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I. INTRODUCTION

The interactions occurring in an electrolytic solution
may be generally classified into two categories: 1) ion-
solvent interactions, and 2) ion-ion interactions. An under-
standing of these two types of interactions is the goal of
all basic studies on solutions of electrolytes. Often the
nature of the pure solvent, itself, is not well known. Water,
the most common of all solvents from the standpoint of usage,
is one of the most uncommon from the standpoint of properties.
To date, no theoretical model has satisfactorily accounted
for all the properties of liquid water. Ion-ion interactions
may be somewhat artificially classified into long range electro-
static interactions and short range interactions characterized
by the formation of complexes which are often covalent in
nature. Of course, there are many complexes which are pre-
dominantly electrostatic in nature. Also, an ion pair, an
aggregate of two ions separated by at least one solvent mple-
cule, would seem to fall somewhere in between the long range
and short range classifications. FPFurthermore, the inter-
actions of an ion with a polar solvent molecule such as water
is, in many cases, really little different in character from
the complex formation of two ions. The utility of the classi-
fications, then, is not in that they are totally inclusive,
which they are not, but that they bring some order to the

study and understanding of electrolytic solutions.



Successiul theoretical treatment of these solutions is
thus far limited to dilute solutions where the predominant
ion-ion interactions are long range, electrostatic in nature
and where the solvent may be considered a structureless
continuum. Tests of these theories, particularly for higher
valence type electrolytes, are often more informative by their
deviations from theoretical behavior than from their conformity
to the theory.

Previous studies of the apparent molal volumes of rare
earth chlorides and nitrates have revealed two interesting
facts (1, 2, 3 ). First, while all of the chlorides studied
and also Er and Yb nitrate appeared to conform to the Debye-
Hiickel solution theory in the dilute range (<0.05 molal), La
and Nd nitrate did not. Ayers suggested that this might be
due to the formation of an appreciable amount of a nitrate
complex of La and Nd in the concentration range studied {1).
Second, the apparent molal volumes at infinite dilution for
a glven rare earth anion series did not decrease regularly
with decreasing rare earth ionic radius as one might infer,
but seemed to fall into two decreasing series with Sm and Gd
falling in between. Ayers suggested a change in the coordina-
tion of the solvent molecules about the rare earth ions to

explain this behavior. Pikal found that, for the chlorides,



This study had the objective to investigate a third rare
earth anion series where the assumption that no complex forma-
tion is occurring can be made. The rare earth perchlorate
salts were chosen for this purpose. This allowed a further
check on whether or not the rare earth salts approached the
Debye-Huckel limiting law in dilute solution. The data could
also be tested against the Debye-Hiuckel theory when the effect
of the & parameter is 1ncluded. This study also sought to
determine which of the other nitrates deviated markedly from
the Debye-Hlickel theory at low concentrations. This could be
compared with the variation of the stability constants of the
rare earth nitrates. PFurthermore, the nitrate series, as a
whole, could be compared with the chlorides, which complex to
a lesser extent than the nitrates, and the perchlorates, which
do not complex at all. ILastly, it was desired to determine
if the trends in the apparent molal volumes at infinite
dilution found by Ayers and Pikal persisted for all the
chlorides and nitrates and extended to the perchlorates.

Therefore, the apparent molal volumes of aqueous solutions
of Eu, Tm and Lu chlorides; Pr, Sm, Eu, Gd, Tb, Dy, Ho, Tm
and Iu nitrate; and La, Nd, Gd and Lu perchlorate were deter-
mined at 250 C from 0,0015 to about 0.15 molal. It is hoped
that in the future this data will also be useful in testing
a more complete tneory of €lecirolytic scluticnc capable of

predicting changes in the coordination of ions, formation of



complexes and changes in solvent characteristics. Furthermore,
while this data 1s limited to dilute solutions, it is necessary
tc any thermodynamic theory of concentrated solutions since

it provides an accurate extrapolation to infinite dilution.

It will be shown that the partial molal volume at infinite
dilution is equal to the partial molal volume in a standard

state often chosen for electrolytic solutions.



II. THEORY

A. Introduction
Let Y be an extensive thermodynamic property of a solution
which 1is a function of temperature, pressure, and the amounts
of the several constituents. A partial molal value of Y for
the ith component is defined by the equation

Y Y
= ‘—.— 2.1
(—.nl T,P,IIJ,III 3 e e ( )

where

ny is the number of moles of component 1i;

T is the temperature;

P is the pressure;

nJ,nk,...are the number of moles of each of the other

components.

The subscripts indicate that T,P,nj,nk,...are held constant
during the differentiation. It is evident that the partial
molal quantity is an intensive property and not dependent on
the total amount of the ith component. It is, however,
dependent upon the relative amounts of the various constit-
uents.

For a multi-component system at constant pressure and

temperature

Y = f(nl,nz,n3,...)

Since Y 1s a homogenous equation of degree one, using Euler's
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theorem

3Y Ay
Y = n (’_"— + n (\ )
120170, p,np,ns, .. & 27, Byng g
2y
+ ng(zo) + ... (2.2)

3 T,P,nl,ng,...

For a two component system, this may be written in the lorm

of the partial molal quantities

For the volume of an electrolytic solution the expression

becomes
VvV = nV; + ny¥, (2.4)

where the subscript 1 denotzs the solvent and subscript 2
denotes the electrolyte.

