and animal models (Fornai et al., 2005; Lee et al., 2002b; Sherer et al., 2003). 
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Neuroprotective effect of α-synuclein in dopaminergic neurons 

To understand the role of α-synuclein in dopaminergic degeneration in PD, numerous 

groups have examined the effect of overexpression of either wild-type or mutant α-synuclein 

on dopaminergic neurons in cell culture, as well as in transgenic and knockout animals.  In 

cell culture studies, overexpression of wild-type, but not A53T or A30P α-synuclein mutants, 

protected against caspase-3 activation and apoptotic cell death induced by several 

neurotoxicants in the TSM1 neocortical cell line (Alves da Costa et al., 2006).  We showed 

that overexpression of wild type α-synuclein but not mutant α-synuclein attenuated PKCδ 

dependent apoptotic cascade in dopaminergic cells (Kaul et al., 2005). Similarly, α-synuclein 

overexpression was also shown to protect a human dopaminergic cell line (SH-SY5Y cells) 

from cytotoxicity from Parkin knockdown and dopamine treatment (Colapinto et al., 2006; 

Machida et al., 2005).  Studies have shown α-synuclein exerts its neuroprotective effect via 

inactivation of Jun kinase or inhibition of caspase-3 activation (Hashimoto et al., 2002; Li 

and Lee, 2005).   Others have shown that nanomolar concentrations of α-synuclein can 

activate signal pathway, which renders neurons more resistant to 

serum d

sent a 

 the PI3/Akt cell survival 

eprivation, oxidative stress, and excitotoxicity. 

 

The effect of α-synuclein on neuronal viability has been suggested to be dependent on 

several other factors, such as its intracellular abundance, cell types or the types of stimuli 

(Seo et al., 2002; Xu et al., 2002; Zourlidou et al., 2003).  In addition, α-synuclein has been 

shown to play a protective role in animal PD models (Hashimoto et al., 2002; Lee et al., 

2006; Manning-Bog et al., 2003).  Animals treated with the herbicide paraquat showed 

increased α-synuclein expression and aggregation in the brains.  This increased expression 

and aggregation of α-synuclein results in neuroprotection.  In neuronal cells overexpressing 

α-synuclein, the intracellular retrograde transport system has been shown to play a crucial 

role in aggregate formation, and that these aggregates are thought to repre
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neuroprotective response (Hasegawa et al., 2004).  Increased α-synuclein expression in 

response to dopaminergic toxins, e.g. MPTP, rotenone, paraquat, suggests that an increase of 

α-synu in overexpression 

in trans

clein represents an adaptive response to toxic stimuli and α-synucle

genic mice does not consistently result in neuronal damage, nor does it exacerbate 

neurodegeneration caused by MPTP or other dopaminergic toxins (Lee et al., 2006; Masliah 

et al., 2000; Matsuoka et al., 2001). Therefore, the neuroprotective property of α-synuclein 

may be used for cell survival strategies (Lee et al., 2006).  α-Synuclein is abundantly present 

at synapse and therefore it is not surprising that the normal level of α-synuclein has some 

neuroprotective functions in CNS.  Table 2 summarizes key studies on the neuroprotective 

effects of α-synuclein.   

Table 2. Neuroprotection by α-synuclein. 
Key findings Model Reference 
Wt α-synuclein, not A53T mutant, protects cells from 
apoptosis  

TSM1 neuronal cells (Alves da 
Costa et al., 
2006) 

Wt α-synuclein protects SH-SY5 cells from apoptosis and 
dopamine metabolite accumulation as the result of Parkin 

SH-SY5Y (Machida et 
al., 2005)  

loss 
Wt α-synuclein alleviates cytotoxicity of dopamine in SH-
SY5 cells, and upregulates DJ-1 expression 

SH-SY5Y (Colapinto et 
al., 2006) 

Wt α-synuclein inactivates JNK by upregulating JNK-
interacting protein JIP-1b/IB1 during oxidative stress 

GT1-7 murine 

cell line 

(Hashimoto et 
hypothalamic tumor al., 2002) 

Wt, A30P human α-synuclein, but not A53T α-synuclein, β-

via inhibiting casaspe-3 

SH-SY5Y (Li and Lee, 
2005) synuclein or mouse α-synuclein, protect cells from apoptosis 

Wt α-sy ein, not A53T mutant, suppressed MPP+-
induced activation of apoptosis via interaction with PKCδ 
and B

N27 cells (Kaul et al., 
2005a) 

nucl

AD  

 

Neurotoxic effect of α-synuclein 

Overproduction and/or accumulation of α-synuclein in cultured neuronal cells causes 

selective degeneration in dopaminergic neurons but not in non-dopaminergic neurons, 

suggesting selective toxicity (Xu et al., 2002).  Also, in mice expressing the A53T human α-

synuclein mutation there is an early onset of neurodegeneration and α-synuclein aggregation 
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in the brain (Lee et al., 2002c).  In cell culture models, direct neurotoxicity of α-synuclein 

was manifested by the increased cell death of SH-SY5Y cells following exposure to mutant, 

aggregated α-synuclein or NAC fragment (El-Agnaf et al., 1998a; Sung et al., 2001). 

Endocytotic uptake of α-synuclein involving Rab5A was hypothesized to be crucial for its 

observed neurotoxicity (Sung et al., 2001).  Expression of wild-type, A30P or A53T mutant 

human α-synuclein induces apoptosis in the mouse nodose ganglion neurons (Saha et al., 

2000). Studies with neuronal cell lines indicated that different types of cell death including 

mitochondria related, endoplasmic reticulum stress cell death or autophagic cell death are 

involved in the neurotoxicity of either wild-type or mutant α-synuclein (Hsu et al., 2000; 

Smith et al., 2005a; Stefanis et al., 2001). α-Synuclein also appears to enhance the 

vulnerability of cells to a variety of neurotoxins.  Overexpression of human α-synuclein in 

human SH-SY5Y neuroblastoma cells, especially the C-terminal truncated form, A30P and 

A53T idative damage and cell death triggered by 

tly, exp -synuclein in human 

a cells results in more profound neuronal death fo

(Ostrerova-Golts et al., 2000). Inducible 

som  and rende ls more 

poptosis (Tanaka et al., 2001). Coexpression of 

wild-type or A30P α-synuclein with a dopamine ter in SH-SY5Y cells revealed 

ollapse of cellular m ne potential, 

ties (Moussa et al., 2004).  Table 3.summarizes 

 studies that describe the neurotoxic properties of α-synuclein.   

Table 3
Model Reference 

mutants, significantly potentiates the ox

MPP  or H+
2O2 (Kanda et al., 2000). Consisten

BE-M17 neuroblastom

ression of mutant α

llowing exposure to 

iron, which promotes free radical generation 

expression of mutant α-synuclein inhibits protea e activity rs PC12 cel

susceptible to proteasome inhibitor-induced a

transpor

dopamine-dependent cell death accompanied by c embra

oxidative stress, and mitochondria abnormali

some key

 
. Neurotoxicity of α-synuclein. 
Key findings 

α-Synuc
neurotox

lein, especially aggregated form, directly provokes 
icity 

SH-SY5Y cells (El-Agnaf et 
al., 1998a) 

Rab5A-specific endocytosis of α-synuclein mediates the Rat hippocampal (Sung et al., 
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neurotoxicity of exogenous α-synuclein neuronal cells H19-7 2001) 
Wt, A30P or A53T mutant human α-synuclein, not γ-
synuclein, induces apoptosis 

mouse nodose 
ganglion neurons 

(Saha et al., 
2000) 

Formation of α-synuclein aggregates, compromised 
mitochondria activity, increased ROS generation in α-
synuclein overexpressing cells 

hypothalamic 
neuronal cell line 
(GT1-7) 

(Hsu et al., 
2000) 

A53T mutant, but not wild-type α-synuclein,  impairs 
ubiquitin proteasome and lysosomal degradation and 
enhances autophagy cell death 

PC12 cells (Stefanis et al., 
2001) 

A53T mutant α-synuclein induces mitochondria-mediated 
and ER stress-mediated apoptosis 

PC12 cells (Smith et al., 
2005b) 

C-terminal truncated, A30P and A53T mutant α-synuclein 
potentiates oxidative damage and cell death triggered by 
MPP+ or H2O2

SH-SY5Y (Kanda et al., 
2000) 

Synuclein increases the vulnerability of cells to neurotoxicity 
of iron (A53T > A30P > wild-type), and iron induces α-
synuclein aggregation in the same order 

human BE-M17 
neuroblastoma cells 

(Ostrerova-
Golts et al., 
2000) 

A30P α-synuclein inhibits proteasomal activity and 
sensitizes cells to mitochondria apoptosis 

PC12 cells (Tanaka et al., 
2001) 

Wt α-synuclein inhibits proteasomal activity and enhances 
dieldrin-induced apoptosis 

N27 cells (Sun et al., 
2005) 

Selective neurotoxicity of A53T α-synuclein, but not wt, to 
dopamine neurons in mesencephalic primary culture 

Human 
mesencephalic 
primary culture 

(Zhou et al., 
2002) 

Dopamine-dependence of the neurotoxicity of wt α-
synuclein 

Human 
mesencephalic 
primary culture 

(Xu et al., 
2002) 

Coexpression of wt or A30P α-synuclein with DAT causes 
mitochondria pathologies, oxidative stress and dopamine-
dependent neuron death 

SH-SY5Y (Moussa et al., 
2004) 

In essence, the neuroprotective form of α-synuclein can be readily converted to toxic 

gain-of-function forms, under certain conditions such as overproduction, oxidative 

modification, and oligomerization, thus demonstrating the observed opposing roles of α-

synuclein.   

 

Immortalized mesencephalic cell line (N27) as a model system for elucidating α-

synuclein function 

We have recently established an immortalized rat mesencephalic dopaminergic 

neuronal cell line as an excellent model system for studying dopaminergic degeneration.  The 

N27 (1RB3AN27) cell line was initially developed by Dr. Prasad and his coworkers; these 

the key features of do rgic n ch as the cells exhibited and retained most of pamine eurons su
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expression of neuron-specific enolase, nestin, tyrosine hydroxylase, and dopamine 

cid, etabo

ire morphologic and functional features of the 

largement of the cell body, growth of neuronal 

 TH and DAT, and increased DA production (Fig. 2).  A study by 

ifferentiated N27 cells are ev re vulnerable 

an tiated cel  et al., 

ere 7 cells are highly susceptible 

l death induced by dopaminergic toxins similar to the primary neuronal culture. 

oxida le d PKCδ 

several rgic toxins including MMT, 

l., l et al., 20 wa et al., 

rly ished that PK xidative 

stress-sensitive kinase in this cell culture PD mode  et al., 2003).  Oxidative 

ivates PKCδ by proteolysis in which casp  the na inase (72-74-

 Phosphorylation of PKCδ at tyrosine residue 311 is essential for the 

prot

al., 2002).  Studies from this cell line are consistent with reduced cellular 

antioxidant capacity, increased oxidative stress and impaired mitochondrial function as 

observ

CδD327A (caspase-cleavage resistant), PKCδK376R (kinase inactive) and 

PKCδY

transporter, and production of homovanillic a a dopamine m lite (Prasad et al., 

1994). Upon differentiation, N27 cells acqu

post-mitotic dopamine neurons, such as en

processes up-regulation of

Clarkson and colleagues demonstrated that d en mo

to MPP+ and 6-OHDA-induced neurotoxicity th  undifferen ls (Clarkson

1999).  We subsequently established that undiff

apoptotic cel

ntiated N2

In N27 cells, we recently showed that tive stress, multip caspases an

mediate apoptotic cell death induced by dopamine

dieldrin, MPP+ and manganese (Anantharam et a 2002; Kau 03; Kitaza

2003; Latchoumycandane et al., 2005).  We clea  establ

l (Kanthasamy

Cδ is an o

stress act ase-3 cleaves tive k

kDa) resulting in 41-kDa catalytically active and 38-kDa regulatory fragments, to persistently 

activate the kinase. 

eolytic cleavage of the kinase during oxidative stress (Kaul et al., 2005b).  The 

proteolytic activation of PKCδ plays a key role in promoting apoptotic cell death in various 

cell types including neuronal cells (Brodie and Blumberg, 2003; Kanthasamy et al., 2003; 

Kikkawa et 

ed during dopaminergic degeneration. Overexpression of loss-of-function dominant-

negative mutant PK
311F (phosphorylation defective) proteins also attenuates dopaminergic neurons from 

MPP+- and oxidative stress-induced apoptotic cell death.  Suppression of caspase-3-
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dependent proteolytic activation of PKCδ by small interfering RNA (siRNA) also prevented 

MPP+-induced dopaminergic degeneration (Yang et al., 2004).  In addition to the 

proapoptotic role, PKCδ may also amplify apoptotic signaling via positive feedback 

activation of the caspase cascade (Kanthasamy et al., 2003).  Thus, the dual role of PKCδ as 

a mediator and amplifier of apoptosis was established in this cell culture model and may be 

important in the pathogenesis of PD.  PKCδ is also highly expressed in these cells, compared 

to several other non-dopaminergic neuronal cells (unpublished observations) and also 

colocalizes with tyrosine hydroxylase in these cells.  These results were subsequently 

confirmed in the mouse nigral tissue, where PKCδ is also highly expressed and colocalizes 

with TH (Zhang et al., 2007).  Further investigation revealed PKCδ negatively regulates TH 

activity and dopamine synthesis by enhancing protein phosphatase-2A activity in N27 cells 

(Zhang et al., 2007).  Many results obtained in N27 cells were able to readily reproducible in 

animal models, indicating that N27 cells are very reliable cell culture model of PD.  

 

After we established the N27 cell line as a model system for studying dopaminergic 

degeneration, we generated stable N27 cell lines overexpressing wild-type and A53T mutant 

α-synuclein (Kaul et al., 2005a).  N27 cells over-expressing wild-type α-synuclein were 

highly resistant to MPP+-induced cytotoxicity, mitochondrial cytochrome c release, and 

subsequent caspase-3 activation, without affecting reactive oxygen species (ROS) generation 

(Kaul et al., 2005a).  Co-immunoprecipitation studies revealed MPP+ treatment induced the 

physical association of α-synuclein with pro-apoptotic proteins PKCδ and BAD, but not with  

the anti-apoptotic protein Bcl-2.  The physical association between PKCδ and α-synuclein 

did not involve direct phosphorylation.   On the contrary, in A53T α-synuclein mutant 

expressing cells, MPP+-induced apoptotic cell death signaling including activation of 

caspase-3, PKCδ and DNA fragmentation, was exacerbated.  These results suggested that 

normal level of wild-type α-synuclein is neuroprotective whereas A53T α-synuclein is 
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neurotoxic and may mediate the effects via interaction with pro-apoptotic molecules BAD 

and PKCδ.  Unlike MPP+, human α-synuclein exacerbated dieldrin-induced increases in 

caspase-3 activity and DNA fragmentation compared to vector expressing cells (Sun et al., 

2005).  In the N27 model system we demonstrated that human α-synuclein can be 

neuroprotective or neurotoxic, depending on the duration and type of neurotoxin exposed 

(Kaul et al., 2005a; Sun et al., 2005).   

 

 
Fig. 2 Rat mesencephalic dopaminergic neuronal cells (N27 cells). The phase contrast 
image (20 X) shows undifferentia
b).  Dib

ted N27 cells (panel a) and differentiated N27 cells (panel 
utyryl 3,5-cyclic adenosine monophosphate (dbcAMP, 2.0 mM) was supplemented in 

the growth medium to induce morphological and biochemical alterations characteristic of 
differentiation of N27 cells. 

 

Since recent evidence indicate that abnormal accumulation and aggregation of α-

synuclein and ubiquitin-proteasome system (UPS) dysfunction can contribute to the 

degenerative processes of PD, we examined the effect of human α-synuclein on dieldrin-

induced impairment in UPS dysfunction in N27 cell line (Sun et al., 2005).     Baseline 

proteasomal activity in human α-synuclein overexpressing cells was 50% less than vector 

expressing N27 cells, suggesting that α-synuclein overexpression significantly attenuated 
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baseline proteasomal activity.  Further, overexpression of human α-synuclein also 

exacerbated dieldrin-induced decreases in proteasomal activity by more than 60% compared 

to vector expressing N27 cells.   Confocal microscopic analysis revealed that α-synuclein-

positive protein aggregates colocalized with ubiquitin protein in dieldrin-treated cells, and 

these aggregates were distinct from autophagosomes and lysosomes.  The dieldrin-induced 

proteasomal dysfunction in α-synuclein cells also resulted in significant accumulation of 

ubiquitin protein conjugates; proteasomal inhibition preceded cell death.  In these studies 

huma l dysfunction, which 

 

 

α-Syn, lane 2) for Western blot analysis with α-synuclein 
antibody. Lysate of the rat substantia nigra (SN) was included to show that exogenously 
introduced 
nigra re

n α-synuclein overexpression predisposed N27 cells to proteasoma

can be further exacerbated by the pesticide dieldrin (Sun et al., 2005). 

 
Fig. 3 Expression of human wild-type α-synuclein in N27 dopaminergic cells. pCEP4 
expression vector containing coding sequence for human α-synuclein were transfected into 
N27 cells using Lipofectamine Plus reagent. Stable expression was achieved with prolonged 
hygromycin screening. Cell lysates were obtained from vector transfected cells (Vec, lane 1), 
or α-synuclein expressing cells (

α-synuclein is expressed at physiological levels comparable to the substantia 
gion (Lysate, lane 3). Protein amount: 20 µg. 

 

Recently we observed that human α-synuclein expression levels in N27 cells are 

comparable to that of rat substantia nigra (Fig. 3).  Overexpression of human α-synuclein 
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also did not have any effect on protein expression levels of LRRK2, a kinase implicated in 

familial PD (Fig. 4A) and MEK1/2, an ERK kinase activator (Fig. 4B), both of which have 

been implicated in the pathogenesis of PD.  

Fig. 4 Lack of effect of ) protein expression. 
-synuclein-expressing (S) 

human α levels of LRRK2 (Abcam, 
plicated in the 

pathogenesis of PD. 

lightly resistant to 

ytotoxicity induced by acute exposure to dopaminergic toxins, probably by sequestering 

roapoptotic molecules PKCδ and BAD (Kaul et al., 2005a).  However, the α-synuclein cells 

nvironmental factors, which is 

a dominant risk factor for PD.  

α-synuclein on LRRK2 (A) and MEK1/2 (B
Western blot was performed on whole cell lysates obtained from α
and vector control (V) N27 cells.  β-Actin was used as a loading control.  Overexpression of 

-synuclein did not have an effect on protein expression 
ab37178, rabbit polyclonal) and MEK1/2.  Both proteins have been im

In conclusion, α-synuclein expressing cells appear to be s

c

p

can also be more susceptible to apoptotic cell death induced by chronic exposure to 

dopaminergic toxins presumably because of impairment in UPS dysfunction, protein 

misfolding and aggregation (Sun et al., 2005).  However, α-synuclein appears to be 

detrimental to dopamine neurons, considering the self-aggregation propensity of the protein 

during toxic insults and the possibility of chronic exposure to e
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contribute to the degenerative processes of PD, in the present study we examined whether the 

oteasomal function and subsequently promotes 

ibited activity by more than 60% in α-synuclein cells.  Confocal 

microsc

lysosomal marker (LAMP-1) and dot-blot analysis revealed that these protein oligomeric 

R II: DIELDRIN INDUCES UBIQITIN-PROTEASOMAL DYSFUNCTION 
-SYNUCLEIN OVEREXPRESSING DOPAMINERGIC NEURONAL CELLS 
AND ENHANCES SUSCEPTIBILITY TO APOPTOTIC CELL DEATH 

 

environmental pesticide dieldrin impairs pr

 
Faneng Sun, Vellareddy Anantharam, Calivarathan Latchoumycandane, Arthi 

Kanthasamy and Anumantha G. Kanthasamy
 

ABSTRACT 

Exposure to pesticides is implicated in the etiopathogenesis of Parkinson'

(PD).  The organochlorine pesticide dieldrin is one of the environmental chem

potentially linked to PD.  Since recent evidence indicates that abnormal accumulation and

aggregation of α-synuclein and ubiquitin-proteasome system (UPS) dysfunction can 

apoptotic cell death in rat mesencephalic dopaminergic neuronal cells overexpressing human 

α-synuclein. Overexpression of wild-type α-synuclein significantly reduced the proteasomal 

activity.  Dieldrin exposure dose-dependently (0-70 µM) decreased proteasomal activity, and 

30 µM dieldrin inh

opic analysis of dieldrin treated α-synuclein cells revealed that α-synuclein positive 

protein aggregates colocalized with ubiquitin protein.  Further characterization of the 

aggregates with the autophagosomal marker mondansyl cadaverine (MDC) and the 

aggregates were distinct from autophagosomes and lysosomes.  The dieldrin-induced 

proteasomal dysfunction in α-synuclein cells was also confirmed by significant accumulation 
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of ubiquitin protein conjugates in the detergent-insoluble fraction.  We found that 

proteasomal inhibition preceded cell death following dieldrin treatment and that α-synuclein 

cells were more sensitive than vector cells to the toxicity.  Furthermore, measurement of 

caspase-3 and DNA fragmentation confirmed the enhanced sensitivity of α-synuclein cells to 

dieldrin-induced apoptosis.  Collectively, our results suggest that increased expression of α-

synuclein predisposes dopaminergic cells to proteasomal dysfunction, which can be further 

exacerbated by environmental exposure to certain neurotoxic compounds like dieldrin. 

 

INTRODUCTION 

Dieldrin, a long-lasting organochlorine pesticide, was widely used agriculturally 

before it was banned by the United States Environmental Protection Agency in 1974.  The 

persistent accumulation of dieldrin in the environment as well as pesticide contaminated food 

remains a major source of dieldrin exposure to humans even 30 years after its use was 

banned (Kanthasamy et al., 2005).  Dieldrin is highly lipophilic and therefore accumulates in 

lipid containing tissues including the CNS over a prolonged period of time, with a half life of 

approximately 300 days.  A recent investigation by the Centers for Disease Control (CDC) 

showed very high serum levels and a high dietary consumption level of dieldrin in farmers 

and their spouses in Iowa (Brock et al., 1998).  Dieldrin exposures to the general population 

occur through various food sources such as meat, milk products, fruits and fishes 

(Kanthasamy et al., 2005).  A recent study reported a significant amount of dieldrin exposure 

through consumption of farm-raised salmon as compared to North Atlantic salmon  (Hites et 

al., 2004). 
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One of the most common neurodegenerative diseases, Parkinson’s disease (PD) 

over a million people in the USA, and the prevalence of the disease increaaffects ses by 

approximately 70,000 individuals each year. Progressive and selective degeneration of 

dopaminergic neurons in the substantia nigra is characteristic of PD, which is accompanied 

by the formation of the  (Dawson and Dawson, 

2003).  Although the causes and mechanisms underlying PD are not completely understood, 

accumulating evidences suggest that both environmental and genetic factors contribute to 

selective dopaminergic degeneration (Le Couteur et al., 2002).  Among the genetic factors, at 

least 10 distinct loci are responsible for the familial forms of PD including mutations in α-

synuclein gene (A53T, A30P and E46K), α-synuclein loci triplication, parkin, ubiquitin C-

terminal hydrolase-L1 (UCHL1), DJ-1, PTEN induced kinase 1 (PINK1) and leucine-rich 

repeat kinase 2 (LRRK2) (Review: Dawson and Dawson, 2003; Moore DJ et al., 2005).  

Among the environmental factors, pesticides are one of the potential risk factors of 

Parkinson’s disease, as revealed by recent epidemiological studies (Priyadarshi et al., 2000; 

Kanthasamy, 2005). 

Dieldrin is implicated as one of the possible etiological factors for PD because of its 

detectable levels in the brains of some PD patients, but not in the brains of non-PD patients 

cytoplasmic inclusions known as Lewy bodies

(Fleming et al., 1994); significantly higher levels of dieldrin were detected in the caudate and 

substantia nigra of PD patients compared to controls (Corrigan et al., 2000).  Animal studies 

have demonstrated that feeding dieldrin resulted in significantly decreased dopamine levels 

in brains of doves (Heinz et al., 1980).  The relatively selective toxicity of dieldrin to 

dopaminergic neurons over GABAergic neurons has been reported in primary cultured 

neurons (Sanchez-Ramos et al., 1998).  Recently, we showed that dieldrin impairs 
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mitochondrial function and induces oxidative stress and apoptotic cell death in dopaminergic 

cells (Kitazawa et al., 2001).  We also demonstrated that caspase-3-dependent proteolytic 

activation of the proapoptotic protein kinase PKCδ contributes to apoptotic cell death 

(Kitazawa et al., 2003), and that the DNA repair enzyme PARP is inactivated by proteolytic 

cleavage in PC12 cells challenged by dieldrin (Kitazawa et al., 2004).  

Impairment of ubiquitin-proteasome function and protein aggregation is an emerging 

area of investigation because genetic analysis of familial PD cases has elucidated mutation of 

key genes including α-synuclein, Parkin and UCH-L1 (Le Couteur et al., 2002), some of 

which are important in protein processing and degradation.  α-Synuclein has been identified 

as the m

 

ajor component of Lewy bodies in PD (Dawson and Dawson, 2003).  Wild type α-

synuclein in monomeric and aggregated forms has been reported to interact with the S6’ 

subunit of 19S cap and inhibit proteasomal function (Snyder et al., 2003).  

