
Golok: Push-button Verification of Parameterized
Systems

Youssef Hanna, David Samuelson, Samik Basu and Hridesh Rajan

TR #11-02
Initial Submission: January 23, 2011.

Keywords: parameterized model checking, behavioral automaton, composition

CR Categories:
D.2.4 [Software/Program Verification] Formal Methods
D.2.4 [Software/Program Verification] Model Checking
F.3.1 [Specifying and Verifying and Reasoning about Programs] Mechanical verification,
Specification technique

Copyright (c) 2011, Youssef Hanna, David Samuelson, Samik Basu, Hridesh Rajan. All
rights reserved.

Submitted on March 29, 2011.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA

Golok: Push-button Verification of Parameterized
Systems

YOUSSEF HANNA, DAVID SAMUELSON, SAMIK BASU, and HRIDESH RAJAN
Iowa State University

Parameterized systems veri�cation is a long-standing problem, where the challenge is to verify
that a property holds for all (in�nite) instances of the parameterized system. Existing techniques
aim to reduce this problem to checking the properties on smaller systems with a bound on the pa-
rameter referred to as the cut-o� such that if the property holds for system instances of size cut-o�
that implies that it holds for larger system instances. In most existing techniques, human guidance
is required to deduce the invariants for the system's behavior, which are then used to compute
cut-o�. In contrast, we present an fully automatic sound method (but necessarily incomplete)
for generating the cut-o� that works for synchronous parameterized systems with heterogeneous
processes communicating via single-cast and/or broadcast. Our technique is independent of the
system topology and the property to be veri�ed. Given the speci�cation and the topology of the
system, our technique generates the system-speci�c cut-o�. We have realized our technique in a
tool, Golok, which shows that it can be automated. We present the results of running Golok on
15 parameterized systems where we obtain smaller cut-o�s than those presented in the existing
literature for 14 cases.

Categories and Subject Descriptors: D.2.4 [Software/Program Verification]: Formal Methods; D.2.4 [Soft-
ware/Program Verification]: Model Checking; F.3.1 [Specifying and Verifying and Reasoning about Pro-
grams]: Mechanical verification

General Terms: Veri�cation

Additional Key Words and Phrases: model checking, parameterized systems

1. INTRODUCTION

A parameterized system is a class of software system that consists of variable number of
homogeneous processes, where the parameter denotes the number of homogeneous pro-
cesses in the system [Manna and Pnueli 1995; 1990]. Since the parameter can vary, a

The work described in this article is the revised and extended version of the two papers presented at the 7th joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE 2009) in Amsterdam, The Netherlands and at the 12th International
Conference on Formal Engineering Methods (ICFEM 2010) in Shanghai, China. This work has been supported
in part by the US National Science Foundation under grants CNS-06-27354, CNS-07-09217, and CCF-08-46059.
Authors’ address: Y. Hanna, ywhanna@iastate.edu, Computer Science, Iowa State University, Ames, IA 50011.
D. Samuelson, sralmai@iastate.edu, Computer Science, Iowa State University, Ames, IA 50011. S. Basu,
sbasu@iastate.edu, Computer Science, Iowa State University, Ames, IA 50011. H. Rajan, hridesh@iastate.edu,
Computer Science, Iowa State University, Ames, IA 50011.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2010 ACM 0000-0000/2010/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, March 2010, Pages 1–33.

2 · Hanna, Samuelson, Basu and Rajan

parameterized system describes an infinite family of systems where instances of the family
can be obtained by fixing the parameter [Emerson and Namjoshi 1998; Roscoe and Lazic
1998]. Verification of correctness of such systems amounts to verifying the correctness of
every member of the infinite family described by the system. For example, for distributed
mutual exclusion protocols [Wolper and Lovinfosse 1990], the objective is to verify that
the critical section is accessed in a mutually exclusive fashion regardless of the number of
processes participating in the protocol.

Given a parameterized system sys(n) containing n processes and a property ϕ, ver-
ification of whether sys(n) satisfies ϕ (denoted by ∀n : sys(n) |= ϕ) is undecidable
in general [Apt and Kozen 1986]. A number of sound but incomplete verification tech-
niques have been proposed and developed in the recent past, e.g. those that rely on ab-
straction [German and Sistla 1992; Pnueli et al. 2002; Clarke et al. 2006; 2008] and/or
smart representation [Bouajjani et al. 2000; Abdulla et al. 2002; Abdulla et al. 2007; Fis-
man et al. 2008; Bouajjani et al. 2006; Bouajjani et al. 2007; Baldan et al. 2005; Baldan
et al. 2008; Saksena et al. 2008; Llorens and Oliver 2004] of the system behavior and the
property. In essence, these techniques depend on computing the invariant or the common
global behavior of sys(n) for all n and identifying the smallest k < n such that sys(k)
exhibits that behavior. It can be shown that sys(k) |= ϕ ⇔ ∀n ≥ k : sys(n) |= ϕ, i.e.,
verification of an infinite family of systems is reduced to verification of a single instance
(the k-th instance) of the family; where k is referred to as the cut-off.

1.1 The Problems and their Importance

There are two main problems with existing techniques for generating cut-offs for parame-
terized systems. We elaborate them below.

(1) Lack of automation makes adoption difficult. The main drawback is that no ex-
tant technique is automatic. This is because there is no general method for computing
system invariants. Rather, for every new system under verification, researchers man-
ually study it to identify the invariants. This invariant is then used to generate the
cut-off. We elaborate the different classes of systems for which different techniques
are required.
—System class. For every class of systems, a different technique with unique princi-

ples is required to be able to generate cut-offs. For instance, Emerson and Namjoshi
provided a model for verifying parameterized client-server systems that is decid-
able for properties expressed in an indexed propositional temporal logic [Emerson
and Namjoshi 1996]. Since there are many parameterized systems that do not fol-
low the client-server pattern, new and different techniques had to be implemented,
where every technique is specific to exactly one class of systems. For instance, a
new technique was required for resource allocation parameterized systems designed
for the purpose of resolving conflicts in concurrent systems [Emerson and Kahlon
2002]. Again, this work couldn’t be used on cache coherence protocols, for which
a different technique was implemented [Emerson and Kahlon 2003].

—System topology. Similar to the problem of dependency on system class, systems
with different topologies often require different techniques. For instance, the work
focusing on parameterized systems that follow a token passing model where the sys-
tem is in the form of a ring topology and a single token is passed among processes
in a clockwise fashion [Emerson and Namjoshi 1995] could not work on parameter-

ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 3

ized systems with full mesh topologies (i.e. all processes are connected together),
therefore a new technique was required [Emerson and Kahlon 2003].

The lack of automation has a real impact on the applicability and eventual uptake of
these techniques in software verification. An average user may not have the time or
the necessary expertise to learn the theories behind cut-off generation for each new
system that they want to verify.

(2) Generic techniques may lead to large cut-offs, thus increased verification cost. A
class of solutions for the parameterized systems is able to generate cut-offs that are
generic enough to work on any system. A problem with such techniques is that they
often produce larger cut-off values. For example, Emerson and Namjoshi [Emerson
and Namjoshi 1995] show that for any system with ring topology following the to-
ken passing model, the cut-off for properties involving two neighbor processes is 4,
whereas we prove that tighter bounds can be obtained if the behavior of the participat-
ing processes in the parameterized system is considered [Hanna et al. 2009]. Having
a tighter cut-off may translate to reduction in verification cost, since the system to be
verified will be smaller in size. While there has been work that focused on generating
protocol specific cut-off (i.e. [Emerson and Kahlon 2003]), they work only for certain
protocols and it seems hard to generalize them.

1.2 Contributions to the State-of-the-art

We have designed, implemented, and evaluated fully automatic sound method but incom-
plete (due to the undecidability of the problem) for computing the cut-off value for syn-
chronous parameterized systems where multiple type of homogeneous processes may ex-
ist. Such systems are typically called multi-parameterized systems. We will denote a
multi-parameterized system by sys(n̄t). Here, n̄t := n1, n2, . . . , nt is the collection of
parameters for t types of processes, where np denotes the number of processes of type p.
Singly-parameterized system is a system with just one type of parameterized process.

Given a multi-parameterized system (sys(n̄t)) the objective of all parameterized system
verification techniques is to check whether the system satisfies a given property for all
possible valuations of each np in n̄t where p ∈ [1, t]. Our technique achieves this objective
by computing the cut-off values for each of the parameters in the system.

Our technique consists of two steps. The first step is to compute the set of maximal
behavior of the system that can be induced by a process of every type in an arbitrary en-
vironment. The second step is to identify an instance of the parameterized system, sys(k̄t)
(where k̄t := k1, k2, . . . , kt), that can exhibit the maximal behavior for every process type.
We prove that the parameter values corresponding to this instance is the cut-off; more pre-
cisely, for any LTL\X (Linear Temporal Logic without “next” operator) property ϕ which
involves either one process or two adjacent processes communicating directly with each
other, the instance of the parameterized system with the cut-off valuation for the parameters
satisfies the property if and only if any other larger (in terms of parameter values) instance
satisfies the same property (i.e., ∀p ∈ [1, t] : np ≥ kp, sys(k̄t) |= ϕ⇔ sys(n̄t) |= ϕ).

Since the first step in our technique does not make assumptions about system structure,
communication pattern, and topology, our technique is, unlike most existing work, inde-
pendent of these. In addition, our technique generates cut-off values for systems where
processes can communicate via both single-cast and broadcast. Finally, our technique does
not depend on actual properties to be verified for the parameterized system; the results of

ACM Journal Name, Vol. V, No. N, March 2010.

4 · Hanna, Samuelson, Basu and Rajan

our technique are applicable to any properties involving any one process and properties
involving any two adjacent processes communicating directly with each other that are not
necessarily of the same process type.
Contributions. In summary, contributions of this work are:

(1) A fully automatic but incomplete method for generating cut-offs for synchronous pa-
rameterized system that is independent of the topology between the processes in the
system and the property to be verified. Our technique works for both singly and multi-
parameterized systems and for system with communication via single-cast and/or
broadcast. We prove the soundness of our technique, i.e., if our method terminates
then it does with a cut-off k̄t = k1, k2, . . . , kt for a system with t types of processes.

(2) Our technique is system specific and as such the computed cut-off is also system spe-
cific. This allows us to obtain different bounds to different types of parameterized
systems even when the underlying communication topology of the systems under con-
sideration are identical. [Emerson and Namjoshi 1995] proved that for parameterized
systems with ring topology where processes communicate through a token, the cut-off
k̄1 is 4 for properties of involving neighbor processes. We show that tighter bounds
can be obtained if the behavior of the participating processes in the parameterized sys-
tem is considered. For example, using our technique, the cut-off for the parameterized
token ring protocol is 2 for the same class of properties.

(3) We have implemented our technique in an automated tool that we call Golok1. Golok
is available for free for download. Golok serves as a proof of feasibility of our work.

(4) We have studied a large number of systems from different classes of parameter-
ized systems. For instance, we generated cut-offs for the Distributed Mutual Exclu-
sion [Wolper and Lovinfosse 1990] and Dining Philosophers [Dijkstra 1978] protocols
in the class of ring topology systems, Spin Lock [Anderson 1990] in the class of sys-
tems with star topology, Right-Left Dining Philosophers [Emerson and Kahlon 2002]
in both the classes of multi-parameterized systems and resource allocation systems
and finally the cache coherence protocols [Handy 1993] in the class of parameterized
systems with broadcast-based communication. For 14 out of 15 of these cases the
generated cut-off values was smaller than the ones generated by existing work. For
the remaining case, it was the same.

1.3 Contributions over Our Previous Work

In our previous work [Hanna et al. 2009], we proposed an initial version of this technique
that followed the same steps as discussed earlier in this section to generate cut-off values
for parameterized systems. We showed that the generated system-specific cut-off values
are smaller than existing work; however, it worked only on singly-parameterized systems.
In our following work [Hanna et al. 2010], we proved that our technique works for multi-
parameterized systems and presented our tool Golok that implements our technique.

This work significantly enhances our own previous work in the following ways:

(1) In our previous works [Hanna et al. 2009; Hanna et al. 2010], we modeled the be-
havior of a process in such a way that a process is always blocked after sending an
event to the environment. In other words, it cannot send any other event until it re-
ceives a reply from the environment to the event it sent. Similarly, when a process

1A cutting tool typically used in Indonesia and the Philippines.

ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 5

replies to its neighbor, it cannot send an event on its own. This way of modeling the
process behavior prevented concurrency between processes as two neighbor processes
cannot perform actions with their other neighbors independently from each other. In
this work, we have reformulated our technique such that communication between pro-
cesses is purely synchronous. This helped us extend the applicability of our technique.

(2) Our previous work allowed only one-to-one communication between processes in a
system. We have since discovered that our technique also applies to systems where
processes can communicate via both single-cast and broadcast. Following this discov-
ery we have enhanced our representation, formalisms and implementation to handle
broadcast-based systems. We have also analyzed several broadcast-based systems.