Another quantity which is more conveniently related to
experimental gquantities is the apparent molal volume. It is
defined as

v -0
-nVl

g, - —ah (2.5)

_0
where Vy is the partial molal volume of the solvent in the

standard state, usually taken as the pure solvent. Rearranging

2o D E Lrw U and falrdne the nartial derivative with
rarfaial derivatis

o/ A s . Cvarmaaiy v

respect to np, yields



v, - (L) - g +n, (D (2.6)

As the solution approaches infinite dilution, n, approaches

0 and

o= f (2.7)

where the superscript - denotes infinite dilution.
Suppose an electroalyte dissociates Into lons in a

solvent accori ng to the reaction
C\)+Av- - v, C + v A

where C and A denote the cations and anions, respectively and
v; and v_ are the number of moles of cations and anions,
respectively, given by the dissociation of one mole of
electrolyte. The chemical potential of the electrolyte may
be given in the notation of Harned and Owen (4) by the

expression

o - Ug RT1n as

vRT 1nf: + WRT 1InN, (2.8)

where
up 1s the chemical potential of the solute at concentra-
tion Ni;
ug is the chemical potential of the solute in the

standard state;



an is the activity of the electrolyte;

v is the number of moles of ions given by one mole of
electrolyte (equal to v, + v_ for the electrolyte
Cothy)s

N, is the mean ionic mole fraction defined by
(N:+'N\_")1/ Y with N , and N_ the mole fractions of
cations and anions, respectively;

fi is the rational activity coefficient.

The partial molal volume may be obtained by taking the partial

derivative with respect to pressure at constant T and Ny

?*.('12 - ug) _ o
( 2P )T’Ni- = V2 - V2

3(1n £y)

= VRT (——’*_P— )T,Ni (2.9)

Since the solution approaches an ideal solution as the con-
centration approaches infinite dilution, fi ~las N -0

at all T and P. Therefore,

g =0
v, = ¥, (2.10)

That 1is, the partial molal volume at infinite dilution is
equal to the partial molal volume in the standard state.
The choice of the standard state is, of course, arbitrary.
However. for a two component system of electrolyte and

solvent, the standard state for the electrolyte is usuvally



-

gefined as a hypothet:izal 'ideal' solution at a concentre-
sion of unity and activity coefficient equal to 1 at all
temperatures and pressures (5). Comparing Equation 2.10 =ith

Equacion 2.7 yields

VZ = &£ (2.11)

Returning to Equation 2.5 and substituting

V = 1000 ml
M
0 _ 11
v, = Y ml/mole
10004 - cMp
np, = i moles
1
ylelds
1000 . d,, %
g, = =5 (i -+ 3 (2.12)
o) o)
where

d 1s the density of the solution;
dO is the density of the solvent;
¢ 1s the molar concentration;
Ml and Mé are the molecular weights ¢ the solvent

and solute, respectively.
The apparent molal volume of a dilute solution, then, can be

calculated from a knowledge of the density of the solution

and the pure soivent.
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B. Electrolytic Solution Theory

The goal of modern electrolytic solution theory is to
successfully predict the macroscopic and microscopic proper-
ties of an electrolytic solution from a calculation of the
distribution, degree of complexing, and hydration of the
ions, the properties of the solvent, and the variation of
these quantities with concentration, temperature, and pressure.
The complexity of the problem is testified to by the fact that
the dissociation of an electrolyte into ions in solution was
first recognized by Arhennius in 1887. In spite of much
effort by many workers since then, no unifiied theory has
emerged to characterize the properties ol electrolytic solu-
tions over a broad concentration range.

The first quantitative theories have been restricted to
the area of very dilute solutions in an attempt to eliminate
the difficulties due to short range lon-ion interactlons
such as complexing and to avoid any changes in lon-solvent
interactions which might occur at higher concentrations.

The problem for dilute soluftions is to calculate the change

in electrical free energy which occurs when an electrolyte

is diluted from one concentratlon to another as a function of
concentration, temperature and pressure. From this function,
all of the other thermodynamic properties may be calculated.
Milner made

he firat attemnt at solving this

problem (6). His treatment involved a laborious numerical
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summation of interaction energies for all configurations of
ions. Though the result was not easily compared with experi-
mental data, it gave essentially the correct form for dilute
solutions. Little further progress was made until the theory

of Debye-Hiickel was published in 1923 (7).

1. The Debye-Hiickel theory

The present theory of electrolytic solutions is based on
a greatly simplified picture of an ionic solution. Due to
the electroneutrality of the solution, the time average of
the charge density at any fixed reference point in solution
is, of course, zero. However, the authors assumed that, if
a moving coordinate system centered on a particular ion was
chosen, this central ion would be surrounded by a charged
atmosphere composed of the other ions in the solution. ZEach
positive ion would be surrounded with an "atmosphere" con-
taining on the average more negative ions and less positive
ions than the bulk solution, thus inducing a negative charge
density in its neighborhocd., Similarly, each negative ion
would be surrounded with & positively charged atmosphere.
The authors sought Tc calculate the potential as a funciion
of the distance r from the central ion resulting from the
central ion and its atmosphere. This potential could be
evaluated at r = 2, the "surface"” of the central ion, and
the electrostatic contribution to the chemical potential of

the solution could be found by calculating the electrical
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work done on charging the iuns described by the potential
function from O to their full charge.

In this discussion, the emphasis will be on considering
the assumptions and approximations made in the theory and
their effect on the final equations. Rigorous derivations
are presented in virtually all the standard texts on
electrolytic solutions and many texts on statistical thermo-
dynamics (4,5,8,9).

The assumptions contained in the Debye-Hluckel theory
are: |

1. The electrolyte is completely dissociated into non-
polarizable spherical ions. Furthermore, none of the ions
may approach each other closer t{han an average distance g.

