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ABSTRACT
Models of instantaneous soil-surface CO2 e�  ux (SCEins) are critical for understanding the potential drivers of soil C loss. Several 
simple SCEins models have been reported in the literature. Our objective was to compare and validate selected soil temperature (Ts)- 
and water content (qv)-based equations for modeling SCEins among a variety of cropping systems and land management practices. 
Soil-surface CO2 e�  uxes were measured and modeled for grain-harvested corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] 
rotations, grain- and stover-harvested continuous corn systems with and without a cover crop, and reconstructed prairies with and 
without N fertilization on soils with subsurface drainage. Soil-surface CO2 e�  uxes, Ts, and qv were measured from 2008 to 2011. 
Models calibrated with weekly measured SCEins, Ts, and qv throughout the growing season produced lower root mean squared 
error (RMSE) than models calibrated with several weeks of hourly measured data. Model selection signi� cantly a� ected SCEins
estimations, with models that use only Ts parameters having lower RMSE than models that use both Ts and qv. However, the model 
that produced the lowest RMSE during validation estimated growing-season SCE that did not signi� cantly di� er from numerical 
integration of weekly measured SCEins. All models had similar residual errors with autocorrelated trends at monthly, weekly, and 
hourly scales. Autoregressive moving average functions were able to precisely describe the temporal err ors. To accurately model 
SCEins and scale across time, improvement of temporal errors in Ts– and qv–based SCEins models is needed to obtain accurate and 
precise closure of C balances for managed and natural ecosystems.
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Abbreviations: ARIMA, autoregressive, diff erenced, moving average; CC, 
continuous corn without cover crop; CCW, continuous corn with winter rye 
cover crop; C-s, corn phase of the corn–soybean rotation; c-S, soybean phase 
of the corn–soybean rotation; Km, Kirschbaum model; M1m, van’t Hoff  
model fi rst modifi ed approach;  M2m, van’t Hoff  model second modifi ed 
approach; NI, numerical integration; Pr, reconstructed mixed prairie without 
fertilization; PrF, reconstructed mixed prairie with fertilization; RMSE, root 
mean squared error; SCEcum, growing-season cumulative soil-surface carbon 
dioxide effl  ux; SCEins, instantaneous soil-surface carbon dioxide effl  ux; 
VHm, van’t Hoff  model.

Instantaneous	soil-surface	CO2	effl	ux	(SCEins) is 
a major pathway of C loss from soils (Lal, 2004). However, 
SCEins varies in time and space due to climatic, soil, and vege-
tative states (Daigh et al., 2014a; Blagodatsky and Smith, 2012; 
Vargas et al., 2011). To close managed- and natural-ecosystem 
C balances, as well as aid land-management decision support 
tools, precise and accurate estimations of SCEins and growing-
season cumulative soil-surface CO2 effl  ux (SCEcum) across 
land management practices and ecosystems are needed (Vargas 
et al., 2011; Blagodatsky and Smith, 2012).

Soil-surface CO2 effl  ux models can aid in fi lling measure-
ment gaps and give insight into long-term and widespread land 
management impacts on soil health and C cycling. Among the 
most commonly used SCEins models are those by van’t Hoff  
(1898) and Kirschbaum (1995), which are based on the sensi-
tivity of soil respiration to soil temperature (Ts) through either 
stationary or dynamic exponential expressions. Some models 

have incorporated volumetric soil water content (qv) or water-
fi lled pore space terms with the van’t Hoff  or Kirschbaum 
models (Pumpanen et al., 2003; Nielsen and Wendroth, 2003; 
Skopp et al., 1990; Doran et al., 1988). Pumpanen et al. (2003) 
used a multiplicative term that represents the limitations of O2
diff usion to microbial sites as well as water-limited substrate 
motility (Skopp et al., 1990; Doran et al., 1988). Nielsen and 
Wendroth (2003) used an additive soil qv term in the exponen-
tial component of the van’t Hoff  model. To estimate SCEcum, a 
simple numerical integration (SCEcum–NI) was used in many 
studies when periodic SCEins measurements were obtained 
(Kaspar and Parkin, 2011; Guzman and Al-Kaisi, 2010; Parkin 
and Kaspar, 2004). Th e SCEcum–NI method is appealing 
because a relatively low number of sampling dates are needed, 
but it is prone to errors as the sampling interval increases 
(Parkin and Kaspar, 2004). Additionally, the SCEcum–NI 
method does not provide any further information for estimates 
of SCEins outside the observation period and does not provide 
any information for modeling present conditions or forward 
modeling in time.
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The heterogeneity of SCEins, in time and space, presents dif-
ficulties in precisely estimating soil C losses. Continuous or 
high-frequency temporal and spatial sampling protocols can be 
expensive and labor intensive, increasing the appeal of simple 
process-based estimation models. There are a variety of simple 
SCEins models reported in the scientific literature. Independent 
comparison and validation of such models has been reported in 
only a few studies (Richardson et al., 2006; Del Grosso et al., 
2005; Falge et al., 2001). Falge et al. (2001) evaluated the expo-
nential models of van’t Hoff (1898), Arrhenius (1889), and Lloyd 
and Taylor (1994) but did not observe differences in residual 
errors. However, they only evaluated these models during night-
time periods, and they were validated with eddy covariance data, 
which measures the combined CO2 fluxes of leafs, boles, and 
soil, providing no insight into individual component contribu-
tions. Del Grosso et al. (2005) evaluated six models, including 
linear, exponential, and a new arctangent model, for estimating 
SCEins among several natural and agroecosystems. In contrast to 
Falge et al. (2001), Del Grosso et al. (2005) used chamber-based 
measurements of SCEins and observed that some models pro-
vided a range of relative agreement during validation. However, 
the models evaluated had only 30 to 49% goodness-of-fit among 
the ecosystems examined (Del Grosso et al., 2005). Richardson 
et al. (2006) evaluated 18 simple models ranging from polyno-
mials, exponentials, and Fourier regression to neural networks 
using 5.5 mo of data from a forest ecosystem in Maine. Tuomi 
et al. (2008) evaluated six models for their ability to accurately 
describe the sensitivity of soil respiration to Ts. Their evaluation 
suggested that the proposed arctangent model of Del Grosso et 
al. (2005) was overparameterized and that several exponential 
models had similar sums of squared residuals.

