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I. INTRODUCTION

By a variance component model we shall mean a statisti-

cal model with vector/matrix representation of the form

T A+l
y=2 X; 'K X; fi
i=0 1—r+1

where y is a n x 1 vector of observations, X;'s are fixed,
known: n X pg matrices whose elements may be either classi-
fication or functional parameter coefficients, X s are
fixed parametric vectors and ﬁi’s are random vectors satisfy- -
ing E(ﬁi ﬁtj) = 0(i¥3j), and E(ﬁi ﬁ'i) = V;. Sometimes, but
not always, the assumption that E(ﬁi ﬁi') =1 oiz will be
made as will the assumption of normality of’ﬂi effects. By
appropriate restrictions we can make ourvmodel conform to the
classification of Eisenhart (1947) or to some of the cases
mentioned in the extended ciassification of Tukey (1949).
Thus Model I (of Eisenhart.(1947)) refers to the case where
k=0, all Xj's are O or 1 and there is only one random vector
in our model. In this case where X;'s (i=C,...,r) refer en-
tirely to c1a551f1cat10n parameters the model represents an
analysis of variance (A. o.V.) model, while if Xlis consist of
both classification and functional parameters this special
case..represents an analysis of covariance (A.o0.C.) model.
Model II (of Bisenhart’(194?)) refers to the situation where
r=0, ¥y =p, Xg=j, i-e., an n x 1 column vector of ones, and

the'@i's are assumed to be independently normally distributed
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with covariance matrix I cz, assuming I of appropriate di-

mension for each i. Model III of Tukey (1949) is the pure
finite sampling model and is similar to Model I excépt that
the populations from which the random errors are drawn are
assumed to be finite, so that correlations are induced into
the covariance structure of y.

The minimum variance {M.V.) unbiased point estimation
problem usualiy seems to be viewed in two separate paris
that are seldom discussed together. These are: a) The esti-
mation of fixed effect parameters in models with correlated
or uncorrelated errors at which time nothing much is said
about estimates of components of variance except in the
special case of general linear hypothesis. ©b) The estimation
of variance components in random effects mcdels at which time
nothing is said about the estimation of fixed parameters in
the model. One of oﬁr aims was to give consideration to these
problems simultaneously, but in point of fact, a reasonable
solution is found in oniy a small number of cases. We con-
sider a f'mixed" model and it appears to be the case that only
in certain specially "balanced'' cases at opposite ends of
the spectrum of the genefél model that we are considering
are estimates with "optimum! properties available. Naturally
the optimum properties depeﬁd somevwhat on the assumptions
made at the start, and 'balance” is a term which needs

clarification,



In experimental design situations when ali factors are
not in fact random, but some are fixed, statisticians in amn
attempt to obtain amn approximate solution for estimators
of variance components have suggested answers which are moti-
vated by either the completely random 'balanced" or the gen-
eral linear hypothesis case and then modified in some fash-
ion. We have in mind, for example, the well-known rules for
writing down expected mean squares for the two~way mixed
model with interaction, given, amongst others, by Bennett
and Franklin (1954); the motivation for some modifications

has not always been as clear as it could have been.

Some of the contributions made by the present work are:

a. An attempt to unify the knowledge on M.V. unbiased
point estimation in a variety of models and to extend the
available techniques for obtaining best, i.e., M.V., esti-
mators of components of variance to some designs,- including
both random and mixed model ones for both the infinite and
the finite model where currently either little or nothing is
known about.the p;operties of least squares eétimatorso

b. The developuwent of a classification for variance
component models (of the type defined above), that enables
us to tell by a simple computation whether estimators with
good properties are available for any design in question.
Although investigated for an infinite model, we show grounds
for believing that this classification will be useful in de-

termining whether the best quadratic unbiased (b.q.u.) esti-



mator property can be inferred for finite modei estimators.
c. In most of the cases that can be represented by the
variance component model above, it is the case that U.M.V.
unbiased estimators do not exist. Ve have obtained some new
results on the variances of quadratic forms arising in either
mixed or random models and which are not dependent on the
normality assumption. Naturally however, they reduce to
simpler forms in that case. We imdicate briefly how these
results are necessary to solve the question of which esti-
mator we sﬁould choose among reasonable zalternatives in vir-
tually any cases that fall outside the rather small "balanced"”

class in which U.M.V. estimators do exist.
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II. REVIEW OF LITERATURE AND INITIAL RESULTS

Due to the broad nature of the topic and the fairly ex-
' tensive literature thereon, this review is rather long. It
may be divided quite naturally into two sections:

A. Estimation of components of variance

B. Minimum variance estimation of regression para-

meters in models with correlated errors.
A. Estimation of Components of Variance

The variance component estimation problem in a model of

the type
. k+1

Y= Jnpt §=1Xi ; (II.A.1)
is theoretically regarded as solved if we are satisfied to
make the assumptions of no correlation of the different @i
type vectors, i.e. E( B, ﬁ'j) = 0(i#j), normality of dis-
tribution of f; type vectors and E( Bi ﬁ!i) = Iciz. Actuélly,
however, maximum-likelihood provides an answer without re-
sorting to iterative techniques only in "balanced' models
even when all assumptions are made. In practice then, if we
are to obtain estimators with reasonably powerful small
sample properties, in contrast to ones which are only asymp-

totic, the assumption of some sort of balance is a very

definite requirement.



1ition of balance.
For example Crump (1951) says "A multiple classification is
balanced if all of the classes or subclasses of any chosen
rank contain the same number of observations.® Tukey (1956)
has another view which relates to the expectations of dif-
ferent lines of the A.o.V. table and their behavior when
arbitrary changes are made in the contributions in any
particuiar line. We find it convenient to point out at this
early stage that we shall distinguish two types of balance,
namely

balancej

and

balance, -
In general linear hypothesis models (frequently written
y = X¥ + e) the notion of balance; from ome point of view
requires the existence of an easily found solution to the
normal equations (X'X)¥ = X*'y. Apart from the desirable
feature of simplifying the analysis this notion of balance
usually ensures a structured covariance matrix and-.often equal
information on estimates of treatment differences. This ap-
pears to be the main advantage of a balanced; design. From
the viewpoint of analysis, of course, because of the Gauss-
Markoff theorem, there 'is no need to restrict comnsideration
to balanced; situations in order to obtain estimators with

the best linear unbiased (b.l.u.) property. There is not



and never was amy use for the concept of balance; irn varianmce
component modeis, but this is not generally recognized or
agreed upon. We shall refer to the model (II.A.1l) where
only @i's are random, E( @i@j,) = 0 (i#3) and E(@i@i‘) =
Io;2 as Model II. A model representation (II.A.1) will be
said to be balancedy if and omly if xixi'xjxj' = xjxj'xixi'

I

(i, i=0,...k+1). By Theorem 3 of Chapter III this means that

< 2
o X 1X'ks10 k41,

regardless of the actual values of the unknown parameters.
In fact, the orthogonal matrix must simultaneously diagonalize

X;X;(i=1l,...,k+1) .

We shall see that the balance, concept is a natural one in
variance component models. There is no obvious reason why
any balanced; design should also be a balanced; design. In
classification designs this may howevér be the case. It
should be noted that balances is not the same as the'balance
of Crump (1951) which in turn is not balancel;’yet all three
classes do to some extent overlap. Balance, is not the same
as the balance of Tukey (1956) either. To be more specific,
Tukey (1956) deals with a Model III situation and regards

the b.i.b. with treatments and blocks random as balanced.



However, if we represent the ramndow case of the baianced in-
complete block design (b.i.b.d. in the sequel) in the form
(II.A.1) with treatments and blocks random, then it is not
balanced,,

Crump (1947, 1951) was of the opinion that the estimates
of various components obtained by regarding all parameters
" as fixed and equating observed and expecied mean squares un-
der the random medel (and replacing negative estimates by
zero) i.e. what are known as A.o.V. estimators, are maximum
likelihood (M.L.) estimates when Model II is assumed and the
classification is balanced, i.e., if all of the classes and
subclasses of any chosen rank contain the same number of ob-
servations. Ignoring for now the problem ¢f equating nega-
tive estimates to zero, this conclusion still needs quaiifi-
cation. For example it is not clear that the M.L. estimators

equal the A.o.V. estimators and that either have any special

merit in the design

¥ij= uraj+b.te (I1.A.2)

J ij
(i=1,2), (j=1,2); (i=3,4), (j=3,4) .
In fact due to lack of coipleteness we cannot infer M.V. for
M.L. or any other estimators im this case. The sitwvation in
a b.i.b. is similar, though wmore complex. We shall go into
this case in more detail later. The balance criterion of
Crump (1951) appears to be of no help in sorting out diffi-

culties such as the above. The introduction of the balancep



definition seems to be a step in the right direction. Major
credit for the concept, if not for the name, is due to Gray-
bill and Hultquist (1961) who appear to have been the first
to use the condition of bzlance, in a class of variance com-
ponent models. They did not, however, point out that if this
rather exacting‘condition does not hold and even sometimes
when it does {as in II.A.2 above) we are iam difficuity inso-
far as M.V. estimation is concerned. Danieis (193%) and
Satter thwaite (1946) suggested estimators of the sampling
variance of any estimated variance component in a2 balanced
multiple classification under Model II. The sampling dis-
tribution of such estimates under Model II have been given by
Pearson (1933) and discussed by Satterthwaite (1946, and
Bhattacharyya (1945). Bross (1950) discussed and illustrated
several approximate methods of obtaizning confidence limits
for estimated varxriance compomnents. Wald (1940, 1941, 1947)
has given a theoretical method (apparently not yet used in
practice) by which exact confidence limits for any ratio of a
varzance component to the error component may be obtained.
Wald (loc. cit.) used a general linear hypothesis approach

to obtain mean squares. This method, of ignoring momentarily
the real assumptions aand using least squaréé, was spelled out
and popularized by Henderson (1953). If we substitute an
estimate of error for 02, Wald?®s (loc. cit.) method would

also yield approximate confidence limits. Crump's (1951)
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pioneer article reported om some of the work that was getting
under way, which regarded Model 1I as much too restrictive

and which desired to obtain estimates under less restrictive
conditions. Tukey (1950, 1956 , 1957), Hooke (1956a, and b)
and Wilk and Kempthorne (1955, 1956) provide a small indica-
tion of work which included amongst its general aims the es-

imation of variance compenents {and such redefimitions of

ot

his concept as were found necessary) wnen the assumption of

rYs

ot

normality and drawing effects from infinite popuiations were
replaced by drawing from finite ones.

It appears to be fair to say that a good measure of suc-
cess was achieved in obtaining unbiased estimators for the
balanced, structures, i.e., essentially those cases in which
equal or pioportional numbers were observed in the cells of
crossed or nested structures. white (1963) has extended the
rcles for finding expected mean squares to some of the de-
signed unbalanced structures. The similarities between the
polykays (of Tukey) and the cap sigmas (of Wilk and Kempthorne)
were pointed out by Zyskind (1958) and established by Daynoff
(1964b). The A.0.C., i.e. a non-classification model, has
not been adequately resolved under a randomization model and .
Cox (1956) still appears to be the only one who has attempted
to deal with this case. The approach in this randomization
model is gemeral erough to deal with a mixed model. The only

-claim made for the estimates obtained is that gemerally they
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are unbiased. Obtaining the variances of the variance comn-
ponents under a finite model in even the simplest balanced

formidable problem which has been

D)

n-way classifications is
attempted by Dayhoff (1964a).

When we relax only the assumption of normality of dis-
tribution of the effects and instead regard them to be
independent (0, c?;) respectively, estimators with a best
guadratic unbiased property are available in the following
cases:

a. If in (II.A.1) $;, f,,-.., B are all fixed unknown
parameters. This is the well-known general linear hypothesis
situation and constitutes one of the oldest parts of statisti-
cal theory. Least squares provides b.l.u. estimators of the
parameters @1, @2,... é’k and the S.S. about residuals with
a further condition on the fourth moment provides a b.q.u.
estimator of the variance O§+1=02- This result is due to
Hsu (1938). We emphasize that the elements of the X;'s are
classification type elements or functional parameter coef-
ficients. .

b. Graybill (1954) showed from first primciples that
the Model I mean squares érovided b.q.u. estimators for func;
tions of the variance components in the balanced nested
classifications. |

c. By making use of a different approach that was first
suggested by Graybill and Wortham (1956), i.e. complete suf-

ficiert statistics if normality holds, Graybill and Hultgquist
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(1961) showed that within a certain class of situations
described by the model (IX.A.1) if finite fourth moments of
@i’s exist and third and fourth moments for a giver ﬁi are
equal then the same estimators that are M.V. under'normality
are b.q.u.'under the assumptions mentioned.

Best Quadratic unbiasedness has not been claimed for
most other estimators that are commonly used in variance com-
ponent models. Notably this is the case for most unbalanced,
i.e. not balanced2 situations that ariselin experimental de-
sign and where for some time now least squares has been used
as an ’‘approximate’ method. Thus we have the situation that
the same method is suggested for balanced, situations as well
as for unbalanced ones, while optimum properties are available
for least squares estimates only in the former case. Esti-
mates would be 'best™ in both cases if the fitting constants
method was an "optimal' method of estimation in variance com-
ponent models. Our viewpoint is that there is in general no
uniformly best method of estimation for the model (II.A.1)
when amongst estimators that are based on all the information
there is ambiguity about the set of estimators that should |
be used. In such a case one method of comparing a candidate
with other available methods is by way of the variances of
alternative estimators. Empirical studies by Bush and Ander-
son (1963) indicate that the fitting constants method or

Henderson's (1953) method 3 is a 'best on average® method
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over a fairly wide range of conditions of unbalance in 2 two-
way classification. 1In a later chapter we shall advance

some further argument that appears to single out this method
as the best available in b.i.b. designs.

When we are prepared to make the assumptions of normality
and independence we find tnat for some balanced, si?uations,
the model 1 mean squazes can be shown to consist of a com-
plete sufficient set of statistics for the mean and the vari-
ance ccmponents. Graybill and Wortham (1956) first pointed
out that this enabled one to call upon the well-kncwn Rao-~
Blackwell theorem, (Rac (1945), Blackwell (1947}) dealing
with complete sufficient statistics to establish properties
for unbiased estimators. Graybill and Hultquist (1961) prove
a number of theorems that have helped in the understanding of
the classification model cases when normality is assumed and
the model is balanced,. Assuming normality, Weeks and Gray-
bill (1961, 1962) Kapadia (1962) and Kapadia and Weeks (1963)
ﬁave obtained what they call minimal sufficient statistics
for b.i.b.d.'s and p.b.i.b.d.'s with random blocks and treat-
ments. At time of writing we have minimal sufficient statis-
tics for virtually all incomplete block designs but no method
of using these to obtain best estimates. We shall give an
example showing how closely the method 3 estimates of Hender-
son (1953) are related to the set of minimal sufficient

statistics from which it is presumably the view of some that
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M.V. estimators may one day be coastructed. We have our
doubts about this, and present our views.

‘There has been one fairly detailed investigation of the
testing for significance of variance comwponents, namely that
of Herbach (1957). As is usual in such cases, noruwality of
effects was assumed. Herbach (loc. cit.) showed for example
that all F-tests used in testing hypotheses in a two-way
classification determine uniformly most powerful (U.M,D,)
similar tests although, unlike in the case for Model I, they
are not likelihood ratio (L.R.) tests. 1In the one-way bal-
anced; . p classification however for all practical purposes
the test is an L.R. test and is U.M.P. as well. Herbach's
(1957) method was unable to demonstrate that the standard F
test for o?ABzo in the two-way balanced, case, is a U.M.P.
similar test, and this deficien¢y was remedied by an exten-
sion of the completeness lemma sﬁpplied by Gautschi (1959)
who had worked independently on the problem. Gautschi (loc.

cit.) proved the following Lemma 1:
t - {pt - -
Let ;B —{_PO;QQD}, t = (t2§'oo¢,tr); e = (gz,ooogr>
t1 = t1 . .
Bt {Pel,ef--(olje)e”o} xﬂ} ©1 real be two

families of probability measures on Borel sets of the Euclid-
ean space E._; and the real line Ey respectively, having the

densities



(] ceot
g(e)t12+0,t;
Pgy,e(t1) = c(oy,0)e

with respect to Lebesque measure. IfJD; is the real line
and ;D a Borel set in E..j; containing a non-degenerate
(r-1)-dimensional irnterval then the family of product measures
B = {P‘tl 'e x pé?(@l;e) D1 X;D} is strongly complete (in
the sense of Lehmann andé Scheffe (1950}, ZImhof (1660) extends
this lemma to the multivariate case. The state of know-
ledge at this time appears to be that in an n-way balianced
situation all tests of (n-1) and (n-2) factor interactions

are U.M.P. similar tests.

Workers havg not ignored the unbalanced case in recent
years. For details the reader may refer to Hammersley (1949),
Henderson (1953), Tukey (1957), Searie (1956, 1958, 1961)
Gates and Shiue (1962), Gower (1962), Robertson (1962), and
Bush and Anderson (1963) amongst others. The above selection
illustrates the complexity of the algebra wé sometimes iavolve
ourselves in when tryina'to cbtain variances of estimators
and the sometimes surorzslngly elegant rewards to be reaped
from hopeless seemlno cases.

Crump®s (1951) paper im retrospect suggests the need for
trying and comparing different methods of estimation. It is
interesting to note that in the unbalanced (i.e., not bal-

ancedy) designs the normality assumption if made has not to
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date been used to form a maximum likelihood solution. Com-
putational difficulties are cited as the reason. Consider-
able work, some of which is empirical, has been done compar-
ing some other different methods that are available. A
whole new aspect has in fact been opened up by this work

which is concerned with determining the best form of unbal-

ot

anced design tc estimate particular variaance components when

ke o,

hat somethiag is kaowa about the reiative

e+

t can be assumed

B

sizes of the wvariamce coumponents. The reader is referred to
Bush and Anderson (1963) for further references on this as-
pect. Ignoring for now the moot question of motivation, we
interpret these findings as follows: given a balanced; de-
sign, there is no ambiguity about the best statistical
analysis. In an unbalanced design there is no uniformly
best method but Henderson's (1953) method 3 (the fitting
constants method) is among the best "on average'’ in the 2-way
design without interaction. However; if anything at all is
known about the relative sizes of the variance components,
the balanced, design may well be less efficient for esti-
mating the random components than some unbalanced design. -
In gemeral prior knowledge is not available; we concera
ourselves primarily with that caSe, and try to extend the
canclusion beyond the two-way design, and to mixed'models,
a venture in which we meet with only parfial suécess. Until
now we have been primarily concerned with the completely ran-

dom model. One might perhaps have expécted to find a com-
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- o L oomam - - b -
parable amountv Of wWork om the mixed model. There has been a

good deal of work, but it has not concerned itself with mini-
mum variance estimation in the mixed model. Thus for example
the work of Wilk and Kempthorne (1955, 1956) is gemeral enough
to include the case of the mixed model. However, they starf
with the usual Model I mean squares and make no claim of
minimum variance for the estimates they obtain. Scheffe
(1956, 1959) likewise makes no claim of M.V. for such esti-
mators as he derives. M.V. estimators in a mixed model are
obtained by Imhof (1960) who derives a set of sufficient
statistiés in a three-way classification with one factor fixed
and two random and proves M.V. for the Bennett and Franklin
(1954) type mean squares in that case. The Scheffé model postu-
lates non-zero ocorrelations between diiferent ramndom factors
and is therefore outside the framework that we cousider.

In the unbalanced case we note that the fitting con-

stants method does appiy to a mixed model. However, no
formulas have been given for obtaining the variances of the

variance components. David and Johnston (1951, 1952) make
use of symmetric functions to obtain formulae for the cumu-
lants of quadratic forms in fixed, mixed, and random models.
We extend these formulae to apply to estimators given by

the fitting constants method in a mixed model, and choose

to find the variances by wmaking use of the concept of a comn-

ditional inverse of a matri.. Bush and Anderson (1963) seem

to have been the first to solve the variance problem (for the

-



completeiy random model) by another method that assumes
normality. Although the results of David and Johnston

‘(1951, 1952) are applicable they have not been put to use.