2. The solvens is a continuous, sStructureless medium
with dielectric constant D. The dielectric constant is not
a function of the concentration.

3. The electrostatic properties of the central ion and
its atmosphere obey Poisson's equation.

4, fThe distribution of the ionz abou’ the central ion
may be represented by Boltzmann's distribution law.

5. The system obeys the theorem of the linear super-
position of fields.

6. The departure of dilute solutions from ideal behavior
is due solely to the electrostatic interaction of the ions.

For a given configuration of ions, the potential about

the jth ion, ﬁj(r), may be related, using Poisson's equation,



to the charge density surrounding the jth ion, ~(r), by the

expression

\72 ¥y(r) = - 4= p(r)/D (2.13)

where r is the distance from the jth lon. In the absence
of outside influence, the symmetry of the ionic atmosphere
about the jth ion will be spherical. By summing Equation
2.13 for all the configurations of ions, Wj(r) and p(r) may
be replaced by their average values, Tj(r) and p(r).

The average charge density about the jth ion 1s given by

the expression

:“1 2

n..z.e (2.14)

r(r) 5121

) i=1
where
nji is the concentration of 1 ions in the vicinity of
the jth ion;
Z4 is the valence of the 1 lons;
r 1s the electronic charge;
and, the summation 1s made over all the types of ions in the

solution. Then, using the Boltzmann formula,

ngy = Dy exp (-Uji/kT) (2.15)

where
ny is the concentration »f the 1 ions in the bulk

soliution;



Ujl is the potential ensrgy of the 1 ions 1n the
electric potential IJ-(r').
A 2ritical step in the theory was the assumption of
linear :=uvperposition of fields which zllowed the potential

energy, U, to be calculated [rom the equation

Ji’

Ujs = 2z32%(r) (2.16)

Furthermore, it follows that

U = U (2.17)

Ji 13

The potential energy given by Equation 2,16 is assumed
small compared to kT. The exponential ‘erm in Equation 2.15

may be represented by the expansion

. 12
exp (-Uji/kT) = 1 -0, /0T + (Uji/:T) 20 - ... (2.18)
and for
Uji/kT << 1 (2.19)

Equation 2,18 may be terminated after the iinear term. This
approximation is necessary for the ... :ory to remain :zelf-
consistent because it maker «{r) propor:ional to Wj(r). a
requirement of the linear superpositicn of Tields.

Collecting Equations 2.13 ihrough 2.18, terminated after

the linear term. and recognizing that

4

n,z,e = 0O (2.20)
1=1 171



i5
due to the electroneutrality of the solution, yields

v"‘ T(r) = K2 Fr) (2.21)

2 S 2
K = uwez.zi n,z{/DkT (2.22)
1=

Solving Eguation 2.21 gives

Ti(r) = 2,5 ean [K (r-a)]/dr(1+ Ka) (2.23)

The electrostatic contribution to the chemical potential
on charging the jth ion having & r.cius equal to 8 in the

field of the other charged ions ity be calculated by the

equation
2rp(el) Zje
A {el = —:-_—\ = e
uJ( ) ( =B, T,n fo J(ej)dej

22, 0 o)
2 e /2Da(1+ Ka)

1
1+ Ka

[0}
z§62/292 + (2% /23)( - 1) (2.24)

Since the activity coefficient is a measure of the deviations
of the solute from ideal behavior with concentration, the

term

.m0
Vivd L

in Equation 2.8 1is equated to the second term on the right
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giving the concentration dependence of 3 uJ(el) in Equation
2.24, For the case of a single electrolyte, the final

expression for the activity coefficient becomes

log £y = - g VoAl + AYVe) (2.25)
where

g = 575%5—; 121 Viz?(DT)'y?’(.~r1\h:6/1oooyc-°’)l/2 (2.26)
and

At = KEMC (2.27)

2. Critique of the Debye-Hiuickel theory

The fundamental approximation contained in the theory

is given by Equation 2.16

Uji = zieWJ(r) (2.16)

Since by derfinition,

Uy = Uy (2.17)
then

zieﬁj(r) = zjeWi(r) (2.28)
Therefore,

Tm) ()

2 T m (2.29)
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Onsager (10,11) has pointed out that these relations would
hold exactly if the mean distribution of charge in the
neighborhood of a pair of ions, i and j, at a distance r
from each other were always the sum of the charges induced
by the two ions separately, & statement of linear super-
position of fields. For high dilutions, lower valence ions
and large ionic diameters (i.e., a low charge density),
Equation 2.29 is nearly ifulfilled.

Kirkwood's analysis suggests that if the potentials
Wj(r) and Wi(r) are expressible as a power series in the
charges, the lowest terms would conform with the Debye
approximation (12). Though the charge cannot be reduced
below zge and Z4€, higher order terms could be presumably
made insignificant by separating the ions to great distances
as in very dilute solutions. It seems almost certain that
the true laws must approach Debye's approximation in the
limit of infinite dilution. An estimate of the effects of
the higher order terms at finite concentrations is not known,
however.

As stated previously, Debye and Hilckel assumed the
solvent to be a continuous, structureless medium (7).
Accordingly, no change in the dielectric constant with con-
centration was considered. Certainly, any real solvent,

particularly solvents which have molecules possessing a

permenent dipole moment, would be expected to exhibit a
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variatior ol dielectric constant with charge concentration.
The variation would result from the ordered, rather than
rardom, orientation of the dipoles of the solvent molecules
in the vicinity of the charges. In a later paper, Hiickel,
by assuming that the dielectric constant varies linearly wioh
concent.ration, deduced an additional contribution to the
electrizal work term which was roughly proportional to the
square o “he concentration (13). Fowler and Guggenheim
have argued, i.cwever, that since Hiickel did not allow the
value of D to vary during the charging process (since it is
a function of the ionic concentration), <hat Hiickel's con-
clusion is not valid (9). They suggce::. ihat the electrical
work would be proportional to the firuv power of the concen-
tration and conclude that the limiting law is unaffected by
variation of fthe dielec:ric «onstant with concentration.