These technical underpinnings extended the applicability of our technique as follows.

(1) Adding these two new features allowed us to generate cut-off for new classes of sys-
tems such as 7 snoop-based cache coherence protocols [Handy 1993] and German’s
cache coherence protocols [German 2000]. As a result, we now present a case study
of 15 parameterized systems, which is also new to this article.

(2) Our enhanced way of modeling the processes resulted in smaller cut-off values for 14
out of 15 case studies that we verified, which in turn may reduce the verification cost
of these systems.

Organization. The rest of the paper is organized as follows. Section 2 describes our
technique for specifying a protocol and building a parameterized system using a variant of
the Dining Philosophers Protocol as an illustrative example. Section 3 describes how the
maximal behavior of a process in the context of any environment is generated as well as
our procedure for generating the cut-off. Proof of soundness of our technique is presented
in Section 4. Section 5 presents our tool Golok and its different components. Section 6
describes our case studies. We also analyze performance of our tool Golok. These results
are presented in Section 7. Section 8 discusses related work and Section 9 concludes.

2. PARAMETERIZED SYSTEMS

A parameterized system sys(n̄t) can be described by the collective behavior of all the
processes of different types interacting with each other, where n̄t = n1, n2, . . . , nt is
the system parameters for the t types of processes in the system. The key idea behind
our approach is to provide a mechanism for specifying the behavior of a process in the
parameterized system as a collection of atomic steps, which we call behavioral automaton.

An important property of our specification technique is that it enables automatic com-
position of these behavioral automata to obtain the maximal behavior a process of each
process type p ∈ [1, t] can induce in an arbitrary environment.

One direct benefit of this property is that it helps us reduce the problem of finding the
cut-off value k̄t for the system parameters to an equivalence detection problem between
the maximal behavior that a process of every type p ∈ [1, t] can induce in an arbitrary
environment and the parameterized system of size k̄t. As we show in Sections 3.3 and 5,
by providing a sound but incomplete method and a tool that implements our method, re-
spectively, this problem can be easily automated.
Illustrative Example. The terminology used in this paper and the salient aspects of the
proposed technique are explained using a variant of the Dining Philosophers protocol [Di-
jkstra 1978], a model illustrating a classic multi-process synchronization problem. The

ACM Journal Name, Vol. V, No. N, March 2010.

6 · Hanna, Samuelson, Basu and Rajan

1 # This diner picks up left fork first
2 process left-diner {
3 [l-idle] ->[l-waitl, l-askl]
4 [l-waitl, l-lfree] ->[l-hasl]
5 [l-hasl] ->[l-waitr, l-askr]
6 [l-waitr, l-rfree] ->[l-eat]
7 [l-eat] ->[l-hasr, l-rel+]
8 }

(a)

1 # This diner picks up right fork first
2 process right-diner {
3 [r-idle] ->[r-waitr, r-askr]
4 [r-waitr, r-rfree] ->[r-hasr]
5 [r-hasr] ->[r-waitl, r-askl]
6 [r-waitl, r-lfree] ->[r-eat]
7 [r-eat] ->[r-hasl, r-rel+]
8 }

(b)
1 process fork {
2 [free, l-askl] -> [l-lasked]
3 [free, l-askr] -> [l-rasked]
4 [free, r-askr] -> [r-rasked]
5 [free, r-askl] -> [r-lasked]
6 [busy, r-rel] ->[free]

8 [l-lasked] -> [busy, l-lfree]
9 [l-rasked] -> [busy, l-rfree]

10 [r-rasked] -> [busy, r-rfree]
11 [r-lasked] -> [busy, r-lfree]
12 [busy, l-rel] ->[free] }

(c)

Fig. 1. Behavioral Automata for (a) “Left” Philosophers (b) “Right” Philosophers (c) Forks

standard definition models processes as philosophers sitting in a circle (a ring topology)
with a fork between each two philosophers. The main objective of a philosopher process
is to acquire the fork to her left and right and start eating. We use a variant of this protocol
referred to as the Right-Left Dining Philosophers (RLDP) algorithm [Emerson and Kahlon
2002], where two types of philosophers exist: “Left” philosophers grab the left fork first
and “Right” philosophers grab the right fork first. In this protocol, adjacent philosophers
are of different types; therefore, the number of “Left” and “Right” philosophers is equal.

2.1 Representing Process Behavior in terms of Behavioral Automata

A homogeneous process in our work is specified in terms of a behavioral automaton. A
behavioral automaton describes an atomic side-effect free action of a process. There are
two types of behavioral automaton: a sender automaton and a receiver automaton. These
model a send and a receive action respectively. They are defined as follows:

DEFINITION 2.1 SENDER AUTOMATON. A sender automaton Snd = (qI , qF ,∆I ,∆,
∆F , E), where qI is the initial state, qF is the final state, ∆I = ∅ is the initial transition
relation, ∆ = {(qI , qF)} is the internal transition relation, ∆F = {{qF } × E} is the
output transition relation and ∅ ⊂ E ⊂ {e, e+} is the set of events, where e is an event
and e+ is a broadcast of event e. We write qI → qF if (qI , qF) ∈ ∆ and qF

e→ • if
(qF , e) ∈ ∆F .

DEFINITION 2.2 RECEIVER AUTOMATON. A receiver automatonRcv = (qI , qF ,∆I ,
∆,∆F , E), where qI is the initial state, qF is the final state, ∆I = {(qI , e)} is the initial
transition relation, ∆ = {(qI , qF)} is the internal transition relation, ∆F = ∅ is the output
transition relation and E = {e} is the set of events. We write • e→ qI if (e, qI) ∈ ∆I and
qI → qF if (qI , qF) ∈ ∆.

DEFINITION 2.3 BEHAVIORAL AUTOMATON. A behavioral automaton A is either a
sender automaton or a receiver automaton.

ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 7

A behavioral automaton describes the state in which a process can be, and what action
it can take when it is in this state2.

Figures 1(a), (b) and (c) display the behavioral automata for philosophers of types “Left”
and “Right” and the “Fork” processes of the RLDP protocol, respectively. The statement
of the form [q]->[q’,e] denotes a sender automaton with q → q′ and q′ e→ •, and the
statement of the form [q,e]->[q’] denotes a receiver automaton with • e→ q and q → q′.
The reason of modeling transitions in our automata this way as opposed to the commonly
used form qI

e→ qF is to be able to differentiate between send and receive actions.
The automaton in Line 3 in Figure 1(a) is an example of a sender automaton. It presents

the behavior of a philosopher of type “Left” who, while not eating (i.e. state l-idle),
without any external stimuli, changes its state to l-waitl (i.e. waiting for the left fork)
and sends the request for the left fork (event l-askl). This request is received by a “Fork”
process, and the behavior of such action is modeled in the receiver automaton in Line 2
in Figure 1(c). The automaton represents the action of receiving the request for the fork
while not being used by any other philosopher (state free), then the state of the fork is
changed to l-lasked. In the automaton defined in Line 8 in Figure 1(c), the fork sends an
acknowledgement l-lfree, and changes its state to busy. The action of the philosopher
receiving the acknowledgement is modeled by the receiver automaton in Line 4 in Fig-
ure 1(a), where the philosopher changes her state to reflect that she has the left fork (state
l-hasl). A “Right” philosopher can perform similar actions (Figure 1(b)), only that she
asks for the right fork first.

While philosophers pick the forks one at a time, we modeled the protocol so that every
philosopher releases both forks at the same time. This is done via broadcast of rel event.
Sender automaton in Line 6 in Figure 1 is an example of such broadcast. We modeled the
protocol in such a way to show that, in our technique, a system can have communication
via both single-cast and broadcast (as opposed to [Emerson and Kahlon 2002] where only
broadcast can be used to acquire the forks).

Every process type is specified a collection of behavioral automata that defines all the
atomic actions a process of this type can take. The set of these collections determines all
the actions that can take place in the system. More precisely:

DEFINITION 2.4 PROCESS AND SYSTEM SPECIFICATION. A process specification
for process type p is Protp = (Ap, qIp) where Ap = {A1, A2, . . . , Am} is a set of be-
havioral automata and qIp is the initial process state such that qIp is the initial state of an
automaton Ai and Ai ∈ Ap.

Let Protp = (Ap, qIp) andQp be the set of all states in the all the behavioral automata in
Ap. A system specification for a system with t types of processes is Prot =

⋃
1≤p≤t Protp

such that, ∀i, j ∈ [1, t], i 6= j : Qi ∩ Qj = ∅. At least one process specification Protp in
Prot must have qIp as the initial state of a sender automaton Sndi such that Sndi ∈ Ap.

In our example, there are three process specifications; the first is for the “Left” philoso-
phers Protl = (Al, l-idle) whose set of behavioral automata Al are displayed in Fig-

2Behavioral automata are closely related to the Input/Output automata [Lynch and Tuttle 1989], where one au-
tomaton describes the different actions a process can do and the pre/post conditions for every action. The main
difference between behavioral automaton and I/O automaton is that the former enforces that one automaton rep-
resents only one atomic send/receive action, whereas the latter allows more than one action to be merged. This
constraint on behavioral automaton allows more fine-grained interleaving between processes compared to the I/O
automaton. This property is crucial for computing the maximal behavior as we will demonstrate in Section 3.2.

ACM Journal Name, Vol. V, No. N, March 2010.

8 · Hanna, Samuelson, Basu and Rajan

ure 1(a), the second for the “Right” philosophers Protr = (Ar, r-idle) with behavioral
automata displayed in Figure 1(b), and the third is for the forks Protf = (Af , free) with
the behavioral automata displayed in Figure 1(c), where the types “Left”, “Right” philoso-
phers and “Fork” are represented by the letters l, r and f , respectively.

To allow a “Left” philosopher to initiate her behavior by picking up her left forks, the
process specification of the “Left” philosophers has as the initial process state the state
l-idle, which is the initial state of the sender automaton displayed in Line 3 in Fig-
ure 1(a). A “Left” philosopher in this state can thus act according to the behavior de-
scribed by this automaton and acquire the left fork. Similarly, the process specification
of the “Right” philosophers has as the initial process state the state r-idle, which is the
initial state of sender automaton in Line 3 of Figure 1(b) responsible for acquiring the right
fork. On the other hand, the initial automaton for the “Fork” process specification has as
its initial process state the state free which is the initial state of the receiver automata in
Lines 2-5 in Figure 1(c). The initial process state of the fork allows it to be ready for any
request from a “Left” or “Right” philosopher.

2.2 Behavior of a Parameterized System

Any system behavior is constrained by the topology that describes which processes in the
system can directly communicate with each other.

DEFINITION 2.5 COMMUNICATION TOPOLOGY. Given a system specifi-
cation Prot =

⋃
1≤p≤t Protp, where t is the number of different types of processes and

Protp = (Ap, qIp), a topology is a set of tuples, Topo ⊆ E × (I × T) × (2I×T), where
E =

⋃
1≤p≤t

⋃
1≤r≤lp{Er : Er is set of events in Arp ∈ Ap}, I ∈ N is the domain of

number of processes of any type, and T is the domain of types. A tuple (e, ip1, R) ∈ Topo
where R = {(Il, pl) | l ∈ [1, t]} implies that output e from ith process of type p1 can be
consumed by at most one of the processes in the setR. A tuple (e+, ip1, R) ∈ Topo implies
that e is consumed by all processes in R as e in this case is sent via broadcast.

For our example, there are two constraints on communication patterns: first that adja-
cent philosophers are of different types (therefore there is an equal number of “Left” and
“Right” philosophers), and second that it is a ring topology. For instance, the topology for
the system instance containing 1 “Left”, 1 “Right” philosophers and 2 forks is

Topo = {(l-askl, 1l, {2f}), (r-askr, 1r, {2f}), (l-rel+, 1l, {1f , 2f}), . . .}

In this topology (Figure 2(a)), “Left” philosopher 1l has the fork 2f on her left side, there-
fore the philosopher’s request for her left fork l-askl goes to this fork. This fork is also
shared with “Right” philosopher 1r (on the right side of 1r, therefore it receives the request
for right fork r-askr sent from 1r). The event for releasing forks l-rel sent by the “Left”
philosopher (not shown in the figure) 1l is simultaneously received by forks 1f and 2f as
the release event is sent via broadcast. We now precisely define a parameterized system.

DEFINITION 2.6 PARAMETERIZED SYSTEM. Given a specification Prot with t differ-
ent types of processes, a parameterized system containing np number of processes of type
p (p ∈ [1, t]) is defined as sys(n̄t) = (S, SI , T,Topo), where n̄t := n1, n2, . . . , nt, S is
the set of system states, SI ⊆ S is the set of initial system states and T ⊆ S × E × S is
the transition relation. A system state in S contains

∑t
p=1 np process states qip , where qip

is the state of the i-th process of type p.

ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 9

2_fork

1_left

1_fork

l-askl

1_right
r-askr

l-askr

r-askl

l-idle

r-idle

l-askl

r-askr

free

free

l-waitl

l-lasked

free

l-lfree

l-hasl

busy

free

r-waitr

r-rasked

free

r-rfree
r-hasr

busy

free

r-askl r-waitl

busy

r-lasked

r-lfree r-eat

busy

busy

r-idle r-idle

l-idle l-idle l-idle l-idle

l-askr

l-waitr

busy

l-rasked

r-idle l-rfree

l-eat

busy

r-idle

busy

r-rel+

l-rel+

(a) (b)

Fig. 2. (a) Topology of the system instance sys(1r, 1l, 2f) of the RLDP Protocol with one
philosopher of each type and two forks (b) The system instance sys(1r, 1l, 2f)

We use s e→ s′ to denote (s, e, s′) ∈ T . Let p1, p2 ∈ [1, t], i ∈ [1, np1], j ∈ [1, np2], and
R = {lp | l ∈ [1, np] ∧ p ∈ [1, t]} a set of processes, we define the transition relation T
as follows

—A single-cast transition s e→ s′ ∈ T , where s = 〈qip1 , qjp2 , Q〉 and s′ = 〈q′ip1 , q
′
jp2
, Q〉

if

∃Sndp1 = (qip1 , q
′
ip1
,∆Ip1 ,∆p1,∆Fp1 , {e}) ∈ Ap1 ∈ Protp1 ∧

∃Rcvp2 = (qjp2 , q
′
jp2
,∆Ip2 ,∆p2,∆Fp2 , {e}) ∈ Ap2 ∈ Protp2 ∧

(e, ip1, R) ∈ Topo ∧ jp2 ∈ R

In the above, Q represents the states of processes other than ip1 and jp2 (these states are
unaffected by the transition).

—A broadcast transition s e
+

→ s′ ∈ T , where s = 〈qip1 , QR, Q〉 and s′ = 〈q′ip1 , Q
′
R, Q〉 if

∃Sndp1 = (qip1 , q
′
ip1
,∆Ip1 ,∆p1,∆Fp1 , {e+}) ∈ Ap1 ∈ Protp1 ∧

∀lp ∈ R,∃Rcvp = (qlp , q
′
lp
,∆Ip ,∆p,∆Fp , {e}) ∈ Ap ∈ Protp ∧

(e+, ip1, R) ∈ Topo

In the above, QR =
⋃
lp∈R{qlp} and Q′R =

⋃
lp∈R{q

′
lp
} represent the states of processes

in set R at system states s and s′, respectively. Q represents the states of processes other
than ip1 and processes in R (the states in Q are unaffected by the transition).

We define the functions sender(s, e, s′) = ip and receiver(s, e, s′) = {jp′ | p′ ∈
[1, t] ∧ j ∈ [1, np′]} as the functions that produce the indexes of the processes and their
types that sent and received event e, respectively, at the system state s that caused the
transition s e→ s′ to occur.

ACM Journal Name, Vol. V, No. N, March 2010.

10 · Hanna, Samuelson, Basu and Rajan

Figure 2(b) shows the system instance sys(1r, 1l, 2f) which is the system of two
philosophers with one philosopher of type “Right”, one of type “Left”, and two forks.
Each system state contains four process states, one for every philosopher and one for each
of the two forks. Two possible transitions can happen from the initial system state: the
transition on the top left belongs to the “Right” philosopher 1r requesting her right fork 2f
by sending event r-askr. The state of the “Right” philosopher changes from r-idle to
r-waitr as described by the sender behavioral automaton on Line 3 in Figure 1(b). The
state of the fork 2f on the right side of the philosopher changes from free to r-rasked

as described by the receiver behavioral automaton on Line 4 in Figure 1(c). This transition
denoted as (s, r-askr, s′), the sender in this transition is sender(s, r-askr, s′) = 1r,
and the receiver in this transition receiver(s, r-askr, s′) = {1f}.

Similarly, the bottom left transition models the request of the “Left” philosopher 1l for
her left fork 2f . The top sequence of transitions in the figure models the behavior of the
“Right” philosopher 1r getting her right fork, her left fork, then release forks, where the
transition at the top of the figure labeled as r-rel+ is modeling sending the release event
via broadcast, where the two forks are released simultaneously. The lower sequence of
transitions models the behavior of the “Left” philosopher 1l who gets the left fork, then the
right one, then releases both forks.

3. CUT-OFF COMPUTATION FOR PARAMETERIZED SYSTEMS

In this section, we describe our technique for computing the cut-off value for a parame-
terized system. Given the specification for all process types in the system as behavioral
automata and the topology as input, our technique consists of two steps. First, it computes
the maximal behavior a process of each type can induce when it initiates the protocol in
any environment. Second, it finds a parameterized system instance whose behavior exhibits
all the maximal behaviors that can be induced by processes of different types (if such an
instance exists). We prove that the size of this system instance is the cut-off for the param-
eterized system. We start by describing what is the maximal behavior of a system instance
induced by a process (Section 3.1), then we proceed with the computation of all possible
maximal behavior induced by a process (Section 3.2) and finally we describe our technique
for generating the cut-off (Section 3.3).

3.1 Maximal Behavior Induced by a Process in a Specific System Instance

Intuitively, the maximal behavior induced by a process of type p in the context of a specific
system instance is all possible sequences of transitions that can be caused when a process
of that type initiates the protocol by sending an event e. We will use π (with appropriate
subscripts) to denote sequence of events.

To compute the maximal behavior induced by process ip, we first check if the process
can perform an action on its own (i.e. start sending an event without being triggered by
any external stimuli). As mentioned in Section 2.2 (Definition 2.4), a process of type p can
initiate the protocol if the initial state of the process defined in the process specification
Protp = (Ap, qIp) is the initial state of sender automaton Sndp ∈ Ap.

If process ip is able to send an event e0 on its own, a sequence of events πp ∈
MAXp(sys(k̄t)) will have πp[0] = e0. For all processes involved in such transition (i.e.
the sender and receiver(s) of e0), if any of these processes can send an event e1, then
πp[1] = e1. πp[2] = e2 if the sender or the receiver of e1 were able to send e2, and so
on. The set MAXp(sys(k̄t)) will have all the sequences of events that are possible when a
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 11

process ip in sys(k̄t) initiates the protocol. We now formally define the maximal behavior
induced by a process of type p in sys(k̄t).

DEFINITION 3.1 MAXIMAL BEHAVIOR INDUCED BY A PROCESS OF TYPE p IN sys(k̄t).
Given a system specification Prot =

⋃
1≤p≤t Protp where t is the number of different

types of processes and Protp = (Ap, qIp) and given a parameterized system instance
sys(k̄t), the maximal behavior induced by a process of type p ∈ [1, t] in sys(k̄t), denoted
by MAXp(sys(k̄t)), is

MAXp(sys(k̄t)) = {πp | ∀x ≥ 0 : πp[x] = π[hπp (x)] ∧ η0 ∈ SI ∧ ∀y ≥ 0 : ηy
π[y]→ ηy+1}

In the above, hπp (x) = y, such that

(1) ∃i ∈ [1, kp], ηy = 〈qip , Q〉, ηy+1 = 〈q′ip , Q
′〉 : qip = qIp ∈ Protp, {qip → q′ip} =

∆, {q′ip
π[y]→ •} = ∆F where ∆,∆F ∈ Sndp ∈ Ap and, ∀z ∈ [hπp (0), hπp (x − 1)] :

sender(ηhπp (z), π[hπp (z)], ηhπp (z)+1) 6= ip

In the above, Q and Q′ represent the states of processes other than qip and q′ip , re-
spectively.

(2) sender(ηy, π[y], ηy+1) ∈ {sender(ηhπp (x−1), π[hπp (x − 1)], ηhπp (x−1)+1),
receiver(ηhπp (x−1), π[hπp (x− 1)], ηhπp (x−1)+1)} and, ∀z ∈ [hπp (x− 1) + 1, y − 1],
sender(ηy, π[y], ηy+1) 6∈ receiver(ηz, π[z], ηz+1)

In our example, since both types of philosophers can initiate the protocol, there exists
a set of maximal behavior for each type. In the system instance sys(1r, 1l, 2f) displayed
in Figure 2(b), the set of maximal behavior for each type of philosopher contain only
one path; for the “Right” philosopher, the only path in her set of maximal behavior in
this system instance is the upper path. This path represents the maximal behavior the
philosopher 1r can induce in this system instance. Similarly, the set of maximal behavior
for the “Left” philosopher 1l in this system instance contains only one path, the lower path
in Figure 2(b).

3.2 Maximal Behavior Induced by a Process in Any Environment

In this section, we describe how to compute the maximal behavior a process of type p can
induce in any environment. Our method takes this maximal behavior and generates the
cut-off value for the parameterized system by finding one system instance that can exhibit
the maximal behavior for every process type. We prove that the size of this instance is the
cut-off value for the system.

The maximal behavior induced by a process of type p is computed by chaining the output
event from all sender automata Sndi ∈ Ap whose initial states are the same as the initial
process state qIp in the process specification Protp with all other receiver automata in the
system specification with the same input event. For every chaining between a sender and a
receiver automata, we check the final states of both the automata involved in the chaining; if
these states are also input states for some other sender automata, chaining is done between
the corresponding sender automata and all receiver automata that has an input event that
is the same as the output event of these sender automata. The chaining ends when there
are no more automata to chain. As there exists a finite number of automata in any system

ACM Journal Name, Vol. V, No. N, March 2010.

12 · Hanna, Samuelson, Basu and Rajan

specification, the process of automata chaining is guaranteed to be finite. We refer to the
result of such chaining as 1Ep and we show that 1Ep includes all possible behavior induced
by the process of type p.

DEFINITION 3.2 1Ep . Given a system specification Prot =
⋃

1≤p≤t Protp with t differ-
ent types of processes, Protp = (Ap, qIp), let Q be the set of all states in all the behavioral
automata in Prot. 1Ep of the process type p is defined as a tuple (Q1Ep , qI1Ep ,∆1Ep), where
Q1Ep ⊆ Q, qI1Ep = qIp , and ∆1Ep ⊆ Q1Ep×E×Q1Ep is the transition relation. We define
the transition relation as follows:

—A single-cast transition q1Ep
e→ q′1Ep

∈ ∆1Ep if ∃Sndi = (q, q′,∆Ii ,∆i,∆Fi , {e}) ∈
Ap : q ∈ q1Ep ∧

q′1Ep
=

q′ ⇐ ∃Snd = (q′, qF ,∆I ,∆,∆F , E) ∈ Ap⋃
{qy} ⇐ ∃p′ ∈ [1, t],∃Rcvm, Sndn ∈ Ap′ ∈ Protp′ :

Rcvm = (qIm , qy,∆Im ,∆m,∆Fm , {e}) ∧
Sndn = (qy, qFn ,∆In ,∆n,∆Fn , E)⋃

Qr = {qr | qr ∈ q1Ep ∧ qr 6= q}

—A broadcast transition q1Ep

e+→ q′1Ep
∈ ∆1Ep if ∃Sndi = (q, q′,∆Ii ,∆i,∆Fi , {e+}) ∈

Ap : q ∈ q1Ep ∧

q′1Ep
=

q′ ⇐ ∃Snd = (q′, qF ,∆I ,∆,∆F , E) ∈ Ap⋃
Qy =

 qy | ∀p′ ∈ [1, t],Ap′ ∈ Protp′ ,
∀Rcvm = (qIm , qy,∆Im ,∆m,∆Fm , {e}) ∈ Ap′ ,

∃Sndn = (qy, qFn ,∆In ,∆n,∆Fn , E) ∈ Ap′

⋃
Qr = {qr | qr ∈ q1Ep ∧ qr 6= q ∧

∀p′ ∈ [1, t], 6 ∃Rcv = (qr, qF ,∆I ,∆,∆F , {e}) ∈ Ap′ ∈ Protp′}

Figure 3 presents 1El, the maximal behavior a “Left” philosopher can induce in any en-

vironment. The first state on the left belongs to the initial state qI ∈ Protl as described
in Section 2.1. This state belongs to the sender automaton on Line 3 in Figure 1(a), there-
fore the process can acquire the left fork by sending event l-askl. This event is the same
as the input event for the automaton of the forks process specification on Line 2 in Fig-
ure 1(c), therefore the sender automaton is chained with this receiver automaton. The
resulting state reflect which processes are allowed to send after the transition l-askl. Ac-
cording to the sender automaton of “Left” philosopher, the philosopher changes her state to
l-waitl. Since there is no automaton in the process specification of “Left” philosophers
that has a sender automaton with an initial state as l-waitl, this means that the philoso-
pher is blocked as this state; she can only receive events at this state, but not send. On the
other hand, when the fork receive the event l-askl, it changes its state to l-lasked ac-
cording to the automaton in Line 2 in Figure 1(c). As there exists an automaton in the fork
specification that is a sender automaton and has this states as its initial state (Line 8 in Fig-
ure 1(c)), this means that after this transition, the fork is able to send an event. Therefore,
the resulting state in 1El in Figure 3 after the first chaining of automata is l-lasked. This
process is repeated till every automaton in the protocol specification is chained together.
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 13

l-idle l-lasked l-hasl l-rasked
l-askr

l-eat
l-rfree

l-rel+

l-askl l-lfree

Fig. 3. 1El: The maximal behavior a “Left” philosopher can induce in any environment

For type “Right” philosophers, 1Er is constructed in the same manner. As processes of
type “Fork” cannot initiate any behavior, maximal behavior induced by it (1Ef) is empty.

