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PREDICTION OF INDOOR CLIMATE AND LONG‐TERM

AIR QUALITY USING THE BTA‐AQP MODEL:
PART II. OVERALL MODEL EVALUATION AND APPLICATION

G. Sun,  S. J. Hoff

ABSTRACT. The objective of this research was to develop a building thermal analysis and air quality predictive (BTA‐AQP)
model to predict indoor climate and long‐term air quality (NH3, H2S, and CO2 concentrations and emissions) for swine
deep‐pit buildings. This article presents part II of this research, in which the performance of the BTA‐AQP model is evaluated
using typical meteorological year (TMY3) data in predicting long‐term air quality trends. The good model performance
ratings (MAE/SD < 0.5, CRM � 0; IoA � 1; and NSEF > 0.5 for all the predicted parameters) and the graphical presen-
tations reveal that the BTA‐AQP model was able to accurately forecast indoor climate and gas concentrations and emissions
for swine deep‐pit buildings. By comparing the air quality results simulated by the BTA‐AQP model using the TMY3 data set
with those from a five‐year local weather data set, it was found that the TMY3‐based predictions followed the long‐term mean
patterns well, which indicates that the TMY3 data could be used to represent the long‐term expectations of source air quality.
Future work is needed to improve the accuracy of the BTA‐AQP model in terms of four main sources of error: (1) uncertainties
in air quality data, (2) prediction errors of the BTA model, (3) prediction errors of the AQP model, and (4) bias errors of the
TMY3 and its limited application.

Keywords. Air quality predictive model, Long‐term mean, Modeling, Typical meteorological year.

he overall goal of this research was to develop a
building thermal analysis and air quality predictive
(BTA‐AQP) model to quantify long‐term indoor
climate and air quality (NH3, H2S, and CO2 con‐

centrations and emissions) for swine deep‐pit buildings. In
the companion article forming part I of this study (Sun and
Hoff, 2010), it has been demonstrated, based on statistical
evaluation measures and graphical presentations, that the de‐
veloped BTA model was capable of predicting indoor climate
and building ventilation rate in swine deep‐pit buildings and
could provide accurate estimates of significant input vari‐
ables for the AQP model.

Part II of this study, detailed in this article, deals with the
development and evaluation of the BTA‐AQP model under
typical weather conditions (TMY3). The proposed modeling
technology was intended to perform long‐term simulation of
source air quality in a rapid, economical, reliable, and accu‐
rate way in order to significantly reduce expensive and time‐
consuming field measurements. Therefore, the BTA‐AQP
model could be used by livestock producers to extrapolate
annual air emission inventories, by research scientists to ob‐
tain a diurnal and seasonal air quality database for science‐
based setback distance determination, and by state and
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federal regulatory agencies to make relevant environment
policy decisions.

MATERIALS AND METHODS
LONG‐TERM AIR QUALITY PREDICTION METHOD

Long‐term air quality predictions can be separated into
three components, as shown in figure 1: the building thermal
analysis (BTA) model, the air quality predictive (AQP) mod‐
el, and a typical meteorological year (TMY3) database
(NSRDB, 2008). Specifically, a lumped capacitance model
(BTA model) was developed to study the transient behavior
of indoor air temperature and ventilation rate according to the
thermo‐physical  properties of a typical Iowa swine building,
a typical setpoint temperature scheme, a typical fan staging
scheme, transient outside temperature, and the heat fluxes
from pigs and supplemental heaters. The obtained indoor
room temperature and ventilation rate combined with animal
growth cycle, in‐house manure storage level, and typical me‐
teorological  year (TMY3) data were fed into the generalized
regression neural network (GRNN) air quality predictive
model to calculate hourly NH3, H2S, and CO2 concentrations
and emission rates. The corresponding monthly and average
annual air quality values were then obtained based on the
hourly predictions. The TMY3 data used for this research
project consist of representative hourly solar radiation and
meteorological  values for a one‐year period in Des Moines,
Iowa, about 100 km away from the swine deep‐pit finishing
facility where field data were collected (calendar year 2003
data collection). Animal growth cycle includes pig number
and average pig weight in the room, which were used to esti‐
mate total animal units (AU). The total AU was obtained by
dividing the total pig weight by 500 kg animal live weight.
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Figure 1. Schematic of the BTA‐GRNN‐AQP model: Tin = indoor temperature (°C), VR = ventilation rate (m3 s‐1), Tout = outside temperature (°C), AU�=
animal unit, and Level = in‐house manure storage level (m).

