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CHAPTER 1. Introduction 

Photonic crystals or photonic band gap materials are periodic dielectric structures in 

one, two or three dimensions, and they have many interesting effects on the propagation of 

light inside them. Typically photonic crystals are composed of two different dielectric 

materials, for example air and silicon, arranged in a periodic lattice structure. An important 

figure of merit for such a construction is the index contrast of these two dielectric materials, 

which is the difference of their refractive indexes. The refractive index of a dielectric 

material is the square root of its relative permeability. 

This has been an active research area since around 1987. Yablonovitch [1], John [2], 

and Ho [3] produced some of the first publications concerning photonic crystal. These people 

are considered to have been the first to suggest the idea of a photonic crystal. 

In one dimension, however, periodic dielectric structures were being investigated 

long before these periodic structures were named photonic crystal. The conventional 

dielectric multilayer or Bragg reflector consists of alternating layers of two different 

dielectric materials. The interfaces between layers act as scatterers for the incident beam on 

the stack. As is well known from any standard optics text certain frequencies incident normal 

to the layers are transmitted through the stack while others are forbidden to propagate and are 

completely reflected. The band structure for a typical Bragg reflector divides into allowed 

bands where at a given frequency there are real wavevectors (k) corresponding to modes 
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which propagate through the system and band gaps where no real k's exist. In the band gap 

all k's are complex and correspond to evanescent waves which decay into the crystal. These 

modes cannot be excited in an infinite photonic crystal, but if the translational symmetry is 

broken by a surface or a defect, then it may be possible to create a localized surface or defect 

mode within the band gap. 

The Bragg reflector is a very useful object and has found many applications; as a 

stop-band filter, as a virtually loss-free mirror or, by introducing a defect layer, as a cavity 

for the distributed feedback laser. 

However, the Bragg reflector has one major limitation - band gaps only appear for 

waves traveling at normal incidence. As we move away from normal incidence the gaps 

quickly disappear. Ideally, a photonic crystal has a complete band gap for which propagation 

is forbidden in all directions. T his is the optical analog of a semiconductor that has a 

complete band gap between the valence and conduction bands. A photonic crystal with a 

complete band gap would find use in all the applications of the Bragg reflector. Moreover, 

such a crystal would radically alter the spontaneous emission properties of an excited atom 

placed within it. The atom would be unable to emit a photon into the band gap and so the 

atom and photon must form a new kind of bound state. Making a defect in the photonic 

lattice could create a single defect mode in the gap. The atom could emit into that mode and 

no other so, if we arrange things properly, we could make a highly efficient laser cavity by 

completely inhibiting radiation into any mode other than the lasing one. 

Photonic band gaps can be used in many ways. For example a line defect in a two- or 

three-dimensional photonic crystal can act as a waveguide, forcing certain frequencies to 
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propagate only along the line. The surface of a photonic crystal can act as perfect mirror for 

the frequencies within the gap. 

It has also been suggested that a metallic photonic crystal (MPC) structure may 

modify a thermal emission spectrum[4,5]. The experiment was carried out by Lin et al. using 

a three dimensional woodpile structure made of tungsten[6], The resulting thermal emission 

was shown to be suppressed in the photonic band gap and enhanced near the band edge. 

Promising experimental data have demonstrated that these metallic microstructures can be 

useful for incandescent lamp applications and for thermal photovoltaic power generation. 
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CHAPTER 2. Plane Wave Based Transfer Matrix Method and Modal Expansion 

Method 

The photonic band diagram, a plot of wave vector versus mode frequency of the 

mode is a basic tool to understand the characteristic of a photonic crystal. A frequency range 

in the photonic band diagram in which no photons exist in any direction and polarization is 

called a complete photonic band gap. In this chapter we discuss the basic concept of plane-

wave transfer matrix method which is effectively applicable to dielectric structures and 

modal expansion method which is effectively applicable to metallic structures. 

For the discussion in this chapter we are referring to Lan-Lan Lin, Zhi-Yuan Li, and 

Kai-Ming Ho [7] and Zhi-Yuan Li and Kai-Ming Ho [8]. 

2.1 Plane Wave Based Transfer Matrix Method 

Many theoretical approaches have been developed to calculate the photonic band 

diagram for two-dimensional (2D) and three-dimensional (3D) photonic crystals. These 

include conventional plane-wave expansion method (PWM) [3,10,11], real-space transfer-

matrix method (TMM)[ 11,12], finite-difference time-domain method [13], and Korringa-

Kohn-Rostoker (KKR) method [14,15], In the conventional PWM, the photonic crystal is 

considered as an infinite lattice along all directions and Maxwell's equations are solved in a 
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way that EM fields are represented by functions quasi-periodic in the whole space. In the 

real-space TMM and the KKR method, the photonic crystal is regarded as an infinite stack of 

identical periodic crystal layers along a certain direction. Maxwell's equations are solved 

within each layer, and the electro-magnetic fields of different layers are connected to each 

other through a transfer-matrix formulation. In addition to solutions of photonic band 

structures, the TMM can also calculate the wave scattering by a photonic crystal slab, leading 

to the transmission and reflection spectra that can be directly observed experimentally. 

In this chapter, we will introduce in detail the plane-wave based TMM which is 

applied to calculate the photonic band diagram and the spectra of photonic crystal structures. 

The scattering-matrix (S-matrix) algorithm will be also used to avoid numerical instability. 

2.1.1 Maxwell Equations 

We start from Maxwell's equations: 

V x E(r) = ik0H(r), WxH(r) = -ik0e(r)E(r) (2.1) 

Here e(r) is the periodic dielectric function of the grating slice, it is homogeneous along the 

z-axis direction. We can rewrite Eq. (2.1) into six partial-differential equations satisfied by 

(Ex, Ey, Ez) and (Hx, Hy, Hz). The z-components of EM fields Ez and Hz can be deleted from 

these six equations, leading to the following four coupled equations: 
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a _ i a -E, = 
dz * -ikn  dx îcH"~îyH-

ihHy (2.2) 

d_E 
1 d 

dz y  -ik0  dy 
-ik0Hx  (2 3) 

V = 1 6 

dz -ik0  dx v  bE ' '^E-
-ik0£Ëy  (2.4) 

î~H '=~rî, dz -ik0  dy îcE '~^E '  
+ ik0sEx  (2.5) 

2.1.2 Electro-magnetic Field inside a Grating Slice 

We can write down the plane-wave expansion expressions of the EM fields and the 

dielectric function, 

E(r) = ̂  E. (z)/*^+^) (2.6) 
i,j 

#(r) = ̂  ̂  (z)g'^+**,f) (2.7) 
i,j 

£ ( r )  =  Y j e i J e G j " '  (2.8) 
U 

<2.9) 
e(r) y  

Substituting them into Eqs. (2.2)-(2.5) yields 



X £ï-mj-n mn.yKn x ~ Hmn,xKn,y ) + lKHj„ 
v0 mn (2.10) 

^EhL - -HhbL'Sr f-1 (M k -H k }-ik H 
~ ~ , 2-J i-mj-n \ mn,y mn.y nmn,xKmn,x) lK012 ij,. 
OZ *0 mn (111) 

ÔĤ  ~ — E Ôimj* (Emn.ykmn,X ~ Emn,xKn,y) ~ £ £>-m,j-nE, 
dz k. 

mn.y 
0 mn (2.12) 

d Hu,y _ l ku,y.y s  (e k -E k ï + ikYe E 
imjn \ mn.y mn,x ^mn,x^mn,y> T '""O bi-m,j-nJ^mnjc 

dz k. 0 mn (2.13) 

Now define column vectors 

E = 

( : ) ( : ) 

E H IJ,X ,H = IJ,X 

E 
,H = 

H 'j,y ' j ,y 

K : v k '• y 

Eqs. (2.10)-(2.13) can be written in a concise matrix form 

— E = T\H, —H = T2E 
(2.14) 

where the matrices T1 and T2 are defined as 
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rpij,mn _ 

rpij,mn 

Je p ^ le 
ij,x ij\mn nm,y 

]r F ^ lr Jc^ V y>« nm*y 0 *nmn 

-kij,x£îj,mnKm,x+Kày,mn 

]r p ]r 
ij,y ij',mn mn,x J 

Jr £ lr hp" c* 
tj,x ij\mn nm,x *0 fc//>n 

^ij,y^ij-,mn^mn,x J 

From Eq. (2.14) we finally obtain an Eigenvalue problem for the electric field, 

^£ = (772)£ = />£ (215) 

Now suppose we have used No plane waves in the expansion, then Ti , T2 and P are 

all (2No)x(2No) matrices. Solution of Eq. (2.15) will give us 2N0 eigenvalues (denoted as /?/, 

/-1, 2, •••, 2N0, with Im(Pj)^O) of the matrix -P = -T^T2. In addition, the (2N0)X(2N0) matrix 

Sa, whose jth column is the eigenvector corresponding to the eigenvalue /?/, can also be 

o b t a i n e d  s i m u l t a n e o u s l y .  T h e  e i g e n m o d e  c o r r e s p o n d i n g  t o  f t , 2  i s  E i ( z )  =  E * . ( z )  +  È ~ j ( z ) ,  

E*(z) = E+
a  ieP l { z ' z"' ) ,  E~(z) = E~Je~' f i l ( l~Z i- i ) ,where E\ and E~ are both unknown variables. 

Further define column vector (3 = (•••,/?,,•••/ ,  E+
a  =(•••, E+

a i(z),---) r  and 

E~ =(•••,E~.(z),---)T  . The electric field column vector E is now expressed into the 

superposition of all the eigenmodes, E = Sa(E+
a  +E~) . The corresponding magnetic field 

column vector are obtained from Eq. (2.14) and we get 

H = T,-' = ZT'S„^(< + O = iT;'S,P(E: -£;) = UK-K). wherer, =iT;<SJ. 
dz dz 
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It is convenient to express the electric and magnetic fields at an arbitrary point inside 

the grating slice into a concise form: 

'E(z)" ( K )  
aJ (2.16) 

2.1.3 Electro-magnetic Field around a Grating Slice 

Having expressed the EM fields inside the slice, we need to further solve the EM 

fields around the slice. The EM fields in the two air films around the grating slice can also be 

solved in the same way, The EM fields in the two air thin films around the ith slice is both 

consisting of forwards and backwards propagating plane waves. The tangential components 

of the electric field in the left hand-side air film can be written into 

ij ij (2.17) 

where 2j,,(,)(z) = since z = z,_,. 

Pij is given by /?y = (&0
2 - kfJX -k* y) for k\-k] j x-k] j y> 0, and P t J  = i(kf l x  + kfJ y  -kl) for 

ko-kfj.x -tf .y < 0 -

The tangential components of the magnetic field are 

ij ij (2.18) 
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where = = -'A(z-Zm) 
= HijMy) • For each 

Bragg wave vector we have the following relation between the H and E fields: 

=ToAEL'Ely)T and ( > Hiy )' = > Ely )r ' where the superscript 

"T" denotes matrix transposition. The 2><2 matrix To,y has matrix elements 

To,y - kjjxkjj y /(Kfiij) i *b)/(*b/^) ' ^o,// ~(^o ky,x)K^ofly) , and 

70
2y = ktJ xktJ y /(k0fl0 ). The EM fields in the right hand-side air film have the same form of 

expansion. In Eqs. (2.17) and (2.18) we simply replace Efjx{y) and H^x(y) with UfjMy) and 

V*x(y) , respectively. V*x{y) and Ufjx{y) are also connected each other through the 2x2 matrix 

T I0,ij • 

By defining column vectors Q"_, =(---,E^x ,Ef i y ,---) r  , Qf = {---,Uf j x ,UfJ y ,---f  ,  

where with N and M being the truncation orders, we have 

(2.19) 
= T, 'll 12 

M J V 21 22 J 

Tj is called the transfer matrix for the i,h slice. 

It is easy to find that the fields in the transmission region Q* are related to the fields 

in the incident region Q* by the total transfer matrix of the slab, 

(2.20) 
= T 

,n»~J 

cf 
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where T = TnTn_x---T2Tx  . Notice that Qj\  = E0  =(•••,EQ x ,EQ y ,---)T  , and 

Qo =Er =(•••,E^x,Eyj,-••)T are column vectors for the incident and reflection waves, 

Q+
n = Et =(•••, E'j x, E'jy, • • -)r is for the transmission waves, while = 0 since no 

backwards propagating waves exist in the transmission region. 

2.1.4 Matching Boundary Conditions 

We can rewrite electro-magnetic fields around the grating slice in a way similar to Eq. 

(2.16). Match of boundary conditions requests all tangential field components of each plane 

wave be continuous at the two interfaces between the air films and the grating slice. At the 

left interface z = z._,, 

^0 ^0 

\T0 ~T0 J 

'S„ s„ Vc(zH)^ 

J. -rJU:(zH) (2.21) 

while at the right interface z = z., 

w0 u0 

\T0 ~T0J J 

a a 

-T ay (2.22) 

where So and To are counterparts of Sa  and Ta  in an air film. They can be analytically solved. 