In this example, a process is blocked after it sends an event (i.e. it reaches a state that no
sender automaton has as its initial state). However, if the process that sends the event goes
to a state allowing it to send events, then the state resulting from chaining in 1Ep will have
this process state. If the receiver of this event also goes to a state that allows to send, then
state resulting from the chaining in 1Ep will have both the states of the sender (that can
send again) and the receiver (that can send after receiving event e). We show an example
of such behavior in Section 6.5.

We now prove that every sequence in MAXp(sys(k̄t)) is present as a path in 1Ep. We
define the set of sequences of input/output events in 1Ep = (Q1Ep , qI1Ep ,∆1Ep) as

PATH(1Ep) = {π | q0
I1Ep

= qI1Ep ∧ ∀i ≥ 0 : qi1Ep

π[i]→ qi+1
1Ep
∈ ∆1Ep ,where qi1Ep

∈ Q1Ep}

For ease of explanation and brevity of the proof, we introduce the following functions.

F1(π,Π) = π′ | π′ ∈ Π ∧ π′ @ π ∧ 6∃ π′′ ∈ Π : (π′ @ π′′ @ π) ∨ (π′′ = π) (1)

where @ denotes the strict substring relationship, i.e., π′ @ π implies π′ is a substring of π
and π′ 6= π. The above function computes a set of substrings π′ of π such that there are no
other substrings of π in Π that are longer than the elements in the resulting set. We define
the following function over sequences of events.

F2(π, π′) = e such that π′ @ π ∧ π[|π′|] = e (2)

The above function identifies the event on which the sequence π diverges from π′.

THEOREM 1. Given a protocol specification Prot with t different types of processes,
∀k̄t,∀p ∈ [1, t] : MAXp(sys(k̄t)) ⊆ PATH(1Ep).

PROOF. The proof is by contradiction. Assume that ∃k̄t,∃p ∈ [1, t] :
MAXp(sys(k̄t)) 6⊆ PATH(1Ep). In other words, there exists a path π such that
π ∈ MAXp(sys(k̄t)) and π 6∈ PATH(1Ep). Using Equations 1 and 2, ∀π′ ∈
F1(π, PATH(1Ep)),∃e : F2(π, π′) = e.

There are two possible cases.

Case 1. e is the output event from the sender automata Sndi ∈ Ap whose initial state
is the same as the initial process state qIp in the process specification Protp. According
to Definition 3.1, the first transition in any path π in MAXp(sys(k̄t)) is caused by a send
action of an automaton Snd ∈ Ap whose initial state is the same as the initial process
state qIp ∈ Protp. Similarly, the first transition in 1Ep is caused by a process of type p

ACM Journal Name, Vol. V, No. N, March 2010.

14 · Hanna, Samuelson, Basu and Rajan

sending e from its initial state (Definition 3.2). Therefore, this case is not possible, i.e., our
assumption that π 6∈ PATH(1Ep) must be false.

Case 2. e is the output event caused by the send action of an automaton other than Sndi
mentioned in the first case. If π[l] = e for some l > 0, let π[l− 1] = e0. From Equation 2,
F2(π, π′) = e and therefore, π′[l − 1] = e0 and π′[l] 6= e. In order for this to be possible,
there must be a sender behavioral automaton that produces event e0, a receiver behavioral
automaton that takes event e0 as input and changes the state of the receiver process to q′

(so that π′[l − 1] = e0), and one of the following must hold so that chaining in 1Ep is not
possible (i.e. so that π′[l] 6= e):

(1) there is no sender behavioral automaton in Prot with state q′ as its initial state that
produces event e as output event.

(2) there is a sender behavioral automaton in Prot that has a state q′ as its initial state that
produces event e, but there is no receiver behavioral automaton in Prot that takes event
e as input event.

If any one of the above cases holds, then it is not possible to have any sequence π in
MAXp(sys(k̄t)) that has π[l − 1] = e0 and π[l] = e. This contradicts our assumption that
π ∈ MAXp(sys(k̄t)).

3.3 Finding the Cut-Off Value

The cut-off of parameter values for a parameterized system is such that the instance of the
parameterized system at the cut-off (cut-off instance) satisfies a property if and only if all
instances of the parameterized system larger than the cut-off instance satisfies the same
property. We will consider two types of properties in the logic of LTL\X [Emerson 1990]:

—TYPE I PROPERTY: Property involving the actions of one process. For example, if a
“Left” philosopher tries to pick the left fork, she can eventually eat.

—TYPE II PROPERTY: Property involving the actions of two processes that directly com-
municate via events. For example, if a “Left” philosopher tries to pick the left fork and
the left fork is free then the left fork is no longer free.

We will use the standard notation [[ϕ]] to denote the semantics of an LTL\X property
ϕ; it represents the set of sequence of states that satisfy ϕ. A system sys(k̄t) satisfies ϕ,
denoted by sys(k̄t) |= ϕ, if and only if all paths starting from all start states of the system
result in a set of sequence of states such that this set is a subset of [[ϕ]]. For details of
semantics of LTL, we refer the reader to [Emerson 1990].

DEFINITION 3.3 CUT-OFF. Given a system specification Prot for t different types of
processes and a topology Topo, for any LTL \X properties of Type I and Type II, de-
noted by ϕ, k̄t := k1, k2, . . . , kt is said to be cut-off if and only if the following holds:
sys(k̄t) |= ϕ⇔ ∀n̄t ≥ k̄t : sys(n̄t) |= ϕ where n̄t ≥ k̄t ⇐ ∀p ∈ [1, t] : np ≥ kp.

Procedure CutOff presents our automatic method for obtaining the cut-off. To generate
the cut-off value for RLDP protocol, the initial system instance that procedure CutOff
will use is sys(1l, 1r, 2f) displayed Figure 2(b) as there can be no smaller instance for
this protocol. As described in Section 3, both “Left” and “Right” philosophers can start
acting without external stimuli, therefore 1El (Figure 3) and 1Ep are constructed. No 1Ef
is constructed for processes of type “Forks” as they rely on external stimuli to start acting.
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 15

Procedure CutOff (Prot, t, Topo)
Construct initial sys(k̄t) using Prot and Topo
for all p ∈ [1, t] Compute 1Ep from Prot do

while ∃π ∈ PATH(1Ep) : π 6∈ MAXp(sys(k̄t)) do
Increase k̄t in a breadth-first manner

end while
end for
return k̄t;

If we compare the system instance sys(1l, 1r, 2f) and 1El in Figure 2(b) and Fig-
ure 3, respectively, we can see that for every path in 1El (in this case there is only
one path) the “Left” philosopher in the system instance can induce the same path of
events (in Figure 2(b), the lower sequence of events starting from the start state). There-
fore, ∀π ∈ PATH(1El), π ∈ MAXl(sys(1l, 1r, 2f)). Similarly, ∀π ∈ PATH(1Er), π ∈
MAXr(sys(1l, 1r, 2f)). Therefore, the return of the procedure is (1l, 1r, 2f); the size of
the system instance sys(1l, 1r, 2f) is the cut-off value for the RLDP protocol.

To ensure termination, a variation of the Procedure CutOff can be used that takes an ad-
ditional argument a bound on the parameters. In that case, the while loop in the procedure
will increase k̄t only up to the supplied bound on the parameters.

4. PROOF OF SOUNDNESS

We now introduce definitions and propositions that will be used to prove the soundness of
Procedure CutOff.

DEFINITION 4.1 PROJECTION ON PROCESSES. Given a multi-parameterized system
sys(n̄t) = (S, SI , T, Topo) with t different types of processes and a set R ⊆ {ip | i ∈
[1, np] ∧ p ∈ [1, t]}, the projected behavior w.r.t. R is denoted by sys(n̄t)↓R = (S, SI ,
T↓R, Topo). For any system state s ∈ S, let s = 〈QR, Q〉, QR and Q represents states of
processes in R and not in R, respectively, at state s. The transition relation T↓R is defined
as follows:

—Transition s e→ s′ ∈ T↓R, where s = 〈QR, Q〉 and s′ = 〈Q′R, Q′〉 if

〈QR, Q〉
e→ 〈Q′R, Q′〉 ∈ T ∧ ∃ip ∈ R : qip ∈ QR ∧ q′ip ∈ Q

′
R ∧ qip 6= q′ip

—Transition s τ→ s′ ∈ T↓R, where s = 〈QR, Q〉 and s′ = 〈Q′R, Q′〉 if

〈QR, Q〉
e→ 〈Q′R, Q′〉 ∈ T ∧ ∀ip ∈ R : qip ∈ QR ∧ q′ip ∈ Q

′
R ∧ qip = q′ip

We will use π↓R to denote projection of a sequence of events on R.

PROPOSITION 1. For any multi-parameterized system sys(k̄t) with t different types
of processes, the following holds for all properties ϕ (in the logic of LTL \X) defined
over states of processes whose indices belong to R = {ip | i ∈ [1, kp] ∧ p ∈ [1, t]}:
sys(k̄t) |= ϕ ⇔ sys(k̄t)↓R |= ϕ.

In the following, we define the set of sequences of input/output events in the system-
instance sys(k̄t) = (S, SI , T,Topo) as PATH(sys(k̄t), S) = {π | η0 = s ∈ S ∧ ∀i ≥ 0 :

ηi
π[i]→ ηi+1 ∈ T}.

ACM Journal Name, Vol. V, No. N, March 2010.

16 · Hanna, Samuelson, Basu and Rajan

PROPOSITION 2. Let Φ be the set of all properties (in the logic of LTL\X) defined
over states of processes whose indices belong to R = {ip | i ∈ [1, kp] ∧ p ∈ [1, t]}.
The following holds for any two instances of multi-parameterized systems, sys(k̄t) and
sys(k̄′t).

∀ϕ ∈ Φ :
(
sys(k̄t) |= ϕ ⇔ sys(k̄′t) |= ϕ

)
⇒

PATH(sys(k̄t)↓R,Sk̄tI) = PATH(sys(k̄′t)↓R,S
k̄′t
I)

In the above, Sk̄tI and Sk̄
′
t

I are the initial state-sets of sys(k̄t) and sys(k̄′t), respectively.

PROOF. From Proposition 1, we conclude

∀ϕ ∈ Φ :
(
sys(k̄t) |= ϕ ⇔ sys(k̄′t) |= ϕ

)
⇒
(
sys(k̄t)↓R |= ϕ ⇔ sys(k̄′t)↓R |= ϕ

)
If π denotes a path in a system over sequence of input/output actions, we denote the corre-
sponding sequence of states in the path by seq(π). Therefore,

∀ϕ ∈ Φ :
(
sys(k̄t)↓R |= ϕ ⇔ sys(k̄′t)↓R |= ϕ

)
⇒

∀π ∈ PATH(sys(k̄t)↓R,Sk̄tI) : ∃π′ ∈ PATH(sys(k̄′t)↓R,S
k̄′t
I) : seq(π) = seq(π′)∧

∀π′ ∈ PATH(sys(k̄′t)↓R,S
k̄′t
I) : ∃π ∈ PATH(sys(k̄t)↓R,Sk̄tI) : seq(π′) = seq(π)

⇒ PATH(sys(k̄t)↓R,Sk̄tI) = PATH(sys(k̄′t)↓R,S
k̄′t
I)

PROPOSITION 3. For any parameterized system with t types of processes,

∀n̄t ≥ k̄t : PATH(sys(k̄t), Sk̄tI) ⊆ PATH(sys(n̄t), Sn̄tI)
∀p ∈ [1, t], π ∈ PATH(1Ep) : π ∈ MAXp(sys(k̄t))⇒ π ∈ MAXp(sys(n̄t))

where Sk̄tI and Sn̄tI are the sets of initial states of sys(k̄t) and sys(n̄t), respectively.

THEOREM 2. Given a parameterized system with t different types of processes each
defined using a set of behavioral automata Prot, the following holds for all Type I and II
properties ϕ in the logic of LTL\X

∀p ∈ [1, t], π ∈ PATH(1Ep) : π ∈ MAXp(sys(k̄t))⇒
(
sys(k̄t) |= ϕ⇔ sys(n̄t) |= ϕ

)
where n̄t = n1, n2, . . . , nt and k̄t = k1, k2, . . . , kt.

