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ABSTRACT 

Quantitative understanding of the parameters which control composite fracture is imperative to the 
implementation of fail safe design and inspection of critical load bearing structures. For isotropic 
materials, fracture is essentially controlled by a single parameter, e.g., the fracture toughness or the 
stress-intensity factor. This one dimensional nature lends itself to experimental quantification. 
However, for anisotropic composites there are at least seven primary controlling parameters: 1) crack 
length; 2) crack orientation with respect to material axis of anisotropy; 3) nature of applied combined 
stresses; 4) lamination geometry; 5) deformational and strength resp011Ses of the constituent lamina; 
6) three kinematically admissible modes of crack extension and 7) crack trajectory. Because of this 
large number of parameters, experimental quantification by system~tic permutation of the parameters must 
be realistically viewed as intractable. This paper presents an analytical method of reducing these 
parameters from seven to two and furnishes experimental observations -nich lend support to the 
theoretical model. An experimental p~gram is conducted on fiberglass reinforced epoxy where a centrally 
notched-crack is subjected to combined loading. Several lamination geometries are tested and by varying 
the external combined loading, different crack trajectories are predicted by the theoretical model. 
These predicted trajectories agree well with the experimental observed fracture mode. Such agreement 
suggests that with further refinement, the general condition of laminated fracture can be characterized. 

Introduction 

In contrast to isotropic metals and polymers, 
fracture of anisotropic composites is a multi-para­
meter problem because 1) the near-field stress 
distribution depends not only on the crack geometry 
but also on the relation of the crack to the mate­
rial orientation, and 2) the material resistance 
to crack propagation is a strong function of the 
material orientation, e.g., it is more difficult 
to break fibers than to separate them. As a 
consequence of the multi-parameter characteristics, 
the prediction of crack initiation under biaxial 
loading and the prediction of crack trajectory 
become relevant to the fundamental understanding 
of fracture and to the rational analysis of com­
posite engineering structures. 

In the trend of current research practices, 
characterization of the strength of anisotropic 
multiphase composites is usually separated into 
two broad categories: 1) the composite strength 
in the absence of macroscopic flaws, and 2) the 
composite strength in the presence of macroscopic 
flaws (and stress-risers). These two categories 
are usually referred to as anisotropic failure 
criterion chracterization and fracture mechanics 
respectively,and they are treated as separate 
physical phenomena. Clearly, such arbitrary 
categorizing is a consequence of atteiPting to 
identify the critical paths of composite strength 
characterization through association with those 
experiences gained from isotropic solids. The 
one- parameter nature of isotropic fracture follows 
directly from the physical observation that iso­
tropic crack extension is always perpendicular 
to the direction of maximum tension and the dis­
sipation always occurs via a crack opening mode. 
Thus, the similarity between the mathematical 
model and physical observation is easily main­
tained. In contrast, composites, particularly 
in the laminated form, exhibit a large range of 
instability conditions involving various amounts 
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of slow crack growth. First of all, the modes 
of energy dissipation are not limited to the open­
ing mode but also include forward sliding and 
out-of-plane shear; the crack trajectories seldom 
follow the maximum tensile stress direction and 
often lead to non-self-similar crack extension\ 
i ncl udi ng complex branching. The effects of.. the 
external loads (symmetric and stress-symmet~c 
to the crack) as well as combined loading on 
crack instability also need to be documented. 
Finally, the size effect of flaws is far more 
dominant in ca.posites than in homogeneous iso­
tropic materials. 

Whereas the one dimensional nature of iso­
tropic fracture lends itself to experimental 
quantification in the form of a single critical 
stress-intensity factor or fracture toughness 
parameter, the multiple-parameter nature of crack 
extension in composites precludes empirical per­
mutation of the parameters. For anisotropic 
composite laminates, there are at least seven 
primary parameters controlling the fracture 
characterisitics. These are: 

1. Defonaational and strength responses 
of the constituent lamina 

2. lamin~tion geometry 
3. Crack orientation with respect to the 

materfal axis of anisotropy 
4. Crack 1 ength 
5. Nature of applied stresses 
6. Energr dissipation associated with the 

three kinematically admissible modes 
of crack extension 

7. Crack trajectory 

Theoretical Model 

Because of this large number of parameters, 
experimental quantification by systematic per­
mutation of the parameters must be realistically 
viewed as intractable. This paper presents an 



analyti cal model which reduces the above parameter 
l ist from seven to two and furnishes experimental 
observat ions which lend support to the theoret­
ical model. 

