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ABSTRACT

We consider shooting methods for computing approximate solutions of control prob-
lems constrained by linear or nonlinear hyperbolic partial differential equations. Op-
timal control problems and exact controllability problems are both studied, with the
latter being approximated by the former with appropriate choices of parameters in the
cost functional. The types of equatidns include linear wave equations, semilinear wave
equations, and first order linear hyperbolic equations. The controls considered are either
distributed in part of the time-space domain or of the Dirichlet type on the boundary.
Each optimal control problem is reformulated as a system of equations that consists of
an initial value problem (IVP) for the state equations and a terminal value problem for
the adjoint equations. The optimality systems are regarded as a system of an IVP for
the state equation and an IVP for the adjoint equations with unknown initial condi-
tions. Then the optimality system is solved by shooting methods, i.e. we attempt to
find adjoint initial values such that the adjoint terminal conditions are met. The shoot-
ing methods are implemented iteratively and Newton’s method is employed to update
the adjoint initial values. The convergence of the algorithms are theoretically discussed
and numerically verified. Computational experiments are performed extensively for a
variety of settings: different types of constraint equations in 1-D or 2-D, distributed or

boundary controls, optimal control or exact controllability.



1 INTRODUCTION

In this thesis we study numerical solutions of optimal control problems and exact
controllability problems for linear and semilinear hyperbolic partial differential equations
defined over the time interval [0,7] C [0, 00) and on a bounded, C? (or convex) spatial
domain 2 C R¢ d = 1 or 2 or 3. The optimal control problems for the controls
being either distributed in part of the time-space domain or of the Dirichlet type on the
boundary are reformulated as a system of equations (an optimality system) that consists
of an initial value problem for the underlying (linear or semilinear) hyperbolic partial
differential equations and a terminal value problem for the adjoint hyperbolic partial
differential equations by applying Lagrange multipliers. We develop shooting algorithms
to solve the optimality system as follows : The optimality systems are regarded as a
system of an IVP for the state equation and an IVP for the adjoint equations with
unknown initial conditions. Then the optimality system is solved by shooting methods,
i.e. we attempt to find adjoint initial values such that the adjoint terminal conditions
are met. The shooting methods are implemented iteratively and Newton’s method is
employed to update the adjoint initial values.

Let target functions W € L*(Q), Z € L?(Q) or € H™Y(Q), U € L*((0,T) x §1) and
an initial condition w € L*(Q), z € L¥(}) or € H™1{Q)) be given. Let f € L2((0,T) x )
denote the distributed control and g € [L%(0, 7")]? denote the boundary control. We wish
to find a control f or g that drives the states v and u; to W, Z at time T and v to U
in (0,T) x 2.

In Chapter 2 we consider an optimal control approach with distributed controls



defined on spatial domain { for solving the exact controllability problems for one and
two-dimensional linear and semilinear wave equations defined on a time interval (0, 7T)
and a bounded spatial domain 1. Precisely we consider the following optimal control

problem: minimize the cost functional

e
T i) =1 L [2 K(w) ddef; A &, (T, 0) dx + 1 ]{2 o (ua(T, ) dx

LT (1.1)
2
+ 3 / / |2 dx dt
2Jo Ja
(where o, 3,y are positive constants) subject to the wave equation
uy — Au+ Y(u) = f in (0,7) x Q, (1.2)
with the homogeneous boundary condition
ulaq = 0, (t,x) € (0,T) x 9Q. (1.3)
and the initial conditions
u(0,x) = w(x), u (0, x) = z(x) x €. (1.4)

We first develop the shooting algorithms for 1D and 2D distributed control problems,
and then simulate with known smooth solution and generic examples both linear and
semilinear cases in 1D and 2D.

In Chapter 3 we consider an optimal control approach with local distributed controls
defined on spatial subdomain §2;(C §2) for solving the exact controllability problems for
one-dimensional linear and semilinear wave equations defined on a time interval (0, T)

and a bounded spatial domain §). Precisely we consider the following optimal control



problem: minimize the cost functional

J(u, f) 2] CK(u)dxdt-% /®1w(’7ﬂx; dx + = /Q@g(ut(T,x})dx

~/ |f1? dxdt
&

//K dxdt—!—'g/ (T, x))dx+2/®2(ut(T X)) dx

*‘//imef dx dt

subject to the wave equation
— Au+U(u) = xo, f in (0,7) x £,
with the homogeneous boundary condition
ulan = 0, (t,x) € (0,T) x 09

and the initial conditions

u(0,x) = w(x), (0, %) = 2z(x) xel.

(1.5)

(1.6)

(1.7)

(1.8)

The shooting algorithms are applied to exact controllability problems with local

distributed controls in the examples of known smooth solution and generic examples for

both linear and semilinear cases.

In Chapter 4 we consider an optimal boundary control approach for solving the

exact boundary control problem for one-dimensional linear or semilinear wave equations

defined on a time interval (0,T) and spatial interval (0, X). The exact boundary control

problem we consider is to seek a boundary control g = (g, gr) € L*(0,T) C [L2(0,T)]?



and a corresponding state u such that the following system of equations hold:

uﬁt_uxx+f{u> =V 1HQE (67T> X (DX>:

Ulimo = up  and  Uglmo = 1wy in (0, X)),
. (1.9)
r =W and wher=2 in{(0,X),

Ule=o = g1 and ulz—; = gr in (0,7,

where ug and u; are given initial conditions defined on (0, X), W € L2(0,X) and Z €
H~1(0, X) are prescribed terminal conditions, V is a given function defined on (0,7 x
(0,X), fis a given function defined on R, and g = (g1, gr) € [L*(0,T)}? is the boundary
control. In this chapter we attempt to solve the exact controllability problems by an
optimal control approach. Precisely, we consider the following optimal control problem:

minimize the cost functional

/ (T, 2) — W(z)[2dz + -;-/5 (T, ) — Z(z)[2 de

(1.10)
+‘2‘/"ugLF~+chi>
subject to
| ta =+ f(w) =V nQ=(0,T)x(0,1)
ult:O = Ug and utlt__—g = U in (0, 1) (111>

u{a: =0 = gL and u;:c——l = dgRr in (OvT)

The shooting algorithms for solving the optimal control problem will be described for

the slightly more general functional

Tlug) = // {u—[/igda:df~r~/ (T, ) — W(z) dz

(1.12)
2 [ o) - 2@ [ ol + anf?)



where the term involving (u — U) reflects our desire to match the candidate state u
with a given U in the entire domain ¢). Our computational experiments of the proposed
numerical methods will be performed exclusively for the case of o = 0.

In Chapter 5 the linear optimal control problems we study are to minimize the cost

functional

a [T 2 B , 5 1 /7
T(u, )= -—/ / lu — U|*dzdt + —/ |u{z, T) — W(z)] dx+—/ / |f? dzdt.
subject to first order linear hyperbolic equation
u + aug = f(z,1), in (0,7) x Q, (1.13)
with the boundary condition
u(t,0) = z(t), te (0,7), (1.14)

and the initial condition

u(0, z) = w(x), xel. (1.15)

We particularly test some examples of distributed optimal control problems with
known smooth solution and generic initial and boundary data and with a > 0.
Since this thesis covers several topics, the literature and new contributions of the

thesis will be discussed in the context of each chapter.



2 Shooting Methods for Numerical Solutions of Distributed
Optimal Control Problems Constrained by Linear and

Nonlinear Wave Equations

Numerical solutions of distributed optimal Dirichlet control problems for linear and
semilinear wave equations are studied. The optimal control problem is reformulated as
a system of equations (an optimality system) that consists of an initial value probiem
for the underlying (linear or semilinear) wave equation and a terminal value problem for
the adjoint wave equation. The discretized optimality system is solved by a shooting
method. The convergence properties of the numerical shooting method in the context

of exact controllability are illustrated through computational experiments.

2.1 Distributed optimal control problems for the wave equa-

tions

We will study numerical methods for optimal control and controllability problems
associated with the linear and nonlinear wave equations. We are particularly interested
in investigating the relevancy and applicability of high performance computing {HPC)
for these problems.

As an prototype example of optimal control problems for the wave equations we
consider the following distributed optimal control problem:

choose a control f and a corresponding u such that the pair (f,u) minimizes the cost



functional

T
J(u,f):%jé [zf((u)dxdt+g/;)@l(u(ﬂx))dx—%% o (us(T, %)) dx
o

7 (2.1.1)
w5 [ [1ipaxa
245 Ja
subject to the wave equation
uy — Au+ Vu) = f in (0,7) x Q,
(2.1.2)

ulon =0,  uw(0,x)=w(x), w(0,x)=2(x).

Here € is a bounded spatial domain in R? (d = 1 or 2 or 3) with a boundary 8Q; v is
dubbed the state, and g is the distributed control. Also, K, ® and ¥ are C' mappings
(for instance, we may choose K (u) = (u—U)?, ¥(u) =0, U(v) = v® —u and U(u) = ",
P (u) = (u(T,x) — W)?, ©z(u) = (u(T,x) — Z)?, where U, W, Z is a target function.)
Using Lagrange multiplier rules one finds the following optimality system of equations

that the optimal solution {f,u) must satisfy:
ug — Au+T¥u) = f in (0,T) x Q2
ulan =0, (0, %) = w(x), u:(0,x) = 2(x);
G — AL+ [V (@W]E = SK/(u) in Q
5'65‘2 = O: 5(T7 X) = %@;(ui(T X)): ‘ft(Tv X) = _"fg—@?l (U(Ta X)) )

f+E=0inQ.

This system may be simplified as

U — AU -+ "i’(u) == —‘5 in (G7T) X Q

ulan =0, u(0,x) = w(x), (0, %) = 2(x);
“ (2.1.3)
by — AL+ [V (w)]"E = -Q-K'(U) in (6,T) xQ

g

foa=0, &%) =JHw(Tx),  &(Tx) = -5 (ulx)).



Such control problems are classical ones in the control theory literature; see, e.g., [5]
for the linear case and [6] for the nonlinear case regarding the existence of optimal
solutions as well as the existence of a Lagrange multiplier £ satisfying the optimality
system of equations. However, numerical methods for finding discrete (e.g., finite element
and /or finite difference) solutions of the optimality system are largely limited to gradient
type methods which are sequential in nature and generally require many iterations for
convergence. The optimality system involves boundary conditions at ¢ = O and ¢ = T and
thus cannot be solved by marching in time. Direct solutions of the discrete optimality
system, of course, are bound to be expensive computationally in 2 or 3 spatial dimensions
since the problem is (d + 1) dimensional (where d is the spatial dimensions.)

The computational algorithms we propose here are based on shooting methods for
two-point boundary value problems for ordinary differential equations (ODEs); see, e.g.,
[1, 2, 3, 4]. The algorithms we propose are well suited for implementations on a parallel

computing platform such as a massive cluster of cheap processors.

2.2 The solution of the exact controllability problem as the

limit of optimal control solutions

The exact distributed control problem we consider is to seek a distributed control
f € L*((0,T) x Q) and a corresponding state v such that the following system of

equations hold:

s

g — Au+¥(u)=f n@=(0T)xQ,

Ulgmo =w and Ul =2 in{,
4 (2.2.4)

’LL|t—_~T =W and ui}t=T =7 in Q,

4 ulag =0 in (O,T).

Under suitable assumptions on [ and through the use of Lagrange multiplier rules,



the corresponding optimal control problem:
minimize (2.1.1) with respect to the control f subject to (2.1.2). (2.2.5)

In this section we establish the equivalence between the limit of optimal solutions and
the minimum distributed L? norm exact controller. We will show that if o — oo, 8 — oo
and v — ©0, then the corresponding optimal solution (ﬁaﬂv,f;ﬁv) converges weakly
to the minimum distributed L? norm solution of the exact distributed controllability

problem (2.2.4). The same is also true in the discrete case.

Theorem 2.2.1. Assume that the ezact distributed controllability problem (2.2.4) ad-
mits o unique minimum distributed L? norm solution (Uex, fex). Assume that for every
(a, B,7) € Ry x Ry x Ry (where Ry is the set of all positive real numbers,) there exists

a solution (Yapy, fap,) to the optimal control problem (2.2.5). Then

Hfaﬁ'yﬁLz(Q) < “fexHLQ(Q) Via,f,7) e Ry xRy x Ry (2.2.6)

Assume, in addition, that for a sequence {(aum, On, Yn)} salisfying o, — oo , B, — o0

and ¥, — 00,

Ugpfnye — U 1N L? (@) and ‘l'(uanﬁwn) - 111(@) n L2(07T3 [H2(Q) n Hé(Q)]*) .
(2.2.7)
Then

FanBarn = fox i1 L*(Q) and Ugn frym — Uex 10 L*(Q) asn — o0, (2.2.8)

Furthermore, if (2.2.7) holds for every sequence {(an, Bn, Yn) } Satisfying o, — co, B, —



oo and Yn — 00, then
Fapy = fex in LHQ) and tapy — Uex in L*(Q) as @, 8,7 — 00 (2.2.9)
Proof. Since (g, fapy) is an optimal solution, we have that

a, , B - e ,
§Eluaﬁ7(T) ~ Ullzag) + '2—Huaﬁ~,(i ) = Wlize@) + -2*515%%57(3"} - Z\g-@)

1 ) 1
+ §|lfaﬁ7'lL2(Q) = j(uaﬁ’vv faﬁ’y) < jkuexs fex) = 'Q“erx“LQ(Q)

so that (2.2.6) holds,
Uggylt=r — W in L*(Q) and (Stiapy)|t=r — Z in HH(Q) as o, B,7 — 0.  (2.2.10)

Let {{an, Br,7n)} be the sequence in (2.2.7). Estimate (2.2.6) implies that a subsequence

of {{Qn, Pn; )}, denoted by the same, satisfies

JonBorm = T LXHQ)  and || fllrag) < |lfexllzog) - (2.2.11)

(Uagy, fapy) satisfies the initial value problem in the weak form:

T T
/ / Uy (Uit — Vg ) dz dt + / /[\Ii(uaﬁh,) — fapyJvdzdt
o Jo 0 Jo
+ /(v@tua57)|t=;r dz — / Vlt=oz dx — /(uaﬁqatv)it,_j dz (2.2.12)
Q ) Q

+ / (WO femodz =0 Vv € CA([0, T} H(Q) N HA(Q)
O

Passing to the limit in (2.2.12) as «, 3,7 — oo and using relations {2.2.10) and (2.2.11)



11
we obtain:

T T '
[ / WUy — Vgg) AT dE + / /{‘l’(ﬂ) ~ fludzdt
Q 0 Jo

Jo

+ [ sheaz@ds = [ vemords— [ W)O0)lr do

+ / (W) |odz =0 Vv e CX[0,T]; H3(Q) 0 HL(Q)).
9]

The last relation and (2.2.11) imply that (%, f) is & minimum boundary L? norm solution
to the exact control problem (2.2.4). Hence, T = uy and f = fo so that (2.2.8) and
(2.2.9) follows from (2.2.7) and (2.2.11). 0

Remark 2.2.2. If the wave egquation is linear, i.e., ¥ = 0, then assumption (2.2.7) is
redundant and (2.2.9) is guaranteed to hold. Indeed, (2.2.12) implies the boundedness of
{llwapyll 2oy} which in turn yields (2.2.7). The uniqueness of a solution for the linear

wave equation implies (2.2.7) holds for an arbitrary sequence {(qn, Bn, Tn)}-
Theorem 2.2.3. Assume that

i) for every {a, B,7) € Ry x Ry x R there ezists a solution (Usgy, fapy) to the optimal

conirol problem (2.2.5);

i) the limit terminal conditions hold:

Uagyt=r — W in L2(Q) and {8tué57))t::p — Z in HYQ) as a, B,y — 00;
(2.2.13)

iii) the optimal solution (Uagy, fapy) Satisfies the weak limit conditions as o, B,y — oo:
fapy = T in L2HQ), tiag, — T in LAQ), (2.2.14)

and

U(ugs,) — (@) in L0, T [HH Q) N B (2.2.15)
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for some | € L*(Q) and T € L*(Q).

