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ABSTRACT

With the advent and proliferation of connected entities such as social, marketing, scientific and

computer networks, it has become immensely important to understand and analyze the impact of

one entity’s influence on another in the network. In this context, our objective is to identify a set of

entities, which when made ineffective (quarantined or protected) will maximally disrupt the spread

of influence in the network. We formulate and study the problem of identifying nodes whose absence

can maximally disrupt propagation of information in the independent cascade model of diffusion.

We present the notion of impact and characterize critical nodes based on this notion. Informally,

impact of a set of nodes quantifies the necessity of the nodes in the diffusion process. We prove that

the impact is monotonic. Interestingly, unlike similar formulation of critical edges in the context

of Linear Threshold diffusion model, impact is neither submodular nor supermodular. Hence,

we develop heuristics that rely on greedy strategy and modular or submodular approximations

of impact function. We empirically evaluate our heuristics by comparing the level of disruption

achieved by identifying and removing critical nodes as opposed to that achieved by removing the

most influential nodes.
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CHAPTER 1. INTRODUCTION

Diffusion is the phenomenon of spread of information in connected network of entities. Informa-

tion can be influence, opinion, disease while entities can be people/person, groups and communities.

There can be a good spread like promotion of a new product, spread of medical and technological

innovations and there can be a bad spread like spread of a disease or spread of a fake news which

can have negative effect. In market and social sciences understanding information diffusion helps

in designing viral marketing strategies, adoption of new idea or product by large number of people.

Understanding information diffusion such as spread of a disease in epidemiological network, spread

of computer virus in computer network plays a very important role in mitigating its effect.

1.1 Background

Two of the widely studied problems in this context involve (a) influence maximization prob-

lem—finding the set S of entities, called seed set, such that when the information originates from

S, its diffusion in the network is maximal ( Kempe et al. (2003); Chen et al. (2009)). (b) source

identification problem—once the diffusion has occurred, identify a set of entities that can be clas-

sified as source/seed of the diffusion( Lappas et al. (2010); Shah et al. (2011); Jiang et al. (2018)).

Addressing influence maximization problem results in finding a seed set, called max seed, of entities

that can cause maximal information spread. Whereas source identification leads to identifying a

possible seed that caused the observed influence propagation. Given a seed set S, if σ(S) denote

the expected number of nodes that are influenced, when the origin of information propagation is

S, then max-seed identification is same as computing argmaxSσ(S). Given a network and a set

of influenced nodes Inf, source identification amounts to computing an S whose influence σ(S)

maximally aligns with Inf.
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1.2 Motivating Problem

In this work, we study a problem that is orthogonal to both of the above problems: identify a

set of size k of entities, which when removed from the network, maximally disrupts the diffusion of

influence that may have started at any seed set. More formally, the goal is to identify a set of nodes

C such that, after removal of C from the network, σ(S) is maximally reduced for every seed set

S. We refer such entities C as critical nodes, and we call problem of computing such nodes as the

identifying critical nodes (ICN) problem. The importance of addressing this problem cannot be

understated. In social networks, influence of un-founded opinions or propagation of fake news can

be avoided by identifying and informing/isolating the critical nodes. In computer network security,

protecting critical nodes from known worms (via patching, security updates) can help in protecting

the critical network-infrastructure from repeated disruption due to worm-attacks. In the context of

disease propagation, helping critical communities that were once impacted by epidemics can make

a difference in overall health of the population.

Note that, the critical nodes are not necessarily the max-seed; rather the critical nodes can be

viewed as the ones whose presence is “critical” in ensuring that the max-seed indeed has maximal

influence on the network. In other words, criticality of a nodes can be described equivalently as

how their presence is important for maximizing the result of diffusion or (conversely) how their

absence is important for minimizing the result of diffusion.

1.3 Illustrative Example

To illustrate the unique nature of critical nodes, consider the example network in the Fig-

ure 1.1(a) and the objective is to identify one critical node. Directed edges in the network indicate

that the influence diffuses from the source to the destination, and the edge annotations capture the

probability of the diffusion. Such a diffusion model is referred to as the independent cascade (IC)

model, which directly captures the notion that new information/behaviors are contagious (Kempe

et al. (2003); Kleinberg (2007)). Following the IC model, each node gets one chance to influence its
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neighbors. For simplicity, assume that the all probabilities are set to 1. Now, the most influential

node is v0 as it can influence the entire network. However, removing v0 shown in 1.1(b) does not

disrupt the influence diffusion if some other seed is chosen. For instance, any one of v2, v3, or v4 can

still act as a source of influence that spreads to the majority of the network. The critical node, in

this network, is v4; removal of v4 in figure 1.1(c) will maximally disrupt information diffusion from

any other node. For instance, in its absence, the expected diffusion from v0 is 4, and the expected

diffusion from each of the other nodes is 1. Intuitively, v4 is most critical implies that the removal

of any other node cannot reduce that sum of expected diffusion from all nodes any further.

1.4 Contributions

Consider the ICN problem when k equals 1, i.e., identify a single critical node. A naive approach

to critical node identification works as follows: For each node v, remove it from the network and

compute how much σ(S) is reduced due to removal of v. This approach has at least two bottlenecks.

It is immediate that such strategy in not viable even for reasonably small networks as one has to

cycle through all possible seed sets. Secondly, this approach may not find such v. Consider the

following scenario: Let v1 and v2 be two nodes and S1 and S2 be two seed sets such that removal

of v1 will maximally reduces σ(S1), whereas removal of v2 maximally reduces σ(S2). There is no

single vertex whose removal will maximally reduce both σ(S1) and σ(S2).

One of our contributions is to characterize criticality by introducing the notion of impact of a set

of nodes. Intuitively, impact of a set of nodes S quantifies the reduction in the expected diffusion

from all nodes when the set S is removed from the network. That is, rather than reviewing the

reduction in the expected diffusion from each seed set, we consider the reduction in the expected

diffusion for all nodes. Consequently, higher impact of set of nodes implies higher criticality of the

set. We formalize the ICN problem as finding a set of nodes with maximal impact.

We prove that impact is monotonic and is neither submodular nor supermodular. As a result,

greedy algorithm applied to optimization of impact does not provide usual (1 − 1/e) approxima-

tion guarantees as it does when applied to address different variations of influence maximization
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problems and source detection problems. Given the hardness of the problem, greedy algorithm is

still a viable strategy, where the impactful set is computed assuming submodularity of the impact

function.

However, the greedy algorithm is expensive and inefficient on even moderate size graphs. In

the context of influence maximization, the work of ( Borgs et al. (2014); Tang et al. (2014, 2015)),

give an efficient, randomized, approximate algorithm to estimate the expected influence of any seed

set. Using the ideas from their work, we obtain a more efficient algorithm to compute high impact

nodes. We refer to this algorithm as Crit-Set.