In‐house manure storage level was considered as an addition‐
al input variable representing a deep‐pit system for the AQP
model.

DESCRIPTION OF FIELD GAS MEASUREMENTS

Field monitoring was conducted for 15 months between
January 2003 and March 2004, with the one‐year monitoring
in 2003 used in this research for model prediction compari‐
son. Details of the field monitoring and overall procedures
used can be found in Heber et al. (2006). Two identical deep‐
pit swine finishing buildings located in central Iowa were
monitored. Each building was 60 m long and 13 m wide,
which can house 960 finishing pigs from ~20 to 120 kg.
Slurry was collected in a 2.4 m deep pit below a fully slatted
floor and was stored for one year. Once a year in the fall, the
under‐floor deep pit was emptied and the slurry was injected
to nearby cropland as a fertilizer source.

The real‐time gas concentrations and emission rates, envi‐
ronmental data, and building ventilation rate were measured
by a mobile emission laboratory (MEL) that included a gas
sampling system (GSS), a computer‐based data acquisition
system, gas analyzers, environmental instrumentation, stan‐
dard gas calibration cylinders, and other supplies. Gas con‐
centrations from multiple sampling locations within the
swine building were quantified with a chemiluminescence
NH3 analyzer (model 17C, Thermal Environment Instru‐
ments, Franklin, Mass.), a pulsed fluorescence SO2 detector
(model 45C, Thermal Environment Instruments, Franklin,
Mass.), and two photoacoustic infrared CO2 analyzers in the
range from 0 to 2,000 and 10,000 ppm (model 3600, Mine
Safety Appliances Co., Pittsburg, Pa.). A three‐way solenoid
system was used to automatically switch between 12 measur‐
ing locations with 10 min sampling intervals and sequentially
delivered gas from each location to the gas analyzers. There‐
fore, gas samples were taken during twelve 120 min measure‐
ment cycles per day. Details of the monitoring method and
QA/QC can be found in Heber et al. (2006). Climate parame‐
ters (temperature, relative humidity, and static pressure) and
total building ventilation rate were also simultaneously mon‐
itored. Gas emission rates were determined by multiplying
fan airflow rate by representative gas concentration differ‐
ences between inlet and outlet for all fans operating at any
given time. The maximum estimated uncertainty in ventila‐
tion rate and gas concentrations were ±7.2% (Hoff et al.,
2009) and ±5.0%, respectively. These individual uncertain‐

ties resulted in an average uncertainty in emission rate of
about ±9.0%.

AIR QUALITY DATABASE AND INITIAL DATA ANALYSIS
The BTA‐AQP model development was based on source

air quality measurements, which included real‐time gas con‐
centrations and emission rates, indoor and outdoor environ‐
mental data (indoor, inlet, and exhaust temperature and
relative humidity, outdoor temperature, relative humidity,
wind speed, wind direction, solar energy, and barometric
pressure), pig size and density (animal units), and building
ventilation rate. These measured data can be used as a funda‐
mental database to help develop air quality predictive models
and evaluate model forecasting performance. Thus, data
quality is of paramount importance. Heber et al. (2006)
pointed out that more efforts should be made to maximize the
confidence, credibility, and consistency of measured data for
obtaining a high‐quality database. In this study, the estab‐
lished principles of quality assurance and quality control
were applied throughout the gas sample collection, and great
emphasis was placed on data quality. However, the final data
set still presented three main types of problems: general er‐
rors, outliers, and missing observations. General errors are
wrongly recorded observations, probably due to calibration
and other reasons, that could result in biased measurements.
A 70% valid data policy (Heber et al., 2006) was used to cal‐
culate hourly, daily, and monthly averages to avoid these er‐
rors. Outliers are extreme observations that do not appear to
be consistent with the rest of the data. Outliers arise for sever‐
al reasons and can cause severe problems. Hoff et al. (2006)
reported that the H2S emissions measured during the inde‐
pendent slurry removal event would increase by an average
of 62 times relative to the H2S emission levels before the re‐
moval. Thus, air quality data during the slurry agitation pro‐
cess should be considered as outliers and removed from the
database. Missing observations are due to a variety of rea‐
sons, such as lost samples, malfunctioning instruments and
sensors, and challenging weather (lightning), to name a few.
A majority of the missing air quality data in this research was
missing not at random (MNAR). The best way to handle
MNAR data is to develop a regression model to estimate
missing values (Dunning and Freedman, 2008). In a word,
initial data analysis must be applied to ensure database quali‐
ty.
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Another important issue for an air quality database is the
sample representativeness and completeness. Representative
and complete sample measurements should fully character‐
ize long‐term (at least one year) air emission profiles and cor‐
responding emission factors since gas concentrations and
emissions vary with time of day, season, building characteris‐
tics, ventilation rate, animal size and density, manure han‐
dling system, and weather conditions (Jacobson et al., 2005).

