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Abstract—The increasing penetration of variable energy re-
sources in modern electric power systems requires additional
flexibility in ancillary service provision to maintain reliable
and efficient grid operations. However, full recognition and
appropriate compensation of this flexibility is difficult to ensure
within current power market designs due to rigidities in service
definitions and requirements. For example, reserve requirements
(RRs) are typically set in advance at administratively determined
levels. If RRs are too large, wasteful expenditures result; and,
if RRs are too small, high real-time costs are incurred for peak
generation and/or load curtailment. To address these problems,
this paper proposes a new mixed-integer linear programming
(MILP) formulation for the optimal clearing of a day-ahead
market based on swing contracts and a dynamic reserve method
permitting the daily adaptive updating of reserve zones. Numer-
ical examples based on a 5-bus test system are used to illustrate
the effectiveness of the proposed new day-ahead market design.

Index Terms—Day-ahead market, swing contract, dynamic
reserve zones, flexible service provision, MILP optimization

NOMENCLATURE
Sets and Indices
B: Set of bus indices b
B(z) ⊂ B: Subset of buses in reserve zone z
L⊂B × B: Set of transmission line indices `
LO(b): Subset of lines ` originating at bus b
LE(b): Subset of lines ` ending at bus b
M: Set of indices m for market participants with dis-
patchable resources
M(b)⊂M: Subset of market participants with dispatch-
able resources at bus b
M(z)⊂M: Subset of market participants with dispatch-
able resources in reserve zone z
S: Set of net load forecast scenarios s
T : Set of time period indices t = 1, . . . , T
Z: Set of reserve zone indices z

Parameters and Functions
Am(t): Binary service offer indicator: 1 if m in time
period t is within its contract service period; 0 otherwise
B(`): Inverse of reactance X(`) (p.u.) for line `
cam: Availability price ($) requested by m for a swing
contract that offers service availability
d%: Reserve requirement percentage
E(`): End bus for line `
NLb(t): Net load forecast (MW) for bus b during t
O(`): Originating bus for line `
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Pmax
` : Line flow limit (MW) for line `
Pmin
m : Lower power limit (MW) for m
Pmax
m : Upper power limit (MW) for m
RD

m: Ramp-down limit (MW/∆t) for m
RU

m: Ramp-up limit (MW/∆t) for m
So: Positive base power (in three-phase MVA)
∆t: Time-period length
Λ1: Imbalance penalty ($/MW) for excess power supply
Λ2: Imbalance penalty ($/MW) for a power supply deficit
φm(t): Energy price ($/MW∆t) as a simple form of per-
formance payment method for real-time service offered
in a swing contract

ISO Control Variables for SC DAM Optimization
pm(t): Power output (MW) of m in time period t
xm: Binary cleared contract indicator: 1 if the swing
contract offered by m is cleared; 0 otherwise
θb(t): Voltage angle (radians) at bus b in time period t

Solution Values Derived from SC DAM Optimization
pm(t): Max available power output (MW) of m during t
p
m

(t): Min available power output (MW) of m during t
P`(t): Line power (MW) for line ` during t
RRL

z (t): Lower spinning reserve requirement (MW) at
reserve zone z during t
RRU

z (t): Upper spinning reserve requirement (MW) at
reserve zone z during t
vm(t): Binary unit commitment indicator derived from
xm and Am(t): 1 if m is online in time period t; 0
otherwise
α+
b (t): Non-negative slack variable indicating excess

power supply (MW) at bus b during t
α−b (t): Non-negative slack variable indicating a power
supply deficit (MW) at bus b during t

I. INTRODUCTION

THE growing participation of variable energy resources
(e.g., wind and solar power) in electric power markets

has increased the importance of flexible service provision to
ensure continual load-balancing capabilities [1]. This, in turn,
has increased the need for a level playing field for all potential
service providers that includes appropriate compensation for
flexibility in service provision.

Currently, however, the appropriate compensation of service
flexibility is hindered by rigid service definitions and provision
requirements. For example, reserve requirements (RRs) are
typically set in advance at administratively determined levels.
If RRs are too large, wasteful expenditures result; and, if
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RRs are too small, high real-time costs are incurred for peak
generation and/or load curtailment.