We empirically validate that high impact nodes are indeed critical nodes. We conduct exten-

sive experiments to show that using our heuristic Crit-Set, removal of high impact nodes indeed

disrupts the diffusion in the network. We compare our strategy against the baseline strategy,

Top-Infl, where the nodes in the max seed set are removed from the network. We show that

removal of high impact set of size k (as per Crit-Set) causes more reduction (up to 20 − 30%)

in the influence than the removal of best possible seed set of size k (as per Top-Infl). Consider

another heuristic that identifies top k-impactful nodes as critical nodes (Top-Crit)—the strategy

results in an optimal solution if the impact function is modular. Our experiments indicate that

this heuristic is much faster and still produces a solution whose quality (in terms of disruption of

influence) remains between that of Crit-Set and Top-Infl. Collectively, the experiments validate

our claim that the characterization of criticality in terms of impact is viable and effective.

1.5 Organization

The rest of the paper is organized as follows. In Chapter 2, we discuss prior work related

influence maximization problem, source identification problem and the study done in the area of

disrupting the influence and how these problems are different from our problem. In Chapter 3, we

formally define the ICN problem and complexity of the problem. We introduce the notation of

strength ST (G) and impact IMG function for a graph G. Also we discuss the modular character-

istics of the impact function IMG. In Chapter 4, we present the greedy computation for critical
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nodes as well as we provide the efficient implementation of greedy algorithm using reverse reachable

sets and its efficiency. In Chapter 5, we present our experimental setup, results performed on var-

ious real world social networks and show that maximum influence after removal of node following

Crit-Set nodes is less than removal of node following Top-Infl nodes. In Chapter 6, we summarize

our contributions, and discuss the possible extensions to this work.
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CHAPTER 2. REVIEW OF LITERATURE

To study diffusion in epidemiology, computer security, marketing, and social networks we need

a mathematical framework which can best represent these networks as operational models. The

model in which a social network is represented by a graph G = (V,E) where V are the nodes

i.e., entities (people, groups, communities) of the network and E are the edges which represent

relationship between those entities. The spread of information is represented by state of node

being active (active stating believer of the information) or inactive in case of social networks. It

is also represented by infected or susceptible for the disease spread in epidemiology. The strength

of influence between the neighbors decide whether or not influence spread from infected nodes to

its susceptible neighbors. This type of process is best represented by Independent Cascade (IC)

model and the Linear Threshold (LT) model. These two models are the most basic and well-studied

diffusion models. In this paper, our focus will be on the Independent Cascade (IC) model.

2.1 Diffusion models

2.1.1 Independent Cascade model

Independent Cascade (IC) is the model in which at every (discrete) time step i, each node u,

which is newly activated at time step i - 1, will activate each of its (inactive) neighbor v with

probability pu,v. This captures diffusion at the ith step. The diffusion process continues till no new

node is activated. Every edge has a probability associated with it, which shows the infection it

can spread on its neighbor. The probability pu,v is the probability of u infecting v where u is the

source and v is the target. Based on the probability of the edge, each infected node can infect its

neighbor in the next time step. Each node once infected remains infected for the rest of diffusion

process but has only one chance to infect its neighbors. When there is no new node to infect the

diffusion process stops.
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Here is the example of illustration of Independent cascade model. In the example 2.1 (a)green

color nodes are the activated nodes and blue nodes are those susceptible nodes that has chance to

get activated at next time stamp. Let us suppose node u and w are active nodes at time t shown

in figure 2.1 (b). So we push nodes u and w in the running queue. We process every node from the

running queue. First we pop u from queue, it has neighbors s,v and x. At time t + 1 node u will

try to activate node s,v and x. All the activating events are independent of each other and depends

on the coin toss. In this case it may successfully activates s and x because of high propagation

probability of (pu,s =0.81) and (pu,x =0.92), the chances of getting random number less than this

probability is very high. It might not succeed in activating v as its propagation probability is very

less 0.01 2.1 (c). Now we push the nodes s and x in the running queue as they are the activated

nodes. We process w which has only one inactive neighbor and it may fails to activate v as pw,v

=0.07. At this time, susceptible nodes are y,z and t. Nodes y and t gets activated at time t + 2

because of high propagation probability of (px,y =0.89) and (px,t =0.78) but node z may not get

activate as its px,y =0.03 . Node s has no inactive neighbor. Now at time t+2, there is no new

nodes to get activated. So the diffusion process stops. To understand and get knowledge of Linear

threshold model, it is explained in the next section. But our focus is this research is on Independent

cascade model.

2.1.2 Linear Threshold model

In Linear Threshold(LT) model, a node v is influenced by each neighbor w according to a

weight bv,w such that
∑

w neighbors of v

bv,w ≤ 1. In this model every node u has a random threshold

associated with it θu from [0,1]. In the case of Linear threshold model, an inactive node gets infected

by all of its active infected neighbor if its infected neighbors surpass that threshold.

A node v is infected by its infected neighbors if
∑

u→v,u active

pu,v ≥ θv.

For example, figure 2.2 (a) initially node u is active and it infects its neighbor x and u as in our

example if the weight of edge (u, x) is greater than threshold of x. Assuming that weight of edge

(u, x) is greater than threshold of x so, x will successfully activates, similarly in case of node w as
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shown in figure 2.2 (b) but may not able to infect v as θv ≥ pu,v. At next time step, both x and w

infects y as both are infected. They will succeed if threshold of y i.e. θy is less than weight of edges

(x, y) + (w, y) as shown in figure 2.2 (c). When no new active node exists the process will stop.

2.2 Influence Maximization Problem

Influence maximization problem was introduced in the context of social network by Domingos

et al. (2001). Kempe et al. (2003) discussed different diffusion models (in particular independent

cascade model, linear threshold model) and proved that the problem of influence maximization is

NP-hard. Furthermore, the authors presented the first greedy algorithm for maximization with (1−

1/e) approximation guarantee. The guarantee relies on three properties of the influence resulting

from diffusion: non-negative, monotonic ( i.e. function is either entirely non-increasing, or entirely

non-decreasing) and submodular (is a set function whose value, informally, has the property that

the difference in the incremental value of the function that a single element makes when added

to an input set decreases as the size of the input set increases). Formally, if σ(S) is the expected

number of nodes influence in the network when diffusion starts at set S then (a) σ(S) ≥ 0,∀S (b)

∀S1 ⊆ S2 ⇒ σ(S1) ≤ σ(S2) and (c) ∀S1 ⊆ S2, ∀v /∈ S2 ⇒ f(S1 + v)− f(S1) ≥ f(S2 + v)− f(S2).

Greedy algorithm due to ( Kempe et al. (2003)) starts with an empty seed set S and then it looks

for the vertex which has maximum marginal influence spread i.e. argmaxv∈V σG(S ∪ v)− σG(S)

and add that vertex to the seed set S. The influence spread is calculated by doing random choices

and diffusion process sufficiently many times. It is done by monte carlo simulations for R rounds.

