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ABSTRACT 

 

Fatty acids naturally synthesized in many organisms are promising starting points for the 

catalytic production of industrial chemicals and diesel-like biofuels. However, bio-production of 

fatty acids in microbial hosts relies heavily on manipulating tightly regulated fatty acid 

biosynthetic pathways, thus complicating the engineering for higher yields. With the advent of 

systems metabolic engineering, we demonstrated an iterative metabolic engineering effort that 

integrates computationally driven predictions and metabolic flux analysis (MFA) was 

demonstrated to meet this challenge. With wild type E. coli fluxomic data, the OptForce 

procedure was employed to suggest genetic manipulations for fatty acid overproduction. In 

accordance with the OptForce prioritization of interventions, fabZ and acyl-ACP thioesterase 

were upregulated and fadD was deleted to arrive at a strain that produces 1.70 g/L and 0.14 g 

fatty acid/g glucose of C14-16 fatty acid in minimal medium. However, OptForce does not infer 

gene regulation, enzyme inhibition and metabolic toxicity. Along with transcriptomics and 

metabolomics analysis, we re-deployed OptForce simulation using the redefined flux distribution 

as constraints to generate predictions for the second generation fatty acid-overproducing strain. 

MFA identified the up-regulation of the TCA cycle and down-regulation of pentose phosphate 

pathway under fatty acid overproduction to replenish the need of energy and reducing molecules. 

The elevation of intracellular metabolite levels in the TCA cycle complemented the flux 

findings. With re-defined flux boundary of the first generation strain, OptForce suggested the 

interruption of TCA cycle such as removal of succinate dehydrogenase as the most prioritized 

genetic intervention to further improve fatty acid production. Meanwhilem, the whole genome 

transcriptional analysis revealed acid stress response, membrane disruption, colanic acid and 

biofilm formation during fatty acid production, thus pinpointing the targets for future metabolic 

engineering effort. These results highlight the benefit of using computational strain design and 

system metabolic engineering tools in systematically guiding the strain design to produce free 

fatty acids. Nonetheless, Saccharomyces cerevisiae is another attractive host organism for the 

production of biochemicals and biofuels. However, S. cerevisiae is very susceptible to octanoic 

acid toxicity. Transcriptomics analysis revealed membrane stress and intracellular acidification 

during octanoic acid stress. MFA illustrated the increase of flux in the TCA cycle possibly to 
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facilitate the ATP-binding-cassette transporter activities. Further efforts can focus on improving 

membrane integrity or explore oleaginious yeasts to enhance the tolerance against fatty acids. 
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CHAPTER 1 

INTRODUCTION 

 

Introduction of chemical industry 

The production of industrial chemicals is a trillion-dollar global enterprise that impacts 

all aspects of the society from personal care products to building materials.  Traditionally, this 

industry is highly dependent on crude oil and natural gas as the feedstock (Jones, 2009).  

Hydrocarbons from crude oils are cracked thermally to form ethylene, propylene and benzene, as 

the primary chemical building blocks. These platform chemicals can be converted chemically to 

a wide range of industrial chemicals including polymers, textiles, paints, solvents, detergents and 

lubricants (Nikolau et al., 2008). High yields in hydrocarbon feedstock conversion, combined 

with highly optimized process flow, results in an efficient production of the constituent 

chemicals.  

Nonetheless, the current production of petrochemicals via crude oils is not sustainable. 

Given the intrinsic need for carbon feedstock, renewable feedstock that can fulfill the long-term 

demand of the chemical industry is being researched. Biorefinery, which uses biomass to 

produce fuels, chemicals and materials, can replace the traditional fossil-based refinery, 

addressing environmental and energy concerns (Figure 1).  We opt to utilize sunlight-derived 

crops as the raw materials for the biorefinery to produce a diverse array of final products (i.e. 

chemicals, energy and materials). Such biorefinery offers high investment return, and fulfills 

energy and economic goals simultaneously (Bozell and Petersen, 2010). Its diversity of products 

offers great flexibility to meet the changes in market demands, and allows the refinery to to 

secure feedstock from multiple sources.  

The emergence of biorefinery requires the development of new platform biochemical, in 

which they will be transformed into a variety of chemical end-products. These platform 

biochemicals have unique properties and functionalities to serve as functional or direct 

replacements of currently used petrochemicals (Nikolau et al., 2008).  Among the abundant 

platform chemical choices, the carboxylic acids and pyrones are chosen as the target chemicals 

for optimizations via metabolic engineering tools in Escherichia coli and Saccharomyces 

cerevisiae. The robustness, fast division, pH tolerance, simple nutrient requirement, completely 
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sequenced genome and long history as industrial workhost make E. coli and S. cerevisiae 

excellent biocatalysts to produce fatty acids and pyrones. Moreover, these microbes are proven 

to be excellent model organisms in metabolic engineering to knockout native genes and insert 

heterogeneous genes for the production of alcohols, amino acids, vitamins, organics acids, 

biofuels, etc. 

Ultimate Resolution: Biorefinery

Transportation Fuels Chemicals

Natural Fibers

fuels

Electrical Power

 

Figure 1. The concept of biorefinery using sunlight-derived crops to produce energies, chemicals 

and materials. 

Carboxylic acids and pyrones 

Carboxylic/ fatty acid recently gained extensive highlight in the global research 

community due to its potential as fuels and chemicals (Nikolau et al., 2008; Stephanopoulos, 

2007). Acyl-ACP substrates of a particular chain length can be specifically hydrolyzed by plant 

thioesterases (Jing et al., 2011), thereby producing novel fatty acids. Medium chain fatty acids 

(C6-C14) can be applied as detergents, lubricants, cosmetics, and pharmaceuticals. Fatty acids 

could be catalytically deoxygenated via metal catalysts to produce -olefins, which serve as the 

building blocks of important polymerization products. Carboxylic acids can be synthesized in a 

single metabolic pathway (i.e. polyketide/fatty acid biosynthesis) (Nikolau et al., 2008). Lennen 

et al. reported free fatty acid production in E. coli and decarboxylation of fatty acids into 

saturated alkanes via heterogeneous catalysis (Lennen et al., 2010). Odd-numbered mixture of 
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hydrocarbons (alkanes and alkenes) can be directly synthesized in engineered E. coli via fatty 

acyl-acyl carrier protein (ACP) with the expression of acyl ACP reductase and aldehyde 

decarbonylase from cyanobacteria (Dominguez de Maria, 2011). Steen and coworkers had 

successfully demonstrated the microbial production of structurally tailored fatty esters (biodiesel), 

fatty alcohols, and waxes branched from free fatty acids (Steen et al., 2010). 

Triacetic acid lactone (TAL) can be converted into a wide array of valuable chemical 

intermediates and products including acetylacetone, bifunctional ketones, sorbic acid and γ-

caprolactone through heterogeneous catalysts or  thermal decomposition (Chia et al., 2012).  

TAL is the precursor for phloroglucinol production through multiple chemical steps via 

intermediacy of methyl esters. Phloroglucinol can then be converted into 1,3,5-triamino-2,4,6-

trinitrobenzene and resorcinol for pharmaceutical applications (Achkar et al., 2005; Hansen and 

Frost, 2002; Xie et al., 2006; Zha et al., 2004). TAL synthesis involves the fatty acid synthase 

pathway, which condenses two malonyl-CoAs with an acetyl-CoA molecule and then undergoes 

cyclization to generate TAL (Xie et al., 2006). TAL has been discovered to be synthesized by 

Gerbera hybrida 2-pyrone synthase, mutated Brevibacterium ammoniagenes fatty acid synthase 

β, and mutated Penicillium patulum 6-methylsalicylic acid synthase (Xie et al., 2006). 

Heterologous expression of 2-pyrone synthase, 6-methylsalicylic acid synthase or other 

genetically modified polyketide synthases in genetic-modified E. coli and S. cerevisiae could 

yield up to 6% theoretical maximum with 1.8g/L TAL (Eckermann et al., 1998; Xie et al., 2006).  

Metabolic engineering cycle 

In order to make the microbial fermentation route economically feasible, the target 

chemicals (carboxylic acids and pyrones) must be produced at high yield, titer and productivity, 

which remain challenging (Jarboe et al., 2010). Every biological system is regulated by a 

hierarchical structure of information from genomics, transcriptomics, proteomics, metabolomics 

and fluxomics (Figure 2). To overcome these challenges, the role of metabolic engineering 

which involves an iterative process among strain development, evolution, characterization and 

bioinformatics tool, is crucial (Figure 3).  To date, metabolic engineering has evolved to the 

Systems Metabolic Engineering by the integrated use of systems biology, synthetic biology, and 

evolutionary engineering (Lee et al., 2011). The latest development of high-throughput 

techniques for analyzing omics data, combined with computational tools, can predict gene targets 

for modification to enhance production of desired molecules (Lee et al., 2012). Integrations of 
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transcriptomic, proteomic, metabolomic and fluxomic approaches are increasingly applied to 

unravel the complexity of biological systems. 

 
Figure 2. Illustration of different levels of information in a cellular system. Solid line represents 

flow of information; dashed line represents interaction between molecular species. (Kohlstedt, 

Becker and Wittmann 2010) 

 

 
Figure 3 Cyclic iteration of metabolic engineering strategy using omics technologies: 

trascriptomic data from RNA-seq or from microarray; proteomics data from 2-D gel with mass 

spectrometer; metabolite profilings from GC/MS and LC/MS; 
13

C metabolic flux analysis. Direct 
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evolution approach parallels with rational engineering approach. Bioinformatics and modeling 

information are integrated with omics data to predict the next round interventions. (Adapted from 

CBiRC) 

 

Transcriptomics 

The availability of complete genome sequences of a variety of microorganisms has 

boosted the avenue towards understanding cellular physiology at the system level (Park and Lee, 

2008). Genomic information serves as the foundation for transcriptome and proteome profiling 

in which data analysis depends on the genome sequence. Transcriptome analysis, either by DNA 

microarray or sequencing-based quantification, allows examination of mRNA transcript levels 

for thousands of genes of multiple strains simultaneously (Duggan et al., 1999; Wang et al., 

2009). We can understand cell physiology and regulatory mechanisms at the whole-cell 

transcript level by analyzing them under various genotypic and environmental conditions. 

