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ABSTRACT 

We consider shooting methods for computing approximate solutions of control prob­

lems constrained by linear or nonlinear hyperbolic partial differential equations. Op­

timal control problems and exact controllability problems are both studied, with the 

latter being approximated by the former with appropriate choices of parameters in the 

cost functional. The types of equations include linear wave equations, semilinear wave 

equations, and first order linear hyperbolic equations. The controls considered are either 

distributed in part of the time-space domain or of the Dirichlet type on the boundary. 

Each optimal control problem is reformulated as a system of equations that consists of 

an initial value problem (IVP) for the state equations and a terminal value problem for 

the adjoint equations. The optimality systems are regarded as a system of an IV? for 

the state equation and an IVP for the adjoint equations with unknown initial condi­

tions. Then the optimality system is solved by shooting methods, i.e. we attempt to 

End adjoint initial values such that the adjoint terminal conditions are met. The shoot­

ing methods are implemented iteratively and Newton's method is employed to update 

the adjoint initial values. The convergence of the algorithms are theoretically discussed 

and numerically verified. Computational experiments are performed extensively for a 

variety of settings: different types of constraint equations in 1-D or 2-D, distributed or 

boundary controls, optimal control or exact controllability. 



1 INTRODUCTION 

In this thesis we study numerical solutions of optimal control problems and exact 

controllability problems for linear and semilinear hyperbolic partial differential equations 

defined over the time interval [0, T] C [0, oo) and on a bounded, C* (or convex) spatial 

domain 0 C R\ d — 1 or 2 or 3. The optimal control problems for the controls 

being either distributed in part of the time-space domain or of the Dirichlet type on the 

boundary are reformulated as a system of equations (an optimality system) that consists 

of an initial value problem for the underlying (linear or semilinear) hyperbolic partial 

differential equations and a terminal value problem for the adjoint hyperbolic partial 

differential equations by applying Lagrange multipliers. We develop shooting algorithms 

to solve the optimality system as follows : The optimality systems are regarded as a 

system of an IVP for the state equation and an IVP for the adjoint equations with 

unknown initial conditions. Then the optimality system is solved by shooting methods, 

i.e. we attempt to End adjoint initial values such that the adjoint terminal conditions 

are met. The shooting methods are implemented iteratively and Newton's method is 

employed to update the adjoint initial values. 

Let target functions E 2,^(0), Z E 2,^(0) or E #^(0), (7 E Z^((0,T) x 0) and 

an initial condition w E 2/^(0), z E J^(O) or E #""XO) be given. Let / E Z^((0, T) x O) 

denote the distributed control and g E [Z^(0, T)]^ denote the boundary control. We wish 

to find a control / or g that drives the states it and % to W, ^ at time T and u to 

in (0, T) x 0. 

In Chapter 2 we consider an optimal control approach with distributed controls 
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defined on spatial domain 0 for solving the exact controllability problems for one and 

two-dimensional linear and semilinear wave equations defined on a time interval (0, T) 

and a bounded spatial domain 0. Precisely we consider the following optimal control 

problem: minimize the cost functional 

/) =% / /#(u)dx(& + ̂  / $i(tt(T,x))dx+ ^ / $2K(T,x))dx 

1 /-T /- ( ) 

^ Vo Vn 

(where a, /?, "y are positive constants) subject to the wave equation 

Aw+ $(%) = / in (0, T) x 0, (1.2) 

with the homogeneous boundary condition 

w|an = 0, ((,x)E(Q,T)x^O. (1.3) 

and the initial conditions 

%(0,x) = m(x), ut(0,x) = z(x) x E O. (1.4) 

We 6rst develop the shooting algorithms for ID and 2D distributed control problems, 

and then simulate with known smooth solution and generic examples both linear and 

semilinear cases in ID and 2D. 

In Chapter 3 we consider an optimal control approach with local distributed controls 

defined on spatial subdomain Oi(S 0) for solving the exact controllability problems for 

one-dimensional linear and semilinear wave equations defined on a time interval (0, T) 

and a bounded spatial domain O. Precisely we consider the following optimal control 
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problem: minimize the cost functional 

/) y y #(%)dx(& +  ̂  ^$i(u(T,x))dx +  ̂  ̂ $g(^(T,x))dx 

</o vOi M g\ 

= ^ / y  #(u)dxdt  + $i(u(T,x))dx +  ̂  y  $2(ik(T,x))dx 

subject to the wave equation 

%H-Aw + #(%) = xni/ in (0,T) x 0, (1.6) 

with the homogeneous boundary condition 

u|an = 0, (Z, x) e (0, T) x (X7. (1.7) 

and the initial conditions 

i/(0, x) = w(x), %4(0,x) = z(x) x € 0. (1.8) 

The shooting algorithms are applied to exact controllability problems with local 

distributed controls in the examples of known smooth solution and generic examples for 

both linear and semilinear cases. 

In Chapter 4 we consider an optimal boundary control approach for solving the 

exact boundary control problem for one-dimensional linear or semilinear wave equations 

defined on a time interval (0, T) and spatial interval (0, %). The exact boundary control 

problem we consider is to seek a boundary control g = (g&,ga) E L*(0,T) C [2,^(0, T)]^ 
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and a corresponding state % such that the following system of equations hold: 

% — + /(u) = y in Q = (0, T) x (0, %) 

— Wo and Wt|t=o ^ ^i in (0, X), 

%|t=T = Ty and = ^ in (0,%), 

'U|x=o — Q l  find — 5fl in (0, T1), 

(1.9) 

where ug and are given initial conditions defined on (0,X), IV E 2,^(0,%) acd Z E 

2f"^(0, %) are prescribed terminal conditions, V is a given function defined on (0,T) x 

(0, X), / is a given function de&ned on R, and g = (gi, g«) E [L^(0, T)]^ is the boundary 

control. In this chapter we attempt to solve the exact controllability problems by an 

optimal control approach. Precisely, we consider the following optimal control problem: 

minimize the cost functional 

JToKg) |u(T,z) -ty(z)|2d% + |%t(T,z) - Z(z)|" 

+ 2 y + Igml^) 

(1.10) 

subject to 

«w - + /(") = ^ in Q = (0, T) x (0,1) 

= "o and Wt|*=o = ^i in (0,1) (1-H) 

"|z=o = gz, and in (0, T). 

The shooting algorithms for solving the optimal control problem will be described for 

the slightly more general functional 

JT(",g) / |u - (7|*dzc%-+- ^ ^ |«(T, z) — PV (z) 1^ di 

+ 2 — Z(z)^ch; + - y (|gf,|^ + W«|^) 

(1.12) 
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where the term involving (u — Z7) rejects our desire to match the candidate state u 

with a given (7 in the entire domain Q. Our computational experiments of the proposed 

numerical methods will be performed exclusively for the case of a = 0. 

In Chapter 5 the linear optimal control problems we study are to minimize the cost 

functional 

^ Jo Vn ^ Vn ^ Vo Vn 

subject to first order linear hyperbolic equation 

Ut + m4c = /(a;,t), in (0,T) x O, (1.13) 

with the boundary condition 

u((, 0) = z(f), ^ € (0, T), (1.14) 

and the initial condition 

u(0, z) = w(T), x e 0. (1.15) 

We particularly test some examples of distributed optimal control problems with 

known smooth solution and generic initial and boundary data and with a > 0. 

Since this thesis covers several topics, the literature and new contributions of the 

thesis will be discussed in the context of each chapter. 
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2 Shooting Methods for Numerical Solutions of Distributed 

Optimal Control Problems Constrained by Linear and 

Nonlinear Wave Equations 

Numerical solutions of distributed optimal Dirichlet control problems for linear and 

semilinear wave equations are studied. The optimal control problem is reformulated as 

a system of equations (an optimality system) that consists of an initial value problem 

for the underlying (linear or semilinear) wave equation and a terminal value problem for 

the adjoint wave equation. The discretized optimality system is solved by a shooting 

method. The convergence properties of the numerical shooting method in the context 

of exact controllability are illustrated through computational experiments. 

2.1 Distributed optimal control problems for the wave equa­

tions 

We will study numerical methods for optimal control and controllability problems 

associated with the linear and nonlinear wave equations. We are particularly interested 

in investigating the relevancy and applicability of high performance computing (HPC) 

for these problems. 

As an prototype example of optimal control problems for the wave equations we 

consider the following distributed optimal control problem: 

choose a control / and a corresponding u such that the pair (/, if) minimizes the cost 
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functional 

^ / $i(w(T,x))dx+ ^ / 0z(^(T,x))dx 
Vn (2.1.1) 

subject to the wave equation 

w# — Aw 4- ^(w) — / in (0, r) x 

w|m = 0, w(0, x) = tu(x), wt(0, x) = z(x). 
(2.1.2) 

Here 0 is a bounded spatial domain in R^ (d = 1 or 2 or 3) with a boundary ^0; w is 

dubbed the state, and g is the distributed control. Also, Jf, # and ^ are mappings 

(for instance, we may choose (w) = (w— [/)^, $(w) = 0, ^(w) = w^ — w and $(w) = e", 

$i(w) = (w(T,x) - M^)^, = (%4(T,x) — Z)^, where [/, VK, Z is a target function.) 

Using Lagrange multiplier rules one Ends the following optimality system of equations 

that the optimal solution (/, w) must satisfy: 

w# — Aw + $(w) = / in (0, T) x O 

u|an = 0, w(0, x) = w;(x), w«(0, x) = z(x) ; 

&t-Af + [$%w)]\f=^K'(w)inQ 

(Ian = 0, ((T,x) = 2^(w«(T,x)), &(T,x) = -§^(w(T,x)) ; 

/ + ( = 0 in Q. 

This system may be simplified as 

w# - Aw + \&(w) = —( in (0, T) x (1 

w|an = 0, w(0, x) = w(x), w«(0,x) = z(x) ; 

&-Af + [$'(w)]% = ^'(w) in (0, T) x ^ 

(Ian = 0, f(r,x) = :^(w«(T,x)), &(T,x) - -^(w(T,x)). 

(2.1.3) 
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Such control problems are classical ones in the control theory literature; see, e.g., [5] 

for the linear case and [6] for the nonlinear case regarding the existence of optimal 

solutiong ag well as the existence of a Lagrange multiplier ( satisfying the optimality 

system of equations. However, numerical methods for Ending discrete (e.g., finite element 

and/or finite difference) solutions of the optimality system are largely limited to gradient 

type methods which are sequential in nature and generally require many iterations for 

convergence. The optimality system involves boundary conditions at f = 0 and t = T and 

thus cannot be solved by marching in time. Direct solutions of the discrete optimality 

system, of course, are bound to be expensive computationally in 2 or 3 spatial dimensions 

since the problem is (d 4-1) dimensional (where d is the spatial dimensions.) 

The computational algorithms we propose here are based on shooting methods for 

two-point boundary value problems for ordinary differential equations (ODEs); see, e.g., 

[1, 2, 3, 4]. The algorithms we propose are well suited for implementations on a parallel 

computing platform such as a massive cluster of cheap processors. 

2.2 The solution of the exact controllability problem as the 

limit of optimal control solutions 

The exact distributed control problem we consider is to seek a distributed control 

/ E Z^((0, T") x 0) and a corresponding state % such that the following system of 

equations hold: 

— Aw + $(w) = / in Q = (0, T) x O , 

w|t=o = tu and Wt|;=o = z in D. 
(2.2.4) 

w|t=r = W and Wt|t=r = Z in 0, 

u|an = 0 in (0, T). 

Under suitable assumptions on / and through the use of Lagrange multiplier rules, 
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the corresponding optimal control problem: 

minimize (2.1.1) with respect to the control / subject to (2.1.2). (2.2.5) 

In this section we establish the equivalence between the hmit of optimal solutiong and 

the minimum distributed norm exact controller. We will show that if a —» oo, 0 —» oo 

and "y —» oo, then the corresponding optimal solution (2^, /cy&y) converges weakly 

to the minimum distributed If norm solution of the exact distributed controllability 

problem (2.2.4). The same is also true in the discrete case. 

Theorem 2.2.1. Assume tAat the ezact distributed controMaWity proMem (2.2.4) ad­

mits a unigue minimum distributed Z,^ norm solution (i4«,/ex)- Psaume t/iat/or ever^ 

(a, /9,'y) E R+ x x &+ (wAere R+ is t/ie set o/ aZZ positive rea! numbers,) there exists 

o soWion («afy, A^) to the optima/ control pmWem (2.2.5). Then 

l|/a^lk:(Q) < ll/ex||f,2(Q) V(a, -y) E R+ x R+ x R+. (2.2.6) 

Assume, in addition, that /or a sequence {(a»,/)n,7n)} satis^/ing —» oo , —» oo 

and % —» oo, 

"anArr. H in ^(Q) and #(%„„&,-*,) ^(û) in ^(0, T; [^(fZ) n ̂ (0)]*). 

(2.2.7) 

Then 

/«»A,-r» Ax in ^(Q) and in Z^(Q) as n oo. (2.2.8) 

furthermore, i/ (2.2.7) Wds /or e^en/ sequence {(a^, /)„, %)} satisfying —» oo, —» 
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oo and "/n —» oo, then 

/avs-r —^ /ex ^(Q) and ^ w«% in 1^(Q) as a./S.'Y —» oo . (2.2.9) 

Prw/ Since (w^, A^r) is an optimal solution, we have that 

^||%a/37Cn - ̂ II^(Q) + ^ll"a^r(^) - + ^ll^a^(^) " 

4" g ll/a^Yll^(0) " (^a)3T) /o^f) — ^T^Wexi/ex) — 

so that (2.2.6) holds, 

^a^y|<=T —» in L^(0) and (#(Ua^)|t=r —> Z in 2f"^(0) as a,/3,'y —» oo. (2.2.10) 

Let {(an, /)», 7n)} be the sequence in (2.2.7). Estimate (2.2.6) implies that a subsequence 

of {(a„,0„,7T.)}, denoted by the same, satisfies 

A.A.7. 7 m I^(Q) and ||/||^(Q) < ||/«||^(Q). (2.2.11) 

(tfo^y, /o^y) satisEes the initial value problem in the weak form: 

nWaf/uK - %zz) dr d( + / / (u«^) - /a^]% dz df 
i Jo Jn 

+ /  (^w^) | t=T(k- /  t ; | (=ozdz -  /  (wa^9fw)| t=rda;  (2.2.12) 
Jn Vn Jn 

+ / M^)|t=odi = o v^E c^(m,r];^(n) n^#) 
Jn 

Passing to the limit in (2.2.12) as a,/3, "y —» oo and using relations (2.2.10) and (2.2.11) 
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we obtain: 

nû(ra - Vzz) da dt 4- / - /judzdt 
: Vo /n 

+ / f|t=rZ(z) dr - / r|t=ozdr - / lV(r)(^n)|(=r^ 
Vn Vn Vn 

+ /M«r) |^odi  = 0 VreC"([0,T];^(n)n^(n)) .  
Vn 

The last relation and (2.2.11) imply that (ù, /) is a minimum boundary norm solution 

to the exact control problem (2.2.4). Hence, û = %ex and / = /« so that (2.2.8) and 

(2.2.9) follows from (2.2.7) and (2.2.11). D 

Remark 2.2.2. the ware equation is /«near, i.e., $ = 0, then assumption (2.2.7) is 

redundant and (2.2.9) is guaranteed to ho/d. indeed, (2.2.12) imp/ies the boundedness o/ 

which in turn yie/ds (2.2.7). 7%e uniqueness o/ a so/ution /or the /inear 

wave equation imp/ies (2.2.7) ho/ds /br an arbitrary sequence {(a», Ai,"/»)}. 