Then (T, f) is a solution to the exact boundary controllability problem (2.2.4) with f
satisfying the minimum boundary L* norm property. Furthermore, if the solution to

(2.2.4) admits a unique solution (Uex, fex), then
Fapy = fox i LH(Q) and vag, — tex in L*(Q) as o, 8,7 — 0. (2.2.16)

Proof. (tapy, fapy) satisfies (2.2.12). Passing to the limit in that equation asa, #,7 — c0

and using relations (2.2.13), (2.2.14) and (2.2.15) we obtain:

/:/;Z WUy — Vg ) dT dt+/j/ﬂ[\y(a) ~Fludzdt

+ [2 VlerZ(z) dz — /ﬂ Vlomoz dz — /; W (2)(B0)liar do

+ ](w@tv)ltzo de=0 Vuve CH[0,T); HXQ) N HNQ)).
0

This implies that (T, f) is a solution to the exact boundary controllability problem

(2.2.4).
To prove that f satisfies the minimum boundary L? norm property, we proceeds
as follows. Let (Uex, fex) denotes a exact minimum boundary L? norm solution to the

controllability problem (2.2.4). Since (Uagy, fagy) 15 an optimal solution, we have that
] Ul b W T Z|2
7 ey — 720) + ”Q‘HUaﬂv = Wllieg + 5” iagy = 2l a-1n)
1 g . 1
+ é'Hfaﬁ‘/h%%Q) = T (Uapys fopy) S T (Uex, fox) = iufEXH%Z(Q)

so that

Hfaﬁ*yﬁ%?(@) < ”fex“%z(Q)'



oot
w0

Passing to the limit in the last estimate we obtain
Fi ; 2 ,
Hfil%?(@) < i‘fex”L2(Q)' (2.2.17)

Hence we conclude that (%, f) is & minimum boundary L? norm solution to the exact
boundary controllability problem (2.2.4).

Furthermore, if the exact controllability problem (2.2.4) admits a unique minimum
boundary L? norm solution (tey, fex), then (@, f) = (tey, fex) and (2.2.16) follows from

assumption (2.2.14). O

Remark 2.2.4. If the wave eguation is linear, i.e., ¥ = 0, then assumptions i) end

(2.2.15) are redundant.

Remark 2.2.5. Assumptions #) and i) hold if fop, and u.ps, converges pointwise as

Ct{,,@,"y—%OO.

Remark 2.2.6. A practical implication of Theorem 2.2.3 is that one can prove the
ezact controllability for semilinear wave equations by examining the behavior of a se-
quence of optimal solutions (recall that ezact controllability was proved only for some
special classes of semilinear wave eguations.) If we have found o sequence of optimal
control solutions {(UenByms fanfnrn)t WRETE O, Br,¥n — 00 and this sequence appears
to satisfy the convergence assumptions i) and i), then we can confidently conclude
that the underlying semilinear wave eguation is ezactly controllable and the optimal so-
lution (Ua, Bum» Janfarm) When n is large provides a good approzimation to the minimum

boundary L? norm ezact controller (Uey, fex)-

2.3 Shooting methods for 1D control problems

The basic idea for a shooting method is to convert the solution of a two-point bound-

ary value problem into that of an initial value problem (IVP). The IVP corresponding
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to the optimality system (4.3.18) is described by

Ugt = Ugy + Tlu) = =€ in (0,7) xQ,
ulan = 0, u(0, z) = w(z), ul0,z) = z{z};

) o (2.3.18)
bt ~ €z + (W (W)]"E = §K[(u) in (0,7) x £,

flon=0, £(0,z)=wlz), &0,2)=0(z),
with unknown initial values w and 6. Then the goal is to choose w and 8 such that the
solution (u, &) of the IVP (4.3.19) satisfies the terminal conditions

§(T,2) = Loy(u(T2)  and @(T,x):——gfb’l(u(ﬂx)). (2.3.19)

A shooting method for solving (4.3.18) consists of the following main steps:

choose initial guesses w and 6,
form=12,--- , M
solve for (u,£) from the IVP (4.3.18)

update w and 6.

A criterion for updating (w,8) can be derived from the terminal conditions (4.3.20).
A method for solving the nonlinear system (4.3.20) (as a system for the unknowns w and
§) will yield an updating formula and here we invoke the well-known Newton’s method to
do so. Also, a discrete version of the algorithm must be used in actual implementations.
For the ease of exposition we describe in details a Newton’s-method-based shooting
algorithm with finite difference discretizations in one space dimension. Algorithms in
higher dimensions and their implementations will be briefly discussed subsequently and

will form an prominent part of the proposed research.



2.3.1  Algorithm for 1D control problems

In one dimension, we discretize the spatial interval [0, X] into 0 = 25 < 21 < 23 <
g < - < zrp; = X with a uniform spacing & = X/(I + 1) and we divide the time
horizon [0,T) into 0 = #; < iy < t3 < --- < iy = T with a uniform time step length
§ =T/(N —1). We use the central differencing scheme to approximate the initial value

problem (4.3.19):

1 2 1 2 1 .
U; = Wi, ui:wi+5zi? gi:wiv €z=£z+59€7 7’:1727"'7-{;

uP = T Al 2(1 = Aul + Al
— 5% — 57U (u}), i=1,2---,1,
T = PTG 4+ 2(1 - NE + AT
+ PSR - PWEIIE, =12,
(2.3.20)

where A = (6/h)? (we also use the convention that uf = & = u},, =, = 0.) The

gists of a discrete shooting method are to regard the discrete terminal conditions

@-g p =l
Fu =2 g0 =0, Ra=el - 3o —) =0, (2.3.21)
i=1,2- 1.
By denoting
. duf n oug
Q?j:qz'j(wh@l:w%g?:"' awfagf): 6(,4)'7 TijST%(WI,gl,WQ,HQ,”- ,Cl)],9]>='5517
J J
n oEr N fer
p%:pi}(wluglv{"'}?a@?v"' 7(")1761'):85;'7 Tij:TZ;(“‘)hHlaw%eQ:“' 7w1761)=—8—%7
y] 4



we may write Newton's iteration formula as

(uJﬁ @nev\ Vd;ew 6zwew L W]ew gneW)T

T 3 R -1
= (wlzel)w%g?ﬁ”' 7“‘]1791) - {F (UJ;,@:{,WQ,@Q,"‘ 7(*"’1791)} F(wlaglawzaeza'” ,LU],@])

where the vector F' and Jacobian matrix J = &' are defined by

g -t B8, Vg U
F2¢_1 = —-""8-— -+ 5@,1<ufv> ) F2i = gzj\l - §®;(J‘T—) )
N N-1 N N1
Pij — P g T~ Tij 8
Jri-12j-1 = Lg—z*—' + 5 ‘I’"(UN)% Y R i"f‘g‘*‘ + 5‘1’11’(”'5\,)7"%]?
Ll uN 1
7
J2z 2i-1 = p;j - 55@ (“‘—"5"——)(%3 - ql] )7
" wl —u! N N—1
J212] Tj 26@ (—*——g——"”-——)(ﬁj - T'ij- )

Moreover, by differentiating (4.4.21) with respect to w; and #; we obtain the equations

for determining g;;, 75, 0i; and 7

=0, ¢ =0, rl=0, 15=0,
’ N N Li=1,2,-,1;
Pzg 6] ? P?j = 52‘3‘ ’ Tz-lj =0, ’7}23- = 55@';,' )
G = =g Ay 21 = A+ el

- 52ng 52@1(“?)@:‘7’ lL?] = 1727 e 7-[7

r?jﬂ TR AR+ 2(1 = A+ M

~52Tn 52\1]()72 i:j:1727"'7];

ZJJ

PnH —pi s ApE 5 F2(1 = Aol + Al
- éziK,(u?)qgf - 52[@’(U:)]*p?' - 52[\]?”(1!‘?)91]\’}*5?3 273 = 17 27 o ,-Z;
T = =l TR+ 2(0 = TS 4 A

+ 52§K’(U?)Tf}" =) - S, =121
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where §;; is the Chronecker delta. Thus, we have the following Newton’s-method-based

shooting algorithm:

Algorithm 1 — Newton method based shooting algorithm with Euler discretizations for

distributed optimal control problems

choose initial guesses w; and &;, i =1,2,--- ,1;
% set initial conditions for u and £
fori=1,2,---,1
ul =wy, Ul =w; + 0z,
& =wi, &=§&+db;
% set initial conditions for gi;, 7, pij, T
forj=1,2,---,1
fort=1,2,---,1
g; =0, g5 =0, ri =0, r2 =0,
fgilj =0, pizj =0, Tz'}_tj =0, T2 = 0;
pi=1 =1 Th=4
% Newton iterations
form=1,2,---,M
% solve for (u,§)
form=2,3,--- ,N—-1
uft = T e+ 2(1 = Al + Ml — 5268 — 52T (wD),
E7 = T A 2(1 - NE AL PG K () — 8 (u]) €
% solve for q,1,p, 7T
for j=1,2,---,1
forn=23---,N—1
fore=2,--- N1

n-+1 __

G = =i+ Mgl + 21 = Nl + Adfy
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820 — W (ul)gfy,
et = 2 A 21 = Al M
_527271. — 52\11’{u?)?"?~,
p?;” = p” -1y D 4+ 2(1 - )\)ng Afit
FESK ()l - S o - P )

i

FOSK ()l — O )] ol

%
G=rf=m="=0

g = 7"?+1 = Pfe1 =Ty = 0.)

% evaluate F' and F'

fori=1,2,---,71
N_gN-1
Foq =525 § + £o/(ul), b =&

I

N-—1
Pg' —Pi
5

for §=1,2,--

Joio12j-1 = g‘@”( “N)an
z g + ﬁq)//(uN)T

J2i-1,2j = F) 25

u

FOYE) (g - ),

N—-1
F ) ~ i

J2i,2j—-l = z’j
JZz 27 = T'j
solve Jc = —F by Gaussian eliminations;

fori=1,2,---,1

new

W = wy a1,
TIew . .

Qi == 9@ -+ Caqgs

if max; WP — wy| + max; [67°7 — §;] < tol, stop;

otherwise, reset w; = w*" and 6; = /¥, i=1,2,---

7..71‘—{—1 n1+}\211+2<}_)\>7. + AT} Tit1,3
— &[T (uM)r

e

(we need to build into the algorithm the following:



i3
2.3.2 1D Computational Results

We consider examples of the following types :  Seek the pair (u, f) that minimizes

the cost functional

T, f) = //]u—U dmdt+§/§u(’f,x} W (@) dx + = //1f{2d:cdt

subject to the wave equation

Ugg — Ugg T+ \P('L’,) = f in (O, T> X Q,

(2.3.23)
u]aa = 09 U(O,Q?) = g(!lf), ut(o)x) = h($> .
Example 2.3.1. (linear case) ¥(u) =0, T'=1, 2 =1[0,1] .
For given target functions,
W(z) = sin(2nz)sin(27T), U(i, ) = sin{2nz) sin(27t), (2.3.24)

it can be verified that the exact optimal solution v and a corresponding Lagrange

multiplier § are determined by (4.3.18).

u(t, z) = sin(2nz) sin(2nt), £(t,z) = 0. (2.3.25)
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0.2

A - 1=0475

0.1}

0.04

0.02 ’ : 1

0a L AVET D

~-0.027¢

-0.04
0

Figure 2.1 Optimal solution v and target W,U for At = 1/40 and
Az =1/20 - optimal solution u(t,z) —: target functions
W(z),U(t,z) o: exact optimal solution —«a = 1000, 8 = 1000



02r

- {=0475
0.1 \Q
0
-0.1
-0.2
0<x<t
x 107
2
- t=1.000
1
....1..
-2
)

Figure 2.2 Optimal solution u and target W,U for At = 1/40 and
Az = 1/20 -optimal solution wu(t,z) —: target functions
W{z),U(t,z) o exact optimal solution « = 1000000 ,
3 = 1000000
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Example 2.3.2. (linear case) ¥(u)=0,7T=1,Q=[0,1].

For given target functions, W{(z) = 1,U(t,z) = 1.

1.4
121

08}
0.6}
0.4
0.2}

1.4
- 1=0.740

1.2

08}
06}
0.4
0.2}

1.4
1.2

L c 1=0480

0.8t

0.6

041

02t

1.4

127

g.8
0.6¢
04
0.2}

Figure 2.3 Optimal solution u and target W,U for Af = 1/100 and

Az =1/50 - optimal solution u(t, z)
W(z),Ult,z) = 1000000, § = 1000000

. target functions
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Example 2.3.3. (nonlinear case) U(u) = v® —u, T =1, Q = [0,1]. For given target

functions,
W(z) =sinmzcosnT
(2.3.26)
Ult, z) = sinwz cosmt.
0.8 0.2
* 1=0490
0.6 0.1
047
0.2 1 -0.1 1
- t=0.240
0 ~-0.2
0 1 1
0<x<1 0<x<1

Figure 2.4 Optimal solution u» and target W,U for At = 1/100 and
Az =1/50 - optimal solution w(¢,z) —: target functions
W(z),Ult,s) o= 10000, 8 = 10000
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Example 2.3.4. (nonlinear case) T{u) =¢*, T'=1, O =[0,1].
For given target functions,

Wiz) =sinmzcosT
(2.3.27)

Ult,z) = sinwz cost.

Figure 2.5 Optimal solution v and target W,U for At = 1/100 and
Az =1/50 - optimal solution u(t,z) —: target functions
Wiz),U(t,z) a=1000, = 1000
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Example 2.3.5. (Sine-Gordon equation) ¥{u) =sinu, T =1, {1 =[0,1].