The recent discovery that an increased level of the α-synuclein gene due to the 

triplication of the α-synuclein locus causes PD in some individuals strongly suggests that 

overexpression of this gene could be a risk factor for PD (Singleton et al., 2003). The 

combination of α-synuclein overexpression and exposure to environmental pesticides may 

likely contribute to increased vulnerability of nigral dopaminergic neurons.  Therefore, in the 

present study, we investigated the effect of dieldrin, a pesticide with suspected involvement 

in PD pathogenesis, on proteasomal function and apoptotic cell death in the α-synuclein 

overexpressing mesencephalic dopaminergic neuronal cell model (N27 cells).  
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MATERIALS AND METHODS 

Chemicals.  Dieldrin, lactacystin, thioflavin S, monodansyl cadaverine (MDC), Hoechst 

33342 were purchased from Sigma Chemicals (St. Louis, MO).  Methamphetamine was a 

generous gift from National Institute of Drug Abuse, Baltimore, Maryland.  The substrate 

used to measure proteasomal activity, Suc-Leu-Leu-Val-Try-AMC, was purchased from 

Calbiochem (San Diego, CA).  The caspase-3 substrate, Ac-DEVD-AMC, was obtained from 

Bachem Bioscience (King of Prussia, PA).  An enhanced chemiluminescence (ECL) Western 

blotting analysis kit was purchased from Amersham Pharmacia Biotech, Inc. (Piscataway, 

NJ).  The Cell Death Detection ELISA Plus Assay Kit was purchased from Roche Molecular 

Biochemicals (Indianapolis, IN).  RPMI 1640 medium, fetal bovine serum, L-glutamine, 

penicillin/streptomycin and hygromycin B were purchased from Invitrogen (San Diego, CA).  

Sytox green and Prolong antifade reagents were obtained from Molecular Probe (Eugene, 

OR).  The Bradford protein assay kit was purchased from Bio-Rad Laboratories (Hercules, 

CA). 

 

Cell Culture and Stable Expression of α-Synuclein.  The immortalized rat mesencephalic 

dopaminergic cell line (referred to as N27 cells) was a kind gift of Dr. Kedar N. Prasad, 

University of Colorado Health Sciences Center (Denver, CO).  N27 cells were grown in 

RPMI 1640 medium containing 10% fetal bovine serum, 2 mM L-glutamine, 50 units 

penicillin, and 50 µg/ml streptomycin in a humidified atmosphere of 5% CO2 at 37°C as 

previously described (Kaul et al., 2003).  The pCEP4 expression vector containing the full-

length human α-synuclein sequence, α-synuclein-pCEP4, was kindly provided by Dr. Eliezer 

Masliah (UCSD, San Diego).  α-Synuclein-pCEP4 and empty pCEP4 vector conferring 
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hygromycin resistance were transfected into N27 cells using Lipofectamine Plus reagent 

(Invitrogen, Gaithersburg, MD) by following the procedure recommended by the 

manufacturer and described recently (Kaul et al., 2005).  For the stable transfection, N27 

cells were selected in 400 µg/ml hygromycin 48 h after transfection; supplementation of 200 

µg/ml hygromycin in the growth medium maintained the stable transfection.  

ctivity, caspase-3 

activity

and 10 mM DTT, pH 7.6) at 37°C for 30 min.  The cleaved fluorescent product was 

measured at the excitation wavelength of 380 nm and emission wavelength of 460 nm using 

a fluorescence plate reader (Gemini Plate Reader, Molecular Devices Corporation).  The 

protein concentration was determined by the Bradford method.  The enzymatic activity was 

 

Treatment Paradigm. Vector expressing N27 cells and α-synuclein expressing cells were 

treated with different concentrations of dieldrin or lactacystin dissolved in dimethyl sulfoxide 

(final concentration in the medium was no higher than 0.5%) for the duration of the 

experiments.  After treatment, cells were collected by trypsinization, spun down at 200 x g 

for 5 min, and washed with ice cold phosphate buffered saline (PBS). The lysates from the 

cell pellets were used for various assays including proteasome peptidase a

, and measurement of DNA fragmentation. 

  

Proteasomal Peptidase Activity Assay.  The proteasome enzymatic assay was performed as 

described previously (Snyder et al., 2003), with slight modification.  Briefly, after treatment, 

cells were collected, washed and lysed with hypotonic buffer (10 mM HEPES, 5 mM MgCl2, 

10 mM KCl, 1% sucrose, 0.1% CHAPS).  The lysates were then incubated with fluorogenic 

Suc-LLVY-AMC (75 µM) in the assay buffer (50 mM Tris-HCl, 20 mM KCl, 5 mM MgOAc 
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normalized by protein conce  with 10 µM lactacystin for 

t α-synuclein (Santa Cruz, CA, Mouse monoclonal Ab, 1:500) and ubiquitin (DAKO, 

Carpinteria CA, Rabbit polyclonal Ab, 1:100).  α-Synuclein and ubiquitin were visualized 

ntration.  Lysates from cells treated

12 h were used as the positive control for the assay. 

 

Immunofluorescence Staining of Protein Aggregation.  Immunofluorescence Staining of 

Protein Aggregation.  Immunofluorescence staining was performed essentially as described 

previously (Lee et al., 2002a).  Briefly, after dieldrin treatment, α-synuclein overexpressing 

N27 cells grown on coverslips pre-coated with poly-L-lysine were washed with PBS and 

fixed in 4% paraformaldehyde.  Coverslips were then washed three times with PBS, 

permeabilized with 0.2% Triton X-100 in PBS and then incubated with blocking buffer (5% 

BSA, 5% goat serum in PBS) to block the nonspecific binding sites.  Thioflavin S staining 

was performed by incubating the cells with 0.4% Thioflavin S followed by washing with 

80% alcohol before processing the cells for α-synuclein immunochemical analysis. For 

ubiquitin and α-synuclein double staining, cells were incubated overnight with antibodies 

agains

with Cy3 conjugated goat anti-mouse and Alexa 488-conjugated goat anti-rabbit secondary 

antibodies, respectively.  For visualization of α-synuclein aggragates and lysosomes (Wilson 

et al., 2004), polyclonal α-synuclein antibody (Biomol, PA, 1:500) and monoclonal LAMP-1 

antibody (Calbiochem, CA, 1:500) were used.  Cy3-conjugated anti-rabbit and Alexa 488-

conjugated anti-mouse antibodies were used for the visualization of α-synuclein and LAMP-

1 respectively.  Nuclei were counterstained with Hoechst 33342 for 3 min at final 

concentration of 10 µg/ml.  Finally, cells were washed once in PBS and mounted onto a slide 
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with mounting medium containing Prolong antifade reagent.  In cases of autophagosome 

staining, live cells were incubated with 50 µM monodansyl cadaverine (MDC, Sigma) for 10 

min at 37°C prior to fixation and α-synuclein immunostaining (Larsen et al., 2002).  The 

images were analyzed by either Nikon C1 confocal microscopy (Model TE-2000U) or by 

Leica confocal microscopy (Model TCS NT).  Areas of α-synuclein immunopositive 

aggregates were measured in 14 randomly chosen cells from each group using Metamorph 

s and 0.5% Triton X-100 in PBS).  The 

lysates were ultracentrifuged at 100,000 x g for 40 min.  The detergent soluble fraction was 

5.07 image analysis software. 

 

Western Blot Analysis of Ubiquitin-conjugated Proteins.  Low-detergent soluble and 

insoluble fractions were separated according to the procedure described previously, with 

slight modification (Rideout and Stefanis, 2002).  After exposure to dieldrin or lactacystin, 

cells were collected and washed once with ice-cold PBS.  The cell pellets were resuspended 

in a low-detergent lysis buffer (protease inhibitor

obtained by collecting the resulting supernatant.  The detergent insoluble pellets were washed 

once with the lysis buffer and resuspended in PBS containing protease inhibitors and 2% 

SDS and then sonicated for 20 seconds.  Equal amounts of protein from the detergent soluble 

and equal volumes of the suspension of the detergent insoluble fractions were resolved on 

8% SDS-PAGE and transferred onto nitrocellulose membrane.  Nonspecific binding to the 

membranes was blocked by 5% non-fat milk blocking solution and then the membranes were 

probed with ubiquitin antibody (DAKO, 1:500) overnight at 4 °C.  Incubation with HRP-

conjugated secondary anti-rabbit or anti-mouse IgG (Amersham Pharmacia Biotech, Inc., 

Piscataway, NJ, 1:2000) for an additional 1 h was followed by the detection of the antibody-
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bound proteins using the ECL detection kit.  The membranes were reprobed with β-actin 

antibody (Sigma Chemicals, St. Louis, MO, mouse monoclonal, 1:5000) to confirm equal 

protein loading.  The densitometric analysis of ubiquitin conjugates was performed with 

permeability and intercalates into the nucleic acid (Kaul et al., 2005).  DNA bound Sytox 

Kodak 1D image analysis software. 

 

Dot-blot Analysis. Formation of protein oligomers was determined by dot-blot 

measurements using A11 antibody (rabbit polyclonal, BioSource, Camarillo CA) which 

recognizes oligomers of proteins independent of amino acid sequence (Kayed et al., 2003).  

Dot-blot analysis using this antibody has recently been used for identification of protein 

oligomers in various neurodegenerative models (Glabe, 2004; Kayed et al., 2003).  The 

procedure for dot-blot analysis was followed as described by the manufacturer.  Briefly, 

vector and α-synuclein cells were harvested after dieldrin treatment and cell lysates were 

prepared as described above for Western blots.  Cell lysates containing equal protein (5-15 

µg) were spotted on the nitrocellulose membrane and air dried for 30 min.  Membranes were 

incubated with A11 anti-oligomer antibody (dilution 1:2000) for 1 h at room temperature and 

then treated with HRP-conjugated secondary anti-rabbit IgG for 1 h.  Antibody-bound 

proteins were detected with an ECL detection kit, and densitometric analysis of dots 

representing the oligomeric protein aggregates was performed with Kodak 1D image analysis 

software. 

 

Assessment of Cell Death by Sytox Green.  Cell death was assessed with Sytox green, a 

membrane-impermeable DNA dye which enters dead cells due to altered membrane 
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green can be detected at excitation wavelength of 485 nm and emission wavelength of 538 

nm using a fluorescence microplate reader (Molecular Devices Corporation, Gemini Plate 

Reader).  Cells grown in 24-well plates were incubated with 1 µM Sytox green for 20 min, 

and then treated with 30 µM dieldrin or vehicle as a control.  To quantify cell death, 

fluorescence intensity was monitored after the experiments were conducted and normalized 

by the time-matched control.   

 

Caspase-3 Enzymatic Activity Assay. Caspase-3 activity was measured as previously 

described (Kitazawa et al., 2003).  Briefly, cell lysates were obtained by suspending the cells 

in 50 mM Tris-HCl lysis buffer containing 1 mM EDTA, 10 mM EGTA and 10 µM digitonin 

after cells were collected and washed with PBS.  The supernatants from lysates collected 

after centrifugation at 14,000 x g were incubated with 50 µM Ac-DEVD-AMC at 37°C for 1 

h, and caspase-3 activity was measured using a fluorescence plate reader (Molecular Devices 

Corporation) with excitation at 380 nm and emission at 460 nm.  Protein concentration was 

determined by the Bradford protein assay.  

 

DNA Fragmentation Assay.  DNA fragmentation was measured using a Cell Death 

Detection ELISA Plus Assay Kit as described previously (Kaul et al., 2003).  This method 

measures the amount of histone-associated low molecular weight DNA in the cytoplasm of 

cells and is more sensitive than DNA ladder analysis.  Dieldrin treated cells were washed 

with PBS, and the cell pellets were then resuspended with the lysis buffer provided in the 

assay kit.  The lysate was spun down at 200 x g, and 20 µl of supernatant was incubated for 2 

h with the mixture of HRP-conjugated antibody cocktail that recognizes histones, single and 
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double-stranded DNA.  After washing away the unbound components, the final reaction 

product was measured colorimetrically with ABTS as an HRP substrate using a 

spectrophotometer at 405 nm and 490 nm.  The difference in absorbance between 405 and 

490 nm was used to determine the amount of DNA fragmentation in each sample. 

 

s both exogenously expressed human α-synuclein and endogenous rat α-synuclein 

as described previously (Kaul et al., 2005).  There was an 11-fold increase in stable α-

Data Analysis. Data are presented as mean ± S.E.M., and the data analysis was performed 

with Prism 3.0 software (GraphPad software, San Diego).  p Values were determined by one-

way ANOVA followed by either Dunnett’s post test to compare dieldrin treatment groups 

with the control group or by Bonferroni's Multiple Comparison Test to compare all pairs of 

groups.  Single comparisons were made using the Student’s t-test.  A significant difference 

was accepted if p<0.05.  

 

RESULTS 

α-Synuclein Overexpression Impairs Proteasomal Activity in Dopaminergic 

Neuronal Cells.  First we examined the effect of overexpression of human α-synuclein on 

proteasomal activity in mesencephalic rat dopaminergic neuronal cells (N27 cells).  Stable 

expression of human α-synuclein in N27 cells was determined by Western blot using an 

antibody that recognizes only the exogenously expressed human α-synuclein or an antibody 

that detect

synuclein expression compared to vector-expressing N27 cells (data not shown).  Enzymatic 

activity of 20S/26S proteasome was evaluated in α-synuclein overexpressing and vector 
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transfected N27 cells with the specific fluorogenic substrate Suc-LLVY-AMC.  As shown in 

Fig. 1, α-synuclein overexpression significantly (p<0.001) inhibited proteasomal activity as 

compared to vector expressing cells. Almost 50% reduction in proteasomal activity was 

observed in α-synuclein overexpressing cells.  The well known proteasome inhibitor 

lactacystin (10 µM) was used as a positive control which inhibited over 90% of proteasomal 

activity in N27 cells.  

 

Dieldrin Impairs Proteasomal Activity in a Dose- and Time-dependent Manner.  

Next we examined the effect of dieldrin exposure on proteasomal activity in vector and α-

synuclein overexpressing N27 dopaminergic neuronal cells.  Fig. 2A shows a dose-dependent 

decrease in the proteasomal activity in both vector cells and α-synuclein overexpressing cells 

following 0-70 µM dieldrin exposure for 24 h.  The EC  values for vector and α-synuclein 50

overexpressing cells were 50 µM and 32 µM, respectively.  Exposure to 30 µM of dieldrin 

for 12 and 24 h caused significant proteasomal dysfunction in both vector and α-synuclein 

transfected cells, so this dose was used for further studies.  We conducted a detailed time 

course analysis of proteasomal activity following 30 µM dieldrin exposure to determine the 

earliest time point at which dieldrin impairs proteasomal activity (Fig. 2B).  Proteasomal 

αactivity significantly decreased within 12 h in vector transfected and -synuclein 

overexpressing cells (p<0.01), and remained reduced during the entire treatment period (Fig. 

2B). 

To determine if the effects of dieldrin and α-synuclein on proteasome activity are 

additive or synergistic, we exposed vector cells to 300 nM lactacystin for 3 h to reduce the 

 



 65 

baseline UPS activity to the level of α-synuclein expressing cells, then these cells were 

incubated with 30 µM dieldrin for an additional 24 h and measured UPS activity.  As shown 

in Fig 2C, exposure of vector cells to 300 nM lactacystin decreased the UPS activity by 53%, 

which approximated the baseline UPS activity in α-synuclein expressing cells.  A 24 h 

xposure to 30 µM dieldrin further decreased UPS activity by 18% and 13% in vector cells 

impaired proteasomal function are 

accumulation of proteins, formation of intracellular protein inclusions and upregulation of 

ubiquitin-conjugated proteins.  Accumulation of α-synuclein in the form of intracellular 

inclusions and increased levels of ubiquitinated protein are typical pathological changes 

e

and in lactacystin-treated vector cells, respectively.  Since the extent of UPS inhibition by 

dieldrin is similar in vector and α-synuclein cells, these results suggest that the effects of α-

synuclein and dieldrin are additive and not synergistic.  

 

Dieldrin Exposure Induces the Formation of Intracellular Inclusions Containing 

α-Synuclein.  The biological consequences of 

associated with PD.  In this study, we examined whether the inhibition of proteasomal 

function by dieldrin exposure promotes the formation of intracellular protein inclusions and 

ubiquitinated protein accumulation.  Confocal analysis revealed the formation of α-synuclein 

positive aggregation in a time-dependent manner, with small aggregates appearing as early as 

12 h and progressively increasing over 24 h in dieldrin-treated cells (Fig. 3A).  Vehicle only 

treated cells for a period of 24 h did not show any significant formation of α-synuclein 

aggregates.  However, as anticipated, the proteasome inhibitor lactacystin induced a profound 

aggregation in α-synuclein overexpressing cells (data not shown).   Quantitative analysis of 
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α-synuclein positive aggregates using Metamorph image analysis software is shown in Fig 

3B. The results show that dieldrin exposure for 12 and 24 h significantly increased the 

number of intracellular inclusion bodies (Fig. 3B).  In this experiment, we observed that the 

protein aggregates were negative for thioflavin-S staining. Furthermore, we did not observe 

any protein inclusions in either dieldrin-treated vector cells or untreated α-synuclein cells.  

We attribute this findin

 

g to recent reports which suggest thioflavin-S stains large perinuclear 

inclusions but not the small oligomeric aggregates (Lee et al., 2002a).  

er levels in α-synuclein cells.  The vector treated cells showed only a background 

stainin

 

Dieldrin induces the formation of soluble oligomer proteins in α-synuclein cells.  

Neurodegenerative diseases are associated with the accumulation of misfolded proteins in the 

form of fibrillar protein aggregates (Kayed et al., 2003; Glabe, 2004).  The formation of 

oligomers from misfolded monomeric proteins has been suggested to precede fibrillar 

formation.  Recent development of an antibody A11 which recognizes amino acid sequence-

independent oligomers of proteins including β-amyloid, α-synuclein, polyglutamine proteins 

and prion peptide 106-126 has enabled the determination of protein oligomers in many 

experimental neurodegenerative models (Kayed et al., 2003; Glabe, 2004).  Thus, in order to 

further verify dieldrin induced protein aggregation, we utilized the A11 antibody in dot-blot 

experiments.  Vector and α-synuclein cells were exposed to 30 µM dieldrin for 12 h and 24 

h.  As shown in Fig. 4A, dieldrin treatment for 12 and 24 h significantly increased the protein 

oligom

g.  Densitometric analysis of the dot-blot revealed 170% and 217% increases in 

oligomeric protein staining at 12 and 24 hr, respectively, in dieldrin treated α-synuclein 
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expressing cells (Fig. 4B) as compared to 91% and 115% increases in dieldrin treated vector 

cells.  Taken together, these results with confocal experiments indicate that dieldrin induces 

protein aggregates in α-synuclein expressing cells.  

 

Dieldrin-induced α-Synuclein Inclusions Colocalize with Ubiquitin but not with 

Autophagosomes or Lysosomes.  Since dieldrin treatment impairs UPS activity, we also 

determined whether ubiquitin colocalizes with α-synuclein inclusions.  Confocal microscopic 

analysis of anti-ubiquitin immunohistochemical images revealed that the α-synuclein 

positive aggregates tended to be ubiquitin immunoreactive, as seen by the colocalization of 

ubiquitin with α-synuclein positive aggregates (Fig. 5A).  To further distinguish the α-

synuclein inclusions from autophagosomes, we performed autophagosome marker 

monodansyl cadaverine (MDC) staining.  As shown in Fig. 5B, dieldrin-treated cells showed 

a moderate increase in autophagic vacuoles but these vacuoles did not colocalize with α-

synuclein aggregates, indicating that the protein aggregates observed following dieldrin 

treatments are not autophagosomes. Methamphetamine was used as a positive control 

because it induced autophagy in mouse primary dopaminergic neurons (Larsen et al., 2002) 

and in the N27 dopaminergic cell model used in this study (unpublished observations).  MDC 

labeling revealed large autophagic vacuoles in methamphetamine-treated cells (Fig. 5B), and 

these vacuoles clearly excluded the α-synuclein staining.  To further distinguish the α-

synuclein aggregates from enlarged lysosomes (Wilson et al., 2004), we performed 

lysosomal marker LAMP-1 immunohistochemical analysis.  As shown in Fig. 5C, confocal 

microscopic analysis of anti-LAMP-1 immunocytochemical images revealed that dieldrin-
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induced α-synuclein positive aggregates did not colocalize with LAMP-1 immunoreactivity, 

as demonstrated by the distinct staining patterns of LAMP-1 and α-synuclein aggregates.     

 

Accumulation of High Molecular Weight (HMW) Ubiquitin-conjugated Proteins 

during Dieldrin Exposure.  Impairment of the proteasomal machinery leads to 

accumulation of ubiquitinated protein in the cytosol due to the reduced clearance of proteins 

by the proteasome (Rideout and Stefanis, 2002). High molecular weight ubiquitin-conjugated 

proteins accumulated dramatically in the low detergent-insoluble fraction from both vector 

and α-synuclein overexpressing cells following 24 h of dieldrin exposure (Fig. 6A).  

However, the accumulation of insoluble HMG ubiquitin-conjugates in α-synuclein 

overexpressing cells was much higher than in vector transfected cells.  Densitometric 

analysis of the HMW bands from Western blots revealed 136% and 121% of the proteins in 

vector cells as compared to 172% and 301% in α-synuclein cells following 30 µM dieldrin 

treatment for 12 and 24 h, respectively (Fig. 6B). The slight decrease in HMG ubiquitin 

conjugates in vector cells at 24 h measured by Western blot was not statistically significant.  

In addition to the HMW ubiquitin conjugates in insoluble fractions, dieldrin treatment also 

produced a significant increase in the level of HMW ubiquitin conjugates in the soluble 

fraction of both α-synuclein cells and vector transfected cells (Fig. 6C).  However, the level 

of ubiquitin conjugates did not differ significantly between α-synuclein and vector cells (Fig. 

6D). These results suggest that dieldrin induces a time-dependent increase in insoluble HMW 

ubiquitin conjugates in vector and α-synuclein cells. Treatment with 10 µM lactacystin for 
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12 h dramatically increased the level of the HMW ubiquitin conjugates in both soluble and 

insoluble fractions, and was used as a positive control (Fig. 6A, B). 

 

Overexpression of α-Synuclein Increases the Sensitivity of N27 Cells to Dieldrin-

induced Neurotoxicity.  In order to determine whether the formation of insoluble protein 

aggregates and accumulation of ubiquitin proteins during dieldrin treatments enhances the 

neurodegenerative processes in α-synuclein overexpressing cells, we investigated the 

temporal dieldrin cytotoxicity in vector and α-synuclein overexpressing cells.  Cell death was 

assessed using the membrane impermeable Sytox green fluorescence dye at various time 

intervals following 24 h of dieldrin treatment.  As shown in Fig. 7, α-synuclein 

overexpressing cells showed enhanced cytotoxicity at 24 h, whereas cytotoxicity was not 

significantly increased in vector transfected cells up to 24 h.  We also noted a consistent 

decrease in dieldrin-induced cytotoxicity in α-synuclein overexpressing cells as compared to 

vector cells up to 12 hr time point. 

 

Dieldrin Induced Caspase-3 Activation and DNA Fragmentation in Vector and 

α-Synuclein Overexpressing Cells. To determine the functional consequence of dieldrin-

induced proteasomal inhibition and protein aggregation on cell survival, we determined 

caspase-3 activation and DNA fragmentation following dieldrin exposure.  As shown in Fig. 

8A, measurement of caspase-3 activity using Ac-DEVD-AMC as a substrate revealed that 

dieldrin activated caspase-3 to 205.1% at 12 h and 311.5% at 24 h in α-synuclein 

overexpressing N27 cells, whereas only a minimal increase of 138.1% and 168.5% was 
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observed in vector cells at 12 and 24 h post-treatment, respectively.  Also, the classical 

proteasome inhibitor lactacystin dramatically increased caspase-3 activation (Fig. 8A).  

Furthermore, to determine the extent of apoptotic cell death in dopaminergic neuronal 

cells fo

Epidemiological studies increasingly implicate pesticides as an important risk factor 

of PD (Priyadarshi et al., 2000) and suggest that exposure to the organochlorine class of 

llowing dieldrin exposure, we measured DNA fragmentation using the ELISA 

method.  As shown in Fig. 8B, dieldrin significantly (*p<0.05; ***p<0.001) increased DNA 

fragmentation in both vector and α-synuclein overexpressing cells, but dieldrin-induced 

DNA fragmentation was more pronounced in α-synuclein overexpressing cells than in vector 

cells (##p<0.01), indicating that α-synuclein overexpressing cells are more sensitive to 

apoptotic cell death. 

 

DISCUSSION 

Our study clearly demonstrates that dieldrin impairs ubiquitin-proteasome function 

additively with α-synuclein and triggers apoptosis in dopaminergic neuronal cells.  The direct 

consequence of the proteasome inhibition is the abnormal accumulation of ubiquitinated 

protein and the formation of intracellular protein aggregates (Rideout and Stefanis, 2002).  In 

this study, we showed that dieldrin exposure promotes the formation of the α-synuclein 

positive intracellular inclusions and accumulation of high molecular weight ubiquitin 

conjugated proteins.  Overall, our data suggest that the combination of environmental 

exposure to neurotoxic chemicals like pesticides and α-synuclein overexpression may 

enhance the susceptibility to apoptotic cell death by impairing the ubiquitin-proteasome 

system. 
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pesticide may be of particular concern in the development of PD (Corrigan et al., 2000; 

Kanthasamy et al., 2005).  The specific organochlorine pesticide dieldrin has been implicated 

in PD by epidemiological studies and case control findings in PD brains (Fleming et al., 

1994; C

e deduced this based on a daily dietary intake of 1.3 µg 

dieldrin over a 50 year-exposure period, resulting in intake of 41 µM.  The 30 µM 

concen

accumulation of ubiquitin-conjugated proteins and formation of α-synuclein/ubiquitin 

orrigan et al., 2000) and experimental studies in cell culture (Sanchez-Ramos et al., 

1998; Kitazawa et al., 2001; Kitazawa et al., 2003; Kitazawa et al., 2004) and animal models 

(Heinz et al., 1980; Kanthasamy et al., 2005).  Dieldrin is a highly lipophilic compound and 

accumulates significantly in the CNS (Fleming et al., 1994; Corrigan et al., 2000).  The 

concentration of dieldrin detected in postmortem PD brain tissue was approximately 50 ppm 

(Fleming et al., 1994), and the blood dieldrin level was up to 250 ng/ml in workers 

manufacturing or using aldrin/dieldrin (Nair et al., 1992).  A high level of dieldrin 

accumulates in the body over a lifetime because of the extremely low clearance of this 

lipophilic neurotoxic compound from the body.  Based on reports (MacIntosh et al., 1996; 

Doong et al., 1999; Campoy et al., 2001), we calculated the cumulative lifetime exposure to 

dieldrin of approximately 30 µM.  W

trations used in the present study are lower than concentrations used in previous 

neurotoxicological studies in the PC12 cell culture model (Kitazawa et al., 2001; Kitazawa et 

al., 2003; Kitazawa et al., 2004).  The EC50 of 12 µM dieldrin for primary dopaminergic 

neurons and 85 µM for non-dopaminergic neurons (Sanchez-Ramos et al., 1998) indicates an 

increased susceptibility of the dopaminergic system to the neurotoxic effect of dieldrin.   