To conclude section A of this review we mention some work by
Thompson'(1962) and Thompson ané Mgore (1963) on the esti-
mation of non-negative estimaties of variance components that
has some imtuitive appeal. It is unfortunately the case that
the "pool the minimum violator® algorithm that they describe
and which gives a straightforwﬁrd procedure for solving for
variance components is only applicable to the designs which
have "rooted tree' form. In brief this means that the three-
way and higher-way.classifications are not included in the
theory that thev describe. This severely restricts tue field
of application of the method. The question of minimum vari-
ance oxr otherwise of such estimators is an open question; we
give this method no consideration.

B. Minimum Variance (M.V.) Bstimation
of Regression Parameters

\

In the course of the above discussion we mentiomed that
estimation by 1least squarés of the regression parameters in .
2 general linear hypothesis model gave best (M.V.) linear
unbiased estimators. Our concern here is with estimation in
more general models which to date seem to have had attention
only in the context of autocorrelated regressions. In this

section we review some of the work in this area.
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The work described does mnot utilize sizuctuze iz the
errors, so that it is convenient to represent the partitioned

model (II.A.1) by

~

n
H b H

pd

or by ,
y = X¥+w, (II.B.1)

where ¥ denotes the fixed set of parameters while w is a
coliunn vector with covariance matrix V.

The problem of estimation of regressioh parameters when
the errors are correlated was first discussed by Aitken (1934);
there has been a good deal of discussion since then that we
do not propose to cover here. We have decided to confine at-
tention largely to the papers by Watson (1955), Magness and
McGuire (1962) and Golub (1963). In general these authors
are concerned with the determination of bounds to the ratios
of variances of minimum variance (M.V.) and least squares
(L.S.) or weighted least squares (W.L.S.) estimates and show-
ing under what conditions some or all of these methods would
give estimates having var@ances of similar magnitude. 1In the
cases they discuss, as inwdesign situations, M.V. estimation ‘
is gemerally not possible. If L.S. estimation is almost as
good; this would be nice to know.

The following theorem is proved by Magness and McGuire
(1962). The W.L.S. and M.V. estimates of ¥ in

| y=X¥+w
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where X?'X=I, have identical covariance matrices if and only
if the subspace spanned bv the p columns of X coincides
with the space spanned by p of the eigenvectors of © (rho)
the correlation matrix of y, in which case both covariance
matrices are similar to diagonal matrices whose elements are
the corresponding eigenvalues of f (rho). The result that
L.S. estimators of ¥ are M.V. when column vectors of X are
eigenvectors of the correlation matrix is mentioned also by
Watson (1955). Magness and McGuire's (1962) work was, how-
ever, done without awareness of Watson's (1955) results.
Zyskind (1962) and Zyskind et al. (1964) have giveh a more
general formulation that does not require the restriction
XtX=I. It follows from these results that the minimum
variance estimate of s in a random balanced, partitioned
model of the form represented by

. k+l
v = dapr 2 X5 b3 (II.B.2)

agrees with the W.L.S. estimate in which all weights are
unity, or the estimate given by least squares ignoring the

correlations. Alternatively, and more directly, we have

Procf: In a linear model y = X¥ +w
Fa)
.XMV = (x‘V-IX) -lX'V-ly

xrwx) " Ixewy .

VaS
SwLs
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2 e
Then ogn = XV 1yy-1
and

= (x0TI wvwx (g wx)mt .
In the model (II.B.2), ¥ =K, X = jp, i.e. a n x 1 col-
umn of ones, and Xx'zj, anxn matrix of ones. Now the con-
dition of balancey, ensures that
1
VI =2 XiXi Ciz Xxs
=xx" 2%, o2 =Jv .
A
¥

I1f furthermore W = I, so that ¥ygg =
o/t = X'V XXV Ix/x'02 = 1
ALS/ Gamy

In general the vector space of X is not coincident with
the vector space of the eigenvectors of V so that in gemeral
we cannot simplify det ZgLS/det Zomy (where det means *'de-
terminant™ and this ratio is used to replace °29LS/°2?MV when
constant parameters exceed one in number) to give 1 as in the
above special case.

However, there is a fairly large well used class of situ-
ations in which simplification is possible. These are those
mixed factor situations, which, if all factors had been ran-
‘dom, would have been balanced,. We demonstrate this for the
mixed model (IXI.B.1l) which can be represented by

k+1

=X¥+ 2 X . (I1.B.3
y isr+1? i N )
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where X = VCXI"°Xr> is the coefficient matzrix of aii fixed
T

factors, and commutativity of XX’=§_OXiX‘i and V (the covarié
ance matrix in this model) holds. *

Assuming that we reparametrize XY appropriately, to
avoid singularity of XX, to X4 (say) where X is a matrix

containing only some of the X;*s (i=0,...,r) we have

(with W= 1)

det (XXX IX) /det(X*X)2

det(23pg)/det(2zy)
=1 .
in particuiar themn in a two-way with equal numbers and with
blocks random, the (y.j) are M.V. estimators of the para-
meters u + dj, and y.. is a M.V. estimate of u. In general,
for unbalanced situations, we do not have commutativity of
XX? or XX' and V and the ratio
det(2gp g)/det(Sgyy) (II1.B.4)

does not simplify to one. Watson (1955) and Golub (1963)
both attempt to provide bounds for the ratio (II.B.4). After
Golub (1963) we define M, = xtakx,
where A is a real positiye definite matrix, and uk(x) =
det (M), where X has rank p, and the latent roots of A,
ordered decreasingly, are A1,...,An; let the condition num-
ber be Kp =A1,...,'xp/An-p+l,~--’3n .

Schopf (1960), proves the inequality following:

. ' o -l »
1< up1(X) uk_ICX)/uiQ() ﬁ[[l{%;'l'sz)ﬁ‘,]z .
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Using this Golub (1963} proves (when k=C) the following
theorem. iet y = X¥ +w where X is an n x p mairix of rank p,
¥ is a vector with p components to be esiimated, and w is

a random vector of n components with E(W)=0 and covariance

matrix V. Let the weighting matrix be W=FF', let X ;'s be
the eigenvalues of F!VF ordered decreasingly and put¥= F’X.

Then since

det (I d/det(Zgyy)= cet(xmx) "l (o)~ e s (x v iy -2

= det(‘i"F'VF‘P)det(‘I"(F’VF)'l‘i‘)/(det‘i"‘l‘)z,

nd -

it foiiows that
1 1
L -l 2
1< det(2 det(2 < [K2 +K_4/2]° .
(Zgyrs)/det(Zpmy) < (K] + K /2]
Watson (1955) obtained a similar bound. As far as our prob-
lem is concerned however there appear to be distinct limita-
tions to this type of bound. The following example illus-
trates the difficulty.
Consider the model for a one-way random classification
represented by
yij=}1+ai+ei

(i = 1,000,285 j = i,...,b)

Cae

where p is the mean effect, a; is a random effect assumed to
be distributed about zero with constant variance G%A, and 255
is a random error effect assumed to be distributed about zero
with comnstant variance ozE and a; and eij are assumed to be

uncorrelated. The covariance matrix of the observation vector

y has the form
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2 2 b
0 Ely + 0 4dp
. R ¢ o 2

. . . b .
where Iy is the b x b unit wmatzix, Jg is a b x b matrix of

ones and there are a diagomnal blocks.

The largest latent root is 023 + bo%A with multiplicity
a while the smallest latent root is OZE with multiplicity
a(b-1). We rank the latent roots from largest, designated 25
to smallest, designated A,;,. Since there is only one para-
meter (u) in the model we define

Ky = M/Np = (1 + b 6?/d%E) .

According to the theorem quoted above

. _ 1/2 _-1/2
1< det 33pg/det Zgy= oz;;Ls/ozﬁw‘é((Kl/ + K ) /2)2

(where we have assumed the weighting matrix W = I for lack of
knowledge df better weights). Conceivably then if we assume
ozA;» 025, the upper bound may in”fact be arbitrarily large,
and knowledge of the bound would éllow very little to be in-
ferred about how well the variance of M.V. estimates are ap-
proximated by the varianéé of L.S. estimates, when in fact
from other points of view e.g., Magness and McGuire (1962),

or since the situation is balancedz,ngv = C%QLS = qéfp 02A/ab;
and it follows that the variance of the L.S. estimator is in
agreement with the variance of the M.V. estimator. When for

example we consider the model
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'..="+a.+8X,, + e..
iJ_J s i \ ij ij

where ? is an unknown fixed value and:cQj is 2 kpown fixed

value, there are two parameters in the model and so

: 2
Kz = )1}‘2/)‘ab) ab-1 = (1+b C'ZA/C'ZE) .

Use of the bound in this case to infer something about L.S.
estimators seems to hold littie promise. A further increase
in the number of coacomitants causes the bound tc tell us
even less. These considerations form the basis for the
criticism that when other methods are uninformative and we
need the bound most, it is liable to be uninformative also.
It is possible that the fault may lie with the sharpness of
the bound. This view is supported by the fact that L.S. es-
timates do surprisingly well in autocorrelated regression
problems when 0%< Pé..9 as shown by Golub'’s (1963) calcula-
tions. Indeed he appeérs to have been required to choose
suspiciously high correlations to demonstrate superiority of
W.L.S. over L.S. As we have aliready noted, W.L.S. with |

- weights W = diag (1/v;:) is not a feasible alternative in our
case, and correlatiohs will likely be low. Although our sus=-
picion is that L.S. will often be adequate in unbalanced
‘cases as well as balanced, ones we are forced to conclude
that there seems to be no optimal general theory covering the

estimation of fixed effects in a mixed model by the above

appzroach.
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We now consider another important case where a ?goc
but apparently non-optimal solution has been in use for
years. The b.i.b, design with treatments fixed, blocks
random, is an exéﬁple of the model presently under consi
ation, for which a reasonable, easily obtained estimate
treatment effects was obtained long ago. See Yates (194
and Rao (19472), for example, both of whom say the estim
is only approximate. We know that if the weights are kn
the procedure for combining estimates gives the Aitken
(1934) or M.V. estimator. The method of attack in a b.i
makes use of the structure of the covariance matrix V an
it seems, is a more helpful approach to the estimation p
lem in a mixed model than is the more general approach s
far discussed in this section. A result by Graybill and
Weeks (1959) showing that Yates?! (1940) estimator is bas
on a minimal sufficient set seems to vindicate this view
Since estimates of wvariance components are required to s
up the combined estimator in this case, this tends toc in«
cate the importance of estimation of the variance compone
over estimation of lineaﬁ regression parameters. This i
the reason why this thesié concerns itself mainly Qith e:
timation.of the variance components in the model in as el
cient a way as possible. One of the problems is to dist:
guish between different methods of estimation of the var;

components which give rise to different estimators.
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in the

In some cases we c¢am GO quite a good deal, but

majority of cases, there ;imply is no theory to guide us.
There are two choices, a) abandon the whole guestion as a
lost cause, or b) methodically obtain numerous estimators,
with a view to later comparing them. Tukey (1962) and
statisticians generally appear to subscribe, not always with

enough justificatior perhaps, to the latter alternative.
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III. ON UNBIASED ESTIMATICON IN A SMALL SUBSET OF
- VARIANCE COMPONENTS MODELS

A. Complete Sufiicient Statistics for the Completely
Random Variance Components Model

1. Introduction

Let the model be represented by
k+1
V= pp* 3 Xiéi (III.A.1)
i=1
where y is 2 n x 1 vector, y, is a vector of unit elements,
Xi's are matrices of size n x p; of known constants and
= 2 t -
so that V, the variance matrix of y ( = E(yy®)-E(y)E(y?) ) is

XIX’la%_ + XZX'zcg * oo F Xk+lx'k+lbi+l .
We seek (2) necessary and suificient conditions for the exist-
ence of M.V. unbiased estimators for au, oi,...,o§+1, and
(b) the form of the estimators. |

A theorem due to Lehmann and Scheffé (1950) states:

If A;(8) (i = 1,...,k) are estimable functions of 2
parametric vector 6 = (Gi,...,ek)' and a complete sufficient’
statistic T = (Tl’-°°ka)’ for © exists, then the M.V. un-
biased estimators of A;(®) (i=l1,...,k) exist. The M.V. un-
biased estimator of A;(8) is the uﬁique function of.Ti’s
which is an unbiased estimator of A;(8). Im view of this

correspondence between a complete sufficient statistic and a
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ct

st step in a search for a

[

M.V. unbiased estimator, the fi
M.V. estimator is often a search for a complete sufficient
statistic. Some distributional ass .mption concerning the
@i’s is necessary to ensure sufficiency however; the as-
sumption most frequently used being that @;'s be distributed

independently of each other and each normally about zero

«t
ot
0N

A - -
t turns o his assumption, 2ali-

110
fa

th variance Io.”. As

lJo

W 9

4
et
(13

§ n[oOtT always mnecessary

bte

though necessary for ocur development,
for estimators to have the property of best quadratic un~
biasedness. Something less will do.

Koopman (1936) showed that when the density functiom for

a vector y can be expressed in the form

exp{l‘;‘,1 lvi(y> u,(8) + C(y) + D(Q)}
i= _

then the elements of the vector v(y) = (v;(y) vz(y)...vm(y))'
are jointly sufficient for the elements of the vector u(®) =
(ug(8) uy(8)...uy(8) )" . We note that all the observations
form a jointly sufficient set of statistics for the set of
all parameters, and therefore, of course, it is possible for
the Koopman (1936) form fo do no more than indicate this.
In fact, it appears thataless,than careful use may. lead the
form to indicate n+r (r>.0) statistics whea in fact there are
only n observations. The concept of a minimal sufficient set,
i.e., the smallest\nﬁmber of sufficient statistics, could
then be used to ensure that we never state that the number

of sufficient statistics exceeds the number of observations,
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and that frequently tne size of the minimal set will be sub~-
stantialily less than n in number.
Under the assumption of normality for the model (III.
A.1l), the density function for y is

£(y;0) = 1/2<zw)”/2.iv!°% exp =4(y-p)'v=1(y=n)}/2

and Graybill and Hultquist (1961), have exhibited a minimal
set of sufficient statistics for this case under the further
condition Xix:i XjX:j = XjXVj X;X%; (1, = 0y...,k+1). Since
(as we shall see) commutativity of this type implies exist-
ence of an orthogonal matrix P that diagonalizes V inde-
pendently of the parameters, in this case the terms i.e.,
u;(8), entering the Koopman (1936) form above, are the re-
ciprocals of the distinct latent roots of V. If the minimal
set agrees in number with the number of parameters i.e.,
satisfies an appropriate condition of uniqueness, or more for-
mally if a set of sufficient statistics is also complete, we
can find U.M.V. unbiased estimators for all the parametiexss.
One convenient characterization of uniqueness in the present
situation is given by the number of distinct latent roots of
ECyy') = W = XgX*ou® + V. We note that although at first
sight it would appear that the two conditioms,. (a) 6n commu-
tativity.of thg matrices Xixri:and (b) on the number of dis-
tinct roots of W, are non-overlapping, this is not the case.
In fact if the first condition does not hold, it is not pos-

sible to diagonalize V (or W) independently of the parameters
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and so the latent roots of V (or W) in this case are not
quantities that can be readiiy obtained and distinguiskhed.
Thus when we make a st;fement ébout the aumber of distinct
latent roots of W we shall in fact imply that the condition
AA. = Ashg (i, j=0y...,k+1) does in fact aiso hold. Theorem
6 of Graybill and Hultquist (1961) appears tc take a differ-
ent view. |

Graybill and Hultquist (1961) make occasional use of a

condition that the X. matrices satisfy

3 r.j s and Xoj = j (III"AL¢2>
- ni i~p i i”py n

where r is a positive integer and the subscripts n and pg
are the dimensions of respective vectors of unit elements.
The sense in which this condition is required is of some in-
terest. It turns out that mathematically there is no need
for the condition in models of type (III.A.I). However, be-
fore we abandon thé c0nditi§n entirely, it might be as well
to note that by a 'variance component model' -we understand
something more thah (IIT.A.1), and that, succinctly, the con-
dition (III.A.2) dbrings (III;A.l) into the realm of a vari- -
ance component mo&el.' Consequently when we remove®™ this |
condition in later theorems we do so only to emphasize the
conditions that ére truly relevant to the particular argument
at hand.

It is noteworthy that there is a mathematical (as op-

posed to an interpretive) need of the comdition (III.A.2)
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.
~t
n section C.

In the course of what follows, we shall restate some of
the theorems proved by Graybill and Hultquist (1961) except
that the condition (III.A.2) has been removed from the hy-
pothesis in all cases where they required it. When no im-
provement beyond removal of the requirement (III.A.2) can be
made to their proof, we shall sometimes give their proof,

and indicate that the theorem is reaily theirs.

2. On the necessity for the commutativity condition

n matriX algebra which states:

e

theorenm

o

Thege is
Theorem 1 (well-known): For every real symmetric matrix A

there is a real orthogonal matrix T such that TYAT is in

diagonal form.
k+1

In the model (III.A.l), where V = z Aioi and where
oi are-unknown, mere symmeiry of V doeslggt suffice to allow
diagonalization of V so long as V involves unknown variance
components. We have already noted that the condition AiAj =
Ain (i,350,...,k+1) has been shown to suffice. Let us now
convince ourselves that nothing less will do.
Lemma 2 (well-known): A feal symmetric matrix A is nor-nega=

tive definite if there exists a matrix Q such that A = QQ*.

_ 2 2 2 _
Theorem 2: If W = XOX'Ou + X1X'1°1 + ..o + Ic and PWPt =
A (diagonal), independently of the parameters, and where P is

orthogonal, then PXiXiBt (i=0,...,k+1) are all diagonal forms.
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Proof: Since parameter values are arbitrary we may put all
parameters but the first (say) equal to 0. It follows that
PXOX’QP' has to be diagonal. By repeating the argument and
putting all parameters‘but the second equal to zero, all but
the third equal to zexo, and so om, we see that every form
PX;X*.P* (i=0,...,k+1) is in fact a diagonal one.

In other words P must simultaneously diagonalize

X5X'ge XIX'l,...,XkX'k . In accordance with lemma 2, and the

choice of Xy .7 = I the latent roots will all = positive.
Notice that {XjX*;)* = X;X", so that all these matrices

are symmétric. We can therefore deal with the individual
components of V (or W) as though they were a separate coliec-
tion of matrices requiring simultaneous diagonalization, and
this is best done by means of the following theorem, which
gives a necessary and sufficient condition in terms of the X;

matrices for the existence of an adequate P matrix.

Theorem 3: (Well-known) Let Ag = XOX’O, A, = Xlx'l,...,At

X¢X*, be a collection of symmetric mn x n matrices. A neces-

t
sary and sufficient condition that there exist an orthogomal

transformation P such that PAGP®, PA P, ...,PA P! are all
diagonal is that AiAj be symmetric for all i and j. Since

all A; are symmetric, it follows that AiAj is symmetric if

and only if A; and Aj comnmute.

So much then for the need of the commutativity condition




33

insofar as M.V. unbiased estimators in medel (IIX.A.1) are
concerned. In models of this type, V matrices will either
be simultaneously d’agonalizable (in which cases the com-
mutativity condition will hold) or this will not be the case.
In order to split off the small class (we shall soon see how
restrictive the condition is) from the\totalit§, we have
chosen to designate the class within modeis (III.A.l1) having
AA. =44, (4,j=0,...,k+1) Dy the name balanced,, while

13 J1
211 other cases are considered to be in the unbalanced class.

3. Some related theorems of interest comncerning the
regression parameter

We now reinforce just how restricted the class of
balanced, situations is. We have seen that commutativity of
A; and Aj (i, 5=0,...,k+1) implies that

X;X';V = VX X', (i =0,0..,k+1).
In particular in the present model with XpX'g = Ag = J we
have

Jv=VJ . | (III.A.3)

This relation implies that the sum of terms in every row of
V is the saﬁe and equal tb the sum of terms in every column
and this is therefore a necessary condition for commutativity.
That the condition is not sufficient can be shown.by an ex-
.ample. The same resui; is true for v-1.