Actually So=I, a unit matrix, To is a block-diagonal matrix each block of which is a 2x2 

matrix already given by To,y in Eq. (2.4). In the grating slice, 
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%) 
\ /g,# 0 

-ifih 
v 0 e y (2.23) 

where h = zi - z._, is the thickness of the slice, e'ph denotes a ( 2 N 0 ) x ( 2 N 0 )  diagonal matrix 

whose element is e'A\z = l,2,---,2vV0 . Deleting [E+
a{zi_x),E'a{zj_x)f and [£a

+(z,),£;(z.)f 

from Eqs. (2.21)-(2.23) and making some analytical derivations yields 

(2.24) 
'< a\ \  °12 

-l 
0 ' X «12 ^ 

kJ a2, a22 O
 

ft 
1 S
 

,a21 a22. 

where an  = j(Sa
]S0  + Ta  %), an  = \(S~ lS0-Ta  %), and a21 = an  ,  a2 2  = au  . Eq. (2.22) has 

already present us the T -matrix for slice i, namely, 

T = 't'u t[2  a\\ ®\2 
-1 

e'f 0 ' a\\  «12 

/21 t!22j a2\ a22 0 «21 °22, (2.25) 

Now it becomes clear why the T -matrix formalism is numerically unstable for thick 

gratings. Look at the two phase factors e,ph and e~,ph. For those Bragg wave components 

where Pi has a significant imaginary part, one of them must be exponentially increasing 

through the whole slab of gratings, rendering numerical instability such as overflow. 
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2.1.5 S-Matrix 

One method to overcome this numerical instability is the so-called S-matrix method 

[16]. In this method, the transfer matrix for the ith slice in Eq. (2.19) is redefined in another 

way as follows: 

' Q ;  n 

= .s; ter = '4 4" te_/ 

I «7 J <521 S22 j 1^7 J (2.26) 

s' is called the S -matrix for slice i . /is related with T t  as follows: s,', = - l 'n[t '2 2] ]t '2 ] ,  

2 = t']2 [t'22Y, s'2\ = , s22 = [*22 ]'• In principle, the S -matrix can be calculated from 

the T -matrix through a transformation. However, because the T -matrix itself is consisting of 

very large numbers e~'ph and very small numbers e'ph, any transformation through numerical 

manipulations [such as a matrix inverse] on this T -matrix will generate problems of 

numerical errors, especially when the plane wave number is large. Therefore, we prefer to 

derive the S -matrix for slice i directly from Eq. (2.24) without the aid of the T -matrix, 

largely depending on analytical derivation. This proves to be more stable and reliable 

numerically. After some algebraic manipulations, we finally arrive at 

4 % P\t\ PA M+M 

.4, ^22, pxt2+p2tx PA+PA. (2.27) 
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where px  = [«,, -e l f i hax 2ax\e'p hax l\  1 ,  p2  = ax xe'p hax 2[a ] x  -e'p hax 2ax xe'p hax 2] 1 ,  /, = e'p hax x  , and 

t2  - -aX 2 . We now see that in the inverse of a matrix, where a numerical calculation is 

necessary, no very large or very small matrix elements are involved. From Eq. (2.27), it is 

obvious that s' is a block-symmetric matrix, reflecting the fact that the grating slice is 

symmetric with respect to its middle plane at z = (z;_, + zj)/2. 

2.1.6 The Total S-Matrix 

The total S -matrix of the whole slab is connected to individual s t  through an 

iteration algorithm. Suppose the total S -matrix for the first n-1 slices and the S -matrix for 

slice n have been calculated to be S"~l and s", respectively, it can be shown that the total 

S -matrix for the first n slices S" is given by 

where I is an unit matrix. Then fields in the transmission and reflection waves are connected 

to the incident waves through 

(2.31) 

(2.29) 

(2.30) 

(2.28) 
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from which we get 

E,=%, 4=% 
(2.32) 

In the calculation of the total S -matrix for a slab, we can first set S° = I , which 

corresponds to the S -matrix for an air slice. We then solve the S -matrix for slice 1 s1, and 

use the iteration algorithm Eqs. (2.28)-(2.31) to obtain the total S -matrix Sl for the first one 

slice. Repeat the procedure, we can finally obtain the total S -matrix for the whole slab. 

2.1.7 Transmission and Reflection Spectra 

After we have obtained coefficients for the reflection and transmission waves, the 

transmission and reflection spectra are calculated by 

r = 2^=2^7—; 
ij ij I -^O I I "-Oz I 

(2.33) 

and 

(2.34) 

where the summation is run over those homogeneous Bragg waves with lateral wave vectors 

kfjx + kfjy< . E'v and Ey are the amplitudes of the transmission and reflection Bragg wave 

in the (i)) l h  order. 
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2.1.8 From Wave Scattering to Photonic Band Diagram 

With the layer transfer-matrix at hand, we can directly solve the photonic band 

structure. Assume the primitive lattice vectors of a 3D photonic crystal are a,, a2, and a3. 

Note that these three vectors are not necessarily orthogonal to each other for a general lattice, 

say, a face-centered cubic (FCC) or face-centered tetragonal (FCT) lattice. We can always set 

the plane formed by a, and a2 as the XOY plane, which means that in this plane we have a 

2D lattice with primitive lattice vectors a, and a2 . The corresponding reciprocal lattice 

vectors are b, = 2^(a2 x z)/[(a, x a2)•z] , b2 = 2n(zxa,)/[(a, x a2) • z] , and a general 

reciprocal vector is given by Gy  - zb, + y'b2. The whole infinite photonic crystal is looked 

upon as an infinite number of layers stacking along the z -axis direction, every layer having 

the same primitive lattice vectors (a, and a2 ) and reciprocal lattice vectors (b, and b2). 

The key from a general wave scattering problem to a photonic band structure problem is to 

impose a periodic boundary condition along the stacking direction of the infinite grating. 

According to Bloch's theorem, the field at r is connected to the field at r + R through 

w(r + R) = e'kRu(r), where u is one of the components of either E-field or H-field, 

k = (kx,ky,k2) is the Bloch's wave vector, and R is a lattice vector of the 3D lattice. The 

periodic boundary condition along the z -axis direction leads to 

u(r + a3) = e'k"Xr) = exp [i(kxa3 x  + kyaX y  + k za3 z)]u( r) 
(2.35) 



17 

We need to work out the transfer matrix connecting the field at r and r + a3. The 

transfer-matrix is strictly propagating along the stacking direction, namely, the z -axis 

direction. Therefore, after we get the transfer-matrix connecting u(x,y,z0) and 

u(x, y, z0  + a3 z  ), we should further phase shift u(x, y, z0 + a3 z ) to u(x + a3 x ,  y + a3 y ,  z0  + a3 z  ) .  

Observing that u(x, y, z0 + a3z ) = X utJ{zQ + a3z ) exp[zly;rx + ikijyy] , and 

u(x + a3 t X ,y + aX y ,z0  +a3 , z) = Ewy(z0 +a3 z)eKV[ik i j xa3 x  +ik i j ya3 y]exp[ik l j xx + ik i j yy], we can 

easily find out the transformation rule of both the T -matrix and S -matrix under this phase 

shift. Another important point is that in application of the transfer-matrix technique, the 

Bragg wave vectors for the 2D lattice in the XOY plane should be 

After the transfer-matrix connecting w(r + a3) and u{r) is finally stabilized, we are 

ready to move forward to solve the photonic band structure. Denoting the column vector of 

the fields in the both hand sides of the primitive unit cell as (0^,0,") and (QQ,Q0) , in the 

T -matrix algorithm we write 

Û; = T 
Q+

0 Ai hi q; 

«r, ,Q0, Ji\ *ii j SK, 

From Bloch's theorem Eq. (2.35), we have Qx = e'ka3Oo , and Q, = e'ka,Q0 . Under this 

condition, Eq. (2.36) becomes 
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te' = e"""3 te' te, te, (2.37) 

which means that the Bloch's phase factor is the eigenvalue of the T -matrix for a unit cell of 

the photonic crystal layer. However, as we have mentioned in the previous section, the T -

matrix itself is not stable for thick grating, therefore, the solution of eigen-problem Eq. (2.36) 

is also not reliable. So we turn to the numerically stable S -matrix algorithm. From equation 

te' = S te' 
'Su •V te' 

te J Pîj  ,^21 *^22, te. (2.38) 

and using Bloch's theorem, we can derive 

te = e'k a 3  7  -Sn te 

< S 2 1  -h te, 0 ~S22, te, (2.39) 

Eq. (2.39) is a generalized eigen-problem Ax = ABx, where A and B are both square 

matrices, A is the eigenvalue, and x is the eigenvector. Eq. (2.39) can be written into 

another form: 

%  o  "  
_ e ' k " 3  

7  -sa  te' =p te 

A i  

0
 

1 

F
 

te 

c
f
 = 0 

(2.40) 

Then the eigen-problem is solved by setting det(P) = 0, or by finding the zero eigenvalue of 

the matrix P. 
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In the second scheme Eq. (2.40), all components of the Bloch's wave vector kx ,  ky ,  

and k2  are given explicitly as input, the unknown variable is co . Therefore, the solution of 

the photonic band structure in this scheme can be classified as co- f(kx ,ky ,k2).  This scheme 

is similar to the conventional Plane Wave Method in that given one Bloch's wave vector, the 

corresponding eigen-frequency are solved. However, there is a big difference. The eigen-

matrix itself involves the unknown eigenvalue co. Therefore, the standard eigen-problem 

solution algorithm is not applicable, instead, one should use other root-searching algorithms 

of nonlinear equations to find the eigenvalues. There is a benefit as compensation for this 

numerical inconvenience: the current scheme can effectively deal with dispersive materials 

where e is dispersive with respect to the frequency. Obviously, using this scheme, we can 

account for the photonic band structure along any prefixed line in the first Brillouin zone 

(BZ) by only carrying out the transfer-matrix calculation along a single stacking direction. 

For example, we can generate the conventional 3D photonic band structure (namely, 

diagrams plotted along all high-symmetry lines in the first BZ) of a FCC lattice by only 

considering the (001) stacking direction of the crystal layers. 

In the first scheme Eq. (2.39), the frequency co and lateral components of the Block's 

wave vector kx and ky are explicitly given as an input, and the unknown variable is the 

Bloch wave vector component k z . So the solution of the photonic band structure can be 

categorized as k z =  f { c o , k x , k y )  , where k z  should be a real number, implying that the 

eigenvalue e'k"3 of Eq. (2.39) must be a complex number of unity modulus. In our numerical 

experiences, the calculated eigenvalue corresponding to a Bloch's mode is always of a 
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modulus different from unity within 10-10, verifying the numerical stability of the plane-

wave based S -matrix algorithm in application to the photonic band structure solution. This 

scheme can also apply to dispersive materials. Compared with the second scheme, this 

scheme is most numerically economic for the photonic band structure along a prefixed line in 

the first BZ parallel to the layer stacking direction. In this case, kx = const, ky = const, and 

k z  = f(co) . For example, for a FCC lattice, the T-X band is solved by considering the 

(100) stacking direction of the crystal layers, while the T-L band should be solved by using 

the (111) stacking direction. In the first scheme kz = f{kx,ky,co), the transfer-matrix is 

calculated exactly along the crystal stacking direction parallel to the high-symmetry lines in 

the standard diagram of band structures. In principle, several stacking directions are needed 

to account for the whole diagram. In the second scheme, cd = f(kx,ky,kz) , one can calculate 

the whole diagram of photonic band structures by looking at only one single stacking 

direction. In the former scheme, very reliable standard eigen-problem solution tools are ready 

for use, while in the latter scheme, consideration of only one stacking direction can reduce 

the numerical burden. More importantly, it is more flexible to select a stacking direction 

along which fast converged results can be achieved by using optimal Fourier expansion rules. 

It may be valuable if we can combine the advantages of these two schemes. Let us take the 

layer-by-layer photonic crystal as an example. To guarantee fast numerical convergence, we 

should consider the (001) stacking direction. Now for each Bloch's wave vector in the first 

BZ, k = (kx,ky,kz), which is usually lying at an arbitrary high-symmetry line, we project it 

onto the stacking direction, and obtain the lateral wave vector in this plane, which is kx  and 
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k .  Then we use the eigen-problem solution scheme: k' z  = f(kx ,ky ,co) to calculate the 

dispersion along the (001) direction. Matching £'z to the prefixed value of kz either through 

simple sorting or through interpolation technique, we can pick up the eigen-frequency 

corresponding to the wave vector k , namely, we have arrived at the scheme 

m = f(kx,ky,kz). To speed up the numerical solution, each time we do not necessarily need 

to work in a very wide frequency range, such as (0,com) , where œm is the maximum 

frequency considered in the band structure calculations. Suppose we have obtained the eigen-

frequency at one wave vector. Then we can start from this point, and carry out the above 

numerical procedure in the adjacent small frequency range to find out the eigen-frequency of 

the adjacent wave vector to the Z point for each photonic band. Repeating this procedure, 

we can efficiently solve the whole diagram of photonic band structures. 