The theoretical model is based on the hypo­
thesis t hat, in t he case of quasi-static crack 
extension, the necessary and sufficient condition 
for failure of a volume elanent around a macro­
scopic crack tip is similar to that condition 
for failure of a volume elanent in the absence 
of a macroscopic crack. Since the presence of a 
macroscopic crack gives ri se to a combined complex 
state of stress in the neighborhood of the crack 
tip, it is necessary to know the condition of fail­
ure of the composite under complex loading, which 
is commonly referred to as the failure envelope 
or failure cri terion. Thus, the major ingredients 
required i n the implementation of the theoret-
ical model are a ) a mathem~tically operational 
anisot ropic failure cri terion for the composite 
lamina, and b) a suitable stress analysis technique 
through which the stress distribution in the neigh­
borhood of t he crack tip in a laminate can be 
computed. In recent years, numerous failure crite­
r ion have been proposed. Examination of their 
formulations, Ref. 1, reve~l s that they can be 
cast and compared in terms of tensor polynomial s 
and t hat the majority of them are mathematically 
awkward; some even lack consistency' of conversion 
between stress and strain . It was found that the 
tensor polynomial failure criterion, Ref. 2, 
encompasses maximum flexibility without redundancy 
and further , that it lends itself to the design 
of critical experiments, Ref. 3. The tensor 
polynomial failure criterion is used here, although 
it should be emphasized thit other experimentally 
veri f ied cri teria may be substituted. The tensor 
polynomial fa i lure criterion when expressed in 
terms of stress takes the form : 

f(oi) Fio i + Fi joioj + Fijkoiojok 

+ . .. 1. i = 1,2 , . . . 6 ( 1) 

where in Eq. (1) contracted notation is used . For 
a typical engineering composite (graphite epoxy), 
the linear and quadrati c terms in Eq. (1) provide 
sufficient correlation of the experimental data 
as shown in Fig. 1. These experimental data were 
obtained from t ubular samples tested under com­
bined stress conditi ons along radial loading paths 
by an axial-rot ary-internill pressure mechanical 
testing machine controll ed by an on-line digital 
computer. The experimentill details have been re­
ported in Ref. 4. The data actually populate a 
three-di mensional space in o1o2o6• but they have 
been convol uted (or projected onto the o1o2 plane 
for easy comparison. In Fig. 1, the same set of 
experimental data are convoluted onto the o1o2 
pl ane by three different failure criteria . Better 
~orrelation by the t ensor polynomial criterion 
exhi bi ted both vi sual ly as well as by the lowest 
RMS (the root mean square) deviation of experiments 
from t heory. 
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(a) 

(b) 

(c) 

Figure 1. Failure data of graphite epoxy lamina 
convoluted onto 0102 plane, stresses in 
{ksi}. (a) By tensor polynomial 
failure criterion; (b) by maximum strain 
fa i lure criterion; (c) by modified Mises­
Hill failure criterion. 

The physical interpretation of the failure 
env~lope requires some attention, since the com­
poslte is assumed to be homogeneous, anisotropic, 
and contains a population of randoqly distributed 
microscopic flaws C1, C2 . . . Ci. While the flaws 
are small compared to the characteristic dimension 
0 of the body as depicted in Fig. 2a, continuum 
analysis discloses that under arbitrary loads 
Pi the state of stress is unbounded at the location 
of the geometric singularities c1 , C2 ... Ci, and 
thus would lead to immediate failure even for 
extremely small Pi. This is contrary to physical 
observations and the stresses appearing in Eq. (1) 
should be interpreted as the average stress acting 
on a small but finite characteristic vol ume (spec­
ified by a dimension rc, Fig. 2a) which fully 
encapsulates one microscopic flaw. Thus, although 
the stress is singular inside this characteristic 
volume rc, the average stresses external to rc 
are bounded and may be used to characterize the 
failure of this vol ume through a fil i lure criterion 
of the form 

(2) 

where~ is the average stress vector acting 
external to the characteristic volUMe defined in 
terms of the unit vector ei in the stress space 
of Fig . 2b as 

= 1 ,2 • ... 6 (3) 

and jr is the strength vector to the failure 
surface f( oi ) as determined by Eq . (1) and illus­
trated in Fig. 2b. Under an arbitrary loading Pi, 
the stress vector~ at any location of the body 
can be determined through continuu• analysis or 
nu.erical techniques . It follows that when crite­
rion f( oi) is known, then the location of a pre­
valent failure condition can be determined. Hence, 



the problem of analyzing the crack initiation is 
possible with the availability of the second 
ingredient, i.e., the stress analysis of the 
crack. 