Transcriptome analysis has proven to be a powerful tool in elucidation of useful metabolic genes, 

identification of novel target genes for improving strain performance, and identification of 

regulator controlling pathway for target molecules production (Hirasawa et al., 2010; Serrania et 

al., 2008; Yano et al., 2003). Jarboe et al. recently reviewed the use of transcriptome study to 

guide engineering of inhibitor tolerance for carboxylic acids, furfural and butanol productions 

(Jarboe et al., 2011).  

For instance, Park et al. demonstrated the combination of genome engineering with 

transcriptome profiling and in-silico computation to design for an efficient L-valine producing E. 

coli (Park et al., 2007). Feedback inhibition and transcriptional attenuation were firstly removed 

by site-directed gene mutation. Competing pathways were blocked by deleting corresponding 

genes, and ilvBN operon involved in the first reaction of L-valine biosynthesis was 

overexpressed. By having the above genetic modifications, the engineered strain yielded 0.066 g 

L-valine/g glucose. Further improvement was achieved by performing transcriptomic analysis 

between the engineered and control strains. The ilvCED, lrp and ygaZH genes, identified by 

transcriptome profiling, were overexpressed, improving the yield to 0.152 g L-valine/g glucose. 

The authors incorporated in-silico gene knockout simulation to identify and delete aceF, mdh, 

and pfkA genes, resulting in 7.55g/L L-valine from batch culture with 0.378 g of L-valine/g 

glucose yield.  

Proteomics 
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Proteins, the end products of genes, are major components for building the cellular 

structure, catalytic enzymes in metabolic pathways, and serve as signal transduction proteins in 

regulatory pathways. However, there is not always a one-to-one correspondence between gene 

transcript level and protein abundance (Vemuri and Aristidou, 2005). Proteome analysis could 

examine the levels of proteins and their changes under particular genetic and environmental 

conditions (Zhang et al., 2010). It can capture the regulation of cellular response beyond 

mRNAs, providing the information of complicated biological processes and post-translational 

modifications (Han and Lee, 2006).  

One grand challenge of proteome analysis is to efficiently identify and separate a protein 

of interest from a cellular proteome, since proteins have similar physical attributes. Proteomics 

has relied primarily on two separation techniques for analysis: (i) 2D polyacrylamide gel 

electrophoresis (PAGE), in which proteins are separated by isoelectric point and mass coupled 

with mass spectrometry; (ii) gel-free liquid chromatography(LC) coupled with mass/tandem 

mass spectrometry. However, neither 2D PAGE nor LC-MS/MS method is close to saturating 

the identifications in small bacteria. Typically only 20-40% of the proteome can be identified 

without quantitative information (Vemuri and Aristidou, 2005). Numerous strategies for the 

identification of proteins and workflows to quantify protein abundance have also been developed 

(Han and Lee, 2006; Mukhopadhyay et al., 2008; Redding-Johanson et al., 2011). Stable isotope 

labeling-based isotope-coded affinity tags (ICAT), isobaric tag for relative and absolute 

quantification (iTRAQ) and label-free comparative quantitative proteomics are employed to 

quantitatively obtain proteome measurements. Even though it does not provide a true global 

picture owing to unknown proteins, it can be used to identify genes to be engineered to develop 

superior strains (Park and Lee, 2008). One successful proteomics example is illustrated by 

Redding-Johanson and coworkers by measuring protein abundance in engineered sesquiterpene-

producing E.coli strains using a targeted proteomic approach via selected-reaction monitoring 

(SRM) mass spectrometry (Redding-Johanson et al., 2011). While the majority of the pathway 

proteins were detected at an appreciable level, the relative low abundance of mevalonatekinase 

(MK) and phosphomevalonatekinase (PMK) from Saccharomyces cerevisiae were identified as 

potential bottlenecks. The problem was overcome by codon-optimizing gene encoding MK and 

PMK and expressing stronger promoter, leading to over 3-fold improvement in the final 

sesquiterpene titer (4.5g/L). 
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Metabolomics 

The rate of enzymatic reaction is controlled by the concentration of substrate and product 

by feedback regulation, and there is no clear correlation between genes and cellular metabolites. 

Thus, knowledge of metabolome presents a snapshot of the cell physiological state, which 

reflects the integrated output of a multitude of complex interactions (Ewald et al., 2009).  The 

changes in intracellular metabolite concentrations unravel metabolic regulation such as allosteric 

control and metabolite-DNA binding (Vemuri and Aristidou, 2005). The goal of metabolomics 

analysis is to determine all the intracellular metabolites qualitatively and quantitatively. 

Nonetheless, quenching the cell activity instantly and extracting intracellular metabolites without 

cell leakage remain formidable challenges. Winder et al. and Canelas et al. reviewed and 

evaluated organism-specific standard operating procedures for quenching and extracting 

intracellular metabolites with minimum cell leakage from E. coli and S. cerevisiae respectively 

(Canelas et al., 2008; Canelas et al., 2009; Mashego et al., 2007; Winder et al., 2008). Even with 

advances in the analytical techniques, we cannot detect all the metabolites but only possibly 

identify thousands of metabolites and quantify ten to hundreds of the targeted metabolites 

(Mukhopadhyay et al., 2008). Gas chromatography time-of-flight mass spectrometry (GC-TOF), 

high-performance liquid chromatography mass spectrometry (LC-MS) and capillary 

electrophoresis mass spectrometry (CE-MS) instruments are typically adopted for metabolomics 

analysis (van der Werf et al., 2007; Zhang et al., 2010). Park et al. recently demonstrated the 

SRM LC-MS/MS method to identify some metabolites in the central carbon metabolism and 

measure the concentration change throughout the growth phase during batch culture (Park et al., 

2011). Wu et al. proposed more accurate reliable way to quantify microbial metabolome using 

uniformly 
13

C-labeled metabolites as internal standard in the metabolite extraction procedure, 

followed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-

MS/MS) analysis (Wu et al., 2005). One successful application of metabolomics is Wisselink et 

al. compared the intracellular metabolites concentrations between S. cerevisiae after evolution to 

ferment the pentose sugar and its non-evolved ancestor (Wisselink et al., 2010). Elevation of 

intracellular concentration of pentose phosphate pathway intermediates and up-regulation of 

transketolase and transaldolase isoenzymes (TKL2 and YGR043c) suggested the important role of 

these genes in arabinose fermentation. This hypothesis was proven with 21% reduction of 

maximum specific growth rate on arabinose when TKL2 and YGR043c gene were deleted. 
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Fluxomics 

Among the different levels of information, metabolic flux distribution in central carbon 

metabolism is the most direct approach to understand the complex metabolic control mechanism 

of the whole cell (Matsuoka and Shimizu, 2010). Metabolic flux defined as in vivo enzymatic 

reaction rate is the manifestation of gene, protein expressions and the concentrations of 

intracellular metabolites. The goal of metabolic flux analysis (MFA) is to quantify intracellular 

metabolic fluxes and to scrutinize the functional aspects of metabolic network in depth (Kim et 

al., 2008). The principle of MFA is based on mass conservation around metabolites, wherein the 

intracellular fluxes can be calculated from measured specific rate with the incorporation of 

stoichiometry of metabolic reactions. The MFA can generally be divided into two categories: (i) 

constraints-based flux balance analysis (FBA); (ii) 
13

C-MFA. Both these MFA methods have 

been widely applied for the following applications (Kohlstedt et al., 2010; Tang et al., 2009): 

i. Discovery of novel pathways 

The rich isotopic information provides insights for actual cell metabolism, leading to 

distinct novel pathways. Tang et al. used 
13

C flux experiment to reveal the absence of 

complete serine-isocitrate and the existence of a complete tricarboxylic acid (TCA) 

cycle pathway in Shewanella oneidensis under anaerobic conditions (Tang et al., 

2007). Despite the common serine-isocitrate lyase pathway in methlylotrophic 

anaerobes, Shewanella oneidensis synthesizes glyoxylate via the isocitrate lyase 

reaction and converts to glycine. Glycine is indeed oxidized via a highly reversible 

degradation pathway along with the significant activity in anaplerotic pathways 

(malic enzyme and phosphoenolpyruvate carboxylase). 

ii. Unraveling pathway function 

MFA has led to new understanding of the role of certain pathways beyond the 

classically attributed functions. For instance, pentose phosphate (PP) pathway was 

originally assumed to provide building blocks for biomass biosynthesis. MFA 

deciphers the flux through PPP far beyond the need for anabolism. In addition to 

biosynthesis requirement, PP pathway is also associated with catabolic breakdown 

and redox metabolism. The glucose-6-phosphate node at the central carbon 

metabolism acts to partition carbon fluxes between glycolysis and PP pathway. Blank 
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et al. suggested the flux through the PP pathway in yeasts is driven by the demand for 

NADPH (Blank et al., 2005). 

iii. Pathway bottleneck identification to optimize biomass/ target molecule production 

MFA drives rational engineering of cellular metabolism for target product 

biosynthesis. The systematic flux quantification in lysine-producing Corynebacterium 

glutamicum strains has revealed key pathways for genetic modification to optimize 

the production of desired molecules. Based on 
13

C fluxomics, Becker et al. 

overexpressed zwf gene in the PP pathway to increase the supply of NADPH (which 

is required for lysine biosyntheisis), and amplified the expression of gluconeogenesis 

gene (fructose 1,6-bisphosphatase), successfully increasing lysine yield up to 70% 

(Becker et al., 2007). Moreover, downregulating isocitrate dehydrogenase in the TCA 

cycle to channel flux toward anaplerotic carboxylation also helps improve lysine 

production (Becker et al., 2009). 

iv. Understanding rigidity of metabolic network 

MFA is also manifested to unravel control mechanism in biological systems. We 

could study cellular response to maintain major growth characteristics and 

compensate external perturbation upon gene deletions. For instance, deletion of 

pyruvate kinase in C. glutamicum showed similar overall growth behaviors compared 

to those of the parent strain. However, there are slight decrease in lysine formation 

and slight increases in dihydroxyacetone and glycerol secretion. Hereby, local flux 

redirection of metabolic flux seems to be the mechanism to maintain major growth 

characteristics, fulfilling all anabolic and catabolic needs (Becker et al., 2008). The 

lack of pyruvate kinase is compensated by activation of phosphoenopyurvate (PEP) 

carboxylase, malate dehydrogenase and malic enzyme to create a by-pass from PEP 

to pyruvate, while other fluxes in the network remain rigid.  

