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A key goal of precision agriculture is to achieve the maximum crop yield while minimizing

inputs and loses from cropping systems. The challenge for precision agriculture is that

these factors interact with one another on a subfield scale. Seeding density and nitrogen

(N) fertilizer application rates are two of the most important inputs influencing agronomic,

economic and environmental outcomes in cropping systems including yield, return on

investment (ROI), and nitrate (NO3
−) leaching. Here a cropping system model framework

is used to predict site-specific subfield optimum seeding density and (N) fertilizer

application rates based on publicly available data sources. The framework is used

estimate differences in yield, ROI, NO3
− leaching, and N2O emissions corresponding

with economic optimum (maximum ROI) and agronomic optimum (maximum yield)

inputs. The framework couples the process-based APSIM cropping system model

with the SSURGO soils database, Daymet weather data service, land grant university

estimates of crop production costs and commodity price estimates, and the R statistics

software. Framework performance was evaluated using multiple years of precision yield

monitor data obtained from a conventionally managed continuous maize (Zea mays L.)

cropping system field located in north central Iowa on which varying N-fertilizer rates

were applied. Subfield model estimates of crop yield were sensitive to initial conditions

related to historical management of the field and had an r2 = 0.65 and a root mean

square error of 1645.0 kg ha−1. A site-specific application of the framework comparing

economic optimum seeding density and N-fertilizer rates with agronomic optimum values

estimated an average ROI benefit of 7.2% as well as an average NO3
− leaching and

N2O emissions reductions of 2.5 and 7.6 kg ha−1, respectively. However, in a minority of

cases NO3
− leaching was greater at the economic optimum, indicating that managing

to maximize ROI rather than yield may not always reduce environmental impacts.

Our results suggest that managing cropping systems for the economic optimum is

plausible using publicly available data with our framework and will likely lead to improved

environmental outcomes.
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INTRODUCTION

Optimizing the use of input resources in agricultural land
management is critical to maintaining sustainable and profitable
cropping systems. However, farm fields are characterized
by subfield variability linked to soil properties, topography,
competition with pests and weeds, as well as other factors
that directly or indirectly influence plant health. This spatial
variability leads to over- and under-fertilization in different parts
of the field when using uniform seeding densities and nitrogen
(N) fertilizer rates. Areas where N-fertilizer is applied in excess
of crop demand are often correlated with higher susceptibility
to nitrate (NO3

−) leaching, nitrous oxide (N2O) emissions, and
other environmental losses, while under-fertilized areas may
result in limited crop productivity, lost opportunity for profit,
and decreased economic return (Link et al., 2006; Basso et al.,
2016). Variable rate technology (VRT) provides a mechanism for
varying the allocation of input resources. In maize (Zea mays
L.) cropping systems seed density and N-fertilizer are two of the
most important decision criteria influencing yield, profitability,
and nutrient losses to the environment (Licht et al., 2017; Morris
et al., 2018). Yet, making informed subfield seeding and N-
fertilizer decisions that maximize return on investment (ROI)
and minimize environmental impacts is often difficult without
an abundance of site-specific data spanning multiple years and
weather conditions (Morris et al., 2018). Consequently, modest
increases in ROI are reported from the use of VRT and adoption
has remained relatively limited (28% of US maize hectares)
compared to other precision agriculture technologies such as
yield monitors and GPS guidance systems (70 and 54% of US
maize hectares, respectively, Schimmelpfennig, 2016).

A number of approaches have been used to predict
economically optimal N-fertilizer application rates (EONR)
including yield goal assessments, pre-plant and pre-sidedress
soil NO3

− tests, crop canopy sensing, and maximum return
to N calculators based on regionally specific empirical N-
fertilizer rate trials (Sawyer and Nafziger, 2005; Puntel et al.,
2016, 2019; for a review see Morris et al., 2018). Additionally,
studies have also attempted to quantify optimum site-specific
seed densities (Licht et al., 2017), which may represent a
more economically impactful management change in many
cropping systems compared to changes in nutrient applications.
Variable rate zones defining different application rates have been
generated using precision agriculture data sources including
yield monitor maps (Adamchuk et al., 2004; Basso et al., 2016;
Maestrini and Basso, 2018), remotely sensed data (Hong et al.,
2006; Basso et al., 2016; Gao et al., 2018; Jin et al., 2019), gridded
soil sampling (Fleming et al., 2000), digital soil maps (Bobryk
et al., 2016), topography (Long et al., 2015; Walters et al., 2017),
and real-time optical sensors (Raun et al., 2002; Tremblay et al.,
2009; Kitchen et al., 2010; Stefanini et al., 2018).

However, large uncertainty and financial risk exists with the

prediction of EONR and economic optimum seed rate (EOSR)

across multiple years, particularly at field-to-subfield spatial

scales (Licht et al., 2017; Puntel et al., 2018). Uncontrollable
factors impacting N-cycle dynamics and crop uptake, including
temperature and precipitation event timing and intensity, make

accurate EONR and EOSR difficult. Additionally, crop yields
are not linearly related to seeding densities due to inter-plant
interactions and competition which has been demonstrated to
decrease yields beyond certain plant population (i.e., plants m−2)
rates (Woli et al., 2014). This warrants a systems-based approach
for determining economically optimum seeding densities and
N-fertilizer rates that are capable of predicting crop yields,
N-dynamics, and environmental losses based on the complex
interaction between crops, weather conditions, soil properties,
and land management practices (Banger et al., 2017).