2.2 The Modal Expansion Method 

In this section we will introduce an analytic modal expansion method combined with 

a transfer-matrix technique to investigate the reflection, transmission, and absorption spectra 

of three-dimensional layer-by-layer metallic photonic crystals working in a infrared 

wavelengths regime. For a metallic photonic crystal structure, the usual plane-wave 

expansion method[10] becomes ineffective. Severe convergence difficulty is found for a 

highly-conducting 2D grating due to a skin depth two orders of magnitude smaller than the 

incident wavelength. To attack the theoretical challenge for a 2D metallic layer-by-layer 

grating scaled in mid-IR wavelengths, we introduce an EM approach which combines a 
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series of techniques ranging from analytic modal expansion method, to the transfer-matrix 

method, and to the application of structural symmetry. 

2.2.1 In-Plane Incidence of Plane Waves 

To study the general scattering of EM waves by a ID lamellar perfect-conducting 

grating under arbitrary incidence condition, it is helpful to look at the simplest case of the in-

plane incidence, where the incident wave vector lies in a plane perpendicular to the grating 

axis. The grating is extending along the y -axis direction, and repeats its unit cell along the 

x -axis direction every distance of d. The air-metal interface is located at x = 0 and x = a, 

respectively. A plane wave is incident on the grating from up to down along the -z direction 

with a wave vector k0 = (k0x,k0z) = k0(sin<9,-cos#) , where k0 - (co/c) is the wave number, 

co is the angular frequency, c is the light speed in vacuum, and 0 is the incident angle, 

0 < 6 < n/2 . In this situation we have two eigenmodes for the scattering problem, the TE and 

TM modes, in which either the electric or the magnetic field is parallel to the grating axis. 

For the TE mode, the electric field in the incident region ( z > h), in the grating region 

(h>z> 0 ), and in the transmission region ( z < 0 ), can be written as 

e,(x,Z) = Y, (2 41) 

£»(*.z) = É'4. sin/i„z + B„cosfimz)Xm(x), ( 2  4 2 )  
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E,(x,z)= £ tnep" ( z ' \n{x). 
(2.43) 

Here y/n(x) = d 1/2e'(^0x+"2^)jr, and Xm(x) = (2/a)'/2sin(^mx) with sm=m7i/a, a being the 

width of the air domain. jum = {kl~s2
m)m if sm<k0, and //m = Ks2

m-kl)m if sm>k0. It can 

be directly checked that Em is the solution of the Helmholtz equation in each air domain and 

satisfies the boundary condition that at x = 0 and x = a, Em= 0 . To determine the unknown 

variables rn and tn, the boundary conditions at the interfaces z = h and z = 0 are used, 

where the tangential electric field E is continuous everywhere in the whole unit cell of the 

grating 0 < x < d , while the tangential magnetic field Hx is only continuous in the air 

domain 0 < x < a . This means 

E r{x,h) = Em(x,h), 0 <x<d, 
(2.44a) 

E r  (x, h) = -^-Em  (x, h), 0 <x<a, 
ôz r  dz (2.44b) 

E t(x,®) = Em{x,Q), 0 <x<d, 
(2.44c) 

—— E t  (x, 0) — — Em  (x, 0), 0 < x < a, 
dz dz (2.44d) 

The so-called method of moment[17,18] is employed to solve these equations. In Eqs. 

(2.44a) and (2.44c) we project both hand sides onto the basis function y/n(x) of the whole 
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unit cell, while in Eqs. (2.44b) and (2.44d) projections onto the basis function X m ( x )  are 

used. This leads to equations 

r, + = Z (4, sm cos , ^.45a) 

Z f'Ak -^,.oVv = ^cos/z/-^sin^A, ^ 

k—yi B J ,  
, ^ (2.45c) 

X! ifiJnJnp ApfJ-p- (2.45d) 

Here Jm n  = ^y/m(x)Xn(x)dx ,  and the superscript denotes the complex conjugate. 

Deleting Am and Bm from Eqs. (2.45a)-(2.45d) finally yields the following coupled linear 

equations 

X [(4?» -àq,n)rn + B qJn]~ Aq0 + <>q,0> 

X ^Binrn + (Aqn ~ ~ Bq0> 

(2.46a) 

(2.46b) 

where the matrix elements Aqn and Bqn are defined as 
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4,„ = -'A E //m'ctan(yum/2)j;mjnm, (2.47a) 

^ = -'A Ë . (2.47b) 

The solution for the TM mode follows the similar procedure. The magnetic field Hy  is 

written into the plane-wave and modal expansions 

f f , ( i , z )=  £  K/" 4 H t ' / H K(4 

H,„ (x, î) = Xl*/,-Sin/'„z+fl„ cos /i„r)};/.ï), 
m=0 

(2.48) 

(2.49) 

(2.50) 

where 7m(x) = (2/a)m cos(smx) for m> 0, and ^(x) = (1 !a)m .  The expansion form of Hm 

guarantees that the tangential electric field Ez [ ce ^ Hm ] is zero at the wall of each air 

domain x = 0 and x = a. The boundary conditions at interfaces z = h and z = 0 require 

H r(x,h) = Hm(x,h), 0 <x<a, (2 51a) 

îHAx'h) = îHJxM 0<X<d' (2.51b) 
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H t  (x, 0) = Hm (x, 0), 0 < x < a, 

—H l(x,0)- — Hm(x,0), 0 <x<d 
dz dz 

After some simple algebraic manipulations we obtain 

Ê  [ ( 4 "  - +  B q n t n ]  =  i f i q S q f i  -  A q 0 ,  

Z + (A1* ~ X]- _^0 • 

The matrix elements 4,„ and Bqn  are now defined as 

4, = Z ̂ ctan^A)J^J_, 
m-0 

and 

= "Z ̂  csc(^A)Jj^J^, 
m=0 

where Jmn is now defined as Jmn = £ i//m(x)Ym(x)dx. 

To solve numerically Eqs. (2.46) and (2.52), we have to truncate the infinite linear 

equations using a finite number of plane waves. It can be found from Eqs. (2.47a), (2.47b), 

(2.53a), and (2.53b) that Jnm , ctan(jumh) , and csc(jumh) are all rapid decaying functions of 

jumh. This allows one to use only moderate modal expansion number M to obtain converged 

results of the matrix elements Aqn  and Bqn .  In addition, looking into the symmetry of the 

(2.51c) 

(2.5 Id) 

(2.52a) 

(2.52b) 

(2.53a) 

(2.53b) 
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coefficient matrix in Eqs. (2.46a) and (2.46b) for the TE mode, and Eqs. (2.52a) and (2.52b) 

for the TM mode, one can expect that stable and fast convergent solutions of the reflection 

and transmission spectra as well as EM fields can be achieved using truncation by only 

moderate orders of rn, tn, Am and Bm for both the TE and TM modes. 

After solution of rn  and tn  ,  the modal coefficients Am and Bm can be obtained 

directly by substituting rn and tn into Eqs. (2.45b) and (2.45d), etc. Finally, the transmission 

and reflection coefficients are calculated by 

(,54) 

and 

*=Z>„=2>„  
(2.55) 

where the summation is run over those homogeneous Bragg waves with a lateral wave vector 

| k0x  + Inn/d |< k0 .  

2.2.2 Off-Plane Conical Incidence of Plane Waves 

In the off-plane conical incidence configuration, the incident plane wave has a wave 

vector component along the grating axis. Suppose an EM wave with a wave vector 

k = (k0x,k0y,k0z) = k0(sin<9cossin#sincos6) is incident on the perfect-conducting ID 

grating, where 0 and tf are the incident polar and azimuthal angles, with nil < 0 < k , and 
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0 < </> < 2n . In the conical incidence, the TE and TM modes are no longer the eigenmodes of 

a ID grating, instead, they are coupled with each other. Since the grating is homogeneous 

along the y -axis direction, the y -axis wave vector component is a constant k0y in the 

process of the wave scattering. 

The E and H fields in the incidence and transmission regions are now both 

composed of three components. We first consider EM fields in the incidence region Er and 

Hr. In the plane-wave basis, the tangential components of Er are written in general forms as 

£»=É ± [£•„(;)+iyz)> 

£ , ( r )=X -  £  [s ; , (z )+£ ' , (Z) ]6"  

iklxx+ikJvy 

(2.56a) 

(2.56b) 

Here +/2^, ̂  where 

^=- (*0-^-4) '"  for  ^ -^-^>0  ,  and  +  for  

ko ~ kfx  -k2
jy  < 0. The definition of /?y are in consistence with the fact that the incident wave 

is propagating along the -z direction. 

The z -component E z  (r) can be obtained from V • E(r) = 0 . The magnetic field can 

be derived from H = (l/z£0)V x E, and the tangential components are written as 

»,(')=% =  £ [ / / * , ( 2 5 7 a )  
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= + ^.57b) 

where H+My)(z) = , H; jMy)(z) = H; jMy)e~'Pl i {2~h) .  For each wave vector we have 

the following relation between the H and E fields: (H*x ,H*y)T = T0 iJ(E^x ,E*y)T , and 

(H~ j  x ,  H~Ly  ) r  = -T0  iJ  (E~x ,  E~Uy ) r  ,  where the superscript 'T" denotes matrix transposition. 

The 2x2 matrix T0J j  has matrix elements = -k i xk j y/(k0fi i j) ,  T™. = (kl~kl)/(k0fi i J) ,  

Toi = (ko -k^/iKPy), and 70" = k i xk j yl{kji t i) .  It can be seen that E+(H+) and E~(H~) 

correspond to the incident and reflected waves, respectively. 

The EM fields in the transmission region E, and H have the same general form of 

expansion, 

£»= £ = £ [y*,<z)+c/L(z)]e"-"''«' 

£ , ( r )=X = z  (*)+"I ,  Wk 
iklxx+iklvy 

H,(r)=Z V„,,(z )e*'"*"' ,  £ [V^(z) + V^(z)]e''-""' r  

(2.58a) 

(2.58b) 

(2.59a) 

(2.59b) 
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where = ^ are also connected 

to Uyx (y )  and U~x{y )  through the 2x2 matrix T0 j  . Obviously U+(V+) and U'(V~) 

correspond to forward and backward propagating waves in the transmission region, 

respectively. Temporarily, we assume that both waves coexist in the transmission region. In 

reality, U~(V~) should vanish, since only transmitted waves exist in this region for our ID 

lamellar grating. But we will see in later sections that the introduction of U~(V~) into a 

single-layer ID grating will bring us great convenience and flexibility to the scattering 

problem of a general multilayer 2D grating, because they are one of the central elements in 

the transfer-matrix method. 

As noted above, the y -component of the wave vector is a constant during the process 

of EM waves scattering by the ID grating, therefore, the EM fields Em and Hm inside the 

grating domain can be written as 

Ey{r) = J (AJ
m cosnmz + BJ

m sin fimz)Xm{x)ek 'yy ,  
m=] 

4M = É C0S/V + Fi sinMm
z)Ym{x)ek 'yy, 

m=0 

(2.60) 

(2.61) 

^z(r) = + + ̂ ^)sin^z]%^(%)/^, ^.62) 
m=1 

where, pm is now defined as fim = (k2  -s2
m -k2

jyf2  if s2  + k2
y  < k2  , and 

jum =i{s2
m +k2

jy -klf2 if s2 +k2
y > £0

2 . It can be shown that each expansion term in Eqs. 