We demonstrate that exposure to a subtoxic concentration of dieldrin (30 µM 

dieldrin, 11.2 µg/ml) resulted in decreased proteasomal activity and the subsequent 
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immunopositive inclusions in α-synuclein overexpressing cells.  We also show that dieldrin 

induces formation of oligomeric aggregates in a time-dependent manner in α-synuclein 

express

1).Additionally, an interaction between filamentous α-synuclein and 

subunits of the 20S proteasome core has been shown to decrease its proteolytic activity 

(Lindersson et al., 2004).  Our study clearly suggests that α-synuclein contributes to the 

dysfunc

2005). Therefore, it is likely that overexpression of A53T mutant may result in greater 

dieldrin-induced UPS dysfunction than impairment in wild type α-synuclein expressing cells.  

Recently, oxidative stress and nitrative stress have been shown to contribute to 

various neurodegenerative diseases including PD ( Ischiropoulos, 2003).  In support of this 

view, studies have demonstrated that reactive oxygen species and reactive nitrogen species 

ing cells.  Although our results demonstrate that dieldrin-induced α-synuclein 

positive aggregates do not colocalize with either autophagosomes or lysosomes for up to 24 h 

of dieldrin treatment, prolonged accumulation of protein aggregates following chronic 

exposure of dieldrin may be degraded via the lysosomal pathway.  Additionally, our results 

are in agreement with a recent study demonstrating that a prolonged exposure to dieldrin can 

change the conformation of α-synuclein to produce protein fibrils in a cell free system 

(Uversky et al., 200

tion of the ubiquitin-proteasome system (UPS) since accumulated insoluble HMW 

ubiquitin-conjugated proteins were predominantly observed only in α-synuclein 

overexpressing N27 cells but not in vector N27 cells during dieldrin treatment.  Previous 

studies have shown that the overexpression of α-synuclein A53T mutant impairs UPS in 

cultured cells (Lee et al., 2002b).  Recently, we demonstrated that overexpression of A53T 

α-synuclein mutant potentiates MPP+-induced apoptotic cell death in N27 cells (Kaul et al., 
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formation can promote α-synuclein aggregation in in vitro models (Paxinou et al., 2001; 

Ischiropoulos, 2003).  Since ROS generation and oxidative stress have also been linked to 

proteasome inhibition (Okada et al., 1999), dieldrin-induced oxidative stress may play a role 

in the impairment of proteasomal function (Kitazawa et al., 2001).  However, the anitoxidant 

trolox and the SOD mimetic MnTBAP did not block dieldrin-induced UPS impairment in 

preliminary studies (unpublished observations).  Recently, administration of paraquat, a 

pesticide known to generate superoxide radicals induced α-synuclein aggregation in 

transgenic mice models (Manning-Bog et al., 2002).  ATP depletion caused by the 

mitochondrial complex I inhibitor rotenone reduced proteasomal activity and formation of 

intracellular inclusions, which could be prevented by promoting ATP production (Hoglinger 

et al., 2003).  Dieldrin is a mitochondrial electron transport inhibitor, which inevitably 

impairs oxidative ATP production (Kanthasamy et al., 2005).  Therefore, a reduction in 

energy production may also contribute to proteasomal dysfunction during dieldrin exposure.  

However, further mechanistic studies are needed to establish the exact cellular mechanism 

underlying dieldrin-induced proteasomal dysfunction in dopaminergic neurons.   

The impairment of proteasome function and protein aggregation during dieldrin 

treatment contributes to cell death.  A time course analysis revealed that the proteasomal 

dysfunction and protein aggregation precedes the cellular toxicity.  The α-synuclein 

aggregation starts to occur as early as 6 h following dieldrin treatment, whereas significant 

toxicity is noted only after 12 h of dieldrin treatment.  Additionally, dieldrin-induced cell 

death occurs only in α-synuclein overexpressing N27 cells but not in vector N27 cells, 

suggesting that α-synuclein aggregation plays a causal role in the cytotoxic response.  The 

time course analysis of the apoptotic marker caspase-3 further indicates that dieldrin-induced 
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protein aggregation precedes capase-3 activation.  Additionally, we showed that the selective 

proteasome inhibitor lactacystin activates caspase-3.  Measurement of DNA fragmentation 

by ELISA following dieldrin treatment in α-synuclein overexpressing dopaminergic cells 

indicates that dieldrin-induced protein aggregation promotes apoptotic cell death.  We also 

noted an increase in autophagosomes following dieldrin treatment, but detailed studies are 

needed regarding the individual contributions of apoptosis and autophagy during dieldrin-

induced cell death.   

The exact proapoptotic mechanisms downstream of the proteasome inhibition remain 

unclear in neuronal cells, though various signaling molecules involved in the regulation of 

apoptotic cell death have been identified as substrates of UPS, including p53, IκB, Smac, the 

Bcl 2 family of proteins (Jesenberger and Jentsch, 2002).  The UPS is the major cellular 

proteolytic machinery for the degradation of intracellular proteins.  Identification of the 

mutant Parkin and ubiquitin C-terminal hydrolase (UCH-L1) genes in familial PD, as well as 

the impaired function and altered component levels of proteasome in the substantia nigra 

region of sporadic PD patients together suggest a critical role of UPS dysfunction in PD.  

Dopaminergic neurons are particularly susceptible to proteasome inhibition, and -synuclein 

fibrillar inclusion is a characteristic pathological feature of PD (Dawson and Dawson, 2003).  

α

A recent study in transgenic flies revealed that overexpression of one of the Parkin 

substrates, Pael-R, caused selective degeneration of dopaminergic neurons, which could be 

suppressed by the coexpression of Parkin, which has E3 ligase activity (Yang et al., 2003).  

Recently, administration of the proteasome inhibitor epoxomycin in rats has been shown to 

induce delayed symptoms and pathology similar to PD (McNaught et al., 2004).  Notably, 

impaired proteasome function and formation of Lewy bodies were observed in this model, 
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indicating enhanced vulnerability of the dopaminergic system to impairment of UPS.  

Recently, the interesting discovery of multiple copies of the α-synuclein gene in some PD 

patients (Singleton et al., 2003) suggests that overexpression of α-synuclein can increase the 

risk of dopaminergic generation, and it was shown that in wild-type human α-synuclein 

transgenic mice, the loss of dopaminergic terminals was accompanied by the formation of 

intracellular inclusions (Masliah et al., 2000).  Our data demonstrate that overexpression of 

human α-synuclein can dramatically inhibit proteasomal activity in dopaminergic neuronal 

cells.  Importantly, our results also suggest that exposure to environmental chemicals in 

individuals with increased copies of α-synuclein may enhance their vulnerability to PD. 

In summary, we demonstrate for the first time that dieldrin and α-synuclein-

cumulatively induce impairment of ubiquitin-proteasome function to promote apoptotic cell 

death in dopaminergic neuronal cells.  This study also reveals a close interaction between 

environmental factors and genetic defects in the promotion of dopaminergic degeneration 

involved in PD. 
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FIGURE 1.  
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S.E.M. for six samples in each group.  Asterisks (***p<0.001, Student’s t-test) indicate 

 

 

 

      

 

. 1.  Overexpression of α-synuclein inhibits proteas

neuronal cells (N27 cells). 

Proteasomal activity was measured in vector and α-synucle

cells using a specific fluorogenic peptide substrate, Suc-LLVY-AMC (75 µM), as described 

 methods section.  Activity was normalized by the protein concentration and expressed 

treated vector control cells.  All data represent the mean ± 

statistically significant differences compared with vector transfected N27 cells.  
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FIGURE 2. 

 

 

Fig y in dopaminergic neuronal 

cells were exposed to various concentrations of dieldrin ranging from 3 µM to 70 µM for 24 

µM). 

perce a represent mean ± S.E.M. from six 

. 2.  Dieldrin exposure decreases proteasomal activit

cells. 

 A) Dose response studies. Vector transfected and α-synuclein overexpressing N27 

h.  Proteasomal activity was measured using the fluorogenic substrate Suc-LLVY-AMC (75 

 Enzymatic activity was normalized by protein concentration and expressed as the 

ntage of vehicle treated vector control cells.  The dat

samples in each group.  B) Time-course studies. Vector transfected and α-synuclein 
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overexpressing N27 cells were exposed to 30 µM dieldrin and the proteasomal activity was 

measured at 6, 12 or 24 h post-exposure.  The values represent mean ± S.E.M. from two to 

three separate experiments.  C). Cumulative inhibition of proteasomal activity.  Vector 

transfected N27 cells were pretreated with 300 nM lactacystin for 3 h and then exposed to 30 

µM dieldrin for an additional 24 h.  Cells were also treated with lactacystin or dieldrin alone 

for 24 h.  After treatment samples were processed for proteasomal activity as described in the 

methods section.  The data represent mean ± S.E.M. from six samples in each group.  

Statistical significance between the control group and each treatment group was determined 

by ANOVA followed by Dunnett's post-test (*p<0.05, **p<0.01, ***p<0.001).  Student’s t-

test was used for comparison between indicated groups (##p<0.01). 
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FIGURE 3. 

 

 

 

dopaminergic neuronal cells. 

Fig. 3. Dieldrin treatment induces α-synuclein positive protein aggregates in 
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A) Confocal image analysis of α-synuclein and Thioflavin-S staining. Arrows 

indicate the α-synuclein positive inclusions. Briefly, α-synuclein overexpressing N27 cells 

grown on poly-lysine coated coverslips were treated with 30 µM dieldrin for 12 or 24 h.  

Immunocytochemistry was performed using mouse monoclonal α-synuclein primary 

antibody and Cy3 conjugated secondary antibody (red fluorescence).  Protein aggregation 

was also stained by Thioflavin-S.  Arrows indicate the α-synuclein positive inclusions.  B) 

Quantitative analysis of α-synuclein positive protein aggregates.  Areas of α-synuclein 

immunopositive aggregates were measured in 14 randomly chosen cells from each group 

with Metomorph image analysis software.  Statistical significance between the control group 

and each treatment group was determined by ANOVA followed by Dunnett's post-test 

(***p<0.001).  
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FIGURE 4. 

 

 

 

Fig. 4. Effect of dieldrin on formation of oligomeric protein in α-synuclein cells. A) Dot-

blot analysis. 

A) Vector and α-synuclein overexpressing cells were treated with 30 µM dieldrin for 

12 or 24 h and the formation of protein oligomers in these samples was determined by dot-

blot analysis as described in the methods section. Cell lysates containing 5 µg protein were 
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spotted on to nitrocellulose membrane, and protein oligomers were detected using A11 anti-

oligomer antibody and followed by ECL detection.  B) Densitometric analysis of the dot-

blot. The levels of soluble oligomers were quantified by densitometry followed by statistical 

analysis using one-way ANOVA and Dunnett’s multiple comparison tests (N=5). Asterisk 

indicates **p< 0.01 significant differences between untreated cells and the dieldrin treatment 

groups at each time point, and pound sign ## p<0.01 indicates significant differences 

between dieldrin treated vector cells and dieldrin treated α-synuclein cells.  
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FIGURE 5. 
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Fig. 5. α-Synuclein protein aggregates colocalize with ubiquitin but not w

autophagosomes or lysosomes. 

 

A) α-Synuclein and ubiquitin double staining.  Double immunohistochem

analysis was performed using mouse monoclonal α-synuclein primary antibody and rabbit

polyclonal ubiquitin antibody.  The secondary antibodies used were Cy3 conjugated anti-

ith 

ical 

 

mouse (red = α-synuclein) and Alexa-488 conjugated anti-rabbit (green = ubiquitin).  

Confocal image analysis of α-synuclein and ubiquitin staining was performed in the 

colocalization study.  Arrows indicate the α-synuclein and ubiquitin positive inclusions.  B). 

MDC autophagy staining. α-Synuclein overexpressing N27 cells were grown on poly-lysine 

coated coverslips and treated with 30 µM dieldrin for 24 h or 2 µM methamphetamine 

(positive control) for 12 h. Cells were stained with the autophagosome marker monodansyl 
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cadaverine (MDC, blue) before fixation and immunostaining with α-synuclein antibody 

(Mouse) and Cy3 conjugated secondary antibody (red). Arrows indicate protein aggregation 

following dieldrin treatment and autophagosomes following methamphetam ne treatment.  C. 

LAMP-1 immunostaining.  Double immunohistochemical analysis was performed using 

rabbit polyclonal α-synuclein antibody and mouse monoclonal LAMP-1 antibody.  The 

secondary antibodies used were Cy3 conjugated anti-rabbit (red = α-synuclein) and Alexa-

488 conjugated anti-mouse (green = lysosomes).  Confocal image analysis of α-synuclein 

and LAMP-1 staining was performed in the colocalization study.  The sm

e α-synuclein aggregates and the large arrows indicate enlarged lysosomes.  
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all arrows indicate 

th
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FIGURE 6. 
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Fig. 6.  Accumulation of high molecular weight ubiquitin-conjugated protein in 

dopaminergic neuronal cells following dieldrin treatment. 

Vector overexpressing and α-synuclein overexpressing N27 cells were treated with 

30 µM dieldrin for 12 or 24 h.  Detergent soluble and insoluble fractions were determined as 

described in the methods sections.  Equal amounts of proteins from the detergent insoluble 

fractions (A) and soluble fractions (C) were resolved on 8% SDS-PAGE and blotted with 

ubiquitin antibody.  Square brackets indicate the regions with high levels of ubiquitin-

conjugated proteins.  10 µM lactocystin was used as a positive control.  The membrane was 

reprobed with β-actin antibody.  The levels of ubiquitin conjugates in detergent insoluble (B) 

nd soluble fractions (D) were quantified by densitometry followed by statistical analysis 

=4, ANOVA followed by Dunnett's post-test, *p<0.05, **p<0.01).   
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FIGURE 7. 

 

Fig. 7. Overexpression of α-synuclein increases sensitivity to dieldrin-induced 

cytotoxicity. 

Vector transfected and α-synuclein overexpressing N27 cells were treated with 30 

µM dieldrin.  The cytotoxicity was measured at 3, 6, 12 and 24 h by Sytox green assay.  Cell 

death was expressed as the percentage of the time-matched control groups.  The results 

represent mean ± S.E.M. from eight to twelve samples.  Significance was determined by 

ANOVA followed by Bonferroni's Multiple Comparison Test.  ###p<0.001, vector 

transfected cells compared with α-synuclein overexpressing cells.   
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FIG

al cells. 

re exposed to dieldrin (30 µM) for 12 or 24 h and 

then caspase-3 activity was measured with the fluorogenic substrate Ac-DEVD-AMC.  

Exposure to classical proteasome inhibitor lactacystin (2.5 µM) for 24 h also significantly 

activates caspase-3 activity. The results represent mean ± S.E.M. from 7 samples for dieldrin 

treatment and 3 samples for lactacystin treatment. B) Dieldrin-induced DNA fragmentation.  

Dieldrin (30 µM) was exposed for 24 h and then DNA fragmentation was assayed using the 

ELISA assay.  Values were expressed as the percentage of the control group.  Values 

represent mean ± S.E.M. from four individual samples.  Data are expressed as the percentage 

of the control group.  *p<0.05 and ***p<0.001 (Student’s t-test) in comparison with the 

untreated control group.  #p<0.05 ##p<0.01 and ###p<0.001 (Student’s t-test) in comparison 

with the vector transfected cells. 

URE 8. 

 

Fig. 8.  Dieldrin-induced proteasomal dysfunction enhances apoptotic cell death in α-

synuclein overexpressing dopaminergic neuron

 A) Caspase-3 activity, Cells we
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ABSTRACT 

Impairment in ubiquitin-proteasomal system (UPS) has recently been implicated in 

Parkinson’s disease, as demonstrated by reduced ubiquitin proteasomal activities, protein 

aggregation and mutation of several genes associated with UPS.  However, experimental 

studie t of 

proteasome inhibition on dopaminergic  In this study, we systematically 

examin

ed increases in caspase-3 

ctivity in a time-dependent manner, with significant activation occurring between 90 min 

nd 150 min.  We also noted a 12-fold increase in DNA fragmentation in MG-132 treated 

27 cells.  Similarly, primary mesencephalic neurons exposed to 5 µM MG-132 also induced 

 60% loss of TH positive neurons but only a minimal loss of non-dopaminergic cells.  

Stereotaxic injection of MG-132 (0.4 µg in 4 µl) into the substantia nigra compacta (SNc) in 

s with proteasome inhibitors failed to yield consensus regarding the effec

degeneration. 

ed the effect of the proteasome inhibitor MG-132 on dopaminergic degeneration in 

cell culture and animal models of Parkinson’s disease.  Exposure of immortalized 

dopaminergic neuronal cells (N27) to low doses of MG-132 (2-10 µM) resulted in dose- and 

time-dependent cytotoxicity.  Further, exposure to MG-132 (5 µM) for 10 min led to 

dramatic reduction of proteasomal activity (>70%) accompanied by a rapid accumulation of 

ubiquitinated proteins in these cells.  MG-132 treatment also induc

a

a

N

>
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C57 black mice resulted in significant depletion of ipisilateral striatal dopamine and DOPAC 

content as compared to the vehicle-injected contralateral control sides.  Also, we observed a 

significant decrease in the number of TH positive neurons in the substantia nigra of MG-132-

injected compared to the vehicle-injected sites.  Collectively, these results demonstrate that 

the proteasomal inhibitor MG-132 induces dopamine depletion and nigral dopaminergic 

degeneration in both cell culture and animal models, and suggest that proteasomal 

dysfunction may promote nigral dopaminergic degeneration in Parkinson’s disease.  

 

INTRODUCTION 

e 

for the elimination o  is critical for 

various

polyubiquitin chain to the target proteins, and specify the degradation by 26S proteasome.  

Impairment in UPS function interferes with its proteolysis capacity, and leads to inadequate 

protein degradation. 

Parkinson’s disease (PD) is a major neurodegenerative disorder affecting over 1.5 

million people in the US.  The mechanisms underlying the selective and progressive loss of 

nigral dopaminergic neurons in PD are still unclear.   Several studies have implicated UPS 

dysfunction in the pathogenesis of PD (Dawson and Dawson, 2003; Betarbet et al., 2005).  

Impairment of UPS is demonstrated by the decrease in proteasomal enzyme activities as well 

The ubiquitin proteasome system (UPS) is the primary proteolytic complex responsibl

f unwanted and misfolded intracellular proteins.  The UPS

 cellular functions including cell development, survival, apoptosis and intracellular 

signaling (Glickman and Ciechanover, 2002).  The degradation of cellular proteins by UPS is 

tightly regulated by a system in which ubiquitin activating enzyme (E1), ubiquitin 

conjugating enzymes (E2), and ubiquitin ligase (E3) act sequentially to attach the 

 



 97 

a  

with idiopathic PD (McNaught and Jenner, 2001; McNaught and Olanow, 2003; Betarbet et 

al., 2005).  Additionally, mutations in genes associated with protein processing and 

degradation, namely pa drolase-L1 (UCH-L1), 

have been found in patients with familial PD (Dauer and Przedborski, 2003; Dawson and 

Dawson, 2003).  In support of this view, dopamine (Keller et al., 2000), 6-OHDA (Elkon et 

al., 2004), and the mitochondria complex I inhibitors MPP+ (Sawada et al., 2004) and 

rotenone (Hoglinger et al., 2003) have been shown to result in decreased proteasomal activity 

in various cell culture models including PC12 cells and primary mesencephalic cultures.  

Recently, we demonstrated that exposure to the environmental neurotoxin dieldrin inhibits 

proteasomal activity to induce alpha-synuclein aggregation and cell death in dopaminergic 

neuronal cells (Sun et al., 2005).  However, some recent studies yielded inconsistent results 

regarding effects of proteasome inhibitors on dopaminergic degeneration.  Systematic 

administration of the proteasomal inhibitor epoxomicin produces delayed and progressive 

neurological and neuropathological changes similar to those associated with PD in rodents 

(McNaught et al., 2004), whereas the proteasome inhibitors protected dopaminergic neurons 

in a rat 6-OHDA PD model (Inden et al., 2005).  In this study, we examined the effect of the 

well known proteasome inhibitor MG-132 in dopaminergic neuronal cultures and animal 

models to determine the role of proteasomal inhibition in nigrostriatal dopaminergic 

degeneration.  

 

 

 

s decreased protein levels of the α-subunit of proteasome in the substantia nigra of patients

rkin, α-synuclein and ubiquitin C-terminal hy
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MATERIALS AND METHODS 

Cell Cultures. The immortalized rat mesencephalic dopaminergic neuronal cells (N27) were 

grown in RPMI 1640 medium supplemented with 10% fetal bovine serum, 2 mM L-

glutamine, 50 units penicillin, and 50 µg/ml streptomycin. Cell cultures were maintained in a 

humidified atmosphere of 5% CO  at 37°C as previously described (Yang et al., 2004).  We 

and others have extensively used N27 cells as a useful model to study the neurotoxic 

mechanisms pertaining to Parkinson’s disease (Clarkson et al., 1999; Kaul et al

2

., 2003; 

Miranda et al., 2004; Kaul et al., 2005a; Kaul et al., 2005b; Peng et al., 2005).    

 

Cyt

ing a fluorescence microplate reader (Molecular Devices Corporation, 

Gemin

otoxicity Assay with Sytox Green. Assessment of cytotoxicity was conducted using 

Sytox green as described previously (Latchoumycandane et al., 2005).  Membrane-

impermeable DNA dye Sytox green can readily enter the cells with altered membrane 

permeability, resulting in increased fluorescence.  The intensity of fluorescence is directly 

proportional to the amount of dead cells, and this method is more efficient and sensitive than 

other cytotoxic measurements (Kitazawa et al., 2004).  Twenty-four hr after cells were grown 

in 24-well plates, cells were incubated with 1 µM Sytox simultaneously with 5.0 µM MG-

132 or vehicle (1% DMSO) as a control.  DNA bound Sytox green (Ex 485 nm and EM 538 

nm) was detected us

i Plate Reader).  Fluorescence intensity was monitored and normalized by the time-

matched control to quantify cell death.    

 

Proteasomal Peptidase Activity Assay. Chymotrypsin-like proteasomal activity was 

assessed with the method described previously (Sun et al., 2005).  After collection and lysis 
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of cells with lysis buffer (10 mM HEPES, 5 mM MgCl2, 10 mM KCl, 1% sucrose, 0.1% 

CHAPS) on ice for 20 min., 50 µl lysates were used for assay by incubation with 75 µM 

fluorogenic Suc-LLVY-AMC (Calbiochem, San Diego, CA) in the assay buffer (50 mM 

Tris-HCl, 20 mM KCl, 5 mM MgOAc and 10 mM DTT, pH 7.6) at 37°C for 30 min.  

Fluorescence intensity of the enzymatically cleaved product was measured using a 

fluorescence plate reader (Gemini Plate Reader, Molecular Devices Corporation).  Protein 

concentration was determined by the Bradford method.  Enzymatic activity was normalized 

by protein concentration.  

 

Caspase Enzymatic Activity Assay. Assessment of caspase activation was conducted as 

described previously (Sun et al., 2005) using Ac-DEVD-AFC (Bachem Bioscience, King of 

Prussia, PA) as substrate for the enzymatic activity assay. The cleaved product by caspase-3 

was measured (Ex 400 nm and Em 505 nm) using a fluorescence plate reader (Molecular 

Devices Corporation).  Bradford protein assay was used for determination of protein 

concentration. 

 

SDS-PAGE and Western Blot. Western blot analysis was performed as described 

previously (Sun et al., 2005).  Cells were collected and washed once with ice-cold PBS 

before lysis with buffer (protease inhibitors and 0.5% Triton X-100 in PBS).  The lysates 

were ultracentrifuged at 100,000 x g for 40 min.  The resulting supernatants were collected 

for protein assay.  Equal amounts of protein were resolved on 8% SDS-PAGE and 

transferred onto nitrocellulose membrane.  A estern blot procedure was followed 

for immunoblot with polyclonal ubiquitin antibody generation (DAKO, Carpinteria CA, 

standard W
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1:500).  An ECL kit (Amer cataway, NJ) was used for 

 provided in 

the assay kit.  After being spun down at 200 x g, 20 µl of supernatant was incubated with the 

 litters were suspended in serum-free neurobasal 

edium supplemented with B-27, L-glutamine, penicillin, and streptomycin (Life 

sham Pharmacia Biotech, Inc., Pis

detection of ubiquitinated proteins.  The blot was reprobed with monoclonal β-actin antibody 

(Sigma Chemicals, St. Louis, MO, 1:5000) to confirm equal protein loading.   

 

DNA Fragmentation Assay. Cell Death Detection ELISA Plus Assay Kit (Roche Molecular 

Biochemicals, Indianapolis, IN) was used for analysis of DNA fragmentation by 

quantification of histone-associated low molecular weight DNA in the cytoplasm of cells 

(Anantharam et al., 2002).  Briefly, cell pellets were lysed with the lysis buffer

mixture of HRP-conjugated antibody-recognizing histones and fragmented single- and 

double-stranded DNA.  After unbound components were removed by washing, bound HRP-

conjugates were assessed colorimetrically with ABTS as substrate using a spectrophotometer 

at 405 nm, and the optical density at 490 nm was used as reference. Protein concentration 

was determined by the Bradford protein assay.  