TYPICAL METEOROLOGICAL YEAR
Selecting appropriate representative meteorological data

is vitally important to accurately predict indoor climate and
long‐term air quality levels. Normally, representative meteo‐
rological data consist of a multi‐year and long‐term average
measured data series that represents a year of prevailing
weather conditions for a specific location. It is noted that the
use of typical climatic parameters instead of multiple‐year
data can reduce a great deal of time and computation in com‐
puter simulation and facilitate performance comparisons of
different system types, configurations, and locations. There‐
fore, typical weather data have been extensively used for
building energy simulation and solar energy analysis to as‐
sess the expected heating and cooling costs for the design of
industrial and residential buildings. Currently, the most prev‐
alent weather representations are test reference year (TRY),
typical meteorological year (TMY3), and weather year for
energy calculations (WYEC2). These data sets are used for
different simulation purposes (Pedersen, 2007). TRY is
suited to short‐term energy predictions due to the representa‐
tion of weather characteristics, while TMY3 and WYEC2 are
most suitable for long‐term energy estimations because the
data represent long‐term weather features. Yang et al. (2008)
investigated the energy simulation results for office buildings
in the five main climate zones of China and compared the re‐
sults using TMY2 with those using multi‐year data
(1971‐2000). They found that TMY2 was able to predict
monthly load and energy use within 5.4% of the long‐term
mean. Based on these results, it was concluded that TMY3
data were an acceptable meteorological data set to be used for
this current study.

TMY3 is composed of typical hourly meteorological val‐
ues at a specific location over a long period of time (30 years).
For each TMY3 dataset, 12 typical months are selected using
statistics (Sandia method; NSRDB, 2008) determined by five
important parameters: global radiation on a horizontal sur‐
face, direct normal radiation, dry bulb and dew point temper‐
atures, and wind speed (NSRDB, 2008). These important
parameters were chosen because solar radiation determines
the heat gain, dry bulb temperature and wind speed determine
heat loss by convection, and dew point temperature is an ab‐
solute measure of humidity, which determines latent energy.
The 12 months judged to be most typical were picked by the
Sandia approach to form a complete year. Due to adjacent
TMY3 months from different years, linear interpolation was
performed to smooth the gap for 6 h on each side of adjacent
months. In each TMY3 month, mean values of the TMY3 ele‐
ments are the closest to the averages of the elements for mul‐
tiple years. Thus, TMY3 can represent long‐term average
climatic conditions.

AIR QUALITY MODEL
Modeling source air quality in a swine deep‐pit building

is a complicated dynamic system with many nonlinear gov‐
erning relationships. Moreover, there still exist some circum‐
stances of gaseous emissions that cannot be explained with
our current limited scientific understanding (Sun et al.,
2008). Therefore, a black‐box modeling approach using arti‐
ficial neural networks (ANN) would be a potential method
for handling air quality predictions. Black‐box models do not
need detailed prior knowledge of the structure and different
interactions that exist between important variables. Mean‐
while, their learning abilities make the models adaptive to
system changes. Recently, there has been an increasing num‐
ber of applications of ANN models in the field of atmospheric
pollution forecasting (Hooyberghs et al., 2005; Grivas and
Chaloulakou, 2006; Sousa et al., 2007; Sun et al., 2008). The
results show that ANN black‐box models are able to learn
nonlinear relationships with limited knowledge about the
process structure.