For given target functions,

W{z) =sinrzcosT

(2.3.28)
U(t,z) = sinmz cost.
1 1
0.8 0.8
0867 0.8r
045 0.4t
0.2t .' < t={0.240 " 1 0.2 . t=0.490 \
0 g
0 1 0 1
0<sx<1 0<x<
0.8 0.7
0.6+
0.6¢ 1 05"}
0.4+
04;
0.3¢1
0.2 | 0.2
[ t=o70] 0
0 0
0 1 0] 4
0gx<1 D<x<1

Figure 2.6 Optimal solution u and target W,U for At = 1/100 and
Az =1/50 -: optimal solution u(t,x) —: target functions
W{z),U(t,z) a=10000, F = 10000
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2.4 Shooting methods in 2D control problems

The basic idea for a shooting method in 2D is exactly the same as in 1D. In two
dimensional case, we replace uy, by Au. Lagrange multiplier rules provide the same
optimality system of equations as in the previous section except the replacement part.
Thus the IVP corresponding to the optimality system (4.3.18) is described by

vy — Au+ ¥(u) = —¢ in (0,7} xQ,

ulan = 0, u(0, %) = w(x), u(0,x) = z{x);
o (2.4.29)
b — AL+ [T (W) = -Q—K’(u) in (0,7) x {2,

f]an = Oa 5(07)() = w{x), &(O,X) = 6(X)7

with unknown initial values w and 8. Then the goal is to choose w and 6 such that the

solution (u,&) of the IVP (2.4.29) satisfies the terminal conditions

g

€(T,x) = Lo(u(T,x))  end  &(T,x) = )

2
2.4.1 Algorithm for 2D control problems

@ (u(T, x)). (2.4.30)

In two dimension, we discretize the spatial interval [0, X], [0,Y] into 0 = 2y < 77 <
Ty <3< < =X, 0= <y <y <y < - <yjp1 =Y with a uniform
spacing hy = X/(I+1), by = Y/(J+1) respectively, and we divide the time horizon [0, 7]
into 0 =% <ty <3 < <iy=7T with a uniform time step length é = 7'/(N — 1).
We use the central difference scheme to approximate the initial value problem (2.4.29):
Fori=1,2,---,1,j=412,---,J,

I .. 2 o . I, 2 g1
Uyy = Wij, Uy = Wij + 522J ’ gij = Wij, i fij + (59”,

— 6% — FPU(u), (2.4.31)

?fl = —é_znj‘l + }‘x(gzn-z,j - ?—H,j) -+ 2(1 - )\z - )‘:y)finj -+ ’\y( fj_a + §2j+1)
8% .
+ 07 K (ufy) — 8 (W)€,



where Mg = (8/hs)?, Ay = (8/hy)? (we also use the convention that uf; = £ = 0if i =0

or f+1orj=00rj=J+1) The gists of a discrete shooting method are to regard

the discrete terminal conditions: Fori=1,2,--- ,{,i=41,2,---,J,
£N 5 - _ ~ ull — wlv-t .
FZ\W\*——I = 5 + g@i(ug) = 01 Fﬂ(z’j)* = ég - _21@12(_@.7_5_2__) = Oz (2432}

where (i) is a reordering of the nodes with respect to X, Y except boundary points.
Let w(x) = {wy,wa, -+ Wi} = {Win,War, Wi}, and 8(x) = {6;, 6, Oyt =

{641,621, - 015} where IJ* =1 - J. By denoting

" " uy;
Ty = Qipyrlwn, O, we, 0, -+ W, B0 ) = R
k
oul
O o T k]
T(ij)*k - T(ij)*]g<w17917w27927 e 7wl—=]‘“a9[.]*) = 89 9
k
e = Pl g 8 Orye) = 0%
By = p(ij)*k-(wla L,wa, 8, Wi, Orge) = E
k
oen
n . n — 1]
U T(ij)*k(wlaelzw% Oy, -+ ywrge, Orye) = 30,
k
we may write Newton’s iteration formula as
new Anew , New new new gnew\7T __ T
(Wi, 07" wy™, 8 W, 0190 )t = (W, O, w2, 0, - wrge, Org0)
£ 7f -1
— [F w1, 01, w2, 00, -+ ywrge, Orge )] T F(wn, 01, w2, 6, - - - s wrie,Orye)

where the vector F' and Jacobian matrix J = F' are defined by

&—N 7\7 1 /3 y %N _— U,N~1
oy = 5 + @/ } FE(*’J’)“ = 1],;[ - 5@;(%)’
N N—-1

Pas);, ~ Pusyy | B
oigyr—1,26-1 = ““"‘;f‘“—" ’ 5@”(ufj)qgj); '

N N—1

TH e — Ti.

Gy " Tupp B )

o) ~1,2k = *-"k?—if“ an ‘2“@”(“%7'(%)2 !
N N-1
Jagizye 261 P(z])k 25%{ N 5 : )(Q’(zj)* qé]j);;l)a
N-1

Y T Yy
Tatigy 2k = Ty, = 2 @”(-—5-11-—)(% (zNyr} )
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Moreover, by differentiating {2.4.31) with respect to wy snd 6 we obtain the equa-

tions for determining qeijyex, (i) % Peijyk and T(iz)=r:

Gure=0. =0 =0, Thyu=0,
Pz‘z-j)*fc = Sugyk fo%ij)*k = O(ij)k
T(lij)kk ={, T(%j)*k = 80¢ijy k »
q(%l*k = *qﬁ}ﬁk + )‘E(Q?i~1,j)*k + Q?H-l,j)*k) +2(1 =2z — )\y)qaj)*k
+ A Gy tyek + G grnyen) = 80y
- SV W)y B =1,2,--,1,J,
Tt = Tk T Ao Tmrgrn + Thrngri) + 21— = Ao
+ Ay (T jmyer + Thg41y k) — 527&')% (2.4.33)
- 52‘1’/@%)7’&]‘)%, 1,7=1,2,---,1,J,
Pligyie = ~Pligen + AalPlicrgyn Pl + 200 = Aa = X )by
5 K W)ayen — S0 W oy,

- JQ[WII(U?)Q‘(Z'L\']]')*I;]* ?j’ Z)j = 1727 e 717‘];

+ Ay (G j—1yk + PGr1yn) + 5

ngik = —ng—)ik + X (Mg jyek + Thegyr) 201 = Ao = M) T4
n T a e *®
+ Ay(T{i,j‘l)*k + T(i,j+1)*k) + 52"2'K,(uij)rg;)*k - 52{‘1”@%)] p?ij)*k
— SO ()l i,j=1,2,1,J;

3
where §;; is the Chronecker delta. Thus, we have the following Newton’s-method-based
shooting algorithm:

Algorithm 2 — Newton method based shooting algorithm with Euler discretizations for

distributed optimal control problems

choose initial guesses wy; and 0y, §,7 = 1,2,--- , 1, J;
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set initial conditions for v and §

fori,7=1,2,---,1,J

%

T 2 .
Ug; = Wi, uij—ngJr(Szw,

1 2 ¢l .
& = wij, &= ij"'égiju

set initial conditions for gy &, T ks OG5 ks Tig)*k

for kb =1,2,-- ,(IJ)*

%

fori=1,2,---,{
for j=1,2,-+,J

1 — 2 — 1 — 2 —
ik = s Ligyr = 05 Teyk =05 Taiyr =05

1 _ 2 — 1 . 2 —_n.
Pizyr = 0 Pliye = 0s sy = O Taiye = 03
i =1, p%z’j)*k =0, T = 0,

Newton iterations

form=12,---, M

% solve for (u,§)
forn=23,---,N—-1

ulftt = =l (g ) + 20— Ag — Ay )u

+Ay(u;",j_1 -+ u2j+1)7
?]ﬂ = _€%—1+}‘2(€?—1,j+ T T2 = A=A )En+ Ay (€01 +E841)
+PSK(uD) — e

% solve for g, p, T
for j=1,2,--- 1

form=2,3,--- ,N—-1

fori=2,-- N —1
et =~ + Aal@iorgyoe + Qi gye)
+2(1 — Ay — )\y)q@j)*k + /\y(q&j_l)*k -+ qg’jﬂ)%)

—8 gy — 07 (W) e
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Tk = Tk + ATt gk + i)
+2(1 - A — }‘y)""?%j)*k + ’\y\Ta,j—l)*k + T@’jﬂ)*k)
—&n Gk 52@(“%)7"@)%’

Pl = ~Pligy + AalPlicgyri Pl gres)
F2(1 = Ao = A + MG joryen i jaryen)
O K () gy~ 07T ()] o — 8 [ (uf ) gl I €

n+1 -
Tomer = ~ Ty + 2 (Tl ok + s gyn)

+2(1 - /\x - AL!')T{;"')*/‘J -+ Ay(T(T;,j-l)*k + Tg,j-’.—l)*k)
+62G K (ufy )iy — 07 (Y (W] =07 [0 (ufs ) I* 55
%  (we need to build into the algorithm the following:
g
g =rf=pf =15 =0,
@F =P = 01 =T =0
% evaluate F and F”
fori,7=1,2,---,I,J
ey -ey iy
FQ(ij)*—l = '—1"‘3‘2““‘ + g@l(uij), FQ(ij)" - gz]_;f?
forj=1,2,---,1
Pl kPG e | Beapr(s N\ AN
Jaigye—1,0k-1 = —LEEE + EOT(U5) Gy
_ Tl Tk | B
J2(ij)*—1,2k =G+ @ ( U )T(zj)"k’
N
Ja(igy 2h-1 = Plijyes — % @"(—%j’—)(q(mk i)
Y z" 4, o N—1
JQ(ij)*,?k = T(]?Yj)*k - %(I)g(—————-i———-j 5 )(T@J)k T'fm)*)
solve Jc = —F by Gaussian eliminations;
fori,=1,2,---,1,J

new
Wi

= Wi + Cagizy -1,
G5 = Oy + ca5)+;
L new ~ neW
if max; |WE™ — wy| + magy; |87V ~ 5] < tol, stop;

otherwise, reset wy; = wif™ and 0;; = 077, 1,7 =1,2,--- | [, J;



2.4.2 2D computational results

For the following examples, we provide several graphs with fixed time and y-coordinates
in order to observe the computational results easily, so called snap-shot. For fixed time,

we present the three graphs with y-coordinates 0.25, 0.5, and 0.75 from left to right.

Example 2.4.1. (Linear case) ¥(u)=0,T =1, Q=1[0,1] x [0,1].

For given target functions,

Wiz, y) =z(z - Dyly —1)cosl, Ult,z,y)=z(z— y(y —1)cost. (2.4.34)

0.06 0.06 0.06
D 0.04 0.04 0.04
P
¥ 002 . 0.02 L. 0.02 L
0 o¥= 0
0 1 0 1 0 1
0.05 0.05 0.05
<
=1 0f- .. L e 8¢-o, .- ev.-.. .
L T e R S S A
-0.05 -0.05 -0.05
o 1 0 1 0 1
0.03 0.03
3 0.02 0.02
[ =]
I 0.01 IR . 8.01 R .
0 : e
1 0 1 o 1
0.04 0.03
S 0.02 0.02
= e 0.02 .- ..
5004 L - 0.01
0¥ o
b 1 0 1 0 1
0sx<g1 Ssx=t O<gx<gt

Figure 2.7 Optimal solution u and target W,U for At =1/36, Az =1/16
and Ay = 1/16  -: optimal solution u(t,z) —: target func-
tions W(z),U(t,z) «=100, 0=100
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0.08 0.08 0.08
[s]
o
S
"
5 0.04 0.04 0.04
o
% 002 0.02 0.02
0 0 ]
0 1 0 1 0
0.03 - 0.03 0.03
3 0.02 0.02 0.02
(=]
1 0.01 0.04 0.01
0 0 0
0 1 0 1 0
0.03 0.04 0.03
2 0.02 0.02
- 0.02
! 0.01 0.01
0 ) 4]
0 1 0 1 0
0<x<1 O<xs1 O0<sx<g1

Figure 2.8 Optimal solution u and targets W, U for At =1/36, Az =1/16
and Ay = 1/16 - optimal solution u(t,z) —: target func-
tions W{z),U(t,z) «= 10000, F = 10000
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Example 2.4.2. (Nonlinear case) ¥(u) = —u, T=1,2=1{0,1] x [0,1].

For given targel funciions,

W(z,y) = coswsinmz sinry

(2.4.35)
Ult,z,y) = coswisinme sin my.
0.4 04 04
3]
“
< 0.2 0.2 0.2
i
v G 0
0 1 0 1 0 1
0 0 0
P
©
© -05 ~0.5 -0.5
i
-1 -1 -1
0 1 0 1 0 1
0 0 0
3
o -0.5 -0.5 -0.5
it
-1 -1 -1
0 1 0 1 0 1
0 iy 0
(=]
<
— ~0.5 -0.5 ~0.5
]
-1 -1 -1
Y 1 0 1 0 1
0<xg 0<x<t 0<xgt

Figure 2.9 Optimal solution v and target W, U for At = 1/36, Az =1/16
and Ay = 1/16 - optimal solution u(f,z) —: target func-
tions W{z),U{t,z) «=1000, 5= 1000
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3 Shooting Methods for Numerical Solutions of Exact
Controllability Problems Constrained by Linear and Nonlinear

Wave Equations with Local Distributed Controls

Numerical solutions of exact controllability problems for linear and semilinear wave
equations with local distributed controls are studied. In chapter 1, we introduced the
optimality system of eguations and the corresponding algorithm for shooting method.
For the nonhomogeneous term in the state equation, we multiply a characteristic func-
tion which will render the problems local controllability cases. The algorithm for these
problems is a simple modification of the algorithm in chapter 2, and so we will skip the
section of the algorithm. The convergence properties of the numerical shooting method

in the context of exact controllability are illustrated through computational experiments.

3.1 [Exact controllability problems for the wave equations

We will study numerical methods for optimal control and exact controllability prob-
lems with local distributed controls associated with the linear and nonlinear wave equa-
tions. As before, our concern is to investigate the relevancy and applicability of high
performance computing (HPC) for these problems.

As an prototype example of optimal control problems for the wave equations with
local distributed controls, we consider the following distributed optimal control problem:

choose a control f and a corresponding v such that the pair (f, u) minimizes the cost



functional
a [T LB
J{u,f}zf/. /K(u)dxat+§ &4 (u(T, ))dx+2 Do (w7, %)) dx
Q

/ / FI2 dxc dit
i (3.1

1)
//K Ydxdt 4+ = /@1<U(T,X))d.’2€—‘~2/@2$\ut(rf X)) dx
+_//ixﬂlfi2dth
2 Jo Ja
subject to the wave equation
—Au+9(u) =xq, f in (0,7) x €,
(3.1.2)

ulan = 0, u(0,%) = w(x), (0, %) = 2(x) .

Here € is a bounded spatial domain in R? (d = 1 or 2 or 3) with a boundary 49 and
O C Q; u is dubbed the state, and g is the distributed control. Also, K, ® and ¥ are
C' mappings (for instance, we may choose K(u) = (u— U)?, ¥(u) =0, ¥(u) = u® — u
and U(u) = siny, &;(u) = (u(T,x) — W)2, ®2(u) = (w,(T,x) — Z)?, where U, W, Z is
a target function.) Using Lagrange multiplier rules one finds the following optimality

system of equations that the optimal solution (f,u) must satisfy:

U — Au+U(u) =xo,f  in (0,T) x

wan =0, w00 =wlx),  w0%) =2();

i — AL+ [V ()¢ = K/ (w) in Q

on=0, &%) = 100u(Tx), &%) = -2l x);

Xl +x,8=0in Q.
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This system may be simplified as

uy — O+ \Ef(u) = "‘Xﬁlg in (GT} x £2

ulan =0, u(0, %) = w(x), w(0,x) = z(x);

N (3.1.3)
G- AL+ V€= SKW) i (0,7)x 0
fon=0, T =104u(Tx),  &(T%) = ~5auTx).

Such control problems are classical ones in the control theory literature; see, e.g., [5]
for the linear case and [6] for the nonlinear case regarding the existence of optimal
solutions as well as the existence of a Lagrange multiplier £ satisfying the optimality
system of equations. However, numerical methods for finding discrete (e.g., finite element
and/or finite difference) solutions of the optimality system are largely limited to gradient
type methods which are sequential in nature and generally require many iterations for
convergence. The optimality system involves boundary conditionsat ¢ = 0and ¢ = T and
thus cannot be solved by marching in time. Direct solutions of the discrete optimality
system, of course, are bound to be expensive computationally in 2 or 3 spatial dimensions

since the problem is (d + 1) dimensional (where d is the spatial dimensions.)

3.2 The solution of the exact local controllability problem as

the limit of optimal control solutions

The exact distributed local control problem we consider is to seek a distributed local

control f € L2((0,7) x ;) where {3 € Q and a corresponding state u such that the
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following system of equations hold:

Uy — Au+ Ulu) = xq,f n@Q@=(0,7)x0,

J Ul = w  and wlip =2 inQ,

o~
[9§)
b
.

g

ulizr =W and wlr=2 infl,

ufag =0 in (U,T) .