In recent studies [2], [3] researchers have proposed a new
swing-contract market design for electric power systems that
facilitates flexible service provision. A swing contract allows
a resource to offer a bundle of diverse power and ancillary
services as ranges of values rather than as point values, thus
permitting greater flexibility in their real-time implementa-
tion. A swing-contract market is a centrally-managed forward
market that functions as a robust-control mechanism for the
management of load and generation uncertainties. It permits
dispatchable resources to offer services in flexible swing-
contract form to ensure the availability of flexible service
performance at a later date.

Subsequent studies [4]–[6] have demonstrated the practical
feasibility of the swing-contract market design by developing
and implementing Mixed Integer Linear Programming (MILP)
formulations for the optimal clearing of swing contracts sub-
ject to standard system and reserve-requirement (RR) con-
straints. However, a difficulty with these optimization formu-
lations is their reliance on exogenously specified RR levels.
While service supply offers are permitted to take a flexible
form, reserve demands are not. This suggests the desirability
of modifying the swing-contract market design by replacing
exogenously specified RR levels with some form of dynamic
reserve method.

A dynamic reserve method is any process permitting the
run-time adjustment of reserve demands for electric power
market operations. Dynamic reserve methods currently under
exploration include the adaptive updating of RR levels, reserve
zones, reserve demand curves, and/or reserve deliverability
status based on updated grid congestion conditions [7].

Dynamic reserve methods are particularly promising for
dealing with potential power imbalances caused by high pene-
tration of variable energy resources [8]–[12]. For example, [8]
investigates whether the adaptive modification of a targeted re-
serve capacity over time based on expected system conditions
can avoid expensive overestimation of RR with high levels
of wind power. Ref. [9] proposes a heuristic rule to define
dynamic reserve requirements: the reserve should be no less
than 3% of load and 5% of forecasted renewable generation.

However, recent research has stressed the need to consider
more carefully the effects of variable energy resources on
the ability of market operators to predict network congestion,
hence power transfer capabilities, in order to guarantee real-
time reserve deliverability [13], [14]. To mitigate reserve
deliverability problems, current U.S. ISO/RTO-managed day-
ahead markets rely on pre-specified reserve zones to ensure
the distribution of reserves across the transmission grid. A
reserve zone is a portion of the grid that experiences relatively
infrequent internal transmission congestion.

This paper proposes a new MILP formulation for the
optimal clearing of swing contracts in an ISO-managed swing-
contract day-ahead market (SC DAM) with dynamic reserve
determination. Reserve zones and associated zonal RR require-
ments are adaptively adjusted each day to facilitate the balanc-
ing of net load, i.e., load minus non-dispatchable generation.

Section II describes the reformulation of the SC DAM

optimization problem in [5] to incorporate reserve zones and
associated zonal reserve requirements among the problem
constraints. Section III explains our new proposed method
for the dynamic adjustment of reserve zones and associated
zonal reserve requirements. This adjustment is accomplished
by means of a weighted average of shift factor differences,
which in turn is based on a line-congestion risk index.

Performance testing of our new proposed dynamic reserve
method in comparison with other proposed dynamic reserve
methods is reported in Section IV. This testing is undertaken
for a 5-bus test system consisting of a swing-contract DAM
operating over a 5-bus transmission grid. Performance is mea-
sured in terms of expected energy costs and reserve delivery
reliability. It is shown that our proposed method outperforms
other methods in terms of these metrics. Section V concludes.

II. A SWING-CONTRACT MARKET DESIGN WITH
DYNAMIC RESERVE DETERMINATION

A. An Illustrative Swing Contract

As detailed in [2]–[5], a swing contract (SC) is a contract
that permits a resource to offer the availability of a collection
of power paths with a wide range of specified services, such
as start-up location, start-up time, power level, ramp-rate,
duration, and volt/VAr support. For concreteness, as in [5],
this study will focus on the following specific form of SC
permitting a dispatchable resource to offer swing (flexibility)
in power levels and ramp rates:

SC = [b, ts, te,P,R, φ] (1)

b = location where service delivery is to occur;
ts = power delivery start time;
te = power delivery end time;

P = [Pmin, Pmax] = range of power levels p;

R = [−RD, RU ] = range of down/up ramp rates r;
φ = Performance payment method for real-time services.

As illustrated in Fig. 1, the location b in (1) refers to a
particular bus or node of a transmission grid. The start and
end times ts and te denote specific calendar times expressed
at the granularity of time periods of length ∆t (e.g., 1h, 1Min),
with ts < te. The power interval bounds Pmin ≤ Pmax can
represent pure power injections (if 0 ≤ Pmin), pure power
withdrawals or absorptions (if Pmax ≤ 0), or bi-directional
power capabilities (if Pmin ≤ 0 ≤ Pmax). The down/up limits
−RD and RU for the ramp rates r (MW/∆t) are assumed to
satisfy −RD ≤ 0 ≤ RU .