Sun et al. (2008) employed backpropagation neural net‐
work (BPNN) and generalized regression neural network
(GRNN) techniques to model gas and PM10 concentrations
and emissions generated and emitted from a swine deep‐pit
finishing building. Note that GRNN is a term used to repre‐
sent the Nadaraya‐Watson kernel regression used in artificial
neural networks. The obtained BPNN and GRNN predictions
were in good agreement with field measurements, with coef‐
ficient of determination (R2) values between 81.2% and
99.5% and very low values of systemic performance indices.
The good results indicated that ANN techniques were capa‐
ble of accurately modeling source air quality within and from
these livestock production facilities. Furthermore, it was
found that the process of constructing, training, and simulat‐
ing the BP network models was very complicated. The effec‐
tive way of obtaining good BP modeling results was to use
some trial‐and‐error methods and thoroughly understand the
theory of backpropagation. Conversely, for the GRNN mod‐
els, there was only one parameter (the smoothing factor) that
needed to be adjusted experimentally. Additionally, the
GRNN performance was not sensitive to randomly assigned
initial values and the GRNN approach did not require an it‐
erative training procedure, as in the backpropagation meth‐
od. Other significant characteristics of the GRNN in
comparison to the BPNN were the excellent approximation
ability, fast training time, and exceptional stability during the
prediction stage. Thus, it was recommended by Sun et al.
(2008) that a GRNN be used for source air quality modeling.

In the current research, a GRNN model was developed to
explore the complex and highly nonlinear relationships be‐
tween air pollutants and many input variables on diurnal and
seasonal NH3, H2S, and CO2 levels and emissions. This de‐
veloped air quality model was then used to forecast long‐term
gas concentrations and emissions from a typical swine deep‐
pit building associated with five significant input elements:
outdoor temperature obtained from a specific year or the
TMY3 data, a typical swine growth cycle, and ventilation
rate and indoor air temperature predicted by the transient
BTA model (Sun and Hoff, 2010). It is noted that in the mid‐
western U.S., it is common practice to store manure in deep
concrete pits for one calendar year. This year‐long slurry stor‐
age system is also a concentrated source of gas concentra‐
tions and emissions (Hoff et al., 2006). Therefore, in‐house
manure storage level was considered as an additional factor
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representing the deep‐pit system for the AQP model. The ma‐
nure depth changes with swine production time, from 0.3 m
(empty pit) to 2.1 m (full pit) throughout the year. The full and
empty events generally occur before and after slurry remov‐
al, which is typically conducted once per year in the fall after
harvest (i.e., October).

RESULTS AND DISCUSSION
A comparison was made between the predicted and actual

gas concentrations and emissions in 2003 to evaluate the ac‐
curacy of the BTA‐AQP model estimates. In addition, the
simulated results using the TMY3 data set and a five‐year

mean weather data set were compared to validate the assump‐
tion that the TMY3 could accurately represent long‐term
source air quality levels. Finally, overall prediction errors of
the BTA‐AQP model were analyzed, and future work is iden‐
tified for improving the model.

BAT‐AQP MODEL EVALUATION USING 2003 WEATHER
DATA

Boxplots were used to provide graphical information on
the median, spread, skewness, and potential outliers of the
actual vs. predicted data sets. The primary purpose was to
evaluate the data early, before conducting in‐depth statistical
analysis. Comparative boxplots of hourly actual vs. predicted
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Figure 2. Actual vs. predicted hourly (a) NH3, (b) H2S, and (c) CO2 concentrations in 2003 (A = actual, P = predicted, and circles = potential outli‐
ers).
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NH3, H2S, and CO2 concentrations for each month in 2003
are shown in figure 2. It was observed that the field‐collected
and predicted gas concentrations during the majority of the
time had similar median, spread, and skewness, which indi‐
cated that these comparative data sets were generally distrib‐
uted in a similar way, which is an indication of good model
performance.  However, significant differences between the
two data sets in some months can be seen, e.g., gas
(NH3,�H2S, and CO2) concentration predictions in Decem‐
ber, NH3 concentration predictions in April, H2S concentra‐
tion predictions in July, and CO2 concentration predictions in
February. The poor gas concentration predictions in Decem‐
ber were probably due to two growth cycles appearing in the