Under suitable assumptions on f and through the use of Lagrange multiplier rules,

the corresponding optimal local control problem:
minimize (3.1.1) with respect to the control f subject to (3.1.2). (3.2.5)

In this section we establish the equivalence between the limit of optimal solutions
and the minimum distributed L? norm exact local controller. We will show that if
a — o0, f — oo and 7 — 00, then the corresponding optimal solution (Usg,, ]f‘;ﬁﬂ,)
converges weakly to the minimum distributed L? norm solution of the exact distributed
local controllability problem (3.2.4). The same is also true in the discrete case. Let

Ql = (O,T) X Ql‘

Theorem 3.2.1. Assume that the exzact distributed local controllability problem (3.2.4)
admits a unique minimum distributed L2 norm solution (Uex, fex). Assume that for every
(o, B,7) € Ry x Ry x Ry (where Ry is the set of all positive real numbers,) there ezists

a solution (Uapy, fapy) to the optimal local control problem (3.2.5). Then
fapllzgy S fexllzzgy V(e B,7) € Ry xRy xRy (3.2.6)

Assume, in addition, that for a sequence {(ou, Bn, )} satisfying o, — oo , B, — oo



and Y, — 00,

g, — T i1 LHQ)  and  Ulug, ) ~ U(@) in L0, T; [HXQ) 0 H Q).
(3.2.7)

Then
fonpam — fex 0 LA@Q,) and Ugn fnrn — Uex 10 L2(Q) as nm — 00. (3.2.8)

Furthermore, if (8.2.7) holds for every sequence {{aun, Bn, Vo) } SG¥sfying om — oo, B —

oo and v, — 00, then
Fapy = fox in LHQ1) and uap, — tex n LX(Q) as a, 8,7 — 0. (3.2.9)
Proof. Since (Uagy, fapy) is 8n optimal solution, we have that

g”“cvﬁv(T) - U”Iﬁ(@) + g”uaﬂv(T) - W”LZ(Q) + %”atuaﬂv(T) - Z”H~1(0)

1
+ §IlfaﬁWllL2(Q1) = j(uozﬁ'ya faﬁ'y) < J(uex:feDJ = é‘”fex”L?(Ql)

so that (3.2.6) holds,
Uagyler — W in L*(Q) and (Gpuapy = — Z in HH(Q) as , B,y — c0.  (3.2.10)

Let {{@n, Bn, 1)} be the sequence in (3.2.7). Estimate (3.2.6) implies that a subsequence

of {(a, Br, )}, denoted by the same, satisfies

Janparn = F 10 LHQ1)  and Iflizaqu) < Ifexllzzon - (3.2.11)
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. a e . e
(Uagys fapy) satisfies the initial value problem in the weak form:

T T
/ / Uagy(Vet — Uzg) Az dE +/ /(\E(uam) — X fapy |V dz di
0 Ja 6 Jo

{
+/(U§tuaﬁ7)|t:T d%“j 'Ui@—_-QZ dm—/(uaﬁ75tv)lt=T dz (3212)
Q 2 Q

+ / (WA) oy dz =0 Vv € CA([0,T); HA(Q) N HL(Q)

Passing to the limit in (3.2.12) as ¢, 8,7 — oo and using relations (3.2.10) and (3.2.11)

we obtain:

/;)T/Q ﬁ('z}tt — Ugg) dz dt + /éT/é[\Il('ﬂ) — o Flvdz dt

+/;]Ult:TZ($)dx'/évlt:OZdT“—/;]W(f)(atv)h:;rda:

+ /(w@tv)|t=0 dr=0  YveC¥p,T); H* Q)N HLQ)).
Q

The last relation and (3.2.11) imply that (%, f) is & minimum boundary L? norm solution
to the exact control problem (3.2.4). Hence, T = ue and f = f., so that (3.2.8) and
(3.2.9) follows from (3.2.7) and (3.2.11). O

Remark 3.2.2. If the wave equation is linear, i.e., ¥ = 0, then assumption (3.2.7) is
redundant and (3.2.9) is guaranieed to hold. Indeed, (3.2.12) implies the boundedness of
{lluapyllz2(0)} which in turn yields (3.2.7). The unigueness of a solution for the linear

wave equation implies (3.2.7) holds for an arbitrary sequence {{cy, Bn,Vn)}-
Theorem 3.2.3. Assume that

i) for every (o, B,7) € Ry x Ry X Ry there exists a solution (Uapy, fagy) to the optimal

control problem (3.2.5);
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i) the limit terminal conditions hold:

Uapyli=r — W in L*(Q) and (Osttapy)i=r — Z in HTHQ) as o, 8,7 — oo;
(3.2.13)

iii) the optimal solution (Uapy, fapy) satisfies the weak limit conditions as o, 3,7 — oo:

fapy = F i LHQ1), tapy — T in L*(Q), (3.2.14)

and
U(uppy) — ¥(T) in L2(0,T; [H(Q) N H (] (3.2.15)

for some f € L*(Q,) and T € L*(Q).

Then (@, f) is a solution to the ezact boundary controllability problem (3.2.4) with §
satisfying the minimum boundary L? norm property. Furthermore, if the solution to

(3.2.4) admits a unigue solution (Uex, fex), then
fapy = fox 1 L2(Q1) and Ugpy — Uex in L*(Q) as a, f,7 — co. (3.2.16)

Proof. (%apy, fap) satisfies (3.2.12). Passing to the limit in that equation as , 8,7 — 00

and uvsing relations (3.2.13), (3.2.14) and (3.2.15) we obtain:

T T
/ /"ﬁ(vﬁ — Uy ) dr dt +/ /{\If(ﬂ) — xq, fvdz di
0 Ja 0o Ja

+/;;i}[t'=TZ(CL‘) ‘m"L“lt=03dm“LW(x)(ﬁtv)it=de

+ /(wé’tv)|t=0 dr=0  VwveC¥0,T); H* Q) NHQ).
)

This implies that (@, f) is a solution to the exact boundary controllability problem

(3.2.4).
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To prove that J satisfies the minimum boundary L? norm property, we proceeds
as follows. Let (ug, fox) denotes a exact minimum boundary L? norm solution to the

controllability problem (3.2.4). Since (top,, fogy) is an optimal solution, we have that

el , B ¥
Tg‘nuaﬁ'r - U'i%?(@) + 5”%[37 - W“%E(Q) + §”atucvﬁv - Z“%{—l(n)

1 1
+ é'”fceﬂ“/”%?{c}l) = j(ua‘ﬁw faﬁ”f) < T (tex, fex> = ii’fex“%Q(Ql}

so that

Hfaﬁv“%%@ﬂ < ilfexnsz(Qz) :

Passing to the limit in the last estimate we obtain

”T”%Z(Ql) < ”fex“i‘é’(ql)~ (3.2.17)

Hence we conclude that (T, f) is a minimum boundary L? norm solution to the exact
boundary contrcllability problem (3.2.4).

Furthermore, if the exact controllability problem (3.2.4) admits a unique minimum
boundary L? norm solution (e, fex), then (@, f) = (Uex, fox) and (3.2.16) follows from

assumption (3.2.14). O

Remark 3.2.4. If the wave equation is linear, i.e., ¥ = 0, then assumptions i) and

(3.2.15) are redundant.

Remark 3.2.5. Assumptions i) and iii) hold if fop, and u.p, converges pointwise as

O[aﬁ)7 - &0.

Remark 3.2.6. A practical implication of Theorem 3.2.3 is that one can prove the
exact controllability for semilinear wave eguations by ezamining the behovior of a se-
quence of optimal solutions (recall that exact controllability was proved only for some

special classes of semilinear wave eguations.) If we have found a sequence of optimal
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control solutions {(Ue, o, fanfnrm)t WHere tm, Bn, Y — 00 and this sequence appears
to satisfy the convergence assumptions i) end iii), then we can confidently conclude
that the underlying semilinear wave eguation is exactly controllable and the optimal so-
lution (Ve Buyn: fonBawm) When 1 is large provides a good approzimation to the minimum

boundary L? norm ezact controller (Uex, fex)-

3.3 Computational Results

We consider examples of the following types :  Seek the pair (u, f) that minimizes

‘ T
I ) =3 A L 1u——U!2d:cdt-‘r§ A (T, 3) — W(z)2 do

LT (3.3.18)
+ 1/ lu (T, z) — Z(2)|* dz + ~/ / |f|? d dt
2 0 2 0 Ji
subject to the wave equation
Ust — Uy + Y (u) = x0, f in (0,7) x Q,
ulaq = 0, (3.3.19)
U(O, m) = g(‘T): ut(Gv .’L‘) = h(:l:)a
where §2; C (.
3.3.1 Exact controilability problems with linear cases
Example 3.3.1. (full domain control) ¥(u) =0, T =1, 0=, =1[0,1] .
For given target functions,
Wiz) =0, Z{z) = 2w sin{2nz),
(3.3.20)

Ult, z) = sin(2nz) sin(27t).
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Figure 3.1 Optimal solution v and target W for At = 1/80 and Az=1 /40
-, X: optimal solution w(7T, z) —: target function W(z)
a=0,8=vy=1,---,1000
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Figure 3.2 Optimal solution v, and target Z for A¢ = 1/80 and Az = 1/40
-, X: optimal solution w (7, ) —: target function Z{z)
a=0,8=vy=1,---,100
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Figure 3.3 Optimal solution v and target W for At = 1/80 and Az = 1/40
- optimal solution u(7', z) —: target function W(z)
a=0,[0=-y= 1000000
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Figure 3.4 Optimal solution v; and target Z for At = 1/80 and Az = 1/40
- optimal solution u, (7T, z) —: target function Z(z)
a=190, = =1000000
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Figure 3.5 Optimal solution u for At = 1/80 and Az = 1/40
a=0,[=vy=1000000

[t=1

.5

—0,50
1/400 and

Figure 3.6 Optimal solution u» and target W for At
—: target function W{z)

Az = 1/400
optimal solution »(T, z)
a=0, 3=y =1000000
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-8

=)y

Figure 3.7 Optimal solution u; and target Z for At = 1/400 and
Az =1/400
- optimal solution w (7T, z) —: target function Z(x)
a =0, == 1000000

Figure 3.8 Optimal solution u for At = 1/400 and Az = 1/400
—: optimal solution (¢, x)
a=0, [ =~= 1000000
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Example 3.3.2. (linear case and local domain control) ¥(uw) =0, T =1, & = [0,1],
Q =1[0,0.11U[0.9,1] .

Suppose we have the same target functions as (3.3.20).

05 T
=1
//$F1
0
-0, :
50 0.5 1

Figure 3.9 Optimal solution v for Af =1/80 and Az = 1/40
- optimal solution u(7, z) —: target function W{z)
a=0,f=y=1



f=y=100

L/ \

o X, i
" J
X d
-, . S

X, /
_a_
.
0 0.5 1
Osx<1

Figure 3.10 Optimal solution u for At = 1/80 and Az = 1/40
-, X: optimal solution v, (T, z) —: target function Z(z)
a=0,[7=~y=100,1000

0.5 ~——

Figure 3.11 Optimal solution w for At = 1/80 and Az = 1/40
- optimal solution u(T, z) —: target function W (z)
a=10, 8 =~y=1000000
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Figure 3.12 Optimal solution » for At = 1/80 and Az = 1/40
-: optimal solution (T, x) —: target function Z(z)
a =0, =n~= 1000000
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Figure 3.13 Optimal solution u for Af = 1/80 and Az = 1/40
: optimal solution u(f, z)
a=10, == 1000000



50

Example 3.3.3. (linear case and local domain control) ¥(u) =0, T =1, O = [0, 1],
0, = [0.45,0.55] .

Suppose we have the same target functions as (3.3.20).

0.5 |
=1
0
-0.5 :
0 0 0.5 4
0<x<1

Figure 3.14 Optimal solution u for At = 1/80 and Az = 1/40
- optimal solution u(7', z) —: target function W({z)
o =10, 8=+ = 1000000
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Q 0.5 1
Dsx=1

Figure 3.15 Optimal solution u for At = 1/80 and Az = 1/40
-: optimal solution (7, ) —: target function Z(x)
a=0, 3=~ = 1000000

Figure 3.16 Optimal solution u for At = 1/80 and Az = 1/40
- optimal solution u(¢, z)
a=0, 8 == 1000000
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Example 3.3.4. (linear case and local domain control) ¥(u) =0, T =2, O = [0,1],
O, = [0.45,0.55] .

Suppose we have the same target funciions as (3.3.20).

0.5 ;
=2
0
-0.5 1
0 0.5 1
f<x<t

Figure 3.17 Optimal solution u for At = 1/80 and Az = 1/40
- optimal solution u(T, z) —: target function W(z)
o=10, == 1000000
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-8 L J

Figure 3.18 Optimal solution u for At = 1/80 and Az = 1/40
: optimal solution u:(T, z) —: target function Z(z)
a =0, 0 == 1000000
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Figure 3.19 Optimal solution u for At = 1/80 and Az = 1/40
: optimal solution (¢, z)
a=10, == 1000000
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Example 3.3.5. (linear case and local domain control) ¥{u) = 0, T = 1, O = [0,1],
(0, = [0.495,0.505] .

Suprpose we hove the same target functions as (3.3.20).

0.5 ‘
O """""""""""""" TTEFTET e e o 5 6 e e @ @ v o & & °®
05 J
5 0.5 1
0<x<t

Figure 3.20 Optimal solution u for At = 1/400 and Az = 1/400
- optimal solution u(7, z) —: target function W{zx)
a=10, 8 ="y = 1000000
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Figure 3.21 Optimal solution u for At = 1/400 and Az = 1/400
- optimal solution u:(T, z) —: target function Z(z)
a=0,[5=+y=1000000

Figure 3.22 Optimal solution % for At = 1/400 and Az = 1/400
- optimal solution u(t, z)
a=0, 8 =y=1000000
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3.3.2 Exact controllability problems with nonlinear cases
Example 3.3.6. (full domain control) ¥{u) =sinwu, T =2, Q= =[0,1] .

For given target functions,

W{z) = sin(mrz)cos{T), Z(z)= —sin(nz)sin{T),
(3.3.21)

Ult,z) = sin(wz) cos(t).

A=y =10000
-0.45-

Figure 3.23 Optimal solution u for At = 1/80 and Az = 1/40
-, X: optimal solution u(T, z) —: target function W(z)
a=0,8=~v=1,---,10000
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Figure 3.24 Optimal solution v for Af = 1/80 and Az = 1/40
-, X: optimal solution u,(T, x) —: target function Z(x)
a=0,f=y=1,---,100
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Figure 3.25 Optimal solution u for At = 1/80 and Az = 1/40
-: optimal solution u(T, z) —: target functions W{z)
a =0, 8 == 1000000
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Figure 3.26 Optimal solution u for At = 1/80 and Az = 1/40
-+ optimal solution u(T, z) —: target functions W (z)
a=10,F=-~y= 1000000
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Figure 3.27 Optimal solution u for At = 1/80 and Az = 1/40
—: optimal solution u(¢, z)
a =0, 8=~ = 1000000
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Figure 3.28 Optimal solution u for At = 1/80 and Az = 1/40
—: target function U(Z,z)
a =0, f == 1000000
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Example 3.3.7. (local domain conirol) ¥(u) =sinu, T =2, O =[0,1], & =[0,0.1]U

0.9,1] .