Simulation models have previously been used to predict
spatially-explicit nutrient losses (Paz et al., 1999; Holland
and Schepers, 2010; Solie et al., 2012) as well as EONR and
EOSR. Commercial tools offering prescription management
recommendations and in-season N-fertilizer recommendations
such as Adapt-N (http://www.adapt-n.com), Encirca (https://
www.pioneer.com/home/site/us/encirca/), and Climate
FieldView (https://climate.com) incorporate real-time data
as well as local soil and crop management factors. However,
these models and tools are typically conceived for in-season
N-management decisions during crop growth based on historical
and predicted weather data. Such tools have been demonstrated
to improve resource use-efficiency and yield (Sela et al., 2016),
but rely on non-publicly available data and algorithms.

The goal of this study was to develop an automated predictive
framework for estimating site-specific, subfield-scale economic
optimum combinations of seeding densities and N-fertilizer rates
using publicly available, spatially-explicit data and models. The
Agricultural Production Systems sIMulator (APSIM; Holzworth
et al., 2014) crop model was coupled with the SSURGO soils
database, Daymet weather data service, and public financial data
to create a spatially explicit modeling framework for estimating
yield and ROI responses based on varying combinations of
seeding densities and N-fertilizer rates for a given cropping
system field. Outputs of the APSIM analyses for all seeding
and N-fertilizer combinations are then aggregated and processed
using the R statistical package to identify the agronomic and
economic optimum input combinations as well as corresponding
differences in environmental outcomes such as NO3

− leaching
and soil N2O emissions. Therefore, the framework may be used
in making more informed subfield seeding and N-management
decisions by weighting corresponding economic outcomes with
potential environmental risks. The specific objectives of this
study were to: (1) Evaluate the accuracy of the model simulations
at a subfield spatial scale; (2) Evaluate modeled subfield
ROI responses to variable management conditions based on
experimental observations; and (3) Quantify differences in ROI,
NO3

− leaching, and soil N2O emissions between agronomic and
economic optimum inputs.

METHODS

Integrated Modeling Approach
The model framework couples APSIM (Holzworth et al.,
2014) with the SSURGO soils database and Daymet weather
data service to simulate subfield soil-specific, cropping system
processes for a user defined field (Figure 1; Table 1). Historical
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FIGURE 1 | Data flow through the model framework, which automates the parameterization of the APSIM model for all SSURGO soils within a specified cropping

system field boundary and estimates economic and environmental responses to varying management combinations for each soil.

crop production cost estimates and commodity prices obtained
from Iowa State University Extension and Outreach Ag Decision
Maker Historical Costs of Crop Production (Johanns and
Plastina, 2019) were added to the framework for converting
predicted yields to profit and ROI. Based on a geospatial
field boundary, the framework identifies all subfield SSURGO
soils within the field, retrieves daily historical weather data,
and executes APSIM to simulate multiple seeding density
and N-fertilizer rate combinations. Output from APSIM is
then aggregated to a centralized database and processed using
an R script to identify both the economic and agronomic
optimum (defined as the maximum ROI and yield, respectively)
combinations of input resources for all subfield soil types.

APSIM Cropping Systems Model
The APSIM model is composed of several modules that
enable the simulation of agricultural systems based on plant,
animal, soil, climate, and management interactions. In this case,
the framework incorporated APSIM version 7.7 modules for
maize growth, soil water dynamics, soil and surface organic
matter dynamics, and crop management rules (Holzworth
et al., 2014). The maize crop growth module simulates maize
growth and development of different cultivars on a daily
time-step based on temperature, precipitation, solar radiation,
water and nitrogen availability, soil properties, and land
management practices. The model separates crop phenology
into several phases, the duration of each dependent on
daily temperature, water availability, N stress, and carbon
(C) availability. Daily biomass increases are calculated as the

TABLE 1 | Framework components and data sources.

Component Description References

APSIM Cropping

system model

http://www.apsim.info/

Soil Survey

Geographic Database

(SSURGO)

Soil database https://websoilsurvey.sc.egov.usda.

gov/App/HomePage.htm

Daymet Weather Data Weather

database

https://daymet.ornl.gov/

Ag decision maker Extension

database

https://www.extension.iastate.edu/

agdm/

R Statistics

software

package

https://www.r-project.org

minimum of two model estimates representing light-limited
and water-limited productivity conditions, respectively. Daily
biomass gain predicted by the model is partitioned into root,
stem, leaf, and grain components depending on the plant stage of
growth. In addition to the impact of N-fertilizer application rates
on plant N availability within the soil profile, seeding density,
and depth influence simulated leaf area index and subsequent
biomass production and grain yield. APSIM has previously been
used and validated in several studies similar to our cropping
system to estimate crop productivity responses to varying levels
of N-fertilizer rates (Puntel et al., 2016, 2018; Martinez-Feria
et al., 2018).
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Model Inputs and Data Sources
The SSURGO soils database contains geospatially explicit soil
types and corresponding physical soil properties across U.S.
territories. To identify soils within a specific field, the field
boundary is intersected with the SSURGO map unit polygon
data layer stored in a PostgreSQL (www.postgresql.org) database
with Post-GIS (www.postgis.net) extension. Vertical horizons
data corresponding with the dominant component of each
identified SSURGO soil map unit is used to define the initial
soil condition within the APSIM model. The process requires
several parameters to be derived from the available SSURGO soil
properties (Table 2).