 

Primary Mesencephalic Culture. Preparation of primary mesencephalic neuronal cultures 

was conducted as described previously (Yang et al., 2004). Ventral mesencephalon was first 

dissected out from 15-17-day-old mouse embryos, and cell dissociation was achieved by 

incubating dissected tissues in trypsin-EDTA (0.25%) for 20 min.   The dissociated 

mesencephalic cells obtained from four

m

Technologies) before cells were grown on poly-L-lysine coated coverslips in 24-well plates.  

The plating density was around 40,000 cells per ml of culture medium per well. Each well 
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represents an experimental unit (n). Twenty-four hr after cells were in culture, 10 µM 

cytosine arabinoside was added to suppress glial cell proliferation. The cells were maintained 

in a humidified CO2 incubator (5% CO2, 37°C) for approximately 6–7-days before treatments. 

Tyrosine hydroxylase (TH) immunostaining yields approximately 30-40 TH positive cells, 

accounting for less than 0.1% of the total population of cells in each culture well.     

 

Immunocytochemistry. Immunostaining of the tyrosine hydroxylase (TH) marker of 

dopaminergic neurons was performed in primary mesencephalic neurons derived from C57 

black mice [2].  Briefly, after treatment, primary neurons grown on poly-L-Lysine-coated 

 incubated with antibodies directed against TH (1:500 dilution) overnight at 

4°C followed by incubation with Cy3-conjugated (1:1000) secondary antibody for 1 hr at 

 

glass cover slips were double stained with TH antibody and Hoechst staining to determine 

the number of TH+ and TH- neurons and the experiments were blinded.  Nuclei were 

counterstained with Hoechst 33342 at a final concentration of 10 µg/ml. Primary neurons 

were fixed with 4% paraformaldehyde, permeabilized, and non-specific sites were blocked 

with 5% normal goat serum containing 0.4% BSA and 0.2% Triton-X 100 in PBS for 20 min.  

Cells were then

RT.  Then the cover slips containing cells were washed with PBS, mounted on a slide, 

viewed under a Nikon inverted fluorescence microscope (Model TE-2000U) and images 

were captured with a SPOT digital camera (Diagnostic Instruments, Sterling Heights, MI). 

Stereotaxic Injection of MG-132. C57 black mice were maintained in a 

temperature/humidity-controlled environment with free access to food and water.  After mice 
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were anesthetized, MG-132 (0.4 µg in 4 µL) and vehicle (1% DMSO in PBS) were 

stereotaxically injected into the substantia nigra at the target site (Bregma AP, -3.2 mm, ML, 

± 2.0 mm, DV, -4.7 mm) in the right and left sides, respectively (Hommel et al., 2003). 

Twelve days after injection, mice were either sacrificed for dissection of the striatum for 

A, USA), and an automatic AS-48 sampler 

io-Rad Laboratories, Hercules, CA, USA) controlled by Rainin Dynamax HPLC method 

dopamine and DOPAC measurement or perfused intracardiacally with 4% paraformaldehyde 

for immunohistological study.  

 

Neurotransmitter Analysis. Striata were dissected from mouse brain on an ice-cold glass 

platform, and the weight of each striatal tissue was measured.  The samples were 

homogenized in buffer containing 0.2 M perchloric acid, 0.5 mg/ml Na2EDTA and 1µg/ml 

Na2S2O5 and subjected to 13,200 × g centrifugation. The supernatant was analyzed for 

dopamine and DOPAC by HPLC-EC detection as described in our previous publication 

(Kitazawa et al., 2001).  The HPLC system included a pressure module, a solvent delivery 

system (Rainin Instrument Co. Inc., Woburn, M

(B

manager software (ver. 1.4, Rainin Instrument Co. Inc.).  A C-18 reversed-phase column 

(Rainin Instrument Co. Inc.) was used to separate neurotransmitters isocratically with the 

mobile phase (pH 3.1, 0.15 M monochloroacetic acid, 0.13 mM sodium octyl sulfonate, 0.67 

mM disodium EDTA, 0.12 M sodium hydroxide, and 1.5% acetonitrile) at the flow rate of 1 

ml / min.  Measurement of the neurotransmitters was achieved with an electrochemical 

detection (EC) system consisting of an ESA coulochem model 5100A and a guard cell model 

5020 (ESA Inc., Bedford, MA). Calibration of the HPLC-EC with DOPAC and dopamine 

was performed before each use.  The sample injector was programmed to wash automatically 
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after each injection with 50% acetonitrile in deionized water.  The dopamine and DOPAC 

levels were normalized by the wet tissue weight, and normal levels of dopamine and DOPAC 

in control animals were approximately 15.0 ng and 5.0 ng per mg wet tissue, respectively.   

 

Quantification of TH and Non-TH Cell count. We used Metamorph software (Universal 

maging, Version 5.0) for measurement of TH+ neurons in primary cell culture and in vivo 

 

Data Analysis. All data analysis was performed with Prism 4.0 software (GraphPad 

software, San Diego).  One-way ANOVA was used for multiple comparisons.  Single 

I

sections.  The total number of TH+ cell count and neurite processes were counted in five to 

seven cover slips obtained from two separate experiments for primary neurons.  The total 

number of TH+ cells averaged 75/coverslip in untreated controls. For in vivo sections, fixed 

brain tissues were cut into sections of 30 µm thickness using cryostat sectioning, and the free 

floating nigral sections were stained with tyrosine hydroxylase (Rabbit, 1: 2000) and 

counterstained with nucleus dye Hoechst 33342.  Quantification of TH positive neurons at 

nigral sections was performed with sections at the caudorostral level of the third cranial nerve 

as described previously (Kanthasamy et al., 1997).  For measurement of TH and non-TH cell 

count, the images were first thresholded, and then neuronal count and volume were measured 

using the Integrated Morphometry Analysis (IMA) function in the Metamorph Image 

analysis software (Molecular Devices, Downingtown, PA).  The data were logged to an 

Excel spreadsheet with defined row and column positions and then analyzed.  The data were 

exported to Graph Pad Prism 4.0 software and analyzed.   
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comparisons were made using the Student’s t-test.  A significant difference was accepted if 

p<0.05.  

 

RESULTS 

Exposure to Proteasome Inhibitor MG-132 Induces Cytotoxicity in Dopaminergic 

Neuronal Cells 

Immortalized mesencephalic neuronal cells (N27 cells) were exposed to MG-132 (2.5 

µM) for 7 hr and cell viability was monitored by staining with Sytox green dye, a membrane-

impermeable DNA binding fluorescent dye which preferentially stains dead cells.  Exposure 

to MG-132 induced a dose- and time-dependent increase in cytotoxic cell death (Fig. 1). 

Significant cell death was observed starting at 5 hr and progressively increased up to 7 hr.  

 

Inhibition of Proteasomal Activity and Accumulation of Ubiquitin-Conjugated Proteins 

in MG-132 Treated Cells 

Since MG-132 is a proteasomal inhibitor, we examined the inhibitory effect of MG-

132 on proteasomal activity in dopaminergic neuronal cells. We assayed the enzymatic 

activity of the 20S/26S proteasome using the specific fluorogenic substrate Suc-LLVY-AMC 

in MG-132-treated N27 cells.  Fig. 2A shows a rapid decrease in the proteasomal activity 

within 10 min of 5 µM MG-132 exposure.  Less than 25% proteasomal activity remained 

after the 10 min exposure (p<0.001), indicating that MG-132-induced proteasomal inhibition 

precedes cell death.  Following inhibition of  proteasomal enzymatic activity, the levels of 

ubiquitinated proteins increase in the cytosol due to the reduced clearance of proteins by the 

UPS (Rideout and Stefanis, 2002) and therefore, we determined levels of high molecular 
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weight poly-ubiquitinated proteins (200 kDa and 20 kDa) following MG-132 treatment.   As 

shown in Fig. 2B, MG-132 treatment resulted in rapid accumulation of poly-ubiquitinated 

proteins as determined by Western blot.  Densitometric analysis of the level of ubiquitinated 

roteins (20-200 kDa) revealed the accumulation of the poly-ubiquitinated proteins within 

MG-132 Induces TH -positive Neuronal Loss in Primary Mesencephalic Cultures 

TH neurons in primary nigral dopaminergic neuronal cultures.  Primary mesencephalic 

p

the first 10 min of MG-132 treatment and continued to increase over time.  However, the 

percent increase was not statistically different from the 10 min time point. β-Actin was used 

as the internal control for equal protein loading (Fig. 2B).   

 

MG-132 Treatment Induces Caspase-3 Activation and Apoptotic Cell Death 

To determine whether caspase mediated apoptotic cell death plays any role in MG-

132-induced dopaminergic cell death, we measured caspase-3 enzyme activity and DNA 

fragmentation in MG-132-treated N27 cells.  As shown in Fig. 3A, exposure to 5 µM MG-

132 resulted in a time-dependent increase in caspase-3 enzyme activity, with significant 

activation occurring at between 90 to 180 min (10- to 25-fold, p<0.001).  Exposure to 5 µM 

MG-132 for 2 hr also resulted in a 12-fold increase in DNA fragmentation as measured by an 

ELISA-sandwich assay (Fig. 3B).  These results clearly demonstrate that treatment with the 

proteasomal inhibitor MG-132 dramatically activates apoptotic cell death in dopaminergic 

neuronal cells. 

 

Next we extended our neurotoxic studies with N27 dopaminergic clonal cells to 

mouse primary neuronal cultures.  We determined the effect of MG-132 on the survival of 
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dopaminergic neuronal culture cells were exposed to 5 µM MG-132.  After a 5 hr exposure, 

primary neurons were fixed and stained for tyrosine hydroxylase (TH), a marker for 

dopami ergic neurons. MG-132 treatment profoundly altered the morphology of 

dopaminergic neurons.  As shown in F bodies of TH-positive neurons shrunk 

urons was observed following MG-132 treatment in primary cultures.  

Quantit

to 

dopami ergic neurons in primary mesencephalic cultures.  

Stereotaxic Injection of MG-132 Causes Striatal Dopamine Depletion and Promotes 

Dopaminergic Neuronal Loss in Mouse Substantia Nigra 

Finally, we examined whether inhibition of proteasomal function in the nigra 

promotes dopaminergic neuronal degeneration in animal models.  Vehicle and MG-132 (0.4 

µg) were stereotaxically injected into the left and right mouse substantia nigra as depicted in 

Fig. 5A, and after 12 days the brains were dissected from the animals and mid brain sections 

were immunostained for TH.  As depicted in Fig. 5B, a marked decrease was observed in the 

number of TH+ neurons in the MG-132-injected sides of the substantia nigra as compared to 

vehicle-injected control sides. Quantitative analysis of TH positive neurons indicated that 

microinjection of MG-132 to substantia nigra led to significant reduction in the number of 

n

ig. 4A, cell 

following MG-132 exposure, indicating ongoing degeneration.  Also, a significant loss of 

dopaminergic ne

ative analysis revealed about 60% loss of TH positive cell count in MG-132-treated 

cells as compared to untreated primary neurons (Fig. 4B). However, quantification of the 

total population of cells present in the mesencephalic culture showed only 37% reduction, 

which is less profound than the loss of TH neurons in the culture (Fig 4 C). These 

observations suggest that proteasomal inhibition can induce neurotoxic insult 

n
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nigral TH neurons (Fig 5C, p<0.05), whereas the reduction in the number of Hoechst stained 

nuclei present in the same nigral regions was not statistically significant (Fig. 5D).  Further, 

consistent with the nigral dopaminergic degeneration, HPLC analysis of striatal tissue 

revealed a significant depletion in striatal dopamine (Fig. 6A) and its metabolites DOPAC 

(Fig. 6B) in the MG-132 injected ipisilateral side as compared to the vehicle injected 

contralateral side.   

 

DISCUSSION 

or MG-132 

impairs

oncurrent loss of nigral dopaminergic neurons, and suggest that inhibition of 

nigral proteasome function can induce nigral dopaminergic degeneration similar to that in 

Our studies in cell culture models demonstrate that the proteasome inhibit

 ubiquitin-proteasome function (UPS) in dopaminergic neuronal cells and promotes 

degeneration of dopaminergic neurons in mouse mesencephalic primary culture.  The time 

course study revealed that MG-132 induced inhibition of proteasomal activity and 

accumulation of UPS activity before cell death, suggesting that the impairment in ubiquitin 

proteasome-mediated protein degradation possibly triggers the neurotoxic response in 

dopaminergic neuronal cells.  Activation of caspase-3 and DNA fragmentation during MG-

132 treatment indicate that proteasomal dysfunction triggers the apoptotic cell death cascade.  

Our results from microinjection of MG-132 show a significant depletion of dopamine and 

DOPAC with c

Parkinson’s disease. 

Several lines of recently generated evidence suggest that dysfunction of UPS is one of 

the causal factors of PD. Studies with postmortem brain samples revealed reduced 

proteasomal activities (McNaught et al., 2003) and selective loss of α-subunits of proteasome 
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in the substantia nigra of PD patients  (McNaught et al., 2002a; McNaught et al., 2002b).  

Mutation of some genes involved in the UPS degradation pathway, including parkin, Uch-

L1, and α-synuclein, has been found in familial PD (McNaught et al., 2003; McNaught and 

Olanow, 2003; Moore et al., 2005).  A pathogenic role of a dysfunctional ubiquitin-

proteasome system in PD is supported by the inhibition of proteasomal activity in cell culture 

models of PD by dopamine (Keller et al., 2000), 6-OHDA (Elkon et al., 2004), MPP+ 

(Sawada et al., 2004) and rotenone (Hoglinger et al., 2003), and wild-type and mutant human 

α-synucleins (Dawson and Dawson, 2003; Betarbet et al., 2005).  Also, we recently showed 

that α-synuclein overexpression decreases proteasomal activity and sensitizes dopaminergic 

N27 neuronal cells to environmental neurotoxin-induced apoptotic cell death (Sun et al., 

2005).   

The relationship between UPS dysfunction and apoptotic cell death in dopaminergic 

e accumulation of intracellular 

ubiquitinated proteins.  This rapi

+

neuronal loss in a primary mesencephalic culture within 5 hr is comparable to the neuronal 

neurons has not been clearly studied in detail.  In the present study, we show that MG-132 

inhibits proteasomal activity within 10 min, resulting in th

d inhibition of UPS triggers a dramatic activation of the key 

effector proapoptotic protease caspase-3 and DNA fragmentation.  In a recent study, we 

observed about three-fold activation of caspase-3 and DNA fragmentation after 24 hr of 

treatment with 300 µM MPP , a Parkinsonian toxin, in N27 cells (Kaul et al., 2003; Kaul et 

al., 2005a).  In comparison, in the present study, we observed an approximate 25-fold 

increase in caspase-3 activity and a 12-fold increase in DNA fragmentation following 2 hr of 

5 µM MG-132 treatment in N27 cells, suggesting that dopaminergic neuronal cells appear to 

be sensitive to proteasome inhibition.  Also, the magnitude of MG-132-induced TH positive 
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loss observed following 10 µM MPP+ treatment for 24 hr, further supporting the increased 

vulnerability of nigral dopaminergic neurons to UPS dysfunction.  It’s still a controversy as 

to whether dopaminergic neurons are more susceptible to UPS dysfunction.  Findings of the 

mutation of Parkin, UCH-L1 in familial PD, protein aggregation and accumulation of 

neurotoxic PaeR as Parkin substrate in dopamine neurons (Yang et al., 2003), as well as the 

increased sensitivity of dopaminergic neurons to oxidative stress upon proteasome inhibition 

(Mytilineou et al., 2004), suggests particular vulnerability of dopamine neurons to 

proteasome inhibition.  The cellular m rlying the exacerbated toxicity from 

proteas

ereotaxic injection of MG-132 into substantia nigra led to significant 

depleti

echanisms unde

omal inhibition in dopaminergic neurons are not currently known.  A recent study 

demonstrated that mesencephalic dopaminergic neurons are particularly susceptible to 

proteasome inhibition-induced apoptosis due to failure to upregulate the expression of 

chaperone proteins HSP70 in response to proteolytic stress (Rideout and Stefanis, 2002).  

The HSP70 upregulation failure might underlie the susceptibility of dopamine neurons to 

proteasome inhibition, which has also been observed by others (McNaught et al., 2002a; 

McNaught et al., 2002b; Petrucelli et al., 2002).  It is also possible that a number of other 

signaling proteins may play a role in the proteasome inhibitor induced cell death because the 

levels of proapoptotic and anti-apoptotic proteins are tightly regulated by UPS (Dawson and 

Dawson, 2003; Hattori and Mizuno, 2004; Ross and Pickart, 2004; Layfield et al., 2005).  

Further examination of the effect of MG-132 on nigral dopaminergic degeneration in 

vivo indicated that st

on of ipisilateral striatal dopamine and its metabolite DOPAC level, which is 

accompanied by profound loss of dopamine neurons at MG-132 injected substantia nigra 

regions (Fig. 5 B, panel a).  Alternatively, the quantitative analysis of the nuclei present in 
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the nigral sections indicated that the percentage loss of nuclei (Figure 5B and D) was less 

profound compared to that in TH neurons (Fig. 5B and C) indicating enhanced vulnerability 

of dopaminergic neurons to proteasomal dysfunction.  Our data clearly shows that 

proteasomal inhibition by single injection of the proteasome inhibitor MG-132 can cause 

dopaminergic neuronal death in substantia nigra.  Recently, McNaught et al. (2004) 

demonstrated that repeated systemic administration of the naturally occurring proteasome 

inhibitor epoxomicin and a synthetic proteasome inhibitor known as PSI in rats can replicate 

several features of PD including delayed motor deficits, a progressive nigrastriatal 

degeneration and protein aggregation (McNaught et al., 2004).  This will be a highly useful 

animal model to study the pathogenic mechanisms of PD; however, the model is yet to be 

easily replicated in other laboratories.  There are some inconsistencies observed between in 

vitro and animal studies with regard to the neurotoxic effect of proteasome inhibitors.  A 

recent study showed that injection of proteasome inhibitors protected dopamine neurons from 

the neurotoxic effect of 6-OHDA in a rat model (Inden et al., 2005), while treatment with 

proteasome inhibitors in PC12 cells potentiated 6-OHDA toxicity (Elkon et al., 2004).  In the 

present study, the in vitro results obtained in N27 cells and animal studies consistently 

showed that proteasome inhibition can promote dopaminergic degeneration. 

In conclusion, our results demonstrate that proteasomal inhibition by MG-132 

induces neurotoxicity in nigral dopaminergic neurons both in cell culture and animal models 

and that proteasome inhibition in dopaminergic neuronal cells activates the apoptotic cascade 

to induce cell death.  Also, our results suggest that proteasomal dysfunction may play a key 

role in the dopaminergic degenerative processes associated with Parkinson’s disease.  
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FIGU

Cytotoxicity of MG-132 in dopaminergic neuronal (N27) cells. 

variou ell death was expressed 

from 

RE 1. 

 

 

 

 

 

 

 

Fig. 1.  

N27 cells were treated with 5.0 µM MG-132.  The neurotoxicity was assessed at 

s time points over a 7 hr period using the Sytox green assay.  C

as the percentage of the time-matched control groups.  The results represent mean ± S.E.M. 

six samples in each group (**p<0.01, ***P<0.001).   
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FIGURE 2. 

 

Fig. 2.  MG-132 causes rapid proteasome inhibition and accumulation of ubiquitinated 

proteins. 

A: Proteasome inhibition.  Proteasomal activity was measured 10 min after N27 cells 

were exposed to 5.0 µM MG-132 using the fluorogenic substrate Suc-LLVY-AMC.  

Enzymatic activity was normalized by protein concentration and expressed as the percentage 

of vehicle-treated cells.  The data represent mean ± S.E.M. from six samples in each group 

(***p<0.001, Student’s t-test).  B: Accumulation of ubiquitinated proteins. N27 cells were 

exposed to 5.0 µM MG-132 for various durations ranging from 10 to 150 min as indicated.  

Cytosolic fractions were prepared as described in the method section, resolved on 8% SDS-

PAGE and blotted with ubiquitin antibody.  Membranes were also reprobed with β-actin 

antibody to ensure equal protein loading.   
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FIGURE 3. 

 

Fig. 3  MG-132 induces apoptosis in dopaminergic neuronal cells. 

A: Caspase-3 activity.  Cells were treated with 5.0 µM MG-132 and then caspase-3 

activity was measured with the fluorogenic substrate Ac-DEVD-AFC.  The results represent 

mean ± S.E.M. from eight samples. Statistical significance between the control group and 

each treatment group was determined by ANOVA followed by Dunnett's post-test 

(***p<0.001).  B: DNA fragmentation.  DNA fragmentation was assayed using the ELISA 

assay in N27 cells treated with 5.0 µM MG-132 for 120 min.  Data were expressed as the 

percentage of the control group.  Values represent mean ± S.E.M. from eight individual 

samples.  ***p<0.001. 
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FIGURE 4. 

 

 

 

 

 

 

 

 

 

Fig. 4.  MG-132 induced morphological changes and dopaminergic neuronal loss in 

primary mesencephalic culture. 
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A: Immunostaining for tyrosine hydroxylase (TH).  After 6 to 7 hr in culture, the 

primary mesencephalic culture was treated with 5.0 µM MG-132 for up to 5 hr. 

Immunocytochemistry was performed using mouse monoclonal TH primary antibody and 

Cy3 conjugated secondary antibody.  B: Quantification of TH positive neurons 

(approximately 35-40 TH neurons observed per each well in control group). TH positive 

neurons present in control and MG-132 treated samples were visualized with CY3 under 10 

X objective and quantified using Metamorph image analysis software.  Data were expressed 

as the percentage of the control group.  Values represent mean ± S.E.M. from 5-7 individual 

litter brains.  ***p<0.001.  C: Quantification of mesencephalic culture. Nuclei in the 

mesencepha sent in 12 

random

lic culture were stained with Hoechst 33342, and the nuclei pre

ly selected visual fields were quantified under 20 X objective (p<0.05).   
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FIGURE 5. 
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Fig. 5  Intranigral stereotaxic injection of MG-132 causes dopaminergic 

neuronal loss in a mouse model. 

A. Schematic diagram depicting the stereotaxic microinjection site into the left (L) 

and right (R) substantia nigra (Bregma AP, -3.2 mm, ML, ± 2.0 mm, DV, -4.7 mm). Red 

lines represent injection routes, red arrows indicate the needle distance, and the blue arrow 

indicates the site of injection (substantia nigra). Immunohistochemical analysis of nigral 

sections. MG-132 (0.4 µg in 4 µl) and vehicle were injected stereotaxically into mouse 

substantia nigra at right and left sides, respectively.  Twelve days following the injection, 

brains were fixed and processed for TH immunohistochemical analysis as described in the 

methods section. B: Visualization of nigral TH neurons and nuclei under 10X objective; C: 

Quantification of TH neurons in nigral sections, *p<0.05, n=5; D. Quantification of nuclei 

present in the nigral regions (n=4).   
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FIGURE 6. 

 

Fig. 6. Striatal dopamine DOPAC depletion following microinjection of MG-132 

to substantia nigra. 

Mouse striatums were isolated from intranigral vehicle injected or MG-132 injected

sides and then analysis of A. dopamine and B. DOPAC were performed using HPLC

Dopamine and DOPAC levels were approximately 15 ng and 5.0 ng per mg weight nigral 

 

.  

tissue respectively.  The data were expressed as the percentage of the vehicle control group.  

Data represent mean ± S.E.M. N=6, ***p<0.001.  
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CHAPTE  

OVERLOADING STRES  SITES LYS-48 AND 63 

DIF

eature of many neurodegenerative conditions including 

Parkinson’s disease.  Nevertheless, cellular mechanisms underlying polyubiquitin 

overloading stress-mediated cell death remain enigmatic.  Herein, we report a novel finding 

that polyubiquitinated proteins preferentially accumulate in mitochondria during ubiquitin 

stress, and that polyubiquitin sites Lys-48 and 63 are key determinants of cell survival and 

death during ubiquitin stress.  Exposure to the proteasome inhibitor MG-132 caused a rapid 

accumulation of polyubiquitinated proteins in mitochondria of a dopaminergic cell model of 

Parkinson’s disease, indicating mitochondria as early sensors of ubiquitin stress.  

Overexpression of ubiquitinK48R mutant effectively rescued cells from MG-132-induced 

mitochondrial apoptosis without altering antioxidant status of cells, whereas ubiqutinK63R 

mutant augmented the proapoptotic effect of MG-132.  Together, these findings yield novel 

insights into cellular mechanisms of ubiquitin stress in dopaminergic neuronal cells.

R IV.  MITOCHONDRIA ARE KEY SENSORS OF POLYUBIQUITIN

S AND POLYUBIQUITINATION

FERENTIALLY REGULATE THE STRESS INDUCED APOPTOTIC CELL 

DEATH 

 

Faneng Sun, Qinglin Li, Vellareddy Anantharam, Arthi Kanthasamy and Anumantha G. 

Kanthasamy 

 

ABSTRACT 

Impairment of ubiquitin proteasome function results in accumulation of 

polyubiquintinated proteins eventually culminating overloading of polyubiquitin, which has 

recently been recognized as a key f
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Introduction 

Ubiquitin proteasome system (UPS) is a vital cellular machinery responsible for 

degradation of intracellular proteins participating in diverse biological processes (Glickman 

and Ciechanover, 2002). Proteolysis by UPS involves polyubiquitination of target proteins 

and proteolytic degradation of polyubiquitin tagged target proteins by 26 S proteasome. For 

polyubiquitination, ubiquitin first forms isopeptidyl bond between its carboxyl group of the 

glycine 76 and the ε-amino group of an internal lysine residue of the target proteins. Then, a 

second ubiquitin is covalently linked to the internal lysine of the preceding ubiquitin via 

isopeptidyl bond. Progressive addition of the ubiquitin results in the extension of 

polyubiquitin chains.  All 7 internal lysine residues of ubiquitin could potentially serve as 

polyubiquitination sites, with K48 and K63 polyubiquitin being two most abundant forms 

(Pickart and Eddins, 2004). K48 polyubiquitin functions to target the substrates to 26 S 

proteasome for degradation; whereas K63 polyubiquitin is involved in signal pathways other 

than proteolysis (Pickart and Fushman, 2004).  