Theorem 2.2.3. Assume that 

i) /or every (a, /3, -y) E R+ x R+ x R+ there exists a so/ution (u^, /a/3?) to the optima/ 

contno/ pmb/em (2.2.5); 

ii) the /imit termina/ conditions ho/d; 

+ W in Z^(O) and (c^uo-Jjwr —» Z in 2f""^(0) as a,/3, ^ oo ; 

(2.2.13) 

iii) the optima/ so/ution (u^, /a/^) satis/ies the weat /imit conditions as a,/3,"y —» oo; 

/a/3? -^ / m (Q), u»^Y û in 1^(Q), (2.2.14) 

and 

»(u«^) — *(û) in 2,^(0, T; [^(^) n ̂ (0)]*) (2.2.15) 
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/or some / E Z^(Q) ond il E -Z^(Q). 

Then (û, /) is a so/ution to the ezact boundan/ contm/ZaMitg/ pro6/em (2.2.4) with / 

satis/ying the minimum boundary/ norm property. furthermore, i/" the so/ution to 

(2.2.4) admits a unique so/ution (%*%, /««), then 

/a#T /« in Z^(Q) and u^ in 1^(Q) as a,/),'}-» oo. (2.2.16) 

/Yoo/ (Wa^, /a^y) satisGes (2.2.12). Passing to the limit in that equation as a, /), f —> oo 

and using relations (2.2.13), (2.2.14) and (2.2.15) we obtain: 

To prove that / satisfies the minimum boundary norm property, we proceeds 

as follows. Let (%«*, /«%) denotes a exact minimum boundary norm solution to the 

controllability problem (2.2.4). Since (%(%&?,/<%&?) is an optimal solution, we have that 

This implies that (u, /) is a solution to the exact boundary controllability problem 

(2.2.4). 

YII"<*87 " ̂ lll'M) + ^ll"a^ - ̂ llL(n) + ^ll%"o^-r - Z||#_i(n) 

+ 2 ll/a^Ylll^(Q) \T(Wa,^y,/a/3^) < &T(^ex,/ex) — 2 ll/8xlll^(Q) 

so that 

ll/a^llL(Q) — ll/«x|lla(Q) -
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Passing to the limit in the last estimate we obtain 

ll/llL(Q) ^ ll/ex|lL(Q) ' (2.2.17) 

Hence we conclude that (û, /) is a minimum boundary norm solution to the exact 

boundary controllability problem (2.2.4). 

Furthermore, if the exact controUabihty problem (2.2.4) admits a unique minimum 

boundary If norm solution (%«%, /«*), then (û,/) = (14», /«) and (2.2.16) follows from 

Remark 2.2.4. Tjfthe wave equation is Zinear, i.e., $ = 0, then assumptions i^ and 

(2.2.15) are redundant. 

Remark 2.2.5. Assumptions iij and iii) hoZd i/ /^ and u^ converges pointwise as 

a, "y —^ oo. 

Remark 2.2.6. A procticoZ implication o/ Theorem is that one can prove the 

ezact contnoZ/abiZity /or semiZinear wave equations by ezomining the behavior o/ a se­

quence o/ optimaZ soZutions (recoZZ that ezoct controZZobiZity was proved onZy /or some 

specioZ classes o/ semiZinear wave equations J j/ we have /ound a sequence o/ optimoZ 

contmZ soZutions {(^^&,%, /««A,?»)} where <1^, —» oo and this sequence appears 

to satis/y the convergence assumptions ii) and iiij, then we can con/identZy concZude 

that the underZying semiZinear wove equation is ezoctZy controZZobZe and the optimaZ so-

Zution , /a^A,^) when n is Zorge provides o good opprozimotion to the minimum 

boundary norm ezact controZZer (u«x, /e%)-

2.3 Shooting methods for ID control problems 

The basic idea for a shooting method is to convert the solution of a two-point bound­

ary value problem into that of an initial value problem (IVP). The IVP corresponding 

assumption (2.2.14). • 
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to the optimality system (4.3.18) is described by 

— ?4rz + ^(w) = —( in (0, T) x O, 

u|an = 0, u(0, z) = Wz), Wt(0,z) = z(z) ; 
(2.3.18) 

- ̂ '(«) in (0, T) x , 

(|an — 0; ((0; ̂ ) — ^(^), &(0, Zj = 0(z), 

with unknown initial values w and #. Then the goal is to choose w and ^ such that the 

solution (%,() of the IVP (4.3.19) satisfies the terminal conditions 

f(T,z) = ^MT,z)) and &(T,z) = -^(u(T,z)). (2.3.19) 

A shooting method for solving (4.3.18) consists of the following main steps: 

choose initial guesses w and 0; 

for m = 1,2, - - , M 

solve for (u, () from the IVP (4.3.18) 

update w and 0. 

A criterion for updating (w,^) can be derived from the terminal conditions (4.3.20). 

A method for solving the nonlinear system (4.3.20) (as a system for the unknowns w and 

0) will yield an updating formula and here we invoke the well-known Newton's method to 

do so. Also, a discrete version of the algorithm must be used in actual implementations. 

For the ease of exposition we describe in details a Newton's-method-based shooting 

algorithm with finite difference discretizations in one space dimension. Algorithms in 

higher dimensions and their implementations will be briefly discussed subsequently and 

will form an prominent part of the proposed research. 
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2.3.1 Algorithm for ID control problems 

In one dimension, we discretize the spatial interval [0, X] into 0 = Zo < z% < z% < 

%3 < - - < Zf+i = % with a uniform spacing h — %/(7 + 1) and we divide the time 

horizon [0, T] into 0 = < (% < <3 < - - < = T with a uniform time step length 

# = T/(# — 1). We use the central differencing scheme to approximate the initial value 

problem (4.3.19): 

= + = i = 1,2, - - - ,7; 

u"+1 — ~i'" 1 + + 2(1 — A) it" + Au"+1 

% = 1,2, - ,7, 

^+1 = + 2(1 - A)(? + A&i 

+ 6^K«) - % = 1,2, - - - , 7 ; 

(2.3.20) 

where A = (f/A)^ (we also use the convention that ug = (g = = 0.) The 

gists of a discrete shooting method are to regard the discrete terminal conditions 

A 2 2 4 (2.3.21) 

% — 1; 2, ' ' . , 7 . 

By denoting 

A?,? 
9% = ^1,^2, ,w/, g;) = = rj}(wi, 01,^2,^2, " ,W;,g;) = 

^ ^/) = = 7"jj(wi, ^1,W2,^2, ' ' ' ,W/,#f) = , 
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we may write Newton's iteration formula as 

= (wi, ^1, Wg, ^2, ' ' , ^1, W2, ^2, " ' ,^7, ^/)] ^F(W1,^1,W2, ^2, ' ' , ^/) 

where the vector F and Jacobian matrix J = f are defined by 

n N  _ „iV-l n  t N  _  — -V—1 a  

p" , hi-isj = iJ' /' + faWK,, 
N  N — 1  

J%,2j-i = pjj - ^—)(?<! - gj} » 

N  N - l  

J*.V = 4 -  -  r » - ' ) .  

Moreover, by differentiating (4.4.21) with respect to Wj and we obtain the equations 

for determining r^, and T^: 

4=0,  4=° '  4  = 0,  - - ,  o  r  
=  1 , 2 ,  -  -  -  ,  J  ;  

4  =  ,  4  "  ̂  '  4 = 0 ,  4  =  :  

9%^ - ^ + ^9{lij + 2(1 — A)g^ + 

-f%.-m'K)gG, %,; = i,2, .,7, 

rf' = + 2(1 - A)r5 + Ar^-

i , j  =  l , 2 ,  -

+ ̂ ^Ij + 2(1 - A)^ + 

+ -  ^ [ $ ' ( « r ) ] ^ r  -  ̂[ » " « ) 9 n T ,  w  =  i , 2 , . . . , / ;  

^ = - f + + 2 ( 1  -  % + A T & w  

+ %,; = 1,2,. . . ,/; 

(2.3.22) 
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where <5% is the Chronecker delta. Thus, we have the following Newton's-method-based 

shooting algorithm: 

Algorithm 1 - Newton method based shooting algorithm with Euler discretizations for 

distributed optimal control problems 

choose initial guesses w; and i = 1,2, - - ,7; 

% set initial conditions for u and ( 

for % = 1,2, - - ,/ 

= 1U;, 

f? = # + 

% set initial conditions for , r,j , ly, 

for; = 1,2, -- ,7 

for % = 1,2, - - ,7 

4 = 0, 4 = 0, r^- = 0, r?. = 0, 

fi, = 0, = 0, = 0, = 0; 

% Newton iterations 

for m = 1,2, - - , M 

% solve for (u, () 

for n = 2,3, - - , TV — 1 

+ + 2(1 - A),f + Aw^i -

^,+1 _ _^-i+^+2(i-A)e+A^+^§^K)-^^'K)]^; 

% solve for g, r, p, T 

for j = 1,2, - , / 

for n = 2,3, - - , TV — 1 

for i = 2, - - , TV — 1 

9^ = ^ + AgfLij + 2(1 - A)gg + Ag^_ij 
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<5%- -

- % + Ar^-

^ + ^PlLij + 2(1 - A)p^ + Ap^_ij 

+(P§x'K)g^ - <n*'«)]'p? - ]*e, 

^ = + ^-W + 2(l-A)Tn + AT^. 

+f §AT'(u?)r^ - f [^'(^)]*p? - ̂ [^(Orfj'e; 

% (we need to build into the algorithm the following: 

9o = fo = /# = 1# = 0, 

9?+i — ^"?+i — f?+i — Tf+i — 0.) 

% evaluate F and F" 

for i = 1,2, - - , / 

+ |$W), ^ = (T; 

for j = 1,2, - - ,7 

^2«-i,2j-i = ^ g" 1- §$"(u^)g^, 

^2.-1,2j = !- 2^"("D^ ' 

;%,2j_i = ^ - - ̂ ), 

Ja,% = - r%-i); 

solve Je = —F by Gaussian eliminations; 

for i = 1,2, -, 7 

W?^=Wj+C2i_l, 

^ = gi + eg,; 

if maxi lu*** — Wi| + max^ — %| < toi, stop; 

otherwise, reset w, = and 0, = * = 1,2, - - , f; 
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2.3.2 ID Computational Results 

We consider examples of the following types : Seek the pair (%, /) that minimizes 

the cost functional 

^ + ̂  /|w(T,%)-W(z)|^dx + ̂  / / 
^ Vo Vn ^ Vn ^ Vo Jn 

subject to the wave equation 

- Uz= + #(%) = / in (0, T) x f2, 
(2.3.23) 

w|an = 0, u(0,z) = g(z), ut(0,z) = h(z). 

Example 2.3.1. linear coae^ #(%) = 0, T = 1, 0 = [0,1] . 

For given torgef /wnctions, 

VK(r)=sin(27ri)sin(27rT), (7(f, %) = sin(27rz) sin(27rt), (2.3.24) 

if can be verged (Aaf (he ezacf optima! aoZufion u and a coTresportdrng lagnange 

muZtip/ier ( are jetermine^ by (4.3.18). 

%(f, r) — sin(27T%) sin(27rt), (((, z) = 0. (2.3.25) 
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t = 0.475 

t = 0.725 

0$OOOOOOOOO@OOOOOOOOO« 

0 < x <  1  

Figure 2.1 Optimal solution % and target IV, (7 for At = 1/40 and 
Az = 1/20 optimal solution u(t, z) — : target functions 
W(r), [/(t, r) o: exact optimal solution a — 1000 , = 1000 
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t = 0.225 

0 S X <  1  

- t = 0.725 

0 3 x <  1  

t = 0.475 | 

O S x S  1  

x 10 

-1 

t=1.000 

O O O O O O O O O O O 0 O O O O O O O O O O  

0 3 x 3  1  

Figure 2.2 Optimal solution % and target TV, for A< = 1/40 and 
Az — 1/20 -:optimal solution %((,%) —: target functions 

[/((, z) o: exact optimal solution a = 1000000 , 
= 1000000 
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Example 2.3.2. linear #(u) — 0, T = 1, 0 = [0,1]. 

For gwen <orge( /unc(*OTW, IV(z) = 1, [/(t, z) — 1. 

1.4 

0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

t = 0.490 t = 0.240 

0 3 x 3 1  0 3 x 3  1  

1.4 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 

t = 0.740 (=1.000 

0 3 x 3 1  0 3 x 3  1  

Figure 2.3 Optimal solution u and target [/ for AZ = 1/100 and 
Az = 1/50 optimal solution z) — : target functions 
ty(z), z) a = 1000000 , /? = 1000000 
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Example 2.3.3. ^non^inear caaej #(%) = — u, T = 1, D = [0,1]. For ginen target 

/uncfioTW, 

W (%) = sin 7r% cos ?rT 

[/((, z) = sin 7TZ cos Tit. 
(2.3.26) 

t = 0.240 

t = 0.490 

0 3 X 3  1  0 3 x 3  1  

t = 0.740 t=1.000 

0 3 X 3  1  0 3 X 3  1  

Figure 2.4 Optimal solution w and target W, (7 for At = 1/100 and 
Az = 1/50 optimal solution %(f,z) —: target functions 
TV(r), [/((, r) a = 10000 , ^ = 10000 
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Example 2.3.4. (nonZmeor cosej #(%) — e", T = 1, 0 = [0,1]. 

For gwen target /unctiozw, 

W (a;) = sin ?rz cos T 

Z7(t, z) = sin 7TZ cos t. 
(2.3.27) 

t = 0.240 t = 0.490 

0 3 x 3  1  0 3 x < 1  

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.8 

0.6 

0.4 

0.2 = 0.740 

Figure 2.5 Optimal solution if and target W, (7 for At = 1/100 and 
Az = 1/50 optimal solution %(t, z) — : target functions 
W(z), (7(t, z) a = 1000 , = 1000 
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Example 2.3.5. (%ne-(7(Wo% eguotton^ #(u) = sin-u, T = 1, H = [0,1]. 

For gzi;en taTget /unctioaa, 

TV (z) = sin TTz cos T 
(2.3.28) 

[/ (t, z) = sin ?rz cost. 

0.8 

0.6 

0.4 

0.2 = 0.490 

0.8 

0.6 

0.4 

0.2 t = 0.240 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

- t=1.000 0.1 

0 1 

0.8 

0.6 

0.4 

0.2 
t = 0.740 

Figure 2.6 Optimal solution it and target TV, [/ for At = 1/100 and 
Az = 1/50 optimal solution %(t, z) — : target functions 
TV(z), (7(t, z) a = 10000 , = 10000 
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2.4 Shooting methods in 2D control problems 

The basic idea for a shooting method in 2D is exactly the same as in ID. In two 

dimensional case, we replace by Au. Lagrange multiplier rules provide the same 

optimality system of equations as in the previous section except the replacement part. 

Thus the IVP corresponding to the optimality system (4.3.18) is described by 

it* — Au + #(%) = —€ in (0, T) x 0, 

%|en = 0, %(0, x) = w(x), %t(0, x) = z(x) ; 
« (2-4.29) 

& - Af + (u)]% - -#'(%) in (0, T) x n, 

= 0, ^(0, x) = w(x), (t(0, x) = g(x), 

with unknown initial values w and 0. Then the goal is to choose w and 0 such that the 

solution («, ̂ ) of the IVP (2.4.29) satisfies the terminal conditions 

f(T,x) = ^^(u,(T,x)) and 6(T,x) = -^$;(u(T,x)). (2.4.30) 

2.4.1 Algorithm for 2D control problems 

In two dimension, we discretize the spatial interval [0, A"], [0, Y] into 0 = a=o < %i < 

%2 < a:3 < " < = %, 0 = % < 3/i < ï/2 < 3/3 < " < 3/j+i = Y with a uniform 

spacing = %/(/+!), Ay = y/(J+l) respectively, and we divide the time horizon [0,T] 

into 0 = ti < (g < (3 < - < ^ = T with a uniform time step length if = T/(7V — 1). 