Daily maximum and minimum temperature, precipitation,
and solar radiation estimates are obtained from the Daymet
weather data service (Thornton et al., 2018) based on the
geospatial coordinates of the field centroid and the specific
years of the analysis (Figure S1). Weather attribute values from
the incoming data stream from Daymet are converted to the
appropriate units and used to generate the daily weather input
file (.met), native to APSIM. To analyze cropping system fields
where financial data is unavailable, modeled and measured yield
values are converted to a profit and ROI basis using annual crop
production cost estimates and commodity prices generated by
Iowa State University Extension and Outreach (Plastina, 2018;
Johanns, 2019). These costs represent typical input costs and
grain prices specific to Iowa (Table 3). Similarly, alternative
financial data from other land grant universities could be added
to the framework to increase the scope of the tool beyond Iowa.

Subfield Analysis of Continuous Maize
System
To evaluate the ability of the framework to differentiate subfield
differences in crop productivity and corresponding ROI, it
was applied to model a continuous maize field located in
Butler County, Iowa, U.S. (Table S1). Subfield simulations were
created by executing APSIM for each of the identified SSURGO
soil types such that field scale management was repeated for
each polygon. The simulation spanned the 2012–2017 growing
seasons during which manure was the primary source of N,
excluding commercial N-fertilizer applied during anN-treatment
study in 2015 and 2016. From 2012 to 2014, land management
operations included a fall manure application with a total target
N-application rate of approximately 224.5 kg ha−1, and an early
spring urea ammonium nitrate (UAN) fertilizer application
equivalent to 28.1 kg ha−1 of N. Prior to planting, a cultivator
tillage pass was typically used to condition the seed bed for
planting. Additionally, a tillage pass with a chisel plow was used
to incorporate a portion of the surface residue remaining in
the field following maize harvests. During the 2015 and 2016
seasons N-management practices were altered and commercial
N-fertilizer was applied. Following the 2014 harvest, a fall
anhydrous ammonia application equivalent to 252.6 kg ha−1 of
N was applied using a 12-row knife applicator. Similar to the
previous years, a uniform spring UAN application of 28.1 kg ha−1

was then applied in the spring of 2015. After the 2015 harvest, a
uniform fall manure application (168.4 kg ha−1 of N) was applied

followed by a spring 2016 UAN application of 112.3 kg ha−1 of N.
Crop production cost estimates for each year of the analysis were
adjusted to represent the annual seeding density, manure, and N-
fertilizer application rates. Manure amendments were modeled
using manure storage pit analysis values obtained from Sawyer
and Mallarino (2008) for C to N ratio and C to Phosphorus (P)
ratio values required by the APSIM model. Use of the maximum
grain price documented for each modeled year was based on the
assumption that the grain would be stored on site and sold at an
economically advantageous time. For years in which manure was
applied, associated manure application costs were obtained from
organic maize production budgets, and N-fertilizer costs were
adjusted accordingly. Modeled yield estimates corresponding
with each subfield soil type were compared with multiple years
(2012–2017) of precision yield monitor data averaged to each
unique soil boundary.

Evaluating Simulated Subfield Yield
Response to Variable Inputs
The framework was used to model multiple combinations of
input resources against the various soil types identified within
the continuous maize system field. In addition to uniform
field rates, varying seeding densities and N-fertilizer rates were
simulated in an effort to find the agronomic and economic
optimum combination of input resources. Seeding density
varied from 1 to 15 seeds m−2 and N-fertilizer rates were
varied based on a percentage of the field-scale application
rate during 2015 and 2016. N-application rates ranging from
0 to 150% of the field-scale N-fertilizer rates were modeled
for the Fall 2014 and Spring 2016 applications. In addition
to estimating the economic benefit, model outputs were used
to estimate and soil N2O emissions and NO3

− leaching
(below 2m; which exceeds the expected maize rooting depth;
Ordóñez et al., 2018) associated with the economically optimum
management rates compared to the agronomically optimum
rates. Simulated 2015 and 2016 yields and ROI were compared
with observations obtained from six subfield zones (97.5m
× 36.6m) within the field (Figure 2). Each zone was divided
into eight strips on which randomized N-fertilizer treatments
were applied during the fall of 2014 and spring of 2016
including 0, 50, 100, and 125% of field-scale application rates
(224.5 and 112.3 kg ha−1, respectively). Zones were identified
using mean yield monitor data from 2013 and 2014. Data
from 2012 was excluded from the zone classification process
due to drought conditions that resulted in abnormally low
crop productivity.