31 

(2.60)-(2.62) is a solution to Maxwell's equations in the rectangular air slit satisfying the 

boundary conditions that the tangential components Ey = 0 and E= 0 at both x = 0 and 

x - a .  From Maxwell's equation ik0H = VxE, we can derive the tangential Hm components 

as 

ik0Hx  (r) = ̂ -E2--^Ey=Y j  (k2
jy/j,-J + tim ) sin nmzA'm - (k)y^ + nm ) cos fimzBJ

m 
oy oz m=1 

) sin , 
(2.63) 

ik0Hy  (r) = ~Ex-^-E z=Y j  [{ik j yM'Jsm ) sin pimzA'm - (ikJy^~ ]sm ) cos fimzBJ
m 

OZ UZ m=\ 

s2
mM~J + Mm ) sin fimzEJ

m + (^/T1 + nm ) cos /umzB ]
m ]Ym (x)e'k j 'y  

+(~Mo s in  Mo zEl +M0  cos /jazF0
J  )Y0  (x)e'k j s , y . ^ 64) 

We have finished the expansion of EM fields in the incidence, grating, and 

transmission regions. We can continue to find out the unknown field expansion coefficients 

in the three regions through match of boundary conditions at z = h and z = 0. Similar to the 

TE and TM modes in the case of in-plane incidence, we start from boundary conditions 

ET(z = A) = Er(z = A), 0 < x < d, 
(2.65a) 
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nr (2  =  A)  =  n r (z  =  A) ,  0<x<4,  

Er(z = 0) = E:(z = 0), 0<x<d, 

nr (z  =  0)  =  n r (z  =  0) ,  0<%<a,  

where the superscript "tan " means the tangential components of fields. Using the technique 

of moments at z = h and z = 0 for the electric field, we arrive at the following matrix 

equation after truncation over the infinite linear equations, 

(2.66) 

ZQ and ZJ
m are column vectors composed of the field expansion coefficients, where the 

superscript "j" refers to the kjy component of the incident wave vector. They are defined by 

Z^=[^(A),^(A),(/,/0),^/0)r, 

where E i JXy )(h) = [E_NJMy)(h),•••,E0 jMy)(h),•••,ENJMy)(h)], AJ
m = (A{, A[ , •  •  • ,AJ

M_X) , etc. The 

corresponding dimension is 4N0 and 4M - 2, where N0 = 2N +1 and M is the plane wave 
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and modal numbers in the incidence and grating regions. The (47V0)x(4M-2) dimensioned 

matrix I\ is 

px = 

0 o cosO0/2)j;0 cos{nJi)J im sm({i0h)J;0 sin(Mmh)Jk 
X 

cos(jumh)I;m sin 0 0 0 0 

o  o  J :  o  o  
r  o  o  o o o  

where each element (such as J*m ) represents a matrix, and the multiplication such as J*mEJ
m 

implies summation over the index m, which is just the multiplication of a matrix and a 

column vector. Here Iim and Jim are defined as Iim = £ e'k"xXm(x)dx and 

J im  = £ e'k"xYm (x)dx . Matching the boundary conditions for the magnetic field at the 

interfaces z = h and z — 0, we obtain 

ik  p  7 j  — p 7 j  

^ (2.67) 

where Z( = [H i JX  (h), H l j y  (h), V l j x  (0), V l j y  (0)]r. 

P2 is a (4M - 2) x (4N0) matrix defined by 
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IX, 0 0 0 

0 j ,m 0 0 

0 j i 0  0 0 

0 0 l  0 

0 0 0 j io  

0 0 0 j im , 

where I im  denotes a (M -1) x N0  matrix G whose matrix element is Gmi  = I im ,  and the 

others have similar implications. 

P3  is a (4M - 2) x (4M - 2) matrix defined by 

'Qn Qn 0 614 0 8,6 

a. Q22 0 624 0 Q26 

0 0 Ô33 0 Ô35 0 

0 642 
0 0 0 Qa6 

0 0 0 0 Ô55 0 

0 Qb2 0 0 0 Qô6. 

where each block matrix Qy  is diagonal. The diagonal elements are 

a,.** =-(^m +y"m)cos(^A), 

8,6,mm = cos(^A) , &,»»,= ;^'^sin(^A) , , 

&4,mm = -(^^»m' +/"rn)Sm(^A) , &6,mm = (^"m' +^m)COS(^A) , g^=-^Sm^A) , 

835.MM=/4)COS(/4,A) , G42,mm +/^m) ' 846.».=-^^^ , &;,mm = /"o , 

@62,mm ~ ~^jyMm » <^nd Q66 mm — Sm[Am + f-lm . 
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To solve the transmission and reflection spectra, one can first delete the modal 

variables from Eqs. (2.66) and (2.67). This can be done by first calculating the inverse of P3 

by means of analytical manipulation, then substituting ZJ
m back into Eq. (2.66). We finally 

obtain the following linear equations satisfied by the plane-wave expansion coefficients 

where the (4jV0)x(4yV0) coefficient matrix reads 

(Pu P\2 Pi 3 Pu 

P2\ P22 P23 P24 

Pn Pyi P33 P34 

P42 P43 P«J 

The block matrices Py(i,j = 1,4) each is of dimension N0xN0 .  They are defined as 

m-1 
< = -0Vtf)£ =tan 

m=\ 

m — 1 
Pn = lcton(jiQh)j;QJ i.0 -(ikjd)^ ctan(//m/2)z^22)j,;j,m, 

m=1 
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m —1 
PS = (*V<OS esc (Mmh)Z«»rmI r„ 

m—\ 

M-1 

=(ik0/d)jU~ ]  CSC(ju0h)J*0J l lQ-(ik0/d)^ csc(/umh)Z (
m

22)JlJ , ,m ,  
m-1 

A/—1 

< - -{VOS ctan^^Zl''>/:/„, 
m=l 

m-1 
Fi = -OV)S ctanOV)Z™/;./,.„ 

m=l 

M-l 
4 = ('VOS 

m=1 

M-l 
# - (-'4,/d)S 

m=l 

where 

z i ' " = + a , X  z r » = ik^- js jk i  

Other matrices are given according to the following symmetry relations: 
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pii _ D" p>> _ __ p" 
^33 _ "Ml » 34 M2 ' 

p" __p" p» _ D" 
41 — 23 J 42 24 » 

pii' pii' pH' =_pii' 
43 21 ' 44 22 ' 

Now inserting into Eq. (2.28) the definition of Z0
J and Z{ with respect to E i j x(h), E j j y(h), 

U l j x(0), U i Jy(0), H i j x(h), H i j y(h), V l J  X(0) ,  and ^(0), and using the relation between E i ;  

and Hy, Ui} and Vy, we get 

V;' V/ 

^7, (2.69) 

where t//J, %), ¥j , and are 2yV0 -dimensioned column vectors defined by 

vj  ~ ("  '>eoj , x ->e q j  y , ,e i j  x ,e i u y , - -  •)  +(••• ,e 0 j x ,e 0 j  y , - - - ,e i j x ,e i j  y , • ••)  ,  

v j  -  ( '"•>e 0 j x ,e 0 j y , - - - ,e j j x ,e j j y , - - • )  ( ••• ,e 0 j x ,e 0 j y , - - - ,e^ x ,e j j y , - - - )  ,  
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X 'j =(• • •» U0j,x> ^ o i y , > ' • • • ) r  - ( • • • , ^ o ">,X,^o'y.Y>'">Uifs>Uii.y>"'?• 

The index i ranges inside -N <i<N . 7/ is a (2vV0 x 27V0) -dimensioned block-diagonal 

matrix consisting of {T0 j, i = -N, N} at its diagonal positions, 

'0,-Jvy 0 • • • 0 

T0
J  = 0 T0 f i J  0 

0 Tn  0 ,Nj 

For a one-layer ID grating slab, we recognize that y/j = Eg + EJ
r  ,  y/y = EJ

0  -EJ
r  ,  

= x'j = EJ
t , where £0

;, Ej, and Ej are column vectors consisting of the coefficients for 

the incident, reflected, and transmitted waves. Since in the usual diffraction problem only 

zero-order wave is incident on the grating, we can set EJ
0 = (0,0,• • -,0,0,E0x,E0y,0,0,---,0,0) 

where E0x and E0y are the amplitudes of the incident electric field components. From Eq. 

(2.69) we find that EJ
r and EJ

t satisfy 
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7 + W -W 
i -pm 

f 

V 

W-7 ^  

v O y  

(2.70) 

where 1 is a unit matrix. The simultaneous linear equations Eq. (2.30) can be solved via the 

standard Gaussian elimination method. Numerical experiences indicate that the numerical 

convergence for the off-plane scattering problem is as fast as for the in-plane incidence 

situation. This further verifies the powerful strength of this analytical modal method. 

2.2.3 Metallic Layer-by-Layer Photonic Crystal Gratings in Mid-Infrared 

Regimes 

When a metallic grating is working in the mid-IR regime, the metal is finite-

conducting but has a very small skin depth. The key point is to solve the eigenmodes inside 

each ID lamellar grating under arbitrary incident conditions. To achieve this, we use the 

following trial function as an eigenmode in a metallic grating consisting of infinitely-long 

rectangular rods along the y -axis direction, 

Ey  (r) = ekzZ+Lkyy[Ax  sin(/?,x) + B, cos(^x)], 

2,(r) = sin(#x) + D, cos(#x)], 
(2.72) 



40 

Ex(r) = ek ' z"k>y[-0lkyB, + ik zD ]  )/?,"' sin(/?,x) + (ikyA }  + ik zBx)ft l  cos(#x)], ^ ̂  

ik0H (r) = ek ' z+ ,kyy[k z(kR + k zD l)fr ]  sin(/?,x)-k z(k Ax  + &ZC,)/?,-1 cos(/?,x) 

"Aci C0S(Ax) + M sin(/?,x)], ?4) 

,^^(r) = sm(/),x) + ̂ (^ +^C,)^-' cos(#x) 

+pa c o s (ax)-aa sin(ax)]» 

^^(r) = /'^[(^C,-^^)sin(A%) + (^D,-^^)cos(A%)], ^ 75) 

for the E-field and H-field in the air domain 0 < x < a . Here k z  + /?,2  +k2
y  = exkl , Im(/?,) > 0, 

and sx -1 is the dielectric constant of the air domain. The EM fields in the metal domain 

a<x<d are 

(2.76) 

E z( r) = e ik^ i kyy\C2e i h (x 'a)  + D2e~ iP l ( x 'd)], 
(2.77) 
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(2.78) 

(2.79) 

+(/A%' +/^)4G'A(-) _(Y^^, 

f^^(r) = /'^[(;^C, + (z^D, 

(2.80) 

(2.81) 

Here k\ + [i\ + k2
y = s2kl, Im(/?2) >0, and s2  is the dielectric constant of the metal domain, 

which has strong dispersion. In writing down the above trial solution, we have noticed that 

k2 is a tangential wave vector component along the metal wall, and thus is invariant across 

this air-metal interface. 

To determine the amplitudes in the trial solution, boundary conditions at metal walls 

located at x = a and x-d are used. Ey,E,, Hy and Hz are continuous across the metal 

walls. So we have 

4 sin(/?,a) + cos(/?,<3) = A,, 
(2.82) 
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C, sin(/?,ti) + B, cos(^ti) = C2, _ g3) 

(2.84) 

P°D<~Df (2.85) 

for the E-field continuity, where p0=e , k"'d  is the Bloeh's phase factor. In deriving Eqs. 

(4.84) and (4.85), we have used Bloeh's theorem to relate fields at x = 0 and x = d. In 

addition, we have neglected terms with a factor e'Pl(d~a), which is a small number due to the 

far larger metal domain width compared to the skin depth of metal in the mid-infrared 

wavelength regime. The continuity of the H-field leads to 

cos(/3xa)Ax  + kyk z/3~x  sm(pxa)Bx  - (k2/3x~ ]  + ft ) cos(/7,a)C1 

+ A)sm(A^)D, -(%' + A)Q, (2.86) 

kykX cos(/?,a)C, - kykzp;x sin(/3xa)Dx  + { k 2
yfi~l + j3x)cos(j3xa)Ax  

-(*%' + A)sm(#a)a, = +(^%' +^)D„ 
(2.87) 

(2.88) 
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fotwr'c, -(&;#' + = -(%' + A)A. (2.89) 

Defining 2x2 matrices 

t ,= 
^X'+A W'  (2.90) 

and 

t 2 = 
(2.91) 

we can derive from Eqs. (2.82)-(2.89) the following equations 

'a 2 'a  = t~% 
c 2 j  A 

cos(y5]ti)-r2"17] 
B 

(a 2 )  a"  X UJ — 

c,_ 
sin(/?,a) + 

A 

4 

cos (fia), 

sin(/?,a), 
(2.92) 

(2.93) 

and 

S, 'a , '  
= - t 2~ ] t x  

a.  a ,  (2.94) 

Designating t  = t 2
l t x ,  and deleting b x  and £>, from Eqs. (2.92)-(2.94), we finally have 
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( / -O 
'a ' 'a"  
c1; 

sin(/?,a) = 2T 
c ] t  

cos (/?,«), 
(2.95) 

or 

tg(A«) 
a 

IQJ 
= 2 (I-T2yxT 

C, u (2.96) 

Eq. (2.96) is recognized to be a standard eigen-equation for the matrix Q = 2(I-T2)~XT, 

with tg(/?,a) being the eigenvalue. It will be shown that this eigen-equation can be 

analytically solved. Notice Q and T has the same eigen-vector, it suffices to work on 7, 

whose explicit form is 

^2 0 (2.97) 

After some algebraic manipulations, we find that the eigen-equation 

'a"  'a  
T = X 

c,. (2.98) 

has eigenvalues of x = -isxP2/s2Px  and x = -ifi//32  , corresponding to eigen-vectors 

(4,C,) = (\,-ky/k2) and (Al,C]) = (ky/kz, 1), respectively. From this, the eigenvalues of Eq. 