The variation of D with temperature and pressure, however,
must be recognized when deriving the other thermodynamic
properties from the electrical chemical potential.

Several refinemernits have been developed in an attempt
to avoid the approximacion made when retaining only the first
two terms 1n the expansion of the exponential part of the
Boltzmann formula. Assuming v, = v_ for the salt C, A, _

(a symmetrical electrolyte) for simplicity, the Poisson-

Bolézmann Faation 2 21 mav be uwuritten

Brez.n z,ev.(r)
J_J sinh J~

—_ﬁ_— -——k—m:——° (2.30)
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Debye's approximation replaced the sinh function with

zjs75(r)/kT.

Miller solved Equation 2.30 directly without any approximation
(14). It should be pointed out, however, that the use of
this distribution function violates the theorem of the linear
superposition of fields since the charge density, »o(r), is

equal to

rlr) = EZJnJesinh(zJer(r)/kT) (2.31)

and, hence, is no. directly proportional to Wj.
Gronwall, LaMer and Sandved (15) retained higher order
terms in the expansion of the exponential term in the

Boltzmann equatic:

5 — 1 - 2
- <« oy T 3 —_ W+ 1
p(r) = :=lnizie [1 uieﬂj(r)/kT iy (zie j(r)/kT)

1, 3
T3 (zgeT (p)KT)T 4] (2.32)

Again, retention of terms non-linear in ~"73.(1") is inconsistent
with the assumption of the linear superposition of fields.

In spite of the inconsistency in the theory caused by
these refinements, the use of the results of either Miller

(14) or Gronwall, et al. (15) tends to yield more realistic

o)
a parameters than the unrefined theory in fitting experi-

menuvdl data.
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1t may be noted, finally, that, for the special case of
symmetrical valence electrolytes, the term second order in
TJ(r) may be retained and not violate the theorem of the

linear superposition of fields. This occurs because the

summation of the second order terms

nizie

2
_ 2
R (z4e¥ (r)/xT)

. = 0 (2.33)

for symmetrical elcctrolytes. Coupling this fact with the
recognition that for 1l:1 electrolytes the charge density for
& given concentravion will be lower than that for electrolytes
with other valences, suggests that the 1l:1 type electrolytes
as & class should give better agreement with the Debye-

Hiickel theory to higher concentrations. This conclusion is
generally valid for all the thermodynamic properties.

The charging process givén by Equation 2.24 was not
actually that employed by Debye and Hickel in thelr deriva-
tion. The charging process of Debye and Hickel (7) is
represented by the equation for the calculation of the

electrical work

s V=1 _
W(el) = aAlel) = = [ zye¥(azye)dr (2.34)
351 *r =0 |

For this charging process, the charges of all of the lons
are increased in the same ratio at the same time and K is

changing. Fowler and Guggenheim (9) point out that the
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integration should be carried out at constant pressure, not
volume. Including the electrical work due to contraction
of the solution during the charging process, yields

1=1

A Alel) = lef & zye¥,(Az e)dr - PAV (2.35)

Then,
AF(el) = aA(el) + A = r f Jeﬂrj(xzje) (2.36)

Substituting for the potential terms, integrating on X\ and
then taking the partial derivative with respect to nJ gives

o uyle1) = (+7:7/2n8) + (256%/208) (- L) (2.2

0
+ Ka

A term in (3vj has been neglected where vJ is the molecular
volume of the jth lon. In the concentration range over
which the theory might be expected to apply, this 1s a valid
approximation. Now there is also a volume term in K since
nj was defined as the concentration of lons per unit volume.
This volume unit has been reduced by the charging process
and strictly should be replaced by an average volume inter-
mediate between the volume unit for the ideal solution of
discharged ions and that for the actual solution. Actually,

the correction is negligible and the volume unit 1s considered

'nnnhann' ﬂ
4 8.

The charging process of Giintelberg (16) used in this
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derivation is given by Equation 2.24

MaF(el) Z5¢

A us(el) = (——+ = ®
j(el) (”nj )T,P,ni fo s(ej)ae (2.24)

o

This differs from Debye's in that a single ion is being
charged from O %o zjq in the presence of the other fotally
charged ilons.

The two charging processes give the same result as lonz
as the approximations of Debye are used. Houwever, when
distribution functions such as that of Muller (14) or
Gronwall, et al. (15) are used, the two methods give different
resul.:s. Onsager nhas determined that the discrepancy arises
from the fact that these distribution functions are not selfl
consistent with the rest of the theory (11).