We use the central difference scheme to approximate the initial value problem (2.4.29): 

F o r  %  =  1 , 2 ,  - ,  T ,  j  =  1 , 2 ,  - ,  J ,  

^ i 

^ + 2(1 - Az - A^)u|j + A„(«%,_i + ̂ "j+l) 

- ^ q - m ( ^ . ) ,  ( 2 . 4 . 3 1 )  

= -q-' + Wu + ^u) + 2(1 - ̂  - A,)Q + A,(%_1 + %+i) 
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where A^ = (<^/^z)^, A% = (<^/^)^ (we also use the convention that = Q = 0 if i = 0 

or T 4- 1 or j = 0 or j = J + 1.) The gists of a discrete shooting method are to regard 

t h e  d i s c r e t e  t e r m i n a l  c o n d i t i o n s :  F o r  i  =  1 , 2 ,  -  , T ,  j  =  1 , 2 ,  -  ,  J ,  

+ §$!«) = 0, %). =^-^(-%-yS-) = 0, (2.4.32) 

where (%j)* is a reordering of the nodes with respect to %, F except boundary points. 

Let w(x) s {wi, wg, - - - , w/j.} = {w% i ,  Wg), -  '  -  , ,  a n d  0(x) = {^i, ' ' ' , } = 

{^n, %i, " , where 7J* = 7 J. By denoting 

QuJ -̂
' ' ' ,W;y.,g;j.) = ^ 

Qii 
= r^.).t(wi,gi,w2,g2, - - - ,W;j.,9fj.) = — , 

gem 

h ^1:^2,^2, ' ' ' 0/y«) — 

we may write Newton's iteration formula as 

( w r , ^ , w r , ^ r ,  -  , w ^ , ^ r  =  ( w i , ^ , ( J 2 , g 2 , - -

— [7^(^1,01,^2,%,'" , Wf j., 0/j. )] ^F(wi, 01,(^2,%, . . - , Wfj. ,0/j.) 

where the vector F and Jacobian matrix J = F' are deûned by 

CN tN-~l n N TV—-1 
F2{ijY-i = — h -$i(u£), F2(ij)« ~ ^ - -$s( v g 13—), 

J%li)<,2k-i - /'to); - 25^2( ' ^ ' )(9toS: - -
N N—1 

J2(U)\2k = T^). - ̂ 0^(_!2___v_)(r^. _ rg . 
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Moreover, by differentiating (2.4.31) with respect to and we obtain the equar 

tions for determining %,).&, 

9(U)'k = 0, = 0, r^.*, = 0, = 0, 

P(U).k = = %)'t » ^ J = 1,2, - - , J ; 

+ Az(9(ï_ij)"k + 9(î+ij)"t) + 2(1 - Ag -

+ \(^j-i)'t + 9(îj+i)»k) -

- W ( ^ . ) g ^ . * ,  t , j  =  i , 2 ,  . . , ; , ; ,  

?%)% = + 2(1 - Az -

+ \(^j_i).t + r^+i).J - (2.4.33) 

i,; = 1,2,..,/,J, 

+ ^(P(î-ij)'t + P(î+ij)'k) + 2(1 - A, - A*)p^).& 

+ ^-^'(w5)9(t;)«t " 

-6=[^K)^rq, W = 1,2,...,/,J; 

^ + 2(1 - A3 - A*)T(?,).t 

+ + ,&+i).k) + 

- %, j = 1,2, - - - , 7, J ; 

where ^ is the Chronecker delta. Thus, we have the following Newton's-method-based 

shooting algorithm: 

Algorithm 2 - Newton method based shooting algorithm with Euler discretizations for 

distributed optimal control problems 

choose initial guesses ^ and %, i, j = 1,2, - - , 7, J; 
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% set initiai conditions for u and ^ 

for = 1,2, - - - ,7, J 

^ "t" ) 

^ = ̂  + <5^; 

% set initial conditions for r^k, P(ij)'k, %)*k 

for A: = 1,2, - - - , (TJ)* 

for i = 1,2, - ,7 

for j = 1,2, -, J 

= 0, = 0, = 0; 

Pkt — T, kk 

% Newton iterations 

for m = 1,2, - , M 

% solve for (u, 

for n = 2,3, - , TV — 1 

u. "t = -«r1 ̂ j) + 2(1 - A, - A„)i 

% solve for g, r, p, T 

f o r  ;  =  1 , 2 ,  - ,  7  

for » = 2,3, - - , # — 1 

for * = 2, - - - , TV — 1 

9^'k — + ^(9(t-U)'k + 9(t+w)"k) 

+2(1 - - AJg^.*, + Ay(g^._iy^ + 9(lj+i)»k) 
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+2(1 - Az - A*)r^.% + \(r^j_i).*, + 

^z(P(Llj)"t + P(i+l j)'t) 

+2(1 - Ai - + /\,(P(<j-i)'k + P(îj+i)"k) 

+ Az(T(Lu).& 

+2(1 - Az - Ay)T^).^ + Ay(T^j_i).^ + 

% (we need to build into the algorithm the following: 

90 = rô = Po = ?o = 0, 

9?+i — r?+i = P/+i = ^j+i — 0.) 

% evaluate f and f 

for t, ; = 1,2, -- ,7, J 

-P2(ù)'-i = 1" §$'(w^), fz(v)* = ^: 

for j = 1,2, - ,7 
_7V _ nN — 1 

^2(û)'-l,2k-l = ^ "f 

^2(u)\2*-i = - &@2( ' )%% - 9^), 

- 4î;); 

solve Jc = —F by Gaussian eliminations; 

for *,j = 1,2, - - ,7, J 

W?-™ = W,j + C2(ij)*_i, 

gnew _ _|_ 

if max,, — w^| + max;, - %| < toi, stop; 

otherwise, reset and % = t,_y = 1,2, - - , 7, J; 
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2.4.2 2D computational results 

For the following examples, we provide several graphs with fixed time and y-coordinates 

in order to observe the computational results easily, so called snap-shot. For fixed time, 

we present the three graphs with y-coordinates 0.25, 0.5, and 0.75 from left to right. 

Example 2.4.1. flmeor c&sej #(%) = 0, T = 1, 0 = [0,1] x [0,1]. 

For given tonyet /imctwits, 

W (z, ;/) = z(z — 1)3/(3/ — 1) cos 1, (7(t, z, 3/) = z(z — 1)3/(3/ — 1) cos t. (2.4.34) 

0.06 0.06 0.06 

0.04 0.04 

JL 0.02 0.02 0.02 

0 0 1 

0.05 0.05 0.05 

-0.05 -0.05 -0.05 

0.03 0.03 0.03 

3 0.02 

jL 0.01 

0.02 0.02 

0.01 0.01 

1 

0.03 0.04 0.03 

8 0.02 

!!. 0.01 

0.02 
0.02 

0.01 

1 
0 & X S  1  

Figure 2.7 Optimal solution u and target TV, (7 for At = 1/36 , Az = 1/16 
and A3/ = 1/16 optimal solution %(t, z) —: target func­
tions W(z),(7(t,z) a = 100 , = 100 
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R 0.04 
O 
2 0.02 

0.06 

S 0.04 

0.02 

1 0 
0.03 

S 0.02 

0.01 

0.03 

g 0.02 

0.01 

0.06 

0.04 

0.02 

0.06 

0.04 

0.02 

0 

0.06 

0.04 

0.02 

0.06 

0.04 

0.02 

0.03 

0.02 

0.01 

0.04 

0.02 

0.03 

0.02 

0.01 

0 1 

0.03 

0.02 

0.01 

Figure 2.8 Optimal solution « and targets IV, [/ for At = 1/36 , Az = 1/16 
and A?/ = 1/16 optimal solution %(t, z) — : target func­
tions IV(z), [/(t, z) a = 10000 , = 10000 
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Example 2.4.2. (WoWinear coaej ^(u) = — w, T = 1, 0 = [0,1] x [0,1]. 

For given target /unctions, 

IV(z, y) = cos 7T sin ?rz sin %-% 
(2.4.35) 

(7 (t, z, i/) = cos ?rt sin vrz sin %%/. 

0.4 0.4 0.4 

d 0.2 0.2 0.2 

\ 
1 

0 0 7 

-0.5 -0.5 6 -0.5 

1 1 

d -0.5 -0.5 -0.5 

0 1 1 

0 0 

o 
o 
t- -0.5 -0.5 -0.5 

1 1 

Figure 2.9 Optimal solution u and target W, (7 for At = 1/36, Az = 1/16 
and A%/ = 1/16 optimal solution «(t, z) — : target func­
tions W(z), (7(t,z) a = 1000,/) = 1000 
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3 Shooting Methods for Numerical Solutions of Exact 

Controllability Problems Constrained by Linear and Nonlinear 

Wave Equations with Local Distributed Controls 

Numerical solutions of exact controllability problems for linear and semilinear wave 

equations with local distributed controls are studied. In chapter 1, we introduced the 

optimality system of equations and the corresponding algorithm for shooting method. 

For the nonhomogeneous term in the state equation, we multiply a characteristic func­

tion which will render the problems local controllability cases. The algorithm for these 

problems is a simple modification of the algorithm in chapter 2, and so we will skip the 

section of the algorithm. The convergence properties of the numerical shooting method 

in the context of exact controllability are illustrated through computational experiments. 

3.1 Exact controllability problems for the wave equations 

We will study numerical methods for optimal control and exact controllability prob­

lems with local distributed controls associated with the linear and nonlinear wave equa­

tions. As before, our concern is to investigate the relevancy and applicability of high 

performance computing (HPC) for these problems. 

As an prototype example of optimal control problems for the wave equations with 

local distributed controls, we consider the following distributed optimal control problem: 

choose a control / and a corresponding it such that the pair (/, it) minimizes the cost 
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functional 

j{(u) dxcK 4- ^ / $i(u(T,x)) dx 4- ^ /$2(%(T,x))dx 
^ Vn Vn 

^ / $i(u(T,x))dx + ̂  / $2(u«(r,x))dx 
^ Vn ^ vn 

/ vn 

(3.1.1) 

subject to the wave equation 

% % - A % 4 - # ( % )  =  x n i /  i n  ( 0 , T )  x  0 ,  

Man = 0, u(0, x) = ^(x), %(0, x) = z(x). 
(3.1.2) 

Here 0 is a bounded spatial domain in (d — 1 or 2 or 3) with a boundary and 

fli Ç fl; u is dubbed the state, and g is the distributed control. Also, $ and ^ are 

mappings (for instance, we may choose -ff(u) = (u — (7)^, ^(u) = 0, #(%) = ^ — u 

and ^(u) = sinu, $i(it) = (u(T,x) — W)^, 02W = (^(T,x) — Z)^, where (7, is 

a target function.) Using Lagrange multiplier rules one finds the following optimality 

system of equations that the optimal solution (/, u) must satisfy: 

- Au4- #(w) = xni/ in (0, T) x f) 

«Ian = 0, u(0,x) = tu(x), u«(0,x) = z(x) ; 

- Af 4-[*'(%)]"( =^(u) in Q 

^lan = 0, ((T,x) = ^0^(^(7,x)), &(T,x) = -^(%(T,x)) ; 

X O i /  +  X n i (  =  0 i n Q .  
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This system may be simplified as 

%% — Au + #(%) = —xni^ in (0,T) x 0 

u | a n  =  0 ,  u ( 0 , x )  =  w ( x ) ,  U f ( 0 , x )  =  z ( x ) ;  
(3-1.3) 

+ [*'(w)]*f = -7r'(u) in (0, T) x W 

= 0, ^(T,x) = ^(u,(T,x)), &(T,x) = -^$;(u(T,x)). 

Such control problems are classical ones in the control theory literature; see, e.g., [5] 

for the linear case and [6] for the nonlinear case regarding the existence of optimal 

solutions as well as the existence of a Lagrange multiplier f satisfying the optimality 

system of equations. However, numerical methods for finding discrete (e.g., finite element 

and/or finite difference) solutions of the optimality system are largely limited to gradient 

type methods which are sequential in nature and generally require many iterations for 

convergence. The optimality system involves boundary conditions at t = 0 and f = T and 

thus cannot be solved by marching in time. Direct solutions of the discrete optimality 

system, of course, are bound to be expensive computationally in 2 or 3 spatial dimensions 

since the problem is (d + 1) dimensional (where d is the spatial dimensions.) 

3.2 The solution of the exact local controllability problem as 

the limit of optimal control solutions 

The exact distributed local control problem we consider is to seek a distributed local 

control / € Z/^((0, T) x Oi) where Hi Ç 0 and a corresponding state u such that the 
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following system of equations hold: 

u % - A u  +  # ( u )  =  x n i /  i n  Q  =  ( 0 , T )  x  

u'\t~o — tu and Vj^ 11—o ™ ^ in ^ ? 
(3.2.4) 

u|t=T = W and itt|t=r = ^ in 0, 

u|@n = 0 in (0,T). 

Under suitable assumptions on / and through the use of Lagrange multiplier rules, 

the corresponding optimal local control problem: 

minimize (3.1.1) with respect to the control / subject to (3.1.2). (3.2.5) 

In this section we establish the equivalence between the limit of optimal solutions 

and the minimum distributed ^ norm exact local controller. We will show that if 

a —+ oo, /? —» oo and -y —» oo, then the corresponding optimal solution (u^, Ap-?) 

converges weakly to the minimum distributed .Z^ norm solution of the exact distributed 

local controllability problem (3.2.4). The same is also true in the discrete case. Let 

Qi = (0,r) x^i. 

Theorem 3.2.1. Assume t/iat tAe eract distributed ZocaZ controMabiiity pro Mem (3.2.4) 

admits a unigue minimum distributed norm solution (u*%, /«(). Assume tAat/or every 

(a,/3, ^y) E R+ x R+ x R+ (wAere R+ is t/ie set o/ a/Z positive reaf numbers,) t/iere ezists 

o solution (Ua^y, /a^y) to t/ie optimal ZocaZ control problem (3.2.5). T/ien 

< ||/ex||l,2(Qi) V (a, -y) E R+ x R+ x R+ . (3.2.6) 

Assume, in addition, t&at/or a sequence {((*%,/3n,1n)} satisfying 0:^—^00,^—^00 
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OTld ?» —» OO, 

iZ m ^(Q) and ^ ("«»&.?») ^(û) m 1^(0, T; [^(H) n #o(^)H -

(3.2.7) 

TAen 

/dnAiTn ^ /ex ^ (Ql) ^OnAiTn ^ ^ex ^ (Q) ^ ̂  ^ OO . (3.2.8) 

fbrtAermore, */ (3.2.7) Aofds /or every semence {(0^,/)»,^)} sa(ts/ytng oo, ^ » 

oo ond % —» oo, (Aen 

/o^y Ax m l^(Qi) and 14» ^(Q) os a,/3,? -* 00. (3.2.9) 

Proo/ Since («a/^,/a^y) is an optimal solution, we have that 

^ ||u<%g-y(T) — (7||z,2(Q) + ^||TW?(T) — VK||^(n) + ^||^a#r(T) — Z||*-i(n) 

1 1 
+ 2 ll/a^rlU2(<3i) ™ $(ua/3"it fafi j) ^ 3{uexi /ex) ™ ^ll/ex||l.2(<3i) 

so that (3.2.6) holds, 

%(#y|t=T W" in 1,^(0) and (^Ua^)|t=T Z in 7f"\H) as a,/),-} -+ oo. (3.2.10) 

Let {(o*, /S*, %)} be the sequence in (3.2.7). Estimate (3.2.6) implies that a subsequence 

of {(&n,/8»,7n)}, denoted by the same, satisfies 

7 in ^(Qi) and ||/||i,2(Qj < ||/«||i2(Qi). (3.2.11) 
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(u^, satisûes the initiai value problem in the weak form: 

/  /  -  v ^ ) d r d t - f -  /  /  
Vo Vn Vo Jn 

+ / (^Ua^y)|(=Tdz - / v|t=oZ(k - / («a^y%r)|(=Tck (3.2.12) 
Vn Vn Vn 

+ /W«t;)|(=o(ir = 0 VvEC^([0,T];^(0)n^(0)) 
Vn 

Passing to the limit in (3.2.12) as a, /), 7 -+ oo and using relations (3.2.10) and (3.2.11) 

we obtain: 

/ / ̂ (%-v^)da;dt + / / [^(u) - xni/]%dz(& 
Vo Vn Jo Vn 

+ / f|t=T^(a:)dT — / v|t=ozdz — / M/(z)(9tv)|(=Tdr 
Vn Vn Vn 

+ /M%)|w)dz = o VveC^([o,T];^(n)n^(n)). 
vn 

The last relation and (3.2.11) imply that (û, /) is a minimum boundary norm solution 

to the exact control problem (3.2.4). Hence, % = Ug% and / = /«% so that (3.2.8) and 

(3.2.9) follows from (3.2.7) and (3.2.11). O 

Remark 3.2.2. tAe wove equotion is Zineor, i.e., ^ = 0, t/ien assumption (3.2.7) is 

redundant and (3.2.9) is guaranteed to AoZd. indeed, (3.2.12) impZies t/ie boundedness 0/ 

{||ua^||z,3(Q)} wAicA in turn yieZds (3.2.7). TTie uniqueness 0/ a solution /or tAe Zineor 

wove equation impZies (3.2.7) AoZds /or on arbitra?"!/ sequence {(a*, Ai,7n)}-

Theorem 3.2.3. Assume t/iat 

i) /or even/ (a, /3,7) E R+ x R+ x R+ tkere exists a soZution (%<%»?, /«^) to tAe optimaZ 

contmZ probZem (3.2.5); 
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il) the Zimit terminaZ conditions AoZd; 

Ha^yl^T —» W in Z^(O) and (^Ua^y)|*=T Z in Z/"^(f2) as a,/),—» oo; 

(3.2.13) 

iii) tAe optima! soZution (u^, /a^y) satis/ies tAe weot Zimit conditions as a, /3, ^ ^ oo; 

/a^y -"7 in ^(Qi), «a#T û in 1^(Q), (3.2.14) 

and 

»(^) - »(û) in 1^(0, T; [#2(f)) n ^(H)]') (3.2.15) 

/or some / E ^(Qi) and « E Z,^(Q). 