Optimization-based approaches 

In-silico genome-scale metabolic models and associated simulation strategies can be 

applied to identify gene manipulation targets that would improve desired phenotypes (e.g. 

increased production yield, maximized growth) (Lee et al., 2012). Constraint based flux balance 

analysis (FBA) emerges as in-silico genome-scale optimization based simulation technique. This 

technique is based on mass balance stoichiometry around metabolites under pseudo-steady state 
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coupled with an objective function (e.g. maximization of cell growth rate). With the development 

of new algorithms, the simulation result becomes more accurate and reliable. Bi-level approach 

can be used to identify the best production strategy given a maximum number of genetic 

manipulations (Reed et al., 2010).  OptKnock couples cell growth rate with product formation 

rate to predict gene deletion targets leading to overproduction of target chemicals by ensuring 

carbon, redox, potential and energy balance (Burgard et al., 2003).  In addition to straightforward 

competing pathway deletion, OptKnock also suggests complex and non-intuitive mechanisms to 

compensate for the removed functionalities. For example, Yim et al. adapted OptKnock 

simulation to delete pathways in the common fermentation products lactate, formate and ethanol. 

A less intuitive manipulation by OptKnock suggested to engineer the oxidative branch of the 

TCA cycle to function under microaerobic cultivation conditions (Yim et al., 2011). 

More recently, OptForce was developed to use bi-level approach to identify how 

metabolic fluxes must change to improve metabolite production, thereby identifying reaction 

manipulation targets (Ranganathan et al., 2010). OptForce overlays the in-vivo flux measurement 

of wild type strain with the metabolite overproducing condition to determine which reaction 

fluxes must change. It is independent on assumption about what objective functions are used to 

predict cellular behavior. Xu et al. implemented OptForce to predict the minimal intervention 

that cooperatively force carbon flux toward malonyl-CoA in E. coli (Xu et al., 2011). Strain 

construction with the identified knockout targets (ΔfumC and ΔsucC) and overexpression targets 

(ACC, PGK, GAPD and PDH), was reported to exhibit 4-fold increase in level of intracellular 

malonyl-CoA compared to the wild type strain.  

Organization of dissertation  

My dissertation is organized as described below: 

Chapter 1 presents the overview of biorenewable chemicals and the roles of systems metabolic 

engineering.  

Chapter 2 presents literature review of metabolic flux analysis. 

Chapter 3 presents the case study of fatty acid production using systems metabolic engineering 

design. 

Chapter 4 describes the integration of experimental and computational approaches to predict 

genetic intervention for the overproduction of fatty acids in E. coli. 
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Chapter 5 continues the engineering effort of chapter 4 by depicting the flux distributions of the 

first generation engineered E. coli. Along with transcriptome and metabolome analysis, we 

integrated the flux data with computational tool to predict the next generation of gene 

intervention, thus closing the metabolic engineering loop. 

Chapter 6 describes the toxicity effect of octanoic acid in S. cerevisiae and the role of metabolic 

flux analysis and transcriptome analysis in unraveling the cell mechanism against octanoic acid 

toxicity. 

Chapter 7 describes the phenotype and carbon flux distribution of oleaginous yeast Yarrowia 

lipolytica as the potential host strain for carboxylic acids and pyrone production. 

Chapter 8 summarizes the dissertation and provides prospective for future works. 
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CHAPTER 2 

 LITERATURE REVIEW 

 

Metabolic flux analysis (MFA) 

Metabolic Flux Analysis (MFA) is a fundamental metabolic engineering tool to 

understand in vivo cell physiology by integrating system response for gene-protein-metabolites 

interaction, i.e. quantification of all steady state intracellular metabolite fluxes through the 

central metabolic reaction network  (Wiechert et al., 2001). The final outcome of MFA is a 

metabolic flux map that comprises of catabolic and anabolic reaction fluxes for certain species 

under specific growth conditions. By comparing the fluxes map of different strains under 

different conditions, we can assess the metabolic impacts of genetic modification and 

environmental perturbations, thus provide insights and targets for further rational strain design.  

Reaction bottleneck can be identified with the objective to optimize growth and desired product 

titer. Rational genetic manipulation of cellular metabolism can be performed to maximize 

product biosynthesis (Tang et al., 2009). In addition to the definition of metabolic phenotype, 

MFA provides invaluable information of new pathway identification, branch point control 

identification, nonmeasured extracellular fluxes calculation and maximum yield calculation 

(Stephanopoulos et al., 1998).  

Conventional metabolic flux analysis (c-MFA) 

The conventional MFA is the most basic approach of flux analysis, which solely depends 

on stoichiometry of biochemical network and measured specific rates, i.e. substrate consumption 

rate and product secretion rates (Varma and Palsson, 1994). To solve the unknown pathway 

fluxes, c-MFA was performed by writing mass balances for the intracellular metabolites, which 

results in a linear equation cascade.  The assumption of pseudo steady state must be applied, in 

which all the intracellular metabolite pools do not change over the experimental time span 

(Wiechert et al., 2001).  

In general, the number of measurable extracellular metabolite fluxes is limited in 

practice, therefore it usually leads to underdetermined algebraic system. Additional constraints 

can be implemented by incorporating objective function or cofactor balance, i.e. ATP, NADH, 
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and NADPH (Stephanopoulos et al., 1998). Appropriate objective functions can be introduced to 

optimize flux determination. The central carbon metabolism, which consists of anabolic and 

catabolic functions, provides cofactors, amino acids and energy (ATP) for growth requirement. 

Flux balance analysis (FBA) has been used extensively for in-silico genome scale network 

modeling to predict steady-state fluxes with the objective function to maximize cell growth 

(Matsuoka and Shimizu, 2010). E. coli was found to utilize carbon source almost optimally to 

achieve maximum growth rate, whereby it matches with the in-silico FBA predictions (Edwards 

et al., 2001; Ibarra et al., 2002). However, incomplete knowledge about the pathway cofactor 

balances and inappropriate choice of objective function can lead to erroneous flux estimation 

(Marx et al., 1996; Sauer and Bailey, 1999; Schuetz et al., 2007). 

Unfortunately, c-MFA fails in case of parallel metabolic pathway, metabolic cycles, 

bidirectional and reversible reactions (Figure 1) (Wiechert et al., 2001). In a large complex 

compartmented metabolic network in most eukaryotes, there is always a lack of extracellular 

metabolite measurements to relate to intracellular flux distribution (Schmidt et al., 1999). 

Consequently, the limitations can be overcome by supplementing c-MFA with isotopic tracer 

tracking, thereby provides a rigorous alternative to c-MFA. 

 

Figure 1. Typical situations in which conventional MFA fails (a) parallel pathways (b) metabolic 

cycles (c) bidirectional reactions (d) split pathways when cofactors are not balanced (Wiechert et 

al., 2001). 

13
C metabolic flux analysis 

13
C-MFA improves on the consistency and resolution of stoichiometric MFA by using 

experimental constraints derived from carbon labeling experiment (CLE) (Gomes and Simoes, 

2012). CLE is based on feeding defined 
13

C tracers into the biological system whereby all the 

carbon sources in the media are known. The most popular substrate is specific glucose with 
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unique labeling scheme (e.g. uniformly labeled glucose, 1-
13

C labeled glucose). Labeled carbons 

will be distributed throughout the network, assimilated into metabolites and finally into proteins. 

Due to the scrambling and distinct cleavage in the carbon backbone of metabolites, CLE 

distinguishes the partitioning at certain metabolite nodes based on the positional labeling pattern 

of tracer atoms. Different labeling strategies are optimal for the resolution of relative pathway 

activities with different carbon-carbon bond modifications. For instance, Fischer et al. 

determined the combination of U-
13

C glucose and 1-
13

C glucose as the most optimal resolution 

for the entire metabolic central carbon metabolism in E. coli (Fischer et al., 2004). Exclusive use 

of 1-
13

C glucose is particularly useful to resolve fluxes around oxidative pentose phosphate (PP) 

pathway and the Entner-Doudoroff (ED) pathway. Whereas, U-
13

C glucose is optimal to resolve 

fluxes downstream of phosphoenopyruvate (PEP) and some exchange fluxes with C-C bond 

cleavage. 

The greatest advantage of CLE is to avoid assumption of objective function and cofactor 

balance, since the acquired isotopomer data is adequate to determine the flux accurately (Gomes 

and Simoes, 2012). However, 
13

C MFA is limited to elucidate flux distribution for small-scale 

reaction network (20-50 reactions) in central carbon metabolism, since carbon labeling data is 

not available for intermediate metabolites in the secondary reaction metabolism (Kohlstedt et al., 

2010). 

One challenge of CLE is to ensure the cell culture to reach isotopic and metabolic steady 

state in which all the intermediate concentration and fluxes are constant throughout the CLE as 

shown in Figure 2. Metabolic steady state is achieved at exponential growth phase in batch 

culture with constant growth rate. Continuous cultivation requires 3-5 volume changes to reach 

metabolic steady state (Zamboni et al., 2009). Nonetheless, isotopic steady state exists when the 

isotopomer labeling distributions remain unchanged over time. During CLE, the labeled tracer 

propagates through the network toward the metabolic products and biomass. However, due to the 

different turnover rate, the time necessary to reach isotopic steady state for each metabolite 

varies. In general, intracellular intermediate can reach isotopic steady state within seconds to 

minutes, whereas protein-bound amino acids require hours to reach isotopic steady state. 

Grotkjaer et al. studied the rate of 
13

C substrate incorporated into biomass using a dynamic 

model detailing carbon transitions in the central carbon metabolism in S. cerevisiae (Grotkjær et 

al., 2004). The authors concluded the labeling of proteinogenic amino acids did not deviate after 
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3 residence times. To ensure 
13

C isotopomer detection is at isotopic steady state, the cells are 

harvested after at least five generations at exponential  growth phase in batch culture (Zamboni 

et al., 2009).  

 

Figure 2. Metabolic and isotopic dynamics in cell metabolism (Antoniewicz et al., 2007a; Feng 

et al., 2012). 