We repeat this process until size of seed set is equal the value of k (pre-defined seed set size).

In each iteration, this algorithm calculated the influence spread for every node in the graph to

calculate the maximum influence spread which increases its computation time. The efficiency of

greedy algorithm is a big limitation because we have to calculate the spread on various seed sets.

Several subsequent work focused on efficient implementation of the greedy strategy (Leskovec

et al. (2007); Goyal et al. (2011); Chen et al. (2010); Ohsaka et al. (2014); Chen et al. (2009, 2010);

Goyal et al. (2011); Jung et al. (2012); Cheng et al. (2013); Galhotra et al. (2016)), some of which
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do not admit to the same approximation guarantee. Recently, (Borgs et al. (2014)) introduced an

efficient technique based on random reachable sets to realize the greedy strategy with approximation

guarantees. The technique was further refined and improved by (Tang et al. (2014, 2015)), making

influence maximization problem solvable for very large networks.

We will use this technique for efficient implementation of greedy strategy for finding critical

nodes. In the following we will present the details of random reachability.

2.2.1 Random Reachability

This algorithm looks at many graphs and the reachable nodes in each graph gives the propor-

tionality to the node influence. In this algorithm for a network G = (V,E) first step is to generate

the reverse graph i.e. Gr. Here, CG(S) are the set of nodes reachable from S in G and Cr
G(S) are

the set of nodes reachable from S in Gr.

σG(S)

=
∑
u∈V

Pr(∃v ∈ S such that u ∈ CG(v))

=
∑
u∈V

Pr(∃v ∈ S such that v ∈ Cr
G(u))

= |V | × Pr(∃v ∈ S such that v ∈ Cr
G(u))

The observation here is that the influence of a set of nodes S is precisely |V | times the probability

that a node u, chosen uniformly at random, influences a node from S in the transpose graph Gr.

Given a networkG, letGr is the same network with the edges reversed. A setRR = {Gr
1, G

r
2, . . . , G

r
N}

of graphs is constructed as follows. For each Gr
i , randomly pick a node v in Gr and conduct a ran-

dom walk in Gr (using the edge probabilities) starting from v. Borgs et al. proved that if a

vertex v belongs to M number of elements in RR, then expected influence of v can be estimated

as σ̂(v) = (M/N)× |V | where |V | is the total number of nodes in the graph and N is the number

of reverse reachable graphs. It follows from Chernoff bounds that σ̂ approximates σ with relative

error ε when N = O(|V |/ε2). By the example shown in figure 2.3(a) shows the reverse graph Gr.
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In figure 2.3(b) Gr
1 random walk starts from node u3 and it is reachable to node u2 so here RR1

=(u2,u3). In figure 2.3(c) Gr
2 randomly selected node is u1 and it reaches node u2 and u4 here RR2

=(u1,u2,u4) and in the third graph figure 2.3(c) Gr
3 process starts from u4 which is reachable to

node u2 and RR3 =(u2,u4). Here M value of u1=1 as it is present only in RR2, u2=3 it is present

in (RR1, RR2, RR3). Similarly we will calculate the M value of u3=1, and u4=2.

We know σ̂(v) = (M/N)× |V |. In our example as we created 3 reverse reachable graphs so N is 3.

σ̂(u1) = (1/3)× 4,

σ̂(u2) = (3/3)× 4,

σ̂(u3) = (1/3)× 4,

σ̂(u4) = (2/3) × 4. It gives maximally influential node as u2. Here we are using σ̂ instead of σ as

σ̂ approximates the estimated value by ε.

2.3 Source Identification

Another important line of work focus on identifying the source(s) of a given diffusion. Source

identification is studied in many observations. In the complete observation there are different

algorithms that has been proposed. The problem associated is finding single rumor source, local

rumor source and multiple rumor source. In the case of snapshot observations where only some

of the nodes has been observed different algorithm related to Jordan Center, Dynamic message

passing and effective distance based algorithm has been proposed. (Jiang et al. (2018); Zang et

al. (2014)) relies on reverse diffusion in the influenced network and classifies the nodes with high

centrality as the likely source of diffusion. They studied different observations of network. (Jiang et

al. (2018)) studied the time varying social networks and converted time-varying network to series of

static networks by introducing time-integrating window. The categories of their observation were

Wavefront (only contagious nodes which are going to get infected at time t+1), Snapshot(all nodes

in latest time window susceptible, infected or recovered) and Sensor(all the infected nodes with

the time when they got infected). Both used reverse propagation algorithms to get the source of

the network. However, (Zang et al. (2014)) used snapshot observation and converted multi source
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locating problem to different single source locating problem. Both used maximum likelihood to

determine the real source from the suspects.

Similarly, distance-based measures are used to estimate the likelihood of nodes being sources.

Chen et al. (2016) provided different heuristic for clustering and localization technique to get

the multiple sources in the graphs and Jorden center method in the case of trees. They expand

their research from tree networks to general networks and also finding the size of seed. Shah

et al. (2011)introduced the rumor centrality for the maximum likelihood detection and provided a

linear time message-passing algorithm to evaluate rumor centrality. They constructed rumor source

estimators for general trees, general graphs, and regular trees.

Note that, identifying source nodes, while being an important problem for understanding the reason

for diffusion, does not ensure that the removal of source nodes will reduce any subsequent influence

(other than the one originating from the source).

2.4 Disrupting Influence

The closest to our work is the work presented by Boutros Khalil et al. (2014). The authors

focus on removing edges for disrupting diffusion in linear threshold model. They prove that the

function f(E) =
∑

v∈V σG/E(v), where E is a set of edges and G/E corresponds to the network

G with edges in E removed, is a supermodular function. The objective of disruption is achieved

by minimizing f , which involves maximizing the negation of f—negation of f being a submodular

function. In short, the critical edge identification problem in linear threshold diffusion model

reduces to maximizing a submodular function. In contrast, we will show that the optimization

function is neither submodular nor supermodular. So our node removal method is different from

their edge removal because both the formalized functions has different properties.

Lappas et al. (2010) introduced the notion of effectors, which are most likely to have caused

the influence. They explained their k-effectors problem as finding the subset of active nodes that

best explain the observed activation state. Formally, find a set X of active nodes (effectors), of

cardinality at most k such that C(X) =
∑

v∈V |a(v) − α(v,X)| where α(v,X) is the computation
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probability that the node v is active at the end of the process. They provided the algorithm of

how to extract the most probable active tree that spans all the active nodes in the network. After

getting the tree they provided the dynamic programming algorithm to get the effectors. In the

event, the entire network is influenced, the problem becomes equivalent to identifying the set of

nodes that maximally influences the network. Their work is approximately equal to finding the

source of the node as they are looking for the observed activation state and the nodes that caused

that observed state. In their case if influence start from the node other than the node which causes

the activation state then in that case influence is not maximally disrupted.