(4.25) are directly calculated as 
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tg (fia) 
(2.99) 

and 

tg ( f i a )  
(2.100) 

The corresponding eigen-vectors are still (Af,C}) = (\,-ky/k z) and 

(AX,CX) = (ky/kz,l), respectively. We have designated these two modes as mode 1 and mode 

2. Eqs. (2.99) and (2.100) are both complex transcendent equations with an infinite number 

of roots in the complex plane, which need to be numerically solved by searching the whole 

complex plane. To avoid this numerical difficulty, we start from solutions for a perfect-

conducting metal wall. We keep in mind that with a large number of s2 in the mid-infrared 

regime, the eigenmodes within the grating should not depart far away from those within the 

corresponding perfect-conducting structure, which are known in the above sections. 

Therefore, we can use simple iteration techniques to find the accurate solutions of /?, in Eqs. 

(2.99) and (2.100). For higher modes m> 1, we set the initial value of /?, to be = sm ,  

then the following iteration algorithm is followed: 

(2.101) 
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(2.102) 

where » = 0,1,2,-- , [/?2
(n)]2 =(^2 + [/?,(n)]2 . In practice, several iteration loops are 

enough to bring us to a convergent solution of /?, with considerable accuracy. 

The iteration technique can not be applied to the lowest mode by starting from 

p[0) =s0 =0. It is easy to find that /?, = 0 is a solution of both Eqs. (2.99) and (2.100). 

However, it can be shown that this solution is unphysical unless e2 is infinite. Since Eq. 

(2.99) has only solution of /?, = 0, it is excluded. Noticing that fix is a small number, we find 

from Eq. (2.100) as an approximation the following formula: 

whose non-zero solution is /?, = {-[a£-,2(/?2
(0))2 +2z/?2

(0)£,£r2]/a£:2
2},/2 , where 

/?2
(0) = (s2 -£,)1/2£0. To improve the accuracy of solution, we can do search in a small region 

on the complex plane around /?, = {-[a£2(/?2
0))2 + 2z'/?2

<0)£-|£2]/a£-2 }1/2. 

What happens if e2 is infinite? Obviously, for the lowest mode, /?, —> 0. For higher 

modes, we have double-degenerate solutions as tg(/?,a) = 0 , which yields 

fim = mn/a = sm,m> 1. The eigenvectors are the same as in the finite-conducting situations 

(Al,Cl) and (^,2,C2). However, the amplitudes in the metal domain A2,B2,C2,D2 are all 

zero, due to the infinitely large T2 matrix. Since these two modes are double-degenerate, we 

2 iS\£2PxP2 
P\a 7 n2 . 2 nl (2.103) 
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can reorganize the eigenvectors such that (^.C,) = (1,0) and (AVC ]) = (0,1). This we see has 

returned to the solution for a perfect-conducting grating. For the lowest mode where /?, = 0, 

the eigenvector is still (A t
2,C]2) . However, from Eq. (4.3) Ex has infinite large amplitude. So, 

if we set the amplitude of Ex  to unity, the amplitude of Ey  ( Ax  ) and E z  (C, ) are both zero in 

effect. Therefore, in this case, we also return to the solution of eigenmode in a perfect-

conducting grating. 

Now we can write down the EM fields inside the grating region using eigenmode 

expansions. The tangential field components are 

£„(r) = £ [V (x) 

+C,e" ; '-X:2  (x) + D„e' :"'X;2  (*)]/' ' ,  (2.104) 

£,(r) = J] [4/'"%*, W + 

+C„c*;"-'C2(x) + D „e"-zr;2(x)]/'', 

»» = E iÂ .e ' l '"'UM W + (x) 

(2.105) 

(2.106) 
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&,y 
(2.107) 

Here X^ (x) is the modal function of the E-field x -component connected to mode 1 under 

the upwards kz wave vector k+
2 mX, see the definition in the bracket "[ ]" in Eq. (2.73) and Eq. 

(2.77). Others are similarly defined. Am,Bm,Cm,Dm are modal coefficients. For the lowest 

mode m = 0, since only mode 2 is present, Am and Bm vanish. 

To solve the scattering of a plane EM wave by the ID metallic lamellar grating, we 

use the boundary conditions at the two interfaces of z = h and z = 0. We also use the method 

of moment similar to that employed in the case of a perfect-conducting grating. We project 

the E-field onto the plane wave basis and obtain 

mz. 1 

+sy' :" ' 'c+cy'"x>+a/" '®=de x l (h) ,  
(2.108) 

C/*:»V<3
0> + D/^jm + £\AjK '*jfl 

m> 1 
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+ c„e""* J"+sy'"''CI - W, (2.109) 

<VS' + D./S' + E KC + BJ2 + C„/® + £>„/<:»] = <, (0), 
mSI (2.110) 

<V<? + + Z K-C + S„ J" + C„/™ + fl, J»>] = </£„ (0). 
m>l (2.111) 

Here the moment between a plane wave function and a modal function is defined as 

C = f ̂ -x;,(* is=£ 

C = f  e~"-*x; 2 (x)dx,  /«:» = £  

J(
(^, , and (& = 1,2,3,4) are obtained by replacing X(x) by Y{x) , t/(x) , and 

F(x) in the integration, respectively. 

The boundary condition for the H-field is matched by projecting the Hx  field onto the 

modal functions of mode 1, while projecting the Hy field onto the modal functions of mode 

2. This results in 

+y/"'s2+Z 
m'> 1 
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+4/'""% + + Dy*«'XL ] = z h„ (W>„, 
i \2,. I ±2,) 

m-1 ,2 , - - - ,  

Z"1 
pKo2hf̂ ) , r) p'KmhrrW , 'V r j jKJn'\hj'0) U0e m,0 0 Jra,0 +ZJlAm'e 

m'ai 

•V^C+cy^C * = I H„(h)N%, (2.113) 

m = 0,1,2,-- -

c„s™ + AS™+Z K.S®,+s„.s™' + CXL' + »„"C- ]-E"- (°W™.. (2.114) 
m'>l 

m = l ,2 , - - - ,  

c„r::»+AC+£ M-C+S-'C+C„r™.+]=£ », (0)*«., (2.115) 
m'>l 

m = 0,1,2, --. The moment between two modal functions is defined as 

C< = («(* C< = fy;,w^,(*)<&, 
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C< = f £/;,wi/;2W&, 

m=r c(»ni»)4. 

C = fc2wc3w&, 

s™' = f f/;,W£/^(x)A, 

%  = f 

C = £ 

From Eqs. (2.108)-(2.115) we can delete the unknown variables for the modal amplitude, and 

obtain the following matrix equation that connect the E-field and H-field in both sides of the 

grating: 

Pu Pn Pu Pu 

Pix Pi 2 P21 PjA 

&(0) P"i\ P32 P33 3̂4 ^,(0) 

^(0)J p« P42 P43 P«) 1^(0) 

(2.116) 

This directly lead to the R -matrix formula for the scattering of a single ky  = ky j  component 

of plane wave by one single layer of the 2D layer-by-layer metallic grating: 

Q 'u ) 

,U) rO) 

rO) 
0,7 

V (2.117) 

For the whole 2D scattering problem, we directly write down 

Q0
+> 

'il r i2  a  i  

nr. r2\ r22, 
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This can yield the transmission, reflection, and absorption spectra under an arbitrary plane 

EM wave incidence. The transmission T and reflection R are calculated by means of Eqs. 

( 2 . 3 3 )  a n d  ( 2 . 3 4 ) .  T h e  a b s o r p t i o n  i s  c a l c u l a t e d  a c c o r d i n g  t o  A  =  \ - T - R .  
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CHAPTER 3. Photonic Band Gaps of Conformally Coated Structures 

In this chapter we will show that conformai coatings on a dielectric photonic 

structure can modify its optical properties. The metallic coating on a dielectric structure not 

only leads to a much larger photonic band-gap, but also shifts the band-edge to shorter 

wavelength. The high refractive index dielectric coating on a polymeric molds which has low 

dielectric constant, preventing formation of a photonic bandgap shows the possibility of new 

way to realize photonic crystals. 

3.1 Introduction 

There is a great deal of current interest in all-metallic three-dimensional (3D) 

photonic lattices for energy applications [5,19]. At the near infrared wavelengths (1=1-2pm), 

it is suggested that the use of a metallic lattice could lead to an efficient electricity generation 

[19]. At the visible wavelengths, a photonic-lattice filament has the potential to achieve more 

than 50% electric-to-optical efficiency [20]. To realize these devices, one of the main 

challenges is in the fabrication of photonic-lattice at a large scale and small feature sizes 

(<100-400nm) [21-28], Another challenge is in choosing a suitable metal with a desirable 

real, £reai, and imaginary, £t, dielectric constants. Here, we propose a new way for altering 
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optical properties of a 3D photonic-lattice using material-coating. The coating technique we 

propose is precise to nano-meter scale and the choices of metals are many, such as Ni, Pd, Pt, 

Co, Ru, Cu and Au. It is experimentally and theoretically demonstrated that a thin layer of 

metal-coating strongly affects the dispersion of a photonic lattice. The sample used in the 

experiment is a 3D silicon photonic-lattice structure. The photonic-lattice is constructed in a 

layer-by-layer fashion using ID grating array and has diamond-lattice symmetry [28-30], The 

lattice-constant is <3=650 nm, the rod-width is targeted at w=180nm and the filling fraction is 

-28%. 

Dielectric conformai coatings are very widely used in the microelectronics industry. 

Such a coating provides mechanical and environmental protection to extend the life of 

electronic components and circuitry, including corrosion resistance, electrical insulation and 

protection against short circuits. We also demonstrate that dielectric conformai coating 

techniques can considerably modify the optical properties of photonic structures[31]. 

Three-dimensional photonic crystals with complete band gaps for omni-directional 

propagation of electromagnetic waves have immense potential for devices in fiber-optics 

based telecommunications applications, single-mode waveguides, channel add-drop filters, 

catalysis and control of spontaneous emission. The three-dimensional woodpile structures 

with a large three dimensional photonic band gap have been fabricated with semiconductor 

fabrication methods. Such photonic crystals shows excellent optical performance over 

relatively small areas. It is desirable to investigate alternative economical fabrication 

methods that enable fabricate large area photonic crystals operating at optical and near-

infrared wavelengths. 
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An potential fabrication method is micro-transfer mold method. The mold can be 

filled with high index dielectric materials or metals. Another ways to realize photonic 

crystals are coating of higher refractive index dielectric materials or metals In this chapter we 

will show the experimentally measured and theoretically calculated optical properties of 

coated structures. 

3.2 Coated Structures 

The metallic coating was accomplished firstly by chemical vapor deposition (CVD) 

of a thin Cobalt film as the seed layer from a metallorganic Coz(CO)g precursor [32]. It is 

then follow by the electro-less deposition (ELD) of a Copper layer [33]. In a typical ELD 

process, the Cu film is deposited via a redox process in a plating chemical bath. The Cu 

plating bath typically contains CuS04-5H20 (64 g/L), CioHi6N208 

(ethylenediaminetetraacetic acid, EDTA, 70.0 g/L), glyoxylic acid (18.0 g/L), polyethylene 

glycol (PEG, 0.5 g/L), and tetramethylammonium hydroxide (TMAH) as a pH controller 

(adjusted to about 12.5). The bath temperature was maintained at a temperature of 70°C. A 

schematic of the coating scheme is shown in Fig. 3.1 (a). A SEM image of a calibrated ID-

grating structure is also shown in Fig.l (b). The Cu thin film is conformai and has a thickness 

of ~70nm. 

The dielectric coating was accomplished by atomic layer deposition (ALD) of a thin 

titania film. An SEM image of the coated structure is shown in Fig. 3.2. We first synthesize a 

four layer polyurethane mold template with a bar separation of 2.5 fim that was easily 
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achieved over a large area by the microtransfer mold method [34]. The layer-by-layer 

stacking of the template was achieved by alignment methods [35]. For these preliminary 

studies, we experimentally employed a moderate polyurethane bar width w~1.4 jj, and 

conformally coated the structure with titania to a coating thickness of 0.45 p, using the 

atomic layer deposition method. Since the processing temperatures are -100 °C, the titania 

remains in the anatase phase rather the higher index rutile phase. The resulting coated 

structure demonstrates a uniform coating of each rod including on the back-side of each rod, 

with rounded corners. 

3.3 Metallic Coating - Theoretical and Experimental Results 

The metal coated photonic crystal structure consists of silicon bars(width=180 nm, 

height=220nm) conformally coated with cobalt and copper and its geometry is different from 

a normal layer by layer structure as shown in Fig. 3.3 (a). To calculate this we used transfer 

matrix method calculation in real space for the actual cobalt-copper coated lattice. 