The location b, the start time ts, and the end time te are all
specified as single values in (1). However, the power levels
p and the down/up ramp rates r are specified in swing form
with associated ranges P and R.

The performance payment method φ in (1) designates the
mode of ex post compensation for actual real-time service
performance. As detailed in [3], φ can take a wide variety of
forms. For example, φ could specify a flat-rate price ($/MWh)
for down/up power delivery together with a “power-mileage”
compensation for ramping based on power-path length.
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Fig. 1. (a) An illustrative swing contract with power and ramp-rate swing
offered by a dispatchable resource into an ISO-managed day-ahead wholesale
power market; (b) A possible power path the ISO could signal the resource
to follow during next-day operations.

B. The Basic Swing-Contract Market Design

An SC market is a centrally-managed forward market that
permits dispatchable resources to submit SCs offering possible
real-time service performance. The SC market operator clears
SC offers in advance of real-time operations in an effort
to ensure the balancing of real-time net loads. To retain
the market operator’s non-profit status, all costs incurred by
the market operator for SC procurement and use are passed
through to load-serving entities in proportion to their share of
serviced real-time loads.

An issuer m of a cleared swing contract SCm is immediately
paid its contract offer price cam, which functions as a form of
insurance premium to ensure real-time service availability. If
m is subsequently dispatched to perform real-time services in
accordance with SCm, compensation is paid to m for these
services in accordance with the performance payment method
φm that m has included among the terms of SCm.

It is the responsibility of issuer m to guarantee the physical
and financial feasibility of its offered swing contract SCm.
With regard to physical feasibility, m must ensure it is able to
fulfill the terms of SCm, if cleared. With regard to financial
feasibility, m should make sure that its contract offer price
cam is sufficient to cover all of the avoidable fixed costs (e.g.,
start-up and no-load costs) that m would incur to guarantee
service availability in accordance with SCm. In addition, m
should make sure that its performance payment method φm
is sufficient to cover all avoidable operational costs (e.g., fuel
costs) that m would incur if called upon to provide real-time
service performance in accordance with SCm.

C. SC DAM Optimization Formulation with Dynamic Reserve

Current U.S. ISO/RTO-managed DAMs use two optimiza-
tions to determine unit commitment, generation dispatch, and
pricing solutions: namely, Security-Constrained Unit Commit-
ment (SCUC) and Security-Constrained Economic Dispatch
(SCED) [15]. SCUC is formulated as a mixed integer linear
programming (MILP) problem, and SCED is typically formu-
lated as a linear programming problem.

In contrast, a single MILP optimization process is used for
the ISO-managed SC DAM in [5] to determine which SCs
are cleared, hence which dispatchable market participants are
obligated (committed) to ensure service availability for the fol-
lowing day. However, this optimization process assumes pre-

Fig. 2. Market clearing procedure for the reformulated SC DAM

specified system-wide down/up spinning reserve requirements
without consideration of reserve deliverability.

In this paper we reformulate the SC DAM optimization
problem developed in [5] to include the adaptive updating of
reserve zones for spinning reserve. The goal of this reformu-
lation is to achieve an SC DAM design that further reduces
expected costs by improving reserve delivery reliability.

The reformulated SC DAM optimization is depicted in Fig
2. In the remainder of this section we explain this reformulated
optimization for an arbitrary day D, taking as given a particular
reserve zone specification. Note that the lower/upper zonal
reserve requirements RRL

z (t) and RRU
z (t) associated with

each reserve zone z in each time period t that appear in
this reformulated optimization are endogenously determined
as part of the optimal solution; hence, they depend on net load
forecasts and other current system conditions. Our proposed
procedure for undertaking the daily adaptive updating of the
reserve zones z will be carefully explained in Section III.