Isotopomer 

The central concept of 
13

C MFA lies on the isotopomer enrichment information in a given 

intracellular metabolite (Wiechert et al., 2001). Isotopomer represents a particular labeling state 

of a given metabolite. Each carbon in a given metabolite can be labeled or unlabeled; therefore 

there are 2
n 

isopotomers for n-carbon metabolite. For example, Figure 3 elucidates the 3-carbon 

metabolite has 2
3
=8 different isotopomers. The isotopomer distribution of metabolite is 

characterized by the isotopomer fraction (i.e. the percentage of each isotopomer in the 

metabolite), which sums up to 1. The metabolite fluxes at the branch points (pp pathway vs. 

glycolysis) and circular fluxes (TCA cycle) in the network can be determined from the isotopic 

labeling distribution of the metabolites.  
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Figure 3. Eight isotopomer possibilities of three carbon metabolite. Filled and unfilled circles 

represent 
13

C and 
12

C atoms respectively. 

 

The final isotopic enrichment in amino acids and intracellular metabolites can be assessed 

to reveal intracellular flux partitioning. Protein is a stable abundant source of labeling 

information, as the carbon backbones of central metabolism intermediate are conserved in 

protein (Zamboni et al., 2009). Only 16 out of the 20 amino acids can be accessed after protein 

hydrolysis. Besides the degradation of cysteine and tryptophan, glutamine and asparagines are 

converted to glutamate and aspartate respectively during acid hydrolysis (Tang et al., 2009). The 

amino acids provide isotopic labeling information for the precursor metabolites in the central 

carbon metabolism including pyruvate, phosphoenolpyruvate, acetyl-CoA, 3-phosphoglycerate, 

erythrose-4-phosphate, oxaloacetate, α-ketoglutrate, and ribose-5-phosphate (Maaheimo et al., 

2001; Szyperski, 1995). Therefore, amino acids serve as major precursors to understand the 

central metabolic fluxes during steady-state growth as shown in Figure 4 (Fischer et al., 2004; 

Szyperski, 1995). In the contrary, free intracellular metabolites would provide richer information 

to resolve fluxes even beyond central metabolism and assess dynamic flux changes. Moreover, 

free intracellular metabolites reach isotopic steady state within seconds to minutes, much faster 

than proteinogenic amino acids. However, the shortfalls of metabolite-based MFA are their 

relatively low concentration, high turnover rate and diverse chemical nature (Sauer, 2006).  
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Figure 4. Carbon fragments originating from a single intermediate molecule present in 

proteinogenic amino acids (Maaheimo et al., 2001).  

Nuclear magnetic resonance (NMR) and mass spectrocopy (MS) techniques 

The most common techniques to detect isotopomer abundance are NMR and MS 

(Szyperski, 1995; Wittmann, 2002) to understand the intracellular labeling state of the system.   

NMR: Proton NMR (
1
H-NMR) was first extensively used in 

13
C labeling experiment by 

Marx et al. to obtain labeling data from more than 25 NMR measurements. Each single 

protonated carbon atom position of certain metabolite pool can be distinguished. 
1
H-NMR 

measures positional enrichment of each carbon atom position. However, isotopomer distribution 

can be resolved in more detail with 
13

C-NMR, as a labeled carbon produces different splitting 

signals depending on the labeling state of the neighboring carbon. For instance, Figure 5 shows a 

3-carbon molecule with different labeling states have different signal splitting patterns. If none of 

the neighboring carbon is labeled, a singlet peak emerges.  With a neighboring carbon labeled, a 

doublet peak appears in which the splitting distance depends on the functional group on the 

neighboring carbon. If all three carbons are labeled, a double-doublet peak results, in which if the 

doublet is the same, a triplet peak emerges. 



22 

 

 

 

Figure 5. Relationship between isotopomer and multiplet pattern obtained from NMR 

measurement. Only 4 out of 8 isotopomers possible for three carbon metabolite are detected by 

NMR. If none of the neighboring carbon is labeled, a singlet peak emerges.  With a neighboring 

carbon labeled, a doublet peak appears in which the splitting distance depends on the functional 

group on the neighboring carbon. If all three carbons are labeled, a double doublet results in 

which if the doublet is the same, a triplet peak emerges. 

In 1D-NMR spectrum, overlapping peaks complicate the analysis. Therefore, separation 

is required to isolate metabolites from the hydrolysate for NMR quantification.  A 2D-NMR with 

combination of 1H and 13C-NMR can resolve this problem, because metabolite peaks are 

separated in 2D-spectrum. Each spectrum can be evaluated without much interference (Sauer 

2001). 2D-Correlation spectroscopy (COSY) and Heteronuclear Single Quantum Correlation 

(HSQC) spectroscopy are commonly applied. COSY detects the proton interaction on the carbon, 

while HSQC detects 
13

C-
13

C scalar coupling, i.e. the degree of coupling between adjacent carbon 

atoms. The indirect detection of carbon makes HSQC more sensitive than COSY. The HSQC 

technique therefore was used in this study to detect isotopic labeling of amino acids. NMR 

provides the most direct method to determine relative abundance of the isotopomers. Sriram et 

al. successfully used NMR technique to acquire amino acids isotopomer fraction, thereby 

generating flux map for soybean embryo and Catharanthus roseus (Sriram et al., 2006; Sriram et 

al., 2007).  

MS: However, the overall sensitivity of NMR is significantly lower compared to MS 

technique. The former method requires at least 20 mg biomass, while the latter method requires 
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0.3-0.8 mg biomass. MS methods are extensively used in flux analysis (Wittmann, 2002). The 

MS instrument is coupled with either gas or liquid chromatography (GC or LC) to separate the 

compounds for ionization, fragmentation and finally analysis.  The output of MS measurement is 

a total ion chromatogram shown in Figure 6. Assuming the compounds of interest are well 

separated, the mass spectra can be used for isotopic quantification. In reality, some amino acid 

fragments are rejected due to the choice of spectrum integration algorithm, concentration effect 

and overlapping fragments (Antoniewicz et al., 2007a; Feng et al., 2012). 

 

Figure 6. MS technique fails to distinguish among the exact isotopomers in M+1 and M+2.  

For GC-MS measurement, the sample must be chemically derivatized to make it volatile 

to obtain chargable molecules. N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide 

(TBDMS) is most commonly used to derivatize amino acids (Antoniewicz et al., 2007a). N,O-

bis(trimethylsilyl)trifluoroacetaminde (BSTFA), a more gentle and sensitive derivatization agent, 

can be used to measure the extent of labeling in free organic acids, sugars and sugar phosphates 

(Ewald et al., 2009; Tang et al., 2009). In addition, the natural abundance of other atoms in 

analyte and derivatization residues needs to be corrected (i.e. 
13

C, 1.13%; 
18

O, 0.20%; 
29

Si, 

4.70% and 
30

Si, 3.09%). Another pitfall of MS technique is the inability to distinguish exact 

labeled carbon position if one carbon of the 3-carbon molecule is labeled.  

Free amino acids with fast turnover time open a new avenue for 
13

C-MFA to investigate 

metabolism during various cell growth phases and also shorten the experimental duration by 

reaching isotopic steady state earlier. Iwatani et al. measured labeling information of intracellular 

free amino acids using LC MS/MS to profile flux change during fed-batch cultivation (Iwatani et 
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al., 2007). The study revealed the metabolic shift during different cell growth phases in a fed 

batch culture. 

Besides intracellular amino acids, measurement of labeling pattern in central metabolites 

could extend the scope of 
13

C-MFA and increase its accuracy. Kleijn et al. used LC-MS to 

analyze only intracellular metabolites in the glycolysis and PP pathway due to lack of 

understanding of metabolites localized in multiple compartments of yeast, therefore the flux 

model focused only on the glycolysis and the PP pathway (Kleijn et al., 2007). This approach 

was able to estimate the split ratio at the G6P node more accurately. 

Overall, GC-MS, LC-MS and NMR had been combined for flux calculation by extracting 

the maximal isopotomer information from the intracellular metabolites and proteinogenic amino 

acids (Kleijn et al., 2007). The sensitivity of the fluxes around the metabolic nodes is highly 

dependent on the method of analysis. The combined information has been used to more 

accurately resolve flux distribution in S. cerevisiae with the compartmentation of cytosol and 

mitochondria.  

Enumerating flux 

The metabolite stoichiometric balances coupled with the carbon skeleton rearrangements 

are the fundamental principles to enumerate flux distribution. Extracellular measurements are 

required to account for complete carbon balance. Besides, carbon labeling data provides 

additional constraint to specify the split at network branch point. The basic workflow of 
13

C-

MFA comprising of experimental and computational steps is outlined in Figure 7. 
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Figure 7. Schematic workflow for 13C-MFA  comprising of experimental and computational 

routine (Kohlstedt et al., 2010). 

 

Since the relationship between isotopomer fraction and intracellular flux distribution is 

non-linear, the computation procedure is complicated and analytical solution is practically 

impossible. Mathematics-involved numerical solutions were applied to solve isotopomer 

abundances for calculating intracellular fluxes (Schmidt et al., 1999; Wiechert et al., 2001; 

Zupke and Stephanopoulos, 1994) The development of computationally efficient algorithms for 

isotopomer balance such as cumomers (Wiechert et al., 2001) , elementary metabolite units 

(Antoniewicz et al., 2007b), and recently, Mathematical-involved (Srour et al., 2011) helps to 

reduce the computational expenses and increase the realiability of flux calculation. Generic 

softwares (such as 13C-Flux and NMR2Flux) using the concept of isotopomer balancing for flux 

analysis are also available (Sriram et al., 2006; Wiechert et al., 2001). METRAN and 13C-Flux2 

software based on elementary metabolite units algorithm have also been developed for steady-

state flux calculation (Antoniewicz et al., 2007b; Noack et al., 2011). 

NMR2Flux program was developed in our group to evaluate a unique flux solution using 

global optimization routine (Sriram et al., 2006). An arbitrary set of fluxes is firstly chosen and 

verified for stoichiometric feasibility. The feasible fluxes are converted into isotopomer 

distribution through isotopomer and cumomer balances. Flux distributions are calculated by 

iteratively fitting simulated isotopomer distributions with the experimental measurements based 

on the chi-square error criteria. Simulated annealing algorithm is implemented to search for 
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global minimum without getting trapped in local minima. A statistical analysis is performed to 

account for isotopomer measurement errors and converts them to confidence intervals of the 

fluxes using Monte Carlo simulation. 

