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A MODELING APPROACH TO QUANTIFY THE EFFECTS OF

SPATIAL SOYBEAN YIELD LIMITING FACTORS

J. O. Paz,  W. D. Batchelor,  G. L. Tylka,  R. G. Hartzler

ABSTRACT. Spatial yield variability is a complex interaction of many factors, including soil properties, weather, pests, fertility,
and management. Crop models are excellent tools to evaluate these complex interactions and provide insight into causes of
spatial yield variability. The goal of this study was to use a soybean crop growth model to determine the contribution of three
factors that cause spatial yield variability and to test several calibration and validation strategies for yield prediction. A
procedure was developed to calibrate the CROPGRO–Soybean model and to compare predicted and measured soybean
yields, assuming that water stress, soybean cyst nematodes (SCN), and weeds were the dominant yield–limiting factors. The
procedure involved calibrating drainage properties and rooting depth over three seasons for each grid. These procedures were
tested on 77 grids (0.2 ha in size) in the McGarvey field in Perry, Iowa, for 1995, 1997, and 1999. Predicted soybean yields
were in good agreement (r2 = 0.80) with measured yield after calibrating three model parameters. The calibrated model was
used to quantify the effects of three yield–limiting factors on soybean. The maximum soybean yield potential in 1997 was
estimated by running the calibrated model with no water, SCN, or weed stress. The model was then run for 1997, turning each
yield–limiting  factor off to assess its relative impact on yield reduction. Average estimated yield loss due to the combined
effects of water stress, SCN, and weeds in each grid was 842 kg ha–1. Soybean yields were significantly reduced by an average
of 626 kg ha–1 as a result of water stress. The presence of SCN in several grids accounted for an average yield reduction of
105 kg ha–1. The effects of weeds on soybean yield were not significant.
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patial yield variability is a complex interaction of
many factors including water stress, rooting depth,
soil and drainage properties, weather, pests, fertility,
and management. The challenge for farmers is to

identify the factors that they can control and manage and to
make appropriate management decisions to increase profits.
Recent improvements in farm technology have given farmers
the tools and capabilities to effectively map their fields,
record yield histories, and even vary inputs/management
strategies in response to variations in soil and environmental
factors in the field. Research advancements in the field of
precision agriculture (PA) have provided opportunities for
farmers to further increase the productivity of their
agricultural  lands. Still, both farmers and researchers must
work with the problem of significant yield variability within
a field.
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Process–oriented crop models such as CROPGRO–
Soybean (Hoogenboom et al., 1994) were designed to study
the interactions of weather, soil, management, and genetics
on yields. In precision farming, crop models can be used to:
(1) identify yield loss due to interacting factors, (2) evaluate
consequences of management prescriptions, and (3) forecast
spatial yields during the season. Recently, researchers have
demonstrated the use of crop models to identify spatial
yield–limiting  factors for both corn and soybeans (Batchelor
and Paz, 1998; Fraisse et al., 1998; Paz et al., 1998; Paz et al.,
1999). Paz et al. (1998) used a modified version of the
CROPGRO–Soybean model and evaluated the role of spatial
water stress in causing spatial yield variability in a single
field utilizing multiple years of yield data. Soil parameters
related to rooting depth and hydraulic conductivity were
calibrated in the model in each of 224 grids in a 16–ha field
in Iowa using three years of yield data. They concluded that
water stress explained 69% of the variability in yield for all
grids over three years. Paz et al. (1999) implemented similar
procedures to evaluate the interaction of corn population and
water stress on spatial yield variability. Fraisse et al. (1998)
used the approach developed by Paz et al. (1998) to examine
water stress effects on corn yield variability in Missouri.
Their calibration procedure involved adjusting the soil water
upper and lower limits, saturated hydraulic conductivity, and
root hospitality factor.

From the previous work, and from much anecdotal
evidence, water stress is a dominant soybean yield–limiting
factor. Very little can be done to control this problem in the
non–irrigated Midwest. However, other stresses such as
soybean cyst nematodes (SCN) and weeds can also create
significant spatial yield variability and can be controlled
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through proper management. There has been no published
effort extending crop–modeling procedures to evaluate more
complex interactions among these factors and to determine
their relative impact on spatial soybean yield variability.