Suppose we have the same target functions as (3.3.21).

- 1 —
T KXo o o o L e % xR K 7;(
% B S T L T L L x
\T y X
X §=F1 §3=Y=10 X
\ e 5
. s
B=y=10000
B=y=100000 — {=
-0.45 :
0 0.5
Osxsg1

Figure'3.29 Optimal solution v for At = 1/80 and Az = 1/40
-, X: optimal solution »(T’, z) —: target functions W{z)
a=0,8=~=1,---,100000
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X X
XX x o x o x X X

B=y=10000

Figure 3.30 Optimal solution u for At =1/80 and Az = 1/40
-, x: optimal solution u(7T, z) —: target functions Z(x)
a=0,8=~v=1,-.-,10000
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Figure 3.31 Optimal solution v for A¢ = 1/80 and Az = 1/40
- optimal solution u(T, z) —: target functions W{z)
a=0, [ == 1000000

-0.45

Figure 3.32 Optimal solution « for At = 1/80 and Az = 1/40
- optimal solution u,(T, z) —: target functions Z(z)
=0, =~ = 1000000
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Figure 3.33 Optimal solution » for Af = 1/80 and Az = 1/40
—: optimal solution u(¢, z)
a=0,5=y= 1000000



Example 3.3.8. (full domain control) U(u) = uln®(u®+1), T=2,0=0 =[0,1] .

Suppose we have the same target functions as (3.3.21).

\x y
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3 X
X X
X X
B=y=10000 =2
-0.45 !
0 0.5
HES S

Figure 3.3¢ Optimal solution u for At = 1/80 and Az = 1/40
-, X: optimal solution u(T, z) —: target functions W{z)
a=0,0=y=1,.--,10000
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Figure 3.35 Optimal solution u for A¢ = 1/80 and Az = 1/40
-, X optimal solution v, (T, ) —: target functions Z(z)
a=0,F=vy=1,...,100
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Figure 3.36 Optimal solution u for At = 1/80 and Az = 1/40
- optimal solution u(T, z) —: target functions W (z)
a =0, == 1000000

=1

Figure 3.37 Optimal solution v for A? = 1/80 and Az = 1/40
- optimal solution u(7", z) —: target functions W(z)
a =0, 8=~ = 1000000
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Figure 3.38 Optimal solution u for At =1/80 and Az =1/40
—: optimal solution u(¢, z)
o =0, == 1000000
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Example 3.3.9. (local domain control) ¥(u) = ul®(w?+ 1), T =2, Q =[0,1], O =
[0,0.1]U[0.9,1] .

Suppose we have the same target functions as (3.3.21).

0‘,X XXX XX X X % x X X X X KX XX XXXXXXXXXXXXX

B=y=100000 /

-0.45 ‘
0

Figure 3.39 Optimal solution u for At = 1/80 and Az = 1/40
., X: optimal solution u(T, z) —: target functions W(z)
a=0,f=~y=1,---,100000
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Figure 3.40 Optimal solution u for At = 1/80 and Az = 1/40
-, X: optimal solution (T, z) —: target functions Z(z)
a=0,F=y=1,.--,10000




70

\ =

-0.45

Figure 3.41 Optimal solution v for At = 1/80 and Az = 1/40
- optimal solution u(T, z) —: target functions W(z)
a =190, 3=+= 1000000

\\ E%a /

C<xxt

Figure 3.42 Optimal solution u for At = 1/80 and Az = 1/40
- optimal solution (7, z) —: target functions Z(x)
a=40,[0=~vy= 1000000
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Figure 3.43 Optimal solution u for At =1/80 and Az = 1/40
—: optimal solution u(t, x)
=0, 8=n~= 1000000
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Example 3.3.10. (full domain control) U(u) = v —u, T=2, 0=, =10,1] .

For given target funclions,

W(z) = sin(2nz) cos(T),
Z(z) = —sin{27x)sin(T"),

Ult,z) = sin(2nz) cos(t).

t=2 |

X X

B=y=10000 . X % x ox X

Figure 3.44 Optimal solution v for At = 1/80 and Az = 1/40
-, X: optimal solution w{T), z) —: target functions W{z)
a=0,f=v=1,---,10000
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Figure 3.45 Optimal solution v for At = 1/80 and Az = 1/40
-, x: optimal solution u(T, z) ~—: target functions Z(z)
a=0,8=y=1,---,100
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Figure 3.46 Optimal solution u for At =1/80 and Az = 1/40
- optimal solution u(7T', z) —: target functions W(zx)
a=0, [ =-y=1000000

-1

Figure 3.47 Optimal solution u for At = 1/80 and Az = 1/40
-: optimal solution u(T, z) —: target functions W{z)
a=0, 8=~ = 1000000
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Figure 3.48 Optimal solution u for At = 1/80 and Az = 1/40
—: optimal solution u(f, z)
a=0, [ =v= 1000000
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Example 3.3.11. (local domain control) ¥{u) = v® ~u, T = 2, & = [0,1], O =
0,0.1]U[0.9,1] .

Suppose we have the same target functions as (3.3.22).

1.1 T

B=y=100

B=y=1000

=y=100000 5 . L
X ’ ° ) -4
% %
X X
X X X
~1.1 -
0 05 1
O=<x<t

Figure 3.49 Optimal solution » for At = 1/80 and Az = 1/40
-, %: optimal solution u(T, z) —: target functions W{(z)
a=0,3=~r=1, 10000
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B=y=1000

Figure 3.50 Optimal solution u for A¢ = 1/80 and Az = 1/40
-, X: optimal solution u:(7T, x) —: target functions Z(x)
a=0,8=~y=1-,100
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Figure 3.51 Optimal solution u for At =1/80 and Az = 1/40
- optimal solution u(7, z) —: target functions W{z)
a=0, 08 =~ = 1000000

Q o8 3
Osxsi

Figure 3.52 Optimal solution u for Af = 1/80 and Az = 1/40
-; optimal solution w7, z) —: target functions Z(z)
o =0, 08 =r= 1000000
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Figure 3.53 Optimal solution u for At = 1/80 and Az = 1/40
—: optimal solution u(%, z)
a=0, 8 == 1000000
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Example 3.3.12. (full domain conirol) ¥(u) =¢*, T =2, =0 ={0,1] .

For given target functions,

Wi(z) = sin(wz) cos(T),

Z(z) = —sin{nz) sin(T), (3.3.23)

Ui, z) = sin(mz) cos(t).

T T
=2
B=y=1 — T
0.5 ,
p=y=10
xxxxxxxxxxxxxxx
X
X
XXXY XXX
X X
X x
X X
X X
. X X
x X
ok x
B=y=10000 /

Figure 3.54 Optimal solution u for &¢ =1/80 and Az = 1/40
-, X optimal solution «(7, ) —: target functions W{z)
a=0,3=~=1,---,10000
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Figure 3.55 Optimal solution v for A¢ = 1/80 and Az = 1/40
x, - optimal solution (7, ) —: target functions Z(x)
| a=0,f=y=1

PN
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\\ =1 /

-0.45

Figure 3.56 Optimal solution u for A¢ = 1/80 and ANz = 1/40
- optimal solution «(T, z) —: target functions W(z)
a=0, 0 =v=1000000

-t

Osugt

Figure 3.57 Optimal solution u for At = 1/80 and Az = 1/40
- optimal solution w(7, x) —: target functions W(z)
a=0, [ == 1000000
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Figure 3.58 Optimal solution u for At = 1/80 and Az = 1/40
—: optimal solution u(Z, z)
o=10, 3 =-vy= 1000000
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Example 3.3.13. (local domain control) U(u) =¢¥, T =2, Q= [0,1], & = [0,0.1]U

0.9,1] .

Suppose we have the same target funciions as (3.3.23).

1 7
XXX ¥ .
B=y=1 2 R =2
== B B
N %
s e s
X X
X X
% X
P .
. * B=y=100 g

X X

X X
. B=y=1000 x

X X

wow X X X X XXX CXXCH NI R x
x X

-4 x X
< X
x X

Bey=10000

B=y=100000

Figure 3.59 Optimal solution v for At = 1/80 and Az = 1/40
-, X: optimal solution (7, z) —: target functions W(z)
a=0,8=~=1,--- 100000
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Figure 3.60 Optimal solution u for At = 1/80 and Az = 1/40
-, X: optimal solution u(T, z) —: target functions Z(z)
a=0,8=y=1,---,100
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-0.45

Figure 3.61 Optimal solution u for At = 1/80 and Az = 1/40
-: optimal solution u(T, z) —: target functions W (z)
a=0,0=~y= 1000000

Figure 3.62 Optimal solution v for At = 1/80 and Az = 1/40
- optimal solution u (T, z) —: target functions Z(z)
a=10, [F=-=71000000
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Figure 3.63 Optimal solution u for At =1/80 and Az = 1/40
—: optimal solution u(¢, z)
a=0,pF=y=1000000
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Example 3.3.14. (full domain control) ¥(u)y=e*, T=3, Q=0 =[0,1] .

Suppose we have the same target functions as (3.3.23).

N

-14
0

A

Figure 3.64 Optimal solution u for At = 1/90 and Az = 1/30
-, X: optimal solution u(T, z) —: target functions W (z)
a=0,=y=1,---,10000
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Figure 3.65 Optimal solution u for At =1/90 and Az = 1/30
-, X: optimal solution (7, z) ~: target functions Z{z)
a=0,=vy=1,---,1000
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Figure 3.66 Optimal solution u for At = 1/90 and Az = 1/30
-: optimal solution u(T', z) —: target functions W{x)
a=0, 8=~ = 1000000

I = /|

Figure 3.67 Optimal solution u for Az = 1/90 and Az = 1/30
- optimal solution (7, z) —: target functions Z(z)
o =0, 8=~= 1000000
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Figure 3.68 Optimal solution u for At = 1/90 and Az = 1/30
—: optimal solution u(t, z)
a =40, ="~=1000000
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Example 3.3.15. (local domain control) ¥(u) =¢e*, T =3, @ =[0,1], (& = [0,0.1] U

[0.9,1] .

Suppose we have the same target functions as (3.3.23).

B=y=100000

-1.4 :
0

Figure 3.69 Optimal solution u for At =1/90 and Az =1/30
-, X: optimal solution u(T', z) —: target functions W(zx)
a=0,8=r=1---,100000
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Figure 3.70 Optimal solution u for Af = 1/90 and Az = 1/30
-, X: optimal solution (7, z) —: target functions Z(z)
a=0,8=~y=1,- 10000
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Figure 3.71 Optimal solution v for At = 1/90 and Az =1/30
-: optimal solution u(7T, z) —: target functions W{(z)
a =0, [ =y = 1000000

- /

-0.18

Figure 3.72 Optimal solution » for A¢ = 1/90 and Az = 1/30
- optimal solution w(7, z) —: target functions Z(z)
a =0, 8 == 1000000
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Figure 3.73 Optimal solution u for At = 1/90 and Az = 1/30
—: optimal solution u(f,x)
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4 Shooting Methods for Numerical Solutions of Exact

Boundary Controllability Problems for the 1-D Wave Equation

Numerical solutions of optimal Dirichlet boundary control problems for linear and
semilinear wave equations are studied. The optimal control problem is reformulated as a
system of equations (an optimality system) that consists of an initial value problem for
the underlying (linear or semilinear) wave equation and a terminal value problem for the
adjoint wave equation. The discretized optimality system is solved by a shooting method.
The convergence properties of the numerical shooting method in the context of exact
controllability are illustrated through computational experiments. In the case of the
linear wave equation, convergent approximations are obtained for both smooth minimum
L?-norm Dirichlet control and generic, non-smooth minimum L2-norm Dirichlet controls.

The cases of certain semilinear wave equations are also tested numerically.

4.1 Introduction

In this chapter we consider an optimal boundary control approach for solving the
exact boundary control problem for one-dimensional linear or semilinear wave equations
defined on a time interval (0,7") and spatial interval (0, X). The exact boundary control

problem we consider is to seek a boundary control g = (gz, gr) € L2(0, T) C [Z*(0,T))?
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and a corresponding state u such that the following system of equations hold:

uit_ula:m';‘f(u} =V in QE (GvT) X (07;{)5

Uls=g = ug and Utlemo =wy  in (0, X)),
(4.1.1)

’U,;tzj‘ =W and Ultit:T =7 in (O,X) s

e=0 = gr and ul,o; = gg in (0,7),

U

where 1o and u; are given initial conditions defined on (0, X), W € L2(0,X) and Z €
H~Y(0, X) are prescribed terminal conditions, V is a given function defined on (0,T) x
(0, X), £ is a given function defined on R, and g = (g1, gr) € [L*(0, T)]? is the boundary
control.

It is well known (see, e.g., [15, 16, 18, 19]) that when f = 0 (i.e., the equation is
linear) and 7 is sufficiently large, the exact controllability problem (4.1.1) admits at
least one state-control solution pair (u,g); furthermore, the exact controller g having
minimum boundary L? norm is unique. Exact boundary controllability for semilinear
wave equations have alsc been established for certain asymptotically linear or superlinear
f; see, e.g., [8, 23, 24].

For the exact boundary controllability problem associated with the linear wave equa-
tion there are basically two classes of computational methods in the literature. The first
class is HUM-based methods; see, e.g., [10, 13, 15, 17, 22]. The approximate solutions
obtained by the HUM-based methods in general do not seem to converge (even in a
weak sense) to the exact solutions as the temporal and spatial grid sizes tend to zero.
Methods of regularization including Tychonoff regularization and filtering that result in
convergent approximations were introduced in those papers on HUM-based methods.
The second class of computational methods for boundary controllability of the linear
wave equation was those based on the method proposed in [12]. One solves a discrete

optimization problem that involves the minimization of the discrete boundary L? norm



98

subject to the undetermined linear system of equations formed by the discretization of
the wave equation and the initial and terminal conditions. This approach was imple-
mented in [14]. The computational results demonstrated the convergence of the discrete
solutions when the exact minimum boundary L? norm solution is smooth. In the generic
case of a non-smooth exact minimum boundary L? norm solution the computational re-
sults of [14] exhibited at least a weak L? convergence of the discrete solutions.

Although there are well-known theoretical results concerning boundary controlia-
bility of semilinear wave equations (see, e.g., [8, 23, 24]), little seems to exist in the
literature about computational methods for such problems.

‘In this chapter we attempt to solve the exact controllability problems by an optimal
control approach. Precisely, we consider the following optimal control problem: minimize

the cost functional

i 1
Jolu, g) :%/0 |u(T,z) — W(z)|* dz + —;;/é lu(T, z) — Z(z)|? do

D on (4.1.2)
+3 [ ol + loaf?) dt
0
subject to
“ Ut — umx+f(u) =V in Q = (OzT) X (07 1)
Ulsmo =up and Uwo = in (0,1) (4.1.3)

Ulg=o = gr a0d Ule=1 = gr in (0,7).
The optimal control problem is converted into an optimality system of equations and
this optimality system of equations will be solved by a shooting method.

The optimal control approach of this chapter provides an alternative method to the
two classes of methods mentioned in the foregoing for solving the exact controllability
problem for the linear wave equations; it also offers a systematic procedure for solving

exact controllability problems for the semilinear wave equations. The computational
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solutions of this chapter obtained by an optimal control approach exhibit behaviors
similar to those of the solutions obtained in [14]. Note that an optimal solution exists
even when the equation is not exactly controllable. Note also that the solution methods
in the literature for optimal control of PDEs can be utilized. and that there are certain
intrinsic parallelisms to the algorithms studied in this chapter.