Each of the zones were divided into eight equal (12.2m ×

36.6m) strips on which one of four N-fertilizer treatments were
applied (one replication per treatment). To prevent disrupting
normal field operations, plot positions were constrained to be
in line with one another. This allowed the N-treatments to be
applied during normal field operational passes using a two-
rate applicator system, in which one rate was set to the field-
scale baseline and the other to the specific plot treatment rate.
The secondary application rate was switched on and off by the
operator at the boundaries of each N-treatment strip.
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TABLE 2 | Derivation of APSIM soil properties from available SSURGO soil attribute data.

APSIM parameter SSURGO

parameter

SSURGO units Conversion factor APSIM units

Bulk density of the soil for each layer (BD) dbThirdBar_r g cm−3 1 g cm−3

Volumetric water content for air dry soil in each

layer (AirDry)

wFifteenBar_r % 0.5 * wFifteenBar_r at depth <= 15 cm

wFifteenBar_r at depth > 15 cm

mm3 mm−3

Volumetric water content for each layer

corresponding to a soil potential of 15 bar (LL15)

wFifteenBar_r % 0.01 * wFifteenBar_r mm3 mm−3

Volumetric water content at drained upper limit

for each soil layer (DUL)

wThirdBar_r % 0.01 * wThirdBar_r mm3 mm−3

Volumetric water content at saturation for each

soil layer (SAT)

wThirdBar_r % 1 – (wThirdBar_r/2.65) mm3 mm−3

Drainage rate from soil layer when the soil water

is above saturation (KS)

ksat_r 0.001 * 3600 * 24 * ksat mm day−1

Soil organic carbon content of soil layer (OC) om_r om_r/1.724 %

TABLE 3 | Annual crop production cost estimates and maize grain price.

Year Seed price

($ 1,000 seed−1)

N price1

($ kg−1)

Land rent

($ ha−1)

Max. grain price

($ bu−1)

Min. grain price

($ bu−1)

Mean grain price

($ bu−1)

Total budget w/o N

and seed

($ ha−1)

2012 3.40 1.39 705.6 7.89 5.99 6.67 1573.85

2013 3.64 1.28 756 7.13 4.32 6.23 1610.06

2014 3.78 0.97 787.2 4.76 3.51 4.13 1636.49

2015 3.86 1.03 748.8 3.86 3.53 3.67 1595.09

2016 3.70 0.88 710.4 3.75 3.08 3.40 1492.10

2017 3.43 0.68 648 3.43 3.14 3.30 1355.78

Reflects costs of commercial N-fertilizer per unit applied. For our case study the N-fertilizer cost was $0 in 2012, 2013, 2014, and 2017 because N was applied only in the form of

manure.

Yield monitor data from 2015 and 2016 was geospatially
intersected with the zone and sub-zone plot boundaries to
estimate the mean observed yield and ROI associated with each
N-treatment. The model results for each plot were derived by
using the area-weighted average results corresponding with the
different soil types intersecting each plot.

RESULTS

Objective 1: Evaluation of Subfield Model
Results Against Observations
Linearly regressing simulated yield predictions against spatially-
averaged yield monitor observations corresponding with all soil
types resulted in an r2 = 0.48 and a root mean square error
of 2171.8 kg ha−1, or 27.1% ROI (Figure 3; Table 4; Table S2).
The largest modeling errors were associated with overestimates
that occurred for limited-area soils located near the field borders
including Mukey 403446 (Yield RMSE 4524.0 kg ha−1, area= 0.5
ha), Mukey 403397 (Yield RMSE 2468.1 kg ha−1; area = 1.9 ha),
and Mukey 403398 (Yield RMSE 1917.2 kg ha−1; area = 0.2 ha;
Table S3). Excluding these soils from the results (4% of the field
area) improved model fit (r2 = 0.65; Figure 3) and reduced yield
RMSE 1645.0 kg ha−1 and ROI RMSE to 21.5% (Table 4).

Low yields observed in the southwest corner of the field
(Mukey 403351) were reportedly caused by topographical effects

and a broken drainage tile, which over several years had
limited infiltration and increased susceptibility to ponding and
soil compaction (Figure 2; Table S4, personal communication
with land manager). Interannual variation in simulated yield
and ROI due to varying weather conditions, crop production
costs, and maize prices were found to be consistent with
observations (Figure 4). Low yields and corresponding ROI
estimates observed in 2012 due to drought conditions were
reflected in modeled outputs as well as the relatively high yields
and economic return observed in 2013. However, the range of
model estimates associated with 2015–2017 was found to be
consistently high.

Objective 2: Evaluation of Simulated
Subfield ROI Response to Variable
Management
Model results were compared with corresponding experimental
plot yields obtained from spatially averaged yield monitor data
(Figure 2). Model outputs associated with the two highest N
treatments tended to over-estimate observed crop productivity
and corresponding ROI (Figure 5). Overall, the plot based yields
had an RMSE of 2490.6 kg ha−1 (12.1% ROI) and 3075.2 kg
ha−1 (15.4% ROI) in 2015 and 2016, respectively (Table S5).
However, similar to observations, simulated 2015 yields showed
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FIGURE 2 | Average 2013 and 2014 ROI map of field used to identify spatial economic zones in which N-fertilizer rate trials were performed in 2015 and 2016.