Each layer of our structure can be decomposed into sub-layers in which the structure 

simplifies to a one-dimensional grating. Within each such grating layer, Maxwell's equations 

can be rigorously solved in a plane wave basis set. The simulations utilize the experimental 

values of n,+in2 for silicon, cobalt and copper. The sub-layers are shown in Fig. 3.3 (b). 

In Fig. 3.4, theoretical calculation results of reflectance spectra are shown for a five-

layer silicon (the blue curve) and copper (the red curve) photonic-lattice, respectively. The 
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overall rod width of the copper photonic-lattice is 140nm wider than that of the silicon-rod, 

due to a copper over-coating of ~ 70nm. 

The 3D silicon sample shows a high reflectance at the A ~1.6 - 1.9 /an spectral range 

and a short wavelength hand-edge at A ~ 1.5 jum. Clearly, this band-edge is far from the 

desirable visible regime of A ~ 400 - 700 nm . On the other hand, the 3D copper photonic-

lattice sample exhibits a very different reflectance characteristic. The first photonic band-

edge occurs at a much shorter wavelength, A ~ 700 - 800 nm, even though the lattice 

dimensions are essentially the same. Also, the high reflectance extends into the mid-infrared 

wavelength. The weak reflectance dip around A ~ 1.3 - X.ljum is due to a slight absorption of 

the copper material. This calculation shows that, the 3D copper photonic-lattice is a better 

choice for realizing visible photonic band-gap structures. In Fig. 3.5 experimental 

reflectance spectra taken from a silicon photonic-lattice (the blue curve) and the Cu-coated 

lattice (the red curve) are shown, respectively. As predicted, the silicon lattice shows a high 

reflectance at A ~ 1.6 - 1.9 pan and has a finite band-gap. Its upper and lower band-edges are 

at Aband-edge ~ 1-5 jum and Atand-edge ~ 2.25 fim, respectively. For the Cu-coated sample, it 

shows a different reflectance spectrum. Its high reflectance regime extends from A ~ 0.7 - 0.8 

/urn into the infrared, consistent with that reported earlier for an all-metallic photonic-lattice 

[1], More importantly, the band-edge is now shifted from A~ 1.5 pim for the silicon-lattice to 

A ~ 750 nm for the Cu-coated lattice. The appearance of a photonic band-edge at a much 

shorter wavelength, or a higher frequency, is an important benefit of using the Cu-coated 

sample. It is also noted that the higher frequency oscillations at higher frequencies is not as 
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prominent as that predict theoretically for both the silicon and copper photonic-crystal 

samples. It is suspected that this is due to light scattering loss by diffractions. 

This data illustrates that a photonic band-edge at X ~ 750 nm is achievable and an efficient 

near-visible emission is feasible. We comment that more theoretical modeling and 

formulation is needed in the future to account for the effect of Co/Cu composite coating. For 

thermal stability and mechanical strength considerations, it is also important to explore using 

other higher temperature materials, such as Rhodium and Ruthenium, to build photonic-

lattice. 

3.4 Dielectric Coating - Theoretical and Experimental Results 

The optical data of the dielectric coated structure were measured with an FTIR 

spectrometer and compared to the uncoated polyurethane mold as shown in Fig. 3.6. There is 

transmission between 2 - 4.5 fjm for both the mold and coated structure accompanied by 

significant reflection (R) for the coated structure. For wavelengths above 5 fjm the 

transmission (T) for both structures is very low since the substrate (Corning #1 glass) absorbs 

strongly in this long-wavelength range. The glass absorption causes the transmission edge at 

5 fim. At short wavelengths below 4 fim, substantial diffraction occurs causing the specular 

transmission to be low. After accounting for diffraction we find the absorption is low for 

wavelengths below 4 fim. The reflection peaks at 9 fan and 11 jum are present for the glass 

substrate and are the well known absorption peaks of silica from the glass where the Im(s) 

has maxima. 



59 

However the reflective peak between 6-7 fim for the conformally coated structure is 

not present for the 4-layer mold. The position of this feature is consistent with the expected 

stop band in the (001) direction for such an over-coated structure, taking onto account the 

decrease of the refractive index of anatase titania to ~1.9 in this wavelength range. 

This interpretation is supported by using transfer matrix method calculations 

performed on the multilayer structure as done for metal coated structure. The simulations 

utilize the experimental values of (n, k) for titania and polyurethane. Experimental values of 

(n, k) for the glass substrate were inferred through measurement. Calculated reflection and 

transmission in Fig. 3.7 for the coated structure on a 100 fan glass substrate shows 

transmission peaks near 3 jum and 4 fan in good agreement experiment, followed by very low 

transmission above 6 fim, due to the absorption in glass. The calculated reflectance shows a 

weak peak between 6-7 fim in the same position as in the measurement. Calculated reflected 

peaks near 3 fim, 5 fjm, and 11 fim are in good agreement with data although there is some 

difference in the 9-10 fim range between calculation and experiment. We interpret the 

reflective peak between 6-7 fan that is accompanied by negligible transmission, as occurring 

from a weak photonic stop band in the stacking direction. This feature can be enhanced for 

higher refractive index contrasts or thinner coatings. Conformai coatings may improve the 

dielectric contrast in other low refractive index photonic crystals generated in photoresist by 

holographic methods [36] or direct laser writing [37]. 
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3.5 Conclusions 

In conclusion, a new approach is adapted to create a 3D metallic photonic-lattice with 

a band-edge near the visible wavelengths. The successful implementation of copper coating 

allows for a near visible 3D photonic band-edge of A,~750nm with a complete band-gap and 

at a large scale. Also, dielectric conformai coatings can improve the optical contrast in low 

refractive index photonic structures fabricated by micro-transfer mold method. 
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(a) 2RH + 20H Ç-'-C°2ROH + H2 + 2e 

Cu2" 

RH = HCOCO2H (Glyoxylic acid) 

Fig. 3.1 (a) A schematic illustration of the proposed coating approach using CVD (chemical 

vapor deposition) and ELD (electro-less deposition) techniques. The green, orange and 

yellow colored areas represent the silicon substrate, the Co-seed-layer and the Cu-layer, 

respectively, (b) A SEM image of a calibrated sample-grating structure. The Cu thin film is 

quite conformai and has a thickness of ~70nm. 
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0a5m 

'thane template 

$4700 7.0kV 9.7mm x13.Dk SE(U) 3/4/04 4.00um 

Fig. 3.2 Experimentally synthesized conformai titania coating of a four layer polyurethane 

bar template using the atomic layer deposition method. A titania coating of 0.45 jum was 

achieved for a template with bar separation of 2.5 jum and bar width 1.4 jum. 
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Fig 3.3 Configuration of metal coated structure. 
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Fig. 3.4 Reflectance computed for a five-layer 3D silicon (the blue curve) and copper (the red 

curve) photonic-lattices, respectively. The 3D silicon lattice shows a high reflectance at the X, 

% 1.6 -1.9fim spectral range and a band-edge at X ~ 1.5fjm. The 3D copper photonic-lattice 

exhibits a very different reflectance characteristic. Its first band-edge occurs at a much 

shorter wavelength, X % 700 -800 nm . 
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Fig. 3.5 Reflectance spectra taken from the silicon (black curve) and the Cu-coated (red 

curve) photonic-lattices. The silicon lattice shows a high reflectance at X ~ 1.7jUm and a 

finite band-gap. On the other hand, The Cu-coated sample shows a high reflectance regime 

extends from X « 0.9fJrn into the infrared (X>4fim). More importantly, the band-edge is 

shifted to a much shorter wavelength, X ~ 750 nm, for the Cu-coated sample. 
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Fig. 3.6 Reflection and transmission measurements for the four-layer conformally coated 

structure on a 100 jum thick glass substrate, compared to measurements for the uncoated 

polyurethane mold on the same glass substrate. 
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a=2.5, w=1.3, h=1.0, coating=0.45 

c 0.6 

E 0.4 
CO 

c§ 0.2 

co 0.6 

10 15 20 

wavelength ( gm ) 

Fig. 3.7 Calculated reflectance and transmission. The calculations used a bar width w=1.3 

jum, coating thickness t=0.45 jum, and pitch a=2.5 fjm. 
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CHAPTER 4. Thermal Emission from Metallic Photonic Crystals 

In this chapter we will show how metallic photonic crystals modify and enhance 

absorption and how to relate absorption to emission. We will also discuss scaling-like 

behavior of metallic photonic crystals to choose a proper material and its limitation. Finally, 

we will show structural dependency of emission. 

4.1 Introduction 

It has been suggested that a metallic photonic crystal (MPC) structure may modify a 

thermal emission spectrum[4,5]. The experiment was carried out by Lin et al. by using a 

three dimensional woodpile structure made of tungsten[6]. The resulting thermal emission 

was shown to be suppressed in the photonic band gap and enhanced near the band edge. 

Promising experimental data have demonstrated that these metallic microstructures can be 

useful for incandescent lamp application and for thermal photovoltaic power generation. 

Theoretical analysis has shown that MFC's can lead to significant enhancement of 

thermal radiation at a narrow frequency window around the band gap [38-41], It has been 

well known that metals in their bulk material form exhibit small absorption in the mid-

infrared wavelength regime. For instance, a tungsten thin film has an absorption coefficient 

below 2% at around 4 pm. However, when metallic materials are brought into the form of 
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microstructures such as 3D woodpile structure, there can be order-of-magnitude 

enhancement of absorption due to these microstructures [38-40]. 

The basic structural configurations of usual 3D woodpile MFC's are schematically 

depicted in Fig. 4.1. The MPC is stacked from rectangular metallic rods which are arrayed in 

a face-centered-tetragonal lattice. The stacking direction is set to be the (001) direction, 

which is parallel to the z axis. This metallic structure can be built by infiltration of metallic 

materials into an original template, which is also a woodpile photonic crystal but made from 

dielectric materials such as silicon or polymer [5, 35]. 

In this chapter we will show how MPC modifies and enhances absorption and how to 

relate absorption to emission. We will also discuss scaling-like behavior of MPC and its 

limitation. Finally, we will show structural dependency of emission. 

4.2 Theories 

The emission from a hot body is defined at a X as 

(4.1) 

where abs (X ,T ) is the absorption and u(X ,T)  is Planck's blackbody emission at a 

wavelength X and temperature T, respectively. With this at hand we will discuss emission 

in the rest of this chapter. 



70 

We first calculate the absorption spectrum of a woodpile tungsten MPC sample which 

has a = 2.8 fan, w = 0.85fim, h = 0.9 fim and 5 layers, where a is pitch, w is bar width and h 

is height of the MPC. This MPC has been discussed experimentally[6]. The basic theoretical 

tool to solve this is the plane-wave-based transfer-matrix method in combination with the 

analytic modal solution approach. In brief, one first calculates the solution of the EM 

eigenmodes within each metallic layer by means of an analytical manipulation. Such an 

analytical step proves to be the key to the high efficiency of the whole theoretical scheme as 

the eigenmodes have already accurately accounted for the small skin depth of metal, which is 

two orders of magnitude smaller than the incident wavelength. The next step is to project 

these eigenmodes onto the plane-wave function space associated with the eigenmodes of EM 

fields in an air background. From this the transfer matrix for the metallic layer on the plane-

wave basis can be built. The same procedure holds for all the five metallic layers in each unit 

cell, but a simpler and more efficient way is to utilize the translational and rotational 

symmetries between these layers. More details of the theoretical approaches can be referred 

to Refs. [40]. 

The calculation results are plotted in Fig. 4.2 (a). Here we have considered normal 

incidence of unpolarized plane waves. To achieve this, we consider incidence of two 

independent plane waves that are orthogonally polarized (one with the electric field parallel 

to the rod in the top layer and the other perpendicular) and have equal intensity. 

The resulting emission spectra derived with Eq. (4.1) are shown in Fig. 4.2 (b). The 

experimental results shows three distinct emission peak at A = 3.5, 4, and 4.5fan and the 

calculation results also clearly show peaks at A = 3.5, 4 fim except a peak at A = 4.5 fim. In 
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our calculations, no effect of disorders and surface roughness of metal rods are considered. 

This may account for the difference between theory and experiment. 

4.3 Results and Discussion 

We will first discuss how to choose MFC's base material in the interesting 

wavelength region by looking at its scaling-like behavior. 

There has been great interest in realizing MFC's to modify a thermal emission 

spectrum either at the near infrared or visible wavelengths because of its potential application 

such as thermal photovoltaic cells for electric-power generation. Very recently, there was a 

challenge to achieve a three-dimensional metallic photonic crystal working at these 

wavelength regions by using tungsten as a base material [19]. Although metals like tungsten 

are high-loss materials, MFC's show scaling-like behavior until their band-edge pinned at a 

certain wavelength. It might be due to the intrinsic surface absorption of metal. To examine 

this we compared experimental results[42] and theoretical calculation results. 