The g parameter, defined as i.ne average closest distance
to which one ion may approach another ion can clearly be
understood when the ions are considered as hard spheres.
However, many ions are not spherical in shape and all ions
are polarized or distorted when approached by another ion.
Furthermore, ions will be solvated to a greater or lesser
extent by the solvent medium. Under these circumstances,
the physical significance of the g parameter is less clearly
defined. Nevertheless, the 2 parameter does appear to be a
gqualitative indicator of the ion size for many systems.
Fuoss and Krauss determined the 2 paramecers from the con-

ductances of the tetraisocamylammonium halides, which form
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large, essentially spherical ions, in benzene, which is
presumably a non-solvating medium (17). They found a
general increase in the 8 parameter from fluoridc to iodide,
as would be expected. Solvents, however, also may affect
the & parameter by coordinating with the lons thereby
increasing the distance of closest approach. In calculating
the other thermodynamic properties from Equation 2.25 by
differenting with raspect to temperature or pressure, the
dependence of The 8 parameter should be recognized. Since
the g parameter is present in the equation for the activity
coefficient in the form Kg, it dces rot affect the limiting

infinite dilution.

cr

law, however, because K goes to O a

The total potential, ¥ .(r}, duc to the central ion and
J

its ionic atmosphere at a distance r Irom tie central ion
is given by Equation 2.23
o)
Z5e exp (- (r-a)]

T () =
b br(1t K3) (2.23)

If the jth ion is isolated with no surrounding charged atmo-
sphere ( K = 0), the pctential at a distance r becomes

dso 238
étj?r) = —%; (2.37)

From the theorem of the linear superposition of filelds,

. _iso, _atm
by = f.(r + T
J( ) rJ( ) ity

-~
Fro
[W[S)
(O
~ -
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atm
where Ws(r) is the potential at a distance r from the central

ion due to the surrounding atmosphere. Rearranging Equation
iso
2.38 and substituting for Tj(r) and Wj(r) from Equations 2.23

and 2.37 yields

_atm 2je (8Xp [-K(r-g)]

P (r) = = o y (2.39)

Evaluating this potential at r = 3 gives

atm -
i - ek
D(1+ Ka)
-zJe
S A (2.40)
D(& + %)

Comparing with 2.37, the potential due to the atmosphere
has the form of the potential at a distance 2 + % from an
isolated ion of charge - Z4e. The quantity 1/K , called
the mean thickness of the ionic atmosphere, 1s inversely
proportional to the square root of lonic concentration.

For dilute solutions, 1/( is large and the interactions
between the central ion and its atmosphere are long range
in nature. For a 1 molar solution of a 1l:1 electrolyté,
however, 1/ 1s approximately 3 R; hence, the interactions
are not long range. At these distances, the discrete nature
o'’ the 1ons ana the solvent musi surely ve conslaered.

As has been shown, attempts to improve on the Debye-
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Hiickel thecry by using more accurate forms of tire Boltzmann
distribution are fundamentally inconsistent. Bjerrum proposed
an entirely different method of avoiding the error caused by
the approximation of the distribution function (18). For

two ions which approacr. each other sufficiently closely that
the screening ef'’ect duc to >ther ions may be neglected, the
procabilicy that an i ion will be a distance r from the

central j ion is gilven by the equation
Probability = n; exp (-zizjcz/Drkm) Brpedr (2.41)

For ions of like sign, the function remains very low over the
whole range of r. If the ions are of opposite sign, the

function increases rapidly from a minimum at a distance

q = — (2.42)

Bjerrum defined an "ion pair" as any two ions which approach
each other closer than this distance q. For electrolytes
having an 8 parameter greater than q, the approximations of
Debye are considered valid since no ion palrs could be

formed. For electrolytes having an g parameter less than g,
Bjerrum, in effect, replaced the g parameter with the distance
d. The free ions (those separated by a distance greater than

q) are restricted to long range interactions and can be
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may be treated separately. Fuoss and Krauss have extended
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this approach to the formation of triple ions and quadruples
(a cluster of four ions) (19,20,21). 1In both theories, the
"complex" is produced only by the action of Coulombic forces
rather tﬁan by the formation of an electronic bond in the
guantum mechanical sense. These theories have been particu-
larly successful for electrolytes in solvents of low di-
electric constant.

Stokes and Robinson added an extra term to the Debye-
Hliickel equation for the activity coefficient to reflect the
solvation of the ions in the solution (22). The term
includes the parameter, h, the number of moles of solvent
combined with a mole of solute. The authors then proceeded
to derive an equation relating thils solvation (or hydration
if the solvent is water) number %o the ) parameter and reduced
their expression for the activity coefficient to one param-
eter. Though a multitude of ion-solvent effects are being
accounted for by this single parameter, the authors obtained
good agreement wich experimental data for many 1:1 and 2:1
electrolytes at concentrations up to between 1 and 4 molal.

Glueckauf derived a similar parameter based on volume
fraction statistics (23). Glueckauf's hydration numbers,
unlike those of Robinson and Stokes, were nearly additive
for separate ions. 1In both theories, however, the physical
significance of the hydration number 1s somewhat unclear.
According to the definition, h retlects the total numoer oI

water molecules coordinated to both the cation and the anion.
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It is known that water tends to coordinate with ions by form-
ing concentric spheres of molecules about the central ion.
The character of these molecules gradually changes in going
outward from the central ion from complexed water to solvent
water (24). Then, h must represent some average number for
these molecules. Different properties of solutions might be
expecied to measure different averages ol these water mole-
cules. In fact, h is found to vary with the property being
determined, particularly in going rrom equilibrium thermo-
dynamic properties t¢o non-equilibrium transport properties.

Mayer has adapted his cluster theory of luperfect gases
(25) to solutions of electrolytes (26). His wodel was
essentially that of Debye's and hi: results reduce to the
Debye-Hiickel limiting law in sufficiently dilliute concentra-
tions, but this method avoids the self-consistency diffi-
culties inherent in the Poisson-Boltzmann equation. Poirer
has applied the theory to actual solutions and obtained fair
results (27,28). However, since the model is essentially
the same as that of Debye and Hiickel, the theory cannot be
expected to be valid in concentrated solutions.