Parkinson’s disease is a primary neurodegenerative movement disorder, 

pathologically characterized by selective loss of nigral dopamine neurons.  The supporting 

evidence for pathogenic role of mitochondria dysfunction includes modeling PD with 

mitochondria complex I inhibitors and mitochondria complex I deficit in the substantia nigra 

and platelet of PD patients (Abou-Sleiman et al., 2006). Mitochondria dysfunction has been 

suggested to result in excessive free radicals production and thus oxidative injury (Bove et 

al., 2005).  In addition, PD genes PINK1,  DJ-1 and Parkin participate in maintaining 

mitochondria normal function or dealing with oxidative stress (Abou-Sleiman et al., 2006).  
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Another direction towards dopamine degeneration is the defective ubiquit

roteasome degradation, as PD genes Parkin and Uch-L1 function in the UPS pathway (Sun

al., 2007). Compromised proteasome function was also reported in the substantia nigra o

 with spora

in 

p  

et f 

post mortem brain samples from subjects dic PD (Olanow and McNaught, 2006).  

Currently, little is known how UPS impairme t and mitochondria dysfunction are mutually 

rel  I 

inhibitors (Hoglinger et al., 2003) and p chondria pathology in cells exposed to 

low dose of proteasome inhibitor (Sullivan et al., 2004). Other evidence for the essential 

 maintaining normal mitochondria activities includes functional and structural 

preserv

od

me

n

ated in dopamine neuron death, despite proteasomal inhibition by mitochondria complex

rofound mito

roles of UPS in

ation of mitochondrial function by Parkin (Clark et al., 2006; Park et al., 2006), 

down-regulation of functionally important mitochondrial proteins in Parkin knockout mice 

(Palacino et al., 2004).  Neuroprotection against a broad range of neurotoxins by Parkin has 

been extensively reported (Review, Sun et al., 2007). To ascertain how the compromised 

UPS degradation affects the mitochondria related cell death, we characterized ubiquitination-

related biochemical alterations of mitochondria and how this is potentially involved in 

modulation of dopaminergic neuronal cell viability in this study.   

  

Results and discussion 

Proteasome inhibitor MG-132 activates mitochondria apoptosis 

Varieties of proteins m ulating apoptosis (IAPs, Mcl-1, flip, Bax, Smac, P53 etc), 

have been shown to the proteolytic substrates of UPS (Zhang et al., 2004), and proteaso  

inhibitor could be either anti-apoptotic or pro-apoptotic depending on the cellular context. 

Study by Rideout showed that dopamine neurons sensitively undergo apoptosis in the 
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mesencephalic culture upon proteasomal inhibition (Rideout et al., 2005). In this study, we 

found t

ome inhibition affects mitochondria function 

and mi

 

gradient to improve the purity.  Western blot analysis of the fractions collected showed that 

hat exposure to proteasome inhibitor MG-132 activated the mitochondria apoptotic 

cascades in mesencephalic rat dopaminergic neuronal cells (N27 cells), as manifested by the 

mitochondrial release of cytochrome c and the activation of initiator caspase-9 (Fig. 1B, C), 

which was preceded by the rapid and dramatic proteasomal inhibition 5 min after exposure to 

MG-132 (Fig. 1A). 

 

Proteasome inhibition by MG-132 causes mitochondrial accumulation of ubiquitinated 

proteins  

Expression of Parkin, a small portion of which is associated with mitochondria,  

prevents neuronal cells from mitochondria-mediated apoptosis (Darios et al., 2003), 

indicating the essential roles of UPS in preserving normal mitochondria function, consistent 

with the gross mitochondria pathology revealed in the Parkin knockout mice (Palacino et al., 

2004). However, it remains unclear how proteas

tochondria apoptosis in dopaminergic neuronal cells.  Western blot analysis for the 

mitochondria in this study yielded novel findings, which, for the first time, demonstrated 

dramatic elevation of the polyubiquitinated protein in the mitochondria from the cells 

exposed to proteasome inhibitor (Fig. 2A). It’s conceivable that elevated ubuiquitin 

conjugates in the mitochondria resulted from the accumulation of K48 polyubiquitin on the 

undegraded proteins, as it happened following proteasome inhibition. Since the crude 

mitochondria used for the Western blot analysis likely contained contamination of other 

vesicles such as lysosome, the crude mitochondria were further separated with sucrose
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mitoch

olling, 2003) implies that 

mitochondrial proteins could be the substartes for ubiquitination. An in vitro cell free 

solated mitochodnria indicated that ubiquitin immunoreactivity 

 the ubiquitnation could 

not pre

ondria marker COX IV are predominantly detected in the fraction 3 to 5, especially in 

the fraction 4 (Fig. 2B), the interface approximately half down the gradient solutions, which 

is consistent with previous studies utilizing similar mitochondria purification procedure (Kim 

et al., 2004). Immunobloting with ubiquitin antibody showed that ubiquitin conjugate of high 

molecular weight was distributed in a pattern similar to COX VI, with strongest 

immunoreactivity revealed in fraction 4 (Fig. 2B). This result clearly suggested that 

polyubiquitinated proteins were mainly present at mitochondria.  Likely, mitochondrial 

accumulation of ubiquitin conjugates represents a key early cellular response during neuronal 

stress, since ubiquitin conjugates have also been reported to accumulate in the mitochondria 

of cortical and especially hippocampus neurons following cerebral ischemia (Hayashi et al., 

1992). Mitochondria ubiquitination also appears to be a key cellular event maintaining 

mitochondria inheritance by targeting the parental sperm mitochondria for destruction after 

fertilization.  

The novel finding of mitochondrial accumulation of polyubiquitinated proteins, taken 

together with presence of several mitochondria assosicated E3 ligase (Darios et al., 2003; 

Yonashiro et al., 2006) and deubiquitinating enzyme (Kinner and K

ubiquitination assay for the i

dramatically increased in the mitochondria (Fig. 2 C, lane 4), while

ceed without fraction A and B, which contain E1, E2 and E3 (lane 3). Interestingly, 

we found that the substitution for wt ubiquitin with ubiquitinK48R partially reduced 

mitochodnrial ubiquitin immunoreactivity, suggesting that appreciable portion of 

ubiquitination occured as the resulte of the extension of K48 polyubiquitin chains (lane 5 and 
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6). In consistence, several mitochondrial proteins have been shown to undergo ubiquitnation 

modification, such as prohibitin (Thompson et al., 2003),  aconitate hydratase, ATP synthase 

alpha chain, isocitrate dehydrogenase precursor, aspartate aminotransferase precursor, malate 

dehydrogenase precursor etc (Weekes et al., 2003), mitochondrial protein hFis1 and Drp1 

(Yonashiro et al., 2006).  Likely, the mitochondrial translocation of the ubiquitinated 

cytosolic proteins also contributes to the observed elevation of mitochondrial ubiquitin 

conjugates. Recent study by Marchenko et al showed that monoubiquitnation of p53 

).  

promotes its mitochondrial translocation and enhances mitochondria apoptosis (Marchenko 

et al., 2007

 

Establish cells stably expressing His6-tagged wild type, K48R or K63R ubiquitin/GFP 

In light of crucial roles of UPS in preserving physiological function of mitochondria 

and suppression of mitochondria apoptosis by E3 ligase Parkin, it’s intriguing to ascertain 

how mitochondrial accumulation of K48 polyubiquitinated proteins affects mitochondria 

apoptosis following proteasome inhibition. First of all, we established the cells stably 

expressing His6-tagged wt, or mutant ubiquitin. The plasmids encoding His6-ubiquitin/GFP 

fusion proteins were kind gifts from Dr. Gray, who developed the innovative strategy to 

construct a linear fusion of His6-ubiquitin and GFP, as ubiquitin is natively expressed either 

as fusion or polyubiquitin proteins, which are post-translationally processed to release 

functional monomer ubiquitin.  The expressed His6-ubiquitin/GFP fusion proteins have been 

previously shown to be precisely processed to yield functional His6-ubiqitn and GFP (Hyun 

et al., 2004; Tsirigotis et al., 2001). To achieve stable expression and constitutive expression, 

the coding sequence for His6-ubiquitin/GFP (wt, K48R or K63R ubiquitin) was subcloned 
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into pCEP4 vector with CMV promoter for mammalian expression. Fig. 3A showed that after 

prolonged hygromycin B screening, the majority of cells derived from single clones are 

positive as manifested by GFP expression at a notable level. Analysis of the His6-tagged 

proteins enriched from the transfected cells by SDS-PAGE and Commassie blue stain 

revealed the presence of His6-tagged ubiquitin only in transfected cells, with comparable 

expression levels observed among cells transfected with wt ubiquitin or its mutants. This also 

corroborates the precise processing of the fusion proteins into His6-tagged ubiquitin, as 

reported previously (Hyun et al., 2004; Tsirigotis et al., 2001). 

 

Determination of mitochondrial superoxide and cellular glutathione 

Mitochondria deficit/oxidative stress represents another direction towards the 

pathogenesis of PD besides dysfunctional UPS (Abou-Sleiman et al., 2006; Bove et al., 

2005). Impaired mitochondrial electron transfer capacity and increased ROS production have 

been previously reported in the neuronal cells after chronic exposure to proteasome inhibitor 

(Sullivan et al., 2004).  His6-ubiquitnK48R expressing cells were reported to suffer from 

elevated oxidative damage (Hyun et al., 2004). In this study, we analyzed mitochondria 

superoxide production and cellular GSH level in 3 lines of the stable cells.  Confocal analysis 

of mitochondria superoxide using MitoSox red showed that neither the expression of 

ubiquitin mutants nor MG-132 exposure significantly altered mitochondrial ROS generation, 

comparing to wt ubiquitin (Fig. 4A). This agreed with the similar glutathione levels detected 

in 3 different types of cells (Fig. 4B). The data indicate that expression of mutant ubiquitin 

using pCEP4 vector does not impair the intracellular redox status or alter mitochondria ROS 

generation in the dopaminergic neuronal cells.     

 



 132 

 

Effect of K48R mutant human ubiquitin on mitochondria apoptosis    

To determine how mitochondrial accumulation of K48 polyubiquitinated proteins 

affects MG-132-induced apoptosis, mitochondria-mediated caspase activation was examined 

in the cells expressing His6-tagged wild type, K48R or K63R ubiquitin/GFP. As shown in 

Fig. 5A, MG-132 treatment triggered profound mitochondrial release of cytochrome c in the 

wt and K63R His6-uviquitin cells; whereas only minimal elevation of cytosolic cytochrome c 

was noted in K48R His6-ubiquitin cells. Assembly of cytochrome c with other cofactors to 

form complex of apoptosome is the key event activating initiator caspase-9. Consistent with 

less cytochromc c release, activation of caspase-9 and -3 and DNA fragmentation as endpoint 

o 

cells ex

event of apoptotic cell death were significantly attenuated in ubiquitinK48R cells compared t

pressing wt ubiquitin (Fig 5B, C, D), suggesting the assembly of K48 polyubiquitin 

chains could have causal effect on activation of mitochondria-mediated apoptosis. It’s of note 

that anti-apopotic effect of the ubiquitinK48R is Lys48 ubiquitination site specific, since 

ubiquitinK63R expression renders the dopaminergic cells more susceptible to the MG-132 

induced apoptosis. The Lys63 polyubiquitin chains play roles in the cellular events such as 

DNA damage repair, NFκB activation (Pickart and Fushman, 2004). Presumably, 

interference with the cellular processes by ubiquitinK63R poses additional neuronal stress 

predisposing cells to apoptosis. In consistence with the observed proapoptic effect of 

ubiquitinK63R, study by Tsirigotis has previously showed that stable expression of 

ubiquitinK63R sensitizes mouse HT4 neuroblastoma cells to the neurotoxicity of cadmium and 

canavanine (Tsirigotis et al., 2001). However, increase in neuronal resistance of ubiquitinK48R 

expressing cells is opposite to previous reports, which showed that expression of 
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ubiquitinK48R renders cells more vulnerable to neurotoxins (Hyun et al., 2004; Tsirigotis et 

al., 2001). Although the reasons for the apparent difference remain elusive, the distinct effect 

could reflect the fact that the roles of ubiquitinK48R on the cell viability depend on the cellular 

context. Alternatively, different promoters (human ubiquitin promoter vs CVM promoter) 

utilized for ubiquitinK48R expression likely accounts for discrepancy, as exogenously 

introduced human ubiquitin promoter could possibly compete for the translational regulatory 

machinery for endogenous ubiquitin expression, thus reduces availability of endogenous 

native ubiquitin and predispose cells to the subsequent neuronal insults.  It’s of note that the 

neuroprotection of ubiquitinK48R is reproducible, since expression of His6-tagged yeast 

ppresses caspase-9 

and -3 

CBP level was observed in the N27 cells 

ubiquitinK48R using lentivirus-mediated transfection also significantly su

activation in N27 cells following exposure to MG-132 (Data not shown).   

 Elevation of mitochondria ubiquitin conjugates and suppression of mitochondria 

apoptosis by ubiquitinK48R together suggest that preferential mitochondrial accumulation of 

ubiquitinated proteins could be proapoptotic. This agrees with previous studies 

demonstrating that suppression of ubiquitination by dominant negative yeast ubiquitin 

conjugating enzyme cdc34 (Ubc3) protects cortical neurons from proteasome inhibitor-

induced apoptosis (Rideout and Stefanis, 2002).  However, it remains to determine whether 

ubiquitination of mitochondria proteins could be a direct causal event sufficient to activate 

mitochondria apoptosis, since it’s also likely that activation of mitochondria apoptosis 

requires mitochondrial translocation of some ubiquitinated cytosolic factors, such as the p53 

(Marchenko et al., 2007).  Elevated CBP level, due to its insufficient UPS degradation, was 

hypothesized to underlie the neuroprotection of ubiquitinK48R in transgenic mice (Tsirigotis et 

al., 2006). However, no appreciable change in 
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transfected with His6-ubiquitinK48R, although proteasome inhibition by MG-132 effectively 

iquitin dependent 

proteas

increased the cellular CBP level (Data not shown), consistent with ub

ome degradation of CBP (Sanchez-Molina et al., 2006).   

This study revealed the preferential accumulation of polyubiquitinated proteins in the 

mitochondria and suppression of mitochondria apoptosis by His6-ubiquitinK48R in 

dopaminergic neuronal cells exposed to proteasome inhibitor MG-132. The elevation of 

mitochondrial ubiquitin conjugates is attributed to failure in proteasomal removal of K48 

polyubiquitin tagged proteins in mitochondria, as this occurs as consequence of proteasome 

inhibition.  Mitochondrial accumulation of K48 polyubiquitin appears to actively contribute 

to the activation of mitochondria apoptosis cascades following proteasome inhibition, since 

expression of His6-tagged human or yeast ubiquitinK48R, albeit in two different vectors, 

confers similar neuronal resistance to MG-132 induced apoptosis. Interestingly, the 

neuroprotection of ubiquitinK48R is polyubiquitination site specific, since expression of 

ubiquitinK63R, which prevents the K63 polyubiquitin chain extension, renders dopaminergic 

neuronal cells more susceptible to MG-132-induced mitochondria apoptosis. Future effort 

will focus on identifying mitochondria substrates of UPS, and thus deciphering the molecular 

mechanism of mitochondria apoptosis upon proteasome inhibition in dopaminergic neuronal 

cells. Unraveling the relationship between UPS impairment and mitochondria apoptosis in 

dopamine neurons will facilitate the development of manipulating strategies for PD.    
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Materials and methods 

Cell culture 

The immortalized rat mesencephalic dopaminergic neuronal cells (N27 cells) were grown in 

RPMI 1640 medium with 10% FBS, 2 mM L-glutamine, 50 units penicillin, and 50 µg/ml 

streptomycin (Sun et al., 2006).  

 

Plasmid construction and stable expression 

The coding sequence for His6-ubiquitin / GFP in the vectors from Dr. Gray (Ottawa Health 

Research Institute, Ontario, Canada) was subcloned into pCEP4 vector at Xho I and Hind III 

sites. AMAXA kit was used to transfect the constructs in N27 cells.  Single clones were 

picked up and screened with hygromycin for stable expression.   

 

nd DNA fragmentation a enzymatic assays for proteasome and caspases Quantification of 

DNA fragmentation using ELISA kit and assay for chymotrypsin-like proteasomal activity,  

caspase-3 and caspase-9 activities using fluoregenic substrates were conducted as described 

previously (Sun et al., 2006).  

 

Subcellular fraction, mitochondria purification and Western blot 

N27 cells were homogenized in mitochondria isolation buffer (MIB, 250 mM sucrose, 1 mM 

EDTA, 50 mM Tris, 1 m M DTT, 1 mM PMSF and protease inhibitors, pH 7.4) with a glass 

Dounce homogenizor. The resulting supernatant (1,000 g x 10 min) of homogenates was 

centrifuged at 10,000 x g at 4 °C for 25 min to obtain pellet and supernatant as crude 

mitochondria and cytosolic fraction respectively (Qin et al., 2001). To improve purity, crude 
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mitochondria suspension was laid on the top of sucrose gradient (2.0 ml of 1.2 M and 1.6 M 

sucrose) and centrifuged at 40,000 x g for 1 h at 4°C(Kim et al., 2004).  Fractions were 

collected for Western blot analysis of cytochrome c (Pharmingen), β-actin, (Sigma), COX 4 

(Invitro

ctively 

targeted to mitochondria. Oxidization product of MitoSOX Red by superoxide stains 

mitochondria DNA and exhibits red fluorescence. N27 cells are incubated with MitoSOX 

Red (5.0 µM), then washed with HBSS before confocal analysis (Nikon, Model TE-2000U).  

gen), and ubiquitin (DAKO).    

 

Analysis of His6-ubiquitin expression 

The cells were homogenized in buffer (HEPES 20 mM, NaCl 300mM, imidazole 5.0 mM 

and protease inhibitors, pH 8.0). The supernatant was incubated with Proaffinity Ni-IMAC 

resin (Bio-Rad), and the bounded proteins were eluted and separated in SDS-PAGE for 

Commassie blue staining.   

 

In vitro ubiquitination 

Ubiquitination kits (Boston Biochem) contains energy source, ubiquitin and ubiquitination 

enzymes. Mitochondria (80 µg) were incubated with fraction A (9.6 µg) and B (9.6 µg), 

ubiquitin aldehyde and ubiquitin (8.0 µg) for 2 hr at 30 ºC, then washed with MIB and lysed 

for Western blot analysis with ubiquitin and cytochrome c antibodies. 

 

Confocal analysis of mitochondria superoxide and assay for glutathione 

MitoSOX Red (Invitrogen), a mitochondrial superoxide indicator, could be sele
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Thiol-reactive probe monochlorobimane fluorescence after conjugated to thiols. To 

thione, cells were lysed with buffer (50 mM Tris, 1.0 mM EDTA, 10.0 mM 

/460 nm. 

 

lark, I.E., M.W. Dodson, C. Jiang, J.H. Cao, J.R. Huh, J.H. Seol, S.J. Yoo, B.A. Hay, and 

, and A. Brice. 2003. Parkin prevents mitochondrial swelling 

and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet. 

measure gluta

EGTA, and 1.0% NP-40, pH 7.4). The supernatant (16,000 g for 10 min) of cell lysates was 

incubated with 2.0 mM monochlorobimane for 15 min at 37 ºC. The fluorescence intensity as 

monitored with Ex/Em at 380 nm
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FIGURE 1 

 

Fig.1 Proteasome inhibitor MG-132 activates mitochondria apoptosis. 

chymotrypsin-lik

LLVY-AMC.  Enzym

Cytochrome c release.  N27 cells were treated with MG-132 for 45 or 90 min, and the level 

of cytosolic cytochrom  

C: Caspase

for 90 or 120 m

A: Proteasome inhibition.  After N27 cells were exposed to 2.5 µM MG-132 for 5 min 

e proteasomal activity was determined using the fluorogenic substrate Suc-

atic activity was expressed as the percentage of vehicle-treated control 

group.  The data represent mean ± S.E.M., N=6, ***p<0.001, (Student’s t-test). B: 

e c was examined by Western blot using cytochrome c antibody. The

membranes were reprobed and blotted with β-actin antibody as estimation of protein amount. 

-9 activation. Caspase-9 activity was assayed for the cells exposed to MG-132 

in with LEHD-AFC as substrate. The activity was expressed as the 
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percentage of vehicle-treated cells. N=6, ***p<0.001, (one-way ANOVA followed by 

t’s test to compare treatment groups with control group). Dunnet
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FIGURE 2 
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Fig.2 Proteasome inhibition by MG-132 causes mitochondrial accumulation of 

ubiquitinated proteins. 

A). Mitochondrial accumulation of ubiquitin conjugates. N27 cells were treated with 2.5 

µM MG-132 for 20, 40 or 60 min. The cells were collected and processed to obtain cytosolic 

fraction and crude mitochondria, both of which were resolved on SDS-PAGE and blotted 

with antibodies for ubiquitin, COX IV or β-actin. B). Sucrose gradient for mitochondria 

separation. Crude mitochondria isolated from N27 cells exposed to MG-132 (2.5 µM for 40 

min) were subjected to sucrose gradient separation as described in method section.  All the 
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fractions collected were resolved on SDS-PAGE and blotted with antibodies for ubiquitin 

and COX IV. C). Ubiquitination of mitochondrial proteins. The reaction was carried out 

by incubating mitochondria suspension (4.0 mg/ml) with ubiquitination enzymes (9.6 µg for 

fraction A and B), ubiquitin (8.0 µg), energy source and ubiqutin aldehyde. Mitochondria 

were then recovered from the reaction mixture for Western blot using antibodies recognizing 

ubiquitin or cytochrome c. 
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FIGURE 3 

 

Fig.3 N27 cells stably expressing His6-tagged wt, K48R or K63R ubiquitin/GFP. 

A). Fluo

indication of GFP expression, we ontrast images at the same visual 

rescence and phase contrast images of stable cells. Fluorescence images, as the 

re compared with phase c

field. It appears that majority of cells stably transfected the linear fusion of wt or mutant 

ubiquitin/GFP express GFP at notable levels. B): Comassie staining for enriched His6 

tagged proteins. His6-tagged proteins were enriched from 3 lines of stable cells using Ni-

IMAC resin, and resolved on SDS-PAGE before Commassie blue staining for visualization. 

The arrow indicated the protein of about 8.0 kD expressed in the cells, and the size roughly 

matches the molecular weight of His6-ubiquitin.  
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Fig. 4 Determination of mitochondrial superoxide and cellular glutathione. 

FIGURE 4. 



 148 

A): Live images of MitoSOX staining. Cells stably expressing His6-tagged wt, K48R or 

K63R ubiquitin/GFP are treated either with 2.5 µM MG-132 or 1.0 µM rotenone for 1 hr 

before the MitoSOX incubation. The live images were then analyzed with confocal 

microscopy. B): Cellular glutathione measurement. Cells expressing His6-tagged wt, 

K48R or K63R ubiquitin/GFP are treated with 2.5 µM MG-132 for 1 hr. The cellular 

glutathione level was determined with monochlorobimane as described in material and 

methods. Data represents results of 2 experiments in triplicate.   
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FIGURE 5 

 

 

 

 

 

 

 

 

Fig 5. Effect of ubiquitin mutant on mitochondria apoptosis. 
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A): Effect of ubiquitin mutants on cytochrome c release.  His6-tagged wt, K48R or K63R 

ubiquitin/GFP expressing cells are treated with 2.5 µM MG-132 for 45 min, and the cytosolic 

cytochrome c level was determined using Western blot analysis. The membranes were 

reprobed and blotted with β-actin antibody to ensure equal amount of protein loaded. B and 

C): Effect of ubiquitin mutants on caspase-9 and -3 activation. Three lines of stable cells 

were treated with MG-132 for 120 min. Caspase-9 and -3 activities were determined using 

LEHD-AFC and DEVE-AFC as substrate for caspase-9 and caspase-3 respectively. 

nzymatic activities were expressed as the percentage of vehicle-treated wt ubiquitin control 

roup. Data for caspase-9 represent results of 2 experiments with N=5 and 6 respectively; 

hereas the data for caspase-3 were derived from 3 experiments with N=5, 5 and 6 

espectively. D): Suppresion of MG-132-induced DNA fragmentataion by ubiquitinK48R 

ollowing exposure to 2.5 µM MG-132 for 120 min, cells were collected for analysis of 

NA fragmentation using ELISA kit described in materials and methods. Values were 

xpressed as the percentage of vehicle-treated wt ubiquitin control group (N=5). **p<0.01, 

**p<0.001 compared with control groups, ##p<0.01, ###p<0.001 (one-way ANOVA 

llowed by Bonferroni test to compare selected groups). 
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CHAPTER V. PROTEASOME INHIBITOR MG-132 INDUCES MITOCHONDRIA 
APOPTOSIS VIA PROTEOLYTIC ACTIVATION OF PKCδ IN DOPAMINERGIC 

NEURONAL CELLS 
 

Faneng Sun, Vellareddy Anantharam, Arthi Kanthasamy, Yongjie Yang and Anumantha G. 
Kanthasamy

 

ABSTRACT 

Impaired protein degradation by the ubiquitin proteasome system has been implicated 

in Parkinson’s disease; however, cellular mechanisms underlying dopaminergic degeneration 

following proteasomal dysfunction are yet to be characterized. The present study revealed 

that mitochondrial translocation of the proteolytically activated PKCδ played an essential 

role in the full activation of mitochondrial apoptosis in dopaminergic neurons (N27 cells) 

following exposure to the  proteasome inhibitor MG-132.  Activation of mitochondrial 

apoptosis was demonstrated by mitochondrial depolarization, mitochondrial release of 

proapoptotic proteins, and activation of caspase-9 and -3. Capase-3-dependent proteolytic 

activation of PKCδ, but not ROS, appeared to be the key mediator of dopaminergic apoptosis 

upon proteasome inhibition, since expression of kinase active catalytic fragment of PKCδ 

(PKCδ-CF) results in caspase-3 activation, and PKCδ-specific inhibitor rottlerin robustly 

alleviated caspase-9 and -3 activation following MG-132 exposure. Time-dependent 

accumulation of PKCδ-CF in the mitochondrial fraction possibly underlies its amplifying 

effect on  mitochondrial apoptosis, since mitochondria-targeted expression of PKCδ-CF 

triggers caspase-3 activation and DNA fragmentation as revealed by TUNEL staining. 