In order for the models to be adopted by farmers and
industry, an assessment needs to be made to determine the
ability to predict spatial yields in independent environments.
To date, all published work has focused on calibrating the
models to predict within–field yield variability and evaluate
yield–limiting  factors. The objective of this study was to
extend the use of crop models to study the effects of water
stress, SCN, and weeds on soybean yield variability.

PROCEDURES
MODEL DESCRIPTION

The CROPGRO–Soybean crop model (Hoogenboom et
al., 1994) was developed to compute growth, development,
and yield on homogeneous units (either plot, field, or
regional scale) and has been demonstrated to adequately
simulate crop growth at a field or research plot scale. This
model requires inputs including management practices
(variety, row spacing, plant population, fertilizer and
irrigation application dates and amounts) and environmental
conditions (soil type, daily maximum and minimum
temperature, rainfall, and solar radiation). From this
information,  daily growth of vegetative, reproductive, and
root components are computed as a function of daily
photosynthesis, growth stage, and water and nitrogen stress.
Soil moisture and nitrogen balance models are used to
compute water and nitrate levels in the soil as a function of
rainfall and soil moisture holding properties. Because the
model is process–oriented, it is relatively simple to couple
additional processes, such as impact of pests, to daily
calculation of state variables.

YIELD–LIMITING FACTORS
Soybean cyst nematode (SCN), Heterodera glycines

Ichinohe, is the single most damaging pest of soybeans in the
United States. It is responsible for significant economic
losses in soybean production throughout the United States
(Wrather et al., 1997). SCN may decrease yields substantially
without inducing obvious symptoms. In determining the
effects of SCN, this study used the SCN damage routine
proposed by Fallick (1999). The CROPGRO–Soybean model
calculates photosynthesis as a function of photosynthetically
active radiation (PAR). The relationship is of the form:
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where
PTSmax = potential photosynthesis based on PAR
PHTmax = constant defining the maximum possible

photosynthetic rate
PARmax = light saturation constant.
Gross photosynthesis (Pg) is calculated using the

following equation:

∏⋅=
N
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where RFACi are a series of reduction factors (i = leaf nitro-
gen factor, canopy factor, leaf age factor, etc.).

Fallick (1999) used a constant damage factor that was
calculated as a function of the initial population density of
SCN eggs in the soil and applied to the CROPGRO–Soybean
model. SCN damage was coupled to photosynthesis through
RFAC.

A computer–based weed management system, Weed–
SOFT (Mortensen et al., 1999), was used to estimate the
effects of weeds on soybean yield. Information regarding
weed species and weed density rating in each cell was used
as input to WeedSOFT, which then estimated the amount of
yield loss. To simplify weed damage, yield loss was added
after calibration and was not integrated into model runs.

SITE DESCRIPTION
In 1996, a project was initiated to study causes of corn and

soybean yield variability at three sites in Iowa. One of those
sites, the McGarvey field near Perry, Iowa, was selected for
this study. The field was divided into 100 grids 0.2–ha in size
for studying the effects of soil and pest variability on yields.

Yield data were collected from 1994 to 1999 (1994 and
1995 data were collected by the farmer prior to the initiation
of the project). Relevant crop management (e.g., plant
population and fertilizer rate) and soil information were
collected in 1996–1999. In addition, soybean cyst nematode
(SCN) spring egg counts and weed species and density data
were obtained from each grid in 1997. Weed data were
collected when the soybean plants were at VE/V1
(emergence/1st leaf node) and V7/V8 (7th/8th leaf nodes)
stages. This information allowed us to identify specific areas
within the field where SCN and weed infestation were high
and may have significantly affected soybean yield.
Furthermore, information on SCN and weed population
allowed us to identify causes of yield variability other than
water stress.