Following [5, Section 5.2], eight simplifying assumptions
are made for clarity of exposition. First, the SC DAM takes
place on day D in order to plan for net load balancing on day
D+1. Second, the 24-hours of day D+1 are represented by T
= {1, . . . , 24} with ∆t = 1h. Third, all loads are fixed (must-
serve) loads that do not provide dispatchable services. Fourth,
all loads are serviced by Load-Serving Entities (LSEs). Fifth,
an LSE’s demand bid at any bus b for any hour t consists of
a price-insensitive power demand (MW) reflecting the LSE’s
load forecast at that bus for that hour. Sixth, each market
participant m with dispatchable resources offers a single swing
contract SCm into the SC DAM, where SCm takes form
(1). Seventh, the performance payment method φm appearing
within SCm takes the form of a collection of flat-rate energy
prices φm(t) ($/MW∆t), one price for each hour t ∈ T .
Eighth, only spinning reserve requirements for normal load
balancing purposes are considered.

Given these assumptions, the objective of the ISO managing
the day-D SC DAM is to minimize total cost ($) over T
by appropriate selection of the ISO control variables listed
in the Nomenclature, subject to system and zonal reserve
requirement constraints.

1) Total cost minimization objective:

min
∑

m∈M
camxm +

∑
t∈T

∑
m∈M

φm(t) |pm(t)|∆t

+Λ1

∑
b∈B

∑
t∈T

α+
b (t) + Λ2

∑
b∈B

∑
t∈T

α−b (t)
(2)

Total cost is the summation of SC availability cost, expected
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performance cost, and imbalance penalty cost. The latter
cost proxies the additional cost that would be incurred for
peak generation purchase and/or load curtailment if the SC
DAM dispatch schedule is unable to ensure real-time balance
between power supplies and power demands (loads).

2) Unit commitment constraints:

vm(t) = xmAm(t), ∀m ∈M, t ∈ T (3)

The unit commitment vm(t) ∈ {0, 1} for each market par-
ticipant m ∈ M for each hour t of day D+1 is determined
by two variables: the cleared contract indicator xm ∈ {0, 1};
and the service offer indicator Am(t) ∈ {0, 1}. The indicator
Am(t) is a derived value, calculated by the ISO from the
information provided within SCm. For example, suppose SCm

specifies that services can be provided by m during the time
interval [ts, te] = [10, 19] on day D+1. Then Am(t) = 1 if
t ∈ {10, . . . , 19} and Am(t) = 0 if t ∈ {1, . . . , 9, 20, . . . , 24}.
Participant m is committed to be available for service provi-
sion during hour t of day D+1 if and only if both xm and
Am(t) in (3) equal 1.

3) Voltage angle limits:

θr(t) = 0,∀t ∈ T (4)

− π 6 θb(t) 6 π,∀b ∈ B, t ∈ T (5)

Constraints (4) determine the voltage angle specification at a
designated angle reference bus r for all hours t, and constraints
(5) impose voltage angle limits at all buses for all hours t.

4) Line power transmission constraints:

P`(t) = S0B(l)
[
θO(`)(t)− θE(`)(t)

]
, ∀` ∈ L, t ∈ T (6)

− Pmax
` 6 P`(t) 6 Pmax

` , ∀` ∈ L, t ∈ T (7)

5) Power balance constraints at each bus:∑
m∈M(b)

pm(t) +
∑

`∈LE(b)

P`(t) = NLb(t) +
∑

`∈LO(b)

P`(t)

+ α+
b (t)− α−b (t), ∀b ∈ B, t ∈ T

(8)

6) Market participant capacity constraints:

p
m

(t) 6 pm(t) 6 pm(t), ∀m ∈M, t ∈ T (9)

pm(t) 6 Pmax
m vm(t), ∀m ∈M, t ∈ T (10)

p
m

(t) > Pmin
m vm(t), ∀m ∈M, t ∈ T (11)

7) Market participant ramp-up and ramp-down constraints:

pm(t)− pm(t− 1) 6 RU
m∆tvm(t− 1)

+Pmax
m [1− vm(t− 1)], ∀m ∈M, t = 2, . . . T

(12)

pm(t− 1)− p
m

(t− 1) 6 RD
m∆tvm(t)

+Pmax
m [1− vm(t)], ∀m ∈M, t = 2, . . . T

(13)

8) Zonal reserve requirement constraints:∑
m∈M(z)

[
pm(t)− pm(t)

]
> RRU

z (t),∀t ∈ T , z ∈ Z (14)

∑
m∈M(z)

[
pm(t)− p

m
(t)
]
> RRL

z (t),∀t ∈ T , z ∈ Z (15)

∑
m∈M

pm(t) >
∑
b∈B

NLb(t) +
∑
z∈Z

RRU
z (t),∀t ∈ T (16)