The shooting algorithms for solving the optimal control problem will be described

for the slightly more general functional

T(u,g) = //|u—U]2d:cdt+ /iuT:c W ()P de e
+§/;) w(T,z) — Z(z)|*dz + = /(lgLPJ—]aP[ )di N

where the term involving (u — U) reflects our desire to match the candidate state u

with a given U in the entire domain ¢). Our computational experiments of the proposed
numerical methods will be performed exclusively for the case of o = 0.

The rest of this chapter is organized as follows. In Section 4.2 we establish the
equivalence between the limit of optimal solutions and the minimum boundary L? norm
exact controller; this justifies the use of the optimal control approach for solving the exact
control problem. In Section 4.3 we formally derive the optimality system of equations for
the optimal control problem and discuss the shooting algorithm for solving the optimality
system. In Section 4.4 We state the discrete version of the shooting algorithm for solving
the discrete optimality system. Finally in Sections 4.5 and 4.6 we present computations
of certain concrete controllability problems by the shooting method for solving optimal

control problems.
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4.2 The solution of the exact controllability problem as the

limit of optimal contfoi solutions

In this section we establish the equivalence between the limit of optimal solutions and
the minimum boundary L2 norm exact controller. We will show that if o = 0, 0 — o
and T — 00, then the corresponding optimal solution (%,.,8,-) converges weakly to
the minimum boundary L? norm solution of the exact boundary controllability problem

(4.1.1). The same is also true in the discrete case.

Theorem 4.2.1. Assume that the ezact boundary controllability problem (4.1.1) ad-
mits o unigue minimum boundary L? norm solution (e, Bex). Assume that for every
(a,0,7) € {0} xRy x Ry (where Ry is the set of all positive real numbers,) there exists

a solution (Usr, 8sr) to the optimal control problem (4.3.17). Then
lgorllm) < lgxllzey  V(o,7) € {0} x Ry x Ry (4.2.5)
Assume, in addition, that for o sequence {(o,,7,)} satisfying o, — co and 7, — o0,

Ugpr, — T i LHQ) and  f(ug.r) = f(@) in L0, T; [H*(Q) N HYQ)"). (4.2.6)

Zonmn — Bex i1 [L2(0, T)]? and vy, 1, — Uex in L*(Q) as n — o0 . (4.2.7)

Furthermore, if (4.2.6) holds for every sequence {(o,, Tn)} satisfying o, — oo and 7, —

co, then

8or — Cex i [L2(0, 77 and uyr — tex in L3 Q) as 0,7 — 00 (4.2.8)
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Proof. Since (Uyr,Eor) iS an optimal solution, we have that
gy /T\ (2 T @ e 102 15 12
5““07’\ R E/VEIL)(O,}) —+ §H tua—r\T} - ZE]H—I(O}I} + glfgmdm(g)
= j(uara go‘T) S j(uex: gex} = éngexf}?l?(z)

so that {4.2.5) holds,
uo"ritzT — Win L2(07X> and (atuar)ltzT — Z in H“l(O,X) as o, T - 00 . (429)

Let {(on, )} be the sequence in (4.2.6). Estimate (4.2.5) implies that a subsequence of

{(0n,7a)}, denoted by the same, satisfies

ourn — Ein [LX(0,T)  and  |Ellerry < lgellzzom) - (4.2.10)

(%or, Bor) satisfies the initial value problem in the weak form:

T rX T rpX
/ / ua‘r(”tt - Ua::c) dr dt + / / {f(’U;U-,-) bt V]’U dxdt
0 JO 0 JO
T T

+ gaT’sz (azv)lsz dt — gm-!xz (va)ik dt
/é /5 D Q (4.2.11)

X X X

+/ (v@tugT)!tszx—/ V|0t d:c-—/ (Uor 040 gy d
4] g G
X

" / (000 eodz =0 v € CH(0, T}, H? 1 HI(0, X))
g

where gor|s=o denotes the first component of g,, and g, |o=x the second component of

go-. Passing to the limit in (4.2.11) as ¢, 7 — oo and using relations (4.2.9) and (4.2.10)



102

we obtain:

T X T
/ / vy — dwdtT/ / - V] vdxdt+/ 'gR(@zv}éx:th
¢ Jo 0

b x
- / T1(0,0) | mo dt + / V|erZ(z)dz — / Vlimouy dT — W (2)(8s0) | d
0 0 0

X
_5/<w@wmmm=o v@echﬂ@#mﬂaqxn.
0

The last relation and (4.2.10) imply that (%, §) is 2 minimum boundary L? norm solution
to the exact control problem (4.1.1). Hence, T = ue and § = g, so that (4.2.7) and

(4.2.8) follows from (4.2.6) and (4.2.10). O

Remark 4.2.2. If the wave equation is linear, i.e., f = 0, then assumption (4.2.6) s
redundant and (4.2.8) is guaranteed to hold. Indeed, (4.2.11) implies the boundedness of
{luorllz2@@)} which in turn yields (4.2.6). The uniqueness of a solution for the linear

wave equation implies (4.2.6) holds for an arbitrary sequence {(on,Tn)}.
Theorem 4.2.3. Assume that

i) for every (a,0,7) € {0} x Ry x Ry there exists a solution (u,.,gs-) to the optimal

control problem (4.3.17);

it) the limit terminal conditions hold:

Ugr = — W in L*(0, X) and (Oigr)|t=r — Z in HH(0,X) as 0,7 — o0;
(4.2.12)

iii) the optimal solution (Uer, Zor) satisfies the weak limit conditions as 0,7 — oo:
gor ~E i LX0,T), upr =7 in L*(Q), (4.2.13)

and

Fluor) = £(T) tn LX(0, T3 [HA(Q) N EH(OQ)) (4.214)
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for some & € L*(0,T) and @ € L*Q).

Then (T,E) is o solution to the ezact boundary conirollability problem (4.1.1) with §
satisfying the minimum boundary L? norm property. Furthermore, if the solution to

(4.1.1) admits a unique 50lution (Uex, Bex), then
Eor — Eex in [L20,T)]? and ugr — uey in LHQ) as 0,7 — 0. (4.2.15)

Proof. (ugr,8or) satisfies (4.2.11). Passing to the limit in that equation as 0,7 — o0

and using relations (4.2.12), (4.2.13) and (4.2.14) we obtain:

/ / (Vg ~ Vpe) dz dt + / / f@) — Vivde dt + /T G(0,0)|e=x dt
- /;) G1.(8:0)|pmo di +/ Vi=rZ{(z)ds — /;} v|i=oty dz —/ W(z){(0w)|t=r dz

X
+/ (ud) o dz =0 Yw € C([0,T]; H* 1 HL(0, X)).
0

This implies that (@,g) is a solution to the exact boundary controllability problem

(4.1.1).
To prove that g satisfies the minimum boundary I? norm property, we proceeds

as follows. Let (ue,g) denotes a exact minimum boundary L? norm solution to the

controllability problem (4.1.1). Since (¢y-,8s-) is an optimal solution, we have that
o T 1
fzfiluar - W”%Z(o,x; + 5”315%7 - Z”fq—l(o,X) + iilgar”iﬁ(o,cr)
1
= J(uaTa go"r) < j(uexy gex) = 5”&3}(”%2(03’)

80 that

Heorllzzor < |82 -
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Passing to the limit in the last estimate we obtain

IEllrz07) < llgexlizao,) - (4.2.16)

Hence we conclude that (@, g) is & minimum boundary L? norm solution to the exact
boundary controllability problem (4.1.1).

Furthermore, if the exact controllability problem (4.1.1) admits a unique minimum
boundary L? norm solution (Uex, 8ex), then (T, €) = (Uex, Bex) and (4.2.15) follows from

assumption (4.2.13). O

Remark 4.2.4. If the wave equation is linear, i.e., f = 0, then assumptions i) and

(4.2.14) are redundant.

Remark 4.2.5. Assumptions #) and 1) hold if g,, and u,, converges pointwise as

o, T — 0.

Remark 4.2.6. A practical implication of Theorem 4.2.3 is thot one can prove the exact
controllability for semilinear wave equations by examining the behavior of ¢ sequence of
optimal solutions (recall that ezact controllability was proved only for some special classes
of semilinear wave equations.) If we have found o sequence of optimal control solutions
{(Uopry s Bonrm )} Where 0, T, — 00 and this sequence appears to satisfy the convergence
assumptions 1) and i), then we can confidently conclude that the underlying semilinear
wave equation 15 exactly controllable and the optimal solution (Ug,r,,Genr,) when n is

large provides a good approzimation to the minimum boundary L? norm ezact controller

(ueX’ gex) .
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4.3 An optimality system of equations and a continucus shoot-

ing method

Under suitable assumptions on f and through the use of Lagrange multiplier rules,

the optimal control problem

minimize (4.1.4) with respect to the control g subject to (4.1.3) (4.3.17)

may be converted into the following system of equations from which an optimal solution

may be determined:

Ugy = Uge + f(u) =V in (0,T) x (0, X),

Ue=o =90, Ulp=1=gr, w0 z)=1u(z), w0, z)=ulz),

b —Eor + W =—a(u~U)  in(0,T)x(0,X),

€laco=0,  Elam1 =0,

§(T,2) = —mA (w(T,a) ~ Z(z))  &(T.z) = —o(u(T,z) - W(z)),

gL = 0533[1:07 a'nd gr = fa:i:c:l »

where the elliptic operator A : H3(0,X) — H™'(0,X) is defined by Av = v, for all

v € H}(0,X). By eliminating g; and gg in the system we arrive at the optimality system

U — Uz + flw) =V  in (0,7) x (0, X},
U/xz::() = "&:iz:o ) u‘:c:l = fz(m:} )
u(03$> :UO("E)ﬂ ut(ﬂ,:c) = ul(x):
(4.3.18)
&~ &oo + [(w)E = —a(u—U) in (0,7) = (0, %),
51220 = O; E'x:l = 07

§T,z) =(w(T,z) - Z(z)),  &(T.z) = —o(u(l,z) - W(z)).
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Derivations and justifications of optimality systems are discussed in [5] for the linear
case and in [6] for the semilinear case.

The computational algorithm we propose in this chapter is a shooting method for
solving the optimality system of equations. The basic idea for a shooting method is
to convert the solution of a initial-terminal value problem into that of a purely initial
value problem (IVP); see, e.g., [1] for a discussion of shooting methods for systems of
ordinary differential equations. The IVP corresponding to the optimality system (4.3.18)

is described by

Uy — Uge + fu) =V in (0,7) x (0,X),

o _ - s(a):
ulog = E P u(0, z) = uo(z), u(0,2) = w(z); (4.3.19)

£ — Eue + [(W)E = ~alu - U) in (0,7} x (0, X),

floa=0, £0,7)=w(z), &0,3)=6(),
with unknown initial values w and 6. Then the goal is to choose w and 6 such that the
solution (u,£) of the IVP (4.3.19) satisfies the terminal conditions

Fi(w,0) = 008(T,z) + 7(we(T, z) — Z(x)) =0,
(4.3.20)

Fw, ) =T z)+ou(T,z) - W(z))=0.
A shooting method for sclving (4.3.18) can be described by the following iterations:

choose initial guesses w and 8;
for fter = 1,2, .-+ , max;ter
solve for (u,&) from the IVP (4.3.19)

update w and 8.

A criterion for updating (w,#) can be derived from the terminal conditions (4.3.20).

A method for solving the nonlinear system (4.3.20) (as a system for the unknowns w
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and §) will yield an updating formula,; for instance, the well-known Newton’s method

may be invoked.

choose initial guesses w and &;

for iter = 1,2, - - ,max;ter
solve for (u,£) from the IVP (4.3.19)
update w and §:
(W, 67) = (w,0) — [F"(w,8)) 7' F(w,6);

if F(w™™ 6%%) = 0, stop; otherwise, set (w,8) = (w"¥,H#2°%).

A discussion of Newton’s method for an infinite dimensional nonlinear system can
be found in many functional analysis textbooks, and for the suitable assumption con-

vergence of Newton iteration for the optimality system is guaranteed.

4.4 The discrete shooting method

The shooting method described in Section (4.3) must be implemented discretely. We
discretize the spatial interval [0,1] into 0 =2 < 21 < Z9 < -+ < zy < z73; = 1 with a
uniform spacing h = 1/(I + 1) and we divide the time horizon [0,7] into 0 =1; < 3 <
t3 < -+ < ty = T with a uniform time stepping ¢ = T/(N — 1). We use the explicit,

central difference scheme to approximate the initial value problem (4.3.19):

u§=(uD)i, ng(uo)i+5(u1>m 5@1:’%, §§=§}+59i> =120

Ut = T g+ 2(1 — A+ dudy
— 8 f () + 8V by ), i=1,2,--- 1,
(4.4.21)
M = T H L 201 - NE + A,
- 62f’(u:1)€? -+ 52@(“? - U(tn7$z))7 i = 17 27 T 7-[
n+l _ gndl entl  gntl

n+1 1 0 n+l S+l I
U T e e U PO b S S
0 h ? T+1 A
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where A = (§/h)? (we also use the convention that &} = £7,, = 0.) The gist of a discrete

shooting method is to regard the discrete terminal conditions

Y - N
Py = "L‘E—‘L— +o(u; ~Wi) =0,
; ; ) (4.4.22)
e -l el el —ul |
FQZ:E h; Las 1L7'( 5 '—ZZ)ZD, 231,2,"‘,_[
as a system of equations for the unknown initial condition wy, 01, ws, 8o, -+, Wy, Ops.

Similar to the continuous case, the discrete shooting method consists of the following

iterations:

choose discrete initial guesses {w;}_, and {8}/_;;
for tter = 1,2,--- ,maz;ter
solve for {(uf, &) Z{:ﬁif’ from the discrete IVP (4.4.21)

update {w;}{_; and {6;}L;.

The initial conditions {w;}{_; and {6;}._; are updated by Newton’s method applied

to the discrete nonlinear system (4.4.22). This requires the calculations of partial deriva-

tives. By denoting

q“~—q”’\w1, 1, W2, 02, "+, Wr, f)“'a K rg‘j“"réj(wla 1, W, g, :wIaQI):'b-é—>
w; i
3 OEr
7L %
oy = pi(wi, 01, wa, 02, -+ ywr, 0r) = Bw.’ i = Tiwi, B, we, 02, -+ wr, Br) = =,
iy 89_7

we obtain the following Newton’s iteration formula:

1) new new DEW
w7 91 ’ 792 )y

wh new , H?ew )T

(w? T Wy

= (w17&17w27923 tt 7w1’61)T - [Fl(w1791)w2:927 e ,LUI,QI)]—IF(Wj_,@],UJg,HQ, e awf791>
where the vector /' and Jacobian matrix J = F” are defined by

N _ ¢N-1 N _ 9N o eN N, N-1
: ; L — 26+ ¢ u .
Fri = it A +o(uff - W), Iy = == ;j; " 5
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N N-1 . 1
J Py Ty N J Ty Ty N
2121 T TG, 212 T T g i

N N, N
Pty — 205 T Pusny; T -
Joi 51 = b h'; ) + g{q]}f “Qf;-] 1):

N  _o9.N | N .
- Ti~15 ~ 275 t T o (Y L
21,25 = 72 5 Tis ij .