same month, i.e., mature pigs (120 kg) were gradually
shipped to market in early December and smaller pigs
(~20�kg) entered at the end of December. During these times,
air quality levels and indoor climate were highly influenced
by the management of the swine barn and workers' involve‐
ment, which were not considered as a factor in the develop‐
ment of the BTA‐AQP model. The poor NH3 concentration
predictions in April and CO2 concentration predictions in
February may be attributed to the relatively inaccurate ven‐
tilation rate estimations by the BTA model, which should be
improved in future work (fig. 5). The poor H2S concentration
predictions in July could partially be explained by the fact
that some important variables were excluded in the H2S pre-
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Figure 3. Actual vs. predicted hourly (a) NH3, (b) H2S, and (c) CO2 emissions in 2003 (A = actual, P = predicted, and circles = potential outliers).
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dictive model, such as manure characteristics and surface
temperature.  The manure temperature may be an important
variable affecting H2S release in hot weather. Moreover, in
early July, some underestimated ventilation rates were ob‐
served at the beginning of a new swine growth cycle, result‐
ing in a corresponding higher predicted H2S concentration.

Comparative boxplots of hourly actual vs. predicted NH3,
H2S, and CO2 emissions for each month in 2003 are illus‐
trated in figure 3. Overall, the median, spread, and skewness
of the field‐collected and predicted gas emissions were simi‐
lar, except for February, April, and December. Again, the
poor forecasting performances in February and April were
mainly due to the fact that the relatively inaccurate ventila‐
tion rate predictions, in comparison to other monthly fitted
values, led to greater error in gas emission calculation. For
the poor predictions in December, the reason could be that the
AQP model was not able to estimate gas concentrations re‐
sulting from barn management and pig activity, as previously
outlined. Furthermore, it was found that the BTA‐AQP model
with an additional variable, in‐house manure level, could
largely improve H2S prediction accuracy. When in‐house
manure level was incorporated into the model, the overall av‐
erage absolute error (AE = 100% × |predicted ‐ measured| /
measured) dropped to 11% from an original 24% without ma‐
nure depth considered. It should be noted that the data points
that were outside the spread, as shown in figures 2 and 3, can
be considered as potential outliers.

Table 1 summarizes the statistical performance of the
BTA‐AQP model for predicting hourly gas concentrations
and emissions in 2003. The following statistical measures
were employed to ensure the quality and reliability of the
BTA‐AQP model predictions. A more detailed description is
given by Sun and Hoff (2010):
Mean absolute error:
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where N is the total number of observations, Pi is the pre‐
dicted value of the ithobservation, Oi is the observed value of
the ith observation, and O is the mean of the observed values.

As shown in table 1, the annual predicted averages and
standard deviations (SD) of the gas concentrations and emis‐
sions were in very good agreement with the actual measure‐
ments. For all the parameters, the MAE/SD ratios were less
than 0.5, indicating that the BTA‐AQP models' performance
for the residual variations was very good. The CMR values
approximated 0, meaning that there was no systematic under‐
or overprediction by the BTA‐AQP model. The IoA values
were close to 1, implying excellent agreement between the
observed and predicted values. The NSEF values were great‐
er than 0.5, indicating that the simulated data matched the
measured data very well. Therefore, the BTA‐AQP model
was able to accurately predict indoor climate and gas con‐
centrations and emissions from the monitored swine deep‐pit
building.