TAen (û, /) is a soZution to tAe ezact boundary controZZabiZity probZem (3.2.4) witA / 

satis^/ing tAe minimum boundary Z,^ norm property. fbrtAermore, i/ tAe solution to 

(3.2.4) admits a unique solution (««%, /«%), tAen 

/o^y /ex in Z^(Qi) and u^ u« in Z^(Q) os a,» oo. (3.2.16) 

fmo/ (ug^y, /a^y) satisûes (3.2.12). Passing to the limit in that equation as a, /3, ^ » oo 

and using relations (3.2.13), (3.2.14) and (3.2.15) we obtain: 

- Un) dz dt + / A$(û) - /]udzdt 
i Vo Vn 

+ / f dr - / %|(=ozdz - / W(z)(^i;)|t=Tda; 
Vn vn Vn 

+ / Mti;)|(=odr = 0 V% E C^([0,T]; ̂ (^) n ZfJ(A)). 
Vn 

This implies that («, /) is a solution to the exact boundary controllability problem 

(3.2.4). 
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To prove that / satisfies the minimum boundary Z,^ norm property, we proceeds 

as follows. Let (%e%, /«%) denotes a exact minimum boundary norm solution to the 

controllability problem (3.2.4). Since (u^, /«^y) is an optimal solution, we have that 

+ 2 /o^y) ^ *T(^«X, Ax) = g 

so that 

||/o^y|lL(Qi) ^ ll/ex||iZ(Qi) -

Passing to the limit in the last estimate we obtain 

ll/llf,3(Qi) ^ ||/ex|lla(Qi) - (3.2.17) 

Hence we conclude that (û, /) is a minimum boundary Z,^ norm solution to the exact 

boundary controllability problem (3.2.4). 

Furthermore, if the exact controllability problem (3.2.4) admits a unique minimum 

boundary Zf norm solution (%e%,/<»), then (n, /) = (u*«, Ax) and (3.2.16) follows from 

assumption (3.2.14). O 

Remark 3.2.4. J/ tAe wore equation is linear, i.e., $ = 0, tAen assumptions i^ and 

(3.2.15) ane redundant. 

Remark 3.2.5. .Assumptions ii^ and iiij AoZd t/ and converges pointwise as 

oo. 

Remark 3.2.6. v4 pmcticaZ implication of TAeorem 5.5.5 is tAat one can prove tAe 

eract controZZaMity /or semiZinear wave equations examining tAe beAavior o/ a se­

quence o/ optimaZ soZutions (recaZZ tAat ezact controZWiZity was proved onZy /or some 

speciaZ cZasses o/ semiZinear wave equations J J/ we Aave /bund a sequence o/ optimaZ 
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contmZ solutions {(««„ &,-*., A,?.)} wAere an,/3n,7n —» oo and tAis sequence appears 

to satis/y tAe convergence assumptions iij and iii^, tAen we can con/identZy conclude 

tAat tAe underlying semiZinear wave equation is ezactZy controZZabZe and tAe optimaZ so­

Zution /a„&,7„) wAen n is Zarge pmuides a good approximation to tAe minimum 

boundary norm ezact controZZer (1^, A%)-

3.3 Computational Results 

We consider examples of the following types : Seek the pair (u, /) that minimizes 

subject to the wave equation 

= Xn./ in (0,T) x A, 

«Ian = 0 (3.3.19) 

u(0, z) = g(z), ut(0, z) = A(z) 

where 0% Ç 0. 

3.3.1 Exact controllability problems with linear cases 

Example 3.3.1. (/WZ domain contmZ) $(u) = 0, T = 1, D = [0,1] . 

fbr given target /unctions, 

W(z) = 0, Z(z) = 27rsin(27rz) 

(7(t, z) = sin(27rz) sin(2?rt). 
(3.3.20) 



43 

(5=y=1Q P=V=100Q 

V ' ' ' 

.  ̂x -

/" $=•*=100 

P=T=1 

05x21 

Figure 3.1 Optimal solution % and target W for At = 1/80 and Az = 1/40 
-, x: optimal solution z) — : target function W(z) 

a = O,j0 = 'Y=l, ' , 1000 

9 

|̂ ] 
&=y=10 

-9' — ' ' 
0 0.5 1 

0 < x <  1  

Figure 3.2 Optimal solution and target Z for At — 1/80 and Az = 1/40 
-, x: optimal solution %*(T, z) — : target function Z(z) 

ci! = 0,/? = 'y=l,-- - , 100 



44 

0 £ X < 1  

Figure 3.3 Optimal solution u and target IV for At = 1/80 and Az =1/40 
optimal solution u(T, z) — : target function Ty(z) 

a = 0 , = 'y = 1000000 

0.5 
0 < x < 1 

Figure 3.4 Optimal solution and target Z for At = 1/80 and Az = 
optimal solution 14(T, z) —: target function Z(z) 

a = 0 = 1000000 

1/40 
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0 

0.5 

0 
0.5 

Figure 3.5 Optimal solution % for At =1/80 and Az = 1/40 
—: optimal solution %(t, z) 
a  =  0  , / )  =  ?  =  1 0 0 0 0 0 0  

Figure 3.6 Optimal solution w and target IV for At = 1/400 and 
Ar = 1/400 
optimal solution a;) — : target function W(z) 

a = 0 , ^ = -y = 1000000 
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0<x<1 

Figure 3.7 Optimal solution and target Z for At = 1/400 and 
Az = 1/400 
optimal solution z) — : target function Z(z) 

a = 0 , ^ = = 1000000 

0.5 

Figure 3.8 Optimal solution u for At = 1/400 and Az = 1/400 
—: optimal solution u(t, z) 
a = 0 , /3 = ^ = 1000000 
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Example 3.3.2. (Imear cage and kxxzf domain control ^(u) = 0, T = 1, O = [0,1], 

= [0,0.1] U [0.9,1] . 

Suppose we kane tAe game target /unctions as (3.3.20). 

0 3 X S 1  

Figure 3.9 Optimal solution u for At = 1/80 and Az = 1/40 
optimal solution u(T, z) — : target function W(z) 

ct = 0 , /? = 7 = 1 
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-8 

0 0.5 1 
02X51 

Figure 3.10 Optimal solution u for At = 1/80 and Ai = 1/40 
-, X: optimal solution u*(r, z) — : target function Z(z) 

a = 0 , = 7 = 100,1000 

0.5 

0 

°'50 (X5 1 
0 < x < 1  

Figure 3.11 Optimal solution « for At — 1/80 and Ai = 1/40 
optimal solution u(T, z) — : target function IV (z) 

a = 0 , = -y = 1000000 
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53 

/ \ 
/ \ 

/ 

/ / \ 
\ / 
\ / 
^ / 

0 < x < 1  

Figure 3.12 Optimal solution % for At = 1/80 and Az = 1/40 
optimal solution z) — : target function Z(z) 

a = 0 , = 7 = 1000000 

0.5 

0.5 

0 < X £  1  

Figure 3.13 Optimal solution % for At = 1/80 and Az = 
optimal solution u(t, z) 

a = 0 , = 7 = 1000000 

1/40 
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Example 3.3.3. (^knear cose ond ZocaZ domain confm/^ ^(12) = 0, T = 1, 0 = [0,1], 

Oi = [0.45,0.55] . 

Suppose we Aare tAe same target /iinctiona as (3.3.20). 

0 3 x 3 1  

Figure 3.14 Optimal solution % for At = 1/80 and Az = 1/40 
optimal solution %(T, z) — : target function IV (1) 

a = 0 , /) = 7 = 1000000 
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-S1 : 
0 0.5 1 

0 S x <  1  

Figure 3.15 Optimal solution « for At = 1/80 and Ai = 1/40 
optimal solution i) — : target function Z(z) 

a = 0 , = 7 = 1000000 

05Î51 

Figure 3.16 Optimal solution w for At = 1/80 and Ai = 
optimal solution u(t, i) 

a = 0 , = -y = 1000000 

1/40 
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Example 3.3.4. (linear cage and ZocaZ domain confro^ $(u) = 0, T = 2, 0 = [0, 1], 

Oi = [0.45,0.55] . 

Suppose we Aave the same target /unctions as (3.3.20). 

0 3 x 3 1  

Figure 3.17 Optimal solution u for At = 1/80 and Az = 1/40 
optimal solution u(T, z) — : target function TV(%) 

a = 0 , /) = 7 = 1000000 
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0 < x < 1 

Figure 3.18 Optimal solution « for At = 1/80 and Ai = 1/40 
optimal solution %(T, r) — : target function Z(%) 

a = 0 , = 7 = 1000000 

Figure 3.19 Optimal solution u for At = 1/80 and Az = 1/40 
optimal solution n(t, z) 

a = 0 , ^ = -y = 1000000 
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Example 3.3.5. (%near caae and ZocaZ domom contm/^ ^(u) = 0, T = 1, 0 = [0,1], 

Oi = [0.495,0.505] . 

Suppose we hawe t/ie same tanyet/unctiona aa (3.3.20). 

0 3 x < 1  

Figure 3.20 Optimal solution % for At = 1/400 and Az = 1/400 
optimal solution %(T, z) —: target function W(z) 

a = 0 , /) = 7 = 1000000 
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0 < x <  1  

Figure 3.21 Optimal solution « for At = 1/400 and Ar = 1/400 
optimal solution z) —: target function ^(z) 

a = 0 , /) = 7 = 1000000 

1-5 —i 

0.5 

0  <  x  <  1  

Figure 3.22 Optimal solution it for At = 1/400 and Ar = 
optimal solution it(t, %) 

a = 0,^ = -y = 1000000 

1/400 
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3.3.2 Exact controllability problems with nonlinear cages 

Example 3.3.6. (/Wf domain control #(u) = sin T = 2, 0 = 0% = [0,1] . 

fbr given target /unctions, 

TV(z) = sin(Trz) cos(T), Z(z) = — sin(Trz) sin(T), 

[/(t, z) = sin('Trz) cos(t). 
(3.3.21) 

-0.45 

B=p10 

B=v=100 

B=y=1000 

B=y=10000 

0 & x ^  1  

Figure 3.23 Optimal solution u for At = 1/80 and Az = 1/40 
-, x: optimal solution %(T,z) — : target function W(z) 

a = 0,/) = 7=l,-', 10000 
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(3=7=10 

(3=7=100 
t=2 

0 1 

0< " X, 

\x = J3~7=1 b yf 

\ X " ' X / 
\ X X / 
\ X X / 

\x (3=7=10 x/ 

\ ̂ ^ / 
\ X ^x / 

Figure 3.24 Optimal solution « for At = 1/80 and Az = 1/40 
-, x: optimal solution U;(T,%) — : target function %(z) 

« = 0,^ = 7 = 1,- - , 100 
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0 < X <  1  

Figure 3.25 Optimal solution u for At = 1/80 and Az = 1/40 
optima] solution u(T, z) — : target functions IV(z) 

a = 0 , = 7 = 1000000 

i=2 

Figure 3.26 Optimal solution u for At = 1/80 and Az = 1/40 
optimal solution u(T, z) —: target functions TV(z) 

« = 0,^ = 7 = 1000000 
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Figure 3.27 Optimal solution u for At = 1/80 and Az 
—: optimal solution %(t, z) 
a = 0, = 7 = 1000000 

Figure 3.28 Optimal solution u for At = 1/80 and Az 
—: target function C/(t,z) 
a = 0, /? = 7 = 1000000 



Example 3.3.7. (?oca! domain contnoZ) #(%) = sinu, T = 2, ^ = [0,1], Hi = [0,0.1] U 

[0.9,1] . 

Suppose we Aaue tAe same ta/get /unctions as (3.3.21). 

p=y=100 

t=2 

-0.45 

Figure 3.29 Optimal solution u for At = 1/80 and Az = 1/40 
-, x: optimal solution u(T,%) — : target functions IV(z) 

a = 0,/3 = "y = l,-' - , 100000 
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t=2 

0 1 

Figure 3.30 Optimal solution it for At = 1/80 and Az = 1/40 
-, x: optimal solution z) — : target functions Z(z) 

CK = 0 , = 7 = 1, - - - , 10000 
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0 

0.5 
0 < x < 1 

Figure 3.31 Optimal solution u for At = 1/80 and Az = 1/40 
optimal solution u(T,z) — : target functions IV(z) 

a = 0 , /) = 7 = 1000000 

! î=2 

-0.45 

Figure 3.32 Optimal solution u for At = 1/80 and Az = 1/40 
optimal solution %(T, z) — : target functions Z(z) 

a = 0 , = 7 = 1000000 
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0-4 

-0.5 0.5 

0 S t S 2  

Figure 3.33 Optimal solution it for At = 1/80 and Ar = 1/40 
—: optimal solution u(t, z) 
a = 0 , /? = 7 = 1000000 
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Example 3.3.8. (/WZ cZomom control $(u) = %ln^(^ + 1), T = 2, 0 = 0% = [0,1] . 

Suppose tue Aoue t/ie some torget /«nctions os (3.3.21). 

! t=2 

-0.45 
0 1 

Figure 3.34 Optimal solution % for At = 1/80 and Az = 1/40 
-, x: optimal solution %(T,z) — : target functions W(z) 

a = 0 , = 7 = 1, - - - , 10000 
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t=2 

j( - P=f=1 

VX » B X 

\ X e * X / 
\ x  •  .  .  "  x /  

\ X X / 

\ x x y 
\x p=y=10 x/ 

Figure 3.35 Optimal solution % for At = 1/80 and Az = 1/40 
-, x: optimal solution %t(T,%) — : target functions 

a = 0 , /? = -y = 1,... , 100 
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0  <  x  <  1  

Figure 3.36 Optimal solution u for At = 1/80 and Az = 1/40 
optimal solution «(T, z) — : target functions W(z) 

a = 0 , = -y = 1000000 

0 0.5 1 

Figure 3.37 Optimal solution % for At = 1/80 and Az = 1/40 
optimal solution %(T, z) — : target functions W(z) 

a = 0 , = "y = 1000000 
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0 S X S 1  

0 < t g 2  

Figure 3.38 Optimal solution u for At = 1/80 and Az = 1/40 
—: optimal solution z) 
a = 0 , /? = "y = 1000000 



68 

Example 3.3.9. ^(ocaZ domain control #(u) = uln^(u^ -i- 1), T = 2, 0 = [0,1], 0% = 

[0,0.1] U [0.9,1] . 