In Fig 4.3 (a) reflectance spectra taken from a series of 3D tungsten photonic-crystals 

of different lattice-constant are shown. In the inset, a representative SEM image of the MFC 

is also shown. The data is intended to illustrate the intrinsic material limitation of a tungsten-

photonic-lattice at shorter wavelengths ( X < 2 /jm ). All five spectra exhibit a high 

reflectance plateau at longer wavelengths in the infrared. The reflectance also shows a 

transition from high to low at shorter wavelengths. As ao is decreased from 5, 2.8 to 1.5 fjm, 

the photonic band-edge (at 50% reflectance value) decreased from 2-7, 4.5 to ljum 
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systematically. This behavior is consistent with the scaling rule of dielectric photonic crystals 

which don't have intrinsic absorption. However, as a continues to decrease from 1.5, 1.05fjm 

to 600 nm, the observed band-edge stays essentially at the same wavelength, A ~ 1.5 - 2 fjm. 

Thus, at these wavelengths, the linearly scaling rule is no longer valid for tungsten photonic-

lattice samples which means that a tungsten photonic-lattice is not capable of yielding a 

fundamental band-edge either at the near-infrared or visible wavelengths. The calculation 

results are shown in Fig. 4.3 (b). It also shows the band-edge is pinned at A ~ 1.5-2 pan. 

To understand this behavior, we calculated the absorption spectrum of tungsten thin 

film. The calculated absorption spectrum of tungsten is shown in Fig. 4.4 (a). As expected, 

the absorption of tungsten starts to increase rapidly at A ~ 2 pun and it is about 10% at around 

that wavelength. It means that the intrinsic absorption of tungsten prevents the scaling down 

of the band-edge of tungsten photonic lattices. We examined several metals, such as gold, 

silver and copper by performing the same calculations. The calculated results show that the 

absorption of copper and gold start to increase rapidly at X ~ 600 nm and 540 nm, 

respectively and that of silver is at A ~ 430 nm. Therefore, they might be used for visible 

region. As an example we present gold 4-layer sample in Fig. 4.4 (b). In Fig. 4.5 we present 

the calculated optical data of several materials with pitch = 1.2 pan, bar width = 0.4 jum and 

bar height = 0.5 pun. They shows how base materials change MFC's optical properties. 

Now, let us go forward to the structural dependency of woodpile MPC. To see the 

structural dependency of woodpile MPC, we calculated the optical properties of gold 

woodpile photonic crystals by changing the number of layers, bar height and filling fraction. 
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First, we calculated the number of layer dependency of gold MPC with pitch = 300 

nm, bar width = 100 nm, height =160 nm. The number of layers are 2, 3, 4, 8 as presented in 

Fig. 4.6 (a) - (d). The absorption enhancement starts to appear at around 700 nm when the 

number of layers is 3 and when it is 8 as shown in Fig. 4.6 (d), the absorption peak is split 

into three peaks. This implies the coupling between different layers plays a role, although the 

stop band gap can be roughly explained by the waveguide cutoff wavelength. These 

characteristics are clear signals of strong PBG effect as explained in the paper by Li et al [38]. 

To see how the thickness of a bar changes absorption, we used gold 4-layer woodpile 

structure with varying the height from 85 nm to 145 nm as shown in Fig. 4.7. When the 

height is 85 nm, absorption is not enhanced but when it become 105 nm, the absorption 

enhancement starts to appear. It is because the absorption peak is red-shifting as the height 

goes thicker. As shown in Fig. 4.7, the absorption peak is shifting to longer wavelength, from 

600 nm, to 650 nm, and 670 nm, as height becomes thicker from 105 nm to 125 nm and 145 

nm, respectively. 

As another example of absorption enhancement, let us discuss metallic mesh 

structures which is shown in Fig 4.1 (c). To analyze this structure let us first discuss surface 

plasmon effect and waveguide cut-off wavelength. 

As well-known[ 43 ], in a metallic grating, surface plasmon appears at 

A =(a/m)[Re{[£/(l + £)]1/2}±sin#], where a is the pitch of a grating, m is a nonzero 

positive integer, s is the dielectric constant of metal, and 6 is the incident angle. For normal 

incidence and large s, Asp=a!m = 2.5, 1.25 pim , etc for a = 2.5 pim. 
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It is also well-known that a square metallic waveguide has its cut-off wavelength at 

Ac = , ^ , where b is the length of air void and m and n are mode number. 
y]m2 +n2 

With these at hand we calculated 3 metallic mesh structures which have a = 2.5 fjm, h 

= 2.0 ftm and b = 1.0, 1.25, 1.5 /urn. The reason why we chose b is that when b = 1.0 fjm, 

Asp > Ac,b = \.25 fjm, Asp = Ac, and b = 1.5 fjm, Asp <AC. In Fig. 4.8 (a) - (c) the calculated 

transmission and reflection are presented and (d) shows the absorption peaks of them. 

When surface plasmon wavelength is bigger than waveguide cut-off wavelength, it 

shows a very sharp absorption peak and small transmission at around 2.5 pim as shown in Fig. 

4.8 (a) and (d). When waveguide cut-off wavelength is bigger than surface plasmon 

wavelength, the absorption is relatively broad and there is a wide transmission window. 

Therefore, as an emitter purpose, one better to choose surface plasmon wavelength bigger 

than waveguide cut-off wavelength. If one wants to use this mesh as a selective filter, one 

needs to make the structure have waveguide cut-off wavelength bigger than surface plasmon 

wavelength. 

4.4 Summary and Conclusion 

In summary, we presented the relation between emitting light spectrum and 

absorption and showed the material and structural dependency of the absorption spectrum. 

By choosing a proper base material and structural parameters, we can design a selective 

emitter at a certain region. 
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(a) tetragonal (b) face-centered tetragonal 

(c) 

Fig. 4.1 Structural configurations of woodpile structures and metallic mesh. 
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Fig. 4.2 Simulation results of tungsten 5-layer woodpile structure, (a) is absorption and (b) is 

emission at various temperature changing. 
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Fig. 4.3 Band-edge pinning at X ~ 1.5-2 /Jm. (a) is experimental data and (b) is calculated 

data. 
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Fig. 4.4 Calculated optical properties of (a) tungsten thin film ( 500 nm ) and (b) gold 4-layer 

photonic crystal. 
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Fig. 4.5 Base materials change MPC's optical properties. 
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Fig. 4.6 The number of layers dependency of gold metallic woodpile photonic crystal. 
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Fig. 4.7 The bar-height dependency. 
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Fig. 4.8 (a) - (c) Metallic meshes by changing the size of air void where black lines are 

reflection and red lines are transmission, (d) absorption spectra of metallic meshes. 
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CHAPTER 5. Analysis of Bulb System Enclosed by Photonic Structures 

An incandescent light bulb generates light using a glowing filament heated by an 

electrical current and is widely used in domestic applications, and is the basis of most 

portable lighting, such as table lamps, some car headlamps and electric flashlights. 

Incandescent light bulbs, however, are gradually being replaced in many applications, 

because of their relatively poor energy efficiency. In this chapter we will discuss how we 

would increase the energy efficiency of an incandescent bulb by using a photonic structure 

theoretically and show the simulation results. 

5.1 Introduction 

An incandescent light bulb generates light using a glowing filament heated by an 

electrical current. This light-producing process is known as incandescence and usually 

contains a vacuum or is filled with a low-pressure noble gas in order to prevent oxidation of 

the filament at high temperatures. It has been widely used in domestic applications, and has 

been the basis of most portable lighting, such as table lamps, car headlamps and flashlights. 

However, because of their relatively poor energy efficiency and short lifetime, incandescent 

light bulbs are gradually being replaced in many applications by fluorescent lights, high-

intensity discharge lamps, LEDs, and other devices. In spite of those disadvantages, 

incandescent lamps are still most familiar light source. The light produced by incandescent 
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lamps is a warm tone, emphasizing the yellow/red end of the spectrum. This is one of the 

reasons incadescent light is still popular. There are some other advantages to incandescent 

lighting sources, which are easy to dim by using inexpensive controls, easy to direct the light 

precisely where it is needed. The inefficiency of incandescent lighting sources results from 

their infrared radiating which is heat rather than visible lights, since their lighting mechanism 

follow blackbody radition. Therefore, if we can reuse the infrared radiating to increase the 

temperature of the filament, we can increase the efficiency of the lighting sources. To do this 

we need to a photonic structure which can return the non-visible lights to the filament. 

Following the general ideas outlined above, we arrange this paper as follows. In Sec. 

5.2, we will discuss the detail of theories of a blackbody and the role of photonic structures. 

This will lay down a basis for our later discussions on designing photonic structures. In Sec. 

5.3, we will move forward to show designed photonic structures and simulation results of 

them. Finally in Sec. 5.4, we will present some concluding remarks. 

5.2 Theories of a blackbody and the role of photonic structures 

As we have noticed in the introduction section, the incandescent lighting sources 

follow blackbody radiation which is encapsulated in the Planck radiation formula, Stefan-

Boltzmann law and Wien's displacement law. 

The total radiation power from a blackbody at temperature can be divided into two 

part, visible and non-visible radiation, 
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p-" = <A> ~p-+p--««-=a L„ T*)dX+A» L,» "wm (51) 

,where u(A,Tb ) is radiation energy density from the blackbody filament and At is the surface 

area of the blackbody filament. 

First, let us calculate the efficiency of a blackbody converting input power to visible 

light. We calculate blackbody radiation at 2800K to see the efficiency which is the ratio of 

visible radiation power in 360nm ~ 780nm to total radiation power, 

780w27thc 1 ^ /err.4 and we get -9.8% as depicted in Fig. 5.1. When it comes to 60wn ^ / A 5 y 6 

luminous efficiency, the efficiency is - 5.5% (see Appendix II). 

From Eq. (5.1) if we can maintain visible emission ( first term ) high and reduce non-

visible emission (second term) effectively, the efficiency to convert input power to visible 

light will increase. 

To do this, we employed the system which has a blackbody filament enclosed by a 

photonic structure. Assuming that this system is also enclosed by an ideal enclosure which 

transmits all the radiation from the system and in which we can keep vacuum as depicted in 

Fig. 5.2, we can ignore heat conduction ,convection and the effect by the enclosure. 

When the blackbody radiates its power to the photonic structure, the power relation 

will be 

^'blackbody ~ a[[U(A,Tb)dA 

= ̂ ,/mm m ««ma, + re/kcW power fo fAe pWowc j/rwefwre 

+ some portion of radiated power by the photonic structure 
Therefore, 
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^/m*^ = 4 ̂ w(A,7;X^-re/7gcWpower 6oct fo BB fAepWonzc ffn/c/wre 

-some portion of radiated power by the photonic structure (5.2) 

With this at hand, let us check two ideal cases. In the first case, the blackbody 

filament is enclosed by a photonic structure which transmits all the visible power and reflects 

all the non-visible power to the blackbody filament, so the supplied power to the blackbody 

has only two terms. One is the input power from an external source and the other is the 

reflected radiation from the photonic structure. The third term is zero. 

For the case we are looking at, the transmittance and reflectance of the photonic 

structure, ref^( ) = 0 and trps(A) = 1 in visible region. trps{X) = 0 and ref^( ) = 1 in non-

visible region, respectively. The reflected power by the photonic structure will be fully 

absorbed by the blackbody filament, because it is specular reflection (see APPENDIX I) and 

we don't consider any diffraction by periodic lattices or scattering by surface roughness for 

this ideal case. 

Then, from Eq. (5.2), the power we need to input is 

For this case, Eq. (5.3) becomes 

^ ^ this is reasonable, 

because we need to supply external input power only by the amount of transmitted power to 

keep the temperature of the filament a constant. 
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In the second case the blackbody filament is enclosed by a photonic structure which 

transmits all the visible power and absorbs all the non-visible power. In this case the second 

term of Eq.(5.2) is zero and the third term is not zero. The photonic structure will radiate and 

only some portion of it will be absorbed by the blackbody filament. The portion of the energy 

back to the blackbody is ,_V5Z5 
"A 

sp 

(see APPENDIX I). 

where r* is the radius of the blackbody and rps is the radius of the photonic structure. 

The power we need to input is, then, 

Pinput — Ab ju(A,Tb)dA 1 - j  

To solve Eq. (5.4) we need to relate jabsps(À)u(A,Tps)dA to ^u(A,Th)dl. To do that, let us 
0 0 

think about the power absorbed and emitted by the photonic structure. The absorbed power 

by the photonic structure from the blackbody filament and the photonic structure itself is 

oo I 2 2 oo 

ps 0 
(5.5) 

The emitted power by the photonic structure is 

2 * 4 » *  j a & ^ ( A ) w ( A , 7 ^ ) 4 U  
(5.6) 
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where the factor 2 is multiplied because the photonic structure has two sides. 