Non-stationary flux analysis 

The main prerequisite for 
13

C-MFA is that the system must be in a metabolic and isotopic 

steady state, which constitutes a limitation to its application on non-growing cells without protein 

biosynthesis and higher cells with slow growth (Gomes and Simoes, 2012). The duration of CLE 

is significantly longer with the inverse of growth rate, thus leading to impractically long 

experiment. In addition, batch fermentation and fed-batch fermentation that are widely used in 

industry have the nature of non-stationary. Moreover, most of the target molecules are mostly 

produced at stationary phase, resulting in the need to investigate metabolic flux alternation with 

time series and metabolic phase shift. Therefore, in order to thwart these problems, the classical 

13
C-MFA can be extended to isotopically non-stationary (INST) 13C-MFA (Noack et al., 2011; 

Noeh et al., 2007; Nöh et al., 2006).  Instead of achieving isotopic equilibrium, non-stationary 

13
C-MFA uses isotopic transient data to resolve fluxes within much shorter duration of CLE. Its 

application, however, raises new challenges in computations and analytics aspects. Noh et al. 

developed an extension of the EMU-based 13C-FLUX2 software to implement the simulation of 

non-stationary CLE, sensitivity analysis, data fitting, statistical identifiability analysis and 

optimal experimental design (Nöh et al., 2006).  

In the range of seconds to minutes, 
13

C tracers will be incorporated into the intracellular 

metabolites and free amino acids. With the fast turnover, 
13

C incorporated metabolites would 

wash out the existing pool of metabolites, thereby dramatically shorten the experimental time. 

Thus, improvement in measuring the isotopic pattern for intracellular metabolites is necessary to 

keep track of changes in metabolite labeling and to complement the INST 
13

C-MFA. CE-TOF-

MS (Toya et al., 2007), LC-MS/MS (Iwatani et al., 2007; Noack et al., 2011), LC-MS (van 

Winden et al., 2005) and GC-MS (Ewald et al., 2009) have been used as robust tools to measure 

isotopomer information of the intracellular metabolites in the central carbon metabolisms instead 

of measuring the proteinogenic amino acids.   
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Abstract 

Increasing demand for petroleum has stimulated industry to develop sustainable 

production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths 

from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals 

and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and 

specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for 

engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in 

different features of systems metabolic engineering in the strain design of high-yielding medium 

chain fatty acid producing E. coli strains provide an emerging case study of design methods for 

effective strain design. Classical metabolic engineering and synthetic biology approaches 

enabled different and distinct design paths towards a high-yielding strain. Here we highlight a 

rational strain design process in systems biology, an integrated computational and experimental 

approach for carboxylic acid production, as an alternative method. Additional challenges 

inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids 

will likely require a collection of strategies from systems metabolic engineering. Not only will 

the continued advancement in systems metabolic engineering result in these highly productive 

strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the 

microbial production of carboxylic acids with alternate chain-lengths and functionalities. 
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Introduction 

Concerns regarding crude oil depletion and climate change have encouraged the 

development of renewable biochemicals and biofuels using carbohydrates as the feedstock 

(Demirbas 2009; Gabrielle 2008). Microbial biosynthesis of fatty acids (FAs) for biorenewable 

chemicals and biofuels has recently garnered extensive attention. Free FAs can be used as 

precursors for the production of alkanes by catalytic decarboxylation or transesterification 

(Lennen et al. 2010; Lu et al. 2008; Steen et al. 2010).  Alternatively, FAs can be converted 

biologically to FA ethyl esters, which have high energy density and low water solubility (Steen 

et al. 2010). Medium chain FAs can be effectively used for industrial applications such as 

detergents, soaps, lubricants, cosmetics, and pharmaceuticals.  FAs can also be catalytically 

deoxygenated via metal catalysts to produce -olefins, the building blocks of polymerization.  

The genetically suitable Escherichia coli is an excellent host for FA production, given its 

fully sequenced genome and well-studied FA metabolism. The first step in type II fatty acid 

biosynthesis (FAB) pathway in E. coli involves the ATP-dependent acetyl-CoA carboxylase 

(encoded by accABCD) where acetyl-CoA is converted into malonyl-CoA. Malonyl-CoA is 

further converted into malonyl-ACP by the enzyme malonyl-CoA ACP transacetylase (encoded 

by the fabD), which condenses with acetyl-CoA to synthesize a 4-carbon fatty acid acyl carrier 

protein (i.e. butyryl ACP). Subsequently, the cyclic chain elongation steps recruit two carbons in 

the backbone of the growing fatty acid ACP every turn of the cycle. Finally, the fatty acyl ACP 

is hydrolyzed into FA by thioesterases in a single step enzymatic conversion. Despite the 

intrinsic capability of synthesizing FAs for lipid and cell membrane biosynthesis, E. coli does not 

normally accumulate free FAs as intermediates. FA metabolism is tightly regulated at 

transcriptional and post-transcriptional levels by both the transcription factor and product 

inhibition, meaning that FA overproduction may require significant re-engineering of cellular 

metabolism. An excellent overview of FA biosynthesis and its regulation has been reviewed by 

Handke et al. (Handke et al. 2011). 

The challenge then, is not only to create a microbial biocatalyst that can produce FAs at 

high yields, high rates and high product titers, but also to shorten the development time in the 

metabolic engineering design cycle, in order to compete effectively with petroleum-based 

processes. The metabolic engineering design process has evolved into a Systems Metabolic 
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Engineering design process, as shown in Figure 1. Systems Metabolic Engineering, which 

encompasses systems biology, synthetic biology, and evolutionary engineering at the system 

level, provides powerful techniques to design new biocatalysts (Lee et al. 2011a). The classical 

metabolic engineering procedures of constructing and screening strains, based on the collective 

wisdom of experience, are often complemented with one or more of the new tools to improve 

and/or fine-tune strain design. The design engineer is faced with a suite of choices in the design 

process, on whether to use methods in isolation or in combination, although a survey of the 

literature indicates that at combination of multiple approaches is still not very common to date 

(Lee et al, 2011). Fortunately, a plethora of engineering manipulations for free FA production in 

E. coli exist and have been reviewed in recent years (Huffer et al. 2012; Lennen and Pfleger 

2012; Liu and Khosla 2010; Zhang et al. 2011a). Moreover, recent successes in construction of 

high-yielding medium chain fatty acid producing E. coli strains, rooted in different features of 

systems metabolic engineering, provide an emerging case study of design methods for effective 

strain design (Dellomonaco et al. 2011; San and Li 2012; Zhang et al. 2012b). 

In this review, we focus mainly on medium-chain FA production in E. coli using different 

systems metabolic engineering approaches outside the scope of traditional metabolic 

engineering. In particular, we describe a classical metabolic engineering technique, an integrated 

experimental and computational strategy, and a synthetic engineering effort for enhancing fatty 

acid production in E. coli. 

Classical metabolic engineering 

Classical metabolic engineering involves an iterative process of synthesis and analysis, 

where increasingly refined strains are designed and constructed based on the past knowledge. 

Based on literature evidences and intuitive guesses, several strategies have been employed to 

improve FA production, as have been elucidated in Figure 2a. The adopted strategies include up-

regulating the availability of precursors malonyl-CoA (Lee et al. 2011b; Lennen et al. 2010; Lu 

et al. 2008) and malonyl-ACP (Lee et al. 2011b; Zhang et al. 2012c) and elimination of the -

oxidation pathway genes fadD or fadE (Lennen et al. 2010; Lu et al. 2008; Steen et al. 2010) to 

prevent degradation of FAs. Overexpression of the chain-elongation genes fabA, fabZ and fabG 

encoding for the FAB pathway have also been performed (Yu et al. 2011). In addition, 

overexpression of native E. coli thioesterases tesA and tesB (Lu et al. 2008; Steen et al. 2010), as 
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well as heterologous plant thioesterases from C. camphorum (Liu et al. 2010) and U. californica 

(Lennen et al. 2010)  has been identified to overproduce FAs with tailored carbon chain length. 

Optimal expression of plant thioesterases in E. coli guided by predictions of the ribosomal 

binding sites (Zhang et al. 2011b) as well as discoveries of new thioesterases, such as a recently 

identified E. coli thioesterase gene, fadM, involved in the β-oxidation pathway (Dellomonaco et 

al. 2011), was shown to improve medium-chain FA production. Removal of a competitive 

pathway towards acetate, however, did not increase the flux towards middle chain FA (Li et al. 

2012). The synergy of the aforementioned positive interventions is often used to significantly 

boost FA production. For example, Steen et al. (2010) reported 1.2g/L FAs (14% of theoretical 

yield) by deletion of fadD and fadE -oxidation gene with overexpression of cytosolic tesA 

thioesterase. 

In an elegant example of a system-wide metabolic engineering approach, the existing 

biological system was redesigned by an engineered reversal of the β-oxidation pathway in E. 

coli, leading to a significant increase in the production yield of carboxylic acids (Dellomonaco et 

al. 2011). The cellular system was reprogrammed by the manipulation of global regulators. As 

such, mutations in FadR and AtoC regulon were introduced to express β-oxidation pathway 

enzymes in the absence of FAs. The native crp gene was replaced by a cAMP-independent 

mutant to alleviate the catabolite repression in the presence of glucose. ArcA gene was deleted to 

relieve ArcA-mediated repression induced by oxygen availability. In combination with the 

elimination of the native fermentation and the FA degradation pathway, and the overexpression 

of the selected terminal pathway, extracellular C10-C18 FAs were produced at titer of ~7g/L in the 

bioreactor, with mineral salts medium with yield of 0.28g/g glucose (~80% theoretical yield). 

Thus, redesigning the native FA biosynthesis using a CoA-based functional reversal of β-

oxidation provided an efficient platform for the production of FAs. 

A classical “push and pull” concept was applied to enhance  acetyl-CoA availability, 

minimize acetyl-CoA drains, eliminate competing pathways and overexpress product formation 

pathways, ultimately led to a strain with nearly ~100% maximum theoretical yield for medium 

chain-length FA production (San and Li 2012). Overexpression of fabZ encoding β-hydroxyacyl-

ACP dehydratase increases FA titer and yield by pulling carbon flux toward FA elongation cycle 

(Figure 2b). Naturally occurring FA-sensing transcription factors coordinate and regulate the 
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synthesis and degradation of FA at transcription level. Whereby, FabR antagonizes FA synthesis 

by repressing fabB and fabA FAB genes, and vice versa for the FadR transcription factor. 