SSURGO soil mapunit polygons are overlayed and labeled with unique Mukey identifier (e.g., 403442). Each soil polygon was modeled independently to determine an

optimum management for that area. Boundaries defining the identified economic zones (gray areas) include two “no-cost” zones defined by an average ROI of

−15.0% or less; two “cost-limited” zones with a mean annual ROI between −15.0 and 15.0%; and two “revenue” zones with a mean annual ROI >15.0% (Google

imagery 2017, DigitalGlobe).

FIGURE 3 | Modeled yield and ROI values fit to observations obtained from spatially averaged precision yield monitor data. Gray data points represent data removed

from soils with small areal extent located near the field boundary.

little response to N-fertilizer applications beyond the 50% of
the field application rate. Contrastingly, modeled 2016 yields
responded positively to increases in the early Spring N-fertilizer

application (Figure 6). Observations in 2016 showed the highest
N application rate (125% of field-scale N application) resulted
in lower yields than the 50 and 100% field-scale treatments
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indicating the secondary spring application, following the fall
manure application in 2015, may not have been necessary to
maximize yield. Consequently, the highest N treatment resulted
in lower observed economic return when compared with the 50
and 100% application rates, particularly in 2015 (Figures 5, 6).

Simulated yield and ROI were found to have a positive
response to increasing N application rates during the spring
of 2016. The modeled outputs showed the yield and ROI to
be more proportional to the incremental increases between N-
treatments. Variance associated with the predicted yield and
ROI values was found to decrease as N fertilizer rates increased
to a maximum. The decreased variance across the maximum
simulated N treatment plots indicated the increasing N-fertilizer
rates were adequate to overcome any insufficient source of initial
plant available N that is based on soil type.

The largest modeling errors were found to correspond
with N treatment simulations representing plots located

TABLE 4 | Mean annual yield and ROI error estimates generated by the APSIM

model framework based on spatially averaged precision yield monitor data.

Group Sample

size

Yield

RMSE (kg

ha−1)

Yield

NRMSE

(%)

ROI

RMSE (%)

All Soils 66 2171.8 21.0 27.1

Excluding 403446,

403397, and

403398

48 1645.0 15.5 21.5

in areas with historically low productivity and economic
return. Yield in “No-cost” zones were found to have an
RMSE of 4313.6 kg ha−1 (21.3% ROI) compared to 1449.6 kg
ha−1 (7.1% ROI) and 1667.6 kg ha−1 (8.4%) associated
with “Expense-limited” and “Revenue” zones, respectively
(Figure 7; Table S6).

Objective 3: Simulated Environmental and
Economic Impacts Associated With
Variable Rate Seeding and N Fertilizer
Multiple seeding and N-fertilizer rate combinations were
simulated across all subfield soils within the North-central Iowa
field during 2015 and 2016 to identify combinations of seed and
N-fertilizer inputs predicted to result in agronomic and economic
optimums. A total of 4774 APSIM simulations were processed to
estimate yield and ROI responses across a management decision
space of 1–15 seeds per square meter and 0–150% of the field-
scale N-fertilizer rate. Simulations showed a range of variability in
maize yield and ROI estimates across the different soil types and
years (data not shown). Modeled yield and ROI response surfaces
were generated, and agronomic and economic optimums were
identified from the different combinations of seeding density and
N-fertilizer rates (e.g., Figure 8).

Modeled annual crop productivity estimates for 2015 and
2016 ranged from 2812.4 to 14055.2 kg ha−1 across all
plots, seeding densities, and N-fertilizer rate combinations.
The range of yields corresponded with a minimum ROI
of −75.3% and a maximum of 1.6% (data not shown).
Initial soil conditions set using SSURGO data were found

FIGURE 4 | Distribution of annual modeled and observed yield monitor data for each year of analysis. Filled boxes represent the interquartile range (IQR), end caps

represent maximum and minimum and dots are outliers defined as >1.5 times the IQR.
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FIGURE 5 | Scatter plot of simulated and spatially averaged yield monitor data corresponding with each experimental N-treatment plot located in the northcentral

Iowa field.

FIGURE 6 | Modeled and observed yield data associated with the four N-fertilizer treatments corresponding with 0, 50, 100, and 125% of the field-scale N-fertilizer

rate applied during the fall of 2014 and the spring of 2016. Two replicates of each N-treatment were applied in randomized adjacent plots within the six zones located

in an Iowa field (see Figure 2).

to directly influence the magnitude of the simulated maize
yields, particularly at lower N-fertilizer rates (0 and 50% of
field-scale). Due to relatively high input costs and low commodity

prices during 2015 and 2016, a majority of modeled yield
values were estimated to result in an ROI below break-even
(0% ROI).
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FIGURE 7 | Range of ROI values within each experimental zone during 2015 and 2016. No-cost zones were found to have the greatest range of variability resulting

from the alternative N-treatments within each zone. Revenue zones were found to have the least variability compared to the No-cost and Cost-limited zones.

FIGURE 8 | An example of modeled yield and ROI response to variable seeding density and N-fertilizer rate combinations applied in 2015 and 2016. Data associated

with the area-dominant subfield soil type within the North-central Iowa field is shown (Mukey 403374; 5.5 ha; see Figure 2).