Moreover, by differentiating (4.4.21) with respect to w; and 8; we obtain the equations

for determining g;;, ri;, pi; and 7y

1 2 1 2
q'ij—O’ qz.j._._[)’ Tij—“ov Tij“O’
1 2 27.7 17 7 ) H
1 2 iy — = .
pij__(gij’ pi; = bij s Tii =0, Tij”"55’i17

qﬁ'njH = '_qinj_l +AGL g+ 201 = Ngij + Aqi
~62f,(u?)QZﬂ Za]:1v2) 7-[7

i = BT NP 2(1 = N+ My

(4.4.23)
_ 52fl(u;1)rn

i) ,j=1,2,---,1I,
P = = A A 200 = N)ply + Ay

+8%agqy — 8 whef — I (uh)al'ler,  4i=1,2,-,1;
’rg“ = —Ti’}"l + AT 21 = NS+ AT

+ o) = PIf (el = S @NE, =120
where ¢;; is the Chronecker delta. Thus, we have the following Newton’s-method-based
shooting algorithm:

Algorithm — Newton method based shooting algorithm with central finite difference

approximations of the optimality system

choose initial guesses w; and 6, i =1,2,--- ,I;
% set initial conditions for u and ¢
fori=0,2,---,7/+1

uf = (ug)i, uf = (ug); +6(ua)s,
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fort=1,2,---,1

&= w;, §F = & + 663

set initial conditions for gi;, 7y, 4, Tij

%o

for j=1,2,--+,1

fori=1,2,---,1I
Qz'lj =, Qizj =0, Tz'lj =0, 7’% =0,
p%j = 0, p?j =0, 7'11J = {, TiZj =0
R

% Newton iterations
form=1,2,---, M
%  solve for (u,§)
forn=2,3,--- ,N~—1

Ut =~ A+ 2(1 = Ml My — 6 f(uf)

N AL 4201 = NE + M — S

+8%a(ul — Ultn, z:));
% solve for g,71, p,

5.n+1 - —
1

-+ 52V(tn, ZL'Z'),
up )&

for j=1,2,---,1
forn=2,3,---,N—-1

fori=2,---,N~—-1

n+1

g;; = ~q{§“1 + ’\Q?-—l,j +2(1 ~ A)Q?j - /\Q?H,y’
—6% f'(uf)a,
r?j“ 7"7;14*)\7"2“ 201 = A)rds + My
— 82 f'(u} )Ty,
Pt = =gl Aoy + 201

1= A6 + Aoy
+6%cugy — 62 [ (up)| ot — S Lf" (ul) g )R,
n+1 __

ol = n1+)‘7 Yy 200 = A)Th A+ AT
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”}“(520/.7’% - 52[f (u )j/oaj 62{ P”( ) }52 ’

%  (we need to build into the algorithm the following:

n+1 TL+1 Ll

ntl P . Ty 7 T

doj = E 0 oj T PERRFES N T h
_ P

) = - ) — —
Qrv15 = 00 = Th = Pl = Theny = 0.)

% evaluate I’ and F'

fori=1,2,---,71

N N—1 TN N1

4 p-t. ii " Tig N
Joi1g5-1 = t— + 0%7 Jai-1,25 = L5t 40Ty
N
L PhonT 2Pij+f’<'+1)j ri N N-1
Jrigj-1 = b (g — i),
N .—ZTN—LTJY .
=1y SN Ty T (N __ N-1y,
Jai2; = 7 + 5 =1 )
solve Je = —F' by Gaussian eliminations;

fori=1,2,---,71

Wi = wi ok Cgiey, 07V = 0; + o
if max; [wPY — w;| 4 max; |67V — ;] < tol, stop;

otherwise, reset w; = wP*¥ and 6; =67V, ¢ =1,2,--- ,[;

As in the continuous case, we have the following convergence result for the shooting
algorithm which follows from standard convergence results for Newton’s method applied

to finite dimensional systems of nonlinear equations.

Remark 4.4.1. The algorithms we propose are well suited for implementations on o
parallel computing plaiform such as a massive cluster of processors. The shooting algo-
rithms of this chapter can be regarded as a generalization of their counterpart for systems
of ODE (see, e.g., [1].) There has been a substantial literature on the parallelization of
shooting methods for ODEs [2, 8, 4]; these results will be helpful in parallelizing the

shooting algorithms of this chapter.
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4.5 Computational experiments for controllability of the linear

wave equation

We will apply Algorithm 1 to the specialcaseof f =0,V =0, W =0,Z2=0,a=10
and o, 7 >> 1. In other words, we will approximate the null controilability problem for
the linear wave egquation by optimal control problems. We will test our algorithm with a
smooth example (i.e., the continuous minimum boundary L? norm controller g and the
corresponding state u are smooth) and with three generic examples. It was reported in
[14] that the discrete minimum boundary L? norm controllers converge strongly to the
continucus minimum boundary L? norm controller for the smooth example and converge
weakly in the generic case. The discrete optimal solutions found by Algorithm 1 will

exhibit similar behaviors.

4.5.1 An example with known smooth exact solution

A smooth exact solution to the minimum boundary L2-norm controliability prob-
lem was constructed in [14] by using Fourier series in a way similar to that used in
[10]. Suppose that Q@ = (0,7/4) x (0,1) and £ = (0,7/4) x {0,1}. Let ty(t,z) =
—+/2m cosm(t — 1) cos 2mz and

i
3

Ut z) = [Qﬂﬂ'(T —t)sin7(t — 2;—) 0\/'2‘sim 7t — T)} sinwz

4+/2 3 1 1
+ z 2{1 [—5—?—4 cosm(t — é—i) +sinpr(t — T)| sinpre .
p>3 and p odd P P ]
Then, set the initial conditions
0 Sy
up(z) = Yol0,2) + ¥1(0,z) and wuy(z) = —B%E(O,x} + 5¢t (0,z). (4.5.24)
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The computation of vy and u; involve the summation of infinite trigonometric series.
Figure 5.2 and Figure 4.2 provides plots of uo and w;, and the exact control and exact
solution respectively. Note that initial conditions vanish at the boundary, and due to
symmetry, we have gr{t) = u(¢,0) = u(t,1) = gr(f). i.e the controls at two sides of ¢
are the same. It is worth noting that ug is a Lipschitz continuous function but does not
belong to C'[0,1] and u; is a bounded function but does not belong to C°0,1]. For
the initial data (4.5.24), it can be shown that u(t,z) = o(t, z) + ¥1(¢, z) is the exact
solution having minimum boundary L%-norm of the controllability problem given by the
first three equations in (4.1.1) provided f = 0, V = 0. Let g be the corresponding

exact Dirichlet control given by restricting u(t,z) to the lateral sides L. ie g(t) =

(gL(t)v gR(t)) = (u<t’ 0)7 u(iv 1))7 and
gL(ﬁj = gr(t) = —V2r cosw(t - }i) . (4.5.25)

For future reference, note that | g||ze(s) = +/272(% + 5=) ~ 6.13882.

Figure 4.1 left - ug, right - u; given in (4.5.24). h = 1/256.

We apply our numerical method to this example. Computational experiments were
carried out for h = 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, and 1/1024 with A = 1 and
A = 7/8 respectively, so that the stability condition is satisfied.

The results of our computational experiments are summarized in Table 4.1, where ¢*
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Figure 4.2 left - exact control, right - exact u. with initial data (4.5.24).
h=1/32.

are the computed approximations of the exact solutions g. All norms were calculated by
linearly interpolating the nodal values of g". From this table, it seems that g" converges
to g in the L%(X)-norm at a rate of roughly 1. In order to visualize the convergence of
our method as h becomes smaller, in Figure 4.3 we provide plots of the exact solution u
and the corresponding computed discrete solutions u” for h = 1/256 with A = 1. Figure
4.4 and 4.5 are plots of the exact solution g and the corresponding computed discrete
solutions g", a given function W and approximate solutions «”, and a given function Z
and approximate solutions u} for A = 1/16, h = 1/32, A = 1/64, and h = 1/1024.

Table 4.1 Results of computational experiments for the minimum
L?(Z)-norm case for the examples with initial data (4.5.24).

A 1/16 | 1/32 | 1/64 | 1/128 | 1/256 | 1/512 | 1/1024

r”gh”p@) A=1 ]509339 60294 | 6.0825 | 6.1103 | 6.1244 | 6.1316 | 6.1352
g™l 2y || A=7/8| 59682 | 6.0468 | 6.0917 | 6.1454 | 6.1262 | 6.1325 | 6.1356

e
lo sz | ) = 6.93% | 3.35% | 1.63% | 0.79% | 0.37% | 0.18% | 0.09%
llgllz2m

%& A=7/8|7.53% | 4.26% | 2.88% | 10.15% | 0.35% | 0.17% | 0.08%

It seems that our method produces (pointwise) convergent approximations for both
A =1and A = 7/8 without the need for regularization. This should be contrasted with

other methods, e.g., that of [10], for which when A < 1, regularization was needed in
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Figure 4.3 left - approximate control u*, right - exact u with initial data
(4.5.24). h=1/256. A =1
order to obtain convergence. Also, the results obtained by our method behave very

similarly to those obtained in [14].

4.5.2 Generic examples with minimum L?(Z)-norm boundary control

In the example discussed in Section 4.5.1, the minimum L?(Z)-norm control is very
smooth. Using our methods, we obtained good approximations for this example without
the need for regularization. However, this is not the generic case. In general, even for
smooth initial data, the minimum L?(¥)-norm Dirichlet control for the controllability
problem (4.1.1) will not be smooth. In this section, we illustrate this point and also
examine the performance of our method for the generic case.

We choose @ = (0,1) x (0,1) in example I and @ = (0,7/4) x (0,1) in example II,

III, and consider three sets of C°°({}) initial data:

L wiz)=z(z—1) and w(z)=0
I we(z) = sin{rx) and  w(z) = wsin{rz) (4.5.26)
L uplz) =¢" and  w(z) = ze®

Note that the initial conditions (I), (II) vanish at the boundary and, that due to sym-

metry, we have that u(t,0) = u(¢, 1), i.e., the control at the two sides of ¢} are the same.
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For the initial conditions (IIT), we have that u{¢,0) # u(f, 1).

First We examine the case A == 1. In Figure 4.6, 4.8 and 4.10, we show the results for
the control for several grid sizes ranging from A = 1/16 to h = 1/1024. The (pointwise)
convergence of the approximations is evident. Note that for the initial conditions given
in (4.5.26), the minimum L?(Z)-norm controls are seemingly piecewise smooth, i.e., they
contain jump discontinuities. The pointwise convergence of the approximate control for
the case of A = 1 is probably a one-dimensional artifact; it is likely due to the fact that
both the space and time variables in the wave equation in one dimension can act as
time-like variables.

Further details about the computational results for the examples with initial con-
ditions (I) given in (4.5.26) with A\ = 4/5 are given in Table 4.2 and Figure 4.7. The
convergence in L2(Z) of the approximate minimum L?(T)-norm controls g" is evident
as is the convergence in L*(@) of the approximate solution u”; the rates of convergence

are seemingly first order.

Table 4.2 Results of computational experiments for the minimum
L*(X)-norm case for Examples I with initial data (4.5.26) and
for A=1,4/5.

[ A | 1/32 | 1/64 | 1/128 | 1/256 | 1/512 | 1/1024 |
G"l2y || A=1 ]0.12934 | 0.12908 | 0.12906 | 0.12907 | 0.12908 | 0.12909
"z || A=4/5] 0.15941 | 0.15269 | 0.14522 | 0.14216 | 0.13907 | 0.13622

Computational experiments were also carried out for A = 7/8 for several values of
the grid size ranging from h = 1/16 to A = 1/1024. The results are summarized in Table
4.3 and 4.4. In Figures 4.9 and 4.11, we respectively provide, for the two sets of initial

R ul for the two

conditions (II) and (III), plots of the computed discrete solution ¢*, u
different values of A and for different values of the grid size.
From Figures 4.9 and 4.11, we see that the approximate minimum L?(Z)-norm Dirich-

let controls obtained with values of A < 1 are highly oscillatory. In fact, the frequencies

of the oscillations increase with decreasing grid size. However, it seems that the ampli-



Table 4.3 Results of computational experiments for the minimum
L*(X)-norm case for Examples II with initial data (4.5.26) and
for A=1,7/8.

a1 1/16 | 1/32 [ 1/64 [ 1/128 | 1/256 [ 1/512 | 1/1024 |
[ lg*lzeey | A=1 | 0.6838 | 0.6388 | 0.6162 | 0.6049 | 0.5992 | 0.5963 | 0.5949
g™z | A=7/8]0.6734 | 0.6348 | 0.6138 | 0.6039 | 0.5988 | 0.5963 | 0.5949

Table 4.4 Results of computational experiments for the minimum
L*(Z)-norm case for for Examples 111 with initial data (4.5.26)
and for A =1,7/8.

no | 1/16 | 1/32 | 1/64 [ 1/128 | 1/256 | 1/512 [ 1/1024 ]
gMl2 | A=1 |1.4277 | 1.3187 | 1.2605 | 1.2303 | 1.2149 | 1.2071 | 1.2032
g"|z2my | A=7/8]1.3932 | 1.3007 | 1.2493 | 1.2252 | 1.2124 | 1.2065 | 1.2028

tudes of the oscillations do not increase as the grid size decreases. Furthermore, from
the results in Table 4.3 and 4.4, it seems that for A < 1, the approximate controls g”,
although oscillatory in nature and nonconvergent in a pointwise sense, converge in an
L%(X) sense.

The results of Table 4.2, 4.3, 4.4 and Figures 4.6, 4.7, 4.8, 4.9, 4.10, 4.11 indicate
that for the generic case of non-smooth minimum L%(X) controls and for general X < 1,
our method produces convergent (in L?(Q)) and L?*(T)) approximations without the need
of regulatization but the approximations are not in general convergent in a pointwise
sense. Of course, approximations that do not converge in a pointwise sense may be of

little practical use, even if they converge in a root mean square sense.

4.6 Computational experiments for controllability of semilin-
ear wave equations
We will again apply Algorithm 1 to the special case of V=0, W =0, Z2=0,a =0

and o, 7 >> 1. We will test our algorithm with generic examples. If nonlinear term f

satisfies a certain property such as asymptotically linear or superlinear, then the exact
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control problem of the system 4.1.1 can be solvable;see, e.g., [8, 23, 24]. In this section,
we examine the performance of our method for the asymptotically linear and superlinear
cases.

We choose @ = (0,3) x (0, 1) in example I, II, III, and consider three sets of nonlinear

term [

(4.6.27)

1L

Note that we choose 7' = 3 for existence of control; see, e.g., (23, 24]. (I) is an
example of the asymptotically linear case and (II) is one of the superlinear case. (III)
can be considered as either case. In general, we can not expect g, = g due to the
nonlinear terms. We test the case A = 1. The numerical approximations by Algorithm
1 is convergent in L, sense, that is, they have jump discontinuities as well. We will
illustrate those through the figures 4.12, 4.13, and 4.14. For the linear cases, the number
of iterations of the shooting methods is about 2 or 3, according to the tolerance and
the accuracy of the machines we used. However the nonlinear cases are different and we
need rﬁore iterations than the linear cases. We denote the number of iterations as cound.
It is contained in the tables 4.5, 4.6 and 4.7 with L?(X)-norm of controls g".

Table 4.5 Results of computational experiments for the minimum

L*(Z)-norm case for Examples I, II, III in (4.6.27) with initial
data I in (4.5.26) and for A = 1.