The next point of some interest is to determine the ef-

fects of the commutativity condition on estimates of the
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fixed regression parameter in the model. Since we shall
later be interested in mixed models it is convenient to prove
the theorems that follow for the model
k+1
y = XY + §=r+1xi€> N (III.A.4)
where thé fixed parameters are represented collectively by J.
Of course (III.A.l1l) is (III.A.4) with r = O,
X=1j,and ¥=p .
Now in view of the restriction JV = VJ we assert that there
exists a P such that V'ljn = joP where P is a scalar which
is equali to the comstant row sum of v-l. 1a fact the propec-~
ties of the least squares (L.S.) estimator for u in the model

(III.A.1) are described as a special case of thne foilowing

theorem.
Theorem 4: If X'X is non-singular and there exists a non-
singalar P such that V-1X = XP, then ¥M.V. = JSL.S.

¥ (xrv-1x)=1 xey-1y

Proof: M.V,

(Prxrx)~1 prxry
(X’X)'I(P')-l PsXty

xrx)~Ixry

= ¥p.s.

Theorem 5 (Zyskind et al., 1964): If X*X is singular, and therxe
exists a matrix P such that v-1x = XP, then the estimate of any
estimable function of parameters from generalized least squares

equations equals the estimate of the same estimable function of
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parameters obtained from simple least squares equations.

Proof: The b.l.u. estimator of any estimable N¥ is unique

and is of the form S'X'V'ly, where § is any solution of

xv=lx § = A . since V°IX = XP, it follows that

§tx1v=ly = §rpixry

b.l.u. estimator of Y

(xp &)ty .
Hence the b.l.u. estimator of »¥ has for the transpose of
coefficient vector the vector XP§ , a vector belonging to
the cclumn space of X. Since the simple least squares esti-
mator is the unique unbiased estimator with tramspose of the
coefficient vector in the column space of X, it follows that
the b.l.u. estimator and 1ea§t square estimators of ¥y are
identical.

We note that when X'X is singular the ratio

det 3j)y/det Z3; g is indeterminate.

The requirement in theorem 4 was that there exist a non-

1% = Xp, which the reader will be

singular matrix P such that VvV~
aware we have not shown to be a general consequence of the
commutativity condition. The following two theorems connect
the condition of commutativity and the condition there exists

P such that v~ix = xp.

Theorem 6: If VXX' = XX'V, then the estimate of any estimable

function of parameters from generalized least squares equations
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eguals the estimate of the same estimabie function of parameters

obtained from simple least squares equations. .

Proof: If VXX* = XX'V and both V and XXf are symmetric it
follows there exists an orthogonal O matrix such that both
XXt and V are diagonalized simultaneously'by it.

We have O'XX'0 = A (diagonal) where (say) the 1st r
terms of A are non-zero, and all elements of (n-r) rows of
O*X must be zero. This impiies that O% has n-r rows that are
orthogonal to X, i.e. O has exactly r rows in the space of
X, and (n-r) rows in the space orthogonal to X. The condi-
tion of existence of amn O of this'type that diagonalizes V
is shown by Zyskind et al. (1964) to ue equivalent to the
condition there exists a P such that VX = XP, or v-1x = xp.
By Theorem 5 the result follows.

In the case where X'X is singular, the ratic detlg, . /

det3g¢; . is indeterminate.

Theorem 7: If there exists P such that v-lX = XP and P = Pt,
then VXX' = XX'V.

Proof: v=ix = xp

i.e., X = VXP
and Xt = pPrywr = pXtv .,

Then
VVXPPXTV

1

VXX

VVV™oXPX1V



= vwwoixxw

= XX'%W .
The main features emerging for the model (III.A.4) are:
(a) If X'X is singular, then existence of a P such that
v-1x = Xp is sufficient for S'X’V'ly = f‘x'y.
(b) Existence of a symmetric P such that v-lx = xp is

equivalent to VXX' = XX'.

These results are adeguate for our purposes in later sections.

4. Restatement of known and useful theorems

We turn our attention in the remainder of this section
to '"weakening" the requirements for a number of theorems
proved in a paper by Graybilli and Hultquist (1961) dealing
with the estimators of the variance components in the model
(III.A.l), We do not claim that our viewpoint is greatly
different from that of Graybili and Hultquist (1961), but the
differences do seem to us to be worth recording in view of
their clarificatory value. It is not our intention to detract

from their presentation ir any way, but to improve upon it.

Theorem 8: (Graybill and Hultquist (1961)) A necessary
and sufficient condition that the o% are estimable is that
the A are linearly independent. The source of this theorem
provides an adequate proof. Significantly the condition
(III.A.2) is not used. This condition is however mentioned

unnecessarily in the hypothesis of the following theorem,

while .the reference to estimability is inadéertently ignored.



961)): If in the medel

’.a
[

3

Q
1]

]

[H

b=
ot
M2

{3

j4

n

o}

~
=

Theoren ¢ (Graybi
-
<

(III.A.1) 21l o} are estimable, ther the number of distinct

characteristic roots of W = E(yy?!) is not less than k + 2.

Theorem 10 (Graybill and Hultquist (i961)): If the number
of distinct characteristic roots of W is k+2 and all oi are
estimable then the distinct characteristic roots dl""’dk+2
are functionally independent. (We have inserted the hypothe-
sis that oz are estimable, since it is implied in their procf.)

A clarification of the relation between distinct latent
roots of V and of W may be helpful at this time. We have

kel 2 k+1

= E(yy?) = Ajo: 3V = E(yy') - EC(y)E(y') = 2 1A101 .
1-0 i=

If V is diagonalized by P==(P1...P;)', where Pi is a matrix
made up of a complete collection of independent latent vectors
corresponding to the ith gistinct latent root of V, then

k+1 2 2 k+1 2
PVP* = 2 o, ;D; and PWP' = PAjP'cy + 2 10 ;D; - P can be
i=1
chosen so that PVP' = diag(d;*,dyI,,...,dgI ) where d;* =

dl-qp and_d4,...,dg, are the s distinct roots of W, i.e.,
PWP? = " O, |+ gi ozD. = diag(dy,dpIz,...,dgIg).

.0 i=1 -
In consequence, all latent roots of V and W except for the
first are in agreement, If the 1lst root of V is in agrecment
with some other root then W will have one more distiﬁct root

than V; if on the other hand the first rcot is not identical
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with any other zoot, V and W will have the same number of
distinct roots. The more important comsideration for our
purposes, is the number of distinct roots of W. From what
has been said above this number will be the same, or one more
than the number of distinct roots of V. Graybill and Hult-
quist (1961) state and prove only part of theorem 11 given
below, i.e., if W has k+2 distinct roots then yiPt Py
(i=2,...,k+2) and P,y form 2 complete sufficient set. The
proof of this part is essentially theirs. Insertion of the
comnutativity condition may well strike the reader as sur-
prising, in view of the work of Imhof (1960) on a mixed model
of Scheffe (i956, 1059). 1Iwmhof finds a complete sufficient
set of statistics for parameters of a highly restricted cross-
classification with equal numbers model, which is not within

the class (III.A.1), and hence not covered by our classifica-

tion, without requiring that V be diagonalizable.

Theorem 11: In a completely random model (III.A.1) assuming
commutativity and normality, and all o?'s estimable, there is
a complete sufficient set of statistics for the parameters
My c%,...,oi+1 if, and oniy if, W has k+2 distinct latent

roots.

Proof: Consider the joint distribution of Yy2e+s¥,+ The

quadratic form
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where s = Kk+2.
In view of theoreﬁ 10 above, the k+2 distinct charace
teristic roots dl’dz""’ds are functionally independent.
The Neyman factorization theorem gives T = (P;y,y‘Pész,
...y’P;PSy) for the set of sufficient statistics. It is
necessary to make use of a lemma by Gautschi (1959) and
write the joint density for T in a form that involves a
product of two independent distributions whence we can infer
that the set of statistics T = (Ply,y'P;sz,...y'P;Psy) which
is the estimator for (u, °§"°"°i+1)' is indeed complete.
Conversely, we now show that if under commutativity and
normality there exists a complete sufficient set of statistics
for the parameters (ju, °§""’°§+1) then W has k+2 roots. 1In
view of commutativity, we have an orthogomal A.o.V. breakdown.
In fact if there exists a P such that PWP' = A (diagonal)
then we have Py = (Pl'PZ'...PS)'y (say) where P; is m; x n

(say) and where m; is the multiplicity of the
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- - L 2.
root 6i° Let there be s distinct rootvs. Siace all o:°s

are estimabie s?k+2. 1t foiiows that the A.0.V. breakdown is
s
4 - .
y'y = 3 y*Pi'P:y
i=1

where E(y'Pi'Piy) =c3 6;. Ignore for the moment the com-
ponent y'P'lPly that corresponds(to the mean. Completeness
impiies that there are exactly k+l other compoments, i.e.

s = k+2., This follows since if g(Q) is an unbiased estimator
for which unbiased estimators SI(T) = S, aad SH{T) = Sz'de;
pending on a complete sufficient s?afistic T can be found,
then S, =.Sz. Consequently y'y = ;:iy'PiPiy and W has k+2
distinct roots. *

In view of‘the Lehmann-~Scheffe (1950) theorem we can in-
fer that if W has k+2 distinct roots and all c?'s are esti-
mable, then the standard A.o.V. gives M.V. unbiased estimators
for unique functions of o%'s.

The real problem arises when W has more than k+2 dis-
tinct roots or commutativity does not hold. 1In both these
cases we are for all practical purposes in difficulty.

Lemma 3 (Huzurbazar (1963)): When an "efficient' or minimum
variance unbiased esfimﬁtor exists it is unique. Rao (1945)
showed that the M.V. unbiased estimator of a parametric
function"t(e), when it exists, is always a funqtiog of the

;

sufficient statistic t. The generalization of this to k

parameters to which we shall appeal was givén by Rao (1947b):
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for the simultaneous estimation of z{£ k) functions ti of
the k parameters O, the unbiased funcfions of a minimal set
of k sufficieﬁt statistics, say ti’ have minimal attainable
variances. Hence the search for the M.V. unbiased estimator
of ‘Ci*s (i=1,...r, 1< k) reduces to consideration of func-

~tions of t;'s (i=1,...,k) which are unbiased estimators of

I3

T tg., If there exist several such functions of T.%s whic

" e

*

+then the function of such several funce

ons with least variance is the M.V, unbiased egstimator of

“h A

+
L d

T;. In view of lemma 3, such a function of a sufficient
'statistic with least variance will be unique, since the M.V.
unbiased estimator is unique when it exists.

We“feel that the following definition is of some value
in distinguishing different cases in the model (III.A.1):
All cases in the model (III.A.1) fall into one of the three
classes P,R-P, S-R where

PCRCS

and C means is a proper subset of*’. P is the class of situa-
tions in which W is diagonalizable and has a distinct number
of roots equal to the number of parameters, R is the class of_
situations where W is diagonalizable and S is the unrestricted
class of situations. Lét us redefine the matrix P that diagon-
aliies W as follows: P = (Pot.,,pk+ls)c .
In later theorems on a mixed model we need the condition

Pixj = 0 (if0) # (j#x+1). One comsequence of this condition, -



44

n effect defines a sub-class of P, is that, apart from

$4

which

‘- 2 - F < S xr=
sponging 1o Py, the nom-zerc roots of individual A

(1]

oxT

Q

ro0ots
matrices making up W are added in non-overlapping places. 1In

this sub-class of P, the breakdown is a unique one in terms of
orthogonal projection operators on orthogonal complements of
the vector j, in the column spaces of the Xj matrices.

The properties of A.o.V. estimators in situations de-
scribed by class P have been shown to be M.V. by Theorem 11.
The situation in the other two classes i.e. R-P and

S;R is not clear-cut and is debatable. We take this up
later. It will suffice at this time to point out that in
class R a minimal set of sufficient statistics does exist,
but we do not have any machinery for -censtructing an M.V.
estimator in that case. In fact it is not clear on what
_gfounds Rao's (1947a)_conjecture, that there is a U.M.V. es-
timator in a special example of this nature, is based.

We conclude this sub-section with & theorem which in-
dicates that the good properties for estimators derived un-
der an éssumption of normality for class P above carry over
when less restrictive assumptions'instead of normality are
made. Theorem 12 (below) is our interpretation of theorem
7 of Graz?ill.and Hultquist (1961).

We note that although the assumption of normality is .

removed, independence of vectors B, and @3 (i#j) and between
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elements within a given vector 6i9 is not. This means,

for example, that terms of type E( 3113 @iz) are all assumed

to be zero. The justification for this assumption is that

we are sampling from an infinite population.

Theorem 12: In the model (III.A.1) consider only the class

P. 1If @i and @j are independent for all i and j (iFj) and

211 random variables, and with-

H

finite fourtih woments exist fo

*h

in every givem vectox @i’ ail fourth moments are equal, and
all third moments are equal, then the same estimators, i.e.
the usual Model I. A.o0.V. mean square estimators for the
81 = B(y'P'iP'iy), that are M.V. unbiased under normality,
are b.g.u. estimators under present assumptions.

The proof.of this resuii given by Graybill and Hult-
quist (1961) is an abbreviated omne, and is in fact obscure.
Since we shall state and prove a more general version of
this theorem in section C, we do not expand on this proof
at this time. We mnote that Theorem.lz is a considerable
generalization of a result proved by Graybill (1954) for
b.g.u. estimators under similar restrictioms in the special
case of a general '"balanced'" nested design.

We conclude th;s section by noting that:

(a) we have purposely done away with the restricted

definition of existence of an A.o0.V. made by Graybill and

‘Hultquist (1961) because we do not favor defining an A.o.V.



to exist when and only when the aumbexr of sums of squares
in the subdivision agrees with the number of parameters to
be estimated.

(b) We have made no restriction to classification type
models since none is needed. In the event a non-classifi-
cation type model can be found which satisfies the com-
mutativity condition and has distinct recots equal in num-
ber to the number of parameters, then M.V. properties can be
inferred for estiuators "porrowed" from Model I. No natural

non-classification examples are presently known.
B. On an Extension to a Mixed Model

In brief our objectives in this section are to show
that the same reéults, namely a complete sufficient set of
statistics and hence M.V. estimators under normality, and
b.g.u. estimators when normality is replaced by slightly
less stringent conditions, can be obtained for certain mixed
model situations. We find it convenient to fix ideas and
indicate procedures by means of the best known example of
a fmixed® model (although'not usually considered as such)
namely the general linear hypothesis model (i.e., Model I.).

y=X¥+e
where y{n x 1) is a vector of observations,

X(n x p) is a known matrix of ramk r of coanstants,
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¥ (p x 1) ié a vector of unknown parameters
e{n x 1) is 2 vector of noimally distribu
satisfying E(e) = 0, E(ee?) = 102 .

The content of Theorem 13 (to follow) is essentially
known, but no propf appears to have been given. 1In the
proof of Theorem 13 we shail use the following:

Lemma 4 {(Imhof (1960)): Let © be a parameter vector and Y
bte a random vector in Euclidean space E;, similarly let 61
and Y; be vectors in En;. Assume that Y and Y; have prob-

ability densities (with respect to Lebesque measure) of the

form
g(8) h(Y) exp{efY}
£(61,0) exp{ Y'1R(6) Y1 + 671, }

p(Y,e)
P(Yl,el,e)

where R(8) is a matrix of size n,. Let the domain D of ©
contain a non-degenerate interval in E, and the domain of
©; be E;,. Then, the family of product measures on Bn+n1

generated by the family of probability densities

T ={p(¥,0) p;(¥;,61,0) : (8,606 D x E }

is strongly complete in the sense of Lehmann and Scheffé
(1955).

Let ?_be any vector satisfying the normal equations
X'X¥ = X'y and (n-1)s2 = (y-X3)'(y-x8) = y'y-y'X(X'X)*X'y

where (X'X)* is any matrix satisfying XIX(XtX)*XtX=X*X,
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- i.e., (x'x)” is a ccamditional inverse of X'X.

Theorem 13: 1In the general linear model y = Xj + e , the
statistic (X% . s,z) is both sufficient and complete for the

parameter set (X¥,0%).

Proof: The quadratic form in the exponent of the demsity
function for y, ignoring the -%, is

Q= Cy - X916 (v - x¥)

(y - X)t(y - X8)/c® +(X§ - X¥ )t (X3 - x¥)/0>

(n - r)sz/'o2 + (x? - X¥) (XY - xzs)/o2 .

Sufficiency follows by the Neyman factorization theorem.
Now X¥ and s2 are independent, s2/6? is X2 n-p, and X5
is N(X¥, X(X'X)*X' o2).
If we make the following correspondence with terms in
Lemma 4, namely
s2 =Y, 02 = 0,

X¥ = Y1, and X§ = 61 then

if T = (X¥, s2) it follows that the density of T becomes
pr = p(Y¥.8) p;(¥;,81,0)
and the family of product measures generated by Pr is there-
fore strongly complete.
The statistic T = (X¥, s2) is thus complete sufficient

for the set (X¥, o2).



We turn now to the conventional mixed model
T k+1 L i

y = §=Oxig_- -:-jﬂX1 @1 (I11.B.1)

which we shall alsc represeant by
k+1
= X% +i§r+1xi 6 i (III.B.1la)

where ¥:'s and 8 are fixed parémeters and @i's are~ statis~
ticallyfindependent vectors each distributed‘according to
the multivariate normal distribution N(O,Ioiz), is=
r+l,...,k+1 . We shall say that the mixed model (III.B.1)

satisfies the balance, condition if

4 f = . 1 .X.t 1. 1= ce o .

In this section we restrict ourselves to those mixed
models that satisfy the balance, conditioﬁ. Notice that
the restrictions for balance, in the representations
(III.B.1) and (III.B.la) are not identical.

The linear model representation y = X¥ + e with E(e) = 0,
and E(ee?) = 162 discussed previously satisfies XX'I = IXX!

and is therefore balanced,. We specialize (III.B.1l) further
k+l

to have Ag = J, A,y = I. Then V = 3 Aiciz; E(yy*) =
i=r+1
X¥¥*X*+ V. 1If we choose the representation
k+1
Y= Jpp + 2 X 8. (I11.B.2)
A FAE €1

as the corresponding completely random model (for(111.B.1)),
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) -  k+1
y in (IIXI.B.2) has variance V = 3 A.0:;° , and if the com-
i=1
mutativity condition is satisfied we can find an orthogonal

matrix P such that

PVpt = A (diagonal)

]
and we denote diagonal elements of & by &; 5 .

Furthermore we have

PVP! = A* (diagomnal)

2 2

and we denote diagonal elements of A* by §;*'s. Now if W
has k+2 distinct roots, and if furthermore Pixj = 0 (if0) #
(j7k+1) then it is easily seen by the argument following
theorem 11 that V has exactly k-r+1 distinct roots. We
have chosen to designate these as §;%'s,  We have been un-
able to proceed to complete sufficient statistics without at
least P3X; = 0 (i#0, r+1<j<€ k) and V has exactly k-r+l dis-
tinct roots. The assumption PjX; = 0 (i#0) # (j#x+1) is suf-
ficient for the latter ; it is not claimed to be necessary.
If we assume normality for the @;*s, in (III.B.1) and
write out the density of the observation vector y, then we
obtain the quadratic form of the expomnent ignoring the -3,
to be
Q = (y-x®* v H(y-x0=(@(y-x1)1 (2v=1pt)(R(y-xF )
(PoCy-X8))1 (Po(y-X8))/8% + (R y-X¥))* (R (y-X8))/5}
+.,..+(Pk+1(y-XX))'(Pk+1(y-XK))/5; (1;1.3.3)



51

where the P; matrices are defined as subspaces of P with di-
mensions equal to the multiplicities of the roots of V.
These subspaces are made up of vectors corresponding to

. . . S SO Tt ¢
...Pk_,_l)’ and there are k+2 in all; it follows that in (III.
B.3) §;* values do not occur only once. Nor can we specify

on

bete

ct

ete

which §;% goes with any particular term. The resir

/7 -

P;X. = O {if0) # (j#k+1) simplifies the expression {(III.B.3)

Cae

to (Poy-PoXu) *(Roy-PoXs)/8p +(R1y-P;X8) 1 (Ryy-P X¥)/§ ;*

k+1 . .
+ eee (Pry-P X2 (Pry-PrX¥)/ §¥ +i 1Y*P1P1Y/ CF
1 k+1
= (R-ER)® Rg~ (R-ER) +_zr . *P Ply/é
1:

where R = Py , ER = PX¥

Ryl = a diagomal matrix of §;%'s, and P = (PgP....Pr)?,

0"1

In view of the Neyman criterion and prior knowledge,
namely that Pi(Pi’Pi)*Pi' is a projection on the space of Xj
and P;y (i€ 1) is therefore the exact linear function that
is indicated by the usual Model I breakdown or L.S. procedure,
and X8 15 = X§ y , we conclude that (Xfjg, §2410e0052,1)

. - 2 2
is sufficient for the parameter set (X¥ , 0%,,,...0841) -

Theorem 14: The condition of balance, and P;X 550 (if1) ;-"

(j#x+1) in a mixed model y = X¥ + ZX; B . where @i's are in-
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dependent normal and where there are k+2 roots for W in the

corresponding completely random model (III.B.2) ensures that
A

the statistic T = (X¥ g, s%+1,...,si+1) is complete suf-

ficient for the parameters of the model.