Seven soil types were identified in the McGarvey field
(fig. 1). Basic soil layer information, such as soil texture and
bulk density, was obtained from the county soil survey report
(Soil Conservation Service, 1981). In the absence of
field–measured soil water limits, values for lower limit (LL),
drained upper limit (DUL), and saturated upper limit (SAT)
were determined by using a database (Ratliff et al., 1983) of
soil water limits for different textural classes. Soil nutrient
(nitrogen, phosphorus, and potassium) data were obtained
from analysis of soil samples taken from each grid in 1997.

METHODS TO COMPUTE YIELD–LIMITING FACTORS

For this exercise, we developed a method designed to
calibrate the model for each grid across three seasons of yield
data. The idea was to calibrate the model with all available
seasons of data in order to obtain the best description of the
interactions.  The model databases were populated with
soybean final yield and crop management and soil data
obtained in each of the 100 grids at the McGarvey field for
model calibration. However, only 77 out of 100 grids had
three years (1995, 1997, and 1999) of yield data. Thus,
analysis was focused only on grids that had complete sets of
data. However, there is a lack of hydraulic information in the
field (i.e., tile flow characteristics and water table
characteristics),  which is a primary factor in creating yield
variability. Paz et al. (1998, 1999) demonstrated that several
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Figure 1. Map showing the dominant soil type for each grid–cell in the
McGarvey field.

model parameters related to tile drainage can be estimated by
minimizing error between predicted and measured yields
over several seasons of data. Based on the work of Paz et al.
(1998) and Shen et al. (1998a), we elected to calibrate three
model parameters in each grid to minimize error in predicting
yields over three seasons. Those parameters were:

FLDS – effective tile drain spacing (m)
KSAT – hydraulic conductivity of the bottom soil layer

(cm day–1)
RHRF – root depth and distribution (cm).
Paz et al. (1998) developed methods to adjust RHRF to fit

spatial yield data. However, they ignored spatial tile flow and
water table dynamics in their analysis. Shen et al. (1998b)
developed methods to adjust FLDS and KSAT to fit measured
cumulative tile drainage flow and soil water content data. In
this exercise, we combined the results of the two previous
studies to obtain a better representation of water table and
rooting depth interactions. The saturated hydraulic conduc–
tivity of an impermeable layer and effective tile drain spacing
were adjusted to force the soil to saturate early in the season
and allow the water to slowly drain from the soil between the
tile and impermeable layers. In combination, these
parameters create water stress conditions by simulating a
perched water table. In addition, root growth is favored or
limited, corresponding to an increase or decrease in root
hospitality factor.

We calibrated the CROPGRO–Soybean model by
adjusting the values of three model parameters (FLDS,
KSAT, and RHRF). A control program containing the
simulated annealing algorithm was linked with the
CROPGRO–Soybean model. Simulated annealing is a very
robust algorithm (Goffe et al., 1994) and is used in solving
complex combinatorial optimization problems. This study

used a simulated annealing routine as described by Corana et
al. (1987) and implemented by Goffe et al. (1994). Model
parameters were optimized in each of the 77 grids to
minimize the sum of square error between predicted and
measured yield for 1995, 1997, and 1999. The objective
function established for the model simulations was written
as:
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where SSE is the sum of square error between Ym (measured
yield) and Yp (predicted yield), and i is the ith year. In each
case, the effect of SCN population was coupled directly to the
model, and the estimated yield loss due to weeds was sub-
tracted from the predicted yield prior to computing the SSE.

RESULTS AND DISCUSSION
MODEL CALIBRATION

Calibration of the CROPGRO–Soybean model using
three years of yield data resulted in high r2 (0.80) and low root
mean square error (RMSE = 346.2 kg ha–1) after adjusting
three model parameters (fig. 2). This result implies that water
stress, SCN, and weeds could account for approximately 80%
of the variability in yield. Furthermore, this reflects an
improvement in model calibration compared to a previous
study (Paz et al., 1998), which found that 69% of soybean
yield variability was attributed to water stress alone. Errors
in soybean yield prediction for 1997 were very low (±5%) in
most grids in the McGarvey field (fig. 3). Interestingly, grids
that were grossly underpredicted (–20% to –30%) have
poorly drained (Harps) or very poorly drained (Okoboji) soils
that are predominant in depressions or potholes.