The work done by ( Aspnes et al. (2005)) focus on identifying the nodes (under some cost con-

straint) in the network, which when vaccinated (corresponding to removal in our case), will contain

the diffusion. Such nodes can be viewed as critical nodes in our setting. The authors present a

game-theoretic formulation of the problem, develop a reduction to a graph partitioning problem

and provide a poly-time greedy approximation algorithm. However, the authors assumed a sim-

plistic diffusion model, where each active node deterministically activates its susceptible neighbors.

This assumption along with the nature of the greedy strategy for partitioning does not make the

process a feasible technique in the context of large social networks, where diffusion is probabilistic.

2.5 Our Solution

Our contributions rely on the prior work on influence maximization 2.2 in two dimensions.

First, just as maximization of diffusion can be realized using a greedy algorithm, we deploy greedy

algorithm (though the same approximation guarantees cannot be achieve as the impact function

is neither submodular nor supermodular). Second, we have implemented the greedy algorithm for

finding the critical nodes using random reachable sets, a strategy developed by Borgs et al. (2014)

for finding most influential nodes. When entire network is influenced our problem is equivalent to

source identification problem. Identifying source node is very important part of finding the critical

nodes.
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Figure 2.2 Linear Threshold model
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Figure 2.3 Random Reachability Example
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CHAPTER 3. FORMALIZING CRITICALITY

We present some of the basic definitions in the context of information diffusion in network. A

network G = (V,E), where V is a finite set of nodes and E : V × V → [0, 1] is a directed edge

relation between nodes annotated with a probability measure. The direction in the edge u
pu,v−→ v

indicates the direction of diffusion from u to v and the annotation pu,v indicates the probability

(propagation probability) of that diffusion. An undirected edge can be viewed as bi-directional with

the same propagation probability in both directions. Each node in the network can be in two

states: inactive (idle or susceptible) and active (influenced or infected); a node can evolve from

being inactive to active and an active node remains active. Such a network forms the basis of

several diffusion models. In this work, we concentrate on Independent Cascade (IC) model.

Given a seed S ⊆ V in a network G, σG(S) denotes the expected number of nodes influenced at

the end of diffusion (we omit the subscript G, when the network information is immediate in the

context). For example, in figure 1.1 σ(v0) is 5 +n. The problem of influence maximization involves

identifying a seed S of a pre-specified size k such that σG(S) is maximized. The seminal work by

( Kempe et al. (2003)) proved that the maximization problem is NP-Hard, and presented a greedy

algorithm with (1− 1/e) approximation guarantee. As noted in Section 1, our objective is to find

the critical nodes and such critical nodes may not be the most influential nodes. We formalize the

objective, our proposed characterization of the objective followed by the necessary definitions.

3.1 Critical Nodes as Impactful Nodes

Identifying Critical Nodes Problem (ICN) is the problem of finding critical nodes of size k from

the graph G such that after removal of these nodes, the influence from any possible seed set in the

resulting graph G′ is minimized.
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Problem 1 (Identifying Critical Nodes Problem (ICN)). Given a network G = (V,E) and k, the

ICN(k) involves computing a set of k nodes such that removal of these k nodes from G results in a

network G′ = (V ′, E′) where ∀S ⊆ V ′ : σG(S)− σG′(S) is maximized. �

The brute force method is a problem solving technique which enumerates over all possible can-

didates and checks whether the candidate satisfies the problem statement. In case of ICN problem

this method is not a feasible option even for small networks. As discussed in the introduction, this

notion of criticality is too restrictive and such set of critical nodes may not exist. To address this,

we introduce the concept of impact of node(s) and claim that impact can be used effectively to

compute the criticality of node(s). We first present the notion of strength of diffusion.

3.1.1 Strength of Diffusion

Definition 1 (Strength of Diffusion). Given a network G = (V,E), the strength of diffusion in G,

denoted by ST (G), is
∑
v∈V

σG(v). �

Intuitively, the strength of diffusion indicates sum of the expected number of nodes each node

may influence. Thus if the strength of diffusion in a network is high, then it indicates that the

network has “many nodes” that can influence a lot of nodes of the network. This can be interpreted

as: the network has many good seed sets that can collectively influence a large population of the

network. Conversely, if the strength of influence is small, it is an indication that there are no (or

very few) seed sets having high influence.

For example, for the graph in Figure 3.1, v0 is reachable to nodes (v0, v1, v2, v3, v4 and u1, u2, .....un)

the strength of v0 is 5+n. v2 is reachable to (v2, v3, v4 and u1, u2, .....un) the strength of v2 is 3+n.

Similarly v3 and v4 are also reachable to (v2, v3, v4 and u1, u2, .....un). The strength of v1 is 1 as it

is reachable to just itself. Here u1, u2, ...un are all reachable to just themselves so their strength is

1× n. So, the total strength of diffusion is

(5 + n) + 1 + 3× (3 + n) + n = 15 + 5n
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Figure 3.1 Illustrative Example

Thus if removal of a set of nodes from a network causes the strength of diffusion to go down,

then it indicates the influence of all (or many) seed sets is also reduced. Thus a set of nodes whose

removal will cause maximal reduction in the strength of diffusion can be considered as critical

nodes. Based on this, we introduce the impact as follows.

3.1.2 Impact of Node(s)

Definition 2 (Impact of Node(s)). Given a network G = (V,E), the impact of S ⊆ V , denoted by

IMG(S), is ST (G)− ST (G/S). �

The impact, therefore, corresponds to the decrease in the strength of diffusion in the net-

work. Going back to the example in Figure 3.1, after removing the node v0, σG(v0)=0, σG(v1)=1,

σG(v2)=σG(v3)=σG(v4)=3+n and σG(u1) =σG(u2)....=σG(un)=1

IMG(v0)= ST (G)− ST (G/v0) = 15 + 5n− [1 + 3× (3 + n) + n] = 5 + n,

while in the case when v4 is removed from the graph σG(v0)=4, σG(v1)=1, σG(v2)=1, σG(v3)=1,

σG(v4)=0 and σG(u1) =σG(u2)....=σG(un)=1

IM({v4}) = 15 + 5n− [4 + 3 + n] = 8 + 4n

We re-formalize the objective in Problem-statement 1 as follows:
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Problem 2 (ICN as Identifying Impactful Nodes). Given a network G = (V,E) and k, the ICN(k)

problem involves identifying a set S ⊆ V of size k such that IMG(S) is maximized. �

The reformulation of the ICN problem stems from the following. For any seed, its influence

does not increase if some nodes from the network is removed. Larger impact indicates that each

node can influence (and can be influenced by) lesser number of nodes. As a result, if S1 and S2 are

two different sets of nodes such that IMG(S1) < IMG(S2), then the influence of any seed is likely

to be less (or equal) when S2 is removed from G when compared to the case when S1 is removed.

