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INTRODUCTION 

Binary acoustic Fresnel lenses (BAFLs) have recently emerged as possible 
replacements for spherical lenses for applications in acoustic microscopy. BAFLs are 
surface relief structures that are relatively easy to manufacture compared to 
conventional spherical lenses. While the latter requires careful grinding and polishing, 
the former can be easily fabricated to sub-micron dimension accuracy using existi ug 
VLSI etching technology. The term binary arises from the fact that each masking step 
during the lens production creates two phase levels. Therefore, a total of 2n phase 
levels are created in n masking etching steps. A special case is when n = 1 (2 phase 
levels), which corresponds to the conventional Fresnel lens (zone plate). 

Binary lens design is typically based on ray optics (scalar theory). 
Unfortunately, the scalar theory is inadequate in most cases for predicting the binary 
lens' field profile, focusing characteristics, and diffraction efficiency [1]-[6]. For 
example, the ray theory assumption is only valid when the dimensions of the surface 
relief structure are less than five times the relevant wavelength (5A r ). In practice, 
(particularly in high frequency applications) this requirement is often violated. 

A remedy to the deficiency is to use a vector formulation and employ finite 
element models (FEMs) to simulate the geometry. Such models are not limited by the 
scalar theory and its assumptions, thus the modeling results provide good 
approximations to the actual physical behavior of the lenses. These models can serve 
as valuable tools for designing, analysing, and evaluating lens profiles prior to their 
fabrication. 

BINARY ACOUSTIC FRESNEL LENS 

Reflection, refraction, and diffraction are three known mechanisms for 
redirecting waves. While regular lenses involve both reflection and refraction of 
energy, Fresnel and binary lenses use the diffractive properties of the structures. The 
governing equation of these diffractive lenses is the grating equation, and their field 
profiles are the result of wave interference. Therefore, the lens' phase function is the 
most important characteristic of a diffractive lens. 
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Figure 1. The phase front relationships in a concave lens, a Fresnel lens, and a stair-like 
binary surface relief structure (a BAFL). 

Figure 1 shows the phase profile for a spherical lens, a Fresnel lens and a 
BAFL. A BAFL is a planar structure with phase levels approximating a spherical 
phase front. The approximation error decreases as the number of phase levels 
increases, which also improves the lens efficiency. The least efficient BAFL is the 
2-level structure with a maximum efficiency of ~ 41 %. 

The design and the theoretical first-order diffraction efficiency equations for a 
N phase level BAFL are given in Figure 2. These equations are based on the ray 
theory. As the dimensions of the BAFL decreases relative to the wavelength of the 
acoustic signal, the equations become less accurate. Nevertheless, they can be used, 
as a first approximation, for designing the BAFLs. The FEM is then employed to 
simulate the BAFL and estimate the field profile, diffraction efficiency, and focusing 
characteristics. The estimates can be examined to improve the design of the BAFL 
subsequently. 

FINITE ELEMENT MODELING 

The governing equation for waves in a homogeneous, isotropic solid is [7]-[9] 

CijklUk,lj = PUi (1) 

where 
Cijkl >'OijOkl + Il( OikOj/ + Oi/Ojk) 

Ui displacement vector 
P material volume density 

>., Il Lame constants 

To solve Eq. 1, we employ finite element formulation in space, and the finite difference 
method to step forward in time. Additional details of the method are described in 
[7]-[9]. 
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r k = radius of the kth phase level = {( Fo + kIlN) Z - FoZ} 0.5 

[ Si(n_~(~) )]' T\ 1 N = First order efficiency for N levels = 

h=stepheight= [Nn(t-tJl 

N = number of phase levels c1 = speed in medium 1 
F 0 = the focal distance Cz = speed in medium 2 
n = operation frequency 

Figure 2. The design equations for an N level BAFL. 

Finite Element in Space 

The finite element solution [7J-[9J for Eq. 1 involves minimizing a scalar energy 
functional with respect to nodal displacements. This energy functional is given by 

E(ui,t) Potential Energy + Kinetic Energy - Work done by external forces 
P(Ui, t) + K(Ui, t) - We(Ui, t) (2) 

In the FEM model for the BAFL, the lens structure is an axisymmetric geometry 
(Figure 2). In this case, the displacement can be approximated in terms of the 
elemental nodal values as 

where 
u;(r, z, t) 
N1(r, z, t) 

UfI(t) 

ui(r, z, t) = N1(r, z, t)UiI(t) 

displacement at a point in the element 
shape function 
nodal displacement 

(3) 

The use of rectangular elements in the FEM implies an 8xl vector for the nodal 
displacement values, and a 2x8 matrix for the shape function. This results in a 2xl 
vector representing the displacement components in the radial and axial directions. 

It can be shown that the solution of the elastic wave equation is the same as 
the solution for a stationary point of the energy functional. After minimizing the 
energy functional with respect to the displacement for each element, and assembling 
the resulting elemental matrix in a global matrix, we obtain 

where M, K, and R represent global mass, stiffness and traction force matrices, 
respectively. 

(4) 
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Figure 3. Axisymmetric geometry for the BAFL FEM. 

Finite Difference in Time 

The finite difference approach is used to obtain the solution of the wave 
equation in time. Replacing the time derivatives in Eq 4 with their central difference 
approximation yields [7]-[9] 

1 2 1 
(~t)2Mut+~t = R t - KUt + (~t)2MUt - (~t)2MUt_~t 

When obtaining the explicit solution for the displacements, the technique of 
mass lumping (summarized in Eq. 6) is used for computational facility in inverting 
the global mass matrix. 