To our knowledge, no studies have evaluated the follow-
ing: (i) the influence of model calibrations done with weekly 
vs. hourly measured SCEins, Ts, and qv, (ii) how well models 
compare to a simple numerical integration of weekly measured 
effluxes when estimating SCEcum, (iii) the behavior of data 
collected in grain- and bioenergy-based cropping systems in 
mineral soils under drainage management, and (iv) the correla-
tions in the model residual errors using time-series analyses. 
Therefore, our objective was to address each of these four items 
by comparing and validating selected soil Ts– and qv–based 
SCEins models among several corn and soybean systems and 
mixed reconstructed prairies and to evaluate model residual 
error covariate structures.

METHODS AND MATERIALS
Site Description and Experimental Design

Soil-surface CO2 effluxes, Ts, and qv were measured from 
2008 through 2011 at the Iowa State University’s Comparison 
of Biofuel Cropping Systems research site near Ames. 
Experimental plots (n = 24) were 61 by 27 m on Webster 
(fine-loamy, mixed, superactive, mesic Typic Endoaquoll) 
and Nicollet (fine-loamy, mixed, superactive, mesic Aquic 
Hapludoll) soils. These plots were historically managed with 
subsurface drainage under corn and soybean rotations. The 
30-yr (1981–2010) mean annual precipitation and air tempera-
ture are 935 mm and 8.9°C, respectively (NOAA, 2012).

Cropping systems used for evaluating SCEins models con-
sisted of corn–soybean rotations with each crop grown each 

year, continuous corn with and without winter rye (Secale 
cereale L.) cover crop (CC and CCW, respectively), and recon-
structed mixed prairie systems with and without fertilization 
(PrF and Pr, respectively). Corn and soybean phases of the 
corn–soybean rotations are referred to as C-s and c-S, respec-
tively. Among the row crop systems, C-s and c-S were har-
vested only for grain, whereas CC and CCW were harvested 
for both grain and approximately 50% of the produced corn 
stover. Within the row crop systems, intra-crop management 
zones were identified as potential sources of spatial variability 
and were included in the SCEins, Ts, and qv sampling protocol 
(Daigh et al., 2014a). These zones included the plant row (Row; 
in C-s, s-C, CC, and CCW), interplant row with sidedress N 
injected (Fert; in C-s, CC, and CCW), interplant row with 
tractor tire traffic (Traf; in C-s, CC, and CCW), and inter-
plant row without sidedress N injection or tire traffic (Btw; in 
C-s, s-C, CC, and CCW). All cropping systems were replicated 
four times in a randomized complete block design. Further 
details of soil and agronomic management of these plots were 
provided by Daigh et al. (2014a, 2014b).

Soil-Surface Carbon Dioxide Efflux, 
Temperature, and Water Content Sampling

Soil-surface CO2 effluxes were measured between the annual 
planting of seed and harvest on 64 dates between June 2008 
through September 2011 at weekly intervals using LI-COR 
8100-103 and -104 infrared gas analyzer systems with a 
LI-8150 multiplexer (LI-COR Bioscience). To encourage verti-
cal gas transport and to provide a base for the LI-COR 8100 
systems, 20-cm-diameter by 12-cm-tall polyvinyl chloride 
(PVC) collars (n = 72) were installed near the beginning of the 
growing season and left in place until harvest except when large 
crop production equipment required temporary removal of the 
collars. Experimental plots contained either two or four sample 
locations depending on crop type. Vegetation was not allowed 
to grow inside the PVC collars throughout the growing season. 
Although no live aboveground plant tissues were included in 
the SCEins measurement, these agricultural crops have large 
fibrous root systems that could easily enter the soil below 
the measurement area due to the shallow installation depth 
(9 cm) of the collars. Details of SCEins measurement were also 
described by Daigh et al. (2014a). In addition to the weekly 
measurements, hourly SCEins measurements were periodi-
cally taken during 1 to 4 wk in selected plots during 2010 and 
2011. Volumetric soil water content and Ts measurements were 
taken to a 6-cm depth at the time of weekly and hourly SCEins 
measurements. An additional set of year-round soil qv and Ts 
measurements were taken in all plots at a 5-cm depth at 30-min 
intervals for the planting-to-harvest period and at 120-min 
intervals for the harvest-to-planting period from June 2008 to 
November 2011 in the Fert intra-crop management zone for 
C-s, CC, and CCW and in the Btw intra-crop management 
zone for c-S using Decagon Devices 5TE ECH2O sensors and 
EM50 dataloggers (Fig. 1). The year-round soil qv ranged from 
near saturation during spring and sometimes fall precipitation 
events to values <0.1 cm3 cm–3 during much of the winter 
months (Fig. 1). However, soil water contents were determined 
indirectly by measuring the soil’s dielectric permittivity. Soil 
water that transforms to ice during winter months has a lower 
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dielectric permittivity than liquid water. Thus, soil water 
contents during winter months when soil ice is present results 
in an underestimation of total soil water content (i.e., liquid 
and solid water). Additionally, the frequency and intensity 
of precipitation events throughout 2010 and early 2011 were 
greater than that observed during 2008 and 2009 and often 
had approximately 150 to 300% greater precipitation than 
the 30-yr monthly means (Daigh et al., 2014a, 2014b). The 
year-round soil Ts ranged from 15 to 35°C during peak sum-
mer months annually and from –10 to 5°C during the winter 
months annually (Fig. 1).