LONG‐TERM NH3, H2S, AND CO2 CONCENTRATIONS AND

EMISSIONS

A comparison was made between the TMY3 data set and the
long‐term mean weather data and the corresponding air quality
predicted by the BTA‐AQP model in order to investigate how
the air quality values using TMY3 data followed the actual
long‐term means (figs. 4 to 7). The long‐term period selected for
this study was 2004 to 2008 due to the availability of a complete
on‐line weather data set for the region near the monitored swine
facility. Hourly predictions were made using on‐site weather
data for each year (2004 to 2008, inclusive), with the monthly
average minimum and maximum predictions determined. The
maximum and minimum designations were determined by
month and not year, e.g., the predicted minimum in January and
the predicted minimum in February could have occurred in dif‐
ferent years. The Des Moines International Airport was chosen
as the TMY3 site, which is about 100 km away from the swine
facility used for field data collection, since it is the closest Class
I site in the Iowa TMY3 data set. Class I stations are those with
the lowest uncertainty in weather information. In addition to the
predictions made with on‐site weather data from 2004‐2008 and
the predictions using TMY3 weather data, the actual measured
monthly averages from 2003 are given for completeness (figs.
4 to 7).

Figure 4 illustrates the relationships among the long‐term
mean (i.e., on‐site five‐year average data), the TMY3 gener-

Table 1. Statistical performance of the BTA‐AQP models.
Parameter Actual ±SD Predicted ±SD MAE CMR IoA NSEF

NH3 Concentration (ppm) 19.9 ±6.8 20.5 ±6.7 0.9 0.028 0.99 0.97
Emission rate (kg d‐1) 6.86 ±2.04 6.38 ±1.78 0.14 0.005 0.99 0.99

H2S Concentration (ppb) 553 ±260 560 ±254 57 0.013 0.97 0.88
Emission rate (kg d‐1) 0.473 ±0.295 0.463 ±0.295 0.056 ‐0.022 0.98 0.93

CO2 Concentration (ppm) 2636 ±1618 2674 ±1601 68 0.015 0.99 0.99
Emission rate (kg d‐1) 1226 ±280 1143 ±210 116 ‐0.068 0.83 0.52
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Figure 4. TMY3 vs. long‐term means and 2003 field data for the outside temperature.

ated values, and 2003 field measurements for outside temper‐
ature. The minimum and maximum dashed lines represent
the minimum and maximum ranges of the outside tempera‐
ture during the selected five‐year period (2004‐2008). It was
observed that the TMY3 data and 2003 field measurements
fell within the min‐max range, but some noticeable differ‐
ences between the TMY3 and the long‐term means were evi‐
dent, especially in February, May, August, and December.
The overall absolute error between those two data sets was
16.3% throughout the year. In addition, the differences be‐
tween 2003 field data and the long‐term means can be seen
in February, March, August, and September.

Figures 5 and 6 summarize monthly ventilation rate and
indoor temperature estimated by the BTA model (Sun and
Hoff, 2010) using the TMY3 data set and the on‐site
2004‐2008 weather data, respectively. The 2003 field mea‐
surements and the minimum and maximum ranges of the pre‐
dicted ventilation rate and indoor temperature during the
selected five‐year period are shown in figures 5 and 6 as well.
The monthly ventilation rate predictions based on TMY3
data were higher than the long‐term means during warm
weather but closely matched the long‐term means during

cold weather (fig. 5). This was probably caused by a discrep‐
ancy in outdoor temperatures between the TMY3 data set and
the 2004‐2008 weather data, i.e., a relatively higher outdoor
temperature using TMY3 in the summer resulted in a higher
estimated ventilation rate. Conversely, the predicted indoor
temperatures were in good agreement with the long‐term
means (fig. 6). The overall absolute error was less than 2.0%.
Furthermore, the 2003 field‐measured ventilation rates fell
into the ranges of min‐max expect for January, February, and
April, while for all 12 months of the year, the 2003 field in‐
door temperatures were slightly higher than TMY3 predic‐
tions and long‐term means. These differences between the
2003 actual data and TMY3 predictions could be due to dif‐
ferent outside weather conditions and the forecasting error of
the BTA model.