PROOF. We first prove the theorem for Type I properties. Recall from Section 3.3 that
Type I property specification is concerned with actions of one process. Therefore, using
Propositions 1, 2 and 3, it is required to prove that ∀p ∈ [1, t],∀i ≤ np,∃j ≤ kp,

PATH(sys(n̄t)↓{ip}, Sn̄tI) = PATH(sys(k̄t)↓{jp}, Sk̄tI)

such that and Sn̄tI and Sk̄tI are initial state-sets of sys(n̄t) and sys(k̄t), respectively.
Assume that there exists a sequence π of events in PATH(sys(n̄t), Sn̄tI) such that π↓{ip}

is not present in PATH(sys(k̄t)↓{jp}, Sk̄tI) for any jp ≤ kp. I.e., ∃ip ≤ np,∀jp ≤ kp :
PATH(sys(n̄t)↓{ip}, Sn̄tI) 6= PATH(sys(k̄t)↓{jp}, Sk̄tI). This assumption implies that
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 17

(using Equations 1 and 2)

F1(π↓{ip},
⋃
jp

PATH(sys(k̄t)↓{jp}, Sk̄tI)) = χ1 6= ∅

⇒ ∀π′1 ∈ χ1 : ∃e0 : F2(π↓{ip}, π′1) = e0

(3)

This, in turn, implies two possibilities as explained below:
Case 1. e0 is the output event from the sender automata Sndl ∈ Ap whose initial state is
the same as the initial process state qIp in the process specification Protp1 (i.e. event sent
without any external stimuli). As such a move is absent in all paths in sys(k̄t), and as this
is the first event a process of type p can send, we can conclude that ∃π′ ∈ PATH(1Ep) :
π′ 6∈ MAXp(sys(k̄t)).
Case 2. e0 is an event that process ip sent as a result of an external stimuli. Let i′-th
process of type p′ in sys(n̄t) be the process that received e0, while in sys(k̄t), there is no
process of type p′ that can receive such event. Now let’s assume that e1 is the event that ip
received from some process i1 of type p1 in sys(n̄t) (and similarly that jp received from
some process j1 of type p1 in sys(k̄t)) that caused process ip to send event e0 in sys(n̄t)
while process jp was not able to send e0 in sys(k̄t). If e1 is the first event the process i1 of
type p1 can send without any external stimuli, then this means that the sequence of event
π = e1, e0 ∈ PATH(1Ep1) while π 6∈ MAXp1(sys(k̄t)) (Case 1). If e1 is not the first event
process i1 of type p1 can send without any external stimuli, then we will repeat the above
argument for the event that i1 of type p1 received in sys(n̄t) (and similarly that process
j1 of type p1 in sys(k̄t received) that lead both processes to send event e1. The above
argument is repeated until only Case 1 is applicable and it follows that ∃p ∈ [1, t], π′ ∈
PATH(1Ep) : π′ 6∈ MAXp(sys(k̄t)). This concludes the proof for Type I properties.

TYPE II PROPERTY. The proof for type II properties follows similar arguments as pro-
vided above.

THEOREM 3 SOUNDNESS. If Procedure CutOff terminates, the return k̄t is the cut-off
as per the Definition 3.3.

PROOF. Follows from Theorem 2

5. GOLOK - TOOL FOR AUTOMATIC CUT-OFF GENERATION

We have implemented our technique in a tool, Golok [Samuelson et al. 2010]. It is written
in Scheme [Abelson et al. 1998] in ∼3.5K lines of code. An overview of Golok’s archi-
tecture is presented in Figure 4. Golok serves as a proof that our technique can be fully
automated. As we discuss later, we have applied Golok to several parameterized systems.

As input, Golok takes the system and the topology specification. The maximal behavior
(1Ep) is generated for every process type p using this input file, then the generated model is
given to the System Instance Generator that find the smallest system instance that simulates
all the maximal behaviors (if such a system instance exists). If successful, Golok outputs
the cut-off number along with a graphical representation of the simulating path of the sys-
tem model and the maximal behavior for every process in the form of dot graphs [Gansner
and North 1999] for visual inspection.

We now describe the input language to Golok using the RLDP example and describe
several optimizations that we have implemented in our tool.

ACM Journal Name, Vol. V, No. N, March 2010.

18 · Hanna, Samuelson, Basu and Rajan

Input
Specification

1E_p
Generator

System Instance
Generator

Simulation
Checker

Visual
Translator

generates

sends
result

input

specifies

1E_p
models

passes

System

generates

passes

passes

passes
results

reads
SND in Start {} SND in Idle {}

epsilon/
token

RCV in Ncs {}

token/
choose

PASS in Idle {}

choose/
token

ENTER in Cs {}choose/
in

token/
choose

LEAVE in Idle {}

in/
token

token/
choose

models

passes
results

cut-off
value

reads

Legend

Manual process

Automated process

Fig. 4. Overview of Golok and its components

5.1 Front End: Input Language of Golok

The input file containing the specification for the RLDP protocol is displayed in Figure 5.
It has two main parts: the process specification and the topology specification.

Process Specification. The process specifications (Lines 1-6) contain the behavioral au-
tomata for every process type (Lines 1-3) as described in Section 2.1 (Figures 1(a), (b) and
(c)). In addition, it contains the initial state specification (Line 5) that is responsible for
showing the initial states of every process type as described in Section 2.1.

For some protocols, we might need one process of some type to be in a different state.
For example, for the DME protocol only one process starts in a different state where it has
token (further described in Section 6.4). The special state specification (Line 6) specifies
if any process needs to start from a different state other than its initial state.

1 process left-diner { ... }
2 process right-diner { ... }
3 process fork { ... }

5 initialstates {l-idle, r-idle, free}
6 specialstates { }

8 topology {

10 connectivity {
11 left-diner 0 -- fork 0
12 fork 0 -- right-diner 0
13 right-diner 0 -- fork 1
14 ...
15 }

17 additionrule add-two {
18 create: left-diner a

19 create: right-diner b
20 create: fork c
21 create: fork d
22 require: right-diner e -- fork 0
23 remove: var e -- fork 0
24 add: var e -- var c
25 add: var c -- var a
26 add: var a -- var d
27 add: var d -- var b
28 add: var b -- fork 0
29 }

31 msgs {
32 (left-diner, l-askl, lpeer)
33 (fork, l-lfree, rpeer)
34 ...
35 }
36 }

Fig. 5. Input file for the RLDP protocol

Topology Specification. As discussed previously in Section 2 the topology specifica-
tion serves to restrict communication patterns between processes. It is defined using the
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 19

keyword topology (lines 8 - 36) and is composed of three parts. The first part of the
topology specification (lines 7-12) specifies the topology of the initial system instance. In
RLDP, the initial system instance has one philosopher of each type (processes are zero-
indexed).

The second part of the topology specification (lines 17-29) are the addition rules that are
used to generate larger system instances from the initial (starting) system instance. These
rules ensure that newly generated system instances follow the communication topology of
the protocol. For RLDP, the addition rule add-two (lines 17-29) states that any new system
instances will create two new philosophers of different types (lines 14-15), two forks (lines
20-21) and that they are linked to other processes to preserve the system’s constraint that
neighbor philosophers are of different types (lines 22-28).

The final part of the topology specification (lines 31-36) is responsible for specifying
the direction of the flow of events between processes, where every tuple (d, e, s) describes
the event to be received e, the type of the recipient process d and the index of the sender
process s. There are four choices for s: rpeer (a message sent by the right neighbor of
d), lpeer (a message sent by the left neighbor of d), and peer (a message sent by some
neighbor of d). The choices lpeer, rpeer are only used for describing ring topologies
and the choice peer is used for describing other topologies.

Note that, unlike many of the existing work on parameterized systems, our technique
is not directly dependent on the property to be verified; therefore, Golok does not require
properties as input.

5.2 System Instance Generator/Checker

The System Instance Generator/Checker (SIGC) is the main module of Golok. The goal of
SIGC is to construct a system instance sys(k̄t) (see Procedure CutOff) and check whether
for all p ∈ [1, t], π ∈ PATH(1Ep), π ∈ MAXp(sys(k̄t)), i.e. all paths in the maximal
behavior induced by a process of type p in any environment exist in the system instance.
The main challenge in implementing SIGC is to reduce the computational cost involved in
checking for path inclusion by considering all possible paths from all states. We describe
several optimization techniques we have implemented in Golok to help reduce this cost.

Simulation-based cut-off computation. While Procedure CutOff is based on language
inclusion (∀π ∈ PATH(1Ep), π ∈ MAXp(sys(k̄t))), Golok cut-off computation is based
on simulation relation instead.

Simulation relation [Milner 1982] identifies pairs of states in a transition system such
that one element of the pair simulates all possible behavior (in terms of sequence and
branching of transitions) of the other. It is a stronger relation than language inclusion.
Furthermore, computing simulation relation is linear to the state-space of the transition
system as opposed to computing language inclusion which is exponential to the state-
space [Vardi 2001]. As a result, it is computationally efficient to use simulation rather than
language inclusion. Given a protocol specification Prot and a multi-parameterized system
sys(k̄t) with t different types of processes, a state r in sys(k̄t) is said to simulate a state s
in 1Ep, denoted as s ≺ r, if the following holds:

∀s′, e : s e→ s′ ∈ 1Ep ⇒ ∃r′ : r ;e r′ ∈ sys(k̄t) ∧ s′ ≺ r′

where r ;e r′ denotes a sequence of transitions containing zero or more transitions over
actions not induced by a process of type p and a single action e induced by a process of

ACM Journal Name, Vol. V, No. N, March 2010.

20 · Hanna, Samuelson, Basu and Rajan

type p. We say that 1Ep is simulated by sys(k̄t) if and only if there exists a state r in
sys(k̄t) such that for all start states s in 1Ep, s ≺ r. As simulation relation is stronger than
language inclusion, s ≺ r where s and r are states in 1Ep and sys(k̄t), respectively, implies
that all paths in PATH(1Ep) belong to the set of paths in MAXp(sys(k̄t)). Consequently,
the results of Theorem 3 still holds.

In the example of RLDP, there exists no difference between the language inclusion and
the simulation relation. To show the difference, assume that 1El in Figure 3 had two
different paths of events π1 and π2 that start from the start state as opposed to one. To
satisfy the language inclusion condition ∀π ∈ PATH(1Ep), π ∈ MAXp(sys(k̄t)), there
must exist one state s1 in sys(k̄t) from which path π1 in 1Ep starts, and another state s2

(which could be the same as s1) from which path π2 starts. On the other hand, for a state s
in sys(k̄t) to simulate 1El (1El ≺ sys(k̄t)), both paths π1 and π2 must start from the same
state s; therefore the simulation relation is stronger than language inclusion.

Reducing the number of Simulation Checks. As the size of a system instance could be
prohibitively large, performing a simulation check on every state to verify if it simulates
1Ep can still be expensive. To reduce the number of simulation checks, we construct the
system instances on-the-fly (i.e. states are generated when needed). Furthermore, for every
system state s in sys(k̄t), the following constant-time check is done before performing a
simulation check between the system and 1Ep. If the system state s does not have any
process of type p that is able to initiate the protocol, this system state s is never expanded.
The reason is that, since the first transition in any 1Ep must come from a process of type p
initiating the protocol, then it is not possible that a system state s where no process of type
p can initiate the protocol is the state that simulates 1Ep.

6. CASE STUDIES

We have applied Golok to several nontrivial systems to validate our approach: the variant
of the dining philosopher protocol that we discussed as the running example, the standard
Dining Philosophers protocol, the Bounded Buffer protocol [Silberschatz et al. 2004], the
Spin lock [Anderson 1990], a locking protocol for mutual exclusive access to an object,
the Distributed Mutual Exclusion protocol (DME) [Wolper and Lovinfosse 1990], all the
snoop cache-coherence protocols presented in [Handy 1993], and the German’s cache-
coherence protocols [German 2000].

We compared our results with that obtained using existing work. This comparative anal-
ysis is presented in Table I. In 14 out of 15 cases, Golok has identified a smaller cut-off
value compared to the ones known in the existing work (shown in bold font in Table I).
For the remaining case Golok identified the same cut-off value. This can be attributed pri-
marily to the fact that existing techniques for cut-off identification are independent of the
system behavior (only topology dependent, e.g., [Emerson and Namjoshi 1995]) or rely on
abstractions that are sufficient but not necessary (e.g., [Basu and Ramakrishnan 2006]).