Regression equations were developed between the weekly 
measured soil qv and Ts in all intra-crop management posi-
tions for all crops and the year-round soil qv and Ts measured 
in all corresponding cropping systems from 2009 through 
2011 (Table 1). Curve fitting was done using least squares for 
soil qv and Ts in one experimental block from 2009 through 
2011, and then soil Ts and qv were simulated for all other plots 
across all years. The simulated year-round Ts and qv were then 
validated using the measured soil qv and Ts from the remain-
ing three experimental blocks (Table 1). For C-s and c-S, each 
crop year is considered as starting at planting of seed through 
the next annual planting of seed. Daigh et al. (2014a) observed 
that weekly measured soil qv, to a 6-cm depth, differed among 
intra-crop management zones but did not significantly differ 
among cropping systems at this site. Therefore, when soil qv 
data were not available for an intra-crop management zone, 
the regression equation from the next similar crop was used 
(Table 1). The year-round soil qv and Ts measurements made 
with the ECH2O sensors in the Fert and Btw intra-crop man-
agement zones for C-s and c-S were not used as input for the 
SCEins models. Instead, simulated soil qv and Ts for the Fert 
and Btw intra-crop management zones were done by regression 
equations, similar to how it was done for the Row and Traf 
intra-crop management zones. This was to prevent unknown 
errors associated with spatial variability between where the 
weekly soil qv and Ts measurements were obtained (i.e., <20-
cm distance from the SCEins measurements) and where the 
year-round soil qv and Ts measurements were obtained by the 
ECH2O sensors (i.e., approximately 200 cm away from the 
SCEins measurements).

Soil-Surface Carbon Dioxide Efflux Prediction

The SCEins and SCEcum were modeled for each cropping sys-
tem’s intra-crop management zones. The SCEins and SCEcum 
were then weighted based on each intra-crop management 
zone’s proportional area. Daigh et al. (2014a) reported that 
SCEins values periodically differ among intra-crop manage-
ment zones of continuous corn with stover removal and that 
the use of a cover crop reduced how often these differences 
occurred. In contrast, they observed that SCEins in the C-s 
and c-S rotations did not differ among intra-crop manage-
ment zones. Therefore, a weighting of SCEins across a crop’s 
intra-crop management zones is necessary to account for these 
fine-spatial-scale differences. Soil-surface CO2 efflux model-
ing approaches included numerical integration (SCEcum–NI) 
and simple Ts– and qv–based models with parameter estima-
tion first done using weekly measurements across all growing 
seasons and then using hourly measurements during 1 to 4 wk 

during the summers of 2010 and 2011 (Table 2). Similar to the 
simulated Ts and qv, parameter estimation was done for each 
cropping system intra-crop management zone using measure-
ments from one experimental block and then validated with 
measurements from the remaining three experimental blocks.

The SCEcum–NI was determined by
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where Xi and Xi+1 are the SCEins measured at times ti and ti+1, 
respectively (Kaspar and Parkin, 2011; Guzman and Al-Kaisi, 
2010; Parkin and Kaspar, 2004).

The simple Ts– and qv–based equations used in this study 
included those based on known empirical relationships among 
SCEins and soil physical states including Ts and qv (Parkin and 
Kaspar, 2003; Fang and Moncrieff, 2001; Skopp et al., 1990). 
The simplest models consist of the widely used Q10 approach 
and the van’t Hoff model (SCEins–VHm), relating soil CO2 
production to Ts as

( )ins sSCE exp T=a b  [2]

where a and b are fitted parameters (van’t Hoff, 1898), and the 
Kirschbaum model (SCEins–Km):

Fig.	1.	Measured	soil	water	content	and	soil	temperature	for	the	corn	
(C-s)	and	soybean	(c-S)	phases	of	a	corn–soybean	rotation,	continuous	
corn	with	no	cover	crop	(CC),	continuous	corn	with	a	winter	rye	
cover	crop	(CCW),	unfertilized	prairie	(Pr)	and	fertilized	prairie	(PrF)	
cropping	systems	from	June	2008	to	November	2011.	Values	are	the	
means	of	four	experimental	blocks.	Note	that	soil	water	contents	were	
determined	by	measuring	the	soil’s	dielectric	permittivity.	Soil	water	
that	transforms	to	ice	during	winter	months	has	a	lower	dielectric	
permittivity	than	liquid	water.	Thus,	soil	water	contents	during	winter	
months	when	soil	ice	is	present	results	in	an	underestimation	of	total	
soil	water	content	(i.e.,	liquid	and	solid	water).
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where a is a fitted parameter and a, b, and c are constants 
with values of 3.36, 40, and 31.79, respectively, as given by 
Kirschbaum (1995, 2000) and Paul (2001). The SCEins–Km is 
the same as the Lloyd and Taylor (1994) function but has been 
modified for a wider range of soils (Paul, 2001; Kirschbaum 
1995, 2000). The SCEins–VHm and SCEins–Km were then 
modified to produce two more approaches that include soil qv 
terms. The first modified approach (SCEins–M1m) uses a mul-
tiplicative water-filled pore space term that accounts for limita-
tions of O2 diffusion to microbial sites when soil qv is large and 

limitations for available water for substrate motility when soil 
qv is small (Skopp et al., 1990; Doran et al., 1988):

( ) ( ){ }o vins s v ,  SCE exp min ,1 gf ET d eé ùé ù -q= a b qê úë ûë û  [4]

where a and b are fitted parameters, Eo is soil total porosity, 
and empirical constants d, e, f, and g are 3.83, 4.43, 1.25, and 
0.854, respectively, as given by Skopp et al. (1990). The second 
modified approach (SCEins–M2m) uses an additive qv term in 
the exponential component of the SCEins–VHm (Nielsen and 
Wendroth, 2003):

( )ins o s vSCE exp  T= c a +bq  [5]

where co, a , and b are fitted parameters.
Modeled SCEins as described in Eq. [2–5] are appealing due 

to known empirical relationships that SCEins has with Ts and 
qv. However, these models do not take into account specific 
mechanisms but averages across many soil processes. Due to 
this fact, there is the potential for site-specific temporal cor-
relation structures when modeling SCEins. Therefore, autore-
gressive, differenced, moving average (ARIMA) models were 

Table	1.	Soil	temperature	and	water	content	fitted	equations	and	RMSE	
of	simulated	data.