In 2015, maximum yield estimates consistently corresponded
with the highest seeding density (15 seedm−2) and N-application
rate (150% of field-scale rate; 336.8 kg ha−1) for all soil types (data
not shown). The economic optimum seeding density (EOSD)
was also consistent across a majority of soils ranging from 8 to

9 seeds m−2 (Figure 9). Economic optimum N-fertilizer rates
(EONR) in 2015 showed increased variability across the field
ranging from 110 to 180 kg ha−1. Although the EONR varied
across the field, the maximum predicted ROI potential associated
with the different soils was found to be relatively consistent,
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varying by 4.1%. Similar to 2015, maximum crop yields in 2016
corresponded with the greatest N-fertilizer rate (150% of field-
scale rate; 168.4 kg ha−1) considered within the decision space
for the spring application. However, the agronomic optimum
seeding rates in 2016 were more variable than 2015, ranging from
9 to 14 seeds m−2. This indicated higher seeding rate scenarios
were likely N-limited at the 150% field-scale application rate.
As in 2015, the predicted 2016 EOSD was consistent (8–9 seed
m−2) and showed little variation from EOSD predictions from
the previous year. N-fertilizer rates were again shown to be the
main regulating input for maximizing ROI across the field.

ROI, NO3
− leaching, and N2O emissions differences between

the agronomic and economic optimum seeding density and
N-fertilizer rate scenarios were calculated to determine the
range of economic and environmental outcomes that separate
maximum economic return and maximum yield potential. Yield
differences between the economic and agronomic maximums
associated with each subfield soil polygon ranged from 423.1
to 830.5 kg ha−1 in 2015 and from 99.5 to 897.1 kg ha−1

in 2016. The yield differences corresponded with ROI gains
ranging from 10.0 to 12.1% in 2015 and 0.3 to 8.0% in 2016,
respectively (Figure 10). The yield and ROI differences between
the agronomic and economic optimums were found to be driven
by both changes in seeding density as well as N inputs. In
cases where seeding density was the main factor separating the
agronomic and economic optimum management scenarios, the
shift in ROI was minor. These relatively small shifts in ROI
from changes in seeding density were primarily the result of
a reduced yield impact compared to the simulated changes
in N-fertilizer. Additionally, the relative cost savings from the
reduced seed density were minimal compared to the cost of
N. An average reduction of 5 seeds m−2 in 2015 equated to
reduced input cost of $44.40 ha−1. In terms of N, a reduction
of 43.0 kg ha−1 would be needed to achieve an equivalent
cost reduction, however, proportionally larger differences in N-
fertilizer rate were estimated. An average N-fertilizer difference of
157.3 kg ha−1 was predicted to separate economic and agronomic
optimum managements in 2015 ($161.99 ha−1 in cost savings
based on the average N-price in 2015), followed by an estimated
19.5 kg ha−1 ($20.13 ha−1) difference in N-fertilizer in 2016. The
economic optimum combination of inputs was found to have an
average decrease NO3

− leaching across all soils with an average
reduction of 3.7 and 1.4 kg ha−1 in 2015 and 2016, respectively
(Figure 11). In addition to NO3

− leaching, N2O emissions
showed a relative decrease when comparing the seeding and N-
fertilizer rates associated with maximum yield to those associated
with maximum ROI. In 2015, differences between the optimum
management scenarios accounted for an average change in N2O
emissions of 14.8 kg ha−1. In 2016, the N2O emissions difference
between economic and agronomic optimum scenarios was 0.5 kg
ha−1 (Figure 11).

DISCUSSION

Optimizing the use of input resources within cropping systems
is critical to improving sustainability and increasing economic

returns from farm fields. However, predicting how to best
allocate input resources such as seed and N-fertilizer to maximize
ROI is difficult due to many dynamic factors influencing crop
productivity and variability within the cropping systems (Scharf
et al., 2005; Jaynes et al., 2011; Dhital and Ruan, 2016). As a result,
subfield seeding density and N-fertilizer application guidance
is needed prior to upcoming cropping seasons. However, pre-
season methods of determining the EONR and EOSD, such as
a yield-goal approach, rely heavily on historical data and often
involve estimates of interdependent factors (Sela et al., 2017).
Regional MRTN tools that incorporate N-fertilizer prices and use
empirical data to predict yield response to variable N-fertilizer
rates provide field-scale approximations of optimums, but do
not provide site-specific subfield recommendations or adjust for
year-to-year variability (Sawyer et al., 2006).