δ proteolytic cleavage by a caspase-3 cleavage-resistant 

mutant effectively attenuated MG-132-trig

Consistently, inhibition of PKC

gered caspase-9, -3 activation and DNA 
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fragmentation. Collectively, the present study demonstrates that PKCδ plays a key role in 

dopaminergic apoptosis following proteasome dysfunction. 

 

INTRODUCTION 

Ubiquitin proteasome system (UPS) is one of the major intracellular proteolysis 

systems responsible for degradation of damaged or misfolded proteins and proteins involved 

in various cellular processes including apoptosis. Polyubiquitination of target proteins, which 

is essential for their recognition and degradation by the 26S proteasome complex, involves a 

cascade of enzymes including ubiquitin activating enzyme, ubiquitin conjugating enzyme, 

and ubiquitin ligase (Glickman and Ciechanover, 2002). 

Parkinson’s Disease (PD) is the most common neurodegenerative movement disorder, 

affecting over 4 million people worldwide, and with prevalence increasing each year. The 

disease is characterized by the selective and progressive loss of nigral dopaminergic neurons, 

with the underlying neuronal death remaining elusive (Sun et al., 2007).  Lines of evidence 

for pathogenic roles of dysfunctional UPS in PD include reduced proteasomal activities, 

selective loss of proteasome subunits in substantia nigra of patients with sporadic PD, and 

utation of several genes involved in UPS degradation pathway in familial PD (Moore et al., 

2005; Olanow and McNaught, 2006; Sun et al., 2007).  Accumulation of ubiquitinated 

roteins in Lewy bodies, presumably due to failure of the clearance of target proteins by 

PS, is indicative of impaired UPS function in PD.  

Exposure to pharmacological inhibitors of the proteasome replicates some 

iochemical and pathological characteristics of PD in vitro or in vivo.  Proteasome inhibition 

as been previously shown to result in α-synuclein protein aggregation and cell death in 

m

p

U

b

h
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P  

2002).  Recently we and others d njection of proteasome inhibitors 

i  

(McNaught et al., 2002; Miwa et al., 2005; Sun et al., 2006).  However, the effect of 

systemically administered proteasome  dopaminergic degeneration is still 

unclear

medial hinge region (Steinberg, 2004). Proteolytic cleavage of PKCδ at the hinge region by 

C12 cells (Rideout et al., 2001), and in mesencephalic primary culture (McNaught et al.,

emonstrated that microi

nto substantia nigra or striatum effectively reproduces nigrostriatal dopamine degeneration

 inhibitors on

 (Sun et al., 2007).     

Parkinsonian neurotoxicants including 6-OHDA, dopamine and mitochondria 

complex I inhibitors MPP+ and rotenone have been shown to negatively affect proteasomal 

degradation in in vitro models of PD (Sun et al., 2007). A study by Betarbet and coworkers 

showed that chronic rotenone exposure led to reduction in proteasomal activity, and 

accumulation of α-synuclein and ubiquitinated proteins in the ventral midbrain during 

nigrostriatal degeneration in rats (Betarbet et al., 2006). MPTP exposure has been shown to 

cause severe UPS dysfunction and protein aggregation in the substantia nigra (Fornai et al., 

2005; Zeng et al., 2006). By using an in vitro model, we recently found that interaction 

between α-synuclein and dieldrin, an organochlorine pesticide suspected as a risk factor for 

PD, promotes dopaminergic degeneration by impairing UPS function.  This indicates the role 

of dysfunctional UPS in dopaminergic degeneration as the result of a gene-environment 

interaction (Sun et al., 2005). Despite extensive observations of defective UPS degradation in 

PD pathogenesis, the cellular and molecular mechanisms leading to dopamine neuronal death 

following proteasomal dysfunction remain to be characterized.    

Protein kinase Cδ (PKCδ) , a member of the novel PKC family, has a structurally and 

functionally distinct N-terminal regulatory fragment, C-terminal catalytic fragment and a 
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caspase-3 represents one of the primary means of its activation, in addition to membrane 

translocation or phosphorylation (Kanthasamy et al., 2006). Proteolytic activation of PKCδ 

has previously been revealed as a key mediator of apoptotic cell death in oxidative stress-

induced dopaminergic apoptosis (An ; Kaul et al., 2003; Kitazawa et al., 

2003; Y

mbrane potential established in the 

mitoch

antharam et al., 2002

ang et al., 2004; Latchoumycandane et al., 2005), since active PKCδ appears to 

amplify caspase cascades via mechanisms not yet characterized. The present study revealed 

that mitochondrial translocation of proteolytically activated PKCδ plays an essential role in 

feedback amplification of mitochondrial apoptosis during proteasome dysfunction in 

mesecenphalic dopaminergic neuronal cells.  

 

MATERIALS and METHODS 

Cell Culture and Treatment Paradigm. The immortalized rat mesencephalic dopaminergic 

cell line (N27 cells) was grown in RPMI 1640 medium containing 10% fetal bovine serum, 2 

mM L-glutamine, 50 units penicillin, and 50 µg/ml streptomycin in a humidified atmosphere 

of 5% CO2 at 37 °C (Yang et al., 2004; Kanthasamy et al., 2006). Cells were treated with 

different concentrations of MG-132 dissolved in dimethyl sulfoxide (final concentration = 

0.1%) for the indicated duration in the experiments.  

  

Mitochondria Depolarization Assay. Cationic lipophilic fluorescent dye JC-1 enters the 

matrix of intact mitochondria through cross-me

ondria of healthy cells. Upon mitochondrial accumulation, JC-1 appears as aggregates, 

which fluoresce red. However, JC-1 can not accumulate in mitochondria with collapsed 

membrane potential, and thus exists in cytoplasm at low concentration as a monomer, which 
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fluoresces green. The intensity of red and green fluorescence provides a reliable 

measurement of mitochondria membrane potential.  N27 cells grown in 6-well plates were 

treated with MG-132 for indicated durations prior to incubation with JC-1 dye (Invitrogen 

Carlsbad, CA) for 20 min at a final concentration of 2 µg/ml. Red and green fluorescence 

were determined for the treated cells using flow cytometry, and the ratio between red/green 

was used as indicator of mitochondria potential.  

 

cubated in ice for 30 min 

before 

Caspase Enzymatic Activity Assay. Caspase activities were assessed as described 

previously (Kanthasamy et al., 2006). Cells were lysed with 10 µM digitonin in Tris buffer 

(50 mM Tris-HCl, 1 mM EDTA, 10 mM EGTA).  The supernatants (14,000 x g, 5 min) of 

the lysates were incubated with fluorogenic substrates DEVD-AFC, IEHD-AFC and LEHD-

AFC (Biomol International, Plymouth Meeting, PA) for determination of caspase-3, -8 and -

9 activities, respectively, using a fluorescence plate reader (Molecular Devices Corporation, 

Ex/Em: 400/505 nm).  Protein concentration was determined by the Bradford method.  

 

Subcellular Fractionation, Preparation of Cell Lysate and Western Blot. Mitochondria 

isolation was conducted as described previously (Luo et al., 1998) with minor modification. 

Cells were resuspended in homogenization buffer (pH 7.5, 20 mM HEPES, 10 mM KCl, 1.5 

mM MgCl2, 1 mM EDTA, 1 mM EGTA, 250 mM sucrose, 1 mM dithiothreitol, 0.1 mM 

phenylmethylsulfonyl fluoride, and protease inhibitors), and in

homogenized with a glass Dounce homogenizer. Unlysed cells, cell debris and nuclei 

were removed by centrifugation at 1,000 x g for 10 min. The supernatant was further 

centrifuged at 10,000 x g for 25 min to obtain supernatant fraction and pellet as cytosolic and 
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mitochondrial fractions. For whole cell lysates, cells were homogenized by sonication in 

homogenization buffer (pH 8.0, 20 mM Tris, 2 mM EDTA, 10 mM EGTA, 2 mM 

dithiothreitol, 1 mM phenylmethylsulphonyl fluoride, protease inhibitors), and then 

centrifuged at 16,000 x g for 40 min. For Western blot, samples were resolved on SDS-

PAGE and then transferred to nitrocellulose membranes for immunoblotting with antibodies 

recognizing PKCδ (Santa Cruz, Santa Cruz, CA, 1:2000), V5 (Invitrogen, Carlsbad, CA, 

1:5000), cytochrome c (BD Pharmingen, San Jose, CA, 1:500), Smac (ProSci, Poway, CA 

1:500) or COX 4 (Invitrogen Carlsbad, CA, 1:1500). 

 

In vitr  Release Assay. Mitochondria were isolated using the procedure 

described previously and res ffer at concentration of 2.0 

PKCδ Kinase Assay. The enzymatic activity of PKCδ was measured with an 

o Mitochondria

uspended in the same isolation bu

mg/ml. For the release assay (Luo et al., 1998), 40 µL mitochondria suspension was 

incubated with 5.0 or 15.0 µM MG-132 at 30 ºC for 60 min. Triton X-100 (0.2%, v/v) was 

included as positive control to release cytochrome c. After incubation, mitochondria were 

spun down and the supernatant was collected for the SDS-PAGE and immunoblotted for 

cytochrome c (BD Pharmingen, San Jose, CA, 1:500). 

 

immunoprecipitation kinase assay as described previously (Kitazawa et al., 2003). After MG-

132 treatment, N27 cells were lysed with lysis buffer (25 mM HEPES pH 7.5, 20 mM β-

glycerophosphate, 0.1 mM sodium orthovanadate, 0.1% Triton X-100, 0.3 M NaCl, 1.5 mM 

MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 10 mM NaF, 4 µg/ml aprotinin, and 4 µg/ml 

leupeptin). The cell lysate was centrifuged at 10,000 x g for 20 min to obtain the supernatant 
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as cytosolic fraction. Cytosolic protein (500 µg) was immunoprecipitated with 2 µg PKCδ 

antibody. The immunoprecipitates were then washed 3 times with 2× kinase buffer (40 mM 

Tris pH 7.4, 20 mM MgCl2, 20 µM ATP, and 2.5 mM CaCl2), and resuspended in 20 µL of 

the same buffer. The PKCδ-mediated phosphorylation is initiated by adding 20 µL of 

reaction buffer (0.4 mg Histone H1, 50 µg/mL phosphatidylserine, 4.1 µM dioleoylglycerol, 

and 5 µCi of [γ-32P] ATP) to the resuspended immunoprecipitates. After incubation for 10 

in at room temperature, samples were separated on 12% SDS-PAGE. The radioactively 

δD327A 

aspase-3 cleavage-resistant mutant, PKCδ-CRM) was amplified from PKCδD327A-GFP in 

m

labeled histone H1 was detected using Phosphoimage system (Personal Molecular Imager, 

FX model, Bio-Rad Laboratories) and analyzed with Quantity One 4.2.0 software. 

 

Plasmid Construction. Full-length wild-type (wt) PKCδ-GFP and PKCδD327A-GFP in 

pEGFP-N1 vector were obtained from Dr. Mary Reyland (University of Colorado, Boulder, 

CO). Full-length (PKCδ-FL), regulatory fragment (PKCδ-RF) and catalytic fragment (PKCδ-

CF) of PKCδ were amplified from wt-PKCδ-GFP in pEGFP-N1 vector, and PKC

(c

pEGFP-N1 vector by PCR. The PCR product was then cloned into plenti6/V5-D-TOPO 

expression vector by following the procedure provided by the manufacturer (Invitrogen, 

Carlsbad, CA). The primers used were:  5'-CACCATGGCACCCTTCCTGCTC3' (forward 

primer for PKCδ-FL, PKCδ-CRM and PKCδ-RF) and 5'-

AATGTCCAGGAATTGCTCAAAC-3' (reverse primer for PKCδ-FL, PKCδ-CRM and 

PKCδ-CF), 5’-ACTCCCAGAGACTTCTGGCTT-3’ (reverse primer for PKCδ-RF), and 5’-

CACCATGAACAACGGGACCTGTGGCAA-3’ (forward primer for PKCδ-CF). To achieve 

mitochondria-targeted expression, PKCδ-RF, PKCδ-CF were cloned into pCMV/Myc/Mito 
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vector (Invitrogen) at Sal I and Not I sites by following standard cloning procedure. LacZ 

was cloned into the same vector to serve as a control. The primers used include: 5’-

ATATGGGTCGACATGGCACCCTTCCTGCGCA-3’ (forward primer for PKCδ-RF), 5’-

ATATATGTCGACATGAACAACGGGACCTATGGCAAGA-3’ (forward primer for 

PKCδ-CF), 5’ATATAGCGGCCGCAATGTCCAGGAATTGCTCAAAC 3’ (reverse primer 

for PKCδ-FL and PKCδ-CF), and 5’-

ATATATGCGGCCGCACTCCCAGAGACTTCTGGCT-3’ (reverse primer for PKCδ-RF). 

 

Cell Transfection. The expression vectors (pLenti-PKCδ-CRM and pLenti-LacZ) were 

Transient transfection was conducted using either AMAXA Nucleofector reagent (Amaxa 

Inc., Gaithersburg, MD) or jetPEI™ DNA in vitro transfection reagent (Polyplus-transfection 

Inc. New York, NY ) by following the procedure provided by the manufacturers. For PKCδ-

CF and PKCδ-RF, approximately 2 million cells were suspended in 100 µl prepared 

Nucleofector™ solution V, and then mixed well with 8.0 µg DNA. The mixture solution was 

transferred into a nucleofection cuvette for electroporation. Transfection efficiency was 

cotransfected with packaging plasmids provided by manufacturer into 293 FT  cells provided 

in the kit using Lipofectamine™ 2000 reagent for virus production (Invitrogen, Carlsbad, 

CA). The lentivirus-derived tranfected 293 FT cells were used for transfection of pLenti-

PKCδ-CRM and pLenti-LacZ in N27 cells. For stable transfection, single clones were 

isolated and selected with blasticidin (10.0 µg/ml) in the growth medium. The stable 

expression was confirmed by immunostaining of V5 epitope fused at the C-terminal of 

PKCδ. 
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determined by pmaxGFP transfection, which was used as control group for caspase-3 assay. 

For transfection of mitochondria-targeted vectors, plasmids (2.0µg) were first mixed with 

100 µL sterile sodium chloride (150 mM) to make the plasmid solution, then spun down 

briefly. The jetPEI™ solution was made by mixing 4.0µL jetPEI™ reagent with 100 µL 

sterile sodium chloride. After a brief spin-down, the jetPEI™ solution was added to the 

plasmid solution and mixed well. After spin-down, 200 µl jetPEI™/DNA mixture was 

incubated at room temperature for 25 min before being added into culture wells. The cells 

were cultured for another 24 h. 

DNA Fragmentation Assay.  DNA fragmentation was measured using a Cell Death 

al., 2003).  The method, which measures the amount of histone-associated low molecular 

weight DNA in the cytoplasm, is more sensitive than conventional DNA ladder analysis.  

spectrophotometer at 405 nm (490 nm as reference). Protein concentration is determined by 

the Bradford protein assay.  

Detection ELISA Plus Assay Kit (Roche Applied Science, Indianapolis, IN ) as previously described (Kaul et 

After treatment, cells were resuspended with the lysis buffer provided in the assay kit.  The 

lysate was centrifuged at 200 x g, and 20 µl of supernatant was incubated for 2 h with the 

mixture of HRP-conjugated antibody cocktail that recognizes histones, and single and 

double-stranded DNA. After washing away the unbound components, the final reaction 

product was measured colorimetrically, with ABTS as an HRP substrate using a 

 

ROS Generation Assay. Flow cytometric analysis of reactive oxygen species (ROS) in N27 

cells was performed using dihydroethidine (Kaul et al., 2003), a reduction production of 

ethidium bromide. In cytosol, blue fluorescent dihydroethidium can be dehydrogenated by 

superoxide (O2
-) to form ethidium bromide, which intercalates within DNA of cells and 
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results in staining of nuclei that emits a bright red fluorescence. N27 cells were collected by 

trypsinization and resuspended in Earle's balanced salt solution (EBSS) with 2 mM calcium 

at a density of 1.0 x 106 cells/mL. The cell suspension then was incubated with 10 µM 

hydroethidine at 37 °C in the dark. Following addition of MG-132, ROS generation in N27 

cells were measured at 0, 20, 40, and 60 min. Treatment with H2O2 was used as positive 

control.  ROS levels were normalized as percentage of time-matched control.  

 

Immunocytochemistry and TUNEL Staining. Immunofluorescence staining was 

ed with Cy3 conjugated anti-mouse and Alexa 488-conjugated anti-rabbit secondary 

antibodies, respectively.  The images were analyzed using Nikon C1 confocal microscopy.  

TUNEL staining for the transfected cells was conducted by following the protocol 

described by the manufacturer (Roche Applied Science, Indianapolis, IN). The 

immunostaining with Myc tag antibody was performed as described above following the 

TUNEL staining. The images were analyzed with Nikon inverted fluorescence microscopy  

(Model TE-2000U).  

 

conducted as described previously (Sun et al., 2005).  Briefly, 24 h after plasmid transfection, 

N27 cells cultured on coverslips pre-coated with poly-L-lysine were washed with PBS, and 

fixed with 4% paraformaldehyde.  After permeabilization with 0.2% Triton X-100, cells were 

incubated with blocking buffer (5% BSA, 5% goat serum in PBS) to minimize nonspecific 

binding. For double staining, cells were incubated overnight with antibodies recognizing 

Myc tag (Abcam, Mouse monoclonal Ab 1:200) and cleaved caspase-3 (Cell signaling, 

Rabbit monoclonal Ab, 1:100). Then Myc tagged fusion proteins and cleaved caspase-3 were 

visualiz
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Data Analysis. Results are presented as mean ± S.E.M., and Prism 4.0 software (GraphPad 

software, San Diego) was used for data analysis.  P-values were determined using Student’s 

t-test for single comparisons of two samples. One-way ANOVA was completed, and 

followed by Dunnett’s test to compare all groups with the control group or Bonferroni’s test 

for comparison of selected groups.  A significant difference between groups was defined as 

p<0.05. 

RESULTS 

1. Proteasome Inhibition by MG-132 Precedes Mitochondria Depolarization.  

We assayed chymotrypsin-like proteasomal activity and conducted a detailed time course 

with less than 40% activity remaining within 5 min (p<0.001).  Mitochondria membrane 

duction, respectively) compared to control ratios (Fig.1B). These data indicate proteasomal 

analysis for mitochondria membrane potential following MG-132 treatment. As shown in 

Fig. 1A, MG-132 exposure led to a rapid and significant inhibition of proteasomal activity, 

potential was quantified with JC-1. The dye accumulates in the matrix of mitochondria with 

high membrane potential, and forms aggregates that fluoresce red, whereas monomers of JC-

1 fluoresce green. The ratio between red and green fluorescence intensity provides a reliable 

measurement of the mitochondria membrane potential. Following MG-132 treatment, 

gradual depolarization of mitochondria membrane potential was detected.  Significant 

reductions in red/green ratio were noted at 30, 60, 90, and 120 min (17, 34, 47, and 60% 

re

inhibition preceded the dissipation of mitochondria membrane potential, since 5 min of 

treatment led to a significant decrease in proteasomal activity. 
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2. Proteasome Inhibition by MG-132 Triggers Mitochondria-mediated 

Apoptosis. Mitochondria depolarization is commonly observed in cells undergoing 

mitochondrial apoptosis, and it has been hypothesized to play a causal role in mitochondrial 

release of proapoptotic molecules in some apoptosis models (Ly et al., 2003). In N27 cells, 

MG-132-induced dissipation of mitochondria membrane potential was accompanied by 

mitochondrial release of cytochrome c and Smac into the cytosol in similar temporal pattern 

Fig. 2A).  No detection of mitochondria inner membrane protein COX 4 in the cytosolic 

c 

increas

aspase-9 is the exclusive upstream caspase responsible for MG-132-

duced caspase-3 activation.  

(

fraction indicated that the cytosolic fraction was free of mitochondria contamination. 

Additionally, incubation of isolated mitochondria with MG-132 followed by an in vitro 

release assay indicated that mitochondrial release of cytochrome c happened as a 

consequence of proteasome inhibition by MG-132, but not due to the direct stimulatory effect 

of MG-132 on mitochondria (Fig. 2B).   

Formation of the apoptosome complex by mitochondria-released cytochrome c, Apaf-

1, and dATP/ATP is essential for the activation of initiator caspase-9, which then activates 

downstream effector caspase-3.  As shown in Fig. 2C, caspase-9 activity significantly 

increased following MG-132 treatment for 90 min (74%, p<0.05), 120, 150 and 180 min 

(200%, 361%, and 388%, p<0.001).  The same MG-132 treatment also resulted in dramati

e in caspase-3 activation from 90 to 150 min (10 to 25 fold, p<0.001) (Fig. 2D); 

whereas minimal increase in the caspase-8 activity was observed only after 120 min (Fig. 

2C). It appears that caspase-8 activation followed caspase-3 activation.  Additionally, 

caspase-3 activation could be completely blocked by caspase-9 inhibitor LEHD-fmk (Fig. 

2E), indicating that c

in

 



 163 

3. Proteasomal Inhibition by MG-132 Leads to Proteolytic Activation of PKCδ.  

Emerging evidence suggests that PKCδ serves as a crucial mediator of apoptosis in different 

types of cells, though the underlying mechanisms vary markedly (Brodie and Blumberg, 

2003). Recently it was demonstrated that this proapoptotic kinase is highly expressed in 

mouse nigral dopamine neurons (Zhang et al., 2007), and previous studies using in vitro 

model revealed the essential role of proteolytically activated PKCδ in oxidative stress-

induced dopaminergic degeneration (An l., 2002; Kaul et al., 2003; Kitazawa et 

al., 200

 

with [ P]-ATP and histone H2B as  substrate. Analysis of the intensity of 

radioactively-labeled histone H1 bands indicated that MG-132 exposure results in a 282% 

increase in kinase activity of PKCδ (Fig. 3B). Inhibition of PKCδ proteolytic cleavage either 

by caspase-3 inhibitors DEVD-fmk (50 µM) or rottlerin or pan-caspase inhibitor ZVAD-fmk 

(100 µM) diminished its kinase activity, indicating that caspase-3 mediates PKCδ proteolytic 

cleavage and significantly activates its kinase activity (Fig. 3B). 

  

antharam et a

3; Yang et al., 2004; Latchoumycandane et al., 2005). Western blot analysis revealed 

proteolytic cleavage of PKCδ in N27 cells following exposure to the proteasome inhibitor 

MG-132 (Fig. 3A), indicative of potential regulatory role of PKCδ in dopaminergic 

degeneration following UPS dysfunction. It appears that proteolytic cleavage is caspase-3 

dependent, since it was diminished markedly by the pan-caspase inhibitor ZVAD-fmk or 

caspase-3 inhibitor DEVD-fmk, (Fig. 3A).  To assess the effect of proteolytic cleavage of 

PKCδ on its kinase activity, the PKCδ immunoprecipitated from cell lysates was incubated

32 in vitro
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4. Activation of Apoptosis Cascade by MG-132 Independent of ROS Generation. 

Oxidative stress has been implicated in dopaminergic neuronal cell death in PD.  ROS 

generation has been previously shown to induce PKCδ proteolytic activation in N27 cells 

exposed to MPP+ (Kaul et al., 2003; Yang et al., 2004), and in PC12 cells treated with 6-

OHDA (Hanrott et al., 2006).  Induction of ROS during proteasome inhibition was 

previously reported to contribute to apoptosis in several cell lines (Lauricella et al., 2003; 

Fribley et al., 2004; Lee et al., 2005). However, in the present study using dopaminergic 

neuronal cells, no significant elevation of ROS level was noted within 60 min following MG-

132 treatment (Fig. 4A). MnTBAP, a superoxide dismutase (SOD) mimic that markedly 

alleviates oxidative stress and apoptosis induced by MPP+ in N27 cells (Kaul et al., 2003), 

failed to attenuate caspase-3 activation following MG-132 exposure (Fig. 4B).  This indicates 

a negligible role of ROS in MG-132-induced mitochondrial apoptosis in the dopaminergic 

neuron

e inhibitor MG-132, we found that pretreatment with PKCδ-

al cells. 

 

5. Activated PKCδ as Mediator for MG-132-induced Mitochondrial Apoptosis. 

To directly examine the role of proteolytically activated PKCδ in apoptosis, N27 cells were 

transiently transfected with PKCδ-CF or PKCδ-RF. The transfection efficiency was 

estimated by the cotransfected GFP plasmids (Fig. 5A). Enzymatic assessment of the 

tranfected N27 cells revealed a significant increase in the caspase-3 activity in PKCδ-CF-

transfected cells, compared to RF-transfected or GFP-transfected cells, suggesting that kinase 

active PKCδ-CF is responsible for its proapoptotic effect in dopaminergic cells (Fig. 5B). In 

an attempt to determine whether PKCδ activation indeed contributes to caspase activation 

following exposure to protesom
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specific

nhibitor Exposure. PKCδ 

kinase activity could be modulated by mechanisms other than proteolytic cleavage, such as 

plasma membrane translocation or phosphorylation (Steinberg, 2004). To further substantiate 

that proteolytic activation is primarily responsible for the feedback amplification of the 

 inhibitor rottlerin significantly attenuated MG-132-induced caspase-9 and -3 

activation (Fig. 5C-D). This finding suggests that the proapoptotic effect of PKCδ proceeds 

through the mitochondrial apoptosis pathway, which is consistent with our finding of 

caspase-9 as the exclusive upstream caspase responsible for caspase-3 activation (Fig. 2E). 