YIELD–LIMITING FACTORS

The effects of three yield–limiting factors were then
computed for 1997 using the calibrated model. Figure 4
shows a comparison of predicted and measured yield under
different conditions of yield–limiting factors. The maximum
potential soybean yield (+ symbol) in 1997, determined using

y = 1.1099x – 152.51
r 2 = 0.80
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Figure 2. Comparison of measured and predicted soybean yield after cali-
brating three model parameters (FLDS, KSAT, RHRF) and using three
years of yield data.
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Figure 3. Error in soybean yield prediction in 1997 for McGarvey Field

the 3–parameter calibrated model, ranged from 3700 to
3800 kg ha–1. The values vary slightly from grid to grid be-
cause of differences in plant population. Predicted yields us-
ing the calibrated model for 1997 with all of the stresses

(water stress, SCN, and weeds) taken into account are indi-
cated by the dark triangles. For a specified grid, subtracting
the dark triangle value from the + value indicates the esti-
mated yield loss due to the combined effects of water stress,
SCN, and weeds.

A similar approach was taken in determining the effects
of each yield–limiting factor. For example, yield reduction
due to water stress in a grid was determined by subtracting the
dark triangle value from the white diamond value (labeled
“no water stress” in fig. 4). Average estimated yield loss (over
all grids) due to the combined effects of water stress, SCN,
and weeds in each 0.2–hectare grid was 842 kg ha–1 (table 1).
A significant number of grids had high yield reduction of
greater than 1170 kg ha–1 (fig. 5).

Among the yield–limiting factors examined, water stress
had the greatest impact on soybean yield. Soybean yields
were significantly reduced by an average 626 kg ha–1 as a
result of water stress condition. Eight grids had high yield
losses ranging from 877 to 1461 kg ha–1 (fig. 6). Grids with
poorly drained (Harps) and very poorly drained (Okoboji)
soils tended to have higher yield loss due to water stress.

In 1997, the presence of SCN in several grids accounted
for an average yield reduction of 105 kg ha–1. Yield loss due
to SCN ranged from 30 to 410 kg ha–1 (fig. 7). Weeds did not
have any significant adverse effect on soybean yield (table 1),
primarily because of effective weed control. This outcome
does not, however, rule out the possibility of weeds having a
significant effect in any other production year.

CONCLUSIONS AND RECOMMENDATIONS
Three factors affecting soybean yield variability, namely

water stress, soybean cyst nematode (SCN), and weeds, were
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Figure 4. Maximum potential soybean yield in 1997 and variations in predicted soybean yield as affected by SCN, weeds, and water stress.
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Table 1. Average estimated soybean yield loss in 1997
due to the effects of water stress, SCN, and weeds.

Yield reduction factors
Yield loss
(kg ha–1)

Water stress 626

Soybean cyst nematode (SCN) 105
Weeds 18
Water stress + SCN + weeds 842

Figure 5. Grid distribution of estimated yield loss in 1997 due to the com-
bined effects of SCN, weeds, and water stress.

examined in a central Iowa soybean field using the CROP-
GRO–Soybean model. We calibrated three parameters
(FLDS, KSAT, and RHRF) that affect water stress and incor-
porated the other two yield variability factors (SCN and
weeds). Calibration of three model parameters (FLDS,
KSAT, and RHRF) using three years of data had better r2.

Among the yield variability factors that were examined in
this study, water stress clearly had a big impact on yield
production. However, we cannot discount the effect of other
factors, such as SCN and weeds. Information on SCN and
weed population allowed us to identify causes of yield
variability other than water stress and the degree to which
these factors may have affected model prediction. The
technique presented in this study shows the value of using a
crop growth model in quantifying the individual as well as
combined effects of yield variability factors. There is a need,
however, to further test the model using another year of data
and to examine the performance of the model at other sites.

Figure 6. Estimated yield loss in each grid due to water stress in 1997.

A bigger challenge is how to use a crop growth model to de-
velop grid–level management prescriptions, and analyze the
economic impact of such prescriptions.
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