Suppose we Zioue t/*e same target/imctions as (3.3.21). 

t=2 

-0.45 

Figure 3.39 Optimal solution u for At = 1/80 and Az = 1/40 
-, x: optimal solution u(T,z) — : target functions W(z) 

a = 0,/) = 'y = l, - --, 100000 
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o 

t=2 

1 
0 1 

Figure 3.40 Optimal solution « for At =1/80 and Az = 1/40 
-, x: optimal solution — : target functions Z(z) 

a  =  0 , / 3  =  7  =  l ,  —  -  ,  1 0 0 0 0  
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Figure 3.41 Optimal solution % for AZ = 1/80 and Ar = 1/40 
optimal solution %(T,z) — : target functions W(z) 

« = 0 , /) = ^ = 1000000 

0 
t=2 

0.5 

Figure 3.42 Optimal solution u for A( = 1/80 and Az = 1/40 
optimal solution ««(T, %) —: target functions Z(z) 

a = 0 , = ^ = 1000000 
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0.3-, 

-0.5 0.5 

0 S t S 2  

Figure 3.43 Optimal solution u for At = 1/80 and Ai = 1/40 
—: optimal solution %(f, z) 
a — 0 , ^ = 1000000 
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Example 3.3.10. jomam control $(u) = — u, T = 2, = [0,1] . 

For gifen (on^et /uncfiona, 

W(i) = sin(27ri) cos(T), 

Z(z) = — sin(2'7r%)siii(r), (3.3.22) 

[/((,%) = sm(27rr) cos(f). 

t=2 

0.5 0 1 
O ^ x g  1  

Figure 3.44 Optimal solution % for A( = 1/80 and Ai = 1/40 
-, x: optimal solution %(T,z) — : target functions W(z) 

a = 0,/) = 'y = l,'-, 10000 
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1 

t=2 

0 

1=7=100 

1 
0 

Figure 3.45 Optimal solution « for At = 1/80 and Arc = 1/40 
-, x: optimal solution %t(T,z) — : target functions Z(z) 

a = 0 , ^9 = T = 1, - - - , 100 
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[w] 

z " xi \ / 

y 
0 < x < 1  

Figure 3.46 Optimal solution % for At = 1/80 and Az = 1/40 
optimal solution u(T, — : target functions 

a = 0 , = 1000000 

/ 
\ 

\ 
\ 

v J 
X 

03XS1 

Figure 3.47 Optimal solution u for At = 1/80 and Az = 1/40 
optimal solution u(T, z) — : target functions 

a = 0 , = "y = 1000000 
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o4 

0.5 

0StS2  

Figure 3.48 Optimal solution « for At = 1/80 and A% = 
—: optimal solution u((, z) 
a = 0 , ^9 = '"y = 1000000 

1/40 
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Example 3.3.11. (kcof domain contno^ ^(w) = — u, T = 2, ^ = [0,1], = 

[0,0.1] U [0.9,1] . 

Aippoae we Aoue tAe game target /ttnctioTW 03 (3.3.22). 

1.1 

t=2 

0: 

1.1 
0 

Figure 3.49 Optimal solution w for At = 1/80 and Az = 1/40 
- ,  X: optimal solution %(T,z) —: target functions IV(z) 

a = 0,/3 = T = l,- - ,10000 
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1=7=1 

0=7=100 

-1.5 

Figure 3.50 Optimal solution it for At = 1/80 and Az = 1/40 
-, X: optimal solution 14 (T,z) — : target functions Z(z) 

a = 0 ,/) = '/ = !,- - , 100 
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\ 

/ 

\ 
\ 

/ 
\ 

X 

\ 

\ / 
0 £ x < 1  

Figure 3.51 Optimal solution it for At = 1/80 and Az = 1/40 
optimal solution w(T, z) — : target functions IV(z) 

a = 0 , = 'y = 1000000 

[Ml 
/ \ 
/ \ 

k / 
\ / 
\ / 

V y 
O S X S 1  

Figure 3.52 Optimal solution u for At = 1/80 and Az = 1/40 
optimal solution %(T, z) — : target functions Z(z) 

a = 0 , /) = -y = 1000000 
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1 ! 

04 

0.5 

0StS2  

Figure 3.53 Optimal solution it for At = 1/80 and Az = 1/40 
—: optimal solution z) 
a = 0 , /) = -y = 1000000 
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Example 3.3.12. (fomain comtroZ) ^(u) = e", T = 2, H = 0% = [0,1] . 

f b r  g t fen  t a rge t  /umct iona ,  

PF(z) = 8in(?rz) cos(T), 

Z(z) = — 8in(?rz) sin(T), (3.3.23) 

[/(t, z) = 8in(?rz) cos(t). 

t=2 

0.5 

-0.5 

Figure 3.54 Optimal solution u for At = 1/80 and Az = 1/40 
-, x: optimal solution %(T, z) — : target functions TV(z) 

« = 0,^ = 7 = 1, - ,10000 
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t=2 

-1 

Figure 3.55 Optimal solution % for At = 1/80 and Ai = 1/40 
x, optimal solution ^(T,z) — : target functions Z(z) 
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\ / 
\ f w l  / 
\ / 

/ 
z 

\ / 

Y \ 
\ 
\ 
\ / 
\ / 
\ 

0  < x <  1  

Figure 3.56 Optimal solution it for At = 1/80 and Az = 1/40 
optimal solution u(T, z) — : target functions W(z) 

a = 0 , = 'y = 1000000 

\ / 
\ / 
\ / 
\ 
\ 
\ / 

\ 
7 

I 1 — ' — — — 
0 O.S 1 

0SXS1 

Figure 3.57 Optimal solution % for At = 1/80 and Az = 1/40 
optimal solution u(T, z) — : target functions W(z) 

a = 0 , /? = -y = 1000000 
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-0.54 
0.5 

0&t^2  

Figure 3.58 Optimal solution u for Af = 1/80 and Az = 
—; optima] solution «((, z) 
a = 0 , /) = T = 1000000 

1/40 



84 

Example 3.3.13. (ZomZ domain control $(u) = e", T = 2, 0 = [0,1], Hi = [0,0.1] U 

[0.9,1] . 

jpuppoae we Aare t/ie some forget /wRctioms as (3.3.23). 

t=2 

-0.5 

Figure 3.59 Optimal solution it for At = 1/80 and Az = 1/40 
-, x: optimal solution w(T, z) —: target functions W(z) 

a = 0,/3 = "y = l,- - , 100000 
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t=2 

P=Y=100 

0.5 0 1 

Figure 3.60 Optimal solution « for At = 1/80 and Az = 1/40 
-, x: optimal solution %(T,z) — : target functions Z(z) 

a = 0,/3 = 'y=l,--, 100 
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0  < x  <  1  

Figure 3.61 Optimal solution « for At = 1/80 and Az = 1/40 
optimal solution w(T, z) — : target functions iV(z) 

a = 0 , = '"y = 1000000 

0 6 X < 1  

Figure 3.62 Optimal solution it for At = 1/80 and Az = 1/40 
optimal solution %(T,z) — : target functions Z(z) 

a = 0 , = 'y = 1000000 
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o4 

-0.8 0.5 

Figure 3.63 Optimal solution % for At = 1/80 and Az = 1/40 
—: optimal solution u(t, i) 
a = 0 , = 'y = 1000000 
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Example 3.3.14. (/WZ domam control) $(u) = e", T = 3, 0 = 0% = [0,1] . 

Suppose we Awe (Ae some target /unc^ona oa (3.3.23). 

t=3 

P=y=100 

-1.4 
0.5 

0 gx ^ 1 
0 1 

Figure 3.64 Optimal solution u for At = 1/90 and Az = 1/30 
-, x: optimal solution %(T, z) — : target functions IV(z) 

a = 0,/) = 'y=l,--, 10000 
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0.5 

t=3 

-0.2 

Figure 3.65 Optimal solution % for Af = 1/90 and Az = 1/30 
-, x: optimal solution %t(T,z) — : target functions Z(z) 

a = 0,/3 = T = l,- - , 1000 
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0 0.5 1 
0 < X £ 1  

Figure 3.66 Optimal solution u for At = 1/90 and Az = 1/30 
optimal solution w(T,z) —: target functions W(z) 

a = 0 , = 7 = 1000000 

t-3 

-0.2 
0.5 

0 < x < 1  

Figure 3.67 Optimal solution it for At = 1/90 and Az = 1/30 
optimal solution z) — : target functions Z(z) 

a = 0 , ^9 = = 1000000 
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o4 

0.5 -1.5 

0g t^3  

Figure 3.68 Optimal solution u for At = 1/90 and Az = 
—: optimal solution %((,%) 

(2  =  0  , / )  =  ' /  =  1000000  

1/30 



92 

Example 3.3.15. (7oco( (fomom = e", T = 3, = [0,1], f2i = [0,0.1] U 

[0.9,1] . 

g'uppoae tue Aawe t/ie same tappet /unctmms ag (3.3.23). 

t=3 

P=7=100000 

-1.4 

Figure 3.69 Optimal solution % for At = 1/90 and Az = 1/30 
-, x: optimal solution %(T,z) — : target functions IV(z) 

a = 0 ,/) = 'y = l, - - , 100000 
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t=3 

0.2 
0.5 

o s x < :  1  

Figure 3.70 Optimal solution w for Af = 1/90 and Ar = 1/30 
, x: optimal solution — : target functions Z(z) 

CK =  0 , /9  =  ' y= l ,  -  -  ,  10000  
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10 0.5 1 
0 < x <  1  

Figure 3.71 Optimal solution u for At = 1/90 and Az = 1/30 
optimal solution z) — : target functions If (z) 

a  =  o  , / )  =  ?  =  1000000  

0 < K <  1  

Figure 3.72 Optimal solution u for At = 1/90 and Az = 1/30 
optimal solution ^(T, z) — : target functions Z(z) 

0 = 0,/) = ^ = 1000000 
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CM 

0.5 -1.5 

Figure 3.73 Optimal solution % for AZ = 1/90 and Az = 1/30 
—: optimal solution a;) 
a = 0 , ^ = 'y = 1000000 
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4 Shooting Methods for Numerical Solutions of Exact 

Boundary Controllability Problems for the 1-D Wave Equation 

Numerical solutions of optimal Dirichlet boundary control problems for linear and 

semilinear wave equations are studied. The optimal control problem is reformulated as a 

system of equations (an optimality system) that consists of an initial value problem for 

the underlying (linear or semilinear) wave equation and a terminal value problem for the 

adjoint wave equation. The discretized optimality system is solved by a shooting method. 

The convergence properties of the numerical shooting method in the context of exact 

controllability are illustrated through computational experiments. In the case of the 

linear wave equation, convergent approximations are obtained for both smooth minimum 

1,2-nonn Dirichlet control and generic, non-smooth minimum Z^-norm Dirichlet controls. 

The cases of certain semilinear wave equations are also tested numerically. 

4.1 Introduction 

In this chapter we consider an optimal boundary control approach for solving the 

exact boundary control problem for one-dimensional linear or semilinear wave equations 

defined on a time interval (0, T) and spatial interval (0,%). The exact boundary control 

problem we consider is to seek a boundary control g = (#&, gg) E L*(0,T) C [J^(0, T)]^ 
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and a corresponding state % such that the following system of equations hold: 

— Wzz + /(u) = y in Q = (0, T) x (0, %), 

%|t=o = %o and ^lt=o = in (0,X), 
< (4.1.1) 

w|t=r = and i4|t=r = ^ in (0,X), 

«|%=o = gz, and = ga in (0, T), 

where «o and are given initial conditions deEned on (0,%), W E ^(0, X) and % E 

Zf"^(0,X) are prescribed terminal conditions, y is a given function defined on (0,T) x 

(0, X), / is a given function deGned on R, and g = (gi, ga) E [^(0, T)]^ is the boundary 

control. 

It is well known (see, e.g., [15, 16, 18, 19]) that when / = 0 (i.e., the equation is 

linear) and T is sufficiently large, the exact controllability problem (4.1.1) admits at 

least one state-control solution pair (u, g); furthermore, the exact controller g having 

minimum boundary 1,2 norm is unique. Exact boundary controllability for semilinear 

wave equations have also been established for certain asymptotically linear or superlinear 

/; see, e.g., [8, 23, 24]. 

For the exact boundary controllability problem associated with the linear wave equar 

tion there are basically two classes of computational methods in the literature. The first 

class is HUM-based methods; see, e.g., [10, 13, 15, 17, 22]. The approximate solutions 

obtained by the HUM-based methods in general do not seem to converge (even in a 

weak sense) to the exact solutions as the temporal and spatial grid sizes tend to zero. 

Methods of régularisation including Tychonoff regularization and filtering that result in 

convergent approximations were introduced in those papers on HUM-based methods. 

The second class of computational methods for boundary controllability of the linear 

wave equation was those based on the method proposed in [12]. One solves a discrete 

optimization problem that involves the minimization of the discrete boundary norm 
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subject to the undetermined linear system of equations formed by the discretization of 

the wave equation and the initial and terminal conditions. This approach was imple­

mented in [14]. The computational results demonstrated the convergence of the discrete 

solutions when the exact minimum boundary I? norm solution is smooth. In the generic 

case of a non-smooth exact minimum boundary Z,^ norm solution the computational re­

sults of [14] exhibited at least a weak Z? convergence of the discrete solutions. 

Although there are well-known theoretical results concerning boundary controlla­

bility of se/mZmeor wave equations (see, e.g., [8, 23, 24]), little seems to exist in the 

literature about computational methods for such problems. 

In this chapter we attempt to solve the exact controllability problems by an optimal 

control approach. Precisely, we consider the following optimal control problem: minimize 

the cost functional 

The optimal control problem is converted into an optimality system of equations and 

this optimality system of equations will be solved by a shooting method. 

The optimal control approach of this chapter provides an alternative method to the 

two classes of methods mentioned in the foregoing for solving the exact controllability 

problem for the linear wave equations; it also offers a systematic procedure for solving 

exact controllability problems for the semilinear wave equations. The computational 

subject to 

— Mzz + /(%) — y in Q = (0, T) x (0,1) 

< %|t=o = % and in (0,1) (4.1.3) 

%|z=o = gz, and = p# in (0, T). 
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solutions of this chapter obtained by an optimal control approach exhibit behaviors 

similar to those of the solutions obtained in [14]. Note that an optimal solution exists 

even when the equation is not exactly controllable. Note also that the solution methods 

in the literature for optimal control of PDEs can be utilized, and that there are certain 

intrinsic parallelisms to the algorithms studied in this chapter. 

The shooting algorithms for solving the optimal control problem will be described 

for the slightly more general functional 

where the term involving (u — [/) reflects our desire to match the candidate state u 

with a given (7 in the entire domain Q. Our computational experiments of the proposed 

numerical methods will be performed exclusively for the case of a = 0. 

The rest of this chapter is organized as follows. In Section 4.2 we establish the 

equivalence between the limit of optimal solutions and the minimum boundary norm 

exact controller; this justifies the use of the optimal control approach for solving the exact 

control problem. In Section 4.3 we formally derive the optimality system of equations for 

the optimal control problem and discuss the shooting algorithm for solving the optimality 

system. In Section 4.4 We state the discrete version of the shooting algorithm for solving 

the discrete optimality system. Finally in Sections 4.5 and 4.6 we present computations 

of certain concrete controllability problems by the shooting method for solving optimal 

control problems. 