In summary, the Debye-Hilickel theory yields a limiting
law for the behavior of the activity coefficient as a
function of temperature, pressure and concentration for all
valence tyme ions. With the single parameter, g, agreement

with experiment up to several tenths molar In concenftration
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has been achieved for well behaved electrolytes. The many
refinements to the theory represent attempts to extend the
range of the theory to more concentrated solutions., After
many years of efforts, Harned and Owen have concluded that
"...the problem of concentrated solutions cannot be solved

by an extension of the present theory..." (4, p. 547). Fuoss
and Onsager contend that the approach to a theory of concen-

trated solutions "

...must start with an adequate theory of
fused salts..." (29, p. 680).

However, before a more complete theory can evolve,
extensive, accurate data on electrolytes of all valence
types in solution will be needed. Then, if the nature of the
solvent, particularly water, short range ion-solvent inter-
actions, and complex formation can be more completely under-
stood, these may all be coupled together to yield a definitive

theory valid over the entire concentration range of an elec-

trolytic solution.

C. The Partial and Apparent Molal Volume

The molal volumes of solutions of nonelectrolytes show
a nearly linear dependence on concentration (30). From the
very early studies of electrolytic solutions, however, it
was evident that the concentration dependence for these
systems was considerably more complicated (31).

Masson, in 192Q, discovered that the apparent mclal

volume of an electrolyte in dilute solution obeyed the
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equation

g, = ﬂg + 8, /¢ (2.43)

where ﬁg and SV were specific for every electrolyte (32).
This equation suggested that two factors needed to be con-
sidered: 1) the molal volume of an electrolyte at infinite
dilution, and 2) the quantity Sy in the concentration term.

For a completely dissociated electrolyte, the ions may
be expected to be acting independentily and the molal volume
at infinite dilution may be expected to be given by the
expression

gﬁc\%v_ = vyfjc ¥ v_giA (2.0
where ¢8C and ¢3A are the ionic molal volumes at .nfinite
dilution of the cation and anion, respectively. Taking the
case of a 1:1 electrolytes for simplicity, for two electro-
lytes with a common ion, the difference in ¢8's may be

expressed by the equations

(o] (o] e} 0]
N I R .
¢§CA ¢VC'A ch Va ggc' vVa
= g = (2.45)
- Vo Ve - *
and
o o
giCA S Ve ¢$c ¥ ﬁsA A/ ﬁbA'
o] o]
= ﬁv - g& = N (2.46)
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M and N should be constant and independent of the common ion.
By determining the molal volumes at infinite dilution for a
whole series of electrolytes, fhe molal volumes of all the
ions may be related by the differences. Since the experi-
mental properties are measured on the total solute, thermo-
dynamics does not permit a determination of the molal
volume of an irdividual ion to be made. Many attempts have
been made, however, to arrive at a value of ¢: for some
particular ion by making use of various models and other
physical properties., These attempts will be briefly commented
on later. Clearly, once the ionic molal volume of one ion
has peen determined, the values for all the other ions, under
the same solvent, temperature, and pressure conditions as the
reference ion, may be calculated from the additivity relation-
ships of Equations 2.44, 2.45, and 2.46.

Redlich and Rosenfeld derived the limiting law for the
apparent molal volume from the Debye-Hiickel theory in 1931

(33,34). Their result was

g = £ 4 w2 (2.47)
where
S 2
w = 0.5 AN Vizi (2.48)
i=1
and
Kk = N%3 (8"/10001)312'13)3“/2 (3—%‘—9 - a/3) (2.49)



P is the pressure and @ may be taken as the compressibility
of the solvent for dilute solutions. Their derivation was
essentially a combination of Equations 2.5, 2.9, and the
limiting form of 2.25.

From this equatlon, it is clear that all of the electro-
lytes of a given valence type should approach inflinite
dilution with the same limiting slope. Furthermore, the
limiting slopes of different valence type electrolytes are
all related to the same constanc k by the valence factor w.

In 1927, Geffcken (35) fitted partial molal volume data
for a number of alkall haliide agueous solutions to an equation

of the form

This equation may be derived from the Debye-Hiuckel theory

by use of Zouations 2.9 and 2.25, neglecting the 8 parameter.
Scott (36), and LaMer and Gronwall (37) tabulated ﬂg’s and
Sv's for a number of 1l:1i electrolytes from trie best data of

several sources. [or comparison, Equation £.11 gave
7V o= #° (2.11)

and, using Equation 2.6, the limiting slope for the apparent
molal volume, Sy, 1is simply related to that for the partial

molel volume gv" by the expression

g, = 158, (2.51)
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The authors concluded that the apparent molal volumes at
infinite dilution for various combinations of electrolytes
did show the expected additivity relationships. The limiting
slopes did not, however, appear to converge to a common value.
This failure of the electrolytes to approach a common
limiting slope was undoubtedly due to the fact that the
extrapolations were made from concentrations of several tenths
molar.

Geffcken and Price analyzed more dilute data on potas-
sium and sodium chlorides and sodium bromide and concluded
that there was a convergence to a common limiting slope at
high dilutions (38).