(a) (b) 

Figure 2. (a) Homogeneous anistropic body with 
randomly distributed microscopic fljiWS. 
(b) Criti cality of stress vector ~ 
acting on characteristic volume rc, the 
failure surface• f{ai) the strength 
vector ::T. 

It has been found, Ref. 5, that for composite 
lamina the problems of b1axially loaded crack 
initiation and crack trajectory can be examined 
by introducing the criterion of comparing the 
stress vector~ around the crack tip to the 
strength vector~ of the parent material . The 
essentials of this concept are shown in Fig. 3, 
where 3b depicts a crack subjected to a system of 
biaxi al loads, Pi. Through anisotropic stress 
analysis of the crack, the near-field stress a; 
around the crack tip can be computed as a function 
of mater ial orientation as specified by compliance 
coefficients SfJ· Ref . 6. 

• 1,2 ,6 (4) 

Here 2a and r are respectively the crack length 
and the distance from the crack tip. The crack 
tip stress is singular when r approaches zero. 
However, in accordance with our model, we only 
need to compute the average stress exterior to the 
cri t ical volume which encapsulates the crack tip . 
Thus, Eq . (4) can be computed in terms of the 
critical volume rc, and the stress vector ~ can 
be expressed in the stress space a1o2o6 from 
Eq. (3). From Fig. 3a it can be seen that whether 
or not the material will fail under the influence 
of the stress vector~ (determined from Eq. {3)) 
can be determined by canparing the stress vector 
~ to the strength vector Jr which is defined by 
the failur~ surface, i.e., Eq. (2). In Fig. 3a 
.}' = al e. and a~ are the roots of the lamina 
failure criterion ~Eq. 1) in the direction of~ 
Thus, the coincidence of the stress and strength 
vectors determine both the initiation of fai lure 
and the trajectory of crack extension. This is 
graphically illustrated in Fig. 3b where the polar 
contours of the stress vector~ and the strength 
vector ~are plotted. It can be seen that the 
location of the maximu111 stress vector .d , i.e., 

ei• in Fig . 3b, is not a sufficient condition tor 
crack initiation; whereas the coincidence of~ and 
~ at &c defines initiation and crack extension 
along the 8c direction . Extensive experiments 
on composite lamina (glass-epoXY) subjected to 
combined loading verified this concept (Fig . 4) 
where the characteristic dimension rc was com­
puted to be 0.076 inch for fracture under tension 
and 0.077 inch for fracture under shear. Futher­
oore a ~1ng1e characteristic rc • 0.077 correlates 
all com ne stress fracture results completely 
suggesting that rc need not be an adjustable empir­
ical constant . The net effect is that a formerly 
multi-dimensional fracture under complex stress 
problem can be completely characterized by two 
parameters, i. e., the characteristic volume rc 
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and one critical stress intensity factor. 

(a) (b) 

Figure 3. Relation between failure of character­
istic volume rc (a), and fracture of 
crack (b). 
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Figure 4. 
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Crack extension of unidirectional com­
posite (Scotch-ply 1002) under combined 
loading; kl - symmetric stress intens i ty 
factor (tension-compression), k2, skew 
symmetric stress intensity factor (shear). 
Experimental results relatable by a 
single critical volu.e rc. 

It can be readily seen in the case where the 
ani sotropic composite is a laminate that additional 
dimensions are introduced in the form of lamination 
angles and stacking sequences. If we are permitted 
to use classi cal linear l aminated plate theory 
whi ch appears to be a reasonable compromise, we 
can proceed to extend the above parameter reduc­
tion concept to the fracture of laminates by using 



Eqs. {1,2,3,4) respectively. The basic equations 
for these computations are described in the follow­
ing section. 

Calculation of Stress and Strength Vectors 
For Laminate composites 

The following calculation of the stress and 
strength vector for a laminate is based on the 
assumptions that linear laminated plate theory is 
applicable and that the deformational and 
strength properties of the lamina are known, i.e. , 

known {5) 

{6} 

The determination of Sij and Fi,Fij has been 
discussed in Refs. 7 and 1. With Oi · for the 
lamina known, the stiffness matrix of the laminate 
can be computed from: 

h/2 
A • • I Q dZ 
iJ -h/2 1j 

(k) 
where Oij is the plane itress stiffness coef­
ficient computed from Sji and transformed to the 
orientation of the kth lamina. For the case of 
symmetrical stacking sequence the stress-strain 
relation for the laminate is 

(Sa) 

and 

0 • 
£ i • AijNi (Sb) 

where t~ is the average strain through 
the thickness. 