[T A 1/16 1/32 | 1/64 1/128 |
I | r2(x) | 0.08084810765 | 0.08038960736 | 0.08021218880 | 0.08013073451
count 17 16 16 17
I thlfp(z) 0.07346047350 | 0.07314351955 | 0.07307515741 | 0.07306230119
count 8 8 10 12
1 | lg"]] 12y | 0.07438728446 | 0.07404916115 | 0.07357863882 | 0.07396393744
count 6 5 5 5




Table 4.6 Resuits

of

fomi
et
«©w

computational experiments
P D

for

the minimum

L?(X)-norm case for Examples I, II, III in (4.6.27) with initial
data IT in (4.5.26) and for A = 1.

! h 1/16 { 1/32 1/64 | 1/128 ]
I | g"llr2xy | 0.45499490909 | 0.43856890841 | 0.43072624972 | 0.42688986194
count i2 15 16 14
0| 19"z | 0.45794379129 | 0.43786262977 | 0.42823496745 | 0.42350319979
count 12 12 12 17
I || [lg"]lz2s) | 045251184147 | 0.43223256110 | 0.42248163895 | 0.41769256787
count 6 6 6 6
Table 4.7 Results of computational experiments for the minimum

L?(Z)-norm case for Examples 1, I, III in (4.6.27) with initial
data III in (4.5.26) and for A = 1.

[ ” h 1/16 } 1/32 J 1/64 i 1/128 ]
I T lg"l r2(x) | 0.94846408635 | 0.86623499117 | 0.82305989083 | 0.80084943961
count 11 i1 11 11
RNl 2y | 0.99946692390 | 0.90706619363 | 0.85837779589 | 0.83325287647
count 13 16 18 20
I thﬂp(z) 0.95205362804 | 0.86225101645 | 0.81393537311 | 0.78872084130
count 6 6 6 6
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and target W, right - approximate u? and target Z with initial
data (4.5.24). h =1/16,1/32,1/64,1/1024 from top to bottom
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left - approximate control g%, middle - approximate u* and tar-
get W, right - approximate u? and target Z with initial data
(4.5.26-11). h = 1/16,1/32,1/64,1/1024 from top to bottom re-

spectively. A = 1.
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5 Shooting Methods for Numerical Solutions of Distributed
Optimal Control Problems Constrained by first order linear

hyperbolic equation

5.1 Distributed Optimal control problems for first order linear

hyperbolic equation

We will study numerical methods for optimal control and controllability problems
associated with first order linear hyperbolic equation. We are particularly interested in
investigating the relevancy and applicability of high performance computing (HPC) for
these problems.

As an prototype example of optimal control problems for first order linear hyperbolic

equation we consider the following distributed optimal control problem with a > 0:

Problem 5.1.1. Given U, W and fized time T, find a pair of the optimizer (4, f) such

that
,

U +au, = f{t,z), ((z)eQx{0,7)=0Q

¢ U(G,.’L’) = 9(2:)7 (511)

u(t,0) = h(t), z €l

TANIMAZITIG
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j(u,f)z%/;T/;zju~U[dedt+-§i/;§u(T,m)~W( dz—r;/ /1f|2dzdt

Here Q= (0,1) 45 a bounded domain in R, u is dubbed the state, and f is the distributed

control. Also, U is a target function.
The existence and uniqueness of this problem will be treated later on.

Problem 5.1.2. (Ezistence and Unigueness) For given f € LY(Q), w € L*(Q), z €

L*(0,T), there is the unique solution of the following,

,

ut+auz:f(ta$)1 (t,ﬂ?)EQ
fu0r)=w(z), 2eQ=(01) (5.1.2)

u(t,0) = z(t), te(0,7).

_ 8 8
Let L = 5;+az;.

Definition 5.1.3. Gien f € L(Q), w € L*(Q), z € L*(0,T), we say v € L*Q)
is o weak solution of (5.1.2) if [u(Lg)dzdt = — [, fodwdi — [, w(z)s(0,x)dz —
[T az(t)(t, 0) dt for all ¢ € HY(Q) with ¢(t,z) =0, ¢(t,1) = 0.

Lemma 5.1.4. For smooth initial and boundary data of (5.1.2), we can obtain the

explicit formula.

/t flas+z —at, s)ds+w(z —at) in G,
ult,z) = ¢ 70

g z 1 y T T (5-1.3)
/é —fly, s Ht- )yt - ) in Qs

where @1 = {(t,z) € Qlz > at}, @y = {(t,z) € G|z < at}.

Proof. Use the method of characteristics. 0



Lemma 5.1.5. for

u(T,z)=0, =z€(0,1) (5.1.4)

\

we hawve the following solution:

/T~t—f(as+(1—a:)~—a(T—t),s)ds in Q,
| Jo

= l-z
1, 1—z .
—~fly L+ (1 -t) = —=)dy  inQu
L Jo a a a

Proof. Use the previous lemma and change of variables, (¢,2) — (T'— 1,1~ z). O

Lemma 5.1.6. (A priori estimates) For smooth function u., let y. satisfy the following:

P

L*ye = Ue, m Q
¢ yJT,.’E) =0, z€ ((-}7 1) (5.1.6)

v(t,1)=0, te(0,T).

Then

” Ye ”L:’(é)s C “ Ue ”LQ(Q) ?

1
Il %e(2,0) llzen< - Il e l|z20) » (5.1.7)

H ye(va) “L"’(O,I)SH Ue “Lz(Q) :

Proof. Use the previous lemma.

Now let f., w., 2. such that f. — f, w. — w, zc — z in L? sense.



[
Ca3
iss

Consider the following equations:
Ly, = [, in ¢

ue(0,z) = w., z€(0,1) (5.1.8)

we(t,0) =2, te(0,T),

and ,

L*ye = U, in Q

¥ (t,1) =10, te(0,T).

N

Clearly the solutions of above two equations exist uniquely by previous lemmas.

Multiply equation (5.1.8) by y.. Then integrate both sides over ¢}, and so

(Luey ze)Lz(Q) = (fev Ze)L2(Q)
::>(ue, L*ZE)LZ(Q) 4 (ue, Zﬁ)Lz(g)!g -+ (uﬁ, CLZC)LQ(O’T)](% = (fe, Ze)L2(Q)

= (Ue, %e) 22(Q) = (We(2), 2:(7,0)) 2oy + (2e(1), 02(0, 1)) 220,y + (fer 2) 121

. e s s
=wwmmﬁ@mﬁm+ijﬂﬂ+@mmmwﬂuy@)<mm>

+Oﬂﬁmﬁﬂﬁ¥@)

= || ue H%?(Q)S o (H We ”%2(9) + | z sz’(o,zﬂ) +1 fe “2L2(Q))

Lemma 5.1.7. (A priori estimate ) Let u, satisfy (5.1.8). Then

I e 2= © (I we I3acey + 1 2 Wy + I fe Mooy



Proof. By the above argument. O
Note that as € — 0, w. = w, % — z,f. — [ in L?. So for any €, ¢; and €3,
“ We ”%Z(Q)SH w H%E(Q) +¢3,
I 2 aomy <l = 2y +eo (5.1.11)

| fe il%z(Q)SH f H%ﬂ(g) TEs

for small encugh €. Let €= maz{e;, eg, €5). Then

f| we ”izm) + || z ]%%Q(O,T) + 1 fe “%2(Q)_<_” w Hiz(g) + || 2 ”1252(0,21") + 1 f ”%2(Q) +3€.
Assume ¢ is sufficiently small enough. Then

It we ”i?(n) + || 2 ”%2(0,7“) + | fe “iZ(Q)S C (” w ”2152(9) + 1 2 ”?ﬁ(o,’r) +1 f II%Z(Q)) .

Therefore we have the following a priori estimate:

Lemma 5.1.8. ( A priori estimate ) Let u. satisfy (5.1.8). Then for small enough ¢,

[ ue H%2(Q)—<— C (“ w ”%Z(Q) + |l 2 H%z(o,:r) +1 f ”i%@)) -

Note that 4. can be found by (5.1.3).

Lemma 5.1.9. (Eristence of weak solution, u.) Any u which can be token from (5.1.3)

is a weak solution of (5.1.2).

|

Proof. Clearly the classical solution is also a weak solution.
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5.2 An optimality system of equations

Through the use of Lagrange multiplier rules, the optimal control problem (5.1.1)
may be converted into the following system of equations from which an optimal solution

may be determined:

U+ auy = —&, (t,z) € O x (0,T)
u(0,z) = g(z), z €l
u(t,0) = h(t), z €8
4 (5.2.12)
&+ al, = —alu—U), (t,z) € Q x(0,T)

ET,z) = Bu(T,z) - W(z)), z€Q

g(tvl)zov CUEQ

Next, we give a precise definition of an optimal solution, i.e. a minimizer of J3(u, f).
Let the admissibility set be defined by
Usa = {(u, f) € L*(Q))x L*(Q) such that (5.2.12) is satisfied and Jg(u, f) < oo }.

Then (4, f) is called an optimal solution if
Ts(d, [) < Talw, ),

for all (u, f) € Uyg .

Proposition 1. There exists a unique optimal solution (1, f) € Uyq for Problem (5.1.1).

Proof. (1){ Uniqueness )
Note that every strictly increasing convex function of a convex function is convex. There-

fore Uniqueness follows from the convexity of the functional and the admissibility set
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,and the linearity of the constraints.

(2)( Existence )

Clearly Uy 1s not empty(from Lemma). Let {(un, f,,)} be a minimizing sequence in Uy,
te.

T}E&jﬁ(”mfn) = inf jﬂ(u7f)

(uaf)’suad

Note that from Lemma we have the following priori estimate;

B lun(®)llz2@) < C {llgllz2 + [All2om) + I fall2y) -

By the definition of L4,4 and this a priori estimate, there exists a subsequence (un,, fr;)
such that
Un, — 4 weakly in L*Q),

fnj——\f weakly in L*(Q)

for some (@, f) € Upa
Now, by the process of passing to the limit, we have that (%, f) is a weak solation of

(2). Then the fact that the functional Js(-,-) is weakly lower semi-continuous implies

that
o, Tt ) = lim Tp(un,. fn,)
> Ja(t, f)
Hence
oL, Totw f) = Tp(a f),
so that (i, f) is an optimal solution. A -

Such control problems are classical ones in the control theory literature; see, e.g.,

[5] for the linear case and [6] for the nonlinear case regarding the existence of optimal
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solutions as well as the existence of a Lagrange multiplier £ satisfying the optimality
system of equations. However, numerical methods for finding discrete (e.g., finite element
and /or finite difference) solutions of the optimality system are largely limited to gradient
type methods which are sequential in nature and generally require many iterations for
convergence.The optimality system involves boundary conditions at { = 0 and £ =T and
thus cannot be solved by marching in time. Direct solutions of the discrete optimality
system, of course, are bound to be expensive computationally in 2 or 3 spatial dimensions
since the problem is {d + 1) dimensional (where d is the spatial dimensions.)

The computational algorithms we propose here are based on shooting methods for
two-point boundary value problems for ordinary differential equations (ODEs); see, e.g.,
[1, 2, 3, 4]. The algorithms we propose are well suited for implementations on a parallel

computing platform such as a massive cluster of cheap processors.

5.3 Computational Results

We will apply our shooting Algorithm 1 in the previous chapter with slight modifi-

cation to the special case of a = 1. We will experiment with two generic examples.

Example 5.3.1. (full domain control) T =1, Q =[0,1].

For given target functions,

W(z)=1, Ult,z)=1. (5.3.13)

g(z) = z{z — 1), h(t) = 0. (5.3.14)
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6 CONCLUSION

In the thesis, we discussed and successfully implemented shooting methods for solv-
ing optimal control problems constrained by linear wave equations, semilinear wave
equations, and linear conservation laws. The shooting algorithms for optimal control
problems were also utilized effectively to find approximate solutions to controllability
problems for these equations. Both distributed and boundary controls were treated. The
convergence of the algorithms were numerically demonstrated when the true solutions
are smooth. Weak convergence of the algorithms were also numerically demonstrated
when the true solutions were not smooth.

However, a host of issues still need be addressed in future work; these include other
control objectives, a thorough study of parallel implementations and a analysis of com-
puting complexity, the case of high spatial dimensions, rigorous numerical analysis, and

generalizations to control other types of equations. A list of concrete topics is as follows:

e Task A. Conirol problems with other functionals. Instead of minimizing functional

(4.1.4) we may consider the minimization of a more general functional

T
J(u,g) :%j{ /éK(u)dxdt+—gJ{z@l(u(T,x})dx

) T
+1/@2(ut(T,x))dx+1//Igizdxdt,
2 ja 2o Ja

where the terms involving X (u) and ®(u) model certain physical quantities to be

(6.0.1)

minimized. For instance, to track a target state U one may choose K(u) = |u —
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U}#/s for some s > 1; to stabilize a structure one may choose K {(u) = |u|* for some
s > 1; to attain a uniform displacement distribution one may choose K (1) = |Vu/?;

and to reach a desired target Ur at time T one may choose &(u(T)) = |u(T) - Uz |

Task B. Parallel implementations. Observe that the loop in j in Algorithm 1 may
be executed in parallel, say on I processors. The loops in n and i are comprised
of an explicit time marching scheme for solving a discrete initial value problem
and can therefore be performed on low cost processors; in addition, these loops
require the storage of only three vectors of dimension / containing the solutions
at three time levels (which are updated by time marching). We will implement
the algorithm on a cluster of processors to assess its practicality. We will also
experiment with ways to improve implementation efficiency when the number of
processors available is less than 7; this issue will be of particular importance in
two and three space dimensions and it is worthwhile to first explore ideas in the

case of one space dimension.

We also observe that the loop in ¢ is well suited for implementations on a vector
machine. The ideal computing platform for this algorithm is a network of vector

machines.

The analysis of computing complexity is of both theoretical and practical im-
portance. The computational time needed to find the solution to the optimality
system depend on the number of processors, the organization of the algorithm in
making use of all available processors, data communications, and initial guesses
(or the number of Newton iterations). We will analyze theoretically the computing
complexity and estimate the computing time for finding the optimal solution in

various mathematical, algorithmical, and computer architectural settings.

Task C. Higher spatial dimensions. We may carry out Tasks A and B in higher

space dimensions. An advantage of the shooting algorithms is their explicit, time
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marching solutions of initial value problems (the large number of such IVPs can be
solved in parallel.) A major shortcoming of the shooting algorithms arises from the
fact that the matrix in each Newton iteration is a full one, rendering the solution of
the corresponding linear system expensive. Computational costs in implementing
shooting algorithms in higher dimensions are formidable. Numerical solutions
of the underlying control problems in two dimensions pose a real computational

challenge and it is even more so in three dimensions.

Task D. Establishing theoretical convergence rates. In our experimental results, if
the wave equation and conservation law are linear (and so will be the optimality
system), then the algorithms converge in precisely one iteration. When a nonlin-
ear wave equation is considered, Newton’s methods require only a small number
of iterations for good initial guesses. We benchmarked the convergence of the
algorithms for various linear and nonlinear cases. We will attempt to rigorously
establish the convergence rates for those problems. We will also investigate meth-
ods for generating good initial guesses; e.g., for an optimal control problem with
a tracking type functional we may use the target state to help generate initial

guesses for the Lagrange multiplier £.

Task E. Equations of linear elasticity, nonlinear elasticity, and nonlinear conser-
vation laws. Wave equations given in this thesis are special cases of PDE systems
modelling elastic materials and structures. It is of significant practical interest
to study optimal control problems for linear and nonlinear elasticity. Nonlinear
conservation laws are more useful in applications than linear conservation laws.
We will attempt to extend the results of Tasks A-D into numerical solutions of
control problems for elasticity and nonlinear conservation laws. We are confident
about the successes of research into such problems in one space dimensicn, and we

hope to be able to make tangible progress in higher dimensions as well.
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