Alternatively: If the Model (IIX.B.1l) satisfies the

restrictions
_ . ¥ _ t 1
(i,j=t+l,...,k+1), V has k-r+l1 distinct roots and @i's are

”~
independent normal then the statistic T = (XKLS, s§+1,...,

2 N .« Y- ¥ - S
s~ J 18 Ccouipa&re SuiriCi€n
k+1 p

- £ b 1 - < £ 4ot -~ 1
v i the parameters oi the umodel.

leY
Proof: We have that (y =~ XKLS) is distributed N(O,V).

Furthermore,

T <% 4 -*
P, PiV/ ai . P; PiV/ 6i

T *
P, PiV/ &; and
* * _
Pitpiv/éi Pj’PjV/ 6j =0,

in view of the choice of Pg, Pj as subspaces of an orthogonal

matrix P. It follows that siz's are independently distributed
2 T rA > 1 - -

as cpijxi . In a balanced; case Xf¥;g is multivariate normal

Xy, Ro).

Since P;y (0€i%r) and Piy(r-t-lé i€ k+1) are uncorre-
lated, in view of normality we have independence -of all
statistics actually calculated. If we make the following
correspondence between present variables and parameters and

those in lemma 4
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2 2 : - .+ 2 2 e ~
(st.!.l,...’sk-j-l) 17 \0’r+1s-°°1°k+l}'= [~ 9

- -1 .
Y, and PX¥ Ry = 6]

and R(8) = R3'

Py

then it can be verified that
Pp = P(Y, e) Py(Y;, O, ©)
where the two factors are of the type considered by Imhof
(1960) and tue family of product measures generated by Py
is therefore strongly complefe. We conclude that the suffi-
cient statistic T = (X?is, S§+l,...,5§+l) is complete.
We conclude this section by stating without proof the

mixed model version of theorem 12.

Theorem 15: Suppose that in the model (III,B.l1) we comnsider
the class P, i.e., that class where complete sufficiency can
be established under normality. If finite fourth moments
exist for all @i random variables, and all third and fourth
moments are equal for all variables in a given vector éi’
and independence is retained, then the same estimators for

5; ='E(y’Pi’Piy) that are M.V. unbiased under normality

are b.q.u. under present assumptions while the ordinary least

squares estimators for regression coefficients are b.l.u.

estimators.
In conclusion we note that the results-of this section
have relevance for example in mixed classification models

without interaction of which the randomized blocks case
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with blocks random and trzatments fixed is an example.
Hultquist and Graybill (2965) exhibit a2 minimal set for this
situation; we have shown that the estimators usually used
are in fact complete. This makes a considerable difference
to the properties that we can infer for the *usual?® L.S.

estimators.

C. Other Models

In this section we cconsider briefly estimaticn in two
basic types of models. They are of special interest because
of their relationship to covariance structures induced under
a finite model.

The first type is represernted by

K+l
y = 2 %@

- - ' . R . ' B
Xo= dy, s 0g=n s Xy = I, and B@,; 6,,07Ta,

For i = 1,...,k, we have E(@i@it)

- i
where

(a'\b ) is a matrix with a;*s on the diagonmal and b;'s
of f it, while for i=i,...,k+1 , EQ. @ r) = 0 (i#j). (III.C1)

The second type is represented by

r ¥ k+1
y=3 X.¥: +
i=0 * % 1+1 %: 61

. ' - - 4 _
Xo = Jp » ¥07B » Xyyq= T and E@y 3 Bpyq) = Ia,,; -
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. 4
For i = z%1,...,% , we have E( %i.ei>= (ai\‘bi) , and feor

isc+l,. .kl ECB B =0 GED . (1II.C.2)

Our first objective is to exhibit M.V. unbiased esti-
mators for some of these cases. We shall draw attention to
the fact that in such cases the estimators of previous sec-
tions are still M.V. estimators, but that the estimators of
variance components estimate the (aj-b;)'s (v, ,=0). Genex-
alizations of various theorems previcusly givea will be pre-
sented. A simple example, which exhibits the essential
features of constant correlation in (III.C.1), is

y=p+e
where e has covariance matrix V = (a=b)I + bJ. Let P be any
orthogonal matrix that diagonalizes V. It is known that y
is a MV estimator for pm. Let us assume normality of distribu-
tion and write down the density function for y. The quad-

ratic form in the exponent, ignoring the -3 is,

(y-p)? y-1 (y=p)
(P(yﬁp)’(PVP=)'1P(y1p)
(Poly-p)*Po(y-p) A a+(n-1)b} +(P1(y3p))'P1(y1p)/a-b

Q

= n(7-p)2/a+(n-1)b +y'PY P,y/a-b
since Po(y-y) = 0 and Pijps = jp0 -  Since Pp(y-p) and
Pl(yﬁp) are orthogonal, the two component parts of Q are in-
dependent. Furthermore s2 = y’P’lPly/(afp) has'}e(n-l)
distribution and (y-p) is distributed N(0, (a+(n-1)b)/n).
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By appealing to Gautschi's (1959) lemma we therefore have:

Theorem 16: The statistic T = (y, s2) in the model y=p+e

where E(eet!) = V = (a\b) is a complete sufficient statistic
for (u, a-b).

The parameter (a+(n-1)b) cannot now be obtained as a function

of the set (u, a-b), as was the case in previous cases. It

can also be shown that there are no unbiased estimators of the

individual parameters a or b. The example demonstrates that

complete sufficiency may exist for a vector function of para-

meters but not for:the set of all the parameters themselves.

A similar situation obtains with respect to unbiased estimators.
We verify that this state of affairs carries over to

some more complex models. We restrict our considerations to

models of type (III.C.1) which satisfy the balance, restriction

Xixixjxfj = ijjjxixi (i,550,...,k+1) (III.C.5)

and for which the additional restriction

.t - K . .
RS TiJpy » Xini = Jg (I11.C.6)

is imposed. It follows that E(yy') = W
2  k ' |

i 2
= XoXo u° + f_lxi((ai-bi)lid-biji)xi' + Iay .4

T

vt 2. ot o ! - 2 1
XOAO }3 7X1X1<al"bl)7o/oc+kak(ak"'ok)+Iak+1+xljlxlb1+ e o e

P X k.t
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- 2 i e YA
o Jgp r lﬂ'JLCbl"'.o.,bk) - vl - J;(r +b1+.oo+bk) .

We note that vl agrees exactly witk the term from the cor-
responding wodel without correlation, i.e. (IIXI.A.1) if
we replace o? therein by (a;-p3) (i=1,...,k) and °i+1 by

341+ We emphasize that condition (III.C.6) has been
utilized. As in Theorem 11 there exists an orthogonal P

such that PWP®* = A diagonal, where elements of A are denoted

by 8;°s.

Theorem 17: Under an assumption of a multivariate normal
distribution in the model (III.C.l) which satisfies also
(III.C.5) and (II1.C.6) if W =V + XoXiu® has k+2 distinct
latent roots, then the vector-statistic

2

T = (Poy, S1s sg,...,si+1) is complete sufficient

fOI (}1,(31‘1}1),..07(31{"%), ak.'.l) L

Proof: The quadratic form in the exponent of the density
function for y, ignoring the -%, is

Q = (RCy=-m)* @V-Ipr )(R(y-p))
(Po(y:u))'(Po(y:u))/xo+(P1y)’(Ply)/$1+...+

(Pk-f-lY) ! (Pk-l-lY )/ & k+1

(PoCy=p)dt (Roly=2)3/2 gt C18T/8 1 %o+ + ¥Ciu 1S 241/6 as

Mutual independence of all terms Poy, s%,...,s§+1 is as-

sured and by Gautschi's (1959) iemma the result follows.
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Therefore although we cannot find estimators for all

the parameters, we do find that there is a certain robustness

to the goodness of the usual mean squares for estimating ad-

justed variance components i.e. (aj-b;)¥s i=i,...,k+1,b, . ;=0,

in the model (I1I.C.1) with correlated effects.

The theorem (to follow) is a generalization of theorem

12. We noted earlier that the proof of theorem 12 that ap-

pears in the literature
tablish that Theorem 12
oIl riPi matrices in the
which we shall describe

sarily iimit our proof.

is inadequate. We are able to es-
is true by observing that the nature
ciass ¥ is a highly restricted ome

and to which we must therefore neces-

Theorem 18: For the model (III.C.1l), under the additional

restriction (III.C.6) and allowing only one non-zero entry

per row for X; matrices, consider the class of situations

for which it is true that the submatrices B;; and Bij of

the projection operators P;Pi satisfy appropriate restric-

tions (to be specified).

If instead of normality, we have independence of @:i

and §j vectors (i#j) and if furthermore all fourth moments

exist for the elements of each @iland E( @ikg) = €y,

BBy =d;, BBy’ Ban) = ey

E@;12R:1830) = £5, and BCE;B;1P:nBin) = i

(i=l,ooo’k, ek+1= fk+1

= gx41 = 0 ) where k, 1, m and n



all unegual and ¢:, & £. are constants, then tt estina=~
lg ? 61 9

tors that are M.V.U. under normality are b.g.u. estimators.

L3

Proof: In ciass P, there exists an orthogonal matrix
1.t :
P = (PoPl...Pk,‘_l)' such that

4 ?
V'Y = V'PQROY *teee otV Py Pia1 ¥ -

Matrices of the type PiPi are idempotent,'symmetric and
regular in structure. This will be seen %o be crucial to
the argument to follow.

Let the general quadratic estimator of §: be §i .

Expressing this in terms of y'P;Piy we have
g 2 1ol
— 4
&; = y'PIP;y + y'Cly (II1.C.7)

where the constant elements of C! are defined by the rela-
A -
tion (III.C.7). Now E(d ;) = E(y'PIP;y)+E(y’Cly) ,
so that unbiasedness implies
o i k+1 k+1 }

E(y c Y) =B {zcjk(P+5z.:=lxiéi)j(}:.’?:lxi@i)k i
The vector y is made up of p and the Ycontributions™ xege’
In view of (III.C.6) and since we allow only one entry per
row for X. matrices we notice that it is possible to rear-

- L

Iange Xe@e in the fOIm (gel,gel,ooo’éel,éez,o'o,@ez,ooogget)
an n x 1 vector. We explain in Chapter V that each vector
@e entering y may be regarded to denote a "@e-partition"

of the matrix of the quadratic form B (say) of the type
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|B1:Be1Ber  B12Berfez ---|

BoiBe2fer  B22PezBez oo-

epste mtate

where By, represents a cextain left-hand uppermost block of

S

the matrix B. This subdivision of B is called a ?e-parti-

tion.

. hd ?
Now 0 = E( tC )-ZC 2+5 3 E(B2)+3¢c> .62
VICY) = 2 i 3UHE R Crne)B08*2C5 %k

NES
where Crr(ﬁ ) is the sum of &all c:k terms in the rth dlagon-
al block as determined by the \Be-partltlon. By equating co-
efficients we obtain numerous restrictions that the ct me-
trix must satisfy. For the e¢stimate 'g}i to be "best™ it is
required that E(giz) - (E(gi))‘z, or since E(gi) = 5i> o,

A
more simply E(éiz) must be a minimum. We have
£ 2 2 i 82
E(8;%) = E(y*P;tp )" + 2E(y*PitP;y) (y?Cly)+E(y'Cy)° .
We can choose ¢l to make this a minimum if the cenier term
vanishes identicaily. Put B; = Pi’Pi . Then we can write

roiy) = 2
E(y'B;y . yiCly) = E{(ZKOJK,J +§kb3k,.: Bk"’ 2 b kp@
3

+2 b. @ + % b ue:+3 b:ue,+2 b
K
j]_]k_}@ j]Jk‘qu]Jzi kJ]kah‘

times a similar expansion for y'C'y} .

We illustrate why all terms vanish. The coefficient of



A is
<zhbjk><§kcJ O = (2500 =0

while the coefficient of E ?j

(8:) @ C.. (8.) ) where  means Kronecker pro-
JJ ~J '
duct of matrices. Equality of fourth moments implies that

the coefficient of E @f is

2 B C: - N .
3 B35 (85> @ €335 (657

It is certainly not obvious why this quantity is always
zero. In fact this is only the case because of the highly
restricted nature of the P;'P; matrices. Depending on the

vector that determines the partition, different sub-matrices

of P;*P.; are to be regarded as Bjj's and Bj j's. The pres-
ent theorem limits itself to those cases 1in which with re-
- spect to the relevant partitions in each case, the matrices
B.. are in fact equal and the matrices Bij are equal but for.

a possibly differvent sign. We therefore have
55350 ® C33@p T BisE@n 2 % C5585 =

Terms in E €’i3§j (in abbreviated notation) are

2 B..8C.. + 2B.. 8 Cs:
iy oA gy

= B, @ 3C;:+3B;:@2C;;=0.
iz ij 13 5 13 § i

We claim that the restrictions given ensure that all terms
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of E(y*PifPiyy’Cly) do in fact vanish, and
N -
E(8,)2 = E(y°p 'R, v)° + E(yiciy)® .
1
2.2 . . .
E(éi) takes on its minimum value when
E(ytcly)? = o.

Now E(y'ciy) = E(y'ciy)2 = 0 implies ¢t = 0 is the best
choice we can make of ci and the best quadratic unbiased
estimate of 5i (some linear function cizs) is y‘Biy.
In model (III.C.2). as in (III.C.1l) we assume condi-
tions (III.C.5) and (I1I.C.6). It follows that
E(yy')-B(YIEC(Y") =V = V;+J0(b_ 140, 5%. .. +Dy)
where V; is the variance term for the corresponding mixed
model (III.B.1) with EBiBi) = I of considered in section B,

if we replace c% therein by a;-b; (i=r+l,...,k), and °i+l

by ax+1 .

The corresponding model with all factors random is
(111.C.1). We recall however that when the model (III.C.2)
is being considered, for convenience we designate the co-
variance matrix of (III.C.l1l) by V. There exists an orthog-
onal P such that PVP* =A diagonal. Suppose W=7V + Aopz
has k+2 distinct roots. It follows that PVP? = A * diagonal
and if furthermore Pixj = 0 (i#0) # (j#k+1), then by the
same argument as.bef¢re V; has k-r+l1 distinct. roots and

therefore V has k-r+2 distinct latent roots 53:61,3*’5;-r+l‘*
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We shall not present all the detaiis, but suffice it
to say that the form of Q in (IIXI.B.3) would be duplicated
in the present case with the sole difference that the first
5; term invoives all the corzelation effects, all of which
are non-estimable. Also the only terms that do enter im-
plicitly into,sl*,..., 5£ir+l terms and for which estimates
can be found are the (ai-bi)’s, (b=r+i,..e,k+1),bp41= O

The constant correlations do not aifect the resuit
that least squares estimators for estimabie functions of
¥;'s are b.l.u. estimators of the same estimable functionms.

Using the arguments of the previous section we can prove

Theorem 19: Consider the class of mixed model situations
described by (III.C.2) with the additional restrictionms
(III.C.5), (III.C.6) and PjXj = 0 (1#0) # (j#k+1). If we
assume multivariate normality of'@i'vectors as well, then

. . A 2
the set of estimators (X¥ rg, s%+1,...,sk+1) are complete
sufficient for the parameters (XY, ar+1'br+lv'°"ak'bk’ak+1l
Alternatively: If we consider the class of mixed models
represented by (III.C.2) with the additional restrictions
(III.C.6), VXXt = XX*V, ij = 0 (j=r+l,...k),

- 4 2 —4 - . hd -4 -
we assume multivariate normality of @i vectors, then the
A -

set of estimators (X¥ g, si+1’?"’si+1) are complete suf-

ficient for the parameters (X¥, 8p,1-DrygyeeerBp=Dsdpy q)e



in other words the usual estimateors are M.V. a2lso feor
the situation above, and may be said to be robust to con-
stant correlations of random \Bi effects (i = r+l,...,k).
We conclude this section with the counterpart of

Theorem 16.

Theorem 20: Suppose that within the model (III.C.2) we con=-
sider that class for with complete sufficiency can be es-
tabiished under normalitly, and restrict ourselves to cases
in which projection operators satisfy the restrictions dis-
cussed in theorem 18. If we remove normality, but retain
independence of vectors @i and @j for (i#j) and if further-
more fourth moments are finite for all elements within a
given vector @i and if E(eik) = c;, E(@fk) =d;, E(@iiéil)=
e;r EBik bia Bin) = fir 204 B P31 BinBind = &3
where i = r+l,...,k, Crs1 = fr+1 = Br+1 = o,

k, 1, m and n are all unequal
and

€ir,€;r.--8; are constants,
then the same estimators that are M.V. under normality are
b.g.u. and b.l.u. for"vafiance componentgiand estimabie

functions of regression parameters respectively.
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IV. ON ESTIMATION IN DESIGNED VARIANCE COMPONENTS MODELS

A. Introduction

In this chapter we consider situations which are known
as 'balanced! in the literature and which are designed in
some special way, for example, b.i.b.'s and p.b.i.b.'s.

The b.i.b.'s, for instance, have a relatively simple yet
approximate analysis under the assumption that (say) treat-
ments are fixed and blocks are random. Our interest in this
chapter is to consider estimation in such '*balanced designed”
cases under a variance components model. The cases that
interest us here are those that cannot be treated by the
methods of Chapter III, i.e., those cases where for some
i,j, the commutativity condition does not hold. 1In view of
Theorem 3, we recognize that simultaneous diagonalization
independently of the parameters of the covariance matrix V
by an orthogonal P is not possible and we have to have re-
course to other methods.

The question that arises is whether U.M.V. estimators
exist. We have no proof_that they do not. However the
minimal sufficient sets of statistics that have been exhibit-
ed thus far are known not to be complete. For competitive
estimators, such as those exhibited by Bush and Anderson
(1963), in different regions of the parameter space, differ-
ent estimators have smallest variance. Furthermore we note

that for finite samples maximum likelihood (M.L.) estimators
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do not have the good properties that they have when sample
size islihfinite, see Cramer (1946) and Lehmann (1950) for
examples where M.L. estimators are inefficient for finite
samples. There does in fact appear to be no alternative

but to attempt to find the minimum variance estimator for
every special situation that arises by trial and error. Ob-
viously an undertaking of this nature depends rather crucial-
1y on having available formulae by which to evaluate the
variances of estimators of variance components that are
given by different methods. Iz Chapter V.-we contribute to
the problem of finding the variance of a fairly general
quadratic form. In the present chapter we attempt to clarify
some aspects of a method of estimation that has long been
known, and is commoﬁly referred to as *'least squares estima-
tion method.”™ We believe that the scope of this method is
not fully appreciated and utilized. We point to the fact
that Henderson (1953) could claim that the variances of es-
timators obtained by this method (his Method 3) were un-
known. There have been some attempts for e.g. Searle (1956,
1958, 1961), Manamunulu (1963), at variances of variance
components for estimators obtained by Henderson's (1953)
method 1, and there has been an attempt at the variances of
method 3 estimators of variance components in a 2-way un-
balanced classification by Bush and Anderson (1963) who

use a theoretical argument due to Roy (1957). In this chapter
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we present a "transformation method" for obtaining esti-
mators through the use of independent single degree of free-
dom sums of squares. The novel feature of the method is
that it enables us to find variances of variance components
obtained by least squares quite easily; we think this alone
makes the ™"method! worthy of presentation. We have de-

cided to call this *method™ the sequential transformation

method.