The evaluation of the constant k given by Eaguation 2.4Q
has been complicated by the presence of the term >1n D/2P.
Difficulty in accurately determining this term led early
investigators %o attempt to evaluate the constant from care-
ful apparent molal volume studies in very cdilute solutions.
Older data of Baxter and Walluce (31) gave k = 1.7 T 0.2 at
25° ¢. 1Interpretation of more accurate data of many other
workers (38,39,40.41,42,43,44) by Redlich (45) yielded k =
1.86 ¥ .02 (25° ¢). Confirmation of this value came from a
calculation of k in a 1964 review article by Redlich and
Meyer (46). They calculated k equal to 1.868 (250 C) from
direct measurements by Owen and coworkers (47) of D ang 3D/>P

and by Kell and Whalley of the compressibility of water (48).
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The validity of Equation 2.47 as a limiting law for
binary electrolytic solutions has been verified for electro-
lytes of 1:1, 2:1, and 3:1 valence types (45,46,49). How-
ever, all electrolytes begin to show deviations from the
simple limiting law at concentrations ranging from 1 molar
for some 1:1 electrolytes down to 0.001 molar or less for
3:1 electrolytes. Since experimental difficulties often
make it nearly impossible to obtain accurate data in the low
concentration range where the deviations from the limiting'
law are negligible (particularly for 3:1 electrolytes),
proper representation of the data at higher concentrations
and use of an accurate extrapolation functlon are prerequi-
sites to obtaining reliable apparent molal volumes at infinite
dilution.

Redlich and Meyer recommend the use of the equation

© = 8+ 1868 0Y2 M2 4 e (2.52)

to represent the data (46). The authors assert that this
equation gives a better fit than Masson's equation (32) for
solutions up to moderate concentrations. Furthermore, they
claim that the use of the Debye-Hiickel limiting slope, rather
than a third adjustable parameter, would give a more accurate
extrapolation, particularly for less accurate data.

Owen and Brinkley, however, criticized the equation of

Redlich and Meyer on the basis fhat it neglects the effect
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o)
of the a parameter (50). They proceeded to derive an

equation for the apparent molal volume which included the

o}
distance of closest approach, a.

2
ﬁ; = ¢3 + 3 gv
where
r(ka) = —2. 182 48
= 3 3 ac - Ka + 1n (
a
0 4L . _ 5
° (Ka) = 7 (—%)
2 K8
3 1
c(K8) = —=2x [ 1+Kka8- —
‘(323 K 1 +Ka
3, In D _ B
g, = 2.303wRTE = (53 37)
y 1 42 1InD
W, = -2.303 WRIEpA' S (55—
and
K, = 2.303 1B (1432 + o)

_E_

Thelr result was

1+ (3)]

. (el 1 1
r (Ka)e + S U0 ()ec + 5K

-2 1n (1-+(§)]

)3

>1°
2lna

)

(2.56)
(2.57)

(2.58)

(2.59)

The quantity B arose from an empirical linear term added to

Egquation 2.24 which became

-,foc.+
1 + AVe

log fi Be

Equation 2.53 may be rearrangea uo give

*rc]‘/2 = ¢o + L iy 6c +

2

1
E KVC

(2.60)

(2.61)



This equation has been used as an extrapolation function by
Wirth and Collier (51), and by Spedding, Pikal and Ayers

(52) for some 1:1 and 3:1 electrolytes in aqueous solution.

g

. . . 0
v’ wv, and KV were determined from the data. The a param-

eters were obtained from activity coefficient or conductance
dava.

If W, is known, Equation 2.58 allows the calculation of
the quantity >1n &/3P. Wirth and Collier evaluated this
quantity for HClOa, HCl, and NaClOu. Spedding, Pikal, and
Ayers, however, argue that the values cannot be expected to
be significant since other higher order terms such as asso-
ciation and dielectric saturation may also contribute in
large measure to the parameter wv. Spedding et al. (52) and
Poirer (27) have argued that the 8 parameter is relatively
insensitive to a change in pressure. The g parameter 1s
considered to include the effect of water molecules coordinated
to the ions. These water molecules may be expected to ke
under considerable pressure due to the strong ilon-dipole
forces. Therefore, the compressibility of these water
molecules should be very small. A change in the hydration
number of the lons with changing pressure would, of course,
seriously effect the argument. Assuming tnat there is no
change in the effective hydration number of the ions with
nregsure. fthe quantity »1n 2/:? may be considered small and,

therefore, neglected. This latter assumption, however, is
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certainly open tvo question.
Owen and Brinkley (50) by rearranging Equation 2.53 and
also assuming the g parameter independent of pressure,

arrived at a more convenient expression for extrapolation

1/2 1
g, - % 2, Oy 2. 9@ + 5 Ko (2.62)
where
1 3qn D o8 3n D g -1
% = (%8 P - 3 - ) (2.63)

Ov is less than one for non -22ro concentrations and approaches
unity as the ccicentration approaches infinite dilution
yielding the limiting law g:ven in Equation 2.47.

In view o the many approximations made in arriving
at Equation 2.62 including those inherent in the basic Debye-
Hiickel thieory, tle equation cannot be expected to be valid
over an extensive concentration range. However, the function
QV may be expected tc account. to a first approximation at
least, for the effect of the & parameter on the slope at
very dilute concentrations; an effect ignored by the equation
of Redlich and Meyer (46). This argument 1is supported by
comparison with the analogous equation for the partial molal

volume

g/c We

T, = T 4+ —— Tl + Kye 2.64
2 2 1+ K8 T (1 +K8)2 v (2.64)
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which may be derived by straightforward thermodynamics. The
coefficients are the same as in the equation for the apparent
molal volume. The term 31n &/>P is contained in W, and has
not been assumed equal to zero. For ){8 << 1, the limiting

term in Equation 2.62 approximately reduces to

2 S& /T
3 T+KE (2.65)

That is, 0, function alters the limiting slope in approxi-
mately the same manner as the quantity (1 + K&).