3.2 Properties of Impact

From Definition 2, one can infer that the IMG(S) depends on the expected influence of each

vertex v in G, where the diffusion from v occurs via at least one element in S. We will first prove

that when all of the edge probabilities are 1, then IMG, is monotone but is neither submodular nor

supermodular. The general case when edge probabilities are not all equal to 1 follows by arguing

that as in the work of ( Kempe et al. (2003)).

3.2.1 Monotone

Theorem 1. IMG is monotonically increasing.

Proof. Let S be a set of nodes. Recall that

IMG(S) = ST (G)− ST (G/S) =
∑
v∈V

σG(v)−
∑
v∈V

σG/S(v)

When the probabilities are 1, σG(v) is precisely the number of nodes reachable from v in G. If a

node u is reachable from v only via a node from S, then u is not reachable from v in the graph

G/S. Thus, ∀v ∈ V : σG(v)− σG/S(v) is the number of nodes reachable from v only through some

nodes in S. Thus

∀S1, S2 ⊆ V : S1 ⊆ S2 ⇒

∀v ∈ V : (σG(v)− σG/S1
(v)) ≤ (σG(v)− σG/S2

(v))
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Therefore,

∀S1, S2 ⊆ V : S1 ⊆ S2 ⇒∑
v∈V

(σG(v)− σG/S1
(v)) ≤

∑
v∈V

(σG(v)− σG/S2
(v))

v1

v2
u

v3 v4

v1

v2
u

v3 v4

v1

v2
u

v3 v4

Figure 3.2 Example of monotonically increasing

Here in figure 3.2 S1 = (v2) and S2 = (v2, v3), S1 ⊆ S2

reachable nodes from v1 = (v1, v2, u, v3, v4) and set of nodes reachable from v1 when graph is

(G/S1) = (v1, v3, v4). σG(v1) − σG/S1
(v1) is the number of nodes reachable from v1 only through

some nodes in S1 i.e. u = 2. Similarly, set of nodes reachable from v1 when G/S2 = (v1) an empty

set which gives set of nodes for σG(v1)− σG/S2
(v1) as (u, v2, v3, v4) =4

σG(v1)− σG/S1
(v1)) ≤ (σG(v1)− σG/S2

(v1)

In the above example assume that the edge probabilities are all 1. Suppose that is not the

case. Consider the sample space in which each sample point is a sub graph of G that is formed as

follows: For each edge e, keep in the graph with probability pe. Suppose that G1, G2, · · ·G` are all

the sample points in the sample space. Now σ(S) is precisely

∑
Reach(S,Gi)× Pr[Gi]

where Reach(S,Gi) denotes the number of nodes reachable from S in the graph Gi, and Pr[Gi] is the

probability that the graph Gi is obtained by the above probabilistic process. Proof of Theorem 1

is showing that Reach(S,Gi) is monotone for every graph Gi and this implies that IMG(S) is

monotonically increasing.
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3.2.2 Not Supermodular

We next establish IMG is neither submodular nor supermodular. Submodularity (supermod-

ularity) of a function is defined in terms of the marginal gain for the function. In our context, let

S be a set and v 6∈ S be a node, then the marginal gain in terms of IMG is defined as follows:

imgainG(S, v) = IMG(S ∪ {v})− IMG(S)

Submodularity of IMG requires for all S1, S2 and v 6∈ S2, S1 ⊆ S2 implies imgainG(S1, v) ≥

imgainG(S2, v). Conversely, for supermodularity, it is required to satisfy imgainG(S1, v) ≤ imgainG(S2, v).

Theorem 2. IMG is not supermodular.

Proof. Consider the network G where the probability associated with each edge is 1.

u

v x

y

z

(G)

u

v x

z

y u

v x

z

y

(G/S1) (G/S1 ∪ {v} )

u

v x

z

y u

v x

z

y

(G/S2) (G/S2 ∪ {v})

Figure 3.3 Supermodular counter example

For proving our claim, we need to show that there exists S1, S2 and v such that S1 ⊆ S2, v 6∈ S2

and imgainG(S1, v) > imgainG(S2, v).
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Note that ST (G) = 5 + 2 + 3 = 10. Let S1 be {y}, S2 be {x, y}. Then,

ST (G/S1) = 4 + 2 + 2 = 8 and

IMG(S1) = ST (G)− ST (G/S1) = 2

ST (G/S1 ∪ {v}) = 4 and IMG(S1 ∪ {v}) = 6

imgainG(S1, v) = 6− 2 = 4

Proceeding further, IMG(S2) = 5 and IMG(S2∪{v}) = 7, and therefore, imgainG(S2, v) = 7−5 =

2 < imgainG(S1, v).

3.2.3 Not Submodular

Theorem 3. IMG is not submodular.

Proof. Consider the network G where the probability associated with each edge 1.
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Figure 3.4 Submodular counter example

For proving our claim, we need to show that there exists S1, S2 and v such that S1 ⊆ S2, v 6∈ S2

and imgainG(S1, v) < imgainG(S2, v).
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Note that, ST (G) = 11. Let S1 be {y} and S2 be {y, z}. Then,

imgainG(S1, v) = IMG(S1 ∪ {v})− IMG(S1) = 5− 2 = 3

imgainG(S2, v) = IMG(S2 ∪ {v})− IMG(S2) = 9− 5 = 4

Therefore, imgainG(S1, v) < imgainG(S2, v).

Interestingly, if the network G has the property that there is at most one path between any two

nodes, then IMG is submodular.

3.2.4 Submodular if there is at most one path

Theorem 4. IMG is submodular if there is at most one path between, any two nodes in G.

Proof. Again, we assume that all the edge probabilities are 1. The general case follows as per the

arguments presented after proof of Theorem 1. We need to prove that for any S1, S2 and v,

S1 ⊆ S2 ∧ v 6∈ S2 ⇒ imgainG(S1, v) ≥ imgainG(S2, v)

Recall

imgainG(S1, v) = IMG(S1 ∪ {v})− IMG(S1)

= ST (G/S1)− ST (G/(S1 ∪ {v}))

That is, imgainG(S1, v) is the number of nodes that are reachable from v and are not reachable

from S1. If any of the elements in S1 can reach v, then imgainG(S1, v) = 0, as there is at most one

path between any two nodes in the network.

Next, for any S2 such that S1 ⊆ S2, there are three possibilities in which elements in S2 −

S1 can be selected. (a) there are some elements in S2 − S1, that can reach v, in which case,

imgainG(S2, v) = 0; (b) None of the elements in S2 − S1 are reachable from v, in which case,

imgainG(S2, v) = imgainG(S1, v); (c) Some of the elements in S2 − S1 that are reachable from v, in

which case imgainG(S2, v) < imgainG(S1, v).