B. On Estimation in the B.I.B. with Treatments Fixed

Rao (1947a).in discussing the b.i.b. design with treat-
ments fixed, remarked that there are *'best' estimators al-
though the equations leading to them are complicated. If
we are correct in presuming that Rao (loc. cit.) had M.L.
estimators in mind, then the assertion appears to have no
solid basis. In fact the only claim that can validly be
made for M.L. estimators is that they are based on a minimal
sufficient set.

Graybill and Weeks (1959) show that Yates?® (1940) com-
bined estimator for treatment contrasts which Rao (19472) en- -

dorsed as a good approximate method is also based on a

o'

minimal sufficient set. The least squares estimators for o
and 02 are also based on the minimal sufficient set of

. L. ' 2 . . .
statistics. Whereas og 1s a function that 1nvolves all

members of the set, 02 is a function of all members only if
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we allow some coefficients to be zero. As is well known,
the question of exactly how a '"good! estimator should be
constructed from a minimal sufficient set is an unsolved

one.
In the b.i.b. with blocks and treatments random the

same difficulty arises. Weeks and Graybill (1961) have ex-

ed a minimal sufficient set (sl,...,sé) for this case,

Ing

ibi

o

hown how to use them to form *'good' estimators.

e -

(J‘.
«t
n

o+

us ne

imators obtained by *least squares" in this case are

-

to
t

S

functions of the set they give if we say that s, enters all

functions with coefficient zero.

C. Algebraic Restatement of Method 3 of Henderson
for Finding Variance Component Estimators in
Completely Random Models
We shall have need in this section of the concept of a
conditional inverse. It has been indicated by Rao (1962b)
and others in unpublished material that considerable unifi-

cation within the theory of least squares is made possible

by a concept of this type.

Definition. Let A be anyimatrix. The matrix A* is said
to be a conditional inverse of A if A* satisfies the rela-
tion AA*A = A.
The concept of a éonditional inverse finds theoretical
utility in the solution of linear equations. We illustrate

this in
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A N bia aa

Iemma 5: If A% is a conditionazl inverse of A, and if Ax=y

pae

cn to

ot

are consistent then the vector A¥y is a sclut hese

eguations.

Proof: Since the equations are consistent there exists 2
vector, xb say, such that
¥ = Axy = AA*AXO
= A(A*y) ,
sc that
A*y is a solution to the equations
Ax = vy .
A theoretical method for finding the conditional inverse of
an x pmatrix A is to first find the non-singular matrices
B and C such that
BAC =D
where D is the n x p matrix
o
0 0
i.e., the matrix with cth order unit matrix in the upper

left-hand position and zero elements everywhere else. It

can be verified easily that the p x n matrix
Ip U]

* =
D W v

4
with the sub-matrices arbitrary, satisfies,

DD*D = D
and furthermore that the matrix A* = CD*B is a conditional

inverse for A. We know of no computer programs in existence
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nter-

20

for finding a conditional inverse in this way. It is
esting to note that the following well known procedure does
in fact produce a conditional inverse for a symmetric matrix
A (n x n). For convenience we consider A rearranged so that
the independent rows and columns appear at the top left-
hand corner. Delete dependent rows (and columns) of A un-

til a matrix of full rank A; (say) is obtaimed. Then the

n X n matrix ' S
a7l 0
B =
0 0
is a conditional inverse of A., Tibis follows because .
¢ -1 NT
AL Ayl | A 01]a; A2
ABA = _ 1
ay Azl o o J Ay Ay
- ) t -1
Az AZAl A2
.

However, since rows deleted are linear combinations of rows
remaining we can write

4 . 4
(A, A3) = P(Ay A5) , 1.8:, Ay = PA; and A3 = PA,. We have
Aé AIlAz = PA; = A5 sO that ABA = A and therefore B is a
conditional inverse of A.

Another method for producing a conditional inverse for

a symmetric matrix A is given by Rao (1962b).
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We now consider the model

k=1

y=J3pn+ 2 X.B.,

X1 = I ECQy @3)“'0 (i3, E(@i@]{);IGZi

and for at least some i # i, (i,j=0,...,k+1),

- !’ V.! JX-X.' X.’ - ol -
X: X, xjAJ PR, XX, (Iv.c.1)

We remark that a p-term in (IV.C.1) is not essential to the

arguments that follow.

In the model

or for that matter, W, is not simultaneously diagonalizable
independently of the parameters by an orthogonal matrix P.
The character of the general ffapproximate’ method of
analysis for models of the above type is to regard all ef-
fects as fixed, unknown comnstants, fit constants by least
squares (L.S.) and then to equate the S.S. obtained to their
true expectations in terms of the actual model. Further
specifications along with the above oufline were popularized.
by Henderson (1953) as Method 3, but the essentials of the
rethod were mentioned in the 1literature by Wald (1947) and
David and Johmnston (1951, 1952) and were probably used long
before 1947 as well. The details of Method 3 differ slightly

from those of Kempthorne (1952), page 112. At this time our
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interest centers on the Method 3 of Henderson (i953) which

we shall also refer to as the least squares (L.S.) method.

No comprehensive analysis of the properties of the method,

other fhan a demonstration that it is unbiased, appears to

have been undertaken. One general aim of the present chap-
ter is to contribute to such an analysis.

B~ - - N\ - ] Fy 3 ]
if in (iVv.C.1) ail ?i s except for §k+1 are regarded

as fixed, and we fit ail constants, then the L.S. estimator
A

of the paramétric vector fitted is given by any soiution §
to the equations-

¢ . N R

XgXg XoXq««-XoXk! | p Xoy

X1Xy X1Xp..-X0% | | 81] = | xiy

4
ng | #7

4 7 4

.

or (x*X)B =xry .

The S.S. due to fitting all constants is

ROz, By, 85,+0-, 85 = 8'X'y
((th)*xty)t X*y

yIX(XtX)* Xty
where A* represents a - conditional inverse of A.

If in (IV.C.l) we ignore 6,1{’ regard the remaining @i's
except @ k+1'as fixed and fit constants, then the L.S. es-

timator of the parametric vector fitted is given by any
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solution
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%.to the eguations
(s K 1 b
XOXO xoxl .o XOXk-l
t M 3
X3Xo  X3X; .o XpXi g

t
\xk_lxo Xk-1X1 .- Xk-lxk_]:

(- ¥ ( s R
A Xo¥
8, | xuv

<
Bxey | -1

or (X*'X)B =X'y .

The S.S. due to fitting all constants except @k is

RCFvglqufgk-l)

BTy

= K¢

( (i'i)*)?'y) T Xty

XX)*X'y .

Finally, then, the S.S. due to fitting 61: is

Rem(By) = y'X(X'X)*X'y - yIX(XTX)*Xy .

Henderson's (1953) Method 3 requires that Rem (@i) be ob-

tained for all i (i=1,...,k) and obtains point estimators

of variance components as a simultaneous solution to the

équations (i=1,...,k)

E(Rem (§;)) = Rem(@i) .

We notice that for the real matrices A = X{X'X)*X' and

B = X(X*X)*X® At = A,

A and B are symmetric idempotent matrices.

such matrices

B* = B,

are orthogonal projection operators.

AA = A and BB = B, i.e.
It is known that

Then

another description of R(u, $1,y---, @k) is that it consists

of the square of the projection of y, on the column space

of (XgsXyyeee,X), while R(n, 83,...,8,_;) is the square
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of the projection of y on the column space of (xoxl...xk 12
The difference between two projections of y on different
column spaces, one of which is a subspace of the other is -

itself a projection of y and the square of that projection

is
Rem(@ k) = RC pyeeey By = RCpyeee, By 1)

We shall make use of projection arguments to simplify ex-

pressions.

We are interested in (a) the expectation under a con-
pletely random model of the form (IV.C.1l) of quadratic forus,
i.e., Rem(@i)'s or lengths of projections, and (b) the vari-
ance of these quadratic forms when normality is assumed and
when it is not. First we restate the solution to (a).
E@xty) - E@'Xty)

E(y*Ay) - E(y'By)

We have E(Rem(§ »)

where A = XP(X*X)*X* and X = (Xoxl...xk),

.and B = X(X*X)*X* and X = (XgX;..-X_1)-

Now E(y*AY = E(2 2a..vy.y.) = 2 a. .(vs:+ DE(Y -
y ijalJy1YJ> ija13<v13 E(y;J)E(y3))

= tr(AV) + (Xop) TX* (X*X)*X'Xqu

tr(AV) + (Xoﬁ)'(Xop)
tr(AV) + np?, where tr(A) = trace of matrix A.

Likewise 5
E(y?By) = tr(BV) + nu

so that .
E(y’Ay-y’By) = tr(A-B)V .
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. . L. . . 2 . t 2 2
Since the matrix V khas the form X.X',0 4 + XX p05%..+I0y,

- 0

tr{A-B)V = tr(X(X'X)*X'X;X. - XX XXX XD ©
LI - 2
AT XXX X, - Z(XXIXX)) o

+ . - - L] - - - - L] - L] . [ 4 - L] - - g

FEr(XXIX)*XT - X(XTX)*X') °12<+ (Iv.C.2) .

1

If the column space of X; is a sub-space of bpfh X and X
then the expectation will not invoive c? since ian that case

X(XPKIFXTX; = X(XXO*X'X; = X5
and the coefficient of ci drops out of the above expression.
When the column space of X; is a subspaée of X, but not of
X, then we have a partial simplificatdon in the coefficient
of G? to

tr(X;X; - ZEDRXK;x1)

= N - tr XX X*X1K;X1) -

We notice that in (IV.C.2) only ci has a coefficient of
the latter type. Because X(X!'X)*X! and X(X'X)*X' are sym-
metric idempotent matrices

rk(X) and

tr (X(XX)*X?) = rk(X{X*X)*X?)
tr(XEX)*XT) = rk(XE XX = tk(X)
so that the coefficient of ci+1 is always the difference in

ranks of the matrices X and X. Therefore

-~ .~ P S s aeNL, Ty 2 PITTR ETY ~r NN 2
E(Rem(B 1)) = (N=tr{X{X*X)* X XXy dop-(rk{X)-rk{X)Jok+1
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The residual S.S. is given by
R = y'y = yIX(X*X)*X'y

>*Vg /0§+1

BR) = tr(X X - XA of + .. stz(I-x
0 + . - . + (n"'p> C}zi.é.l

(n-p) of k+l where rk(X) =p .

In perhaps the majority of cases there will be substantial
simpiification, and the need for determining a conditional
inverse does not arise. In those cases where no simplifi-
cation is pecssible we mayv use the result stated at the be-
ginning of this section. We point out that (IV.C.2) and
subsequent simplifications is merely a reformulation of
Henderson'®s (1953) equation (19). Another form is given by
Bush and Anderson (1963). One of the merits of the above
form (shared by some oéhers'also) is that it is amenable to
computations on an electronic machine.

We conclude this section with a summary of available
results to (b). If we are prepared to a2ssume normality of
distribution of the y vector then the variances of the esti-
mator given by

Rem(@ 1) = y*(A-B)y = (y-m)*(A4-B)(y-p) is

Var((yfp)’(A-B)(y-p)

=2 tr(av)? + 2 tr (B2 - 4 £rCAVEV) .
This result is due to Matern (1949). A more gemeral formula

that does not assume normality is derived in Chapter V.
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The results of Chapter V allow us to obtain 2also
Cov(y!(A-B)Yy, y'(A-c)y) = w,, (say)

so that the covariance matrix of a succession of linear

functions of estimators of the variance components U&.(say}.

where &= (oi, cg,...,oi+1)'is available. Then

- 4
Var(A) = U ID.U'I where O = {w- 1

L4

We could measure the overall effectiveness of Method 3 of
Henderson (1953), and any competitor, by some function of
var (X ) such as |

tru lnul') or detw inu-l") .
We favor these two measures because they are sensitive to
gross imprecision in estimation of indivicual components.
From some points of view, a method that is found to give
reasonable precision fot all estimators is 2 desirable cne.
Bush and Anderson (1963) present some empirical evidence

supporting the contention that Method 3 is such an estimator.

D. The Transformation Approach to Esti-
mation in a Special Case

1. Deriving estimators for the b.i.b. with random blocks
and treatments

A balanced incomplete block is defined as a design in
which there are t treatments and b blocks of k experimental
units per block (where k< t) with each treatment replicated

r times. The arrangement of treatments is such that every
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Y

pair of treatments cccurs togetner in exactiy A blocks and
each treatment occurs in a block only once. The model may
be written as a special case c¢f the gereral two-way classi-
fication given by Xempthozne (1952) for example, i.e.

Vijm = + 0(1 + ’{‘:j + eijm (N.D.l)

“e

3
where

nj; = [ 1 if treatment j occurs in block 1
0 otherwise.
t+ should be noted that only the Vijm in which m#0 are ob-
servede.

Equaticn (IV.D.1) representé bk = n equations, and

these equations may be writtern in matrix form as
v = Xou +X161 +X2.(52 * X3@3

where the dimensions of the matrices are: y(n x 1);
X,(n x b);@l(b x 1); Xz(n X ’c);%z(t x 1); 33(n x 1), and
X9 = jn, X3 = I(n x n). Furthermore, we notice that for
at least some i#j .
3

k4 Y
X3X;X X5 # xjxjxixi (i,j = 0,1,2,3) (Iv.D.2) .

Although we can write down an orthogonal P (n x n) and
consequently a "'single degree of freedom breakdown®

n
y'y = y'P'Py = I y'P;P;y
i=1

in view of lack of commutativity it does not necessarily

follow that all the terms y'P;P.y will then have zero co-
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variances and it is not possible to idexntify subspaces of P
that correspond to similar latent roots of V since the latent
roots are not obtainable without specifying the unknown para-
meteré.

Henderson's (1953) method 3 or the least squares method
applied as though all effects are constant, actually selects
projection operators orthogonal to coliections of column
spaces of X; matrices. Although this may therefore give a
method of collecting subspaces of P to form lines of an
A.0.V. table, it is apparent that the expectations of single
degrees of freedom that are géthered together to form lines
of an A.0.V. table are not necessarily homogenous. There
are reasons for wanting to know the expectations of con-
stituent parts of a line. The following sequential trans-
formation method exhibits a way of actually determining a
single degree of freedom breakdown and the expectations of
each quadratic form (y'P;*P;y). It also allows us to deter-
mine variances of estimators quite easily.

The details immediately following are not essential,
but are useful for computation purposes. In specifying the
order of observations in the vector y of (IV.D.1) we let
this be determined by the parameter §;. Thus, for now, we

require that all observations that incur the first value of

the @, effect occur prior to all those that incur some other
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@1 effect, and so on. In this way we ensure that the struc-
ture of X3X;° is a diagonal biock of ® J§ matrices. We
.shall use the notation yb to denote that.the @l (or the b
parameter) has determined the order in which observations
enter y. It is known that there exists an orthogonal matrix

P suck that P X;X{'P' is diagonal and that there are only

-

two distinct latent roots; b roots will in fact equal k
and n-b will equal zero. Let P; denote the matrix of vec-

orrespond to the root k. The matrix formed from

«+

ors that

Q

the remaining vectors of P is denoted by P5.
The two matrices P; and P, suggest a transformation of
the vector y, into two equivalent sets‘Plyb and Péyb. Now

the covariance matrix of PjyDP is
_ 2 o 1 2 2
vV, =k Iy og; * P XX, 'Ry 9%, * I, %6

and the covariance matrix of szb is

2 2
v, = PyX X, P, " + I .
2 27272 "2 %, © “n-b 963

Analysis then proceeds separately with the setsAPlyb and
szb,as though each of these constitutes all the data. Con-
sider first V;. There existsan.orthogonal matrix Q such that
QV1Q* is diagonmal. In fact we.would determine Q in practice
as the orthogonal matrix that diagonalizes PyX,X,'P.* .

This means that if we transform Plyb to QP;y then this latter
set of b orthogonal linear forms has diagonal-coﬁariance

matrix QViQf. Next we bring the transforms szb to a
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simiiar stage, and we then indicaté how we propose to get
estimators.
There exists an orthogonal matrix R such that RV,R?
is diagonal. This means that if we transform Pyy to Rszb
then this set of (n-b) orthogonal linear forms has diagonal
covariance matrix RV,R'.
We may verify that the matrix A = [%%}
b + n-b {(¥n)* n and orthogonal; consequently if we obtain
this matrix in the way described, then we have a breakdown
vy = ylA*Ay = g— y'A;'A;y where A; (i=1l,...,n) is the jta
row of A. Purtﬁgimore, since we have the individual
Var (Aiyb) (i=1,...,n) terms, it is apparent which rows of
A; can be used simultaneously for estimation purposes. This

collecting of rows of A corresponding to similar expecta-

tions, gives rise to B; (i=1l,...,m) (say); then we have

vb'yb = ?: yb’Bi'Bin
i=1 '
where E(yb’Bi’Biyb) is some homogenous linear function of
variance components, and’only yb’Bl'Blyb' involves pz in
its expectation. We propbse to obtain estimators by equat-
ing some quadratic forms of type yb’Bi*Biyb to their expecta-
tions and solving the resulting'equations. Various differ-

ent sets of estimators for 2 2 2 envi ed
061’ 032 and 08 can be envisag

in this way.



82

It is clear from an investigation of the matrices Vg
and V, above that an estimate of o%z and 033 can be obtained
from the transformed data Rzpzyb, while the estimate of cgl
from QP;y cannot in general be similarly disentangled of
ogz terms. We point out that in order to estimate ogl in
the way of ogz above we would repeat the procedure (fol-
iowed to obtaim Ay) after imsisting on an appropriate oc-
currence of components of the 3, vector in the originmai
equations by setting up y in the appropriate way. We dis-
tinguish the order of observations in y with.@2 in mind by yt
We have described the method for a model of type (IV.
D.2). The method can be extended without difficulty to
models that involve more than three variance components.
In the previous section we described how to obtain Rem(8;)
in the model (IV.C.2). The transformation method appro-
priately applied in that case would in fact isolate the
single degree of freedom sums of squares that make up Remd@k).
This would have been achieved by choosing P such that
P(Xo...Xk_l)(xo...xk_l)’P’ = A diagonal and denoting those

vectors of P that correspond to zero latent roots by P,.

2. A special example

We give an abbreviated version of the detailed analysis
by the methed of sub-section 1 in the case of a b.i.b.d.

with parameters b=6, t=4, k=2, r = 3 andA= 1.
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We obtain gquite easily in succession a matrix P =
l.‘z J', a matrix P1X2X2‘Plf and a matrix Q such that
Qplxzxz'P Q° is diagonal. Likewise the form of szzxz'Pz'
is easily available, and a matrix R such that Rszzxz'gik ‘A

b
We obtain for Ay {Q ;J y - the form

N

(1 1 1 1 1 1 11 1 1 L
LZ oz leii i/t /n
i 1 1 .1 |
R
.« o . . X 1 . I . . . .
5 5 "5 73
e e e . e e o X 1 -1 .1
5 3 2 72
2 -2 -2 -2 1 1 1 1 1 1 1 1
2f6 206 2J6 276 2¥6 2J6 2V6 2J/6 2/6 26 2/6 2/6
. . . . it 111111 [21)
213 203 202 23 2[5 2/2 2]Z 273| yP= B3| ¢
1111 i1 1 e
202 22 22 242 -~ ° ° 202 202 202 2/2
1 .1 .1 1 1 _1 _1 1
205 203 203 202 253 213 20222 ~
. . . . 11 1.1 1.1 1.1
202 242 22 242 22 242 25 2/2
1.1.%1 1.1 1'1 .1
2J2 22 20222 2/2 202 2/222 © ¢
1.1 1.1 . . . .1 1 1.1
2J2 2/2 242 202 2/2 2/2 22 2/2
: i .1 1 1 1 1 1 1
k°."zf_zf‘f’2fzf"2f'zj_zf]



FZG%+3‘G\%.+02
2
ZO’B*O%“O
2.2,.2
ZGB+0T+0
201234-0%4-02
20123-*02
2
ZCB"'O'Z
b
and of RPyy~ equal to
(2 2
ZGT"'O'
2. 2
ZoT'l'cz
20%4'02
02
2
o}
2
G )

-

where we have of course assumed that yb is written out ap-
propriately for @1 and have put o%l = GZB ’ og = o% and
2

02 = 02 ;
e \

If we order the vector y so that all those observations
that incur the first component of the vector ?2 occur be-
fore those that incur the second component of éz and so on

we derive a different orthogonal (A) matrix, which we shall

denote by A .
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In this case, P is a matrix that diagonalizes XZXZ’,
where P; corresponds to the non-zero latent root and P,
corresponds to the zero latent root.