Cropping system models such as APSIM are capable of
predicting such site-specific subfield yield responses, however
determining how these models can best be applied to provide
land managers with actionable information to use within their
existing management operations is difficult. The framework
presented here was developed to determine if a cropping
system model, coupled with publicly available data sources,
could be used as a decision support tool for estimating site-
specific subfield economic optimum seeding density and N-
fertilizer rates. Ultimately to be adopted, the framework will
need to be practical to use, requiring further development of a
user-friendly interface that may need to be catered to specific
regions. This study was focused on maize grown in the Midwest
U.S., a region where the adoption of precision agriculture
has spread rapidly (Schimmelpfennig, 2016), and hence a
logical initial focus for framework development. However, the
SSURGO and Daymet data sources provide coverage across the
conterminous U.S. allowing the framework to be applied to a
variety of cropping system locations with varying weather and
soil conditions. Extending beyond our study region, there are
analogous tools such as Yield Prophet (Hochman et al., 2009;
McCown et al., 2009) which have been successfully implemented
in wheat, barley, canola, and oat cropping systems in Australia.
Additionally, alternative data sources which provide alternate
global weather and soil characteristics could be integrated with
the framework to further extend its use in different regions
(e.g., the European Centre forMedium-RangeWeather Forecasts
Reanalysis (ERA) products and the European Soil Database).

The framework was applied to determine subfield EONR and
EOSD combinations for a Butler, County, Iowa, U.S. cropping
system field in continuous maize and demonstrated the ability
of the tool to capture subfield variability of yield and ROI across
multiple years (2012–2017) and weather conditions (Figures 2,
3). The initial demonstration of the framework required making
some assumptions about the farming operations (e.g., selling
grain at peak annual price) that could be incorporated into
the user interface as customizable settings. Results of the
Butler County field analysis showed fair agreement with annual
subfield soil-based observations obtained from area-averaged
yield monitor data for the 2012–2017 growing seasons. The
greatest sources of modeling error corresponded with several
small-area soils along the field boundary (Figure 2). Yields and
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FIGURE 9 | Estimated economic optimum seeding density (EOSD) and economic optimum N-fertilizer rates (EONR) for 2015 and 2016. Management zones defined

by one or more soil types sharing the same optimal combination of inputs are shown.

FIGURE 10 | Yield and ROI changes associated with a shift from agronomic optimum inputs to economic optimum inputs. Data points represent changes

corresponding with each subfield soil types during 2015 and 2016 (Table S7).

ROI associated with these soils were all over-estimated compared
to the observations derived from yield monitor data. Plant
stresses from non-simulated factors (e.g., standing water and
soil compaction) could explain model over estimation in these
areas. However, due to the small size (4% of field area) and the
proximity of the soils to the field boundary the increased error

might be expected. Furthermore, yield monitor measurements
may be artificially low near field borders (Luck and Fulton, 2004).
Excluding the identified soils improved model fit to observations
associated with the remaining 96% of the field area (r2 =

0.48 to r2 = 0.65) and reduced yield RMSE from 2171.8 to
1645.0 kg ha−1.

Frontiers in Sustainable Food Systems | www.frontiersin.org 11 December 2019 | Volume 3 | Article 108

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


McNunn et al. Subfield Cost-Benefit Analysis Framework

FIGURE 11 | NO3
− leaching and N2O emission changes associated with a shift from managing for maximum yield (agronomic optimum inputs) to managing for

maximum ROI (economic optimum inputs). Data points represent changes corresponding with each subfield soil type during 2015 and 2016 (Table S7).

Normalizing the RMSE by the mean observed yield resulted
in a relative RMSE (RRMSE) of 15.5% (Table S2), which was
similar in magnitude to a previous study examining the ability
of the APSIM cropping system model to capture yield response
to variable N-fertilizer rates in an Iowa maize system (Puntel
et al., 2016). The RRMSE between 15 and 30% represents
moderate model performance based on Yang et al. (2014).
However, it is important to note the framework simulation
approach was characterized by a high degree of difficulty
as it runs a continuous simulation between 2012 and 2017,
avoiding re-initialization of the soil data to capture year-on-year
impacts on N-cycle dynamics (Constantin et al., 2011; Basso
and Ritchie, 2015) related to the variable weather conditions
and prior management practices. Such a modeling approach
may propagate and accumulate error associated with a particular
year during the full simulation period (Salo et al., 2016;
Puntel et al., 2018). Based on this high level of difficulty and
the resulting model performance, we believe the ability of
the framework to capture subfield-scale patterns outside of a
calibrated experimental setting indicates the framework to be a

viable basis for an assessment tool when using public soils and
weather data.

The model outputs corresponding with varying combinations
of seeding density and N-fertilizer rates showed, in addition
to increased ROI, managing for maximum economic return
vs. maximum yield, likely provides an environmental co-
benefit by reducing N-losses from NO3

− leaching and N2O
emissions. Daily outputs from the analysis showed modeled
N2O emissions were driven by interannual conditions that
resulted in several periods during the growing season each year
in which conditions favored denitrification (data not shown).
Alternatively, the daily outputs showed a majority of NO3

−

leaching to have occurred during the fall of 2015 into the
spring of 2016. This indicated the fall manure application
in 2015 was susceptible to high rates of NO3

− leaching.
The economic and environmental co-benefit associated with
strategically targeting management practices to subfield zones
supports similar findings in Muth (2014) and Brandes et al.
(2016), which have noted a correlation between environmental
and economic performance in cropping systems. Such a
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relationship presents a financial incentive for adopting the
economically optimum inputs, even at the cost of potential
yield. A comparison of the predicted economic and agronomic
optimums performed in this analysis showed the importance of
managing the balance between seeding density and reduced N-
fertilizer rates. The dual benefit of increased economic return and
reduced environmental impacts may be sufficiently appealing
to incentivize adoption by land managers, especially relative to
regulatory actions by governments (Arbuckle, 2013; Kalcic et al.,
2014).