Indirect up-regulation of FA elongation reactions, by deletion of fabR and over expression of 

fadR, showed an increase in FA titer and yield. In addition to the terminal FAB pathway, limited 

focus has also been given on the central carbon metabolism manipulations for augmenting FA 

production, however, with less success. San et al. (2012) showed that redirection of TCA cycle 

flux (deletion of sucC, fumAC and gltA) towards fatty acid production improved middle chain 

FA production. Furthermore, gene interruption in the glycolytic pathway (glk, ptsG, pfkA and 

pykF) also was shown to be strategic genetic manipulation. Overall, the combination of the fabZ 

over-expression and sucC deletion in a fadD knockout strain boosted the production to 5.7g/L 

C14-C16 FAs with yield of 0.38g/g glucose in rich media (~100% theoretical yield). The 

technology has been translated into industrial collaboration to produce synthetic diesel and 

lubricants from biomass (Williams 2013).  

Integrated computational and experimental approach 

Even though metabolic engineering has taken long strides in manipulating the metabolic 

network towards the overproduction of a desired chemical, the process is hampered by 

bottlenecks of time and accuracy. Recent advances made in genome sequencing have accelerated 

the construction of genome-scale metabolic networks, which in turn have led to the growth of 

several rationale-based strain optimization protocols (Burgard et al. 2003; Kim et al. 2011; Maia 

et al. 2012; Pharkya et al. 2004; Yang et al. 2011). Computational strain design protocols 

consider the complex interconnectivity of cellular metabolism including cofactor balances to 

identify key metabolic bottlenecks towards the production of a chemical, and predict (often non-

intuitive) strategies to overcome them. Integrated with classical metabolic engineering 

techniques, these procedures have been successfully employed for the overproduction of several 

chemicals (Alper et al. 2005; Asadollahi et al. 2009; Bro et al. 2006; Park et al. 2007; Xu et al. 

2011). We recently demonstrated the integrated approach of computationally-driven predictions 

and metabolic flux analysis techniques for the overproduction of FAs with different chain 

lengths (Ranganathan et al. 2012). The OptForce computational protocol (Ranganathan et al. 

2010) was used for arriving at suggestions for strain redesign by identifying the minimal set of 

reactions that need to be actively manipulated to guarantee an imposed production yield. 

OptForce makes use of in vivo flux measurements to characterize the reference strain and then 
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solves a “worst-case” optimization problem to conservatively identify an exhaustive list of 

alternate intervention strategies required to meet a pre-specified yield of the desired chemical. It 

also provides a natural prioritization of results where the most important manipulations are 

identified first. We observed that the intervention strategies were mostly chain specific that 

optimized the utilization of the precursors, cofactors and energy equivalents required for the FA 

synthesis of a particular chain length. For palmitate production, the up-regulation of FA 

elongation cycle was suggested to pull acetyl-CoA towards FA synthesis, followed by a removal 

of the β-oxidation pathway to prevent FA degradation. In addition, OptForce identifies several 

non-intuitive manipulations distal to the terminal FAB pathway that channels metabolic flux 

towards palmitate (see Figure 3a). In particular, it suggests re-routing glycolytic flux towards ED 

pathway for the dual objectives of generating reduction cofactor NADPH required in the FA 

chain elongation and arresting cell growth by reduced production of ATP. In addition, OptForce 

identified down-regulation of TCA cycle and acetate production pathway as chronologically less 

prioritized interventions to prevent the drainage of acetyl-CoA away from FA synthesis. In 

accordance with OptForce prioritized suggestions, a strain with the over-expression of fabZ and 

acyl-ACP thioesterase (from R. communis), combined with the deletion of fadD, achieved 1.7 

g/L and 0.14 g FA/g glucose of C14-16 FA (~38% theoretical yield) in minimal medium. 

Interestingly, the prediction of FA biosynthesis up-regulation, TCA cycle interruption, and 

glycolysis interruption agreed with San et al. (2012), strengthening the robustness of the 

integrated approach of computational strain design and flux analysis tools. In addition, the 

intervention template suggested by OptForce for the overproduction of FA of individual chain 

lengths (see Figure 3b) can be used along with chain-specific thioesterases (Jing et al. 2011) to 

study the relatively unexplored area of short-chain FA production. 

Synthetic biology  

Transcriptional and post-transcriptional control in E. coli tightly regulates FA 

biosynthesis. Computational tools often do not provide any inference on gene regulation; 

however, synthetic biology plays a crucial role in modeling, understanding, and fine-tuning the 

core components in metabolic pathways. Engineering core pieces of metabolic pathways helps 

meet specified performance criteria, such as gaining desired phenotypes, once they are integrated 

into larger biological systems.  
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The synthetic biology approach fine-tunes the enzymatic pathways of a specific product, 

enabling the transfer of optimized systems to another chassis. Clomburg et al. (2012) used a 

bottom-up strategy to reconstruct a functional reversal of the β-oxidation cycle for production of 

carboxylic acids through the assembly of well-defined and self-contained enzymes composing 

the pathway (Fig. 4a).  Functional reversal of the β-oxidation cycle comprises of thiolase (AtoB, 

FadA), 3-hydroxyacyl-CoA dehydrogenase (FabB), enoyl-CoA hydratase (FabB), and acyl-CoA 

dehydrogenase (FadE, YdiO, egTER). Each CoA intermediate in the cycle could be converted 

into carboxylic acids with thioesterase termination pathways. After in-vitro kinetic 

characterization, AtoB, FabB and egTER were assembled in-vivo in E. coli along with the native 

thioesterase termination pathway, resulting in 3.43g/L butyrate with 0.35g/g glycerol yield 

(~74% theoretical yield). In-vitro kinetic analysis revealed the capability of FadA thiolase on 

longer chain acyl-CoA. For the synthesis of longer chain carboxylic acids, functional reversal of 

the β-oxidation cycle could be operated multiple cycles through the integration of AtoB, FadBA 

and egTER into the host strain. The success in resembling self-contained enzyme units in the 

functional reversal of β-oxidation provides a paradigm for the efficient production of carboxylic 

acids using synthetic biology techniques. 

Despite the advent in the genetic engineering, metabolic imbalance with low expression 

pathway genes becomes the bottleneck in biosynthetic pathways. Extremely high levels of gene 

expression divert cellular resources to unnecessary cell maintenance, instead of devoting the 

resource to produce the desired chemical. The dynamic sensor-regulator system (DSRS) was 

developed to dynamically control the synthesis of FAs and the derived biodiesels in E. coli 

(Zhang et al. 2012a).  A FA/ acyl-CoA sensor was engineered based on the FadR protein and its 

associated regulator. Synthetic FA/ acyl-CoA-regulated promoters were designed to increase the 

limited dynamic ranges of native FadR-regulated promoters. The engineered biosensors 

responded primarily to acyl-CoA, which served as an indirect FA sensor (Fig.4b). With the 

insertion of this biosensor, the FA-producing E. coli strain with tesA expression and fadE 

deletion produced 3.8g/L FA (~56% theoretical yield). Furthermore, the biosensor concept was 

extended to the over-expression of FadR in the E. coli strain with tesA expression and fadE 

knockout, enhancing FA titer to 5.2g/L (73% theoretical yield) in minimal medium (Zhang et al. 

2012b). FadR over-expression optimally tuned the expression levels of FA pathway genes for the 
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production of FAs. Thereby, the over-expression of an isolated gene in the FA synthesis pathway 

(fabA, fabB and fabF) did not increase FA titer as much as the FadR over-expression. 

Synthetic biology enables the systematic investigation of pathway limitations and 

removes the metabolic bottlenecks that are tightly regulated. The customized expressions of 

enzymatic reactions could enhance carbon flux toward precursor and the corresponding product. 

The accumulation or depletion of intermediates could be avoided to prevent loss in cell viability 

and pathway productivity.  Most recently, Koffas and coworkers applied modular synthetic 

biology strategy to optimize the transcription of fatty acid metabolic pathway, which consists of 

the modules of upstream acetyl-CoA formation, intermediary acetyl-CoA activation and fatty 

acid synthase (Xu et al. 2013). Modular pathway optimization by altering plasmid copy number 

led to a balance in the supply and consumption of fatty acid intermediates (acetyl-CoA and 

malonyl-ACP). Moreover, translation efficiency could be improved by customizing the 

ribosomal binding sites of fatty acid pathway modules, thus enhancing fatty acid production. The 

combination of these synthetic biology tools yielded 8.6g/L fatty acids (~22% theoretical yield) 

in fed-batch fermentation. 

Synthetic biology can also be applied to identify and understand the controlling factors in 

directing carbon flux to the FA pathway (Liu and Khosla 2010). A cell-free system was 

developed to interrogate the regulation and synthesis of FAs in E. coli through manipulation of 

the substrate, cofactors, allosteric regulators and enzyme level. The study revealed high 

dependency of FA synthesis on the intracellular concentration of malonyl-CoA. Malonyl-CoA 

concentration was required to be increased by ten-folds of its reference value under FA 

overproduction conditions. The rate of FA synthesis was generally linearly correlated to ACC 

levels with respect to the selection of target ACC.  In a subsequent in-vitro FA biosynthesis 

reconstitution study, fabI and fabZ were determined to enhance FA synthesis in a hyperbolic 

fashion (Yu et al. 2011). Nonetheless, fabF and fabH inhibited FA synthesis at concentration 

higher than 1μM. Thus, the optimization of FA biosynthesis genes expression is critical to 

further improve the strain for FA production. 

Conclusion and future challenges 

Classical metabolic engineering, integrated computational/experimental approach, and 

synthetic biology have contributed towards the improved production of FAs in E. coli, and could 
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be extended to the development of cell factories for specific chemical production. To further 

dissect the regulations in FA metabolism, system metabolic engineering can be employed to 

pinpoint beneficial key components in the complicated genetic circuit for strain optimization. 