- - 3 - ~ oy t -

The covariance matrix of Ply is

2

- - 2 2
- t 4

and the covariance matrix of szt is

-
Tan delW - Yo e = - A I L o - o 1o L o -
In this case we obtain in order the wmatrix P, the matrix

Eixlxlfii and a matrix a such that
6§1X1X1’516’ is diagonal.
We then obtain ?éxlxl'ié' and a matrix R such that

E'Eéxlxi'PZE' is diagonal.

In the example above we obtain



o———

—-———-————-—-———.—-———

fiz {12 ﬁfﬁ\/_ffz'\fﬁf'fﬁfl_zl_lﬁ

i0_.2 8 _10 2 _8 .10_2 8 _10 2_
4J6 F4F4F4F4F4F4F4F4J‘4J‘"4J’
8 2

.%2__22&2__&&2__1.9&.2_

with covariance matrix of QP;y® equal to

’

ot
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( 2
20%-!'2 o.%d'o
2/3o%+3a%+02
I 2
2/3oB+30%+02
{ 2/3c%+30%+32‘
and of ﬁf;yt equal to R
)
o]
2
2
2
ZOB+52
2.2
20B+c
4/303-1-02
4/3cg+02
L 4/3o%+02 .
- /
Although there are alternatives, and we shall mention

at least one (Method 1) we favor estimating o% from ﬁf;t,
Having decided to do this, then further alternatives arise.
Firstly we may decide on straightforward pooling of the
single degree of freedom sums of squares i.e.

yE1B3'B3y" + vyt 1By 1B,y
and subtract an appropriate multiple of yt'§g§5yt to give
an estimate of cc%. This is the conventional estimator;

we notice that under an assumption of normality the quad-

ratic forms yt’ﬁgﬁgyt, yt'§3§3yt and yt'§Z§gyt have 'X?
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distributions. We note that under the assumption of a

weighted estimator can be found which in general will have
smaller variance than the omne apove.

We may make use of generalized least squares to obtain
a b.l.u; estimator of 03 as follows. Set up the model linear
in the parametexs o? and og .

] 2 2.,
M= (M::MéM;)’ =2(c",05)" *+ e

E(ee?!) = D (diagonal) = Var(M), and Z is a known matrix. With

D known the b.l.u. estimator of ¥ = (ozog)' is given by

(z'p~1z)-1 z'p"lM with variance (z*D"iz)"1 .
When D is unknown; we would use some initial estimator for D,

and proceed by an iterative process to a reasonable solution

for Cg .

One of the basic unsolved problems in the estimation of
. variance components, is the loss involved in confining our-
selves to M in order to estimate og. Another difficulty
arises in the case where Qe use estimated weights to form
weighted estimators. Some discussion of the inaccuracy in-
curred in doing this is given by Xempthorme (1952) page 463.
We notice that both anaiyses give a breakdown into five

associations of vectors (i.e. B;'s and ﬁ;'s) of the orthogonal
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matrices A and A. Thus for AyP we wrote (BiBéB%B&B%)?yb
where for example Bj refers to the first vector of A while
.B4 refers to the seventh, eighth and ninth vectors of A.

We gave the same subscripts to B vectors, where possible, as
in B. Thus Bj corresponds to the "mean" and ES to "error™

as before.

Some possible estimators that utilize simple weighting

2 : yP'B5BsyP/3 or y* B5B5yt/3

| JUS

82 .y’ B;B4yb - 3 5%; (vt Bszy -25% - 302)/9

? ¢ b bxv_- b 2 2 .
o5 = (¥° Bszy + y° B3B3y - 387 - 58°)/10 ;

D g — A
<Y 3B3y + yt B334yt - 502)/8 .

The only way in which we can decide between these estimators
(and others) is by means of the variances of the estimators.
‘We return to this later.

In the example above, we found that the expectation of
each of the (t-1) sums of squares that go to make up the
blocks eliminating treatments component were homogeneous.

The coefficient of cg was in agreement with fhe well-known
Maverage™ value for this coefficient, namely Ek= (k-1)t/(t-1)
from a b.i.b. with treatments fixed. '

We may verify that in the general b.i.b. design the

single degree of freedom component sums of squares of the
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treatment component of blocks eliminatiang treatments are
nomogeneous in their expectation, by noting that each such
degree of freedom is a linear function of contrasts of in=-
trablock and interblock estimators of treatment effects.
It can be verified that the expectation of any such single
degree of freedom sum of squares is o® + Ek c% .

in alternative method by which verification could take

place for any

~

particular b.i.b. design is given below. Each -
matrix entering ‘2X1X1P2 is real, so that the product is
real. The product is also symmetric and therefore diagon-

alizable.

Theorem 21 (Mirsky (1961)): A is similar to a diagonal ma=-
trix if and only if rank (£ I = A) = n - r, (A) for every
value &, where mg(A) is the multiplicity of & as a charac~-
teristic root of A.

Write '§2xlxi'fz’ = A, Ek =_c(. Obtain rk(«A I-A) for the
particular situation on hand. If rank (£ I-A) = b-t we
conclude that the (t-1) degrees of freedom in questioﬁ are
homogeneous in their expectation. It should be noted that
the above two methods are!generally applicable to the veri-
fication of homogeneity of expectations of arbitrary single

degrees of freedom sums of squares in any given mean square.

3. Comparison of methods » _
Henderson (1953) suggested two sets of estimators for

models of the type (IV.D.1). Method one suggested the use
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of sums of squares for blocks (treatments) ignoring treat-
ments (blocks). Method 3 suggested fitting constants or
L.S. i.e. proceeding as though the parameters were fixed and
equating sums of squares to expectations.

It is clear that a combination of methods 1 and 3 may
be regarded as an orthogonal breakdown of the total sum of
squares for a model of type (IV.C.2) into

vy = yiCy + y'Gy

where C; is a projection on the cclumn space of the matri
(xoxlxz...xk=l) and C, is a projection on the column Sub-
space of (Xoxl...xk) which is orthogonal to the space
BRSPS NS P |
| An examination of the matrices A and A derived by the
transformation method reveals that they are in fact construc-
ted to achieve an orthogonal breakdown of this type. We may
verify that the breakdowns suggested by the transformation
method and those of Henderson (1953), in a b.i.b., are in |
agreement by showing that
Ekblodks ignoring treatments)= E(yb'B;Bzyb+yb'B;B3yq)i
E (treatments ignoring blocks) = E(yt'ﬁzﬁéyt) .

E (blocks eliminating treatments) = B(ytgggéyt+yt'§2§gyt)
 §

E (treatments eliminating blocks ) = E(yb B'B4yb) .

Weeks and Graybill (1961) give a minimal set of suffi-

cient statistics for the b.i.b. design, but give no estima=-
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interesting thing about the set which they derive
is that the expectation of S5 agrees exactly with the ex-
pectation of treatments eliminating blocks which the Method

3 of Henderson (1953) would suggest to estimate c%. of

course, in the latter method the concept of degrees of free~
dom is well defined whereas in the minimal set as defined
by Weeks and Graybill (1961) the concept of degrees of free-
dom is not mentioned.

If we allow symmetry to influence our choice of an es-
timator for cg, then we arrive at the Henderson (1953)
Method 3 estimator for this component as well. If we give
zero degrees of freedom to $4 and (t-1) to‘s3 then the esti-
mator that the minimal sufficient set would appear to sug-
gest for c% is not the Henderson Method 3 estimator but the

one given by Method 1.

4, Variances of estimators

An advantage of the transformation method arises from
having available the matrices of the transformation i.e. the
B;'s. This allows us to obtain quite simply the variances
of Method 3 estimators ofhthe variable components. For ex-
ample in sub-section 3 we suggested the estimator

32 = yb'B;B,y° - yb'B;BSyb/b .

Hence, under normﬁlity'

2 ' .
vaz(5) = (2 tr(VByBg)2 + 2 tr(VBSB5)2)/26
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‘where V = X, X °B XZXZGT + 1g%2 . No covariance term does
in fact enter on the right-hand side, because the linear
functions By and Bsy are chosen by the transformation
method to be uncorrelated.
We note that an estimate of Var(c%) may be obtained
by substituting estimates for variance componeﬁts in the

above expression for V.



V. ON ESTIMATION IN MIXED AND RANDOM
UNBALANCED MODELS

A. On Least Squares Type Estimators of Variance
Components and Variances of Bstimators

1. 1Introduction

In this chapter we consider mixed variance cemponent
models that do not exhibit features under which the models
would be either balancedy or ''designed unbalanced!. We

have in mind, for example, random models to which concomi-
tant parts have been added, and random models that have
missing observations. There do not appear to have been

any attempts to derive winimal sufficient sets of statistics
for such models. It appears, however, that the condensation
of information obtained in this way would not be very great
and in any case the use of the minimal set to obtain "good"
estimators presents an open problem.

We devote ourselves almost entirely to a method of es-
timation for these cases which is analogous to Henderson's
(1953) Method 3, discussed in Chapter IV. This method will
be seen tc have some desirable features of simplification
that will lead to formulae for variances of estimators of
variance components.

In a mixed model, Method 3 of Henderson (1953) consists
of fitting all coﬁstants as though the model were fixed and

then fitting all constants but one. The difference in the
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sums of squares obtained is equated to the difference in ex-
pectation of the quadratic forms in question. This gives

an equation that corresponds to the variance component of
the factor ignored for the second fitting. Wnen this pro-
cedure is repeated for every random factor an equation for
every variance component is obtained. The set‘of equations
is then Solved simultaneously (we assume this to be possible

i.e., all c? are estimable) to give point estimators of all

the variance components.

‘Emen +hao
AUL  wars

Henderson (i953) did not give £

€ any iformulae
variances of estimates obtained by the method, and none have
since been given. .One aim of the present chapter is to ob-
tain formulae fo; variances and covariénces of quadratic
forms which arise in the execution of Henderson's (1953)

Method 3 and in some other related methods.

The model considered isktge familiar one, namely
. +, : ' :

T
=3 X:%; *+ 2 X. 8.
Y j=0T ¢ dsr+1l 1 M

4 2
where ECQ 180,10 = T okeg and Xpy = 1 (VA1)
We shall find it convenient for our present purposes to

represent (V.A.1) also by the model

y = X(l)‘b’-r X(2>@ + e

where X¢1) = (xoxl...xr) ’

X(2) = Kpsge--X) o



¥ = y)y

Let X

X
Then we

2
or+1 bY

(XoX, -
(XpXqee

may for

writing

95
¢ o 8. . s o o
1°°° 0r/° » 2and @ = \(5' r+l°°" g'k)g .

.XIXI'I'l. . oXk+1) and

eXrXr+2o - ch.',l) .

malize the Method 3 estimation procedure for
R(¥gee-¥, €r+1°“€k+1) = A = y'X(X*X)*X'y = y'My and
- y'i(i'i)*i'y - y'Ny

R(XO'..KI @r+2"'§k+1) =B

where X(X'X)*X* = M and X(X'X)*X®' = N .

IfM-N=T-=

Rem(@r+l)

Therefore

' 2
ERem(fr4q1)) = tr T(Xr+1X:+1°r+1+IG%+1) .

tij say, then

= y'(M=N)y = y'Ty
(X(D ;“’X(z)@ + e)’T(X(l)X + X(z)é + e)

(Xpsy Bren # €)' T(Xpyg Q c+1 * €)

Suppose we equate E(Rem(@r+i)) and the corresponding

Rem(@r4 i) values in the way described; we obtain

Then

7 NC 2

E(Rem(@r+l)) ujg Ulk-r ||%r+1
ERem(B.,5))| = uss °%+2
|EGRem @, 1)) u &
SRk +1 J i k-r,k-rj 0k+% .




{ 3 { . ¥ f )
3?+1 u11 glok-T Rem(Bre)
0I+2 = u Rem (@ 1"!'2)
52 uK=Trk-T Rem(@ )
{ k+1J | k-i—lJ

We require for example a gemeral formula for

- l, * ..R-I+1>

e
L

Cov(Rem(@r+i), Rem(%r+j)) {i,

and it is one purpose of the present chapter to obtain such
a formula. We shail then be in a position to obtain the co-
variance matrix of the vector of estimators (3%+1,...,8i+1)'
and we shall be in a position to make comparisons between
estimators given by Method 3 and those that may be supplied
by another method. In the section B we shall consider cne
other method of estimation in a random model that has fixed
concomitants added. to it, and will also find variances of

some possible estimators in that case.

2. Variances and covariances of quadratic forms in mixed
and random models '

1
]

a. Introduction The approach followed is related

to the one of David and Johnsfon (1951, 1952). It is, how=-
ever, more general in that it applies, for example, to ran-
dom classification models and it does not require the classi-

fication matrices to be expressed in full-rank form.
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Clearly when Method 3 of Hendersom (1953) is appliecd to 2
mixed model, insofar as estimators of variance components
are concerned it is possible to simplify .all quadratic forms
so that effectively thev do not involve constant factors. -
Actually then, in practice, finding variances and covariances
of mean squares given by this method is no different in
principle from finding variances of ﬁean squares in a random
model. However, because there may De soﬁe intrinsic inter-
est in the general formula for the variance of a guadratic
form arising in a mixed model we devote a section to obtain-
ing such a form.

In sub-sub-section (b), to fix ideas, we consider find-

ing the variance for a quadratic form in the case of a model
involving a single random factor. In sub-sub-section (d)
we consider a more general case of a quadratic form arising
by Method 3 of Henderson (1953) in a model where B; (say)
represents an interaction of two earlier occurring gi’s.
We arbitrarily restrict ourselvés to classification models
since these appear to be the primary area for application
of these results. No difficulty is foreseen in extending
the results to more general (regression) models.

b. Single random factor case Let the model be

y = X(1y8+ X(2)@ + e , where @ denotes a single random
factor. The residual S.S. assuming all factors fixed is

Sa = yI(I-M)y = (X(1)F+X(2)B+e) " (I-M) (X(1)¥ +X(5)B+e)

1
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where M = X(X*X)*X*, and X = X% . Since {(iI-M)X = 0 ,
we have
Sa = (2)@+e)'(I-M)(X(2)g+e> = e*(I-M)e and
E(Sa) = tz(I-M) o .
The minimum S.S.Hl or the residual S.S. for a model that

fits only the fixed factors is

- b
Sg = (X(1y8+K(2)B *+e)T (I-X(1)(X(qyX(1y)*X (1)) X(1)¥+X(2)B+e)
Write xu)(le)x(l))*le) = N, then
Sf = (X(z)@-l-e)'(I-N)(X(z)@ +e) .

The S.S. due to ( effects, eliminating ¥ effects, is

Sp = S = Sz = (X(2) f +e)t (M-N)(X(2) B +e) -

If we assume E(blelj) = 0 , we have

E(S:) = E(R'Xtpy(M-N)X(5)@) + E(e'(M-N)e)
= t2(X(5 yX(XTXI*XTX (23 =X(23X (1) (X¢q 3% (150 *XC1)X(2))
;oi + tr(M-N)cz
= trcng)x<2)-x22)x%1)(le)x(l))*le)xcz))c§+tr<M-N>o§.
=c cg + (rk(M) - rk(NS) c%
where

t t ' '
c = tr(x(Z)X(Z) - X(g)X(l)(X(l)x(l))*le)x(Z)) °

Then °b {S - tr(M=N)/tr(I-M) Sa } /c
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{(s_-2a sa>/c, where d = tr{M-N)/+tr{i-M), and
-

[\ 2 [

var(s)) = var(s_ ) + a° Var(s,) - 2d Cov(SrSa)/bé.

<

Let us consider obtaining Var(S.) = E(Si) - (E(Sr))2

where S_. is the quadratic form (X(2§§+e)t(m-N) (X(Z)@*e)°

th

Let us denote the matrix of the form by {nij}’ the 1™ term

of the vector (X(z)@+e) by (X(Z)P*e)i’ and limit ourselves to
classification models, i.e., the elements of X are all O or 1
and there is only one non-zero term per row‘for X(i) matrices.

Accordingly, X(z)@ can be strung out as a vector
(é - . 2- . - : . 2
1:825-+18) Now Sr"§§<nijﬁi@3*“ij?iej*nij@jei*nijeiej>) :

Our interest does not .center on expanding-si with all éi's
(i=1,...,n) distinct, but where éi”"’éi+m all equal.@i
(say). So when we expand Si; we shall regard X(Z)Q to be
strung out as a vector containing repetitive terms, say,
(BrreeefrsBrreeeB2sB3oeeefzroncpy) - (V.A.2)
‘where the subvectors (@i,...,@i) are of dimensions determined
by the structure of the experiment,'the number of factors,
repetitions, and so on.

The four top left-hand cormer blocks of the full n x n

matrix of a more complete representation of fjnij@igj and
z nijéiej are written out below. It is assumed that the
ij

dimension of
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(@1...@1)* is t, and the dimension of (@2,,,§2)= is t°.
We obtain
X
fn &2 n @2 n 2 n n
1181 1281 - - DBy [P1,t+18182 - 71 1ae0B182
2 2 2
"t10: 2281 =+ Betf1 Bt 1418182 - - Bt tet1646y)
2 2
ng41,18281 nge1, 28201 - - Deer,tbob1| Dt 41,483 - o Bty tettfs
nt+t3ﬁ2%l N4+ | N4t N4 .4t 2 Nigt tp2
Pt t+t' 20281 - - net’ by tettaf3 ¢ - Ptat’ tut 83
(VOA.3) 9
and
{ ‘
nyq6ey nltélet nl,t+1@19t+1 n1,t+t*%13t+t'
n216181 nZtelet ng’t...l@let_,.l n2,t+t'@13t+tf
at1b1€; AttB1®t | Pt,t41B1%t+1  Bt,tet P1otat’

At+1>3 f281

D+ 42 ’1%281

? .
Dtet, 16261

nt+1, th2et

Bt+2,t02%t

ntett,tf2et

Dt+1,t+162%t+1 Pt+1,t+t 1828+t

Dt+2,t+128t+1 Bt42, t+t 1620 t+t!

| 4
nt+t,t+1§zet+1 Dist, t+tt E’zet+t’

(V.A.4).

-

J
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Ignoring the 8. g- terms in the representation (V.A.3) we

J , ,
represent the partition of {nij} thereby indicated by

L4 N

N,;N 1k

11712°
NZINZZ . . .

(V.A.5)

NgiNeoe « Mxi n x n
We have not writteﬂ out 2 more complete representation for

3 n..R.e because of the similarity between its representa-

. ® .I.J‘ 1

ij .

tion and the one for 2 n..@.e.. There is no need to write
ij r3v1J

out a comparable representation for 2 nijeiej because

{e
L-‘.

E(e;e;') = 0(ifit).

In the representations (V.A.3) and (V.A.5) we note that
the factor determining the subdivision is the definite
dimension of each of the subvectors (;,..., @i)' that com-
prise X(g)@. When the two factors are not the same as in
(V.A.4) the vertical subdivision is determined by e;'s, all
of which are different, so the partition reflects this,
while the horizontal partition is determined by @j's. In
later sections, when we consider the case of several random
factors, we shall introduce the terminology of a@-parti-
tion (and a (f,e)-partition) to distinguish possibly differ=
ent subdivisions of {nij}df the type (V.A.3) and (V.A.4) res-
spectively, that are induced by different random factors (and
sets of two random factors). Of course in the present case
there is only one (B) subdivision that need concern us namely

(V.A.5); we do not therefore really need to identify it as
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being the B-partition. Partitions involving e;'s will
usually not be written down explicitly because of the special
nature of the e vector.