The general plane problem of a crack in the 
laminate then requires solution of the Ai ry's 
stress function x in the form, Ref. 6, 

:;4 
I 

For a crack oriented in aR arbitrary direction in 
such a laminate {Fig. 5), the Alj coefficients 
can be transfo~d from tht principal direction 
to the direction of the cn~ck. These coefficients 
can then be used in Eq. (9) to obtain the near 
field stress distribution iround the crack tip. 
The solution is 
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o2 = 2Rel ~; (Z.J+~;{z2 )1 

o6 s -2Rel s,~;(Zd+S2•;(Z2ll 

where for uniform stress o· and T- the stress 
functions are, Ref. 6, 

and S1•a1 + i 82 , S2 .. (l2+i82 are the roots of the 
char~cteristic equation of Eq. (9). Thus, 

{10) 

{11) 

Eq. (10) is the la•inate analogue of Eq. {4). 
Fr~ Eq. {10) for a given direction e from the 
crack tip, the direction cosines of the stress 
vector can be obtained and the laminate analogue 
of Eq. {3) can be computed in the stress space 
as a function of distance r from the crack tip. 

{ 12) 

figvre 5. Definition of coordinates of a crack 
oriented in an arbitrary direction with 
respect to the principle direction of 
the laminate. 



Now in order to compute the strength vector ~, 
the laminate analogue of a failure criterion is 
needed. This required laminate failure criterion 
can also be computed from the lamina failure crite­
rion (Eq. (1)) through use of the linear laminated 
plate theory using the definition that 1st ply 
failure constitutes total failure of the laminate. 
This computation can be most efficiently per­
formed by noting that every point in the lamina 
failure surface has a corresponding failure point 
in the laminate failure surface. We may then 
systematically choose a stress ratio 

in the lamina and obtain the failure condition 
a 1~ o2~ o 6* by Eq. (1). Substituting these 
stresses a;* into 

we obtain the failure strain condition. Assigning 
this failure strain condition to be the average 
strain of the laminate 

* * 
E iO = E i' 

we can then compute the failure condition for the 
laminate by 

This procedure is sumaarized in the sequential 
solution of the following equations: 

for kth layer subjected to 

* (k) 
E. sij oj 1 

* * eio = E. 
1 
. 

where * denotes failure conditions. 

(13) 

(14) 

(15) 

(16) 

Systematic solution of Eqs. (13) to (16) for 
different ratios 

results in a laminate failure surface when discrete 
points are fitted with a third-order polynomial 
in the form, Ref. 8, 

where 

are failure tensors for the la•inate. A sample 
of the least square fit is shown in Fig. 6. 
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Figure 6. Third order tensor polynomial failure 
surface for 0/90/0/90/90/0/90/0 laminate. 

In essence, Eq. (17) is the laminate corres­
pondence of Eq. (1). Hence, for every stress 
vector determined by Eq. ( 12) a corresponding 
laminate strength vector can be computed from 
Eq. (17) by 

i=l,2,6 (18) 

The above computation has the following meaning: 
For a given loading condition fig. 3) along each 
polar direction ffOm the crack tip there exists 
a stress vector~ which is representative of 
the driving force in that direction. For such 
a stress vector the material resistance to rupture 
is represented by the strength vector J . If 
the driving force is less than the resistance, 
no rupture can take place; hence, the stability 
for the crack is defined by 

( 19) 

where the subscript c refers to the neighborhood 
of the crack tip. 



Experimental Observations 

The purpose of the experimental program is 
to examine the theoret i ca 1 mode 1 t~ see if the 
coincidence of th~ stress vector ~c and the 
strength vector Jc defines the magnitude and 
direction of crack initiation trajectory. 

The samples are fabricated from 3M glass­
epoxy pre-preg. Four variations of the la•ination 
sequences are examined. ·The fracture samples are 
rectangular, 4.75" wide and 8" between grips. 
A centrally located initial crack is sawed in 
the sample by a jeweler's saw producing a crack 
width around .008" . The specimens are tested in 
tension in a standard testing machine under dis­
placement control. A motor driven 35 mm camera 
is triggered by the experimentalist and the event 
of each picture taken is also marked on the load­
deformation recordings, thus providing a recording 
of crack length corresponding to different 
1 oad 1 eve 1 s. 