Crop† MZ‡ Fitted	equation§ RMSE Bias
—— °C	or	m3 m–3 ——

Temperature
C-s Btw x1.040 2.68 0.02

Fert x1.034 2.40 –0.22
Traf x1.036 2.14 0.23
Row x1.042 2.43 0.21

c-S Btw 1.147x	+	0.15 9.43 –1.43
Row 7.362x0.364 4.28 –0.64

CC Btw 2.045x0.798 4.49 –0.96
Fert x1.019 12.35 6.61
Traf x1.017 4.74 –1.59
Row 8.564x0.318 4.27 –0.07

CCW Btw 3.716x0.584 3.66 –0.37
Fert 1.707x0.836 4.12 –0.50
Traf 2.044x0.792 4.03 0.44
Row 2.047x0.783 3.87 –0.40

Pr 1.167x	+	0.155 7.24 2.27
PrF 2.06x0.787 5.21 –0.94
Overall 4.43 –0.06

Volumetric	soil	water	content
C-s Btw 0.951x	+	0.068 0.048 <0.001

Fert 0.831x	+	0.108 0.052 <0.001
Traf 0.677x	+	0.174 0.038 –0.001
Row 0.822x	+	0.093 0.053 –0.007

c-S Btw 0.696x	+	0.094 0.101 0.016
Row 0.849x	+	0.061 0.061 <0.001

CC Btw 0.849x	+	0.061 0.068 –0.017
Fert 1.263x	+	0.031 0.093 0.038
Traf 1.636x 0.126 0.052
Row 0.440x	+	0.166 0.048 <0.001

CCW Btw 1.067x	+	0.014 0.064 <0.001
Fert 1.200x	+	0.030 0.068 –0.006
Traf 1.053x	+	0.086 0.068 –0.001
Row 0.765x	+	0.107 0.066 –0.005

Pr 0.662x	+	0.083 0.073 <0.001
PrF 0.708x	+	0.152 0.072 0.009
Overall 0.064 –0.001
†	C-s,	corn	phase	of	corn–soybean	rotation;	c-S,	soybean	phase	of	corn–soybean	
rotation;	CC,	continuous	corn;	CCW,	continuous	corn	with	winter	cover	crop;	
Pr,	prairie;	PrF,	fertilized	prairie.
‡	MZ,	intra-crop	management	zone;	Btw,	interrow;	Fert,	interrow	with	sidedress	
N	application;	Traf,	interrow	with	wheel	traffic;	Row,	in	plant	row.
§	Variable	x	is	the	measured	soil	temperature	(°C)	or	measured	volumetric	soil	
water	content	(cm3	cm–3).

Table	2.	Validation	of	modeled,	intra-crop	management	zone	weighted	
soil-surface	CO2	effluxes	for	cropping	systems	calibrated	with	weekly	
measured	data.

Model† Crop‡ RMSE Bias

—— mmol	CO2 m
–2	s–1 ——

VHm C-s 1.29 0.17
c-S 1.28 –0.15
CC 1.41 –0.38
CCW 1.24 0.19
Pr 1.71 0.18
PrF 1.73 –1.26
Mean 1.44 –0.21

Km C-s 1.88 0.41
c-S 1.50 0.06
CC 1.38 –0.08
CCW 1.24 0.27
Pr 1.34 –0.54
PrF 1.23 –0.47
Mean 1.43 –0.35

M1m C-s 1.93 –1.40
c-S 1.79 –1.14
CC 2.16 –1.58
CCW 1.91 –1.36
Pr 2.21 –1.52
PrF 2.38 –2.01
Mean 2.06 –1.52

M2m C-s 1.37 0.10
c-S 1.29 0.35
CC 1.61 –0.45
CCW 1.30 0.20
Pr 2.54 –0.77
PrF 1.56 –0.84
Mean 1.61 –1.41

†	VHm,	van’t	Hoff	model;	Km,	Kirschbaum	model;	M1m,	first	modified	van’t	Hoff	
model;	M2m,	second	modified	van’t	Hoff	model.
‡	C-s,	corn	phase	of	corn–soybean	rotation;	c-S,	soybean	phase	of	corn–soybean	
rotation;	CC,	continuous	corn;	CCW,	continuous	corn	with	winter	cover	crop;	
Pr,	prairie;	PrF,	fertilized	prairie.
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determined using model residual errors of the hourly measured 
SCEins in 2011. The autocorrelation function (ACF) length 
of model residual errors were used for determining the autore-
gressive (AR) order, partial autocorrelation function (PACF) 
length for the moving average (MA) order, and a first-order 
differencing to obtain stationary means. The order (p) of the 
AR and MA components were selected using the Akaike infor-
mation criterion (AIC). The ACF, PACF coefficients (f), and 
AIC were determined by

( ) ( )[ ]
( )[ ] ( )[ ]
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i i

i i
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where cov and var are the covariance and variance, respectively, 
Ai is the measured SCEins at a 1-h interval, t is the point in 
time of Ai, h is the time lag (in h) for determining the PACF, 
fi+1,j is fi,j minus the product of fi+1,i+1 and fi,i-j+1, where 
j is 1, 2, …, i, and i is 1, 2, …, p; when i > p, then PACF is zero; 
RSSavg is the average residual sum of squares, k is the number 
of regression coefficients, N is the number of observations, and 
Ai* is the modeled SCEins.