Consider expanding the expression for (S?). Qg:terms
can arise by squaring any and all terms represented by N;:
in (V.A.5). There are doubtless numerous'ways to represent
the totality of such terms; we think the following both con-
cise and informative. The terms in@i are given by ZNr@r[',
where N_. is the sum of all terms of the matrix of di;ect
products N . @ N, where Np:-'s are diagonal blocks of par-
titioned matrices identified by (V.A.5), for example. —Terms
‘involving Q% @g can be obtained in two ways. Included in

the expansion of E(Sr)‘2 are the two terms 3 %Mrséz Qz and
\ ' 1s r Cs

2 ;!Jrs @2 @‘2 where Myc is two times the sum of all terms

of the direct product N.. & Ngg (r#s), and assumlng{n }15
symmetric, J.g is two times the sum of all terms of the di-
rect product Ny @ Npo (r#s). The terms with non-zero ex-

pectation in ei's are

an e4, 23 #glln--eiez and Zz#n
j 114 ij JJ J

2 2
The terms in e.'s and £.'s are 3 L. e. and 2 F, "
i §J ir 1:@: ir r%r i’?

where the terms L;. are two times the sum of all terms of

the direct product N.. @ n;., and where the terms F.. arg



o> {r, } e <g,e>{n~i} (V.4.6)

where by this notation (@,e)'{nri} we mean to indicate that
@kﬁ}are in fact columns of the‘ﬁ;s matrices and therefore
ﬂzve their dimension determined by these (Nrs) matrices and
indirectly by the @-subdivision; their column partitioning
{i.e. every column singly) is determined by e;’s.

To simplify expressions we use cumulants, described
by Fisher (1930). The moment generating function of a prob-

ability law ¢Og) is a function M defined for all real num-

bers t by

M = je“x g(x) dx ,
where integration is over.the domain of X. Then K = log M
is the cumulant generating function of the probability law.

K may be expanded in térms of moments, i.e., ur's waere

-
u_ =~Ixr¢(x) dx or in terms of defined functions of u,'s

denoted by Ki’s or cumulants. Thus, for example, K; = ug,

2 .
KZ = uy - ug » K3.= uz - 3u~1u2 + 2u13 and K4 = U4-6l12l312 +

2 4 - - =
3u2 + 8u3u1 - 6u.1 . When u; = 0, we have Ky = uy =0 ,
2
Ky =uy , K3 = uy anq Ky =.ug + 34, .

~

In what follows the second subscript to a K; will de-

note to which variable a particular cumulant refers. Thus

Kyj denotes E(eiz) - (Eei)2’= Var(e;). :
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Now (ES.) 32 = <zn..52. " z a; @ @J‘\z

u

2 # .
En (z(zlj *ij n-.N. 'KZiKZj

ii%j

+ 2;!\4 KzérK2§s+ierirK2?sK21 s

rs TS

Therefore

# 2

4
Var(Sr) = Zn:,(Ee.-(K ) ) + 23 n..Kz Kz1
+ ij

'Y

4 2
+ fNrcE(@r)-(Kzér) ) + fj‘]’rsxzérxzés

+ 3 F. X, Ka.
 li26. %2
In cumulant notation we have
Var(Sr) = K(Srz) = 2n
1
+ 2N _K + 3 Koan Kan + 3 EF. K Ks: ©
rt ME rers “Rr Qs jp ir2g 21

Now

i ij
We also have !

K(Sasr) ;m 33545 * 23 m.-ni,K K_ .

%* . *
+ ; F 1rK2§rK2i where Fir

ir
is two times the sum of terms of the matrix vector direct



r b} ' )
product ®, e)imri] 2 (@, e) 1Brij -

We note that if Kp; = a constant independent of i then
2 2mj snj 5 K2iKpj = 2Kp3Kp 5 tr(MN) = 0. Under an assumption
of normality Kgj = 0 and the final term of K(SgS,) also
vanishes because E( @rei @rei) = E(@rei)(ﬁgrei) =0.

In general, we have

A2, _ | 2
Var(ob) = {J_Z.n_11 ;& i3 K, :K, +2N“L4€r

2 2
+ § JrsKs %_Kzgs +:E“FirK2%rK2i+d (;Zmii Kg3

2

- *K
52.1 ij K21 2] ;) Zd(Zm n..K4 +szir I“261'.'I§2i)}/c
In the event that we can assume K;z; = K4§r,:‘i_‘= 0, some sim=-
plification is possible but the expression remains computa-

tionally speaking a rather formidable one:

(

ij i3

2
+ 2 JISKZ@eré +4}_‘. (F° -ZdF. *)KZ@rJKZi}/C .

2 2
If eij's are N(0,¢“) and !‘bi's are N(O,cb),

V(AZ)

1/ {22 (n + df?‘mij) 64 + 2 Jrsog} (V.A.6)
b of 3

We shall later mention an alternative method of deriving

(V.A.6).
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c. General ferms for variances and covariances of gquad-

ratic forms in mixed medelis We now exiernd the results of

sub-sub=-section b to the case of the variance of a2 quadratic
form of the type

VINY=(X(1)8+Xp 1 B X 58 +oootX e +e)IN(K  F+X_ B4, .. #X c+e)

where by X(1y¥ we represent the constant effects in the

model and X_,.8, X_,,§, and so on are random elements. The
first generalization over the results of the previous sub-
sub-section that we make is therefore to accommodate several
random factors. Secondiy we shall regard N as & general ma-
trix, and not necessarily require that N be a projection
operator on some space of X; matrices.

For reascns of convenience and manageability we restrict

ourselves to classification experiment models. Then

(Xr43 8 +...4X € ) can be rewritten

9 ) r 2

1 $2 ... €5
L I F-T T I €3
L L L -

where §. is the effect of the i*® level of the first random
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factor represented by 8, Si is the i'P ievel of the second
random factor represented by & and so on and of course the
multiniicities of @i znd 5i are completely unrelated to
one another. In more general regression models it would be
necessary to include functional parameter coefficients in
the matrix '{nij}' that would undergo partitioning.

Write '{nij} to represent the matrix of the quadratic
form N and represent X(l)g by a vector A,.

In sub-sub section b, when considering only one random
effect (apart from e) we had need of 2 "partitioning" of
the matrix of the quadratic form (see for e.g. (V.A.5)) in
accordance with the number of different values assumed by 8
and depending on the multiplicities of such values. Ve
shail have reason to make use of various different "partition-
ings' according to @, §,..., & respectively in the present
case, so it will be convenient to label a particular par-
titioning according to the vector to which it corresgponds.
THus a f -partitioning of {nij} refers to a bloccking of rows
and columns of {nij} according to the multiplicities of dif-
ferent @i values. Obviously this will sometimes require re-
arrangement of rows and columns of {nij}. There will be as
many @-partitionings as there are random factors less one,
since it is not necessary to write one out for e. We shall

also have to contend with double partitionings of two types,

namely (8, €) and (B, e). We define the former later.
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-

+£: 5, +oiéj+...+aiej«§ej+SiAj +

&

(30

+ FeeodB.C.*tc.e. +2.A.
ei@j eleJ leJ elAJ

*A385 Fol tAjEHA; i€ +AiAj))2

By the use of an evaluaticn process fimiliar to the one fol-

iowed in: sub-sub-section b and in particular by making refer-

ence to the representations (V.A.3) aand (V.A.5) it is apparent

that instead of z “4 B3, we have é aN*(ﬁ)K4Pr where

summation B is over all @ -partitions, and where hr(@) repre=-

sents the sum of all terms of the matrix of direct products
(G)N,.,. & (@)Nrr .

Likewise instead of 3 Kop K
rsJIS 208,284
we now have frfjrs(@)KzﬁrLZ@s where

s is two times the sum of a erms o e direc
Jrs(p) is two ti th f all t f the direct
product (PIN.g @ (BIN.g (r#s)
Terms arising from g? 5?, which do not have a counter-

art in sub=-sub-section b, are given by J
p ’ 8 y Jrs(@&)szerss
where Jrg(pé§) is two times the sum of all elements of the di-
rect product of matrices (B,8)M ¢ @ (@'B)Mrs; by (@,S)Mrs

we mean a horizontal partitioning according to @ and a
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vertical partitioning according to . See (V.A.6) for an ex-

f this type of {double)

ampie where we have already made use ¢
partitioning. The term representing all product pairs of

random elements of the above type is (528 fsjrs(@é)Kz?erés

The only term in B's and e's that need concern us, since the

others will cancel, is the one that replaces 2 B. K
? IK2§r 21
t
namely g ;_F r(@)KZ@rK21 where the terms rlr(@) are the

sums of the direct product (@,e) ‘%Eé} & (@,e) {nri} where

the vectors n_; are columns of (@)N.., i.e., the horizontal

ri
partitioning is according to the random parameter §, the
vertical one according to e. Since the terms in K43 and
Kgisz will be the same as in the above sub-sub section we

do not repeat them here.

Finally we must concern ourselves with the terms that
involve the constant vector A; and that enter the expression

2 3.
(S87). These are ZEJmllm 1585810 E(Emle )2 31’ 23 Drl(@)Algr

and 2 Plr(@)Alﬁr’ Dr1(@) is the sum of terms of the direct
product of matrix and vector (@)Nrr9(6 e) {;nrl} , where the
vectors {n are columns of Nyg's i.e. the column partition- -
ing is according to the random parameter @, and where F;.

was previously defined.

The final result is:
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= 55 2, X R

+ 33 JrS(@)KZQ.. Zes'l'é frFlr(waxzér i?@zs ESJISQS)KZ@IKZS

+ 3 ..A.K +22(2m. A K
ijmll i1j 3i* i(J ij ) 21

2

+ 2 2D . AK +3 2 F; AK
& ri Ti(®7L 36: jr iri2Rr

If we make the assumptions that 2all random effects have

' zero mean and their own constant respective variances, K(S%)

is
2 . 2

ij g ir

2

+22J K,n K +zzP AK,, +2°2 7 Koa K

8 ¢ s(@) Zf,r 2@5 i ir’i 28, 85 s rs@d) 28
(V.A.8).

We next consider obtaining a general form for the co-

variance of two quadratic forms of the type (say)

(X(l)x+xr+1@+xr+25+. oo +X € +e)*M(X(1)‘6 "'Xr-é-l@"' Xr+26+' o e ¥Xi € O
and

(X(l)b’+Xr.,.1\§ """“'-°+Xk€4e)'N(X(1)X+Xr+1© +.......+Xk€+e) .

The form of this covariance is the same as the variance
formula above except that coefficient terms 1ike-N}(@), Jrs(®)
and so on are replaced by N £ (@)’ Jrs(@) etc. where starred

terms arise from sums of direct products of matrices of the

type
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, s 3
@M., ® (BN__ and (B,e) tmri} 2 (@,e) i?ﬁjn7 for
example, witi: similar restrictions to those that were placed
on corresponding expressicens involving only N., and {:nri }

terms in the variance formula.

It can be shown that

K(S;S5) = ImjsnysKeg + 2215505 K23k 5

ij

* m’ r(@)¥ap, "3 EerschZ%r 28,

- %
g ir r(s)KzﬁrK21+@§ ESJ:S(@é)Kzg Kzés
2m
i

% *

d. Special cases - One of the advantages of the fit=-

ting constants method described in sub-section 1 in a mixed
model comes about as a direct consequence of the way the
method is constructed; we shall demonstrate firstly the con-
siderable simplification of some of the formulae of sub-sub-
section ¢ that are possible with this method. In sub-sub-
séction e we give an alternativevformula that is appropriate
when normality is assumed.

In sub-section 1 we.indicated that
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Ren@,,p) = v* RGURIE - XEOTE Yy

where

X = (XpXpeeeXXppgeeaX )

r+l1

>
i

(Xoxlo . -err+2 L oXk) .

Write X(XTX)*X' = M, X(X*X)*X' = N

Now Rem(fr.1) = Rem(B)
=K (Y6 B +e - X6+ T (M=ND (X YE+X 2,18+, . c+X Eve)
= (X, 18+e)T(M=N)(X_ ,B+e) .

We considered the variance of a form of this type in sub-
sub-section b; in general then , variances of estimators of
variance components in models that fit the requirements cause
no problem. Although this is not usually specified, the ex-
treme simplification found above will only arise in general
in a classification model that does not involve interaction
terms. We require some further specifications in order teo
deal with models of the latter type. One specification,
for example, might be tha§ ﬁhen we fit ignoring an effect
MAM say then we imply tha£ interactions that involve ¥A¥
are to be ignored also. A residual S.S. that might then be
obtained is (say)}{em(@j,...,@k)=(xju+...xke+e)'(M-C)
o . (ij+...+xge+e) (V.A.10)
where C = X(X*X)*X!' and X = (XOXI.X5+in+;...Xk_1)
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For reasons of convenience and manageability we restrict

ct

-~ “ -
O CaasSsa

veS

[

ourse

terms of the xj matrices are either zero or one. Then

(Xja+...+Xke +e) can be written_

CHEREY . €1
wil | ng ) €,
“1 M . .
Wil +(r2] o+ . o+ .
Wal |23 . .
?IJ‘;“% . f%

where w, is the effect of the i*® jevel of the 15 randem
factor ;epfesented by w, Xi is the ith level of the second
- random factor represented by A and so on, and of course the
multiplicities of wi and )i are quite definite, but complete-
.1ly unrelated to one another.

The crucial point to note about this subdivision is
that X (say) is "nested™ in w in the sense that ome or more
levels of A, will occur with a single level of w . We at~-
tempted to emphasize this boint in stringing out the in-
dividual vector components of (cho+,,.xke)vabove.

. Write {mij} to repreéent the matrix of the quadratic

form - X(X?X)*X?=X(X?X)*X? = (M~C). The similarity with the
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one matrix of the general form of the previous section is
incidental. They are, needless to say, not necessarily the
same. The required variance formula is then easily seen to
be a simplified version of the general variance formula ob-
tained in the previous section. In fact using similar nota-
tion, with the differenée that partitionings are summed only
OVeT such factors as occur in the expression {(V.A.1l
ootain K\”Z) = Zm; % .+22 m
i

.114

*2 2 Jrs(ey¥ouw Kouw, *22 Flr@o)sz Kz;+2 z Jrsn)ou, Kaxg -
W IS

(V.A.11)

The covariance of two different but overlapping quad-
ratic forms of the type (V.A.10) with matrices *(M-C)" and

#(M-D)" which for convenience we denote by M and N respec-

tively is

= +2 . . o * AL,
K(S S ) Zmll 11K41 ijlJnlelezJ i fN I(w)}.4,,;r

*3 3 T uykau R2us 22 Fir(wi¥ao K213 2 Trsmkau Kl g

| (V.A.12)
where the starred terms are similar to unstarred omes in
form, however the direct products involve M,g and N.g
matrices and such terms need only be considered whén both

quadratic forms involve similar random factors.



jury
o
"]

e Variance and covariance of certain quadratic forms

~ -

1)

in normal variates The question arises whether we could

obtain variances more easily by some other method, possibly

by making more assumptions.

For convenient reference we restate first some results
derived by other workers in the case where variates are as=-
sumed normally distributed which are probably easier to apply
than those of sub-sub-sections a, b, and ¢ for example.

There are two majer results for the following two cases:

i) y’s are assumed to have zero (or constant) means

and'covariance A

ii) y's have non-zero mean and covariance V.

In case i) which is a special case of ii) we have, for
positive definite matrices A and B,

Var(y'ay) = 2 tr(av)2 and
Cov(yfAy,y'By) = 2tr(AVBV).

An early reference to the latter result, which of course
implies the former when A = B, is Matern (1949); it would
come as no surprise however to hear that priority belonged
to someone else. The forms for cumulants of y'Ay and joint
cumulants of y'Ay, y'By .... are given by Lancaster (1954).
Case ii) is implicit in a result stated, eg., by Plackett
(1960), page 18. If y 'is multivariate normal (q, V) then
the characteristic function of the quadratic form y!Ay is

geed = 'II-2itAVl-%exp{-%v]!v'l}i.,.%qtv‘l(v-l_Zit A)—lv-lyl}
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Theoretically we should be able to find all the moments of
ytAy from'this expression, howéver no one appears to have
proceeded in this way.

in this section we reiate the resuits of (V.A.il) and
(V.A.12) to those mentioned in case (iJ.

Suppose that the quadratic form Rem(ﬁj,...,ﬁk) is re-
ducible to z'(M-C)z where E(z) = 0 and E(zz') =

E(Xju)+...+Xke +e)(Xju>+.,.+Xk€ +ej' =2Z.

Consequently Var(Rem(€;,...,6,)) = 2 tr((M-C)Z)2 and under
normality we have a simple method for obtaining the counter-
part of (V.A.11).

Let us consider a similar counterpart for (V.A.12).
Let Rem(@j,...,@k)) and Rem(@i,...,el) be two overlapping
S.S.s: Suppose.Rem(@j,...;@k) = z*(M=C)z (as above) and
Rem(@i,...,Qi) = w*(M-D)w (say) where E(w) = C, and

E(ww?) = B(X;p+...+X1T +e)(X;p+...+X; T +e)* .

We have given the gemeral formula for Cov(Rem(Qj,...,@k),
Rem(@i,...,gl)), i.e., (V.A.12). We now show that if we
assume normality, the foliowing more compact formulation may ~
be used to determine the reguired covariance. The covariance
between two quadratic forms, one in z, istributed as N(0,2),
the other in w, distributed as N(O,W), where z and w are

- vectors of the same order, is Cov(z'Qz, w'Pw) = 2tr(QzPW)
(V.A.13).



We prove this by showing that (V.A.13) gives the same
result term by term as does the more gemeral form (V.A.12),
when K's of order greater than two in the latter form are
taken to be zero.

We have Z = B(ch+...+xke +e)(ij+...+xke +e)? . The
elements of Z that are coantributed by different components
(i.e. ij’s) are of a special "mested’ nature. Thus all
terms contributed by X, & occur in positions that already
have a contribution. In the representation of the four top
left-hand corner blocks of Z, determined by the W-partition,
we try to emphasize this point. Thus E(ij)(xjw)' will
give rise to

.

K2w1K2w1 . . . K szl

L] ° L] - - - *

Kowy Kowy. .o o - Kaiy
[‘sz)z K2 [ o . szz
0 L J L ] L] * ® -
KZ sz L) . L3 ‘KQ \ - .
Y2 T2% %] .

.~

E(Xj+1h)(xj+ih)’ contributions will not £ill out the top
left hand block, but will also not. give terms in blocks that

do not already have non-zero elements. We indicate this as



follows:

X250 szl

. 0 0
. 0 0
* KZ )2 KZ)Q

- K23, Koy,

,thj Kij
K5%. K

We note that further contributions will satisfy similar

"nesting'conditions, and in particular, the last element

E(ee?) gives rise to

erl

Koo

%2n

o
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We can now formaily obtain QZ. Onlv the first four top
left-hand corner blocks are given. We give the contributions
separately and in the order that these are given by individu
al component (matrices) of Z. |

We obtain firstly

-

| .

) NyjeKowy INp3pu, o (N g Koy, | (9IN1p Ko, + - (OINg5 Ko,

@) No11Kpu, (WIN313Kaw, » - (0INp 3 1Kpw; | (0IN5 1Ko, « - (0N, 5 1 Kowy

L("J) N2 ~—t.¥.2m1 (W)NZ lE_szl oo (“")Nz IE_KZ “1 OO)NZZ:EszZ N )sz_t_szzj

k*B row of the Sym-

where by (w)Nijk we mean the sum of the

metric matrix Nij when the partitioning is according to w.
Next we obtain the terms that are contributed by the
second matrix of Z above. In view of the nature of that
matrix, we point out that the A -partioning of N gives a
"smaller’ grid of Nij terms than does the w-partitioning, i.e.
terms with (WNpy; coefficieant do not extend over the whole
first block. The—following representatioxi o-f the contribution

to the top four blocks of QZ is meant to reflect this. We

obtain
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-

A NlliKz}‘l .. ()\)NIIEKZ)‘I ()\>N12§K2}\2 <)\)le§sz2 . <)\>Nl3_S.K2/\3

ANp1iKon, - (MON33:Koy, (MNz21Kan, (“)sziszz . (7~)N23}_K27\3

M N1Kon, - OON, K, | OON55Ka0, | (NN Ky, o | (NN 35K2),

*

(WON31Kon, "(_')\)N31UK2)\1 Nz Kon, [ MIN3p Kon, - (N33, K00,
! -— - - - p

Similarly we could write out the matrix contributions for
all the remaining random factors. Finally we obtain the com

plete contribution from E(ee!) as follows.

r -
nyy K31 115 K55 N3, Xon
11 K21 nzz K22 Hon KZn
n.p Ko1 85 XKyy DO Ko
- . P

' The form of PW we shall not write out in detail since it so
closely resembles in basic[structure the oﬁe exhibited above
for @. Of course the facéors entering PW are not necessarilyi
either the same or different from the ones entering QZ. Par=-
titions may therefore be different or the same. The import-
ant point to note is that partitions of W are ™nested™ in
earlier.occurring ones in the same way as this was the case

in Z.
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Let us compare coefficients for iike terms in (V.A.13)
and in the gemneral formula (V.A.12) above. Consider first
. PO .