We note that by varying the crack orientation 
with respect to the direction of tension, •e can 
effectively apply combined tension and shear loading 
to the crack and, cons~uently, vary the contour 
of the stress vector ~. Furthermore, by varying 
the lamination geometry, we can vary the strength 
of the composite ~nd, hence, the contour of the 
strength vector ar. In accordance with the method 
discussed in the previous section, the polar 
contour stress vector and strength vector are 
computed for four lamination geometries with dif­
ferent crack orientations as shown in Figs. 7 to 
10. In Fig. 7a the crack is oriented perpendi­
cular to the tensile load in an rf /4S' /90 1-4S' 
laminate. The stress vector~and the strength 
vector indicate two critical orientations, ec , 
where crack initiation is predicted by the theoret­
ical model. In Fig. 7b this predicted trajectory 
is clearly confirmed by experimental observation. 
In Fig. 8a, the crack is oriented at 60° ~the 
tensile load in a 30°/60° laminate. The~ and 
J'contours indicate a single critical orientation 
- ec = 44° from original crack direction. Figure 
8b shows that this predicted trajectory is sub­
stantiated by experimental observation. In Fig . 
9a the crack is oriented at 45° ~ the_!ensile load 
in a 9rf /45° laminate where the_.e:j: and J'"contours 
predict a co-linear crack extension. Again, this 
is clearly substantial by the photograph shown 
in Fig. lOb. 

9, 

\ j 

<~ 
I - J 

9. .!J 
(a) (b) 

Figure 7. (a) Com)Wted stress vector~ ilnd strength 
vector~ contour for 90/45/0/-45/-45/0/ 
45/90 laminate. (b) Experimentally 
observed crack initiation . 
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(a) (b) 

Figure 8. (a) Com~uted stress vector..J: and strength 
vector~ contour for 60/30/60/30/60/ 
30/ 60 l~inate. (b)Experimentally 
observed crack initiation. 

(a) (b) 

Figure 9. (a) Computed stre_?s vectord and 
strength vector~ contour for 
45/45/45/0/45/45/45 laminate . (b) Ex­
perimentally observed crack initiation. 

(a) (b) 

Figure 10. (a) Co.-puted str_gss vector.J and 
strength vector~ contour for 45/45/90/ 
45/45/90/45/45 laminate; (b) experimen­
tally observed crack initiation. 



 

It is Important to note that for a given 
1 ami nate, both the contours of the J and Jvectors 
are a function of external loading. Naturally, 
for different laminate configurations, the dif­
ferences in these contours will be even more 
drastic. Furthermore , in the computation of the 
local stress around the crack tip, Eq. (10) is 
only applicable for a straight crack. If the 
crack extension is not self-similar, i.e., not 
co-linear with the parent crack then the mapping 
function changes in form and Eq. (10) is no longer 
applicable. Thus, for the cases of crack deflec­
tion, the above computation is only apolicable for 
the point of initiation. 

Finally, Eq. (19) checks the criticality of 
the stress and strength vector as modified in the 
neighborhood of the crack tip. I~hould be recog­
nized that the critical ity of the and J'vectors 
has to be checked for the far fiel or global 
condition where the stress distribution is not 
under the influence of the crack, i.e., whether 
the 

here the subscripts g refer to the far field 
global stress. 

(20) 

It is i~~~nediately apparent that if ;}. q« .:J C• 
then crack extension will be confined compl~tet:Y 
to the crack tip. Ho~~ever, if J q ~ J. 0 global 
damage may occur in addition to~he crack 
extension. 

Conclusion 

The characterization of the fracture res­
ponses of laminated c01posites is of great 
engineering importance not only for the prediction 
of the cr1tica11ty of .acroscopic naws but also 
for the design of crack-arresting, fail-safe 
structures. Recent investigations of laminated 
composite fracture have utilized characterization 
methods established for isotropic solids and, 
hence, are revelant only to the particular lamin­
ation configuration tested. These results typi­
cally do not address the condition of combined 
loadings and the non-selfsimilar crack trajectory. 
Thus, these findings cannot be generalized to 
arbitrary lamination geometry and loading conditions 
for efficient structur~l design. A theoretical 
model has been presented herein to combine the 
lamina failure criterion with stress analysis of 
the crack. With this theoretical model, seven 
~or parameters which control laminate fracture 
can be reduced to two, i.e., the lamina failure 
criterion and a critical volume characteristic 
to the composite. The reduction of controlling 

parameters to two makes quantification of the 
fracture of laminates a tractable task. Several 
lamination geometries are tested. By varying the 
external loading, different crack trajectories 
are predicted by the theoretical model. These 
predicted trajectories agree well w1th the exper­
imentally observed modes. Such agreement suggest 
that, with refinement, the general condition of 
laminate fracture can be characterized within 
useful engineering accuracy. 
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