In contrast to existing techniques, our technique uniformly handles systems of different
classes (e.g. resource allocation, cache coherence protocols), systems with more than one
types of unbounded processes, with different topologies, and systems where processes are
communicating via single-cast and/or broadcast. We now discuss these case studies.
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 21

Table I. Experimental results of our tool Golok compared to existing techniques

Protocol Topology
Protocol Spec EXISTING WORK GOLOK

of # of Broadcast References Known Computed
types Params Comm. Cut-off Cut-off (k̄t)

Dining Philosophers Ring 1 1
[Emerson and Kahlon 2002] 4 2[Hanna et al. 2009] 3

RLDP Ring 3 (r, l, f) 3
√† [Emerson and Kahlon 2002] 2r, 2l, 4f 1r , 1l, 2f[Hanna et al. 2010] 3r, 3l, 6f

Bounded-Buffer Star 3 (p, co) 2 [Hanna et al. 2009] 2p, 1co 1p, 1co‡
Spin Lock Star 2 (t) 1 [Basu and Ramakrishnan 2006] 3 2

Spin Lock (multi) Multi-star* 2 (t, o) 2 [Hanna et al. 2010] 2t, 2o 2t, 1o
DME Ring 1 (fc) 1 [Emerson and Namjoshi 1995] 4 2fc

DME (multi) Ring 2 (fr, c) 2 [Hanna et al. 2010] 1fr , 1c 1fr , 1c
MSI

Full Mesh 1 1
√

[Emerson and Kahlon 2003] 7 2
MESI

MOESI
Berkeley

Synapse N+1
Firefly Full Mesh 1 1

√
X� X� 2Dragon

German’s Cache Star 2 (ca)1
√± [Emerson and Kahlon 2003] 7ca 2ca

†: Communication is via both single-cast and broadcast.
‡: Golok produced same cut-off value for different sizes of the buffer, displayed performance results are for the system with
buffer of size 1.
*Multi-star: All processes of different types are connected;
�: To the best of our knowledge, no known results exist.
± : The original protocol is not broadcast-based, however it can be reduced to the ESI protocol which is broadcast-based
as shown in [Emerson and Kahlon 2003].
r: right philosopher, l: left philosopher, f: fork; p: producer, co: consumer; t: thread, o: object; fc: dme node,
fr: forward dme node, c: critical dme node; ca: cache.

6.1 Dining Philosophers Protocols

For the RLDP protocol that was used as the illustrative example throughout this article,
example properties that can be verified are: a “Left” philosopher will eventually eat (Type
I property) or two neighbor philosophers cannot eat at the same time (Type II property).
As described in Section 3.3, properties are defined in terms of events. The former property
can be defined as GF(l-rfree), which reflects the behavior of the “Left” philosopher
acquiring the right fork (thus already has the left fork), therefore the philosopher will be
able to eat. For the latter property, it can be defined as G(l-rfree -> not (r-lfree)

U relr), which translates to the following: if the “Left” philosopher is eating, then the
“Right” philosopher cannot eat until the “Left” philosopher releases her right fork. G, F and
U are temporal operators in LTL\X denoting “globally”, “eventually” and “until”, respec-
tively. We also generated the cut-off for the classic dining philosophers protocols [Dijkstra
1978], where only one type of philosophers exists, the “Left” philosophers.

6.2 Bounded-Buffer protocol

The Bounded-Buffer protocol [Silberschatz et al. 2004] is a typical producer-consumer
system where a buffer can be accessed by both consumers (that consume the contents of
the buffer) and producers (that provide the contents of the buffer). Figure 6 shows the
behavioral automata for this protocol, where the size of the buffer is 1.

The main objective of this protocol is to ensure that at any point of time, only one
type of processes (consumer or producer) can have access to the buffer, i.e., a producer
cannot write to the buffer if it is full, while a consumer cannot read from the buffer if it
is empty. This property is an example of type I property. It can be verified by defining in

ACM Journal Name, Vol. V, No. N, March 2010.

22 · Hanna, Samuelson, Basu and Rajan

1 process producer {
2 [produce] -> [produce, add-item]
3 }
4 process consumer {
5 [consume] -> [consume, take-item]
6 }

7 process buffer {
8 [emptybuffer, add-item] -> [fullbuffer]
9 [fullbuffer, take-item] -> [emptybuffer]

10 }

Fig. 6. Behavioral automata for the Bounded-Buffer Protocol

terms of the object as follows: G(add-item -> (not(add-item) U take-item)),
and G(take-item -> (not(take-item) U add-item)).

6.3 Spin Lock

Spin locks [Anderson 1990] offer a mechanism to realize mutually exclusive access of
objects by threads, when several threads try to access one object. It is considered as a
singly-parameterized system with only the number of threads being parameterized.

1 process thread {
2 [start] -> [has-object, own]
3 [has-object] -> [start, rel]
4 }

5 process object {
6 [free, own] -> [taken]
7 [taken, rel] -> [free]
8 }

Fig. 7. Behavioral automata for Spin Lock protocol

The behavioral automata for this system are displayed in Figure 7. The object can have
two states: free (when it is not accessed by any thread) and taken (when it accessed by
some thread). A free object becomes taken upon a request from a thread (event own) so
that this thread gets access to the object. A busy object, on the other hand, does not accept
any requests from threads, but can receive a rel (release) event from the lock releasing
thread and, as a consequence, the object returns back to free state. In addition to singly-
parameterized spin lock, we have also applied Golok to a multi-parameterized variant of
spin locks, where both the number of threads and objects are parameterized.

Properties of interest for Spin lock includes mutually exclusive access to objects by
threads and liveness of threads. Both properties fall in the category of type I and type II
properties. The former is defined on objects G(own -> (not(own) U rel)); while the
latter is defined on threads GF(own).

6.4 Distributed Mutual Exclusion Protocol

The objective of the Distributed Mutual Exclusion (DME) protocol [Wolper and Lovin-
fosse 1990] is to ensure that for a distributed system of n processes in a network with ring
topology, only one process in the system is in the critical section at a given point of time. A
token is passed between the different processes in the ring. A process can enter the critical
section only if it holds the token. Once the process is out of the critical section, it passes
the token to its neighbor.

The input file of the DME for Golok is displayed in Figure 8. The special state specifi-
cation (Line 12) is ensuring that one thread will trigger the protocol by sending the token
when it is in the start state (sender automaton in Line 3), while other threads will be ini-
tially in the wait state waiting for the token (receiver automaton in Line 2). The process
type shared-resource models the shared resource accessed by the thread that posses
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 23

1 process thread {
2 [wait, token] -> [choose]
3 [start] -> [wait, token]
4 [choose] -> [wait, token]
5 [choose] -> [cs, in]
6 [cs, done] -> [start]
7 }
8 process shared-resource {
9 [idle, in] -> [busy]

10 [busy] -> [idle, done]
11 }
12 initialstates { wait, idle }
13 specialstates { start }

14 topology {
15 connectivity {
16 thread 0 -- thread 1
17 thread 0 -- shared-resource 0
18 thread 1 -- shared-resource 0
19 }
20 additionrule { ... }
21 msgs {
22 (thread, token, lpeer)
23 (thread, in, peer)
24 (critical-section, done, peer)
25 }
26 }

Fig. 8. Input Specification for the Distributed Mutual Exclusion protocol

the token. There is only one process of this process type. The shared resource is initially
in state idle as state in Line 12.

The topology section (Lines 14-26) shows the flow of the messages. All the threads
are connected to the shared resource (Lines 17-18). Threads send the token to their left
neighbor (Line 22), and send the event in to the shared-resource (Line 23). As there exists
no receiver automata in the process specification of thread that takes in as their input
event, the event in is always received by the shared-resource. Similarly, threads receive
event done when sent by the shared-resource (Line 24).

In our variant of the DME protocol (not displayed in the figure), we consider two types
of processes: the processes of the first type always skip entering the critical section and
only forward the token to their neighbor, hereafter called “Forward” type of processes.
The processes of the second type always enter the critical section upon receiving the token
then forward it, henceforth called “Critical” type of processes.

While ensuring mutual exclusion is straightforward in the above protocol and its variant,
a challenging problem is to verify liveness, i.e., a process (on the “Critical” process in the
variant) can always eventually enter the critical section if it intends to do so. This property
is a property of type I and can be written as GF(in).

6.5 Cache Coherence Protocols

The cache coherence protocols [Handy 1993] are used in multi-processor systems with
shared memory, where each processor possesses its own private cache and maintains its
own copy of same memory block in its private cache. The main concern is to ensure that
at any point of time, multiple cached copies of same memory block are consistent in their
data content.

There are two types of cache coherence protocols: snoop-based [Handy 1993] and direc-
tory based [German 2000]. In snoop-based protocols, all caches communicate with each
other through a bus and it is by snooping on that bus that caches know the status of the
memory blocks of interest, while in directory-based protocols the caches do not commu-
nicate with each other but communicate directly with the directory that has the memory
blocks.

We have directly applied Golok to several snoop-based [Handy 1993] protocols and
used the reduction provided by [Emerson and Kahlon 2003] to the directory-based protocol
proposed by [German 2000].

ACM Journal Name, Vol. V, No. N, March 2010.

24 · Hanna, Samuelson, Basu and Rajan

6.5.1 Snoop-based Protocols. There are two types of snoopy cache coherence proto-
cols: invalidation based and update based. In protocols of the first type, whenever a shared
memory block is written to by a processor, the block being written to is invalidated in all
other caches [Handy 1993]. On the other hand, in update based protocols, on a write op-
erations, the value of the shared memory block written to is updated in the caches of all
other processors holding that block without invalidation. We used Golok to generate cut-
offs for the invalidation based cache coherence protocols (MSI, MESI, MOESI, Berkeley
and Synapse N+1) and update based protocols (Dragon and Firefly) [Handy 1993]. Table I
shows the results where the cut-off generated by Golok is much smaller than the one gener-
ated by existing techniques. We now present the Modified-Shared-Invalid (MSI) protocol
as an example to show how we modeled snoopy cache coherence protocols.

modified

shared

invalid

write

read

write write

read

write

writeread,

read

write

1 process processor {
2 [shared] ->[modified, write+]
3 [shared, write] ->[invalid]
4 [shared] ->[shared, read+]
5 [shared, read] ->[shared]
6 [modified] ->[done, is-modified+]
7 [modified, read] ->[shared]
8 [modified, write] ->[invalid]
9 [done, read] ->[shared]

10 [done, write] ->[invalid]
11 [invalid] ->[shared, read+]
12 [invalid] ->[modified, write+]
13 [invalid, write] ->[invalid]
14 [invalid, is-modified]->[invalid]
15 }

17 initialstates { shared }
18 specialstates { }

(a) (b)
Fig. 9. (a) The MSI cache coherence protocol. (b) Process specification for MSI protocol

MSI protocol. Figure 9(a) shows the different states of a processor in MSI protocol. A
dashed arrow models a process receiving an event. The protocol defines three distinct states
for each processor: modified, shared and invalid. Modified processor state implies that the
processor is the exclusive owner of the memory block (it is the only one that can modify on
the contents of this block). Shared state implies that processor has current copy of memory
block in its cache while invalid processor state implies that the processor’s cached copy
of memory block is outdated. Each processor can either perform autonomous read (in all
states except invalid) or write (only in write state) actions. The goal is to ensure that only
one process is in the modified state at a certain point of time.

Since we define properties in terms of events and not in terms of process state, we cannot
define such goal with the events presented in Figure 9(a) as there is no event that distin-
guishes the state modified. We needed to add some event is-modified to distinguish
the state modified, which can only be produced once when a process is in this state. To
define the property that no two processes can be in the state modified at the same time, we
would say G(is-modified -> not(is-modified) U write); that is, if a process is
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 25

shared
modified

invalid

invalid

write+ is-modified+

write+

read+
write+

read+

read+

shared

shared

invalid

modified

invalid

modified

write+write+

invalid

done

invalid

done

write+

read+

write+

is-modified

is-modified

read+

read+

read+

read+

write+

write+

(a) (b)

Fig. 10. (a)1Ep: the maximal behavior a processor in MSI protocol can induce in any
environment (b) System Instance for MSI protocol with two processes

in state modified then there cannot be another process in the same state until a write

event is sent, where, as displayed in Figure 9(a), the event write invalidates the process
that was already in state modified.

The process specification for this protocol is displayed in Figure 9(b). Line 6 shows the
event is-modified that the process in state modified can send that distinguished the
process in that state. Once in state done, the process is known to be the exclusive owner
of the block, and gets out of this state if another process wants to read this memory block
(Line 7) or write on it (Line 8).

Building the maximal behavior (1Ep). As mentioned in Section 3.2, any state in 1Ep
reflects which processes are allowed to send events at a certain point of time. Figure 10(a)
shows 1Ep of a process in MSI cache coherence protocol. After a process in state shared
broadcasts event write, the sender state changes to modified (according to the behavior
defined in the sender automaton in Line 2 in Figure 9(b)). State modified is an ini-
tial state for the sender automaton in Line 6, therefore the process that broadcast event
write can still send another event. The receiver automata in Lines 3, 10 and 13 show that
the receiver(s) of event write go to state invalid, which is the initial state for sender
automaton in Line 11. Therefore, the action of broadcasting and receiving event write
allows both the sender and the receiver of the event to send events (no process is blocked
after this transition). In 1Ep, the resulting state from such transition has the states of the
sender and receiver(s) processes involved in the transition.