Enzymatic bottlenecks could be accurately identified with the development of detailed kinetic 

models that include metabolic regulatory networks constrained by system biology findings. He et 

al. applied a combination of system biology approaches (i.e. fluxomics and transcriptomics) to 

gain metabolic insights into cellular metabolism under fatty acid production. It was found the 

reducing equivalent NADPH and ATP as the potential bottleneck for fatty acid production, 

guiding the direction for future strain development and process optimization to enhance fatty 

acid production (He et al. 2013). From the industrial standpoint, fermentation using minimal 

medium and efficient product separation process can lower operating costs and be competitive 

for the production of petroleum-based chemicals. Recently, medium optimization study showed 

phosphate limitation in continuous fermentation increased fatty acid yield and biomass-specific 

productivity compared to carbon-limited cultivation (Youngquist et al. 2013). It has also been 

noted that endogenous FA production reduced cell viability due to the loss of inner membrane 

integrity (Lennen et al. 2011). Secretion of endogenous FAs could possibly assuage the toxicity 

effect while reducing product extraction cost. Further investigation is warranted to address the 

challenges for promising commercialization. 
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List of figures 

Fig.1 Systems metabolic engineering is an integrated field of classical metabolic engineering, 

system biology, synthetic biology, and evolutionary engineering. The classical metabolic 

engineering petal exists to construct and screen strains for overproduction. The systems biology 

petal comprises omics technologies and computational modeling to elucidate the cellular 

network and generate non-intuitive insight into the biological system. Incorporation of synthetic 

biology petal creates novel biologically functional parts, modules and systems using synthetic 

DNA tools and mathematical methodologies to expand the capacity of the production hosts. 

Evolution and reverse engineering improves the performance of host strain through adaptive or 

random evolution under a specified environment. The evolved strain can be reverse-engineered 

to pinpoint the beneficial mutations and further optimized by metabolic engineering cycle. 

Nonetheless, protein engineering, shown as a bee, acts as a catalyst to system metabolic 

engineering by enhancing substrate specificity and productivity of key enzymes in the production 

pathway. Integrations of the above discipline will increase the efficiency of metabolic 

engineering in strain development. 

Fig. 2a Fatty acid biosynthetic pathways in E. coli utilize a classical metabolic engineering 

approach to increase fatty acid production. The gene expressions of fabA and fabB in the fatty 

acid chain elongation are regulated by transcription factor FadR and FabR. Green arrow 

indicates up-regulation, while red cross indicates deletion. 

Fig. 2b Effect of different genetic modifications on the improvement of fatty acid titer and yield 

reported by San et al (2011). All the genetic modifications were carried out in E. coli strain 

ML103 (ΔfadD). An acyl-ACP thioesterase (pXZ18) was overexpressed in engineered strains to 

test the effect of the gene knockout (Δ) or overexpression (++). The strains were cultured in LB 

media with 1.5% glucose and sampled at 48 hours.  Fatty acid titer and yield improvement were 

compared with those of the reference strain ML103. Fatty acid titer and yield for the reference 

strain ML103 are 3.1 g/L and 0.17 g/g. 

Fig. 3 (a) OptForce interventions for the overproduction of palmitic acid in E. coli. (b) Venn 

diagram representing the chain-dependent nature of genetic interventions predicted by OptForce 

for fatty acids of chain length C6 to C16 (Ranganathan et al., 2012).  

Fig. 4 The synthetic biology approach encompasses (a) the functional reversal of β-oxidation 

cycle consisting thiolase (blue) encoded by atoB and fadA , 3-hydroxyacyl-CoA dehydrogenase 

(green) encoded by fadB, enoyl-CoA hydratase (red) encoded by fadB, and acyl-CoA 

dehydrogenase (orange) encoded by ydiO and fadE (Clomburg et al., 2012). The acyl-CoA can 

be converted to fatty acids using thioesterase. (b) Design of fatty acid/ acyl-CoA biosensor using 

FadR transcription factor to regulate fatty acid synthesis (Zhang et al. 2012a). In the absence of 

fatty acid, FadR binds to the promoter, inhibiting the binding of RNA polymerase and thus 

repressing the transcription. When fatty acid is present, acyl-CoA is formed and antagonizes the 

DNA binding of FadR. RNA polymerase can then bind to the promoter and initiates the 

transcription. 
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Abstract 

Increasing demands for petroleum have stimulated sustainable ways to produce chemicals 

and biofuels. Specifically, fatty acids of varying chain lengths (C6 – C16) naturally synthesized in 

many organisms are promising starting points for the catalytic production of industrial chemicals 

and diesel-like biofuels. However, bio-production of fatty acids from plants and other microbial 

production hosts relies heavily on manipulating tightly regulated fatty acid biosynthetic 

pathways. In addition, precursors for fatty acids are used along other central metabolic pathways 

for the production of amino acids and biomass, which further complicates the engineering of 

microbial hosts for higher yields. Here, we demonstrate an iterative metabolic engineering effort 

that integrates computationally driven predictions and metabolic flux analysis techniques to meet 

this challenge. The OptForce procedure was used for suggesting and prioritizing genetic 

manipulations that overproduce fatty acids of different chain lengths from C6 to C16 starting with 

wild-type E. coli. We identified some common but mostly chain-specific genetic interventions 

alluding to the possibility of fine-tuning overproduction for specific fatty acid chain lengths. In 

accordance with the OptForce prioritization of interventions, fabZ and acyl-ACP thioesterase 

were upregulated and fadD was deleted to arrive at a strain that produces 1.70 g/L and 0.14 g 

fatty acid/g glucose (~ 39% maximum theoretical yield) of C14-16 fatty acid in minimal M9 
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medium. These results highlight the benefit of using computational strain design and flux 

analysis tools in the design of recombinant strains of E. coli to produce free fatty acids.  

Keywords: Fatty acids overproduction, Computational strain design, Metabolic flux analysis 

1. Background and introduction 

The economical production of industrial chemicals (Nikolau et al., 2008) and 

transportation fuels (Stephanopoulos, 2007) from renewable resources is advancing but remains 

a grand challenge. In particular, microbial synthesis of free fatty acids for the production of 

biorenewable chemicals and fuels has garnered extensive interest recently ((Nikolau et al., 

2008);(Steen et al., 2010); (Handke et al., 2011); (Liu et al., 2010b)). First generation biofuels, 

such as bio-ethanol (Fortman et al., 2008) produced from corn has relatively low energy density 

and water miscibility. New efforts are focused on longer chain alcohols such as 1-butanol 

(Gulevich et al., 2011; Lan and Liao, 2011; Shen and Liao, 2008), isobutanol (Atsumi et al., 

2010) and 1,3-butanediol (Gonzalez et al., 2010) as gasoline bio-alternatives and fatty acids as 

promising intermediates for diesel bio-alternatives (Lu et al., 2008). Fatty acids produced during 

fermentation can be converted to alkanes by catalytic esterification or decarboxylation (Fjerbaek 

et al., 2009; Vasudevan and Briggs, 2008). Conversely, the host organism could be 

bioengineered to convert fatty acids towards fatty acid ethyl esters (FAEE) (Steen et al., 2010) 

which have high energy density and low water solubility (Atsumi et al., 2010).  Medium chain 

fatty acids (C6-C14) find attractive industrial applications as sources for detergents, lubricants, 

cosmetics, and pharmaceuticals. Free fatty acids can be directly hydrogenated to form fatty 

alcohols (Voeste and Buchold, 1984). More recently, it has been shown that fatty acids could be 

catalytically deoxygenated via Pd or Rh catalysts (George Kraus, unpublished results) to produce 

-olefins, which serve as building blocks of important polymerization products. In addition, 

existence of plant thioesterases that can specifically hydrolyze acyl-ACP substrates of a 

particular chain length (Jing et al., 2011) creates the opportunity to produce novel fatty acids. 

Most bacteria are naturally equipped to produce fatty acids that form an important 

constituent of their cell envelopes (Magnuson et al., 1993), however, transcriptional and post-

transcriptional control in Escherichia coli tightly regulates the metabolism of fatty acid 

biosynthesis.  The two most important metabolic steps of fatty acid synthesis are the conversion 

of acetyl-CoA into malonyl-CoA by an ATP-dependent acetyl-CoA carboxylase (ACCOAC) and 
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the conversion of malonyl-CoA into fatty acid product bound to an acyl carrier protein (ACP) by 

a multi-subunit synthase  (see Figure 1). Fatty acids produced from acetyl-CoA and malonyl-

ACP are primarily used for phospholipid biosynthesis and synthesis of lipid A and coenzyme A 

(CoA) intermediates (Dellomonaco et al., 2011; Gulevich et al., 2011; Poirier et al., 2006) in E. 

coli. Overproduction of fatty acids in E. coli is however a difficult challenge because of tight 

transcriptional and post-transcriptional regulation of fatty acid biosynthesis (Fujita et al., 2007; 

Magnuson et al., 1993; White et al., 2005) including strong product inhibition (Gonzalez et al., 

2010). For example, fabH and fabI, which encode the acyl-ACP synthesis and reduction of 

enoyl-ACP reaction steps (i.e., ketoacyl-ACP synthase (KAS15) and enoyl-ACP reductase), 

respectively, are also inhibited by long-chain fatty acyl-ACPs (Heath and Rock, 1996a; Heath 

and Rock, 1996b). 

In spite of the difficulties, recent efforts have led to improvements in the synthesis of free 

fatty acids in E. coli; however, most of the reported engineering strategies rely on manipulating 

terminal pathways near the target fatty acid. This trend may be due to the complexity of 

metabolism and the difficulty of predicting the effect of manipulations at a systemic level. 

Genetic interventions and strategies reported to date include blocking fatty acid degradation 

through the -oxidation pathway by knocking out fadD or fadE genes (Lu et al., 2008), 

heterologous expression of thioesterase genes from U. californica (Lu et al., 2008) or C. 

camphorum (Lu et al., 2008) to target fatty acids of specific chain lengths (Dehesh et al., 1996; 

Liu et al., 2010a; Nawabi et al., 2011), and augmenting the availability of precursors by 

overexpressing acetyl-CoA carboxylase (Lennen et al., 2010). Most of these approaches have 

resulted in E. coli strains that show selectivity towards the production of C14-16 fatty acids. 

Alternatively, Dellomonaco et al (2011) recently reported on an engineered reversal of the β-

oxidation pathway in E. coli leading to a significant increase in the production yield of 1-butanol 

as well as a number of long chain fatty acids. We note that there are a number of differences in 

biosynthesis of fatty acids using the chain elongation (type II fatty acid synthesis) pathway and 

reversed β-oxidation pathway. In particular, the type II fatty acid synthesis pathway involves 

addition of two carbons from malonyl-ACP to the acyl-ACP skeleton in each cycle, along with 

the release of one molecule of CO2. In contrast, in the reversed β-oxidation pathway one mole of 

acetyl-CoA is recruited in each cycle to increase the fatty-acid chain length by two carbon units. 