The monthly air quality predictions using the TMY3 data
were compared with the averaged results of the five‐year pe‐
riod and the 2003 field measurements, as illustrated in fig‐
ures�7, 8, and 9. It was found that: (1) the NH3, H2S, and CO2
concentrations and emissions obtained by the TMY3 data set
and the long‐term air quality means were between the mini‐
mum and maximum values of the five individual year
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Figure 5. TMY3 predictions vs. long‐term means and 2003 field data for the estimated ventilation rate.
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Figure 6. TMY3 predictions vs. long‐term means and 2003 field data for the estimated indoor temperature.

simulations, e.g., each of the five predicted data sets used one
year of weather data from 2004 to 2008; (2) the TMY3 pre‐
dictions followed the long‐term means well; and (3) although
the majority of the 2003 field measurements were within the
min‐max ranges of the predictions using on‐site 2004‐2008
weather data, some distinct differences between the actual
data and the TMY3 predictions can be observed in figures 7,
8, and 9 (e.g., NH3 emissions in January and April; H2S con‐
centrations in December; H2S emissions in April, July, and
December; CO2 concentrations in December; and CO2 emis‐
sions in January, March and April). Again, these distinct dif‐

ferences were mainly attributed to different outside weather
conditions and the forecasting error of the BTA model.

It can be further seen that the TMY3 values were within
6.0%, 7.0%, and 5.1% of the mean weather year (2004‐2008)
annual total for the NH3, H2S, and CO2 concentrations, re‐
spectively, and within 2.1%, 3.5%, and 2.6% of the mean
weather year (2004‐2008) annual total for the NH3, H2S, and
CO2 emissions, respectively. These good agreements be‐
tween the TMY3 data set predictions and the long‐term
means indicate that TMY3 data can be used in performing ac‐
curate long‐term simulations of source air quality.
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Figure 7. TMY3 predictions vs. long‐term means and 2003 field data for monthly NH3 concentrations and emission rates.
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Figure 8. TMY3 predictions vs. long‐term means and 2003 field data for monthly H2S concentrations and emission rates.

Table 2 gives the absolute errors between annual averaged
predictions using the TMY3 data and the predictions using a
single year of weather data from 2004‐2008. No major differ‐
ences were observed between annual TMY3 predictions and
any one single year. The minimum AE (2.0%) occurred with
NH3 emissions in 2004, while the maximum AE (11.1%) ap‐
peared in H2S concentration in the same year, which suggests
that annual gas concentrations and emissions can be obtained
using a TMY3 data set instead of an individual year of weath‐
er data without resulting in large errors. These results show
that a Class I TMY3 data set can be employed to evaluate
annual air quality levels with an acceptable accuracy, espe‐
cially for livestock producers and environment researchers
who might not be able to acquire complete, Class I level local
weather information near a particular animal facility. How‐
ever, it should be noted that the TMY3 data are not appropri‐
ate to estimate peak values for a particulate period of time.

Table 2. Comparison of predicted air quality using
TMY3 and a single year (ER = emission rate).

Year

NH3 H2S CO2

Conc.
(%)

ER
(%)

Conc.
(%)

ER
(%)

Conc.
(%)

ER
(%)

2004 8.3 2.0 10.4 3.5 6.5 3.1
2005 6.5 4.0 7.1 6.0 5.4 4.2
2006 5.2 3.7 8.9 7.1 4.3 6.0
2007 5.6 2.2 7.3 4.7 5.5 3.5
2008 8.7 4.6 7.9 6.7 8.0 4.8

OVERALL MODEL ERROR ANALYSIS AND FUTURE WORK
The developed BTA‐AQP model with TMY3 data can be

used for accurately predicting indoor climate and long‐term
gas concentrations and emissions, but improvement in its ac‐
curacy should be made according to the following sources of
error:

Uncertainties in Source Air Quality Data
Since the source air quality data are important to develop

the BTA‐AQP model and evaluate the model predictive per‐
formance, more efforts should be made to maximize the con‐
fidence, credibility, and consistency of the measured data.

Prediction Errors of the BTA Model
As the number of assumptions in a model increases, the

accuracy and relevance of the model diminishes. For exam‐
ple, the swine heat production data used in this research were
from ASABE Standards established decades ago. With im‐
proved genetics, feed management, and diets, swine heat pro‐
duction (HP) has changed. Brown‐Brandl el al. (2004)
reported that the lean percent increase of 1.55% in the last ten
years has caused an increase in HP by approximately 15%.
Future work is needed to collect new swine HP data from the
latest literature.