.uhebcoefglczent of KZiKZj in tz(QVEW) .

We find the terms involviag X,:'s axnd sz’s to be
2 .
n31711K5 101200 1K02 701 303 1K 1Ko 3% - -
2
n2 lmlzKZ 1K22+1122m22K22 +n23m32K2 3K22 Feoo

n3;m; Ko1Ky 303 033K, Ky 3#n33ma K53 ...

= fjnijminZisz’ so that when multiplied by 2; this term

agrees exactly with the corresponding term in (V.A.12).

Consider next the K21K2w1 term. We find this to be

(w)Nllimllelez1+(”)N111T21K2w1K21+°"(w)N11£Ft1K2w3321

in agreement with the coefficient found in (V.A.12) above.

By summing over i and r and over w we take care of KziKqu’
KZiKZE , and so on.

Finally we come to terms of the type K Kyy s etc.

The coefficient of szlKZ)l for example is
(W)Nl;£°(A)Ml;_+0°)Nlllf(R)M11§+' .+(“)N1ll.(h)M11£-

(WINy 15« CNMy 1FOON 3o WMy gp e o+ (0N 3 My ¢

+ * o o o o + e o o o L g + (Q)Nllt(h)Mllt
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= (W_AIN & (15 W = Tk
\w PN \!~’- ’ dll("’k)’

p 1Y
2 11 - Alll

where the partitioning (W,N\) is defined in sub-sub-section b.
Of course if w and N are the same, there is no need for a
double partitioning and we have the ccefficient JIl(W)

for ngi’ which was also defined in sub-sub-section b. By
summing over r and s, w and A we take care of terms of the
type K2Q£K2As and szerfs etc. Agréement between the form
given by (V.A.12) (modified) and the form (V.A.13) is there-

fore complete.

B. Applications to Covariance Type Models

1. Random models with concomi?ants

A sub-class of situations falling within the general
class of a mixed unbalanced model has received some at=-
tention by Crump (1947, 1951). This sub-class refers to
covariance models with classification terms random (rather
than fixed). Crump (loc.cit.) gave two methods by which
we might éstimate variange‘componenté in models of this
type. Crump limited his_ﬁiscussion to a one-way classifi-
cation with a single concomitant. The two methcds that
he suggested do however generalize quite easily to more
complex cases. Cfump made no explicit mention of the

general least squares method, but one of the methods he
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suggested was txe conventional A.0.C. procedure for the
corresponding ca.se when all effects are fixed, to give
right-hand sides: of equations, the left-hand sides of
which are expectatzons in accoxrd with the actual model.
As is well known., this is equivalent itc the L.S. pro-
cedure.

The general form of the model presently envisaged

(in conventional notation) is

Vi =R * Xi_:xg')-l- R Kmxgg)-!- ag*bote . o toe
where ¥ .'s are ffixed unknown parameters, x:.(L?)'s are
fixed known nuumbers, and a;’s, ijS,...,eij*s are random
parameters assumed independent of each other. To bring
this more in lirLe with the notation of this thesis, we
represent the mociel above by y = X(1y¥ + X<2)@+ e where

¥ refers to the fixed ¥ : parameters, and @ on the other
hand refers to alll the terms (i.e., both fixed and random)
of the model witlmout concomitants.

The general foxm of an A.o0.V. sub-division (with only

one ssmcomitant oz shown)' is



Souxzce . S.S. ¥ ' S.P.Xy S.S.4
e, Agy Ay AL
@ 2 Byy BX'] Bxx
. ny ny Cxx
Error hyy Exy Bxx
) + error) (A*E)yg (A+E) g (A+E) 4y
and by Ayy’ for example, we mean Rem(@51)(=Rem(ai)) i.€.
the difference between the S.S. due to fitting all effects

and the S.S. due to fitting all but a;'s in a model with-
out concomitants. Let us represent the model (given

above) when all @1ﬁ=ai) effects are put equal to zero by

y = X(l)x + ECZ)@ + e

then
—I

¥ X2y (X (2)%(2)*%(2) = X(2)X(2)%2))*Klz)) ¥

A
vy

y!(M = N) y

= y'(M - N)*(M'= N) y

— - - - ¥
N = X2)E(2)' %)) 2y -

y

~ Now Ay 'le)(M-N)y ’ by'simple analogy with Ayy’ and in
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the same way Axx = X<1)(M-N) X(i) -

In the same way we find

Eyy = y*(I - X(z)(X(;) X(z))gk? (2>)y = yr(I-M)y
so that By = le)(x - M)y and
Bax = ¥(1)(T = M) X(g) -

We shall make use of the accepted two-stage procedure for

finding adjusted mean squares in the Model I analysis of

covariance without elaboration.

Thus, the minimum S.S. in the model with concomitants

is SSp = Byy-B BX By, = ¥ (T03-§1% (1) (TX2) §)

where
A
g = (xzz)x(zywx22>y and ¥ is a solution to the equa-

tions
X¢1y (I-M) Xc1)8 = X(D('I-M) s

i.€4 Exxx = Exy .

A

Therefore ¥ = (le>(I-M)_X(1))* X(;)(I-M)y .

By substitution we obtain

T *.
Eyy=Ery ExxBxy

(X(1)¥+X (530 + @TR(X(1)¥ X 5 p+e)

e'Re

¥ (T=M)=CI-0X (5 y (X{q ) (T-MDX (1)) X(qy CT-MD)y
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(I-M)X¢13)*Xe43(T-M)) ,

1
h

where R ={r. .} =((I=M)=(I-M)X, .~ (X}
JJ \4iJ (S

“ \
LS § /

We therefore have a general form for

B(SSB) = tr(RV) = 3 Tis KZi
. i -

and by the results of sub-section 2

Var(SSE) = f riiK4i + 2§_r,jK2isz (V.A14) .

Alternatively if we can assume normality of error terms we
may write
(Var(SSE) = 2 tr(RV)2 .

We have exhibited a general variance formula for the adjust-
ed error line of a model that has concomitants added.

Further manipulations are closely analogous to those
above. We only have to bear in mind the matrices of the
quadratic form. We find estimators for oi first by Pro-

cedure one (of Crump (1947)), then by Procedure two.
: k
Thus SSA = AYY-AXY-(AXX)* Axy

y! (M-N5-(M-N)X( 1) X(1) (M=NDX (1) )*x(' 1) (LII-N)‘);

Then E(SS,) = tr(QV) where V, the covariance matrix of vy,

can be reduced to resemble Z (or W) of sub-section 2,

section A.
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Consequently
2 2 '
Var(SS,) = Za.. K,: + 3 4. K., . +zzN K
P2y i‘ii <1 ij"lJ K21 o] wr ) 4wr

3 ) Jrscquzu Kpu *2 f P-roa)hzu Koi

oh TS rsG* ) r2hg

where daggers denote terms analogous to those without

daggers in (V.A.li), and are derived using a matrix Q={qij}
instead of M = 1mij} .

If an assumption of normality of random effects is in
crder we have Var(Ss,) = 2+ ()% . (V.A.15) .

Finally we obtain similar expressions for S.S.*s, ob-

tained by Procedure 2.

SSp4p = (A+E)yy - (A+E);y CA+E)%, (A+E)yy

ey -§ Ry 3 - 2y

where ¥ is a solution to the equations

X(1y(I-N) X(1)¥ = X¢q3(I-N)y , and

—3

B = (EEZ)E(zj »x' @)Y -, Therefore

SSpap = ¥ (CT-ND=(I-NDX(3)(Xeqy(I-N)X(13)*%" (55 (I-N))y

y'Py ,

where
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¢ 2 ) 3 "
{pi;) = (X=NI=(X=NDX(3y(X(35(I-NDX ;9D %0 (I-ND) -
Now ASS, = y:(P-R)y = y'Sy . Then E(ASSA) = tr{SV)
and

2 2 . . *%
Var(ASS )- Zs K4.+§J sij K2i£25+g§Nr K4?r +

+ 2 3 K K +3 2 F- K K,
@ rvas(g) zf“r 265 ? ir 2%: 2i
**
+3 3 X
(5 S rerS (9 8) Z@rKZB

where ** denotes terms analogous to those without ***s in
(V.A.11), and which are derived using a matrix S = {sijﬁ
instead of M = {mij .

If an assumption of normality of random effects is in
order, we have Var(ASS,) =2 tr(sv)2 (V.A.16) .
The forms (V.A.14), (V.A.15) and (V.A.16) are géneraliza-
tions of corresponding formula exhibited by Crump (1947) for
a one-way classification with one concomitant, to any number
of concomitants and higher-way classifications that do not
necessarily have equal ngmbers in the cells. .

We could also write down formulae for covariance

(SS,, SSg) for example, along the lines described in Section

A.
An overall measure of effectiveness of the two methods

may then be obtained in the way described in Chapter IV.




Thus, we may obtiain

[
A2

0r+1 SS‘Q
A2 - =1

ze2] "9 558
A2
?k+lJ ?SBJ

a2
Ox+1)t

‘and the covariance matrix of the vector (3§+1,...,
could be writtén down. We may do the same thing for esti-
mators given by procedure two. We could then obtain an
overall measure of the effectiveness of a procedure by
calculating determinant or trace of the covariance matrix of

the estimators, and comparing different procedures.

2. Estimators of variance components when missing observa-
tions occur in designed situations

This chapter would not be complete without some state-
ment on how. the results of section A relate to the missing
value problem. We describe the fixed‘effects case first,
where a frequently used me thod of adjusting for missing
values is the covariance method.

Covariance procedures in experimental design are, it
would seem, most readily understood as a device for including
additional parameters in a model which can be easily fitted,

and, as a consequence, as a systematic missing value pro-
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cedure. The A.0.C. was introduced by Fisher in 1932.
Scheffe's (1959) description of the procedure is that the
A.0.C. is "a device for simulating coﬁ%rél of factors not
possible or feasibie to control im the experiment; thus

the estimates of the yields of varieties of grain in a com-
‘parative agricultural trial might be "adjustedf.to allow for
differing numbers of shoots on the plots or the'plot's yields
on a previous year?!s uniformity trial (where all plots are
given the same treatment), and the resulting estimates

would within sampling errcrs be the same as those that would
be obtained if all plots had equal numbers of shoots or equal

yields on the uniformity trial -- granting the validity of

the regression model assumed or implied.™ (Our emphasis.)

This- view of thé A.o0.C. as a means for increasing precision
of desired comparisons is of course implied by our statement
above. Usually controversy in the A.o0.C. is in the area of
interpretation, and largely because it is seldom true that
the exacting mathematical restrictions implicit in the
technique are applicable to real data. Insofar as the as~
sumptions are approximately true the technique is useful.
When making all fhe statements above, one invariably
has only Model I situationsin mind. In sub=-section 1 of
this section we discussed some methods of estimation in a
general A.o.C. situation in which the aim is to extend the

scope of the analysis of covariance to "mixed" models. We
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even more trouble than before, but apart from this, the ex-
tension appears to be in order.

We now describe in brief the use of the covariance method
in Model I wmissing value situations. The classical missing
plot problem envisages cases where several of the planned
observations are missing. 1t is assumed that such “missing
observations' were not caused by treatments, and their oc-
currence is in fact beyond the control of the experimenter.
From one point of view we mipht regard the remaining observa-
tions as forming an unbalanced design, and analyze according-
ly by least squares ab initio.

Alternatively, the planned observations would have been

represented by the model

yif - _ Wl]
= ¥ + e (Vv.B.1)
72 wzJ

«
{

so that it is convenient to represent the available observa-

tions by
Y2 = W, 8 + e (V.B.2)

.

Wy }’l + Wy ¥, + e (say) .

(We have introduced_W*s with subscripts instead of more con-
ventional X's to avoid confusion with the use of X;'s
throughout this thesis.,) The covariance method provides us
with a useful means of calculating min; S.S. Hj and esti-

mates for (V.B.2). The method was first suggested by
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Bartieit (i937) and it requires augmenting the observation
vector with zeros for responses that are not available and
artificially introducing concomitants, in a speciai well-
known way. If we perform these recommendations we obtain

as a new representation of (V.B.2)

W

1
e

Wy

= l lb’-t- z§ + e (V.B.3)

L J
where Z =
0Ois amx1 vectér of zeros,

I is a m x m matrix, and

0l is a n-m x m matrix of zero elements.

The reason for going to the model (V.B.3) when (V.B.2)
is the situation; is based firstly on the desire to be able
to make use of the systematic methods of dealing with
(V.B.3) to which we have made mention in sub-section 1 and
secondly because it is possible to choose the augmentations
in such a way that min. S.S. Hj and estimates as obtained
from models (V.B.2) and (V.B.3) will agree.

Certain pertinent pSints may now be mentioned.

a) The main reason for the development of the covariance
method of dealing with missing values originally was to sim-
plify the analysi;. At that time the inversion of large

matrices was an arduous task. Missing value techniques,

among them the covariance technique, helped one circumvent

.
DA, N
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this difficuity to a comnsiderable ex

b) Opinions will vary on whether such short cut methods
should be retained when least squares ab initio presents no
difficulty to a modern electronic machine. This author is
of the opinion that since the A.o.C. routines will probably
be retained in computer libraries along with the A.o0.V.,
dealing with missing value situations by the A.o.C. method
will te fast and efficient.

In Model II situations, comparahle simplifying procedures
do not appear to have been discussed. The fairly extemsive
literature on similar procedures in Model 1 situations makes
this surprising.

In view of the use of the least squares approach (in
this thesis) which requires the postulation of fixed effects,
to find estimators in the unbalanced case, it can be shown
that the A.o0.C. method may be used as a simplifying pro-
cedure for at least part of the way. Thus, in setting up
the equations that are to be solved for point estimators of
the variance compohents,Rem(@i) (say), values are required.
These may be obtained in 'the conventional way for a fixed
effects model by use of the A.o0.C. procedure. However, in
obtaining the E(Rem(@i)) values it is suggested that we ap-
ply the method spelled out in Chapter IV as this applies to
the original model. We may use the variance formulae of sub-

isection one to evaluate the precision of the least squares
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method of estimatiomn.

We note that whemn a large proportion of the data is
missing, it will probably be more economical to use a
straight least squares approach on the available data.
Finally we point out that the solution obtained by least
sduares is‘only one method among many that are possible;
more work needs to be done on competitors of unknown per-

formance.
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VIi. SUMMARY

In this thesis we consider the problem of minimum
variance (M.V.) unbiased estimation of regression parameters

and variance components in the mixed model

T k+l (
y=2 X:¥: + 2 X:B. vIi.1l) ,
i=0 T i=r+l fs .

where Xi's are fixed effects, @i’s are random effects with
distributional properties to be further specified, and X;*s

are known fixed matrices whose elements are not necessarily

restricted to be Of's or 1's. We assume throughout that

Xeep = T, BB3857) = 0 (i#3), and E@y418541) = T of41 .

Two results for the model

k+1 k+1
= 3 .2 .. =
y = dr 2 XiBs = 2 X6
where E(@-@-') = I o% (VI.2)
iv1i i . i

which are due to Graybill and Hultquist (1961), and which we

have refined in this thesis are:

J
(i, j=0,...,k+1) and c) the random @i vectors are normally

2 - 3. 1_
i. If a) all o; are estimable b) XiXinXJ X XJX1X1

distributed then there is a complete sufficient statistic
for the parameters (p, o?,...,ci+1) if, and only if,
k+1 5

4
W= 3 X.X:oF + XOXO}JZ has k+2 distinct latent roots. The
i=1 % .
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set of sufficient statistics consists of ¥ and y'PiP.v/c;
(i=1,...,k+1) where P;'s are collections of vectors of 7,
an orthogonal matrix such that PWP' = A (diagonal), and
where all vectors of P; (say) correspond to the same
latent root of W.

We define the class of situations of type (VI. 2) for
which commutativity of X;X;X;X; (i,3=0,...,k+1) holds and
W has k+2 distinct roots to be the class P.

2. Suppose we consider only those cases within the
class P for which it is true that the diagonal submatrices
of specified order of PiP; are equal. If all fourth moments
exist for all random variables, and all third moments are
equal and all fourth moments are equal for the elements of a
given @i.vector} then the same estimators for variance com- -
ponents that are M.V. unbiased under normality are best quad-
ratic unbiased under the assumptions mentioned.

We haﬁe obtained analogous results to 1, and under
slightly more extended restrictions to 2 above, for the com-
pletely random model under the assumption that E(§;8;t) =
(ai\\bi) (i=1,...,k) where a;\b; is a matrix with a; on
the diagonal and b; off it. The same estimators as before
are complete sufficient for (u, al-bl,.;.ak-bk, o§+1) .

For the mixed model (VI. 1), under the assumptions
a) of normality of @; vectors ©b) E@;Q;") =1 o?

4 4 4 b 4
(i=r+l,...,k+1) c) X:X:X:X. = XXX Xs (i,350,...,k+1)

1717737 JJ



d) W has k#*2, distinct rzccts, where W = Xokop +2 X.X.o

= Jpz + V , where V is the variance matrix of y in the

corresponding coupletely random case and e) Pixj(i#o)#
(37k+1) = 0 where Piss were defined above them we have

A
shown that the sufficient statistic (X¥g, s%+1,...,si+1)

for the parameters (X% , o%+l,...,o%+1) is complete. The
counterpart of 2 above, namely b.l.u. estimators for estimzble
functions of regression parameters and b.q.u. estimators for
variance components for the mixed model has been given.
Analogous results under slightly more extended restrictionms
for a mixed model with E(@i@i') = (ai\\bi) (i=r+1,...,k)

have been presented.

The class of Model (VI.1l) or (VI.2) situations with
E(@iﬁi') =1 oi and for which for at least some i,j (i#¥j),
XiX£X5X3= xjxgxix; or the number of roots of W (or W) ex-
ceeds k+2 we designate class S-P. In class S-P, for all
examples thus far exhibited, even if normality of B,'s is
assumed, the minimal sufficient set of statistics is not
complete. There is no known general procedure for obtaining.
the M.V. estimator from a minimal set that is not complete.
It is also not known whether or ﬁot UMV estimators exist
when completeness does not hold. 1In view of these diffi-

culties we find it both reasonable and practicable at pres-

ent to discriminate among estimators on’tﬁe?basis of their
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computed variances. Techniques for {inding variances of es-
timators of_Variance components are in our view inadequate;
Chapters IV and V of this thesis attempt to increase our
ability to calculate variaaces of variance component esti-
mators obtained by the least squares method.

In Chapter IV we present a transformation method of ob-
taining éstimators that iS appropriate in "designed un-
balanced™ cases like the b.i.b., with random blocks and ran-
dom treatments for example. In effect this "method"™ gives
a single degree of freedom breakdown of the total S.S., and
therefore gives us incidentally information on whether the
components that usually go to make up a "line'" of a conven-
tional A.o0.V. table when we use least squares, are homo-
geneous. This is desirable if we are to form weighted es-
timators since usually we weight inversely as the variances.
Furthermore having available the matrix of the transforma-
tion allows us to obtain variances of variance component es-
timators quite simply.

In Chapter V we attack the general problem of the
variance of a quadratic form, and the covariance between two
forms that arise in mixed and random models. We find con-
siderable simplifications in the case when we use a least
squares method of estimation that is also known as Hender-

son's Method 3, and simplification further is possible if we



i39

assume normality of random effects. We have appiied these
results to obtain variance formulae for S.S.?'s which have
been suggested for finding estimators of variance components

in random models with added concomitants.
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