∑
m∈M

p
m

(t) 6
∑
b∈B

NLb(t)−
∑
z∈Z

RRL
z (t),∀t ∈ T (17)

RRU
z (t) > d% ·

∑
b∈B(z)

NLb(t),∀t ∈ T , z ∈ Z (18)

RRL
z (t) > d% ·

∑
b∈B(z)

NLb(t),∀t ∈ T , z ∈ Z (19)

Constraints (14)-(15) represent each reserve zone’s upper
and lower RR constraints for each hour t. Constraints (16)-
(17) represent system-wide RR constraints for each hour t.
Constraints (18)-(19) provide dynamic reserve requirements
for different reserve zones: the upper and lower reserve
requirements for a reserve zone z should be no less than d%
of the summation of forecasted net load for that zone.

As in [5], the system inherent reserve range for hour t can
be calculated as a function of the solution for the SC DAM
optimization: SIRR(t) = [RRmin, RRmax(t)], where

RRmax(t) =
∑

m∈M
pm(t), ∀t ∈ T (20)

RRmin(t) =
∑

m∈M
p
m

(t), ∀t ∈ T (21)

III. DYNAMIC RESERVE ZONE UPDATING METHOD

A. Overview

One promising approach for improving reserve delivery
reliability is the adaptive updating of reserve zones based on
system conditions, including net load uncertainties. Previous
researchers have proposed various metrics for this purpose,
such as electrical distance (ED) [16], power transfer distribu-
tion factors (PTDFs) [17], and weighted averages of PTDF
differences [13].

The ED metric cannot be used to determine reserve zones
for the SC DAM optimization proposed in Section II-C since
voltage magnitudes for this optimization are assumed to be
1(p.u.). Also, a PTDF is a “what if” construction that does not
reflect actual system conditions, especially line congestion.1

Perhaps for these reasons, ref. [13] instead proposes a
dynamic reserve zone specification method involving the use
of a weighted average of PTDF differences, where the weights
are adaptively updated to reflect current system conditions.
However, since this method is formulated for a standard AC
optimal power flow optimization, it cannot be directly applied
to our SC DAM optimization.

In this section we propose a modified version of the dynamic
reserve method developed in [13] that can be used to generate
daily updated reserve zone specifications for the SC DAM. Our
method differs from [13] in two principle respects: (i) use of
a different similarity metric (based on a line congestion risk
index) to measure the similarity of buses and bus subsets; and
(ii) use of a hierarchical clustering method instead of a k-mean

1A power transfer distribution factor PTDF(`,∆p, bs, bk) measures the
change in power flow on a power line ` resulting from a power increment
∆p injected at a source bus bs and withdrawn at a sink bus bk [18].
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algorithm to partition the set of grid buses into reserve zones
based on bus and bus-subset similarity.

More precisely, our proposed dynamic reserve method con-
sists of four steps to be carried out immediately prior to the
operation of the SC DAM on the morning of each day D.
These four steps are as follows:

Step 1: Use Monte Carlo simulations to construct a set of
net load forecast scenarios;

Step 2: Use off-line preliminary optimizations to determine
power line dual variable solutions, and use these
solutions to construct line congestion risk indices;

Step 3: Use these indices to construct a matrix WA whose
components consist of weighted averages of shift
factor2 differences;

Step 4: Use a hierarchical clustering algorithm based on
WA to partition the set of buses into reserve zones
for use in the day-D SC DAM.

These four steps will now be more carefully explained.

B. Construction of Net Load Forecast Scenarios

Net load is load minus non-dispatchable generation. This
section explains our method for generating a set S of net load
forecast scenarios. Each scenario takes the form s = {NLb(t) |
b ∈ B, t ∈ T }, where the terms NLb(t) are the net load
forecasts appearing in our SC DAM optimization formulation
in Section II-C.

For concreteness, we assume all non-dispatchable genera-
tion consists entirely of wind power. The net load forecasts
NLb(t) can thus be represented as follows:

NLb(t) = p̂Lb (t)− p̂Wb (t), ∀b ∈ B, t ∈ T , (22)

where p̂Lb (t) denotes LSE forecasted load (if any) at bus b for
hour t and p̂Wb (t) denotes the ISO’s forecasted wind power
generation (if any) at bus b for hour t.