M diag Jl 

a = 

{ aMIJ if! = J 
o if! =f J 

2::1 2::J MIJ 

2::1 MIl 

The final equation modeled by the FEM is: 

RESULTS 

(5) 

(6) 

The test geometry for the BAFL model is shown in Figure 3. The 
axisymmetric nature of the geometry is exploited to confine the modeling to the plane 
of symmetry. The simulation results show the wave propagating on the cross-sectional 
half-plane as indicated in Figure 3. 

Table 1 contains the mesh and time discretization details of the FEM model 
used for simulating the 4-, 8-, and 16-level BAFLs. All three lenses are designed to 
have the same diameter and focal distance. The elements of the FEM are rectangular 
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Table 1. Design details for the 4-, 8-, and 16-level BAFL FEMs. 

Attributes 4-1evel BAFL 8-1evel BAFL 16-1evel BAFL 
FE Mesh Information No. Radial Elems. 252 272 314 

No. Long. Elems. 921 941 945 
Phase Zone Information Smallest Ring Size 790jlm 392f.Lm 195f.Lm 

Largest Ring Size 5.79mm 4.09mm 2.89mm 
Time Scale Information No. Time Steps 7876 10501 10501 

Time Step Size 6.0ns 4.5ns 4.5ns 
Physical Sizes Lens Diameter 4.74cm 4.74cm 4.74cm 

Focal Length 5.0cm 5.0cm 5.0cm 

o 

0.1 0.025 
z 

Figure 4. Simulated input plane wave. 

with variable sizes in the axial and radial directions. The input signal to the lens 
structure is a plane wave with respect to the lens. However, in the time domain, the 
input waveform follows a raised-cosine function with a center frequency of 1 MHz. 
Figure 4 shows the simulated input plane wave before entering the BAFL region used 
in the 4-, 8-, and 16-levellens simulations. 

The lens substrate (material 1) is quartz with longitudinal velocity Vi = 
5970ms-I, shear velocity V. = 3765ms-1 and density p=2200gm-3 • The coupling 
medium (material 2) is a generic material used to observe the propagation of the 
shear and longitudinal wave. This medium has Vi=1490ms-1 , V.=894ms-1 , and 
p=1000gm-3 . 

Figures 5, 6, and 7 show the focusing effects for the 4-, 8-, and 16-level BAFLs, 
respectively. These results demonstrate the interference of the phase shifted plane 
waves as they propagate along the coupling medium. The focusing effect can be 
explained as a directional interference pattern that is maximized at the focal point. 
This phenomenon can be observed at the focal area, at which the concentration of 
energy is made up of planar waves that have interfered in the vicinity. Minor side 
lobes with energy content that are less than that of the main lobe are also observed at 
the focal plane. 

927 



928 

0.1 0.025 
z 

Figure 5. Focusing effect for the 4 levels BAFL. 
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Figure 6. Focusing effect for the 8 levels BAFL. 
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Figure 7. Focusing effect for the 16 levels BAFL. 
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Table 2. Diffraction efficiencies obtained from using the equation shown in Figure 2 
and the method described in text. 

4-level BAFL 8-level BAFL 16-level BAFL 
Ray Theory (Fig. 2) 0.81 0.95 0.99 
FE modeling results 0.81 O.Sl 0.81 

Diffraction Efficiency 

Theoretically, the first-order diffraction efficiency of a BAFL is defined under 
continuous wave (CW) conditions as the percentage of the input energy diverted 
towards the lens' focal point. However, since the model simulates transient 
conditions, the following algorithm is used for calculating efficiency. 

1. Locate the focal plane parallel to the lens. 

2. Calculate the total energy in the focal plane. 

3. Calculate the full width half maximum (FWHM) energy in the focal region. 

4. Obtain the efficiency as the ratio of results obtained in step 3 and step 2. 

Table 2 shows the theoretical and numerical diffraction efficiencies obtained 
using the equation shown in Figure 2 and the finite element simulations, respectively. 
Since the two diffraction efficiencies are calculated using two different approaches, and 
recognizing that the model does not simulate true continuous-wave input conditions, 
the two sets of results should strictly not be compared. The large disagreement 
however indicates the limitations of the ray theory approach in predicting 
performance particularly when the dimensions of the surface relief structures are 
comparable to the wavelength. The simulation results show that, for the BAFL 
structures modeled, increasing the phase divisions from 4 to 8 and 16 levels does not 
improve the performance of the lens structures as predicted by the efficiency equation 
in Figure 2. Consequently, for the given diameter, focal length and operating 
frequency (1 MHz), we conclude that optimal performance is achieved with a 4-level 
BAFL, and increasing the number of levels does not improve efficiency. 

The results also demonstrate the capabilities of the FEMs in characterizing the 
propagation of elastic waves in the lens substrate and the coupling medium. 

CONCLUSIONS 

Current BAFL designs are based on equations developed from the ray theory. 
In many acoustic microscopy applications, the ray theory is not applicable for 
characterizing BAFLs. Due to this deficiency, FEMs have been developed to study 
these lenses. These models are capable of simulating and characterizing the 
beam-forming and focusing power of the lenses, as well as displaying their underlying 
focusing mechanism: the diffraction and interference of the input waves. Modeling 
results show that FEMs can serve as valuable tools for the study and evaluation of 
BAFLs prior to their fabrication. 
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