 

6. Mitochondrial Translocation of Active PKCδ Activates Caspase-3. In light of 

the mitochondrial dependence of proapoptotic PKCδ, we examined the mitochondrial 

localization of PKCδ, since subcellular translocation could be important for PKCδ function 

by controlling accessibility of the substrates to the kinase. As shown in Fig. 6A, MG-132 

treatment resulted in substantial accumulation of cleaved PKCδ in the mitochondria fraction, 

with only slight elevation of full-length PKCδ observed.  To understand whether 

mitochondrial translocation of PKCδ-CF is functionally related to its proapoptotic effect, 

mitochondria-targeted expression of PKCδ-CF and PKCδ-RF was achieved using 

pCMV/myc/mito vector. Double immunostaining for myc tag (red) and active caspase-3 

(green) revealed the presence of active caspase-3 in the PKCδ-CF transfected cells, but not in 

the PKC-RF or LacZ transfected cells (Fig. 6B). Also, high proportion of cells transfected 

with PKCδ-CF, but not PKCδ-RF or LacZ, appeared to be TUNEL positive (Fig.6C).   

 

7. Suppression of PKCδ Proteolytic Activation Protects Cells from 

Mitochondria-mediated Apoptosis Following Proteasome I
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caspase

sent study revealed an important regulatory role of PKCδ in mitochondrial 

apoptosis in mesecenphalic dopaminergic neuronal cells following proteasome inhibition. 

We dem

   

 signal during the dopaminergic apoptosis, a caspase-3 cleavage-resistant mutant of 

PKCδ (PKCδD327A, PKCδ-CRM), was introduced into N27 cells using a lentivirus expression 

system.  Immunobloting with antibody against PKCδD327A-V5 fusion proteins stably 

expressed in N27 cells showed that PKCδD327A was non-cleavable following MG-132 

treatment (Fig. 7A).  Meanwhile, stable expression of PKCδ-CRM efficiently inhibited the 

proteolytic cleavage of endogenous PKCδ following exposure to proteasome inhibitor via 

mechanisms yet to be characterized (Fig. 7B).  The CRM cells also appear to be more 

resistant to MG-132-induced mitochondrial apoptosis, as indicated by the significant 

reduction of caspase-9, caspase-3 activation and DNA fragmentation compared to LacZ 

transfected cells (Fig. 7C-E).  

 

DISCUSSION 

The pre

onstrated activation of the mitochondrial apoptosis cascade and proteolytic activation 

of PKCδ during proteasome inhibition. Importantly, we found that proteolytic activation and 

mitochondrial translocation of PKCδ underlie its positive feedback amplification of 

mitochondrial apoptosis during proteasome dysfunction in mesecenphalic dopaminergic 

neuronal cells.  This mitochondria-dependent proapoptotic capacity of PKCδ also sheds light 

on the mechanisms of PKCδ as a key mediator in oxidative stress-induced dopaminergic 

apoptosis observed previously (Anantharam et al., 2002; Kaul et al., 2003; Yang et al., 2004).  

Dysfunctional UPS has been implicated in the pathogenesis of Parkinson’s disease in 

addition to mitochondria dysfunction and oxidative stress.  Previous studies have revealed 
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that the substantia nigra particularly suffers from UPS dysfunction in the brains of patients 

with sporadic PD (Moore et al., 2005; Olanow and McNaught, 2006; Sun et al., 2007). 

Mutation in Parkin and UchL-1in familial PD has provided further evidence for the 

contributory roles of impaired UPS function in PD (Moore et al., 2005; Olanow and 

McNaught, 2006; Sun et al., 2007). Proteasome inhibitors have been shown to reproduce 

some k

iation 

of cytosolic cytochrome c with Apaf-1 and dATP/ATP as the apoptosome complex is 

essentia

ey features of PD, including neuronal death (Rideout et al., 2001; McNaught et al., 

2002; Rideout et al., 2005). However, underlying cell death mechanisms during UPS 

dysfunction remains to be determined.  In the present study, we showed substantial reduction 

of proteasomal activity shortly after exposure to 5.0 µM MG-132 (70%, Fig 1A), which was 

followed by progressive dissipation of mitochondrial membrane potential (Fig 1B). 

Mitochondrial depolarization has been extensively observed during apoptosis, concurrent 

with mitochondrial release of proapoptotic molecules in some apoptosis models (Ly et al., 

2003). Following MG-132 treatment, cytosolic cytochrome c and Smac levels progressively 

increased in N27 cells (Fig. 2A). It appears that mitochondrial release of cytochrome c 

occurred as a consequence of proteasome inhibition by MG-132, but not due to a direct 

stimulatory effect of MG-132 on mitochondria, since incubation of isolated mitochondria 

with MG-132 failed to trigger mitochondrial release of cytochrome c (Fig. 2B). Assoc

l for the activation of initiator and effector caspases.  Following MG-132 treatment, 

significant activation of caspase-9 and -3 was observed for 90 min (Fig. 2C-D). 

Unexpectedly, caspase-8 and -9 activities were significantly lower following MG-132 

treatment within 60 min (Fig. 2C), presumably due to accumulation of anti-apoptotic proteins 

such as IAPs or Mcl-1 upon proteasome inhibition (Yang et al., 2000; Nijhawan et al., 2003).  
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Slight activation of caspase-8 at late timepoints (150 and 180 min) agrees with previous 

reports demonstrating caspase-8 activation as the result of caspase-9 and -3 activation 

(Viswanath et al., 2001); whereas caspase-8 appears to play a neglegible role in casapse-3 

activation.  Notably, apoptosis proceeded exclusively through the mitochondria-mediated 

apoptotic pathway, since caspase-3 activation was completely suppressed by the caspase-9 

inhibitor LEHD-FMK (Fig 2E), indicative of caspase-9 as the major upstream initiator 

capsase. 

Proteolytic cleavage of PKCδ, as an endogenous substrate of caspases-3, physically 

dissociates the auto-inhibitory regulatory fragment from its catalytic fragment, thus 

permanently activating its kinase activity. Tyr-311 phosphorylation of PKCδ is critical for its 

caspase-3-mediated proteolytic cleavage (Kaul et al., 2005). The proteolytically activated 

PKCδ has been previously shown t ediator for oxidative stress-induced 

apoptos

apoptot

o be the key m

is in dopaminergic neuronal cells, possibly through positive feedback activation of 

caspase-3 (Anantharam et al., 2002; Kaul et al., 2003; Yang et al., 2004; D'Costa and 

Denning, 2005).  Phosphorylation of caspase-3 by full-length PKCδ has been shown to 

increase enzymatic activity of caspase-3 in monocytes (Voss et al., 2005). However, PKCδ 

amplifies caspase-3 activation via distinct mechanisms in dopaminergic neuronal cells. 

Proteolytic activation of PKCδ in N27 cells appears to depend on caspase-3 activation in N27 

cells (Fig. 3A-B); whereas caspase-3 activation is preceded by PKCδ activation in monocytes 

(Voss et al., 2005).  The direct proapoptotic effect of PKCδ-CF is manifested by the 

elevation of caspase-3 activity in PKCδ-CF transfected cells (Fig. 5B), consistent with 

ic features observed previously in the cells expressing PKCδ-CF (Denning et al., 

2002). In addition, PKCδ likely enhances activation of caspase-9, which further activates the 
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downstream effector caspase-3 activation, since the PKCδ-specific inhibitor rottlerin 

attenuates activation of caspase-3 and upstream initiator caspase-9 in this experimental 

setting (Fig. 5C-D).   

Induction of ROS generation following prolonged exposure to proteasome inhibitors 

Bortezomib (Ling et al., 2003), MG-132, lactaystin (Wu et al., 2002), and PS-341 (Fribley et 

al., 2004) has been implicated as a key mediator for some downstream cellular events, 

including apoptosis in several cell lines. Oxidative stress has been demonstrated to activate 

caspase-3 and PKCδ in N27 cells (Kaul et al., 2003; Kitazawa et al., 2003).  In an attempt to 

determine whether dopaminergic apoptosis following MG-132 exposure involves oxidative 

stress, ROS generation was measured; no significant increase in ROS generation was noted 

(Fig. 4A). The antioxidant MnTBAP, which has been previously shown to effectively inhibit 

caspase-3 activation during oxidative stress in the N27 cells (Kaul et al., 2003), failed to 

attenuated caspase-3 activation induced by MG-132 (Fig. 4B).  Our data suggest that ROS 

generation plays negligible role in apoptotic cell death following proteasome inhibition in 

mesecenphalic dopaminergic neuronal cells.  

The mitochondria-dependent proapoptotic capacity of active PKCδ, as indicated by 

suppression of caspase-9 activation by rottlerin, was accompanied by mitochondrial 

translocation of PKCδ. The proteolytically activated PKCδ appears to be readily available for 

mitochondrial translocation in the mesecenphalic dopaminergic neuronal cells, consistent 

with mitochondria as a target organelle as reported previously (Denning et al., 2002) in 

addition to nuclei (Cross et al., 2000), Golgi (Kajimoto et al., 2004) and endoplasmic 

reticulum (Zrachia et al., 2002). In an attempt to determine whether mitochondrial 

translocation of proteolytically activated PKCδ underlies its proapoptic effect, marked 
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activation of caspase-3 was noted in the N27 cells expressing mitochondria targeted PKCδ-

CF (Fig.6B), but not PKCδ-RF or LacZ.  This indicates that mitochondrial translocation of 

PKCδ-CF possibly underlies its feedback amplification of caspase activation extensively 

observed (Anantharam et al., 2002; Kaul et al., 2003; Kitazawa et al., 2003).  Considering 

that multiple ways lead to PKCδ activation, we conducted additional experiments to verify 

that PKCδ proteolytic activation mediates its mitochondria-dependent proapoptotic effect. 

Expression of a caspase-3 cleavage-resistant mutant of PKCδ (PKCδD327A), which effectively 

inhibited the proteolytic cleavage of endogenous PKCδ (Fig. 7B), significantly attenuated the 

activation of mitochondrial apoptosis triggered by MG-132 (Fig. 7C- E), consistent with a 

recent study showing that PKCδ-CRM reduces the mitochondrial release of cytochrome c in 

UV-challenged keratinocytes (D'Costa and Denning, 2005).  Phosphorylation of 

mitochondrial resident proteins by active PKCδ likely underlies its effect on mitochondrial 

apoptosis. Several mitochondrial proteins have been characterized as candidate substrates of 

PKCδ, including phospholipid scramblase (He et al., 2007) and pyruvate dehydrogenase 

kinase (Churchill et al., 2005).  

  In summary, the present study demonstrates that proteolytic activation and 

mitochondrial translocation of PKCδ underlies its feedback activation of mitochondrial 

apoptosis during proteasome dysfunction in mesecenphalic dopaminergic neuronal cells. This 

likely explains the role of PKCδ as a key mediator in oxidative stress-induced dopaminergic 

apoptosis as shown in previous studies.  Taken together, PKCδ could function as a common 

mediator promoting dopaminergic degeneration during UPS dysfunction or oxidative stress 

in nigral dopamine neurons, in which PKCδ is highly expressed. This knowledge advances 
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our understanding of the pathogenesis of nigrostriatal degeneration and validates PKCδ as 

potential target for therapeutic manipulation of PD.  
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FIGURE 1. 

 

Fig.1 Proteasome inhibition by MG-132 precedes mitochondria depolarization. 

A. Determination of proteasomal activity. N27 cells were treated with 5.0µM MG-132 for 

indicated duration before cell collection and assessment of chymotrypsin-like proteasomal 

activity using Suc-LLVY-AMC. Enzymatic activity is presented as percentage over vehicle-

treated control group. Values represent mean ± S.E.M for 6 samples in each group. B. Flow 

cytometric determination of mitochondrial membrane potential.  N27 cells were treated 

with 5.0 µM MG-132 for indicated duration. The intensity of red fluorescence for aggregated 

JC-1 and green fluorescence for monomer JC-1 were determined using flow cytometry, and 

the red/green ratio was used as the measurement of membrane potential. Values presented as 

mean ± S.E.M represent results of 2 experiments with N=6 and 4 respectively.*p<0.05, 

***p<0.001 comparing with control group (One-way ANOVA followed by Dunnett’s-post 

test). 
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Fig 2. Proteasome inhibition by MG-132 triggers mitochondria-mediated apoptosis. 

A. µM 

ition of caspas-3 activation by caspase-9 inhibitor LEHD-FMK. N27 cells were 

preincubated with LEHD-FMK (50 µM) for 40 min before treated with 5.0 µM MG-132 for 

additional 120 min. The cells were collected for caspase-9 assay. Values represent mean ± 

 Mitochondrial release of cytochrome c and Smac. N27 cells were treated with 5.0 

MG-132 for the indicated duration. The cytosolic fractions prepared from the treated cells 

were resolved on 15% SDS-PAGE and blotted with antibodies against cytochrome c (Cyto 

c), Smac, β-actin or COX IV. B. In vitro mitochondrial release. Mitochondria were isolated 

from N27 cells and resuspended in the isolation buffer at 2.0 mg/ml. The equal amount off 

mitochondrial suspension were incubated with 5.0 (lane 2) or 15.0 µM (lane 3) MG-132 for 1 

hr, with 0.2% Triton X-100 incubation as positive control to release cyto c (lane 4). Lane 5 is 

input of isolated mitochondria. C and D. Activation of caspase-8, -9 and -3. Cells were 

treated with 5.0 µM MG-132 for 30, 60, 90, 120 or 180 min. The caspase-8, -9 and -3 

activities were determined using fluoregenic substrates as described in the materials and 

methods. Data is presented as mean ± S.E.M for 8 samples derived from two experiments. E. 

Inhib
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S.E.M from 6 individual samples.   *p<0.05, **p<0.01 and ***p<0.001 vs vehicle treated 

control group (One-way ANOVA followed by Dunnett’s-post test). 
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FIGURE 3. 

Fig.3 Proteasomal inhibition by MG-132 leads to caspase-3 mediated proteolytic 

activation of PKC. A. Proteolytic cleavage of PKCδ. 
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 N27 cells were treated with 5.0 µM MG-132 for 90 or 120 min. For inhibitor study, 

cells were preincubated with 100 µM ZVAD or 50 µM DEVD-FMK for 40 min before 120 

min MG-132 treatment. Equal amount of protein from individual samples were separated in 

SDA-PAGE and immunoblotted with antibody for PKCδ. Reprobing membrane with β-actin 

antibody to ensure equal protein loading. B. Activation of PKCδ kinase. N27 cells were 

exposed to 5.0 µM MG-132 for 120 min. For inhibtor study, cells were pretreated with with 

100.0 µM ZVAD-fmk (+ZVAD), 50.0 µM DEVE-fmk (+DEVD) or 2.5 µM rotellerin 

(+Rottlerin) for 40 min.  The cell lysates were prepared for PKCδ immunoprecipitation, and 

the kinase activity associated with immunoprecipitates was assayed by determining the 

intensity of the 32P-labeled H1.  The arrow indicates the radioactively labeled H1. 

Densitometric analysis for the intensity of H1 bands is presented as percent of control. The 

data represents the mean ± S.E.M. from 4 separate experiments. ***P<0.001 comparing with 

vehicle-treated groups (One-way ANOVA followed by Dunnett’s-post test), and ###P<0.001 

comparing with MG-132 treatment group (One-way ANOVA followed by Bonferroni-post 

test)..  
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FIGURE 4. 

Fig.4 Caspase-3 and PKCδ activation following MG-132 exposure is independent of 

ROS generation. 
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Fig.4

 

 

 Caspase-3 and PKCδ activation following MG-132 exposure is independent of 

ROS generation. 

A. ROS assay. Intracellular superoxide was quantified by cytometric determination 

of fluorescence intensity of oxidized dihydroethidine in N27 following exposure to 5.0 µM 

MG-132 for 0, 20, 40 or 60 min, as described in the material and methods section. Data 

represent the mean ± S.E.M. for two separate experiments with 2 or 5 samples respectively. 

Treatment with 200 µM H2O2, which promotes superoxide production, was used as positive 

control. (B) Effect of MnTBAP on MG-232-induced caspase-3 activation. Cells were 

treated with either with 2.5 µM MG-132 alone or pretreated with 10.0 µM MnTBAP 30 min 

prior to MG-132 treatment. The caspase-3 activity was determined as described above. Data 

are presented as mean ± S.E.M. from 6 samples in each group. ***p<0.001 comparing with 

vehicle-treated control cells (One-way ANOVA followed by Dunnett’s-post test). 
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FIGURE 5. 

 
Fig.5  Activation of caspase-3 by PKCδ-CF. 

Twenty-four hour after transfection, phase contrast images and fluorescence im

ine transfection efficiency (A). The transfected cells were co

say (B). Values represent mean ± S.E.M. from 6 samples in each group. *p<0.05 

with pmaxGFP alone; #p<0.05 comparing the indicated groups (One-way 

ANOVA followed by Bonferroni-post test). C. Inhibition of mitochondria apop

ages were 

taken to determ llected for 

caspase-3 as

vs cells transfected 

tosis by 

rottlerin. N27 cells were treated with 5.0 µM MG-132 for 120 min with or without 40 min 

rottlerin (2.5 µM) pretreatment. Treatment with rottlerin alone was included in the 

experiment. Caspase-9 (C) and -3 activities (D) were assayed for the treated cells as 

describ  

***p<0.001 comparing with vehicle-treated co  

Dunnett’s-post test). ###p<0.001, comparison between the indicated group (One-way 

ANOVA followed by Bonferroni-post test). 

ed above. Data are presented as mean ± S.E.M. from 6 samples in each group.

ntrol cells (One-way ANOVA followed by
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 under 10× objective len.  

A. Mitochondria-localized active PKCδ on apoptosis. 

Mitochondria fraction was prepared form cells exposed to 5.0µM MG-132 for 90 or 120 min. 

Mitochondrial lysates were separated on SDS-PAGE and immunoblotted with PKCδ 

antibody, and the membrane was reprobed COX IV to show equal protein loading. B. 

Mitochondria-localized active PKCδ activates caspase-3. After N27 cells were transfected 

with pCMV/myc/mito containing coding sequence for LacZ, PKCδ-RF or PKCδ-CF, double 

immunostaining was conducted using mouse Myc tag primary antibody and rabbit active 

caspase-3 antibody.  The Myc tag and active caspase-3 were visualized using Cy3 conjugated 

anti-mouse (red) and Alexa-488 conjugated anti-rabbit (green) secondary antibodies. C. 

TUNEL staining in the transfected cells. After transfection for 24 hr, cells were subjected 

to TUNEL staining (green) and immunostaining with Myc tag antibody (red). The images 

were analyzed with fluorescence microscopy

 



 189 

FIGURE 7. 

 

 

 

Fig.7 Suppression of PKCδ proteolytic activation protects cells from mitochondria 

mediated apoptosis during proteasome inhibition. 
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A) PKCδ-CRM is noncleavable. N27 cells stably expressing PKCδ-CRM were treated with 

5.0 µM MG-132 for 120 min. The cell lystate prepared from the treated cells were resolved 

on SDS-PAGE and immunoblotted with V5 antibody. The arrow indicates the position for 

the V5- tagged cleaved PKCδ, if any, at 41 kD.  B) Suppression of PKCδ proteolytic 

cleavage by PKCδ-CRM. N27 cells stably transfected with LacZ (as control) and PKCδ-

CRM were treated with 5.0 µM MG-132. Equal amount of protein from the LacZ and CRM 

cells were separated in SDS-PAGE and transferred into nitrocellulus membrane for

immunoblotting with PKCδ antibodies. The membrane was reprobed and blotted with β-actin 

antibody. C) D) and E) Suppression of mitochondria-mediated apoptosis by PKCδ-CRM.

Caspase-9 activity (C), caspase-3 activity (D) and DNA fragmentation (E) were 

 

  

eterermined for LacZ and CRM cells exposed to MG-132 for 120 min. The values are 

expressed as the epresent mean ± 

 

 

d

percentage of the vehicle treated control cells. Results r

S.E.M from 2 separate experiments in quadruplet. *p<0.05, and ***p<0.001 (Student’s t-

test). 
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CHAPTER VI: NOVEL NEUROPROTECTIVE ROLE OF LYSINE48 MUTANT 
UBIQUITIN DURING NEUROTOXICANTS-INDUCED UBIQUITIN-

PROTEASOME DYSFUNCTION IN PARKINSON”S DISEASE MODELS 
 

Faneng Sun, Qinglin Li, Anumantha G Kanthasamy, Daqing Huang, Vellareddy 
Anantharam, Arthi Kanthasamy 

 

ABSRTACT 

Impaired proteolysis by ubiquitin proteasome system (UPS) has been linked to the 

pathogenesis of Parkinson’s disease (PD).  Studies showed that excessive cytosolic dopamine 

and exposure to MPP+ and dieldrin compromise UPS-mediated protein degradation, whereas 

the contributory role of UPS impairment in dopaminergic neurotoxin-induced 

neurodegeneration remains unsolved.  In the present study, we characterized the effects of 

dopamine (200 µM for 12, 18 or 24 h), MPP+ (200 µM for 12, 18 or 24 h), and dieldrin (60 

µM for 20, 40 or 60 min) on UPS function, and determined the role of polyubiquitin sites in 

dopaminergic neuron survival or death.  Enzymatic analysis indicates that proteasomal 

activities were differentially affected by neurotoxin exposure. Reduction of peptidyl-

glutamyl peptide hydrolase (PGPH) and chymotrypsin-like activity (C-L) were observed in 

cells following exposure to dopamine, MPP+ and dieldrin; whereas trypsin-like activity (T-L) 

increases significantly following exposure to dopamine (18 and 24 h), but not MPP+ or 

dieldrin. Furthermore, exposure to dopamine, MPP+ or dieldrin elevated ubiquitinated 

proteins in N27 cells.  To determine whether the accumulation of polyubiquitinated proteins 

is involved in the cell death process, we established cell lines stably expressing wild-type or 

mutant ubiquitin (ubiquitinK48R or ubiquitinK63R).  Results show that ubiquitinK48R 

sig e, 

MPP+ or dieldrin,  polyubiquitin in 

nificantly suppresses caspase-3 activation and cell death following exposure to dopamin

indicating a critical role of accumulation of K48
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dopaminergic degeneration.   Interestingly, mutation at lysine 63 (K63R), which is not 

required for extension of polyubiquitin chains destined for UPS degradation, significantly 

sensitized N27 cells to neurotoxicity.  Collectively, these novel findings suggest that UPS 

dysfunction actively contributes to dopaminergic degeneration during neurotoxin exposure 

through accumulation of K48 polyubiquitin. 

 

INTRODUCTION 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. 

The cardinal motor symptoms of PD include bradykinesia, resting tremors, and ridigity, and a 

high proportion of PD cases eventually develop cognitive impairment and other symptoms. 

Pathologically, the disease is characterized by prominent and prefertial loss of nigral 

dopamine neurons and presence of Lewy bodies in the remaining dopamine neurons (1). The 

underlying mechanisms for selective dopamine neuron death remain poorly understood. 

Dopamine homeostasis misregulation has been proposed as the underlying mechanism for 

e vulnerability of nigral dopamine neurons (2), since excessive cytosolic dopamine is 

etrimental to dopamine neurons. A recent study by Mosharov and colleagues demonstrated 

at α-synuclein mutants dissipate the proton gradient across the vesicle membrane and 

levated cytosolic dopamine levels (3), indicative of the pathological relevance of dopamine 

eurotoxicity in selective dopamine degeneration. Excessive cytosolic dopamine likely also 

methamphetamine (4, 5). MPTP and its active 

metabolite MPP+ are commonly used Parkinsonian neurotoxins for PD modeling, due to their 

elective neurotoxicity to dopaminergic neurons. Extensive studies exploring MPTP/MPP+ 

have shown that exposure to MPTP/MPP+ causes dopaminergic neuron death by 

th

d

th

e

n

contributes to the neurotoxicity provoked by 

s
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mi d 

postm t (7).  

A stud n are 

early responses during dieldrin exposure, and that dieldrin elicits gross neurotoxicity in 

dopaminergic neuronal cells (8). 

tochondria inhibition and oxidative stress (6). Epidemiological, experimental an

ortem studies have linked dieldrin, an organochlorine pesticide, to PD developmen

y by Kitazawa and coworkers showed that dopamine release and ROS generatio

Intracellular proteolysis by ubiquitin-proteasome system (UPS) plays an important 

role in maintenance of cellular homeostasis by getting rid of unwanted, damaged and 

misfolded proteins. Impairment of UPS-mediated proteolysis has been linked to the 

pathogenesis of Parkinson’s disease (PD), since PD-related genes Parkin and Ucl-L1 function 

as important components of UPS degradation, and the presence of intracellular protein 

aggregations indicates proteolytic stress in dopaminergic neurons during the degeneration 

process (1, 9). Studies have shown that exposure to MPP+ (10), dopamine (11) or dieldrin 

reduces proteasome activity in dopaminergic neuronal cells. Additionally, chronic treatment 

with dopaminergic neurotoxin MPTP impairs UPS function, as demonstrated by the 

reduction of proteasome subunits and activity (12, 13). Currently, the contributory roles of 

impaired UPS degradation in dopaminergic degeneration are poorly understood, since UPS 

dysfunction could occur as a response secondary to other cell events such as mitochondria 

inhibition, oxidative stress or cell death.  The direct consequence of proteasome inhibition is 

the accumulation of K48 polyubiquitinated proteins. In this study, we demonstrated for the 

first time that dominant negative ubiquitinK48R, which terminates K48 polyubiquitin chain 

extension, effectively rescues dopaminergic neurons from neurodegeneration in vitro.   
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MATERIAL AND METHODS 

Cell culture. As previously described (14), immortalized mesencephalic dopaminergic 

clonal cells (N27 cells) were cultured in RPMI 1640 medium supplemented with 10% fetal 

bovine serum, 2 mM L-glutamine, 50 units penicillin, and 50 µg/ml streptomycin in a 

humidified atmosphere of 5% CO2 at 37°C.  