We also assume the load forecast error eLb (t) and the
wind power generation forecast error eWb (t) are uncorrelated
random variables governed by mean-zero normal distributions
for each b ∈ B and t ∈ T . The standard deviations for the net
load forecast errors can thus be expressed as:

σNL
b (t) =

√
σL
b (t)

2
+ σW

b (t)
2
, ∀b ∈ B, t ∈ T . (23)

In (23), σL
b (t) denotes the standard deviation of the load

forecast error eLb (t) and σW
b (t) denotes the standard deviation

of the wind power generation forecast error eWb (t). Hence, the
net load forecast NLb(t) has a mean-zero normally-distributed
forecast error eNL

b (t) with standard deviation σNL
b (t) [19].

We then use Monte Carlo simulation to generate multiple
net load forecast scenarios s as perturbations about a base net
load scenario taken to represent true expected net load.

C. Line Congestion Risk Index Calculation

Transmission lines that are frequently congested are gener-
ally referred to as critical lines. In the SC DAM optimization

2 A shift factor SF(`,∆p, bs, br) differs from a PTDF with regard to the
specification of the sink bus. For shift factors, the sink bus is always designated
to be some fixed reference bus br [18].

formulation developed in Section II-C, the dual variables
(“shadow prices”) corresponding to the lower and upper in-
equality constraints in (7) for line power flows indicate the
congestion status of the transmission lines. In this section we
explain how the solution values for these dual variables can
be used to construct a “line congestion risk index” for each
line ` ∈ L that indicates the degree to which line ` is critical.

First, we construct a set S of net load forecast scenarios s
using the method described in Section III-B. Second, for each
scenario s ∈ S, we solve the SC DAM optimization problem
in Section II-C assuming the set B of all grid buses constitutes
a single reserve zone. Third, we record the resulting 0-1 unit
commitment solution values vsm(t). Fourth, we re-solve the SC
DAM optimization problem for each scenario s ∈ S , taking
as given the unit commitment solution values vsm(t). Finally,
we record the resulting dual variable solution values λ1`,s(t)
and λ2`,s(t) corresponding to the lower and upper line power
inequality constraints in (7).

The line congestion risk index for each line ` ∈ L is then
calculated as follows:

w` =

∑
s∈S

∑
t∈T

max
{
|λ1`,s(t)|, |λ2`,s(t)|

}
|T | · |S|

. (24)

By construction, the larger the value of w`, the more likely
it is that line ` will experience congestion, conditional on the
set S of net load forecast scenarios.

D. Weighted Average of Shift Factor Differences

Let SFr
`,i = SF(`, 1MW, i, br) denote the shift factor that

measures the change in power flow on line ` when 1MW of
power is injected at bus i and withdrawn at a fixed reference
bus br; cf. footnotes 1 and 2. Given any two buses i and j,
we construct a weighted average of shift factor differences for
these buses as follows:

WAij =

∑
`∈L

wl|SFr
`,i − SFr

`,j |

|L|
, (25)

where the weights w` in (25) are the line congestion risk
indices given by (24). Finally, the matrix whose components
are given by WAi,j is denoted by WA.

E. Hierarchical Clustering Method for Reserve Zone Partition

The well-known hierarchical clustering method developed
by [20] proceeds as follows. Consider a finite set N consisting
of N ≥ 2 elements for which the dissimilarity between any
two elements i and j in N is measured by some designated
dissimilarity metric d(i, j). The dissimilarity between any two
disjoint subsets of N can then be measured in a variety of
ways: e.g., via average dissimilarity calculated as the average
dissimilarity between any element of one subset and any
element of the other subset.

Start with a partition P (N) of N into N disjoint subsets,
each subset containing a single element. Find a pair of subsets
in P (N) whose dissimilarity to each other is at least as small
as between any other two subsets in P (N) and merge these
two subsets; this results in a partition P (N − 1) of N into
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Fig. 3. Five-bus test system

N − 1 disjoint subsets. Repeat this process until one obtains
P (1), a “partition” of N into one subset N .

At each stage of this clustering process, by construction,
the dissimilarity between the two merged subsets is non-
decreasing. If the goal is to obtain a partitioning of N into
subsets that display internal element similarity and between-
subset dissimilarity, a natural place to stop the process is at a
point where the dissimilarity between the next two subsets to
be merged exhibits a sharp increase.

In the current study, this hierarchical clustering method is
applied to the set B consisting of all grid buses in order
to partition B into reserve zones. The dissimilarity between
any two buses i and j in B is measured by WAi,j , and the
dissimilarity between any two disjoint bus subsets is measured
by the average dissimilarity of their bus elements. A sharp
increase in subset dissimilarity is used to determine the point
at which the clustering process is halted.