Once all models were calibrated using the weekly and then 
hourly measured SCEins, the models were validated using the 
weekly measured and spatially weighted SCEins for all crop-
ping systems. To compare model performances, the root mean 
squared error (RMSE) and bias were used to determine which 
models performed best:
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For statistical comparisons among Eq. [2–5], the modeled 
SCEins were accumulated with time for each growing season 
using the same dates as used in the SCEcum–NI method. A 
general linear model analysis of variance was performed to 
determine the effect of model, cropping system, year, and their 
interactions on SCEcum weighted across intra-crop manage-
ment zones. When appropriate, means were separated using 
Tukey’s test at the 0.05 level. Statistical analyses were con-
ducted using SAS (Version 9.2, SAS Institute).

RESULTS AND DISCUSSION
Soil Temperature and Water Content 
Assimilation and Model Calibrations

Simulated Ts and qv for intra-crop management zones across 
all years using the least squares fitted regression equations 
produced reasonable results during validation (Table 1). The 
RMSEs for Ts and qv were 4.4°C and 0.06 cm3 cm–3, respec-
tively, and are slightly larger or similar to errors reported in 
methodology studies for advanced modeling of Ts and qv (Pan 
et al., 2012; Tabari et al., 2011; Gribb et al., 2009; Grant et 
al., 1993; Table 1). Such studies reported that the use of pedo-
transfer functions in an ensemble Kalman filter, the use of soil 
profile qv and water potential gradients in modeling soil water 
redistribution, or the use of multivariate linear regressions 
incorporating atmospheric relative humidity and precipita-
tion can reduce the RMSEs of simulated Ts and qv by 50%. 
However, we considered the simulated soil qv and Ts in this 
study to be reasonable because the simulated data (i) described 
well the dynamic trends with time, and (ii) provided a robust 
set of Ts and qv inputs to allow a fair comparison among SCEins 
models (Table 1; Fig. 2).

To determine an optimum calibration method for the 
SCEins models, each model was first calibrated using hourly 
measured SCEins, Ts, and qv during 1 to 4 wk in the summer of 
2010 and 2011, and then a second calibration, independent of 
the first, was obtained using weekly measured SCEins, Ts, and 
qv during the growing seasons across all years. During model 
validation, the RMSE for SCEins–VHm and SCEins–Km did 
not substantially differ when calibrated with either weekly or 
hourly measured data when averaged across all cropping sys-
tems (i.e., <1% difference in RMSE). In contrast, the RMSE 
for SCEins–M1m and SCEins–M2m were 12 and 5% lower, 
respectively, when calibrated with weekly measured data com-
pared with hourly measured data. The range of RMSE change 

Fig.	2.	Examples	of	measured	and	simulated	soil	water	contents	and	soil	
temperatures.	Data	are	from	the	N	fertilizer	intra-crop	management	
zone	in	the	corn	phase	of	the	corn–soybean	cropping	system	in	2011.	
The	hourly	soil	water	content	and	soil	temperature	were	measured	
within	20	cm	of	the	soil-surface	CO2	efflux	collars.	Simulated	soil	
water	content	and	soil	temperature	were	based	on	least	squares	fitted	
regression	of	hourly	data	from	ECH2O	sensors	(approximately	200	cm	
from	the	CO2	efflux	collars)	to	weekly	measured	data	sampled	within	
20	cm	of	the	CO2	efflux	collars	and	across	2009	to	2011.	The	hourly	
measured	data	shown,	the	weekly	measured	soil	water	contents,	and	
the	hourly	measured	data	used	in	the	fitted	regression	analysis	were	all	
obtained	from	different	sensors.
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for SCEins–M1m and SCEins–M2m were 6 to 20% and –5 to 
21%, respectively, among cropping systems when calibrated 
with weekly measured data compared with hourly measured 
data. Across all models and cropping systems, RMSEs of 
SCEins models during validation were 1.86 and 1.64 mmol 
CO2 m–2 s–1 when calibrated with hourly and weekly mea-
sured data, respectively.

The lower RMSEs of SCEins models calibrated with weekly 
measured data across all growing seasons suggest that these models 
are better at describing seasonal dynamics than diurnal cycles and 
weekly trends for our data set. Model calibrations with hourly data 
from the summer of 2010 and 2011 were expected to have a better 
fit with diurnal cycles and weekly trends associated with precipita-
tion events because these measured data precisely describe daytime 
and nighttime SCEins as well as SCEins during and following 
precipitation events. In contrast, models calibrated with weekly 

measured data across all growing sea-
sons are expected to more precisely 
describe seasonal dynamics because 
they represent a much longer period 
of SCEins. Based on these results, 
SCEins models calibrated with 
weekly measured SCEins, qv, and Ts 
were used for further model compari-
sons due to the overall lower RMSEs 
during validation (Table 2).

Comparison of Models

Models calibrated with weekly 
measured SCEins, qv, and Ts were 
used for comparisons. Soil-surface 
CO2 effluxes varied substantially 
among models for all cropping 
systems and years (Fig. 3 and 4). 
Standard deviations among experi-
mental blocks were typically lower 
than standard deviations among 
models. During the summer months 

of each year, SCEins–Km, SCEins–VHm, and SCEins–M2m 
produced greater SCEins and lower experimental-block standard 
deviations in all crops than SCEins–M1m. However, the models 
produced relatively similar effluxes during early spring after soil 
thaw and late fall before soil freezing.