Many attempts have been made to evaluate the partial
molal volume of individual ions at infinite dilution. A
critical review of these attempts has recently been published
by Panckhurst (53) so only a brief summation will be given
here. The methods may be conveniently classified according
to the basic assumptions contained in each. The classifica-
tions are:

1) methods which do not assume ionic radii;

2) methods which assume ionic radii and assume vzon is

| independent of the sign of the ionic charge;

3) methods which assume ionic radii and assume Vﬁon is

dependent on the sign of the ionic charge; and,

4) a method which assumes zero electrostriction for ions

having large negative charges.
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For the methods which assume ionic radii, the Pauling radii
(54) are commonly used. However, Panckhurst has also intro-
duced another set of ionic radii called "experimental" radii
by Blandamer and Symons (55). These were based on X-ray
analysis of the structure of NaCl crystals by Witte and
Wolfel (56) who found that the electron density becomes
effectively zero along the line of centers at 1.17 X from
Nat and 1.64 K from C1l”. Using these values, Gourary and
Adrian obtained other values irom known internuclear distances
in crystals with the NaCl struvcture (57).

A particular unique method for determining the partial
molal volumes of ions is that or Zana and Yeager (58,59).
Their method is based on a dircct experimental method using
an ultrasonic technique and, unlike all ths other methods,
does not rely entirely on an &nalysi. >f volume measurements.
They determined a quantity w’'ch was related to the apparent
molal masses of the solvated cations and anions. For ion j,

this is defined
Wy = (Mj)h - (vj)hsO (2.66)

where
wj is the apparent molal mass or the ion Jj;
(Mj)h is the molecular weight of the solvated ion;
(Vj)h is the molar volume of the solvated ion;
SO is the density of the solvent.

(M is the sum of the molar mass of the j lon and the mass

#n
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of bound water per mole of ion.
(Mj)h = MJ + (Mj)w (2.67)

Zana and Yeager defined the ionic partial molal volume of the

J 1lon as

v, = (V) - (MJ.)W/SO (2.68)
Combining Equations 2.66 through 2.68 yields

Wy o= M. - V.S (2.69)

From Equation 2.69, the experimental quantities (W, - W_), the
transport numbers at infinite <ilution and the partial

molal volumes of the elecirvlytis at infinite dilution, the
authors deduced the wvartial molal volumes of the ions com-
prising the electrolyte.

Panckhurst has noted sore ‘nconsistencies in the method,
however (53). Equation 2.606 defines the ionic apparent molal
volume which is only equal to the ionic partial molal volume
at infinite dilution. Also, wj's at finite concentrations
are used with transport numbers and partial molal volumes at
infinite dilution. Since wj 13 not independent of concentra-
tion, this is a serious inconsistency. Panckhurst points out
that these objections could be overcome if wJ could be

evaluated at sufficiently high dilutions that the ionic

apparent molal volumes could be assumed additlive and if the
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transport numbers and partial molal volumes of the electro-
lytes are evaluated at the same concentration as WJ- V§
could then be obtained by extrapolation to infinite dilution.
The uniqueness and potential value of this method lies in
the fact that it experimentally separates the partial molal
volume of an electrolyte into its individual ionic components.
All other methods rely on theoretical approaches to accomplish
this separation.

One of the most comprehensive theoretical approaches 1is
that of Noyes (60). This method assumes that the partial

molal volume at infinite dilution for an ion is composed of

two components

=0 _ w0 =0
= Vo + T (2.70)

where vgnt is the intrinsic volume of the ion in solution
and Vgl is the contribution to the volume due to electro-
striction. Drude and Nernst (61), as early as 1894, arrived

at an expression for Vgl given by the expression

=0 2262 31n D A22
V1. = 2op () 7 - (2.72)

o
1 at 25 C using the values of

where A = 4,175 cm3 A mole
Owen et al. (47). This is, of course, the pressure derivative
of the electrical free energy which was discussed much later
by Born (62). Equation 2,71 mignt be expecied to serve as a

theoretical limiting law which will be approached for suffi-
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ciently large ions such that the solvent may be regarded as
a dielectric continuum. Noyes represented deviations from

this law by higher order terms in 1/r such that

-0

2
V., = -ba75/r + Cy/r” + Cy/r> + ... (2.72)

for univalent ions. The constants C2, C3, ete., differed for
cations and anions. Noyes (60) derived functions for cations
and anlons which were required to extrapolate to the same

intercept (V§+). In order to get the functions to extrapolate

=0
to a common lntercept, he had to express Vin as elither

T
=0 L 2
Ving = 30 (r +b)° (2.73)
or
N = E—Nr3 + Jr° (2.74)
intc 3 ‘
where b and J were emplrical parameters, raii.er than the
simpler
=0 b o3
- — 2.
int 3"Nr ( 75)

Glueckauf! (63) proposed a similar method in which he used the
form giver by Ecuation 2.74. He introduced the principle
that the actual radius of the ion in solution (r + b) is

the distance from the central ion to the nearest point on
which the electrical charge of the ion can act with a force.

He identifies this dlistance as the distance from the lon



42

center to the dipole center of the first layer of water
molecules.

Of course, in a treatment such as that of Noyes, the
calculation of the partial molal volume is very sensitive to
a choice of ionic radii. Panckhurst has evaluated V§+ from
Noyes theory using the radii of Pauling and the "experimental"
radii of Blandamer and Symons. The results are -0.9 and +4
cm3/mole, respectively. Clearly, accurate information about
internuclear distances in solutions and the orientation of
water molecules about the ions in solutions 1is necessary for
a more knowledgeable choice of radii. Then, the separation
of the partial molal volume of an electrolyte into its ionic
components on a theoretical basls such as Noyes' might be

approached with more confidence.
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III. EXPERIMENTAL

A. Preparation of Materials

The rare earth salt 