24

CHAPTER 4. PROPOSED METHOD

Our objective as per Problem statement 2 is to compute a set S of size k such that

S∗ = argmax|S|=k IMG(S)

It is known that for a large class of monotonic submodular functions, the maximization problem

with cardinality constraint is NP-hard. Furthermore, (Yannakakis (1978)) showed that a class of

node deletion problems that retains hereditary graph properties is NP-Hard. Our problem falls in

such a class. In the context of influence maximization problem, where the influence is monotonic

and submodular, ( Kempe et al. (2003)) proposed a greedy algorithm with (1−1/e) approximation

guarantee. Note that in our problem, we have established that IMG is neither submodular nor

supermodular. Greedy strategy provides the usual approximation guarantees if the network satisfies

the property: any two nodes have at most one path between them ensuring submodulariy of the

impact function (see Theorem 4). The greedy strategy is still a viable heuristic even for general

network.

4.1 Algorithm for Finding Critical Nodes

Algorithm 1 presents the basic steps necessary to solve ICN(k).

input : Network G = (V,E) and k

output: S ⊆ V
1 GreedyImpact

2 S = ∅
3 while |S| < k do

4 w = argmaxv∈V imgainG(v, S)

5 S = S ∪ {w}
6 end

7 return(S)
Algorithm 1: Greedy Computation of Critical Nodes
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The algorithm incrementally computes the set (of size k) of nodes with maximal impact; at

each iteration, identifying the node that results in maximal marginal gain in impact with respect

to the set computed in the previous iteration.

Note that, the maximal marginal gain computation at each step for each node (yet to be

considered in S) is an expensive process. In 2.2.1, the authors presented random reachable set based

efficient implementation for computing marginal gains in the context of influence maximization

problem. We will employ the same implementation strategy for impact computation. As we already

explained in section 2.2.1 about what is Borgs et al. (2014) algorithm of random reachability and

expected influence of v can be estimated as σ̂(v) = (M/N) × |V |. The marginal gain in influence

due to a vertex v with respect to some set S, therefore, can computed by considering the number

of RR elements which contains v but none of the elements of S. Incrementally computing marginal

gain can be easily realized as follows: at each iteration identify the vertex with maximal coverage

of (existing) RR set and remove all the RR elements that vertex covers before proceeding to the

next iteration.

In the following, we will present the strategy that we use to compute the marginal gain in

impact due to a vertex with respect to a given set using random reachable set.

4.1.1 Impact Computation using Random Reachability

In our context, we need to compute the impact of a set S, which involves computing σG(v) −

σG/S(v) for all nodes v. Let MS indicate the number of elements in RR set that contains v such

that there is at least one path to v independent of any node in S. Conversely, MS indicate the

number of elements in RR set that contains v such that all paths to v involve some node in S.
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Therefore,

σG/S(v)

=
∑
u∈V

Pr(∃u : v influences u without involving any w ∈ S)

=
∑
u∈V

Pr(∃u : u reaches v in Gr without involving any w ∈ S)

= |V | × Pr(∃u : u reaches v in Gr without involving any w ∈ S)

We know that σ̂G(v) = |V | ×M/N we can write σ̂G/S(v) as : σ̂G/S(v) = |V | ×MS/N . Proceeding

further,

σ̂G(v)− σ̂G/S(v) = |V |/N × (M −MS) = |V | ×MS/N

Here, M −MS can be written as MS because when we subtract M (the number of RR sets in

whoch node v is present) - MS (number of RR sets in which node v is present such that there is at

least one path to v independent of any node in S ) is equivalent to number RR sets that contains v

such that all paths to v involve some node in S. Recall that, IMG(S) =
∑
v∈V

σG(v)−
∑
v∈V

σG/S(v).

Therefore, IMG(S) can be estimated by counting the number of times each node in G is reachable

in graphs in RR set where the reachability requires the existence of some node in S.

4.1.2 Incremental Computation of Marginal Gain in Impact

Recall that the marginal gain in impact due to a node v with respect to S is imgainG(v, S) =

IMG(S∪{v})−IMG(S). Computing IMG(S) involves computing |V |×Mu
S/N for all u ∈ V (let

Mu
S denote the number of graphs in RR set where reachability of u requires some element in S).

That is,

imgainG(v, S) = |V |/N
∑
u∈V

[
Mu

S∪{v} −M
u
S

]
Proceeding further, Mu

S∪{v}−M
u
S is equal to the difference between number of graphs in RR where

reachability of u involves v or some elements in S and number of graphs in RR where reachability

of u involves some elements in S. Therefore, Mu
S∪{v} −M

u
S is the number of graphs in RR where

reachability of u involves v and does not involve any element from S.
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Incremental computation of imgainG(v, S) (and avoid computing IMG(S ∪ {v})) is realized

as follows. Once IMG(S) is computed using RR set, we remove all elements of S from each

Gr
i ∈ RR. After removal, |V | ×Mu

v /N for all u ∈ V is equal to Mu
S∪{v} −M

u
S , which, in turn,

results in incremental computation of imgainG(v, S).

The greedy algorithm using random reachable sets follows.

input : Network RR = {Gr
1, G

r
2, . . . , G

r
N} and k

output: S ⊆ V
1 GreedyImpactRR

2 S = ∅
3 while |S| < k do

4 w = argmaxv∈V
∑

u∈V M
u
v

5 S = S ∪ {w}
6 Remove w from RR graphs

7 end

8 return(S)
Algorithm 2: Greedy using Random Reachability

4.1.3 Efficient Implementation of Incremental Computation

Note that, the implementation of incremental computation has two efficiency bottlenecks. First,

for the incremental computation one needs to perform reachability on each graphs in RR set in every

iteration. Second, it is necessary to store the all graphs in RR set, which can lead to considerable

space overhead. To counter these bottlenecks, we develop a data structure that succinctly captures

the reachability information in each graphs of RR set and present effective algorithms to construct

and maintain the structure. In our research we first used the structure in the form of matrix but

we analyzed that it is creating a space overhead so we converted the structure in the form graph

i.e. two vertices are connected by edge if source vertex influences target vertex and edge contains

the RR set which represents the number of RR sets in which source node influences target node.

When we find the maximum influential node we remove that node from this structure i.e. the

source with all the edges are removed and we have track of RR set value with which the target

node was associated.
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For each node v ∈ V and for each graph Gr
i in RR set, we maintain a set dependOn(v, i) ⊆ V .

The set contains the nodes such that their reachability requires v in Gr
i . If U is the set of nodes

in Gr
i , then dependOn(v, i) can be computed by subtracting from U the nodes that are reachable in

Gr
i after removing v. The impact of v proportional to

∑N
i=1 dependOn(v, i) (equal to

∑
u∈V M

u
v ).