Modeled SCEins typically ranged from 0 to 8 mmol 
CO2 m–2 s–1 in all cropping systems with the exception of the 
SCEins–M2m estimates for Pr, which were as large as 12 mmol 
CO2 m–2 s–1 during the summer months of 2011. Modeled 
SCEins for Pr and PrF tended to be larger than the row crops 
during the winter months. Although winter effluxes could not 
be validated in the current study, such effluxes are attributed to 
larger winter Ts in the prairies than in the row crops (Ewing and 
Horton, 2012). The ability to capture this trend was expected 
and demonstrates the potential of these models to estimate 

winter effluxes provided that winter 
Ts and qv data are available and that 
winter SCEins data are available for 
model calibration and validation.

When modeled SCEins were 
accumulated during the growing 
season, the effluxes differed sig-
nificantly among models (Table 
3). The differences among models 
accounted for 2.4 times as much 
variability as did differences 
among cropping systems (Table 
3). Estimated SCEcum were in 
the order of Km > NI > VHm > 
M2m > M1m when averaged across 
cropping systems and years (Table 
3). However, SCEcum–Km and 
SCEcum–NI produced statistically 
similar SCEcum values and had 
the largest effluxes of the models. 
In contrast, M1m produced the 
lowest average SCEcum value and 

Fig.	3.	Soil-surface	CO2	effluxes	modeled	using	the	Kirschbaum	(Km),	van’t	Hoff	(VHm),	first	modified	van’t	
Hoff	(M1m)	and	second	modified	van’t	Hoff	(M2m)	models	and	measured	for	corn,	soybean,	and	continuous	
corn	systems	from	June	2008	to	November	2011.

Fig.	4.	Soil-surface	CO2	effluxes	modeled	using	the	Kirschbaum	(Km),	van’t	Hoff	(VHm),	first	modified	van’t	
Hoff	(M1m)	and	second	modified	van’t	Hoff	(M2m)	models	and	measured	for	continuous	corn	with	cover	
crop,	prairie,	and	fertilized	prairie	systems	from	June	2008	to	November	2011.
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was significantly different from all other models. These results 
emphasize the importance of model selection when attempting 
to model SCEcum (Richardson et al., 2006).

The analysis of variance also revealed a significant year effect, 
which was expected due to weather variability and because data 
collection began midway through the 2008 growing season 
(Table 3). Modeled SCEcum values were in the order of Pr > 
C-s > CCW > CC > c-S > PrF when averaged across models 
and years (Table 3). The low effluxes for PrF relative to all other 
cropping systems was due to greater crop canopy cover result-
ing in lower Ts during the growing season months (Daigh et 
al., 2014a; Jarchow and Liebman, 2013; Jarchow et al., 2012). 
However, the high effluxes for Pr relative to all other cropping 
systems are attributed to a root biomass 2.5 and 9.0 times greater 
than those of PrF and row crops, respectively (Dietzel et al., 
2012). Although each main effect and their interactions were 
significant, the main effects (i.e., year, cropping system, and 
model) accounted for 89% of the total variability. Interaction 
effects were typically due to whether a model produced SCEcum 
values for Pr that were either significantly different or similar to 
the other cropping systems. Each interaction effect accounted for 
only 1.7 to 4.1% of the total variability.

Model Error Structures

Validation of modeled to measured SCEins revealed similar 
problematic issues among all models, crops, years, and experimen-
tal blocks (Fig. 3 and 4). In general, all models tended to overes-
timate SCEins early and late in the growing season while largely 
underestimating SCEins during the summer months (Fig. 3 and 
4). The SCEins–M1m had the lowest absolute residual errors of 
all the models in the early and late stages of the growing season. 
However, the SCEins–M1m had the greatest absolute residual 
errors of all the models in the midsummer months. The SCEins–
Km, SCEins–VHm, and SCEins–M2m tended 
to overestimate SCEins early in the growing 
season, followed by transitioning to under-
estimations during midsummer, followed by 
transitioning back to overestimations late in 
the growing season (Fig. 3 and 4). Among all 
models, the standardized residual errors typi-
cally ranged from 2 to –4 mmol CO2 m–2 s–1, 
with 48 and 72% of residuals ranging from 1 
to –1 and 2 to –2 mmol CO2 m–2 s–1, respec-
tively (Fig. 3 and 4). This range of residual 
errors is similar to those reported by Bauer et 
al. (2008) and Lloyd and Taylor (1994).

These trends of over- and underestima-
tions of SCEins within each year may allow 
somewhat reliable estimations of SCEcum or 
perhaps SCEcum extended across an entire 
year. However, these models lack the temporal 
robustness needed for downscaling with time 
and may cause significant errors when estimat-
ing seasonal or daily soil C dynamics. The 
standardized residual errors are clearly auto-
correlated with time and have large errors at 
the seasonal scale (Fig. 5). This was somewhat 
expected because Q10 values have been reported 
to shift seasonally (Yu et al., 2011). However, 

Table	3.	Analysis	of	variance	summary	of	cumulative	intra-crop	manage-
ment	zone	weighted	soil-surface	CO2	efflux	per	growing	season	among	
years,	crops,	models,	and	their	interactions.

Variation	source p	value Contributed	variance
%

Year <0.0001 45.5

Crop <0.0001 12.6

Model <0.0001 30.4

Crop	´	model <0.0001 3.6

Year	´	model <0.0001 4.1

Year	´	crop <0.0001 2.0

Year	´	crop	´	model <0.0001 1.7

Growing	season	mean,	Mg	CO2–C	m
–2

Year
 2011 4.16	a†
 2010 4.07	a
 2009 3.83	b
 2008 1.72	c
Crop‡
 Pr 4.48	a
 C-s 3.58	b
 CCW 3.54	b
 CC 3.13	c
 c-S 3.11	c
 PrF 2.86	d
Model§
 Km 4.10	a
 NI 4.09	a
 VHm 3.92	b
 M2m 3.88	b

 M1m 2.11	c
†	Means	followed	by	different	letters	are	significantly	different	at	the	0.05	level.
‡	C-s,	corn	phase	of	corn–soybean	rotation;	c-S,	soybean	phase	of	corn–soybean	
rotation;	CC,	continuous	corn;	CCW,	continuous	corn	with	winter	cover	crop;	
Pr,	prairie;	PrF,	fertilized	prairie.
§	VHm,	van’t	Hoff	model;	Km,	Kirschbaum	model;	M1m,	first	modified	van’t	Hoff	
model;	M2m,	second	modified	van’t	Hoff	model.