IV. COMPARATIVE PERFORMANCE SIMULATION STUDY

A. Overview

This section reports findings from a simulation study under-
taken to test the ability of dynamic reserve methods to enhance
the performance of the basic swing-contract day-ahead market
(SC DAM) design presented in Section II. Three different
methods for adaptive reserve-zone updating are considered: the
PTDF method proposed in [17]; the weighted PTDF difference
method proposed in [13]; and our modified version of [13],
presented in Section III, that makes use of line congestion risk
indices and hierarchical clustering.

The five-bus test system used for this study, adapted from
[21], is depicted in Fig. 3. The grid consists of five buses B1-
B5 and six transmission lines L1-L6. The participants include:
five dispatchable thermal generation units G1-G5 located at
buses B1, B3, B4, and B5; one non-dispatchable wind farm
located at bus B3; and three LSEs servicing load at buses B2,
B3, and B4. The designated reference bus is B4.

All simulations were carried out on the Iowa State Univer-
sity Condo cluster, whose individual blades consist of two 2.6
GHz 8-Core Intel E5-2640 v3 processors and 128GB of RAM.
Pyomo 5.3.0 was used to formulate and solve the SC DAM
optimization problem; CPLEX Python API 12.6 was employed
as the MILP solver.

B. Configuration of the Five-Bus Test System

The time step for the SC DAM was set at ∆t = 1h,
and the planning horizon T was specified to be 24 hours.
The reserve requirement percentage d% was set at 5%. The
imbalance penalties for excess and deficit power were set at Λ1

= 1000$/MW and Λ2 = 1000$/MW. The positive base power
So was set equal to 100 MVA. The physical characteristics of
the six transmission lines are given in Table I.

TABLE I
TRANSMISSION LINE DATA

Line From Bus To Bus X(p.u.) Flow Limit(MW)
L1 B1 B2 0.0281 350

L2 B1 B4 0.0304 300

L3 B1 B5 0.0064 250

L4 B2 B3 0.0108 200

L5 B3 B4 0.0297 150

L6 B4 B5 0.0297 240

Wind power at bus B3 was simulated as a normally dis-
tributed power output with a standard deviation of 10% from
expected value. Hourly load was simulated as a normally
distributed power demand with a standard deviation of 2%
from expected value. Simulated hourly load was distributed
across buses B2, B3, and B4 as 40%, 30%, and 30% of total
load, respectively.

The Monte Carlo procedure explained in Section III-B was
used to construct a set S consisting of 1000 net load forecast
scenarios s, each 24 hours in length, for the five-bus test
system. The net load at a particular bus during a particular
hour equals load (if any) minus non-dispatchable wind power
generation (if any). For the five-bus test system, net load is
always zero at B1 and B5 since only thermal generation is
present. Consequently, each scenario s ∈ S designates net
load forecasts only for buses B2, B3, and B4. An illustrative
scenario is depicted in Fig. 4.

The swing contracts submitted into the SC DAM by G1-
G5 all take form (1); hence, swing (flexibility) is offered in
power and ramp-rate levels. These swing contracts are shown
in Table II.

For our dynamic reserve-zone updating method proposed in
Section III, the bus dissimilarity matrix WA with components
(25) was calculated to be

WA =


0 0.1837 0.2543 0.4457 1.0720

0.1837 0 0.0706 0.2650 0.8914
0.2543 0.0706 0 0.1955 0.8219
0.4457 0.2650 0.1955 0 0.6278
1.0720 0.8914 0.8219 0.6278 0


(26)

Hierarchical clustering based on WA was then used to partition
the set of five buses into two reserve zones, as shown in Fig. 5.
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TABLE II
SWING CONTRACTS (SCS) SUBMITTED BY THE FIVE SC DAM PARTICIPANTS WITH DISPATCHABLE GENERATION

Thermal Service Period Power Range Ramp Rate Range Available Price Performance Price
Gen Units [te, ts] [Pmin, Pmax](MW) [−RD, RU ](MW/h) ca($) φ($/MWh)

G1 [5, 24] [10, 110] [−32, 32] 1500 14

G2 [1, 20] [10, 100] [−50, 50] 1700 15

G3 [1, 24] [50, 520] [−104, 104] 2000 25

G4 [4, 20] [20, 200] [−60, 60] 1800 30

G5 [1, 24] [40, 600] [−120, 120] 1600 10

Hour 1 2 3 4 5 6 7 8 9 10 11 12

NL2 213 203 276 270 296 184 205 261 298 256 163 209

NL3 126 136 179 162 170 101 137 183 205 153 102 114

NL4 160 153 207 203 223 138 154 196 224 192 123 157

Hour 13 14 15 16 17 18 19 20 21 22 23 24

NL2 266 293 307 198 225 220 262 219 170 258 221 297

NL3 187 207 208 135 134 145 155 151 104 172 137 190

NL4 200 220 230 148 169 165 197 164 127 193 166 223

Fig. 4. An illustrative net load forecast scenario for the five-bus test system.