On the other hand, the transition is-modified+ in Figure 10(a) modeling the chaining
between sender and receiver automata in Lines 6 and 14, respectively, will result in only
one state since only the receiver of is-modified can send after this action (the final state
of the receiver automaton in Line 14 is state invalid, which is the initial state of sender
automaton in Line 11).

Figure 10(b) shows the system instance for MSI protocol with 2 processes. The instance
has all the paths in 1Ep, therefore 2 is the cut-off for this protocol.

6.5.2 Directory-based protocols. Unlike snoopy protocols, the caches in directory-
based protocols cannot communicate with each other. In directory-based protocols, there
is a “home” directory that possesses the memory blocks, and there is a one-to-one commu-

ACM Journal Name, Vol. V, No. N, March 2010.

26 · Hanna, Samuelson, Basu and Rajan

1 process processor {
2 [invalid] ->[req-shared, ask-shared]
3 [invalid] ->[req-excl, ask-excl]
4 [invalid, read] ->[invalid]
5 [invalid, write]->[invalid]
6 [shared] ->[req-shared, ask-shared]
7 [shared] ->[req-excl, ask-excl]
8 [shared, read] ->[shared]
9 [shared, write] ->[invalid]

10 [req-shared] ->[shared, read+]
11 [req-shared, read] ->[invalid]
12 [req-shared, write] ->[invalid]

13 [req-excl] -> [excl, write+]
14 [req-excl, read] -> [invalid]
15 [req-excl, write] -> [invalid]
16 [excl, read] -> [invalid]
17 [excl, write] -> [invalid]
18 }
19 process internal-trans {
20 [dummy, ask-shared] -> [dummy]
21 [dummy, ask-excl] -> [dummy]
22 }
23 initialstates{ invalid, dummy }

Fig. 11. Behavioral automata for the ESI protocol. [Emerson and Kahlon 2003] show that the verification of the
German’s cache coherence protocol reduces to the ESI protocol.

nication between the directory and each of the caches.
An example of directory-based cache coherence protocols is the one suggested by Steven

German [German 2000]. In this protocol, every cache has three possible states: invalid,
shared and exclusive. As clients do not communicate with each other, the home shares with
every client three channels through which the home can communicate with each client: one
for the client to request the memory block in the shared or the exclusive state, the second
for the home to send an invalidation or grant access to the requesting client, and the last
one is used by client to acknowledge the invalidation requests by the home directory.

The problem with verifying the directory-based cache coherence protocol is that they
contain so many interleaving steps which make them behaviorally more complex and
harder to reason about than snoopy protocol [Emerson and Kahlon 2003].

To reduce the complexity of verifying directory-based protocols, Emerson and Kahlon
show that the verification of these protocols can be reduced to the snoopy ones [Emerson
and Kahlon 2003]. They also show the reduction from the German’s cache coherence
protocol to the ESI snoopy protocol, a modification of the MSI protocol presented earlier;
we therefore generate the cut-off for the ESI protocol.

ESI Protocol. In the ESI protocol, a cache can be in one of three states: exclusive,
shared or invalid. It has almost the same behavior as the behavior of MSI protocol
displayed in Figure 9(a), with modified state named as exclusive. The only difference
in ESI is that, when a cache is in state exclusive and receives event read, the cache
changes its state to invalid, as opposed to MSI protocol where a cache in modified

goes to shared state upon receiving read event.
An LTL\X example property ϕ to verify in the German’s protocol is that, if a cache

request a shared access to the memory block, the cache will eventually be granted the
access from the home directory. Since ESI doesn’t have such scenario (i.e. only read
events are broadcast) [Emerson and Kahlon 2003] added two states to the ESI protocol,
namely request_shared and request_exclusive. Before the cache broadcasts the
event read to be in the shared state, it makes an internal transitions to change its current
state to request_shared, then it can change its state to shared by broadcasting the
event read. Similarly, to go to the exclusive state, the cache needs to make an internal
transition to change its current state to request_exclusive, then it can change its state
to exclusive by broadcasting the event write. The property ϕ can now be represented
as G(request_shared ⇒ F(shared)) [Emerson and Kahlon 2003].

Figure 11 shows the behavioral automata for the ESI protocol. Caches are initially
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 27

in invalid state (Line 23). We model an internal transition by creating the process type
internal-trans (Lines 19-22). The sole goal of a process of this type is to be a recipient
of the events ask-shared and ask-excl (Lines 20, 21 respectively). These event are the
ones that a cache sends when it wants to go to the shared state (automata in Lines 2, 6)
and the exclusive state (automata in Lines 3, 7), respectively. Once a cache is in the state
req-shared, it can broadcast the event read and change its state to shared (automaton
in Line 10). Similarly, in state req-excl, the cache can go to state excl by broadcasting
event write (automaton in Line 13). The propertyϕ can be represented as G(ask_shared
⇒ F(read))

Our technique produced a cut-off of 2 for the ESI protocol, as opposed to the cut-off 7
presented in [Emerson and Kahlon 2003].

7. PERFORMANCE OF GOLOK

In the previous section, we showed that, for 14 out of 15 cases, the values of the cut-offs
generated by Golok are smaller than the ones presented by existing techniques. In this
section, we show the performance results of Golok in terms of the sizes of the system
instances bounded by the cut-off.

Table II shows the performance results of running Golok on all the presented case stud-
ies. All experiments were run on a single core Pentium 4, 2.53 Ghz with 2 GB of RAM.
The system instances generated by Golok are generally small in size, which may reduce
the verification cost of these systems.

Table II. Performance Results of Golok

Protocol
Protocol Spec GOLOK PERFORMANCE
of# of Broadcast Cut-off(k̄t)

States in Time(sec)params BA Comm. sys(k̄t)

Dining Philosophers 1 12 2 15 3.5

RLDP (r, l, f) 3 20
√† 1r, 1l, 2f 9 3.6

Bounded-Buffer (p, co) 2 4 1p, 1co 3 3.5
Spin Lock 1 4 2 3 3.5

Spin Lock (multi) (t, o) 2 4 2t, 1o 6 3.3
DME 1 7 2fc 6 3.4

DME (multi) (fr, c) 2 9 1fr, 1c 5 3.3
MSI 1 13

√
2 5 3.4

MESI 1 22
√

2 10 3.5
MOESI 1 30

√
2 13 3.6

Berkeley 1 25
√

2 12 3.5
Synapse N+1 1 14

√
2 7 3.4

Firefly 1 25
√

2 10 3.5
Dragon 1 23

√
2 12 3.6

German’s Cache 1 18
√± 2 18 3.7

†: Communication is via both single-cast and broadcast.
± : The original protocol is not broadcast-based, however it can be reduced to the ESI protocol which is broadcast-based
as shown in [Emerson and Kahlon 2003].
r: right philosopher, l: left philosopher, f: fork; p: producer, co: consumer; t: thread, o: object; fc: dme node,
fr: forward dme node, c: critical dme node.

The way processes communicate in the system is the main criterion that affects the
size of system instances. Systems where communication is broadcast-based tend to have
instances with smaller size than systems where communication is done via single-cast.

As displayed in the table, even though the RLDP protocol has more parameters and
more behavioral automata in its protocol specification than the classical Dining Philoso-

ACM Journal Name, Vol. V, No. N, March 2010.

28 · Hanna, Samuelson, Basu and Rajan

Fig. 12. Comparison between the old and new versions of Golok in terms of the size of
the state space of the system instance bounded by the cut-off values generated from the old
version of Golok. Synchronous-based communication in the new version of Golok results
in smaller system instances vs. the asynchronous-based version of Golok.

phers protocol, the number of states in sys(k̄t) is smaller in RLDP than in the Dining
Philosophers. The reason behind such small number of states in the RLDP instance is that
an eating philosopher in this protocol is modeled in a way that she releases both forks at
the same time via broadcasting the release command. On the other hand, in the classical
Dining Philosophers protocol, we modeled the philosopher to release one fork at a time via
single-cast. Systems with single-cast communication therefore have more transitions than
systems with broadcast-based communication and thus they have more states.

Synchronous communication also plays a role in reducing the size of the system instance
state space. Figure 12 shows that the Golok version presented in this paper provides smaller
system instances compared to our previous version. The reason behind such decrease in
the size of state space is that the communication in the new version of Golok is purely
synchronous, which reduces the number of possible transitions since an event is not sent
(or broadcast) unless the receiver(s) is (are) ready to receive the event. The small state
space of the system instance bound by the cut-off may result in reduced verification cost
when verifying these parameterized systems.

8. RELATED WORK

In this section, we discuss different techniques that have tackled the problem of verifying
parameterized systems and their limitation of being specific to certain classes of systems.

8.1 Abstraction techniques.

Abstraction techniques include counter abstraction [German and Sistla 1992; Pnueli et al.
2002] and environment abstraction [Clarke et al. 2006; 2008]. The idea behind counter
abstraction is to abstract process identities, where every abstract state contains an abstract
counter denoting the number of processes in the state.

Environment abstraction is the closest to our work. It follows a similar approach as
counter abstraction; however, the counting is done for the number of processes satisfying
a given predicate. An abstract environment is generated for a reference process to show
all possible relations this process can have with its environment; which is closely related
to our technique where we compute the maximal behavior that a process can induce in an
arbitrary environment.

The advantage of these abstraction-based techniques is that they can verify a class of
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 29

parameterized systems that we do not currently cover: systems whose individual processes
are not necessarily finite-state such as the Lamport’s Bakery algorithm [Lamport 1974]
and Szymanski’s algorithm [Szymanski 1988]; however, typically these techniques either
require human guidance for obtaining the appropriate abstraction or are applicable to a
certain restricted class of systems and/or properties (e.g., universal path properties).

8.2 Smart representation-based Techniques

Another class of techniques that rely on smart representation mechanism are techniques
based on regular language [Bouajjani et al. 2000; Abdulla et al. 2002; Abdulla et al. 2007;
Fisman et al. 2008] or graph-based [Saksena et al. 2008; Baldan et al. 2005; Baldan et al.
2008; Llorens and Oliver 2004] representations of the state-space of the parameterized
system. These approaches are typically applicable for the verification of safety/reachabil-
ity properties of parameterized systems. Recently, petri-net based representation has been
proposed [Bouajjani et al. 2007] where tokens in the petri-net are used to denote the pa-
rameter of the system and a new logic, colored markings logic (CML), is developed to
reason about such petri-nets. The work provides a generic framework for representing pa-
rameterized systems and identifies a fragment of CML for which the satisfiability problem
is decidable.

Similar to the environment abstraction, some these techniques allow verification of sys-
tems with infinite-state processes. On the other hand, most of these techniques do not
provide algorithmic techniques and focus only on one or two classes of systems while we
provide a algorithmic (but incomplete) technique that works for several classes. We also
present an implementation of our technique to prove its applicability.

8.3 Induction-based Techniques

Techniques based on induction use network invariants to reduce the problem of parameter-
ized system verification to a finite state model checking problem [Wolper and Lovinfosse
1990; Arons et al. 2001; Clarke et al. 1995]. The idea behind these techniques is to find a
network invariant I where the invariant is preserved by all computation steps of the system.
Therefore, if I satisfies the desired property specification ϕ then the parameterized system
also satisfies ϕ. The invariant generation process in these techniques usually requires man-
ual guidance, while in our technique the cut-off generation is fully automatic.

Pnueli et al. [Pnueli et al. 2001] present a technique where invariants are computed
automatically once the appropriate abstraction relation is provided. The advantadge of this
technique is that it covers the bounded-data parameterized systems that we currently do
not model; however, the technique works for systems with only one type of parameterized
processes and it is not clear how it may be generated to multi-parameterized systems.

8.4 Cut-off Computation Techniques

Closest to our technique is the class of solutions that focus on computing a cut-off of the
system parameter [Emerson and Namjoshi 1995; Emerson and Kahlon 2003; Emerson
et al. 2006; Emerson and Namjoshi 1996; Emerson and Kahlon 2002; Ball et al. 2001;
Yang and Li 2010; Ip and Dill 1996; Bingham and Hu 2005; Siirtola 2010]. This class
of solutions aims to reduce the parameterized system verification problem to an equivalent
finite-state one, is based on finding an appropriate cut-off k of the parameter of the system.
The objective is to establish that a property is satisfied by the system with k processes if
and only if it is satisfied by any number (≥ k) processes. Emerson and Namjoshi [Emer-

ACM Journal Name, Vol. V, No. N, March 2010.

30 · Hanna, Samuelson, Basu and Rajan

son and Namjoshi 1995] provide such cut-off values for different types of properties of
parameterized systems with ring topology.