Fig.	5.	Examples	of	residual	errors	by	experimental	block	and	year	for	the	corn	phase	of	the	
corn–soybean	rotation	(C-s),	continuous	corn	with	cover	crop	(CCW),	and	fertilized	prairie	(PrF)	
cropping	systems	using	the	Kirschbaum	(Km),	van’t	Hoff	(VHm),	first	modified	van’t	Hoff	(M1m)	and	
second	modified	van’t	Hoff	(M2m)	models.	Data	from	Block	1	(noted	as	Calibration)	were	used	for	
calibrating	the	models;	data	from	Blocks	2,	3,	and	4	were	used	for	validation	of	the	models.
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this was not expected for SCEins–Km, which allows for the adjust-
ment of the sensitivity of soil CO2 production to changes in Ts 
(Paul, 2001; Kirschbaum, 2000, 1995). Overall, RMSEs of the 
modeled SCEins across all years, blocks, and cropping systems were 
lowest for SCEins–Km and SCEins–VHm, with similar RMSEs 
of 1.43 and 1.44 mmol CO2 m–2 s–1, respectively, compared 
with SCEins–M1m and SCEins–M2m with RMSEs of 2.06 and 
1.61 mmol CO2 m–2 s–1, respectively (Table 2).

Pumpanen et al. (2003) reported similar seasonal errors in 
modeled SCEins for a forest ecosystem when using a model 
analogous to SCEins–M1m in the current study. However, their 
observed seasonal errors were inversely related to those observed 
in the current study, with underestimated SCEins early and late 
in the year and either well-fitted or overestimated SCEins in the 
summer months compared with chamber-based SCEins measure-
ments. These inversely related seasonal errors in modeled SCEins 
among our observations and those reported by Pumpanen et al. 
(2003) may be due to differences in soil C substrate, root and soil 
microbial dynamics, and plant phenology of forest vs. grassland 
and agroecosystems (Vargas et al., 2010). However, these differ-
ences may just as likely be due to differences in the soil depth at 
which SCEins is best correlated to Ts (Richardson et al., 2006). 

Additionally, our evaluation indicated that models with only 
Ts parameters had lower RMSEs than models with Ts and qv 
parameters. This contrasts with the model evaluations by Del 
Grosso et al. (2005) and Pumpanen et al. (2003). Pumpanen et 
al. (2003) reported that incorporating the same qv parameters as 
used in M1m substantially reduced the overestimation of SCEins. 
The use of qv parameters in the current study also reduced the 
tendency of SCEins overestimation both early and late in the 
growing season but tended to induce substantial underestima-
tion of SCEins during the summer months (Fig. 5). This could 
be due to differences in transpiration and drainage dynamics of 
the field sites used by Pumpanen et al. (2003) and the current 
study. In their study, parameter estimations and validations were 
done with measured SCEins from a 40-yr-old coniferous forest 
with glacial till soils overlain by an O horizon, with moss provid-
ing abundant ground coverage, and were naturally drained. In 
contrast, the current study used measurements from corn and 
soybean systems and mixed reconstructed prairies on mineral 
glacial till soils with a history of soil tillage and subsurface drain-
age management. Thus, the tendency of qv parameters was to 
decrease modeled SCEins in both studies but at the contrasting 
cost of reducing overestimation vs. inducing underestimation, 

which may be due to differences in soil water drain-
age dynamics or peak photosynthesis among the 
ecosystems as well as to natural vs. subsurface drainage 
landscapes (Daigh et al., 2014b; Niinistö et al., 2011). 
Daigh et al. (2014a) reported that soils undergoing 
apparent drainage or rapid internal soil water redis-
tribution (i.e., non-stationary conditions with time) 
greatly limited the effect of soil temperature on SCEins. 
These observations as well as studies of soil water 
potential on greenhouse gas emissions suggest that soil 
water potentials may be more important for predicting 
SCEins than soil water contents or water-filled pore 
space (Castellano et al., 2010, 2011). Additionally, 
the relationship between soil water status and SCEins 
changes seasonally with the advancement of plant 
growth stages, plant responses to weather, and any 
subsequent changes in labile C sources, thus making 
accurate predictions difficult for monocropped agricul-
tural systems and for diverse, mixed perennial systems 
(Daigh et al., 2014a; Kirschbaum, 2013; Niinistö et al., 
2011). Niinistö et al. (2011) reported that the relation-
ship between SCEins and soil water was not apparent 
as the annual air temperature and plant growth stage 
advanced. Therefore, the effects of soil moisture on 
SCEins continue to be complex and an important 
challenge for improving SCEins models (Howard and 
Howard, 1979).