(4.1.4) 
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4.2 The solution of the exact controllability problem as the 

limit of optimal control solutions 

In this section we establish the equivalence between the limit of optimal solutions and 

the minimum boundary Z^ norm exact controller. We will show that if a = 0, a —> cx) 

and T —» oo, then the corresponding optimal solution (Smgrr) converges weakly to 

the minimum boundary Z? norm solution of the exact boundary controllability problem 

(4.1.1). The same is also true in the discrete case. 

Theorem 4.2.1. Assume t/iat tAe eract boundary contnoMaMity proMem (4.1.1) ad­

mits a unigue minimum boundary Z,^ norm solution (14%, ge%). Assume tkat/or e«ery 

(a, a, r) 6 {0} x R+ x R+ (wAere R+ is tAe set 0/ aff positive neof numbers,) tAere exists 

a solution (u<^., g^^) (0 tAe optima! contnoZ probkm (4.3.17). TAen 

||&TT|k2(z)<||gex||z,2(z) V(a,(T,T) E {0} xR+ xR+. (4.2.5) 

Assume, in addition, t/iat /or a sequence {((7n,Tn)} satisfying cr» —» 00 and T» —> 00, 

m Z,2(Q) and /(u^T.) /(«) in Z,"(0, T; [Zf^(O) n Z^(O)]*). (4.2.6) 

TAen 

g<r»Tn [^(0, T)]^ and ««% m ^(Q) as n -t 00 . (4.2.7) 

fbrtAermore, i/" (4.2.6) AoZds /or euery sequence {(<%», 7^)} sotis/ying —» 00 and —» 

00, t/ien 

&TT gex Î» [Z,^(0,T)]^ and Ue% in Z,^(Q) as a, T —» 00. (4.2.8) 
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Proof. Since (u<rr,grr) is an optimal solution, we have that 

2 l|u<rrCn - ̂ llL(0,l) + " ̂ 11^-1(0,1) + 

— tT(*^ITT;gl7T) — «^(^exigex^ — 2 

so that (4.2.5) holds, 

Ucrr 1 t—T W in 1,2(0,X) and (%u<rr)|«=T —» Z in Zf ^(0,%) as cr, T —+ oo. (4.2.9) 

Let {(an, 7^)} be the sequence in (4.2.6). Estimate (4.2.5) implies that a subsequence of 

{(<7n,7n)}, denoted by the same, satisfies 

&r.T„ -"gin [1,2(0, T)]: and ||g||^(o,r) < ||g«||i;(o,T) - (4.2.10) 

(itcrr, &rr) satisfies the initial value problem in the weak form: 

n"(TT(% - %=)ckck-t- / / [/(u^.) - V]ti&cdt 
Vo Vo 

rr /-T 
I i=o 

L2.ll) 
4" / ëtrr\x=xfôx'u')\x—jcd't I Scr|x=0(dxV)| 

Vo Vo 
yX fX yX 

4- / (^U(rr)|t=rdz- / dr - / (u^.a^)|t=: 
Vo Vo Vo 

+ / W^)|^d% = 0 Vi,6C2([0,T1;^n^(0,X)) 
Vo 

where g,T|z=o denotes the 5rst component of g^r and g«rr|r=x the second component of 

grr. Passing to the hmit in (4.2.11) as a, T —» oc and using relations (4.2.9) and (4.2.10) 



we obtain: 

/ / %|i=rZ(%)da;- / ^|t=cui d% - / TV(z)(^)|t=r(k; 

/ W^|t=odr = 0 VrEC=([0,T];^n^(0,%)) 
Vo vo 

The last relation and (4.2.10) imply that (%, g) is a minimum boundary ^ norm solution 

to the exact control problem (4.1.1). Hence, E = and g = ge% so that (4.2.7) and 

Remark 4.2.2. 7/ the wave equation is Zinear, i.e., / = 0, t/ien ossumption (4.2.6) is 

redundant and (4.2.8) is guaranteed to Ao/d. /ndeed, (4.2.11) implies tAe boundedness o/ 

(ll'Uo-rlliaM)} w/iicA in turn yie/ds (4.2.6). TAe uniqueness o/ a solution /or t/ie Zinear 

wave equation imp/ies (4.2.6) Ao!ds /or an arbitrary sequence {(<%»,?k)}-

Theorem 4.2.3. .Assume that 

i) /or every (a, a, r) E {0} x R+ x R+ tAere ezists a solution (%f,T,g<rr) to t/ie optimal 

control pnobfem (4.3.17); 

ii) tAe Zimit terminal conditions AoZd/ 

M<rr|t=r —» W in Z/2(0,X) and (9tUcrr)|t=r —i' Z in Zf"^(0, %) as a, T —» oo ; 

(4.2.12) 

iii) tAe optima/ soWion («or, gerr) satis^es t/ie weak fimit conditions as a, T -+ oo; 

(4.2.8) follows from (4.2.6) and (4.2.10). • 

g,?,- g m L^(0,T), u in ^(Q), (4.2.13) 

and 

/(u_) - /(E) in 1,2(0, T; [^(H) n^(f])]*) (4.2.14) 
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/or some g 6 1^(0, T) ond M E 

T/ien (û, g) is o solution to t/ie ezact boundary controHa^i/ity problem (4.1.1) wit/i g 

sotis/ying t/ie minimum boundary 2,^ norm property. J^urtAermoTie, i/ tAe solution to 

(4.1.1) admits a unique solution (u«x, g@x), tAen 

ger ge« i» [^(0, T)]^ and ^ u^ *» I^(Q) os o-, T —» oo. (4.2.15) 

froo/. (u^r, gor) satisûes (4.2.11). Passing to the limit in that equation as o, T —» oo 

and using relations (4.2.12), (4.2.13) and (4.2.14) we obtain: 

rT fX fT fX 
=xdt / / u(%-^)didt + / / [/(%)-y]vdzdt+ / 9g(^)|z=. 

Vo Vo Vo /o Vo 
yT yX yX yX 

- / âz,(^)|i=odt+ / f|t,r^(z) dr - / (fr - / W(z)(^i;)|t_: 
Vo Vo Vo Vo 

+ / (uo^)|w)^ = 0 VvEC"([0,T];^n^(0,%)). 
Vo 

This implies that (û, g) is a solution to the exact boundary controllability problem 

(4.1.1). 

To prove that g satisfies the minimum boundary Zf norm property, we proceeds 

as follows. Let (u«%,g) denotes a exact minimum boundary Zf norm solution to the 

controllability problem (4.1.1). Since (u,r, g*?) is &n optimal solution, we have that 

2 ll%<rr " W|lf,2(0,X) + g " ̂ llg-l(Q^) + g 11^11^(0,?) 

— (^(7T, gar) < jT(^ex,gex) = % 

so that 

||g<rr 11^(0,T) < ||gex||L3(0,T) ' 
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Passing to the limit in the last estimate we obtain 

||g||l2(0,T) < ||gex||L3(0,T) ' (4.2.16) 

Hence we conclude that (u, g) is a minimum boundary norm solution to the exact 

boundary controllability problem (4.1.1). 

Furthermore, if the exact controllability problem (4.1.1) admits a unique minimum 

boundary If norm solution (u«%, g@%), then (%,g) = (^ex,gex) and (4.2.15) follows from 

assumption (4.2.13). O 

Remark 4.2.4. {fthe wove equation is Zineor, i.e., / = 0, then assumptions ij ond 

(4.2.14) ore redundont. 

Remark 4.2.5. ^IssuTnptions ii) ond iii^ hoZd i/ g^^ ond u^T converges pointwise os 

<7, T —^ OO. 

Remark 4.2.6. ^4 pmcticoZ impZicotion o/ Theorem ^.5.5 is thot one con prove the ezoct 

controZZobiZity /or semiZineor wove eguotions by examining the behavior o/ o sequence o/ 

optimoZ soZutions recoZZ thot exact controZZobiZity wos proved onZy /or some specioZ cZosses 

o/ semiZineor wove equations J If we hove /ound o sequence o/ optimaZ controZ soZutions 

{(^<7nT«, g<r^Tn)} where 7^ —* oc and this sequence oppeors to sotis^/ the convergence 

assumptions ii) ond iiij, then we can con/identZy concZude thot the underlying semiZineor 

wove equation is exactZy controZZobZe and the optimaZ soZution (u^T., g,?»^) when n is 

Zarge provides o good approximation to the minimum boundary If norm exact controZZer 

(^ex; ge%)-
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4.3 An optimality system of equations and a continuous shoot­

ing method 

Under suitable assumptions on / and through the use of Lagrange multiplier rules, 

the optimal control problem 

minimize (4.1.4) with respect to the control g subject to (4.1.3) (4.3.17) 

may be converted into the following system of equations from which an optimal solution 

may be determined: 

+ /(%) = y in (0, T) x (0, X), 

u|z=o = = 9a, u(0,%) = %o(z), %t(0,%) =%!(%), 

(w - + /'(%)( = -«(« - (7) in (0, T) x (0, %), 

CU=o = 0, £|x=i — 0, 

((T, x) = 3:) - ̂ (z)) &(^, a:) = -<r(u(T, z) - W(z)), 

9l — Cx|x=o i and (//?. — Cx|x=i, 

where the elliptic operator A : #o(0,%) —» If"^(0,X) is de&ned by At? = for all 

% E #Q (0, A"). By eliminating and g# in the system we arrive at the optimality system 

— M™ + /(«) = in (0, T) x (0, X), 

y|x=0 = ~^x |i=0 i ^|x=l — Cx |x=l ; 

u(0,z) = t(o(i), U((0,i) = Ui(z), 

(4.3.18) 

— (zz + /'(u)^ = —a(u — (7) in (0, T) x (0, %), 

(L=o = 0, = 0, 

^(T,i) = T(%(r,z) -Z(r)), &(T,z) = -cr(u(T,z) - IV(z)). 
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Derivations and justifications of optimality systems are discussed in [5] for the linear 

case and in [6] for the semilinear case. 

The computational algorithm we propose in this chapter is a shooting method for 

solving the optimality system of equations. The basic idea for a shooting method is 

to convert the solution of a initial-terminal value problem into that of a purely initial 

value problem (IVP); see, e.g., [1] for a discussion of shooting methods for systems of 

ordinary differential equations. The IVP corresponding to the optimality system (4.3.18) 

is described by 

+ /(%) = y in (0, T) x (0, X), 

I % , u(0,z) = uo(z), %t(0,r)=ui(z); 

(4.3.19) 

&-&= + /'(%)f = -«(% - (/) in (0, T) x (0, X), 

(|an = 0, €(0,z) — w(z), ^(0,z) = g(z), 

with unknown initial values w and Then the goal is to choose w and 0 such that the 

solution (%,f) of the IVP (4.3.19) satisfies the terminal conditions 

.Fl(w, 0) = %a;$(T, z) + T(%t(r, z) — -^(z)) = 0, 
(4.3.20) 

f^(w, ̂ ) = ^(T, z) + cr(w(r, z) - M/(z)) = 0. 

A shooting method for solving (4.3.18) can be described by the following iterations: 

choose initial guesses w and 

for iter = 1,2, - - , 77%%%ter 

solve for (u,€) from the IVP (4.3.19) 

update w and 0. 

A criterion for updating (w, 0) can be derived from the terminal conditions (4.3.20). 

A method for solving the nonlinear system (4.3.20) (as a system for the unknowns w 
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and 0) will yield an updating formula; for instance, the well-known Newton's method 

may be invoked. 

choose initial guesses w and 0; 

for iter = 1,2,- - - , moaner 

solve for (%,f) from the IVP (4.3.19) 

update w and 

(^n«w gnew) = _ [^(w,g)]-:f(w,g); 

if F(w™™,#™*) = 0, stop; otherwise, set (w,0) = (w™^,^""^). 

A discussion of Newton's method for an infinite dimensional nonlinear system can 

be found in many functional analysis textbooks, and for the suitable assumption con­

vergence of Newton iteration for the optimality system is guaranteed. 

4.4 The discrete shooting method 

The shooting method described in Section (4.3) must be implemented discretely. We 

discretize the spatial interval [0,1] into 0 = %o < a=i < #2 <'"<%/ < zj+i = 1 with a 

uniform spacing h = 1/(7 + 1) and we divide the time horizon [0, T] into 0 = ti < < 

ta < - — < t# = T with a uniform time stepping f = T/(7V — 1). We use the explicit, 

central difference scheme to approximate the initial value problem (4.3.19): 

%i=(%o):, = (%o)i + &(%i)i, , i = 1,2, - - ,Z; 

= —u" ^ 4- + 2(1 — A)u" -t-

-^/(«?) 4-^y(t»,z^), i = 1,2, - - ,7, 
(4.4.21) 

+ AqLi + 2(1 - A)& + 

-^YK)C +  ̂ K-%,^)) ,  i  =  l ,2 , .  .  , /  

7,n+l — _Si_i0_ n+1 _ Ç/+1 V 
% -  ^ , "w-  ^ 
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where A = (we also use the convention that (g = = 0.) The gist of a discrete 

shooting method is to regard the discrete terminal conditions 

fN _ f #-1 
F*_i =  ̂  /  + (T(^-W,)=0,  

(4.4.22) 

as a system of equations for the unknown initial condition wi, #i, , w,n, 

Similar to the continuous cage, the discrete shooting method consists of the following 

iterations: 

choose discrete initial guesses and {O}^; 

for iter = 1,2, - - , mazier 

solve for &om the discrete IVP (4.4.21) 

update {wj^i and {^}Li-

The initial conditions and are updated by Newton's method applied 

to the discrete nonlinear system (4.4.22). This requires the calculations of partial derivat­

ives. By denoting 

^ = gj)(wi,0i,W2,02, ' ' ' , Wf, r% =r|}(Wi,gi,W2,g2, .. . , W/, 0/) = 

Qcn fît? 
= ̂ (^1,^1,^2,%, " ^ = ̂ (^1,^1,^2,^2, " ,Wf,^j) = 0^-

we obtain the following Newton's iteration formula: 

(w?™, w^, , w^, ̂ )^ 

= (w%, ^i, W2, ^2, ' ' , W/,^;)^ — [F'(wi, 0i,W2, ̂ 2, ' ' ,k)/,0/)]"^F(wi, ̂ 1,^3,^2, ' ' ' , W/,^;) 

where the vector F and Jacobian matrix J = f are deGned by 
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^ + rr. 

+jv,„ J , . +  _ ( < #  _  g j V - l )  

Moreover, by differentiating (4.4.21) with respect to Wj and ^ we obtain the equations 

for determining <%, , r^, and Tij: 

W = 1,2, - - ,7; 

(4.4.23) 

9^ = 0, 4=^' ^ = 0, r? = 0, 

Pi, = I ^ I ^ = 0 , = (%j , 

9^ = + ^9^-1 J + 2(1 - A)g% + j 

1, J =  1, 2 , . . . ,  7, 

+ 2(1 - A)r^ + Arj^ij 

2,; = 1,2,.., 7, 

^ + 2(1 - A)p? + 

+ (Pm#-^[/'K)l^- WW)?ne, ;,; = i,2, --

= -7^""^ + + 2(1 - A)?^ + A-r^ij 

+ :,; = !,2, . .. ,7; 

where ^ is the Chronecker delta. Thus, we have the following Newton's-method-baaed 

shooting algorithm: 

Algorithm - Newton method based shooting algorithm with central finite difference 

approximations of the optimality system 

choose initial guesses w; and z = 1,2, - - ,7; 

% set initial conditions for u and f 

for % = 0,2, - - ,7 + 1 

= (uo)i, = ("o)i + <f(«i)i, 
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for z = 1,2, - - , i 

# = w,, ^ 

% set initial conditions for 

for j = 1,2, - -

for i = 1,2, " ,/ 

= 0, 4 = 0, 4 = o, 4 
= o, 

Pij = 0, 4 = 0' ^ = 0, 
4 

= 0; 

P)j = 1, 

r
-
T
 

II 

=%
r 

5
^

 

II
 

P
*
7
 

% Newton itérations 

for m = 1,2, - - , M 

% solve for (%, 

for n = 2,3, - - , JV — 1 

+ Au|Li + 2(1 — A)u" + Au^.^ — 6^/(u" ) + (4%, 

+ A^Li + 2(1 - A)^ + A#., -

+^a(u^ - (7(<n,Zi)); 

% solve for g, r, p, T 

for j = l,2, - ,7 

for n = 2,3, " , TV — 1 

for i = 2, - - , TV — 1 

^ = -95"' + + 2(1 - A)gg. + Ag^ 

+ 2(1 - A)r% + Ar^i,. 