In equilibrium, Eq. (5.5) and Eq. (5.6) should be the same, therefore, we have 

and 

ps 0 

4 x \absps(A)u(A,Tb)dA + Aps x^—- ̂absps(A)u{AJps)dA 
o r 

= 2x ̂  x j"o6^(A)w(A,7^,X^ 

4 x Ja6^(l)M(A,7;Xl = x 
ps 

Jabsps(A)u(A,Tps)dA 

Therefore, 

^ x {a6^(A)u(^,7^)^A = ̂ x 2 -
y/rps~' 

v1 

ps 

Jabsps(A)u(A,Tb)dA 
(5.7) 

Plug Eq. (5.7) into Eq. (5.4) and we get 

^ = 4x Jw(A,7^XA 
ps 

2rps~4r2ps-rb j 
4 x Jo6^(A)«(A,7;XA (5 g) 

For the case we are looking at, absps(A) =0 in visible region and absps(A)= 1 in non-visible 

region. Therefore, Eq. (5.8) becomes 

Pinpul - 4 X l„"w)d^ + 
ps 4 r'p,-r»2 

2rps - \lrps - ' 

[ w(A,7;XA 
Xion-visible 
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z x 

4" rj 
{z v vv n- j 

To check the temperature of the photonic structure we need to solve Eq. (5.7) about 

Tps. If absps(X) is not a constant, we have to know exact dimensions of the system, the 

temperature of the blackbody and absps(A) and then we can calculate the temperature of the 

photonic structure numerically. If absps{X) is a constant, i.e. the photonic structure is a 

blackbody or greybody, Eq. (5.7) becomes 

V J 

T 

(5.10) 

and if they are spheres, then 
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For the realistic case, the temperature of the photonic structure should be lower than 

its melting temperature of the material building the photonic structure to avoid burning out. 

where tmt is the melting temperature of the photonic structure. 

Now, we apply these results to more general case in which the photonic structure has 

continuously changing reflectance and absorption by wavelengths. From Eq. (5.3) and Eq. 

(5.8), we can get a power relation for the system which consists of a blackbody filament and 

a photonic structure, 

Now, let us define the converting efficiency which is the ratio of output visible light 

power to external input power 

Therefore, 

a6^(A) (5.12) 

A> Lm^uW) M + a '-
JJ f  

visible 

= af*„(A) (5-13) 
-r: 

and the resulting power spectra is 
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(5.14) 

Until now, we examined the case in which there's no diffraction of reflected lights. 

However, for the practical purpose, we need to think about the case of diffractions, because 

the photonic structure we will use in the next section would make diffraction due to its 

geometry. 

The upper limit of the wavelength that will be diffracted by a grating is 

A = — (sina + sin/?) 
m p.ij; 

,where a is an incident angle, /? is a diffracted angle and a is the periodicity of a photonic 

structure. The photonic structures we will examine have pitches smaller than 500 nm and the 

upper limit of 1st order diffraction is A = (500nm) (sin a + sin /?). The incident angle a is 

defined as sin or = — and it is -0.083 in our specific design( rb : rps =1:12 ), then 
rps 

Amax s 542nm. This is in visible range we want to make it transmit through the photonic 

structure. 

Now, let us calculate the approximate power of diffracted lights. The power from the 

blackbody in 0 nm ~ 542 nm is below 2% of its total energy and almost 90% of this will be 

transmitted with our specific photonic structures and ~ 5% will be reflected, so below 0.1% 

of the total power will be reflected with diffractions. We compared the intensities of 0th and 

1st order diffractions and get the intensity of 1st order is -19% of 0th order when the filling 
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fraction is -35%. If the filling fraction is smaller, the intensity is also getting smaller. The 

overall intensity of higher diffractions is - 0.02% of the total power of the blackbody and it 

might be negligible. Therefore, we considered only 0th order reflection, which is specular, for 

the rest of calculations. 

5.3 Results and Discussion 

In the previous section we have developed theoretical tool which enables us to solve 

efficiently the power relation between a blackbody filament and a photonic structure. With 

this at hand let us proceed to design photonic structures which are suitable to increase the 

efficiency of visible lights radiation. 

First, we present the efficiency of two ideal cases. Fig.5.3 (a) shows the transmittance 

and absorption of an ideal photonic structure which has 100% transmittance in visible-light 

region and 100% absorption in non-visible light region. In this case 100% of lights in visible 

region transmits the photonic structure and radiated lights from the photonic structure in non-

visible region are emitted to the outside of it as shown in Fig.5.3 (c). The red line shows the 

emitted lights from the blackbody filament at 2800K and the blue line shows the lights after 

filtering with the photonic structure In Fig.5.3 (c). The efficiency of this case can be 

calculated with Eq. (5.3). If the temperature of the filament is 2800K, the efficiency of the 

system is about 9.83% as shown below and it is almost the same as that of a single blackbody 

system. 
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In Fig.5.3 (b) and (d), we show the result of an ideal photonic structure which has 

100% transmittance in visible-light region and 100% reflectance in non-visible light region. 

In this case 100% of lights in visible region transmits the photonic structure and 0% of lights 

in non-visible region is emitted to the outside of it. The efficiency of this case is 100%. 

These results clearly show that we need to design a photonic structure to have high 

transmittance in visible region and high reflectance in non-visible region. 

We chose silver as a base material which has low intrinsic absorption in visible and 

infrared region. It is necessary that the base material should have low intrinsic absorption in 

the region, because we need high transmittance in visible region and high reflectance in non-

visible region. The high absorption of silver in ultraviolet region does not affect much (but 

non-zero) because blackbody radiation in the region is very small at -2800K. 

The geometric configuration of the photonic structure we will investigate is 

schematically illustrated in Fig. 4. It is metallic mesh arranged in a square lattice. We also 

assumed that the photonic structure is far enough from the filament to make its temperature 

smaller than its melting temperature (r& : rps = 1 : 12). We used published (n, k) values[44] to 

calculate these optical values. 

We fixed the size of air void 380 nm because it is a half of waveguide cut-off 

wavelength, 780 nm, which is the maximum wavelength in visible region. We calculated the 

efficiency of converting input energy to visible light by filling fraction. The filling fraction is 

defined as w/d in Fig.5.4. 

In Fig.5.5 we present the efficiency by filling fraction. When filling fraction is 25%, 

the maximum efficiency, 42.96%, is achieved. To have these results, we first calculated the 
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reflectance, transmittance and absorption of the metallic mesh structures by using Transfer 

Matrix Method[7,8] and we fixed the thickness of the structure at 500nm and the size of air-

void at 380 nm. Then, the efficiencies are calculated by using Eq. (5.13). 

In Fig.5.6 we also present the thickness-dependency of efficiency. We chose the 

filling fraction of 20% and 25% and varied the thickness from 300 nm to 900 nm. The 

efficiencies show the maxima at around 500nm thick at which the photonic structure is thick 

enough to attenuate the transmission of longer wavelengths. The maximum efficiencies are 

-41.53% for the filling fraction of 20% and -42.96% for the filling fraction of 25%, 

respectively, at the thickness of 500 nm. Comparing with the efficiency of 9.8% for a bare 

blackbody they have more than four times bigger efficiencies. 

The resulting spectrum of the filling fraction of 25% and the thickness of 500 nm is 

shown in Fig.5.7. We can clearly see that the resulting spectrum shows almost a blackbody 

radiation in visible region and strong attenuation in infrared region. 

5.4 Summary and Conclusion 

In summary, we have developed a theoretical model to analyze a blackbody enclosed 

by a metallic mesh which can increase the efficiency of converting a blackbody radiation to 

visible light. With this model we found that a square lattice metallic mesh enclosing a 

filament might increase the efficiency of incandescent lighting sources. Filling fraction and 

thickness dependency were examined and presented. Combining these two parameters is 

essential to achieve the maximum output result. 
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Appendix I. Reflected or Absorbed Beam by a Photonic Structure 

A.1.1 Ideal Reflection 

Fig. A 1.1 All the reflected beam by a photonic structure go back to a blackbody. 

Let us first discuss the case in which tr(Aj) = 0, abs(Aj) = 0 and ref(A}) = 1 at A = Aj. 

In this case there's no absorption by the photonic structure but reflection. A spot on a 

blackbody radiates to all the angles and the radiated beam from the blackbody will be 

specularly reflected by a photonic structure. We are assuming that there is no diffraction by 

periodic lattices of photonic structure nor scattering by surface roughness of the photonic 

structure until the photonic structure is specified. 

As shown in Fig. A 1.1, if we take a spot on the photonic structure, the radiated beam 

from the blackbody toward the spot in the red region can only reach the spot on the photonic 
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structure and will be reflected specularly, so all of them will be absorbed by the blackbody 

again. 

A.1.2 Ideal Absorption 

Next, let us discuss the case in which tr(Âj) = 0, abs(Âj) = 1 and ref(Xi) = 0 at A = 

X]. For this case there's no reflection but absorption. As shown in Fig. A1.2, when the 

radiation from a spot on the photonic structure falls into the cone of the angle 2 a, it will be 

absorbed by the blackbody, otherwise it will be absorbed by the photonic structure. 

Fig. A1.2. Configuration of absorption. 
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The solid angle of the cone is 2^(1-cosa) and we have 2n \_ER 

2 71 a un = . This portion of radiated power from the photonic 

structure will go back to the blackbody. The portion back to the photonic structure is 

yjr:1 
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Appendix II. Luminous Efficiency 

A light can waste power by emitting too much light outside of the visible spectrum. 

Only visible light is useful for illumination, and some wavelengths are perceived as brighter 

than others. Taking this into account, luminous efficacy is a ratio of the useful power emitted 

to the total power and is measured in lumens per watt (lm/W). The maximum efficacy 

possible is 683 lm/W. Luminous efficiency is a function of luminous efficacy divided by this 

maximum and thus is expressed as a number between 0 and 1, or as a percentage. The 

procedure of calculation is described below. 

lumens = ̂ 6S3u(A,Tb)x L.E.(A) 

lumens 
total luminous efficiency^ 

^ 683lumens / watt, 
/ (input power ) 

300 400 500 600 700 800 

wavelength ( nm ) 

Fig. A2.1 Luminous efficient curve. 
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Fig. 5.1 A blackbody radiation at 2800 K. 
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Fig. 5.2 Schematic representation of a blackbody filament enclosed by a photonic structure. 
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• Transmission 
• Absorption 
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wavelength ( urn ) 

• Reflectance 
•Transmission 
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Blackbody 2800K 
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1 2 3 

wavelength ( pm ) 
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Fig. 5.3 Two ideal cases analyzed, (a) and (b) are the optical properties of 100% non-visible 

absorber and 100% non-visible reflector, respectively, (c) and (d) are the resulting spectra 

after filtering with the photonic structures represented (a) and (b), respectively. 
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Fig. 5.4 Top view of 1-D square mesh, a is a pitch, d is the size of air void and w is a bar 

width. 



Fig. 5.5 Calculated efficiencies by changing filling fraction from 5% to 40%. The thickness 

of the photonic structure is 500 nm. At 25% we can see the maximum efficiency. 
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300 400 500 600 700 800 900 

thickness (nm) 

Fig. 5.6 Calculated efficiencies by changing thickness of the photonic structure. Red circles 

are efficiencies of filling fraction of 25% and black squares are those of 20%. 
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Fig. 5.7 Resulting spectrum(blue line) after filtering with the photonic structure 

fraction 25% and thickness 500nm. The red line represents a blackbody spectrum at 

of filling 

2800K. 
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CHAPTER 6. General Conclusion 

In this thesis our main interest has been to investigate metallic photonic crystal and its 

applications. We explained how to solve a periodic photonic structure with transfer matrix 

method and when and how to use modal expansion method. Two different coating methods 

were introduced, modifying a photonic structure's intrinsic optical properties and rigorous 

calculation results are presented. 

Two applications of metallic photonic structures are introduced. For thermal emitter, 

we showed how to design and find optimal structure. For conversion efficiency increasing 

filter, we calculated its efficiency and the way to design it. 

We presented the relation between emitting light spectrum and absorption and 

showed the material and structural dependency of the absorption spectrum. By choosing a 

proper base material and structural parameters, we can design a selective emitter at a certain 

region we are interested in. 

We have developed a theoretical model to analyze a blackbody filament enclosed by 

a metallic mesh which can increase the efficiency of converting a blackbody radiation to 

visible light. With this model we found that a square lattice metallic mesh enclosing a 

filament might increase the efficiency of incandescent lighting sources. Filling fraction and 

thickness dependency were examined and presented. Combining these two parameters is 

essential to achieve the maximum output result. 
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