To determine potential errors at finer scales, hourly 
measured SCEins values during the summer of 2011 
were compared with modeled SCEins values. Similar 
to the residual errors of weekly modeled effluxes across 
a year, the residual errors of hourly modeled effluxes 
across a month were not stationary and displayed errors 
at the scale of 4 to 7 d associated with precipitation 
events (Fig. 6A). This is evident in the regional errors as 
the inflection points (where model errors change from 
being more positive or more negative) occur also when 

Fig.	6.	Example	of	cumulative	soil-surface	CO2	efflux	(SCEcum)	across	29	d	for	a	
between-plant-row	zone	(Btw)	in	a	continuous	corn	(CC)	cropping	system:	(A)	
modeled	effluxes	using	the	second	modified	van’t	Hoff	model	(M2m)	vs.	measured	
cumulative	effluxes,	where	regional	errors	are	apparent	when	observing	differences	
among	the	modeled	data	and	the	1:1	line;	(B)	the	SCEcum–M2m	residual	errors	
transformed	with	a	first-order	differencing	to	enable	stationary	conditions	for	spectral	
analysis	(upper	section).	The	spectral	analysis	revealed	a	strong	24-h	cyclic	trend	in	the	
residual	errors,	indicating	substantial	temporal	errors	in	the	model	at	24-h	intervals	
that	are	independent	of	the	regional	(i.e.,	larger	time	scale)	errors	shown	in	(A).
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precipitation events occur (Fig. 6A). When these residual errors 
were transformed by first-order differencing, the residual errors 
displayed a strong spectral density signature at a 24-h frequency 
(Fig. 6B). Therefore, modeled SCEins from these simple models 
had clear residual errors at the seasonal, weekly, and daily scales 
(Fig. 5 and 6). Although spectral densities and wavelet analy-
ses can sometimes aid in identifying biophysical processes, we 
could not attribute spectral densities in this study to any specific 
mechanism. However, regional variability of the residual errors 
at the 4- to 7-d scale was probably due to the inability of these 
models to adequately characterize dynamic soil water effects 
(e.g., soil water redistribution and changes in soil gas diffusivi-
ties) on SCEins (Daigh et al., 2014a; Vargas et al., 2010). The 
response of plants to changes in soil water status (e.g., plant C 
reallocation) may also contribute to this observed variability. 
During the spectral density analysis, autocorrelation functions 
and partial autocorrelation functions were determined for the 
residual errors. From this, ARIMA models were able to pre-
cisely characterize the residual errors’ temporal trends and thus 
eliminate any significant autocorrelations and spectral-density 
signatures when subtracted from the modeled SCEins. In doing 
so, this substantially improved the modeled SCEins (Fig. 7). 
However, these ARIMA models are site specific and provide no 
information on real physical processes. If site-specific informa-
tion is available, the use of ARIMA models with simple Ts– and 
qv–based SCEins models can improve estimated effluxes across 
time scales. However, based on these data and other evaluations 
in the literature, improvement of these simple Ts– and qv–based 
models is needed for accurate SCEins estimations and for down-
scaling SCEins estimates with time.

CONCLUSIONS
Although model selection has been shown to significantly 

affect modeled SCEins across a range of cropping systems and 
land management practices, both SCEins–Km and SCEins–
VHm have similar RMSEs and tended to produce lower 
RMSEs than those for SCEins–M2m and SCEins–M1m by 
0.17 and 0.62 mmol CO2 m–2 s–1, respectively. Regardless of 
the model, similar temporal errors were observed at monthly, 
weekly, and daily time scales. Monthly errors were attributed to 
changes in the sensitivity of soil CO2 production to Ts across 
a crop growing season (Yu et al., 2011). Weekly errors were 
at least attributed to the lack of incorporating parameters to 
account for the periodic effects of soil water redistribution on 
SCEins (Daigh et al., 2014a). In general, our results substanti-
ate the poor performance of these simple models as reported 
by Richardson et al. (2006) and Tuomi et al. (2008), and these 
simple models have limited versatility when modeling SCEins 
across time scales during the growing season. However, time 
series analysis, such as ARIMA models, in conjunction with 
simple soil temperature and soil water content based SCEins 
models can substantially reduce residual errors. The ARIMA 
models may be useful in this context but are site specific, 
require detailed information with regard to temporal autocor-
relations, and provide no insight into real physical processes. 
To accurately model SCEins and to scale it with time, improve-
ments of these simple Ts– and qv–based SCEins models are 
needed if accurate and precise closure of C balances for man-
aged and natural ecosystems are to be obtained.

Abbreviations and Variables Used in This Study
ACF autocorrelation function
AIC Akaike information criterion
ARIMA autoregressive, differenced, moving average 

model
Btw interrow without sidedress N injection or 

tire traffic
CC continuous corn with stover harvest without 

winter rye cover crop
CCW continuous corn with stover harvest and 

winter rye cover crop
C-s corn phase of the corn–soybean rotation
c-S soybean phase of the corn–soybean rotation
Fert interrow with sidedress N injected
PACF partial autocorrelation function
Pr reconstructed mixed prairie without N 

fertilization
PrF reconstructed mixed prairie with N 

fertilization
RMSE                  root mean squared error
Row plant row
RSSavg average residual sum of squares
SCEins instantaneous soil-surface CO2 efflux
SCEins–Km Kirschbaum model for instantaneous soil-

surface CO2 efflux
SCEins–M1m van’t Hoff first modified model for instanta-

neous soil-surface CO2 efflux
SCEins–M2m van’t Hoff second modified model for instan-

taneous soil-surface CO2 efflux
SCEins–VHm van’t Hoff model for instantaneous soil-

surface CO2 efflux
SCEcum growing-season cumulative soil-surface CO2 

efflux
SCEcum–Km Kirschbaum equation with values integrated 

across the growing season

Fig.	7.	Example	of	soil-surface	CO2	effluxes	modeled	using	the	second	
modified	van’t	Hoff	model	(SCEcum–M2m)	and	modeled	using	an	
autoregressive,	differenced,	moving	average	(ARIMA)-(4,1,7)	vs.	
measured	values	for	a	between-plant-row	zone	(Btw)	in	a	continuous	
corn	cropping	system	(CC).
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SCEcum–M1m van’t Hoff first modified equation integrated 
across the growing season

SCEcum–M2m van’t Hoff second modified equation inte-
grated across the growing season

SCEcum–NI numerical integration
SCEcum–VHm van’t Hoff equation with values integrated 

across the growing season
Traf interrow with tractor tire traffic
Ts soil temperature
qv volumetric water content
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