+ ̂ P^-ij + 2(1 - A)p? + Ap[Yij 

ij+^(i - %+AT%i, 
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% (we need to build into the algorithm the following: 

9/+U — ^ — P?+w — 0 ) 

% evaluate F and f 

for i = 1,2, - - ,7 

for j = 1,2, - - ,7 

+ — '' a"' H <?r^ 

solve Je = —F by Gaussian eliminations; 

for i = 1,2, - - ,7 

W^=W^ + C2i_l, ^ = gi+C2^; 

if max* — Wj| + maaq < toi, stop; 

otherwise, reset w; = and ^ i = 1,2, - - - ,7; 

As in the continuous case, we have the following convergence result for the shooting 

algorithm which follows from standard convergence results for Newton's method apphed 

to finite dimensional systems of nonlinear equations. 

Remark 4.4.1. The oZgorithms we propose are weZZ suited /or implementations on a 

paro/W computing pZot/brm such as a massive cZuster o/ p/wessors. The shooting algo­

rithms o/ this chapter can be regarded as a generalization o/ their counterpart /or systems 

o/ 07)f ^see, e.g., /7/J There has been a substantia! literature on the pamZZeZization o/ 

shooting methods /or OTPEs /&, these resuZts wiZZ be heZp/uZ in pamZZeZizing the 

shooting aZgorithms o/ this chapter. 
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4.5 Computational experiments for controllability of the linear 

wave equation 

We will apply Algorithm 1 to the special case of / = 0, y = 0, W = 0, Z = 0, a = 0 

and cr, T >> 1. In other words, we will approximate the null controllability problem for 

the linear wave equation by optimal control problems. We will test our algorithm with a 

smooth example (i.e., the continuous minimum boundary Zf norm controller g and the 

corresponding state % are smooth) and with three generic examples. It was reported in 

[14] that the discrete minimum boundary Zf norm controllers converge strongly to the 

continuous minimum boundary If norm controller for the smooth example and converge 

weakly in the generic case. The discrete optimal solutions found by Algorithm 1 will 

exhibit similar behaviors. 

4.5.1 An example with known smooth exact solution 

A smooth exact solution to the minimum boundary Zf-norm controllability prob­

lem was constructed in [14] by using Fourier series in a way similar to that used in 

[10]. Suppose that Q = (0,7/4) x (0,1) and 2 = (0,7/4) x {0,1}. Let ^o(t, z) = 

—\/2?r cos 7r(t — 1) cos 2%-% and 

cos7r(f — -) 4-sinp7r(t — T) sinprrz 

Then, set the initial conditions 

«oM = V»o(0, z) + V*i(0, %) and %i(z) = ^(0, z) + ̂ ^(0, z). (4.5.24) 
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The computation of % and involve the summation of infinite trigonometric series. 

Figure 5.2 and Figure 4.2 provides plots of and %i, and the exact control and exact 

solution respectively. Note that initial conditions vanish at the boundary, and due to 

symmetry, we have g%,(() = 0) = %(Z, 1) = g«(^)- i.e the controls at two sides of Q 

are the same. It is worth noting that -uo is a Lipschitz continuous function but does not 

belong to C^[0,1] and ui is a bounded function but does not belong to C°[0,1]. For 

the initial data (4.5.24), it can be shown that %((,%) = ^o(Z,z) + ̂ i(t,z) is the exact 

solution having minimum boundary I^-norm of the controllability problem given by the 

Erst three equations in (4.1.1) provided / = 0, F = 0. Let g be the corresponding 

exact Dirichlet control given by restricting u(f, z) to the lateral sides Z. i.e g(() = 

(gz,W,gA(<)) = (%(Z,0), %((,!)), and 

gi,W = = — V^TrcosTT^t — ^ . (4.5.25) 

For future reference, note that ||g||z,2(Z) = ^^(4 + ^) ̂  6.13882. 

*V 0.1 0-2 "0.3 0.4 0.5 0.6 Q.7 0.8 9.9 1 " "fl 0.1 0.2 0.3 0/1 0.5 0.9 0.7 0.8 0.9 1 

Figure 4.1 left - «o, right - given in (4.5.24). h = 1/256. 

We apply our numerical method to this example. Computational experiments were 

carried out for h = 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, and 1/1024 with A = 1 and 

A = 7/8 respectively, so that the stability condition is satisfied. 

The results of our computational experiments are summarized in Table 4.1, where g^ 
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Figure 4.2 left - exact control, right - exact u. with initial data (4.5.24). 

A= 1/32. 

are the computed approximations of the exact solutions g. All norms were calculated by 

linearly interpolating the nodal values of g\ From this table, it seems that g^ converges 

to g in the If (Z)-norm at a rate of roughly 1. In order to visualize the convergence of 

our method as h becomes smaller, in Figure 4.3 we provide plots of the exact solution % 

and the corresponding computed discrete solutions t/* for h = 1/256 with A = 1. Figure 

4.4 and 4.5 are plots of the exact solution g and the corresponding computed discrete 

solutions a given function W and approximate solutions and a given function Z 

and approximate solutions for A = 1/16, A = 1/32, A = 1/64, and A = 1/1024. 

Table 4.1 Results of computational experiments for the minimum 

If (2)-norm case for the examples with initial data (4.5.24). 

h 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 

A = 1 5.9339 6.0294 6.0825 6.1103 6.1244 6.1316 6.1352 

A = 7/8 5.9682 6.0468 6.0917 6.1454 6.1262 6.1325 6.1356 

lbllz,2fE) 
A = 1 6.93% 3.35% 1.63% 0.79% 0.37% 0.18% 0.09% 

Hall 

| 
O

O
 

' 
N

-

II -< 

7.53% 4.26% 2.88% 10.15% 0.35% 0.17% 0.08% 

It seems that our method produces (pointwise) convergent approximations for both 

A = 1 and A = 7/8 wthouf (he need /or negWonzo&on. This should be contrasted with 

other methods, e.g., that of [10], for which when A < 1, régularisation was needed in 
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Figure 4.3 left - approximate control , right - exact it with initial data 

(4.5.24). h = 1/256. A = 1. 

order to obtain convergence. Also, the results obtained by our method behave very 

similarly to those obtained in [14]. 

4.5.2 Generic examples with minimum If (Z)-norm boundary control 

In the example discussed in Section 4.5.1, the minimum If (S)-norm control is very 

smooth. Using our methods, we obtained good approximations for this example without 

the need for regularization. However, this is not the generic case. In general, even for 

smooth initial data, the minimum If (Z)-norm Dirichlet control for the controllability 

problem (4.1.1) will not be smooth. In this section, we illustrate this point and also 

examine the performance of our method for the generic case. 

We choose Q = (0,1) x (0,1) in example I and Q = (0,7/4) x (0,1) in example II, 

III, and consider three sets of C°°(0) initial data: 

I. %o(z) = z(z — 1) and %%(%) = 0 

II. tto(z) = sin(Trr) and %i(%) = 7rsin(7rz) (4.5.26) 

III. %o(z) = and %i(z) = 

Note that the initial conditions (I), (II) vanish at the boundary and, that due to sym­

metry, we have that u(t, 0) = u(f, 1), i.e., the control at the two sides of Q are the same. 
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For the initial conditions (III), we have that %(t, 0) ^ %((, 1). 

First We examine the cage A = 1. In Figure 4.6, 4.8 and 4.10, we show the results for 

the control for several grid sizes ranging from A = 1/16 to A = 1/1024. The (pointwise) 

convergence of the approximations is evident. Note that for the initial conditions given 

in (4.5.26), the minimum Zf(Z)-norm controls are seemingly piecewise smooth, i.e., they 

contain jump discontinuities. The pointwise convergence of the approximate control for 

the case of A = 1 is probably a one-dimensional artifact; it is likely due to the fact that 

both the space and time variables in the wave equation in one dimension can act as 

time-like variables. 

Further details about the computational results for the examples with initial con­

ditions (I) given in (4.5.26) with A = 4/5 are given in Table 4.2 and Figure 4.7. The 

convergence in Zf (Z) of the approximate minimum Zf (2)-norm controls is evident 

as is the convergence in Zf (Q) of the approximate solution %/*; the rates of convergence 

Eire seemingly Erst order. 

Table 4.2 Results of computational experiments for the minimum 

Zf (S)-norm case for Examples I with initial data (4.5.26) and 

for A = 1,4/5. 

h 1/32 1/64 1/128 1/256 1/512 1/1024 

A = 1 0.12934 0.12908 0.12906 0.12907 0.12908 0.12909 

lleMlzfrn 

m
 

II <-
< 

0.15941 0.15269 0.14522 0.14216 0.13907 0.13622 

Computational experiments were also carried out for A = 7/8 for several values of 

the grid size ranging from h = 1/16 to A = 1/1024. The results are summarized in Table 

4.3 and 4.4. In Figures 4.9 and 4.11, we respectively provide, for the two sets of initial 

conditions (II) and (III), plots of the computed discrete solution for the two 

different values of A and for different values of the grid size. 

From Figures 4.9 and 4.11, we see that the approximate minimum Zf (Z)-norm Dirich­

let controls obtained with values of A < 1 are highly oscillatory. In fact, the frequencies 

of the oscillations increase with decreasing grid size. However, it seems that the ampli-
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Table 4.3 Results of computational experiments for the minimum 

Zf (Z)-norm cage for Examples II with initial data (4.5.26) and 

for À = 1,7/8. 

h 1/16 1/32 1/64 1/128 ^1/256 1/512 | 1/1024 

il (2) A = 1 0.6838 0.6388 0.6162 0.6049 0.5992 0.5963 0.5949 
A = 7/8 0.6734 0.6348 0.6138 0.6039 0.5988 0.5963 0.5949 

Table 4.4 Results of computational experiments for the minimum 

Zf (Z)-norm cage for for Examples HI with initial data (4.5.26) 

and for A = 1,7/8. 
h 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 

A = 1 1.4277 1.3187 1.2605 1.2303 1.2149 1.2071 1.2032 

ll^ll^(Z) 

II OO
; 

1.3932 1.3007 1.2493 1.2252 1.2124 1.2065 1.2028 

tudes of the oscillations do not increase as the grid size decreases. Furthermore, from 

the results in Table 4.3 and 4.4, it seems that for A < 1, the approximate controls g*, 

although oscillatory in nature and nonconvergent in a pointwise sense, converge in an 

Zf (Z) sense. 

The results of Table 4.2, 4.3, 4.4 and Figures 4.6, 4.7, 4.8, 4.9, 4.10, 4.11 indicate 

that for the generic case of non-smooth minimum Zf (Z) controls and for general A < 1, 

our method produces convergent (in Zf (Q) and Zf (Z)) approximations mtAout #ie need 

o/ reguWizofion but the approximations are not in general convergent in a pointwise 

sense. Of course, approximations that do not converge in a pointwise sense may be of 

little practical use, even if they converge in a root mean square sense. 

4.6 Computational experiments for controllability of semilin­

ear wave equations 

We will again apply Algorithm 1 to the special case of F = 0, tK = 0, Z = 0, a = 0 

and (7, T » 1. We will test our algorithm with generic examples. If nonlinear term / 

satisfies a certain property such as asymptotically linear or superlinear, then the exact 
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control problem of the system 4.1.1 can be solvable;see, e.g., [8, 23, 24]. In this section, 

we examine the performance of our method for the asymptotically linear and super linear 

cases. 

We choose Q = (0,3) x (0,1) in example I, H, III, and consider three sets of nonlinear 

term /: 

I. /(%) = sinu 

II. /(%) = «3/2 (4.6.27) 

III. /(u) = ln(u^ + 1). 

Note that we choose T = 3 for existence of control; see, e.g., [23, 24]. (I) is an 

example of the asymptotically linear case and (II) is one of the superlinear case. (Ill) 

can be considered as either case. In general, we can not expect = g# due to the 

nonlinear terms. We test the case A = 1. The numerical approximations by Algorithm 

1 is convergent in 1% sense, that is, they have jump discontinuities as well. We will 

illustrate those through the figures 4.12, 4.13, and 4.14. For the linear cases, the number 

of iterations of the shooting methods is about 2 or 3, according to the tolerance and 

the accuracy of the machines we used. However the nonlinear cases are different and we 

need more iterations than the linear cases. We denote the number of iterations as count. 

It is contained in the tables 4.5, 4.6 and 4.7 with ^(Z)-norm of controls 

Table 4.5 Results of computational experiments for the minimum 

Zf (Z)-norm case for Examples I, II, III in (4.6.27) with initial 

data I in (4.5.26) and for À = 1. 
j__ h 1/16 1/32 1/64 1/128 

I 0.08084810765 0.08038960736 0.08021218880 0.08013073451 I 
count 17 16 16 17 

II 0.07346047350 0.07314351955 0.07307515741 0.07306230119 II 

count 8 8 10 12 

III 0.07438729446 0.07404916115 0.07397863882 0.07396393744 III 

count 6 5 5 5 
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Table 4.6 Results of computational experiments for the minimum 

j&2(Z)-norm case for Examples I, II, III in (4.6.27) with initial 

data II in (4.5.26) and for A = 1. 

A 1/16 1/32 1/64 1/128 

I 0.45499490909 0.43856890841 0.43072624972 0.42688986194 

count 12 15 16 14 

II 0.45794379129 0.43786262977 0.42823496745 0.42350319979 

count 12 12 12 17 

III ||g* 11^(2) 0.45251184147 0.43223256110 0.42248163895 0.41769256787 

count 6 6 6 6 

Table 4.7 Results of computational experiments for the minimnm 

Zf (Z)-norm case for Examples I, II, III in (4.6.27) with initial 

data III in (4.5.26] and for A = 1. 

A 1/16 1/32 1/64 1/128 

I 0.94846408635 0.86623499117 0.82305989083 0.80084943961 

count 11 11 11 11 

II 0.99946692390 0.90706619363 0.85837779589 0.83325287647 

count 13 16 18 20 

III 0.95205362894 0.86225101645 0.81393537311 0.78872084130 

count 6 6 6 6 
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X 

X 

t 

Figure 4.4 left - approximate control and g, middle - approximate u'' 

and target right - approximate and target Z with initial 

data (4.5.24). h = 1/16,1/32,1/64,1/1024 from top to bottom 

respectively. A = 1. 
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\ 

X 

t 

t 

t 

Figure 4.5 left - approximate control and g, middle - approximate ^ 

and target right - approximate and target Z with initial 

data (4.5.24). /i = 1/16,1/32,1/64,1/1024 from top to bottom 

respectively. A = 7/8. 
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left - approximate control , middle - approximate and 

target right - approximate and target Z with initial 

data (4.5.26-1). A, = 1/16,1/32,1/64,1/1024 from top to bottom 

respectively. A = 1. 
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Figure 4.7 left - approximate control , middle - approximate and 

target VK, right - approximate and target Z with initial 

data (4.5.26-1). /i = 1/16,1/32,1/64,1/1024 from top to bottom 

respectively. A = 4/5. 
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t 

t 

t 

Figure 4.8 left - approximate control , middle - approximate and tar­

get IV, right - approximate and target Z with initial data 

(4.5.26-H). A, = 1/16,1/32,1/64,1/1024 from top to bottom re­

spectively. A = 1. 
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1/ 

Figure 4.9 left - approximate control , middle - approximate ^ and 
target W, right - approximate and target Z with initial 
data (4.5.26-II). = 1/64,1/128,1/256,1/512,1/1024 from top 
to bottom respectively. A = 7/8. 
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\ 

X 

Figure 4.10 (%,, T), and T) from left to right with initial data 
(4.5.26-HI). A = 1/16,1/32,1/64,1/1024 from top to bottom 
respectively. A — 1. 