Updating dependsOn for Incremental Computation. In order to facilitate incremental computation

of marginal gain of impact, imgain, the dependOn(w, i) must be updated for all w ∈ V and i ∈ [1, N ]

once a node v 6= w with the highest impact is selected to be part of the solution. Incrementality

requires the removal of v and recomputation of reachability in Gr
i . This repeated reachability can

be avoided by the following update operation on dependOn(w, i). If u ∈ dependOn(v, i) then remove

u from all dependOn(w, i) (w 6= v). This is because v in Gr
i impacts u (removing v will make u

unreachable in Gr
i ); reachability of u cannot be any more falsified (impacted) by further considering

w.

This is illustrated in the following example Gr
i .

u0

u1
u2

u4

u3 u5

The corresponding dependOn is represented using as matrix, where the first column represents the

input and each cell (r, c) is set to 1, if the r-th element is present in the dependOn of c-th element.

u0 u1 u2 u3 u4 u5

u0 1 1 1 1 1 1

u1 1 1

u2 1 1 1

u3 1

u4 1 1

u5 1
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If u2 is selected as the one with the highest impact1, then row corresponding to u2, representing the

set dependOn(u2, i), will be rendered unreachable in Gr
i by the removal of u2. As a result, subsequent

computation of impact of nodes u0, u1 and u3 should not consider the unreachable nodes (u2, u4

and u5), and hence, their entries (if present) are removed from the dependsOn of u0, u1 and u3. This

strategy avoids re-computation of impact using reachability.

1Note that the above simply illustrates one of the N random graphs in RR. Impact of a node based on the sum
of its impact in all the N elements.
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CHAPTER 5. RESULTS

1. The primary objective of our experiments is to evaluate the quality of the results obtained

by removing critical nodes. We refer to the proposed method as Crit-Set.

2. To measure advantages of using our method, we developed two other methods, which are

obvious and immediate choices for disrupting diffusion:

(a) Top-Infl : one based on removing the top k most influential nodes. Here we used (Tang

et al. (2014)) algorithm to get the most influential nodes and

(b) Top-Crit: one based on removing the top k most critical nodes i.e. without doing

further iterations we picked the top k nodes from first iteration of Crit-Set algorithm.

5.1 Experimental Evaluation

In the case of (Top-Infl) and (Top-Crit), due to the submodularity of diffusion function and impact

function, respectively, the top k most influential nodes and the top k most critical nodes may not

correspond to the most influential or most critical set of size k. As a result, both Top-Infl and

Top-Crit are far more time-efficient when compared to Crit-Set, as the latter requires considerably

expensive marginal gain computation.

Table 5.1 Dataset

Network-name # Nodes # Edges

condensed-Matter-Collab-Network 23,133 93,497

soc-Epinions 75,879 508,837

soc-sign-Epinion 131,828 841,372

com-DBLP 317,080 1,049,866



31

We will use Top-Infl as the baseline method and show that Top-Crit almost always out-

performs both Top-Infl and Crit-Set always outperforms both Top-Infl and Top-Crit. This

validates that:

1. most influential nodes are not always the ones that can disrupt diffusion, and

2. the characterization of criticality in terms of impact.

Furthermore, we observe that Top-Crit provides a reasonable balance between quality and cost

(in terms of time) and can be an excellent choice for finding critical nodes when the network size

is too large (for marginal gain computations as needed in Crit-Set).

5.2 Experimental Setup

5.2.1 Environment

All experiments are conducted on Linux server (Virtual machine) with Red Hat Enterprise Linux

7.x x64 operating system (4 cores) and 16GB main memory. All the algorithms were implemented

in C++.

5.2.2 Dataset

We use three networks from http://snap.stanford.edu/data/.

1. Collaboration Network : condensed-Matter-Collab-Network network is from the e-print

arXiv and covers scientific collaborations between authors papers submitted to Condense Matter

category. The graph contains an undirected edge from i to j, if an author i co-authored a paper

with author j. This generates a completely connected (sub)graph on k nodes, if the paper is

co-authored by k authors. com-DBLP is the network of DBLP computer science bibliography

which provides a comprehensive list of research papers in computer science. A node represents an

author here and edge represents a co-author relationship. There is an edge between two authors if

they publish at least one paper together. Publication venue, e.g, journal or conference, defines an
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individual ground-truth community; authors who published to a certain journal or conference form

a community.

2. Trust Networks (soc-Epinions, soc-sign-Epinion): This is a who-trust-whom online social

network of a general consumer review site Epinions.com where edge represents trust relationship

and a node represent a user.

In all the experiments, following the prior works1, we chose puv = 1/din(v), where din(v) is

the indegree of v. The size of RR is computed based on the chosen ε = 0.5. We observe that the

quality of the results does not improve much for smaller values of ε. Table 5.1 presents the basic

information about the networks used in the experiments.

5.3 Criticality-indicator & Importance of Critical Nodes

This set of experiments is directed to validate two claims:

• Removing critical nodes indeed reduces the possible diffusion from any seed.

• Diffusion strength is a good indicator for criticality. That is, nodes that are critical are likely

to reduce the strength of diffusion.

For each network, we identified (using Borgs et al. (2014)) the best influential seed set of different

sizes. We then use a random diffusion from that seed set to generate the influence graph–the

graph where all nodes are influenced. Assuming this influence graph to be the input (that is, the

objective is to maximally disrupt diffusion in this influence graph), we conduct experiments to find

the impact of removing k nodes in the influence graph.

Table 5.2 presents a subset of results obtained in this experiment. The columns are described

as follows. The column infl-size is size of the influence graph generated by seed of size k (second

1Probability of diffusion based on indegree is a one of the many ways to quantify the strength of nodes in spreading
information—typically, referred to as the weighted independent cascade model. Recently, Arora et al. (2017) raised
some concerns on whether experiments using weighted cascade model provides validity to the efficiency of the proposed
algorithms; however, their work, in particular the evaluation of algorithms, has been seriously refuted by Lu et al.
(2017). Our objective is not focused on the debate of how probability of diffusion is measured or quantified and how the
efficiency of influence maximization depends on the quantification; rather our focus is to validate our characterization
of criticality in terms of impact and not the efficiency of general diffusion problem. In fact, any of the efficient and
effective diffusion algorithms can be used in our implementation framework. We chose the basic random reachable
set based method, which is at the core of some notable efficient algorithms Tang et al. (2014, 2015).
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column). The budget indicates the number of nodes to be removed. The strength columns present

the strength of diffusion after the nodes are removed. The method Top-Infl is used as a baseline

method; the percentage decrease in the strength using other method Top-Crit and Crit-Set is

presented in the respective strength-columns. The New-Infl column indicates the influence in the

input graph (after nodes are removed). We use the same size for seed set and construct them

by considering the objective of maximizing its influence on x%(x ∈ [20, 90]) of the network for

example x as 20 so in that case by taking 20% of the whole graph we selected the best seed of that

20% graph. We report (New-Infl) the average influence size in the network using these different

seeds after the nodes are removed. It also includes the (average) percentage improvement over the

baseline Top-Infl method. The timing results are given in seconds.