 

Enzymatic assay for proteasomal peptidase activities. The assay was conducted as 

described previously (15) with modification. Briefly, cells were resuspended in hypotonic 

buffer (50 mM Tris-HCl, 1 mM EDTA, 10 mM EGTA) supplemented with 10 µM digitonin, 

and incubated for 20 min at 37 ºC. The cell lysates were then centrifuged at 16,000 x g for 5 

min, and the supernatant was collected and incubated with fluorogenic substrates Suc-LLVY-

AMC (75 µM), Boc-LRR-AMC (100 µM) or Z-LLE-AMC (100 µM) at 37°C for 

chymotrypsin-like (C-L), trypsin-like (T-L) and peptidyl-glutamyl peptide hydrolase (PGPH) 

proteasomal activities, respectively. After incubation for 30 min, fluorescence intensity of the 

enzymatic products was determined using a fluorescence plate reader with Ex/Em at 380/460 

nm (Gemini Plate Reader, Molecular Devices Corporation). Enzymatic activities were 

expressed as fluorescence unit per milligram protein.  

 

Assay for caspase activity. caspase-3 activity was determined as described previously (15). 

After treatment, cells were collected and washed with PBS. The cells were then incubated in 

hypotonic Tris buffer (50 mM Tris-HCl, 1 mM EDTA, 10 mM EGTA) with10 µM 

digitoninin for 30 min to obtain the cell lysate, which was subjected to centrifugation at 

16,000 x g for 5 min. The resulting supernatant was incubated with the fluorogenic substrate 
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DEVD-AFC (Biomol International, Plymouth Meeting, PA) to measure caspase-3 activity 

using a fluorescence plate reader (Ex/Em: 400/505 nm).  

 

Plasmid construction and cell transfection. The plasmids for the His6-tagged wild-type 

human ubiquitin-EGFP fusion, ubiquitinK48R or ubiquitinK63R counterparts were kind gifts 

from D

ration 

as determined by the Bradford protein assay.  

 

r. Douglas A. Gray (Ottawa Health Research Institute, Ontario, Canada). The coding 

sequence for His6-ubiquitin-EGFP in the original vectors was amplified using PCR, and then 

cloned into pCEP4 vector at Xho I and Hind III restriction sites by following standard 

cloning procedure. The constructed plasmids were confirmed by DNA sequencing. AMAXA 

was used for electroporation transfection of the constructs. To verify stable expression, single 

clones were selected and screened by hygromycin exposure (200 µM). 

 

DNA fragmentation assay.  Cell Death Detection ELISA Plus Assay Kit purchased from 

Roche Applied Science, (Indianapolis, IN), was used for the DNA fragmentation assay as 

previously described (14).  The ELISA method measures the amount of histone-associated 

low molecular weight DNA in cell lysates.  After treatment, cells were lysed with lysis buffer 

provided with the kit, and the cell lysate was centrifuged at 200 x g. The supernatant was 

transferred into streptavidin-coated wells in a microplate, and incubated with a mixture of 

biotin-labeled anti-histone antibody and HRP-conjugated anti-DNA antibody.  After several 

washings, the immunoreaction complex was measured colorimetrically with ABTS as the 

substrate for HRP at 405 nm with 490 nm as reference wavelength.  Protein concent

w
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Western blot. Standard proce ot. After cell treatment, cells 

 (Sigma, mouse monoclonal, 1:10000). 

dure was followed for Western bl

were lysed with PBS containing protease inhibitors and Triton X-100 (0.2%, v/v). The 

lysates were centrifuged at 16,000 x g for 40 min to obtain the supernatant. Equal amount of 

proteins from each sample was resolved on SDS-PAGE and immunoblotted with ubiquitin 

(Dako, rabbit polyclonal, 1:1000) and β-actin

 

Quantification of cell death using trypan blue exclusion test. Following treatment, both 

the floating cells and the attached cells were collected, and the cells were then resuspended in 

PBS with 0.4% trypan. After 5 min incubation, the cell suspension was used to count the 

dead and living cells under a light microscope.  Cell death was expressed as the percentage of 

dead cells over the total number of cells.  

 

Data analysis 

Data analysis was conducted with Prism 4.0 software (GraphPad software, San 

Diego, CA).  One-way ANOVA was followed by Dunnett’s test or Bonferroni’s test for 

multiple comparisons, and Student’s t-test was used for single comparisons. A statistically 

significant difference was accepted if p<0.05.  

 

RESULTS 

1. Effect of dopamine, MPP+ and dieldrin on proteasomal activity.  Analysis of 

proteasomal activities indicated that exposure to dopamine (12, 18 or 24 h), MPP+ (12 or 24 

h) or dieldrin (60 min) significantly reduced PGPH activity (Panel a of Fig. 1A, B and C). 

The C-L peptidase activity (Panel b of Fig. 1A, B and C) was altered in a pattern similar to 
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PDGH activity, with significant inhibition observed during exposure to dieldrin (20 to 60 

min), dopamine (18 h) and MPP+ (12, 24 h); whereas no significant change in the T-L 

ctivity was noted except a significant elevation at later timepoints following dopamine 

ubstantially elevated 

tracellular ubiquitinated proteins in time dependent manner.  

d DNA fragments. As shown in Fig. 3B, 

a

exposure (18 and 24 hr) (Panel c of Fig. 1A, B and C).  

 

2. Accumulation of ubiquitinated proteins following exposure to dopamine, 

MPP+ or dieldrin.  Tagging of target proteins with lysine 48 (K48)-linked polyubiquitin 

chains is the prerequisite for their UPS degradation.  Incomplete removal of the 

polyubiquitinated proteins results in their accumulation during proteasome inhibition. 

Determination of the cellular ubiquitinated proteins using Western blot indicated that 

exposure to dopamine or MPP+ (Fig. 2A), or dieldrin (Fig. 2B) s

in

 

3. Suppression of apoptosis by ubiquitinK48R following exposure to dopamine or 

dieldrin. To examine whether the accumulation of K48 polyubiquitins contributes to 

neurotoxicity, we established cell lines stably expressing wild-type (wt) ubiquitin, 

ubiquitinK48R or ubiquitinK63R.  An assay for the caspase-3 activation showed significantly 

less caspase-3 activation in N27 cells stably expressing ubiquitinK48R following exposure to 

dopamine, MPP+ and dieldrin (p<0.001), whereas caspase-3 activation was more prominent 

in N27 cells expressing ubiquitinK63R. 

DNA fragmentation is the endpoint event of apoptosis; this was measured by 

quantifying the cytoplasmic histone-complexe
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exposure to dopamine, MPP+, or dieldrin significantly increased DNA fragmentation; those 

increases were significantly suppressed by ubiquitinK48R.  

 

4. Rescue of dopaminergic neuronal cells from cytotoxicity of dopamine, MPP+ 

and dieldrin.  Finally, we compared cell death in cells expressing wt ubiquitin or 

biquitnK48R following exposure to dopamine, MPP+ or dieldrin. As shown in Fig. 4A, 

 were dead (p<0.001 vs MPP+-treated wt ubiquitin 

cells), respectively.  Analysis of dieldrin-treated (60 µM)  cells showed that exposure to 

r resulted in 23% in wt ubiquitin-expressing cells and 15% cell death in cells 

transfec

SION 

he present study clearly demonstrates impaired UPS function following exposure to 

dopamine, MPP+ and dieldrin, manifested by altered proteasomal activities and abnormal 

accumu

u

following 200 µM dopamine treatment for 30 h, the dead cells accounted for more than 41% 

of cells expressing wt ubiquitin, while the percentage of the dead cells was 22% in 

ubiquitinK48R transfected cells (p<0.001 vs dopamine-treated wt ubiquitin cells).  With 

300µM MPP+ treatment for 30 h (Fig. 4A, panel b), approximately 30% of  wt ubiquitin cells 

and 18% of ubiquitinK48R transfected cells

dieldrin for 5 h

ted with ubiquitinK48R cells (p<0.05 vs dieldrin treated wt ubiquitin cells; Fig.4A, 

panel c). 

 

DISCUS

T

lation of ubiquitinated protein.  We showed that expression of a dominant negative 

ubiquitinK48R effectively protected the N27 cells from apoptotic cell death following exposure 

to dopamine, MPP+ and or dieldrin. Overall the data indicate that accumulation of K48 
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polyubiquitin chains plays a key role in dopaminergic degeneration triggered by neurotoxic 

challenges such as exposure to elevated levels of dopamine, MPP+ or dieldrin. 

Genetic and biochemical analysis of PD have implicated defective UPS degradation 

as a pathogenic factor for PD (9, 16). Extensive studies in vivo and in vitro using proteasome 

inhibitors have provided convincing experimental data supporting the etiopathological roles 

of UPS

by these toxins in a similar 

pattern.  However, no significant reduction of T-L proteasomal activity was observed, in fact, 

a signi

ant reduction of C-L and PGDH proteasomal activities 

followi

restoring the loss of proteasomal activity during dieldrin treatment (unpublished 

 dysfunction in PD (17-20). Studies also showed impaired UPS function as the result 

of exposure to dopamine neurotoxins including excessive dopamine (11), MPP+ (10) or 

organochlorine pesticide dieldrin (21). However, the contributory role and cell death 

mechanisms of UPS dysfunction during neurotoxin-induced dopaminergic degeneration 

remain poorly understood.  In the present study, we showed that exposure to dopamine, 

MPP+ and dieldrin affects proteasomal activities. Interestingly, the PGDH and C-L 

protreasomal activities appear to be significantly suppresed 

ficant increase was detected during treatment with dopamine (18, 24 hr). Though it is 

known that PGDH, C-L and T-L proteasomal activities are associated with different β-

subunits present in the inner ring of the 20S proteasome (22, 23), how these activities are 

differentially affected remains unknown.  Previous studies suggested that several factors 

contribute to the negative effect of dopamine on proteasomal activities, such as dopamine-

related ROS generation (11), inhibitory effect of its metabolite aminochrome (24) or its 

neuromelanin derivative (25). Signific

ng exposure to MPP+ and dieldrin is presumably the result of ATP depletion, but not 

ROS generation  (10).  Pretreatment with the antioxidants Trolox or MnTBAP is incapable of 
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observation).  Likely, T-L activity elevated at the later timepoint of dopamine treatment (18, 

24 hr) is an adaptive response to remove accumulated ubiquitinated proteins (Fig. 2), since 

this ac ity appears to more tolerent of the neuronal challenge by dopamine, MPP+ and 

dieldrin

itin chain extension (26).  K63 polyubiquitin chains, which are not involved in 

proteasomal degradation, are the second most abundant type of polyubiquitin chain.  The 

same Lys to Arg mutation at Lys 63 o s profound neurotoxicity in the cells, 

rather 

 

tiv

. 

Several environmental neurotoxins have been shown to compromise proteasomal 

function (1). However, the role of UPS impairment in dopaminergic degeneration following 

exposure to environmental neurotoxins requires further investigation. The direct consequence 

of proteasome inhibition is the incomplete degradation and resulting accumulation of K48 

polyubiquitin chain-tagged target proteins. Here we showed that expression of a dominant 

negative ubiquitinK48R in the dopaminergic neuronal cells effectively rescued dopaminergic 

neurons from apoptotic cell death caused by dopamine, MPP+ or dieldrin.  This evidence 

suggests that UPS dysfunction actively contributes to the environmental neuroroxins-induced 

dopaminergic degeneration through accumulated K48 polyubiquitin chains.  In addition to 

Lys 48, other internal lysine residues (Lys 6, 11, 29, 63) could be used as sites for 

polyubiqu

f ubiquitin elicit

than neuroprotection, which is indicative of the specificity of the K48 

polyubiquitination site in neuroprotection.   
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FIGURE 1. 
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Fig. 1 Effect of dopamine, MPP+ and dieldrin on the proteasomal activities. 

N27 cells were treated with 200 µM dopamine (A) or 300 µM MPP+ (B) for 12, 18 or 24 hr. 

In the case of dieldrin (C), cells were exposed to 60 µM dieldrin for 20, 40 and 60 min.  The 

d cells were collected for proteasomal activity assay using Z-LLE-AMC, Suc-LLVY-

, or Boc-LRR-AMC as substrates for PGDH (panel a), C-L (panel b) or T-L (panel c) 

somal activities, respecti

treate

AMC

protea vely. Values represent mean ± S.E.M. from six individual 

group

 

 

 

samples. *p<0.05, ***p<0.001 (Student’s t-test) in comparison with time-matched control 

s. 
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FIGURE.2 

 

 

 

 

 

 

 

 

 

Fig. 2 Accumulation of ubiquitnated proteins following exposure to dopamine, MPP+ 

and dieldrin. 

Following treatment with 200 µM dopamine, or 300 µM MPP+ (A) for 12 or 18 hr, cells were 

collected by trypsinization. For dieldrin (60 µM) treatment, cells were collected 20, 40 or 60 

min after exposure (B). The whole cell lysates prepared from the treated cells were resolved 

on SDS-PAGE and immunoblotted with antibodies against ubiquitin and β-actin. 
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FIGURE.3 
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Fig. 3 Suppression of apoptosis by ubiquitinK48R following exposure to dopamine or 

dieldrin. 

Cell lines stably expressing linear fusion of His6–tagged wild-type (wt) ubiquitin-GFP (His6-

ubiquitin-GFP) or its mutant counterparts His6-ubiquitinK48R-GFP or His6-ubiquitinK63R-GFP 

were subjected to 24 hr treatment with 200 µM dopamine, 300 µM MPP+ for 24 hr or 4 hr 

treatment with 60 µM dieldrin. A. Caspase-3 activation.  Enzymatic activity of caspase-3 

was assessed with DEVD-AFC as substrate for dopamine- (panel a), MPP+- (panel b) and 

dieldrin-treated (panel c) cells.   Values represent mean ± S.E.M. N=6 for dopamine and 

MPP+ experiment; whereas the data were derived from 3 individual experiments with 6, 6, 

and 5 samples respectively in the dieldrin treatment.  B. DNA fragmentation. DNA 

fragmentation was determined using ELISA method for cells receiving 24-hour with 

dopamine (panel a) or MPP+ (panel b) treatment, or 4-hour dieldrin (panel c) treatment as 

an ± S.E.M., with 5 

samp

 

comp  

 

described in the Materials and Methods.  Data are presented as me

les in each group.  Statistical significance was determined by one-way ANOVA 

followed by Bonferroni's Multiple Comparison Test. *p<0.05, **p<0.01, *** p<0.001,

aring with individual control group; ###p<0.001, in comparison with indicated group.
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F  

 

 

 

 

 

 

ig. 4 Rescue of dopaminergic neuronal cells from the cytotoxicity of dopamine, MPP+

and dieldrin. 

Three lines of stable cells (His6-tagged wt, K48R or K63R ubiquitin-GFP) were treated with 

200 µM dopamine or 300 µM MPP+ for up to 30 hr.  Treatment with 60 µM dieldrin lasted 5 

hr.  Phase contrast images were captured after treatment (B).  All the floating and attached 

cells in each sample were pooled together for the trypan blue cell death assay as described in 

the Materials and Methods (A).  Panel a: dopamine treatment; panel b: MPP+ treatment; 

panel c: dieldrin treatment. Data are present as mean ± S.E.M. for the percentage of trypan 

blue stained cells. N=6, Statistic comparisons were conducted using one-way ANOVA 

followed by Bonferroni's Multiple Comparison Test. *p<0.05, **p<0.01, *** p<0.001, 

comparing with individual control group; ###p<0.001, in comparison with indicated group.   
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Chapter VII: GENERAL CONCLUSION 

 

he major findings of each research chapter included in this thesis have been 

described, and implications of the findings to dopaminergic degeneration have been 

interpreted in the discussion section of each individual chapter.  This section presents an 

overview of the results and findings in the thesis herein, with special emphasis on the 

contributory role of impaired ubiquitin-proteasome degradation in environmental 

neurotoxins-induced apoptosis, and its relevance to the pathogenesis of Parkinson’s disease. 

ene-environment interaction of dieldrin and α-synuclein converges to impair 

ubiquitin-proteasome mediated proteolysis and induces dopaminergic degeneration. 

Ubiquitin-proteasome and lysosome are two primary cellular degradation systems. Many 

proteins including short-live signal proteins, misfolded and oxidatively damaged proteins are 

subjected to proteolysis by UPS (Glickman and Ciechanover, 2002; Jung et al., 2007).  The 

extensive presence of protein aggregates in the form of inclusions known as Lewy bodies in 

nigral dopaminergic neurons (McNaught et al., 2002a; McNaught et al., 2002b) and 

involvement of several PD genes in the UPS degradation pathway (Wood-Kaczmar et al., 

2006), strongly support a role for proteasomal dysfunction in pathogenesis of PD.  

Currently, the etiopathogenesis of PD remains poorly understood, although both 

genetic and environmental factors are believ te to PD development. 

Epidemiological studies consistently implicate exposure to pesticides as a potential risk 

factor for PD (Di Monte et al., 2002; Lai et al., 2002; Kanthasamy et al., 2005).  Indeed, 

these studies provide important clues for determining the environmental risk factor for PD; 

T

 

G

ed to contribu
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a  

effectively induce dopaminergic degen  and in vitro (Dauer and Przedborski, 

 

iggering dopaminergic degeneration.  Overproduction of α-synuclein, as the result of gene 

cus multiplication in familial PD (Singleton et al., 2003; Chartier-Harlin et al., 2004; 

anez et al., 2004), supports the idea that genetic mutation predisposes dopaminergic 

eurons to neurotoxicity of environmental neurotoxins. Consisitent with the proteasomal 

hibition by dieldrin observed in the present studies, a broad range of pesticides including 

t proteasomal activity in a different cell line 

(Wang et al., 2006). Defective proteasome function could result from oxidative stress when 

xidatively damaged proteins overwhelm the degradation capacity of the proteasome (Okada 

t al., 1999; Shamoto-Nagai et al., 2003); whereas several antioxidants including Trolox, 

nTBAP and CoQ failed to preserve UPS function following dieldrin exposure. Though 

experimental data is absent, inhibition of ATP production by dieldrin due to inhibition of 

dditional laboratory studies of rotenone and paraquat exposure showed both pesticides

eration in vivo

2003; von Bohlen und Halbach et al., 2004; Dinis-Oliveira et al., 2006).  The organochlorine 

pesticide dieldrin has also been implicated as a PD-related neurotoxin in epidemiological 

(Kanthasamy et al., 2005) and postmortem analyses (Fleming et al., 1994; Corrigan et al., 

2000; Kanthasamy et al., 2005). The studies presented in this thesis showed that exposure to 

subtoxic concentrations of dieldrin impairs UPS-mediated protein aggregation, as 

demonstrated by a reduction in proteasome activity and elevation of ubiquitinated proteins in 

dopaminergic neuronal cells. However, more severe proteasomal inhibition and neutotoxicity 

was exhibited in the dopaminergic neuronal cells overexpressing wild-type human α-

synuclein, indicating that dieldrin and α-synuclein converge to impair UPS function, thus

tr

lo

Ib

n

in

dieldrin and rotenone have been shown to inhibi

o

e

M
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mitochondrial function ibly accounts for the 

observed UPS impairment, similarly to MPP+ (Hoglinger et al., 2003).  

 

undifferentiated N27 dopaminergic neuronal cells.  Exogenously introduced human α-

synucle

 

 (Bergen, 1971; Pardini et al., 1971), poss

The pathophysiological roles of α-synuclein in dopamineric degeneration remain 

uncertain.  Examination of the direct effect of α-synuclein on neuronal viability or neuronal 

vulnerability to dopaminergic neurotoxins using overexpression models has yielded 

inconsistent results. Various factors, including expression level, have been hypothesized to 

account for the opposing roles of α-synuclein on neuronal viability (Seo et al., 2002; Xu et 

al., 2002; Zourlidou et al., 2003).  Extremely low levels of α-synuclein were expressed in the

in expressed at physiological levels comparable to rat substantia nigra appears to be 

protective initially, then substantially potentiates neurotoxicity of dieldrin, suggesting that α-

synuclein possibly protects dopaminergic neurons from the toxicity of an acute neuronal 

challenge, but not from chronic stress.  A recent study by Chandra and colleagues revealed 

unexpected roles of α-synuclein in preventing neurodegeneration caused by CSPα 

inactivation in vivo (Chandra et al., 2005). However, in reality, α-synuclein could be 

detrimental to dopaminergic neurons, with chronic exposure to environmental factors as the 

dominant risk factor for PD.  This idea is consistent with slow progression of 

neurodegeneration in α-synuclein transgenic mice (Fernagut and Chesselet, 2004).  

 

Proteasome inhibitor MG-132-induced mitochondrial apoptosis involves 

mitochondrial accumulation of ubiquitinated proteins----rescue of dopaminergic 

neurons from apoptosis by dominant negative mutant K48R ubiquitin.  Mitochondrial 

dysfunction and UPS impairment are the two major hypotheses for PD pathogenesis.  Normal 
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UPS function plays an essential role in maintenance of physiology and structural integrity of 

mitochondria, though the underlying mechanisms remain elusive (Abou-Sleiman et al., 

2006).  The results from our studies show that proteasome inhibition by MG-132 diminishes 

mitochondria membrane potential and activates mitochondria-mediated apoptosis, as 

demonstrated by caspase-9 and -3 activation.  A study by Sullivan and coworkers showed 

chronic exposure to proteasome inhibitors compromises maximum mitochondrial respiration 

and slowed mitochondria turnover (Sullivan et al., 2004).  The novel finding of our study 

demonstrates that profound and preferential accumulation of ubiquitinated proteins in 

mitochondria may likely mediate mitochondria dysfunction and activation of mitochondrial 

apoptosis.  Expression of dominant negative mutant ubiquitinK48R using different vectors 

significantly abolishes the MG-132-induced activation of mitochondrial apoptosis, 

suggesting that mitochondrial accumulation of ubiquitin conjugates actively contributes to 

mitochondrial apoptosis.  The potent anti-apoptotic effect of the ubiquitinK48R probably 

explains the marked neuroprotection of the ubiquitinK48R observed in spinocerebellar ataxia 

type 1 mouse models (Tsirigotis et al., 2006). Further study of neuroprotective mechanisms 

will focus on identification of mitochondrial molecules linking polyubiquitination and 

apoptosis, thus delineating the apoptosis pathway in dopaminergic degeneration.     

 

Mitochondria-dependent positive feedback amplification of apoptosis by PKCδ 

promotes proteasome inhibitor MG-132-induced dopaminergic degeneration.  PKCδ 

activation could occur as the results of its membrane translocation, phosphorylation or 

proteolytic cleavage.  Phosphorylation of caspase-3 by active full-length PKCδ has been 

shown to increase the enzymatic activity of caspase-3, and amplify the apoptotic signal in 
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monocytes (Voss et al., 2005). Studies have shown that proteolytic activation of PKCδ is a 

key mediator for apoptosis during oxidative stress in dopaminergic neuronal cells.  In the 

MG-13

er et al., 

2000) and dieldrin reduces proteasome activities in dopaminergic neuronal cells.  Chronic 

treatme

2-induced apoptosis model, proteasomal inhibition precedes the caspase-3-dependent 

mitochondrial apoptotic cascade.  Proteolytic activation of PKCδ by caspase-3 is required for 

the full activation of caspase-3, suggesting that positive feedback amplification of caspase-3 

by PKCδ is mitochondria-dependent in dopaminergic neuronal cells.  Additionally, 

mitochondrial translocation of proteolytically activated PKCδ appears to mediate its 

proapoptotic effect, since mitochondria-targeted expression of the catalytic fragment of 

PKCδ results in caspase-3 activation.  Though we do not have data regarding mechanisms of 

how mitochondria-localized PKCδ activates mitochondrial apoptosis, other studies have 

shown phosphorylation and regulation by PKCδ of scramblase (He et al., 2007) and pyruvate 

dehydrogenase kinase (Churchill et al., 2005) as likely mitochondrial targets.  Future studies 

may need to focus on identifying the primary mitochondrial target of PKCδ that contributes 

to amplification of caspase-3 activity during UPS dysfunction. 

 

Functional impairment of the ubiquitin-proteasome system during exposure to 

neurotoxins dieldrin, MPP+ and dopamine contributes to dopaminergic degeneration.  

Studies showed that exposure to MPP+ (Hoglinger et al., 2003), dopamine (Kell

nt with dopaminergic neurotoxin MPTP impairs UPS function, as demonstrated by 

the reduction of proteasomal subunits and activity (Fornai et al., 2005; Zeng et al., 2006). 

Currently, the contributory roles of impaired UPS degradation in dopaminergic degeneration 

upon neurotoxin exposure are still unknown; impaired UPS could occur as a response 
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secondary to other cell events such as mitochondria inhibition, oxidative stress or cell death.  

The direct consequence of proteasome inhibition is the accumulation of K48 

polyubiquitinated proteins.  In an attempt to determine whether the accumulation of 

polyubiquitinated proteins following MPP+, dopamine or dieldrin treatment is involved in the 

cell death process, we found that N27 cells stably expressing K48R mutant ubiquitin confers 

neuronal resistance against neurotoxicity of MPP+, dopamine or dieldrin.  This work 

demonstrates for the first time the effective rescue of dopaminergic neurons from 

neurodegeneration in vitro by dominant negative ubiquitinK48R, which suppresses K48 

polyubiquitin chain extension.  These results provide a promising entry point to dissect out 

the inter-relationship between two proposed major pathogenic factors for PD: mitochondria 

dysfunction and impairment of ubiquitin proteasome protein degradation. 

In summary, exposure to environmental neurotoxins and gene-environment 

interactions could converge to compromise the proteolytic capacity of the ubiquitin 

proteasome system, by promoting ROS generation, depleting cellular ATP or a direct 

inhibitory effect on the proteasome (Scheme-1).  Impairment in proteasome function leads to 

preferential accumulation of ubiquitinated proteins in the mitochondria, which induces 

mitochondrial dysfunction and release of proapoptotic molecules; these events subsequently 

activate mitochondria-mediated apoptosis. Proteolytic activation of PKCδ during the process 

contributes to the full activation of caspase-3 through mitochondrial translocation and 

possibly phosphorylating mitochondrial target proteins by activated PKCδ. Thus, the 

interplay between UPS impairment and mitochondrial dysfunction promotes the degenerative 

processes in dopaminergic neurons.   
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