127 

Figure 4.11 <%,, g#, ^(z, T), and 1^(2, T) from left to right with initial data 
(4.5.26-III). = 1/64,1/128,1/256,1/512,1/1024 from top to 
bottom respectively. A = 7/8. 
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L/ H 
Ï 

Figure 4.12 ^(z,T), and left to right 
with /(%) = sinu and initial data (4.5.26-III). 
/i = 1/16,1/32,1/64,1/128 from top to bottom respec­
tively. A = 1. 
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Figure 4.13 gi, gR, u^(z,T), and i^(z,T) from left to right 
with /(%) = and initial data (4.5.26-IH). 
/i = 1/16,1/32,1/64,1/128 from top to bottom respec­
tively. A = 1. 
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f 

/ J 
1/ 

I I : x 

Figure 4.14 gj%, «^(r,T), and ^(z,T) from left to right 
with /(u) = ln(«^ + 1) and initial data (4.5.26-III). 
A = 1/16,1/32,1/64,1/128 from top to bottom respec­
tively. A = 1. 
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5 Shooting Methods for Numerical Solutions of Distributed 

Optimal Control Problems Constrained by first order linear 

hyperbolic equation 

5.1 Distributed Optimal control problems for first order linear 

hyperbolic equation 

We will study numerical methods for optimal control and controllability problems 

associated with first order hnear hyperbolic equation. We are particularly interested in 

investigating the relevancy and applicability of high performance computing (HPC) for 

these problems. 

As an prototype example of optimal control problems for first order linear hyperbohc 

equation we consider the following distributed optimal control problem with a > 0: 

Problem 5.1.1. Given (7, TV and /ÙW time T, /md a pair o/ optimizer (û, /) sttcA 

w* + = /((, r), ((, z) e 0 x (0, T) = Q 

. u(0,z) = g(z), (5.1.1) 

u(f, 0) = A((), T E O 

minimizing 
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% — C/pdzdf + ^ L ,w(T, z) — W(z)|^ ^ % |/|^&ccK. 

^ere H = (0,1) ia o bounded doznoin in R^/ tf ia dubbed <Ae aWe, and / ia <Ae diafribWed 

confmZ. v4ko, (7 ia a (argef )unc(ion. 

The existence and uniqueness of this problem will be treated later on. 

Problem 5.1.2. (#ziafence and CfnigueneaaJ For given / E ^(Q), w E 2,^(0), z E 

^(0, T), (Aerie is Z&e unigue aofufion o/ (Ae /oZZowing; 

Definition 5.1.3. Given / E Z,^(Q), w E 2/^(0), z E 2,^(0, T), we gay u E ^(Q) 

ia a weak aoWion o/ (5.1.2) if JLu(Z,^)da;df = — j^/^d%d( — iu(T)^(0, z) dz — 

az(()f)((, 0) c% /or aZ^ E ^(Q) wi(A <^((, z) = 0, g)((, 1) = 0. 

Lemma 5.1.4. fbr amoofA inifiaf and boundary da^a o/ (5.1.2), we can obtain (Ae 

eipZicif /ormufa. 

%t + a%3 = /((,i), ((, i) E Q 

u(0, i) = iu(z), i E O = (0,1) (5.1.2) 

u((, 0) = z(t), t E (0, T). 

Let Z, -

(5.1.3) 

wAere Qi = {(f, i) E Q|z > a<}, Qg = {((,z) E Q|r < of}. 

froo/. Use the method of characteristics. • 
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1,% = /((,z), ((, z) E Q 

u(T, z) = 0, i E (0,1) 

w(Z, 1) = 0, < E (0,T), 

we Aot/e (Ae /of k wing aoWion; 

(5.1.4) 

u((, z) = < 

yT-t 
/ —/(oa + (l-z)-a(T —t),a)dg in Qi, 

Vo 

/ —/(y, " + (!""() %—)<% in^2-
. Vo a a 

(5.1.5) 

Proo/. Use the previous lemma and change of variables, (f, z) »-» (T — (, 1 — z). O 

Lemma 5.1.6. (L4 prior: egfimafea^ For smooZA /unction Zet i/< aafia^/ <Ae /oZZowing; 

L ye — *u£, m Q 

< 3/«(T,z) = 0, zE (0,1) 

3/r(^, 1) = 0, ( E (0,T). 

(5.1.6) 

TAen 

II %/( lk»(Q)< C II lllKQ) ' 

II %(^,0) ||^(Q,T)< - II ^6 11 Z.3(Q) , 

II %(0,z) Ik2(0,l)<|| ||z,2(Q) . 

(5.1.7) 

froo/. Use the previous lemma. 

Now let such that /, —^ /, tu. z, —^ z in sense 

• 
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Consider the following equations: 

and 

— y],, in Q 

< 3: E (0,1) 

Ug((,0) = z«, tE(0,T), 

Z/ i/e — Kg, in Q 

%(T,z) = 0, TE (0,1) 

2/,(Z, 1) = 0, t E (0,T). 

(5.1. 

(5.1.9) 

Clearly the solutions of above two equations exist uniquely by previous lemmas. 

Multiply equation (5.1.8) by Then integrate both sides over Q, and so 

(-&««, = (A, 

=>-(«(, f,*Z«)/,2(Q) + (U(,Zg)i2(n)lo + (ue,az«)j^(o,T)lo = (/e,^«)^(Q) 

=>(««, w«)i2(Q) = (w,(r),Z((i,0))^(n) + (Z((<),aZ((0,t))i,z(o,r) + (A, 

II ^4 ll^(Q)^ I II + 
II II 

+ II A 
II "= 

+ I II ^ llz,3(o,r) + 
II (5.1.10) 

^(Q) 

II llz,:(<2)— C (ll llL(O) + II llL(0,T) + II /( llL(Q)) 

Lemma 5.1.7. f ^4 prior: eg(ima(e ^ Z,e( aatia/y (5.1.8). TAen 

II IL:(Q)- C ( II llz^(n) + II ll%a(0,r) + II A 
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Proof. By the above argument. O 

Note that as e —> 0, —> w, —» z,/, / in 1^. So for any 61,62 and 63, 

II llL(n)^ll ^ 11^(0) +^1: 

II Zf Hl2(0,T)^ll Z II 1^(0,T) +^2, (5.1.11) 

II A llf,3(Q)^ll / llL(Q) +^3 

for small enough e. Let ? = maac(ei, eg, 63). Then 

II lll:(n) + II Z; llL(O.T) + II A llL(Q)<ll ^ llL(n) + II Z lll%(0,T) + II / lllz(Q) +3Z 

Assume ? is sufficiently small enough. Then 

Il ||L(n) + II Ze |lz,2(o,r) + II A llL(Q)< C (ll ^ 111? (n) + II z ||L(o,T) + II / llL(Q)) -

Therefore we have the following a priori estimate: 

Lemma 5.1.8. ^4 priori eafimote j ao(ia/y (5.1.8). T%en /or ama^Z enoug/i e, 

II "f llL(Q)^ C (il ^ llL(n) + II Z HL(0,T) + II / llL(Q)) -

Note that can be found by (5.1.3). 

Lemma 5.1.9. (Z&ciaZence 0/weak aoWion, ^4ny u WiicA con 6e (oten/rom (5.1.3) 

ia o weot aoZufion 0/ (5.1.2). 

Proo/. Clearly the classical solution is also a weak solution. O 



136 

5.2 An optimality system of equations 

Through the use of Lagrange multiplier rules, the optimal control problem (5.1.1) 

may be converted into the following system of equations from which an optimal solution 

may be determined: 

4- auz = —f, 

u(0,%) = 9(z), 

u(f,0) = A((), 

& + G& = -«(" - (/), 

(t, z) E Q x (0, T) 

% e n 

i e n 

((, z) E 0 x (0, T) 
(5.2.12) 

f(r,z) = /3(^(r, i) - w(%)), z € n 

(((,1) = 0, z e 0 

Next, we give a precise definition of an optimal solution, i.e. a minimizer of Jp(%, /). 

Let the aet be dehned by 

= {(«, /) E Zf(Q))x Z,^(Q) such that (5.2.12) is satisfied and J^(«, /) < oo }. 

Then (û, /) is called an optimal solution if 

J#(&,/) < J^(u,/), 

for all (u, /) E ZYod . 

Proposition 1. TT&ere eziata @ wmgue op&mo! aoWion (û, /) E /or frobZem (5.1.1). 

froo/. (1)( Uniqueness ) 

Note that every strictly increasing convex function of a convex function is convex. There­

fore Uniqueness follows from the convexity of the functional and the admissibility set 
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,and the linearity of the constraints. 

(2)( Existence ) 

Clearly ZYaj is not empty(from Lemma). Let {(%*, Z^)} be a minimizing sequence in 

i.e. 

lhnJX"",A)= ipf /)-
n-»oo 

Note that from Lemma we have the following priori estimate; 

BUM ||%n(f)||l,Z(Q) < C" (||g||i2(n) + ||A||f,2(0,T) + IIAII^(Q))) -

By the definition of Z^j and this a priori estimate, there exists a subsequence ) 

such that 

tueakZy in ^(Q), 

^ in Z,^(Q) 

for some (ù, /) E ZY^j. 

Now, by the process of passing to the limit, we have that (ù, /) is a weak solution of 

(2). Then the fact that the functional Jjg(-, ) is weakly lower semi-continuous implies 

that 

inf JXw,/)=hmJXiS,.W 

>W,/)-

Hence 

inf J^(%,/) = ^(û,/), 

so that (û, /) is an optimal solution. . O 

Such control problems are classical ones in the control theory literature; see, e.g., 

[5] for the linear case and [6] for the nonlinear cage regarding the existence of optimal 
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solutions as well as the existence of a Lagrange multiplier f satisfying the optimality 

system of equations. However, numerical methods for finding discrete (e.g., finite element 

and/or finite difference) solutions of the optimality system are largely limited to gradient 

type methods which are sequential in nature and generally require many iterations for 

convergence.The optimality system involves boundary conditions at ( = 0 and ( = T and 

thus cannot be solved by marching in time. Direct solutions of the discrete optimality 

system, of course, are bound to be expensive computationally in 2 or 3 spatial dimensions 

since the problem is (d 4-1) dimensional (where d is the spatial dimensions.) 

The computational algorithms we propose here are based on shooting methods for 

two-point boundary value problems for ordinary differential equations (ODEs); see, e.g., 

[1, 2, 3, 4]. The algorithms we propose are well suited for implementations on a parallel 

computing platform such as a massive cluster of cheap processors. 

5.3 Computational Results 

We will apply our shooting Algorithm 1 in the previous chapter with slight modifi­

cation to the special case of o = 1. We will experiment with two generic examples. 

Example 5.3.1. (/WZ domain controZ) T = 1, 0 = [0,1]. 

Fbr given Zanyef /unctions, 

W(z) = 1, (7 (t, %) = 1. (5.3.13) 

Fbr initiaZ and boundary data, 

g(z) = z(z — 1), h(f) = 0. (5.3.14) 
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Example 5.3.2. T = 1, D — [0,1]. W(%) = 0,z) = sm(27rt)z(i — 1), g(z) 

z(z — 1), A(t) = 0. 
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Figure 5.2 Optimal solution u and target TV, Cf for At = 1/40 , Az = 1/20 
optimal solution u(f, z) —: target functions TV(r), (7((, r) 

a = /3 = l, 10,100,1000 
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6 CONCLUSION 

In the thesis, we discussed and successfully implemented shooting methods for solv­

ing optimal control problems constrained by linear wave equations, semilinear wave 

equations, and linear conservation laws. The shooting algorithms for optimal control 

problems were also utilized effectively to find approximate solutions to controllability 

problems for these equations. Both distributed and boundary controls were treated. The 

convergence of the algorithms were numerically demonstrated when the true solutions 

are smooth. Weak convergence of the algorithms were also numerically demonstrated 

when the true solutions were not smooth. 

However, a host of issues still need be addressed in future work; these include other 

control objectives, a thorough study of parallel implementations and a analysis of com­

puting complexity, the case of high spatial dimensions, rigorous numerical analysis, and 

generalizations to control other types of equations. A list of concrete topics is aa follows: 

* A. ContmZ pmMema wif/i Instead of minimizing functional 

(4.1.4) we may consider the minimization of a more general functional 

where the terms involving A"(if) and $(%) model certain physical quantities to be 

minimized. For instance, to track a target state one may choose if(u) = jit — 

(6.0.1) 
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[/|*/g for some g > 1; to stabilize a structure one may choose %(%) = |u|^ for some 

g > 1; to attain a uniform displacement distribution one may choose K(%) = |Vu|^; 

and to reach a desired target [/? at time T one may choose $(u(T)) = |«(T) — Ur|^-

* Tbgt B. PamZkZ Observe that the loop in j in Algorithm 1 may 

be executed in parallel, say on 7 processors. The loops in m and % are comprised 

of an explicit time marching scheme for solving a discrete initial value problem 

and can therefore be performed on low cost processors; in addition, these loops 

require the storage of only three vectors of dimension / containing the solutions 

at three time levels (which are updated by time marching). We will implement 

the algorithm on a cluster of processors to assess its practicality. We will also 

experiment with ways to improve implementation efficiency when the number of 

processors available is less than 7; this issue will be of particular importance in 

two and three space dimensions and it is worthwhile to first explore ideas in the 

case of one space dimension. 

We also observe that the loop in i is well suited for implementations on a vector 

machine. The ideal computing platform for this algorithm is a network of vector 

machines. 

The analysis of computing complexity is of both theoretical and practical im­

portance. The computational time needed to find the solution to the optimality 

system depend on the number of processors, the organization of the algorithm in 

making use of all available processors, data communications, and initial guesses 

(or the number of Newton iterations). We will analyze theoretically the computing 

complexity and estimate the computing time for finding the optimal solution in 

various mathematical, algorithmical, and computer architectural settings. 

# Zbg& C. gpafW dtmenazong. We may carry out Tasks A and B in higher 

space dimensions. An advantage of the shooting algorithms is their explicit, time 
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marching solutions of initial value problems (the large number of such IVPs can be 

solved in parallel.) A major shortcoming of the shooting algorithms arises from the 

fact that the matrix in each Newton iteration is a full one, rendering the solution of 

the corresponding linear system expensive. Computational costs in implementing 

shooting algorithms in higher dimensions are formidable. Numerical solutions 

of the underlying control problems in two dimensions pose a real computational 

challenge and it is even more so in three dimensions. 

# That D. Ea(o6W»ng ZAeore#caZ convergence mfea. In our experimental results, if 

the wave equation and conservation law are linear (and so will be the optimality 

system), then the algorithms converge in precisely one iteration. When a nonlin­

ear wave equation is considered, Newton's methods require only a small number 

of iterations for good initial guesses. We benchmarked the convergence of the 

algorithms for various linear and nonlinear cases. We will attempt to rigorously 

establish the convergence rates for those problems. We will also investigate meth­

ods for generating good initial guesses; e.g., for an optimal control problem with 

a tracking type functional we may use the target state to help generate initial 

guesses for the Lagrange multiplier f. 

* That E. Fgwoftona 0/ (wear efaaftciù/, nonlinear eiaaticify, and fiom&neor conaer-

Wion Zows. Wave equations given in this thesis are special cases of PDE systems 

modelling elastic materials and structures. It is of significant practical interest 

to study optimal control problems for hnear and nonlinear elasticity. Nonlinear 

conservation laws are more useful in applications than linear conservation laws. 

We will attempt to extend the results of Tasks A-D into numerical solutions of 

control problems for elasticity and nonlinear conservation laws. We are confident 

about the successes of research into such problems in one space dimension, and we 

hope to be able to make tangible progress in higher dimensions as well. 
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