We have generated different size influence graphs in different types of networks (5k-30k nodes

in the influence graph). First observe that, if there is a budget constraint on number of nodes that

can be removed this is because we can’t remove all the nodes from the graph, then identifying the

critical nodes can indeed save majority of the network from un-wanted diffusion. For instance, for

com-DBLP network a 20-node seed can influence 29k nodes; however, removing 20 critical nodes

help to reduce the result of diffusion (by virtually any 20 nodes) to 6K nodes (a reduction of

around 70%). Next observe that, in all experiments Top-Crit and Crit-Set have reduced the level

of diffusion more than Top-Infl. This shows that influential nodes are not necessarily the ones that

can maximize disruption in diffusion. Furthermore, reduction achieved by Crit-Set is considerable

(compared to Top-Infl, in some case as high as 40%).

Our second goal is to validate that characterizing criticality using diffusion strength is appropri-

ate. In other words, reducing strength is likely to reduce influence from any seed. The experiments

show that in all cases, removal of critical nodes using Crit-Set reduces the diffusion strength con-

siderably when compared to Top-Infl. That is, reduction in diffusion strength can be used quantify

the criticality of nodes.
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Figure 5.1 (a) Influence size difference for seeds of size 300, (b) Intersection size of nodes

being removed by Crit-Set and Top-Infl for budget range [100 − 8, 000]; (c)

Influence size difference for seeds of size 1, 500, (d) Intersection size of nodes

being removed by Crit-Set and Top-Infl for budget range [100− 15, 000].

5.3.1 Role of Budget on Node Removal

In the last subsection, we validated our claim that node removal based on criticality is an

important consideration. Our next set of experiments analyze the relationship between budget

(number of nodes to remove) and the node-removal strategy. In particular, we are interested in

understanding the difference in quality of results obtained by Crit-Set and Top-Infl as the budget

increases.

The setup is as follows. We consider the network condensed-matter-collab-network (see Ta-

ble 5.1). We find k nodes to remove using Crit-Set and Top-Infl. We record the number of

common nodes being removed (intersection size).

After removal of k nodes, we consider M size seed set to start and compute the level of diffusion.

Different types of seeds are computed by considering it maximal influence on x% of the network

(x ∈ [20%, 90%]). For each seed, the influence size is computed. The average difference between

the influence sizes (after removal of nodes using Crit-Set and Top-Infl) is recorded.

Experiment is conducted by varying k starting from 100 for two different values of M equals

to 300 and 1500. Figure 5.1(a, b) presents the difference and intersection size against the budget

values for M = 300. Note that as the budget increases, the difference in the influence size increases

rapidly and then plateaus, and finally decreases. On the other hand, as the budget increases, the
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intersection size of the nodes to be removed by two methods decreases and then flattens. The

observations can be explained as follows. For smaller budget the intersection is high because highly

critical nodes are also likely to be highly influential nodes. As a result, the difference in the influence

size after removal of nodes using the two methods is not large. However, with the increase in the

budget, the methods proceed to identify moderately critical nodes (Crit-Set) and moderately

influential nodes (Top-Infl)–these sets are not likely to be same/similar. In other words, Crit-Set

decides to remove nodes (critical nodes) that are markedly different from the nodes (influential

nodes) being removed by Top-Infl. This, coupled with the fact that removal of critical nodes

disrupts the diffusion more than the removal of influential ones (as observed in the last subsection),

the difference between the influence sizes after removal of influential nodes and after removal of

critical nodes increases as the budget increases. The pattern continues up to certain budget after

which the nodes to be removed again exhibit the same level of criticality and influence, at which

point, the difference between influence size flattens and starts decreasing. This is because all the

critical and influential nodes, which have some significant impact on diffusion, have be already

considered for removal–increasing budget does not expose any new impactful nodes.

The same pattern is observed when the seed set size is increased to 1, 500 (Figure 5.1(c, d)). The

distinguishing aspect is that difference between influence size continues to grow with the budget till

a much larger budget value. This is because, as a seed size increases, there are considerably larger

number of vulnerable nodes (nodes that can be influenced through diffusion) and as a result, there

is a larger number of highly critical nodes that can disrupt the diffusion.

5.3.2 Critical Nodes Removal and Maximal Influence

So far, we have validated that critical nodes play a vital role in disrupting diffusion for a specific

influence network as well as for the entire network for different types of seeds. Our final set of

experiments focus on validating that maximum influence achievable after removal of nodes following

Crit-Set is considerably less than that achievable after removal of nodes following Top-Infl. We

considered seed size of size 300 in the condensed-Matter-Collab-Network. We identify the seeds
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that can induce the maximal diffusion after removal of nodes, and report the number by which

diffusion after the critical node removal is less than that after the influential node removal.

Observe that, Crit-Set always outperforms Top-Infl as the budget increases; the difference

increases till the budget for removal is 2, 000. This is exactly the same pattern we observed in the

last experimental setup; however, there is an important distinction between the two experiments. In

the last experiment, the same seed set is used after the node-removal using Crit-Set and Top-Infl;

in the current experiment, the best seeds (inducing maximal diffusion) is considered after removal

of nodes. As a result, the seeds being considered after removal of nodes using Crit-Set is different

from the one being considered after removal of nodes using Top-Infl. The observation validates the

claim that the maximal diffusion achievable after critical node removal is less than that achievable

after influential node removal; in other words, removing critical nodes disrupts the diffusion possible

from the best seeds.
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Figure 5.2 Disruption of Diffusion from the Best Seed
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CHAPTER 6. CONCLUSION

6.1 Overview of contributions

We study the problem of disrupting influence in social network under independent cascade dif-

fusion model. Our objective is to identify a set of nodes, the critical nodes, which when removed

can maximally lower diffusion or maximally disrupt diffusion. We formalize the objective and intro-

duced the characterization of criticality in terms of impact, which, in turn, describes the reduction

in the diffusion strength of the network. We present a greedy heuristic for impact computation

and further provided the efficient implementation of the algorithm. We design experiments and

compared it with different strategies to validate the effectiveness of our characterization in realizing

the objective.

6.2 Future Work

1. Different heuristics : As part of future work, we plan to consider different heuristics and

implementation strategies to realize the computation of impact; how the quality of result

change with the structure of the network.

2. Large Networks: The goal being application to very large networks efficiently without com-

promising the quality. How the result change when the network is dynamic i.e. continuously

changing.

3. Constraints: Another avenue of research along this line of work, includes associating costs

and hard constraints on the nodes (e.g., some nodes may not be removed, some nodes may

incur prohibitive cost to remove) i.e. constraint that some nodes cannot be removed even if

they are critical in that case, how would the solution will change in that case and addressing

the problem of constrained cost-effective disruption.
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4. Cost function: Associating costs for removing the nodes. So far we have studied the case

where the cost for removal is same for all nodes. If different costs are used, then that needs

to be factored in in the solution.
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