Prediction Errors of the AQP Model
The accuracy of the artificial neural network AQP model

depends on the completeness of the data set and availability
of various model input factors that significantly affect source
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Figure 9. TMY3 predictions vs. long‐term means and 2003 field data for monthly CO2 concentrations and emission rates.

air quality. The complete emission profiles should cover all
possible swine production stages for a long period of time. In
this study, one‐year source air quality data were used, which
might not capture all of the relationships between gaseous
concentrations and emissions and these input factors. More
gas measurements are needed to expand the size of the data
set. For the model input parameters, more important factors
beyond indoor and outdoor temperatures, ventilation rate,
swine growth cycle, and in‐house manure storage level
should be considered and incorporated into the model. Added
variables such as feed nutrient content, management practic‐
es, and manure temperature might prove to be important in‐
put variables. When pigs grow, the amount and composition
of the feed intake change, as do the amount and composition
of the manure. Thus, the amount of gas generation tends to
increase. However, sharp decreases in the amount of daily ni‐
trogen excretion were found when diet formulation changes
were implemented. This adjustment process alleviates the
amount of nitrogen in the manure converted to ammonia and
other gases. Swine management practices are also vital fac‐
tors to determine air quality levels. Good management prac‐
tices can maintain proper environmental requirements for the
animals and decrease daily air emissions. Manure tempera‐
ture might be a factor that may directly influence H2S release.

Bias Error of TMY3 and its Limited Application
Uncertainty values exist in the meteorological elements of

the TMY3 data set (NSRDB, 2008). Additionally, TMY3
data are suitable for simulating solar energy conversion sys‐
tems and building systems, since each TMY3 month was se‐
lected according to five elements (global horizontal
radiation, direct normal radiation, dry bulb and dew point
temperatures,  and wind speed) that are the most important for
solar energy and building systems. No literature has shown
that the TMY3 data are suited to air quality predictions as
well. Therefore, further research may focus on the develop‐
ment of new TMY data that are determined to be more ap‐
propriate for air quality simulations.

SUMMARY AND CONCLUSIONS
The overarching goal of this study was to develop a build‐

ing thermal analysis and air quality predictive (BTA‐AQP)
model to quantify indoor climate and long‐term air quality
(NH3, H2S, and CO2 concentrations and emissions) from
swine deep‐pit buildings.

A comparison was made between the predicted and actual
gas concentrations and emissions collected in 2003 in order
to evaluate the accuracy of the BTA‐AQP model estimates.
It can be observed from the comparative boxplots that the me‐
dian, spread, and skewness of the field‐collected and pre‐
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dicted gas concentrations and emissions were similar. Poorer
predictions in some of the months could be due to the rela‐
tively inaccurate ventilation rate predictions by the BTA
model and the AQP model's inability in estimating gas con‐
centrations resulting from barn management and pig activity.
For all the predicted parameters, the MAE/SD ratios were
less than 0.5, the CRM values approximated 0, the IoA values
were close to 1, and the NSEF values were greater than 0.5.
These good model performance ratings indicated that the
BTA‐AQP model was able to accurately predict indoor cli‐
mate and gas concentrations and emissions from swine deep‐
pit buildings.

The monthly air quality values estimated by the BTA‐
AQP model using TMY3 data were compared with those us‐
ing five‐year on‐site weather data. It was observed that the
predictions using the TMY3 data followed the long‐term
mean patterns very well, which suggests that the TMY3 data
can be used in performing accurate long‐term simulations of
source air quality. In addition, annual gas concentrations and
emissions can be obtained using TMY3 data instead of an in‐
dividual year weather data without resulting in large errors.
These results demonstrate that a convenient approach to eval‐
uate annual air quality levels within an acceptable accuracy
is possible without long‐term expensive on‐site measure‐
ments. However, it should be noted that the TMY3 data are
not appropriate to estimate peak values for a particulate peri‐
od of time.

Improvement in the BTA‐AQP model accuracy should be
made according to four main sources of error: uncertainties
in air quality data, prediction errors of the BTA model, pre‐
diction errors of the AQP model, and bias errors of the TMY3
data and its limited application.
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