Fig. 5. Reserve zones for the five-bus test system as determined by
hierarchical clustering.

C. Key Findings

Expected cost outcomes were calculated for the SC DAM
operating under three different methods for the adaptive updat-
ing of reserve zones: namely, the PTDF method proposed in
[17]; the weighted PTDF difference method proposed in [13];
and our new dynamic reserve method proposed in Section III.
As explained with care in Section II-C, expected cost for the

Fig. 6. The unit commitment determined by the SC DAM optimization using
our proposed new dynamic reserve method

SC DAM is the summation availability cost, performance cost,
and penalty cost for power supply excesses or deficits in real-
time operations.

Expected cost comparisons are presented in Table III. These
comparisons indicate that our new dynamic reserve method
results in the lowest expected cost.

TABLE III
EXPECTED COST UNDER THREE DIFFERENT DYNAMIC RESERVE METHODS

Method Reserve Zones Cleared SCs Expected Cost
[17] Z1:Bus 2, 3, 4 G1 G2 $187, 877.68

Z2:Bus1, 5 G3 G5

[13] Z1:Bus 2, 3 G1 G2 $186, 113.18

Z2:Bus 1, 5 G3 G5

Our Z1: Bus 1 2, 3, 4 G1 G2 $183, 611.70

method Z2: Bus 5 G3 G5

Under our method, the SC DAM optimization solution
clears the SCs submitted by G1, G2, G3, and G5; however,
the SC submitted by G4 is not cleared. The only informa-
tion communicated by the ISO back to G1-G5 is their unit
commitment status, i.e., whether or not their SC was cleared.
However, the SC DAM optimization solution also results in
a dispatch schedule for next-day operations that the ISO can
use as a planning device. The unit commitment and dispatch
schedule, shown in Fig. 6 and Fig. 7, respectively, reveal that
the ISO anticipates using G5 as a base-load unit due to its
relatively low performance cost.

Figure 8 reports additional information about the SC DAM
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Fig. 7. The power dispatch schedule determined by the SC DAM optimization
using our proposed new dynamic reserve method.

Fig. 8. Dynamically determined reserve ranges relative to forecasted net
load in Reserve Zone 1 under our proposed new dynamic reserve method.

optimization solution resulting under our method. By con-
struction, only Reserve Zone 1 has non-zero forecasted net
load. Fig. 8 depicts this forecasted net load together with
the lower and upper zonal reserve requirements RRL

1 (t) and
RRU

1 (t) determined endogenously for Reserve Zone 1 along
the SC DAM optimization solution path. Also superimposed
in Fig. 8 is the endogenously determined system inherent
reserve range SIRR with lower and upper range limits given
by RRmin(t) and RRmax(t) for each hour t. SIRR is a run-
time reserve measure that encompasses reserve from all zones;
see Section II for a detailed explanation of the SIRR.

As seen in Fig. 8, zonal forecasted net load is well covered
by the endogenously determined zonal reserve ranges resulting
from the SC DAM optimization under our proposed dynamic
reserve method. In particular, the width of these zonal reserve
ranges is typically wider than minimally required by the
d% reserve requirement percentage and varies over time in
response to anticipated system conditions.

V. CONCLUSION

This paper proposes a swing-contract day-ahead market
(SC DAM) optimization formulation that incorporates a new
dynamic reserve method for the adaptive updating of reserve
zones and zonal reserve requirements. The optimization for-
mulation is expressed as a mixed integer linear programming
(MILP) problem and solved using a standard MILP solver.

Comparative simulation studies are carried out for an SC
DAM operating over a five-bus transmission grid to test the
effectiveness of our new proposed dynamic reserve method.
Expected cost outcomes indicate that our method results in

lower expected costs of operation for the SC DAM than the
dynamic reserve methods proposed in [17] and [13].
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