In contrast to the above techniques, our approach is fully automatic, does not depend
on a specific representation mechanism of the system and/or property and is independent
of the communication topology of the processes in the system. We present a sound but
incomplete method which takes as input the description of the parameterized system in
terms of standard input/output automata and establishes the cut-off of the parameter value.
While Emerson and Namjoshi [Emerson and Namjoshi 1995] establish for the first time
the cut-off bound for any parameterized system with ring topology given a specific type
of property; we show that by considering the parameterized system being verified in the
computation of the cut-off, a tighter bound of the cut-off can be obtained. For instance,
using Emerson and Namjoshi’s approach [Emerson and Namjoshi 1995], to verify the
property that in a parameterized system with ring topology two processes cannot enter
the critical section at the same, the cut-off size is 4; while the cut-off value identified
using our approach for a specific parameterized system with ring topology (token ring
protocol) is only 2. In short, while Emerson and Namjoshi [Emerson and Namjoshi 1995]
focus on obtaining a generic cut-off for parameterized systems with a specific topology,
the central theme of our technique is to develop a generic approach that can be applied to
parameterized systems independent of the communication topology.

9. CONCLUSION AND FUTURE WORK

Verification of correctness properties for parameterized systems is an important prob-
lem [German and Sistla 1992; Pnueli et al. 2002; Clarke et al. 2006; 2008; Emerson and
Namjoshi 1995; Emerson and Kahlon 2003; Emerson et al. 2006]. Considering that this
problem is undecidable in general [Apt and Kozen 1986], techniques and heuristics for
solving it for a subset of scenarios is an equally important problem. To that end, computing
the cut-off of the system parameter is shown to be an effective technique for solving the
parameterized verification problem [Emerson and Namjoshi 1995; Emerson and Kahlon
2003; Emerson et al. 2006].

In contrast to the existing techniques, our approach, based on behavioral-automata com-
position, can be applied to any parameterized systems independent of the communication
topology. It provides a fully automatic sound but incomplete method for generating system
cut-off for a parameterized system, where there exists more than one process type whose
processes are unbounded and where processes can communicate via both single-cast and
broadcast. Furthermore, effectively utilizing system descriptions allows us to obtain a
system-specific cut-off, which in 14 out of 15 cases were found to be lower than previ-
ously discovered bounds. A system cut-off, to a large extent, dictates the state space that
needs to be explored by a formal verification technique. The systematic approach of find-
ing this cut-off that our approach provides is thus an important and foundational advance
towards improved scalability of formal verification techniques. We also implemented our
technique in a tool, Golok, to show the applicability of our technique.

Future work includes extending the theoretical and practical treatment of behavioral-
automata composition to explore more expressive representation of protocols that can cap-
ture parameterized systems with infinite-domain data. It would also be sensible to develop
techniques to extract behavioral automata from common programming languages such that
Golok can be applied to large real-world parameterized software systems.
ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 31

REFERENCES

ABDULLA, P. A., DELZANNO, G., HENDA, N. B., AND REZINE, A. 2007. Regular model checking without
transducers (on efficient verification of parameterized systems). In TACAS’07: Proceedings of the 13th inter-
national conference on Tools and algorithms for the construction and analysis of systems. Springer-Verlag,
London, UK, 721–736.

ABDULLA, P. A., JONSSON, B., NILSSON, M., AND D’ORSO, J. 2002. Regular model checking made simple
and efficient. In CONCUR ’02: Proceedings of the 13th International Conference on Concurrency Theory.
Springer-Verlag, London, UK, 116–130.

ABELSON, H., DYBVIG, R. K., HAYNES, C. T., ROZAS, G. J., ADAMS IV, N. I., FRIEDMAN, D. P.,
KOHLBECKER, E., STEELE, JR., G. L., BARTLEY, D. H., HALSTEAD, R., OXLEY, D., SUSSMAN, G. J.,
BROOKS, G., HANSON, C., PITMAN, K. M., AND WAND, M. 1998. Revised report on the algorithmic
language scheme. Higher Order Symbol. Comput. 11, 1, 7–105.

ANDERSON, T. E. 1990. The performance of spin lock alternatives for shared-memory multiprocessors. IEEE
Trans. Parallel Distrib. Syst. 1, 1, 6–16.

APT, K. R. AND KOZEN, D. C. 1986. Limits for automatic verification of finite-state concurrent systems. Inf.
Process. Lett. 22, 6, 307–309.

ARONS, T., PNUELI, A., RUAH, S., XU, J., AND ZUCK, L. D. 2001. Parameterized verification with auto-
matically computed inductive assertions. In CAV ’01: Proceedings of the 13th International Conference on
Computer Aided Verification. Springer-Verlag, London, UK, 221–234.

BALDAN, P., CORRADINI, A., AND KÖNIG, B. 2008. A framework for the verification of infinite-state graph
transformation systems. Inf. Comput. 206, 7, 869–907.

BALDAN, P., KÖNIG, B., AND RENSINK, A. 2005. Summary 2: Graph grammar verification through ab-
straction. In Graph Transformations and Process Algebras for Modeling Distributed and Mobile Systems,
B. König, U. Montanari, and P. Gardner, Eds. Number 04241 in Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl,
Germany.

BALL, T., CHAKI, S., AND RAJAMANI, S. K. 2001. Parameterized verification of multithreaded software
libraries. In TACAS 2001: Proceedings of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer-Verlag, London, UK, 158–173.

BASU, S. AND RAMAKRISHNAN, C. R. 2006. Compositional analysis for verification of parameterized systems.
Theor. Comput. Sci. 354, 2, 211–229.

BINGHAM, J. AND HU, A. J. 2005. Empirically efficient verification for a class of infinite-state systems. In
TACAS ’05: Proceedings of the 11th international conference on Tools and algorithms for the construction
and analysis of systems. Springer, 77–92.

BOUAJJANI, A., JONSSON, B., NILSSON, M., AND TOUILI, T. 2000. Regular model checking. In CAV ’00:
Proceedings of the 12th International Conference on Computer Aided Verification. Springer-Verlag, London,
UK, 403–418.

BOUAJJANI, A., JURSKI, Y., AND SIGHIREANU, M. 2006. Reasoning about Dynamic Networks of
Infinite-State Processes with Global Synchronization. CCSd/HAL : e-articles server (based on gBUS)
[http://hal.ccsd.cnrs.fr/oai/oai.php] (France).

BOUAJJANI, A., JURSKI, Y., AND SIGHIREANU, M. 2007. A generic framework for reasoning about dynamic
networks of infinite-state processes. In TACAS. Springer-Verlag, London, UK, 690–705.

CLARKE, E. M., GRUMBERG, O., AND JHA, S. 1995. Verifying parameterized networks using abstraction and
regular languages. In CONCUR. Springer, London, UK, 395–407.

CLARKE, E. M., TALUPUR, M., AND VEITH, H. 2006. Environment abstraction for parameterized verification.
In VMCAI. Springer, London, UK, 126–141.

CLARKE, E. M., TALUPUR, M., AND VEITH, H. 2008. Proving ptolemy right: The environment abstraction
framework for model checking concurrent systems. In TACAS. Springer, London, UK, 33–47.

DIJKSTRA, E. 1978. Two starvation free solutions to a general exclusion problem. EWD 625, Plataanstraat 5,
5671 AL Neunen, The Netherlands.

EMERSON, E. A. 1990. Temporal and modal logic. Handbook of theoretical computer science (vol. B): formal
models and semantics, 995–1072.

ACM Journal Name, Vol. V, No. N, March 2010.

32 · Hanna, Samuelson, Basu and Rajan

EMERSON, E. A. AND KAHLON, V. 2002. Model checking large-scale and parameterized resource allocation
systems. In TACAS ’02: Proceedings of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer-Verlag, London, UK, 251–265.

EMERSON, E. A. AND KAHLON, V. 2003. Exact and efficient verification of parameterized cache coherence
protocols. In CHARME. Springer, London, UK, 247–262.

EMERSON, E. A. AND NAMJOSHI, K. S. 1995. Reasoning about rings. In POPL ’95: Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, New York, NY, USA,
85–94.

EMERSON, E. A. AND NAMJOSHI, K. S. 1996. Automatic verification of parameterized synchronous systems
(extended abstract). In CAV. Springer, London, UK, 87–98.

EMERSON, E. A. AND NAMJOSHI, K. S. 1998. On model checking for non-deterministic infinite-state systems.
In LICS ’98: Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society, Washington, DC, USA, 70.

EMERSON, E. A., TREFLER, R. J., AND WAHL, T. 2006. Reducing model checking of the few to the one. In
ICFEM. Springer, London, UK, 94–113.

FISMAN, D., KUPFERMAN, O., AND LUSTIG, Y. 315-331, 2008. On verifying fault tolerance of distributed
protocols. In TACAS. Springer, London, UK.

GANSNER, E. R. AND NORTH, S. C. 1999. An open graph visualization system and its applications to software
engineering. Software - Practice and Experience 30, 1203–1233.

GERMAN, S. M. 2000. Private Communication.

GERMAN, S. M. AND SISTLA, A. P. 1992. Reasoning about systems with many processes. J. ACM 39, 3,
675–735.

HANDY, J. 1993. The cache memory book. Academic Press.

HANNA, Y., BASU, S., AND RAJAN, H. 2009. Behavioral automata composition for automatic topology inde-
pendent verification of parameterized systems. In ESEC/FSE ’09: Proceedings of the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations of software
engineering. ACM, New York, NY, USA, 325–334.

HANNA, Y., SAMUELSON, D., BASU, S., AND RAJAN, H. 2010. Automating cut-off for multi-parameterized
systems. In ICFEM 2010: Proceedings of the 12th Internation Conference on Formal Engineering Methods.
Springer, London, UK, 338–354.

IP, C. N. AND DILL, D. L. 1996. Verifying systems with replicated components in murphi. In CAV. Springer,
London, UK, 147–158.

LAMPORT, L. 1974. A new solution of dijkstra’s concurrent programming problem. Commun. ACM 17, 8,
453–455.

LLORENS, M. AND OLIVER, J. 2004. Introducing structural dynamic changes in petri nets: Marked-controlled
reconfigurable nets. In ATVA. Springer, London, UK, 310–323.

LYNCH, N. A. AND TUTTLE, M. R. 1989. An introduction to input/output automata. CWI Quarterly 2, 219–
246.

MANNA, Z. AND PNUELI, A. 1990. An exercise in the verification of multi-process programs. 289–301.

MANNA, Z. AND PNUELI, A. 1995. Verification of parameterized programs. In in Specification and Validation
Methods. University Press, 167–230.

MILNER, R. 1982. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

PNUELI, A., RUAH, S., AND ZUCK, L. D. 2001. Automatic deductive verification with invisible invariants. In
TACAS 2001: Proceedings of the 7th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer-Verlag, London, UK, 82–97.

PNUELI, A., XU, J., AND ZUCK, L. D. 2002. Liveness with (0, 1, infty)-counter abstraction. In CAV ’02:
Proceedings of the 14th International Conference on Computer Aided Verification. Springer-Verlag, London,
UK, 107–122.

ROSCOE, A. W. AND LAZIC, R. 1998. Verifying Determinism of Concurrent Systems Which Use Unbounded
Arrays. In Proceedings of INFINITY’98. extended version as Oxford University Computing Laboratory TR-
2-98.

ACM Journal Name, Vol. V, No. N, March 2010.

Golok: Push-button Verification of Parameterized Systems · 33

SAKSENA, M., WIBLING, O., AND JONSSON, B. 2008. Graph grammar modeling and verification of ad hoc
routing protocols. In TACAS’08/ETAPS’08: Proceedings of the Theory and practice of software, 14th inter-
national conference on Tools and algorithms for the construction and analysis of systems. Springer-Verlag,
London, UK, 18–32.

SAMUELSON, D., HANNA, Y., BASU, S., AND RAJAN, H. 2010. http://www.cs.iastate.edu/~slede/golok.
SIIRTOLA, A. 2010. Automated multiparameterized verification by cut-offs. In ICFEM 2010: Proceedings of

the 12th Internation Conference on Formal Engineering Methods. Springer, London, UK.
SILBERSCHATZ, A., GALVIN, P. B., AND GAGNE, G. 2004. Operating System Concepts. Wiley.
SZYMANSKI, B. K. 1988. A simple solution to lamport’s concurrent programming problem with linear wait.

In ICS ’88: Proceedings of the 2nd international conference on Supercomputing. ACM, New York, NY, USA,
621–626.

VARDI, M. Y. 2001. Branching vs. linear time: Final showdown. In Proceedings of the 7th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2001. Springer-
Verlag, London, UK, 1–22.

WOLPER, P. AND LOVINFOSSE, V. 1990. Verifying properties of large sets of processes with network invari-
ants. In Proceedings of the international workshop on Automatic verification methods for finite state systems.
Springer-Verlag New York, Inc., New York, NY, USA, 68–80.

YANG, Q. AND LI, M. 2010. A cut-off approach for bounded verification of parameterized systems. In ICSE
’10: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering. ACM, New
York, NY, USA, 345–354.

ACM Journal Name, Vol. V, No. N, March 2010.