The modeled relationship between maximum yield and
maximum ROI was shown to reinforce aggregated empirical
findings that are used in MRTN tools such as the Corn Nitrogen
Rate Calculator (CRNC) (Sawyer et al., 2006). A small yield
response was observed in 2015 when the primary source of N
to the field was varied (224.5 kg ha−1 in the Fall 2014) indicating
that some N-stress occurred at the lower rates of 0 and 50% of the
field-scale N application. The long history of manure amendment
prior to the 2012 start of the analysis has likely resulted in a
large stock of organic N sources within the soil profile of the
North-central Iowa field. A calibration approach, such as the one
used in Puntel et al. (2016), based on previous knowledge of the
system including the C:N ratio of the crop residues could be
used to improve the predictive capability of the framework for
future years.

The accuracy and usefulness of the tool could also be
improved with more information and site-specific data sources.
For example, relatively low yield observations in the southwest
corner of the Iowa maize field were reported by the land manager
to be the result of a broken tile drain and water infiltration issues
(personal communication). Such information was not captured
in the simulations when using only the public data sources to
drive predictions. As a result, the variable N-treatment zone
(No-cost 1) located in this area was found to correspond with
the greatest modeling errors [yield and ROI RMSE of 4313.6 kg
ha−1 and 21.3%, respectively (Table S6)], compared to the other
variable N-treatment zones. For example, expense-limited zones
showed the least error with a yield RMSE of 1449.6 kg ha−1 and
ROI RMSE of 7.1%. Therefore, a real world application of the
framework could be improved with some familiarity with the
field being analyzed beyond crop, weather, and soil conditions.
Calibration of the framework using historical precision yield data
and initialization of simulated soil properties including initial
NO3

− and NH+

4 concentrations would also likely improve model
performance. Such calibrations could be used to account for
residual N within the soil in amounts adequate to offset any N-
limitations that may occur in lower N-treatment plots. However,
the ability andmotivation of the landmanager to take the steps to
obtain the necessary site-specific measurements may not be likely
in some cases (Schimmelpfennig, 2016). In practice, there will be
a range of potential users of the framework with varying levels of
access to site-specific data and precision equipment/technology.
Further calibration of the framework to provide more accurate
predictions may represent a second phase in the analysis
process after initially using the framework to highlight areas
of the field that are not likely to respond to changes in

management practices (e.g., “No-cost” zones). The second
“calibrated” phase would then focus on areas of field where the
model has shown to provide a yield response similar to historical
observations. We envision the framework being applied in the
following manner:

(1) Perform initial baseline assessment of field using historical
management practices (i.e., seeding rate, N-fertilizer rates,
tillage), public soils data, and public weather data.

(2) Compare predicted baseline yield values to historical
precision yield data to identify areas of the field where
the framework provides satisfactory agreement with
observations (e.g., NRMSE ≤ 30%).

(3) Use framework to determine optimum seeding density
and N-fertilizer application rates to the areas identified
as satisfactory in Step 2 (standard management for
remaining areas).

The result of this second phase would then be used to
guide subfield management of seeding and N-fertilizer
rates for the sub-field areas that have not been excluded
in the “No-cost” zones. These zones should be prioritized
for the enrollment of conservation programs or targets
for perennial energy crops (Brandes et al., 2016). Further
testing on additional independent sites will strengthen the
predictive ability of the framework for supporting future
application decisions.

CONCLUSIONS

Optimizing the use of input resources within cropping
systems is critical to reducing nutrient losses improving
sustainability, and increasing economic return from cropping
system fields. However, predicting how to best allocate input
resources within a field is difficult due to the spatial and
temporal variability of weather, soils, and management practices
within the systems. By leveraging publicly available field-to-
subfield data sources, cropping system models may provide
a valuable decision support tool for predicting site specific
yield, ROI, and environmental impacts on which farmers
could base management decisions. The developed framework
provides a basis for a subfield decision support tool for
estimating economically optimum seeding densities and N-
fertilizer rates. An application of the framework to predict
annual yield and ROI outcomes in a maize cropping system
found the framework effectively captured subfield variability
of the observed crop productivity. These results support
that this framework could potential be used to increase
both economic and environmental performance in relatively
well performing zones. Our analysis also indicated that
poor performing zones are unlikely to be profitable at any
realistic combination of the key inputs studied, suggesting that
these areas may be targets for alternative cropping systems
(e.g., perennial grasses). NO3

− leaching and N2O emissions
differences between economic and agronomic optimum yields
reinforces a correlation between maximum profitability and
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improved environmental performance. Further development of
the integrated modeling approach to simulate perennial grasses
and utilize more site-specific data may increase the accuracy and
robustness of the framework. Integrating the use of additional
precision agriculture data layers including as-applied nutrient
applications, as-planted seeding data, gridded soil sampling,
elevation data, and remote sensed layers could provide the
necessary increase in spatial resolution needed to extend the
process-based modeling framework as a more practical decision
making resource.
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