In addition, the reduction steps in chain-elongation pathway require NADPH as the cofactor 
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while those for the reversed β-oxidation pathway utilize NADH and FADH2. Finally, one ATP is 

needed to form each mole of malonyl-CoA in the type-II synthesis pathway whereas no ATP is 

involved in the reversed β-oxidation pathway. Nevertheless, the reported yields for middle chain-

length fatty acids using these two pathways are quite similar. Despite recent improvements, the 

production yield of fatty acids remains far below that of alcohols (Magnuson et al., 1993). For 

example, the maximum yield of fatty acid production by the type-II synthesis pathway was 

recently reported to be 14% of the maximum theoretical yield (Steen et al., 2010), while that for 

alcohols is close to 70% (Magnuson et al., 1993).     

In the past decade, a number of optimization procedures have been proposed to identify 

targets for gene knockouts (e.g. OptKnock (Burgard et al., 2003), RobustKnock (Tepper and 

Shlomi, 2010), OptORF (Kim and Reed, 2010), OptGene (Patil et al., 2005)), up-/down-

regulations (e.g. OptReg (Pharkya and Maranas, 2006)) and knock-ins (i.e. OptStrain (Pharkya et 

al., 2004)) that lead to overproduction of specific biochemicals in microorganisms. In spite of 

their success stories, none of these procedures proactively make use of flux data to drive the 

strain design process. Metabolic flux analysis (MFA) has been increasingly been used to quantify 

internal metabolic fluxes (Wiechert et al. 2001) in strain engineering projects. Metabolic fluxes 

provide a unique description of cellular physiology and a starting point for pinpointing genetic 

manipulations (Stephanopoulos 1999, Peebles et al. 2010, Koffas and Stephanopoulos 2005). 

The OptForce procedure (Ranganathan, Suthers and Maranas 2010) was designed to make use of 

flux measurements available for the wild-type strain. OptForce first estimates the maximum 

range of flux variability for all the reactions in the metabolic network of the wild-type strain and 

overproducing network. By overlaying the two sets, a set of reactions is revealed whose flux 

must depart away from the wild-type range if the imposed overproduction target is to be met 

(i.e., MUST sets). This set of required changes in the network can be described with a single 

logic statement containing AND and OR operators linking reaction up/down manipulations.  

OptForce subsequently chooses from this subset of reactions a list of targets that must be actively 

engineered to guarantee a target yield for the desired product. The genetic interventions 

identified by OptForce are prioritized based on their impact on product yield improvement and 

alternate intervention scenarios can be explored.  The OptForce paradigm was recently 

demonstrated by constructing a strain of E. coli that produces increased levels of intracellular 

malonyl-CoA (Xu et al. 2011), an important precursor for fatty acids. 
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In this study, we employed OptForce procedure to identify the most promising 

engineering interventions that lead to the overproduction of fatty acids C6
 
through C16 in E. coli. 

We next report on the improved production yield of C14-16 fatty acids following the 

implementation of some prioritized OptForce interventions (i.e., upregulation of fabZ and acyl-

ACP thioesterase and fadD knockout). The computational results and experimental 

measurements presented in this paper demonstrate that E. coli metabolism can be reprogrammed 

for specific fatty acid chain lengths using an integrated computations and experimentation 

paradigm. 

2. Materials and methods 

2.1. Strains and plasmids:   

All strains and plasmids used in this work are listed in Table 1 and were gifted by Ka-Yiu 

San’s lab at Rice University.  

2.2. Metabolic flux analysis experiments  

Strains and culture conditions: 

An E. coli MG1655 strain from glycerol frozen stock was streaked on Luria Broth (LB) 

plate and incubated overnight at 37
o
C. A single colony from the plate was grown in 25 mL 

MOPS minimal medium (8.37g/L MOPS powder (Sigma-Alrich, Saint Louis, MO), 0.72g 

Tricine (Sigma Alrich, Saint Louis, MO), 2.92g/L NaCl, 0.51g/L NH4Cl, 1.6g/L KOH, 

0.215mg/L Na2SeO3, 0.303mg/L Na2MoO4, 0.17mg/L ZnCl2, 50.3mg/L MgCl2, 48.1mg/L 

K2SO4, 0.348g/L K2HPO4, and micronutrients containing 2.5mg/L FeCl2.4H2O, 92µg/L 

CaCl2.2H2O, 31µg/L H3BO3, 20µg/L MnCl2. 4H2O, 9µg/L CoCl2.6H2O, 2µg/L CuCl2.2H2O, and 

48.4µM HCl) supplemented with 1% glucose in an orbital shaker at 250 rpm until exponential 

phase. The culture then was centrifuged at 4000 rpm for 5 min at 4°C. The supernatant were 

discarded, and the pellet was re-suspended in fresh MOPS medium. The appropriate quantity of 

the washed cell suspension was used to inoculate 400 mL of MOPS medium in the 500 mL 

bioreactor (INFORS HT, Switzerland) to a starting OD550 of 0.03.  For better identification of 

fluxes, a mixture of uniformly labeled [U-
13

C], first carbon labeled [1-
13

C] and natural glucose 

was used for 
13

C flux analysis (Fischer et al., 2004). Specifically, 10% U-
13

C glucose, 25% 1-
13

C 

glucose, and 65% of naturally labeled glucose was used as the tracer to final medium 
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concentration of 1% glucose. About 500 µL of antifoam (Antifoam B Silicone Emulsion, J.T. 

Baker) aquatic solution (volume ratio antifoam: water = 1: 1) was added into the media to 

prevent foaming. The aerobic fermentation was conducted at 37 °C, with a gas flow rate at 0.6 

ml/min and agitation speed of 600 rpm. The pH was controlled at 7.0±0.05 by adding 1M 

potassium hydroxide. The dissolved oxygen level was maintained above 50% of saturated levels 

to ensure aerobic conditions. The cells were harvested at mid-exponential phase after at least 5 

generations to ensure metabolic and isotopic steady state.  

Due to reports of strains carrying the plant acyl-ACP thioesterase being unstable (Zhang 

et al., 2011), an additional metabolic flux experiment was conducted for E. coli but at a reduced 

temperature and bioreactor agitation. Batch fermentations were performed for ML103 strain 

(MG1655 ΔfadD) using minimal M9 (0.8 g/L NH4Cl, 0.5 g/L NaCl, 7.52 g/L Na2HPO4, 3.0g/L 

KH2PO4, 0.24g/L MgSO4, 11.1mg/L CaCl2, 1ng/L thiamine HCl, and trace elements containing 

166.7µg/L FeCl3.6H2O, 1.8µg/L ZnSO4.7H2O, 1.2µg/L CuCl2.2H2O, 1.2µg/L MnSO4.2H2O, 

1.8µg/L CoCl2.6H2O, and 0.223mg/L Na2EDTA.2H20) medium supplemented with 1% glucose 

(20% U-
13

C glucose and 80% 1-
13

C glucose), 100 mg/L ampicillin, and antifoam. The fermentor 

was controlled at pH 7.0, 30 
o
C and 300 rpm agitation. As in the previous experiment, dissolved 

oxygen level was maintained above 50% of saturated levels and cells were harvested at mid-

exponential phase after at least 5 generations to ensure isotopic steady state. 

Analytical techniques:  

Cell biomass dry weight was determined by measuring optical density OD550 using a 

spectrophotometer (Genesys 20, Madison, WI). Cell dry weight was estimated by the correlation: 

1 OD550 =0.36 g cell dry weight/L (Choudhary et al., 2011). Biomass composition was 

determined based on literature data (John L. Ingraham, 1983). Media samples were taken during 

the exponential growth and filtered through 0.22 µm pore sized nylon filters (P.J. Cobert 

Associates, Saint Louis, MO) and kept at -20 
o
C for extracellular metabolite analysis. Glucose 

and acetate were measured using a Waters HPLC (Waters, Milford, MA) with 410 refractive 

index detector. The Aminex column (HPX-87H, Bio-Rad, Hercules, CA) was used at 30 
o
C with 

0.3 mL/min of 5mM sulfuric acid as mobile phase. 

Physiological parameters determination:  

The substrate uptake rate and production secretion rate in batch culture are constant 

during exponential phase. The substrate uptake rate and product secretion rate are defined as the 



53 

 

 

coefficient of substrate/product concentration versus biomass divided by the growth rate. Acetate 

is the only product detected under aerobic batch cultivation. 

Sample preparation for 2-Dimensional NMR analysis:  

Cells were prepared as described previously (Choudhary et al., 2011). Briefly, cells are 

centrifuged, washed twice with saline water containing 0.9% NaCl, then hydrolysed with 6 N 

hydrochloric acid at 110
o
C for 18-24 hours. Acids were evaporated, the residue reconstituted in 

nanopure water and filtered, then lyophilized. Finally, the sample was dissolved in deuterium 

oxide for NMR analysis.  

NMR measurement:  

2D [
13

C, 
1
H] Heteronuclear Single Quantum Correlation (HSQC) spectra were acquired 

on a Bruker Avance DRX 500 MHz spectrometer at 298 K and processed as described 

previously (Choudhary et al., 2011; Sriram et al., 2004). Nonoverlapping multiplets on the 

spectrum were quantified using NMRView (Johnson and Blevins, 1994). Overlapping multiplets 

(α amino acids) were analyzed using peak deconvolution software (Choudhary et al., 2011). The 

amino acids isotopomer abundances measured by 2D HSQC NMR are related to the precursor 

metabolites by using amino acids biosynthesis pathways as described by Szyperski (Szyperski, 

1995).  The resulting NMR intensities were used to calculate the isotopomer fractions as shown 

in Supplementary Table S4.  

Metabolic network model for MFA:  

A network model for E. coli metabolism was constructed based on existing literature, 

Ecocyc database and microarray data (see Table S1). The model includes glucose transport and 

phosphorylation pathway, Embden-Meyerhof-Parnas pathway, oxidative pentose phosphate 

branch, non-oxidative pentose phosphate branch, TCA cycle, anaplerotic pathways, metabolite 

exchange reactions, ED pathways, all amino acids biosynthesis pathways, and several amino 

acids transamination reactions (Fischer and Sauer, 2003a; Fischer et al., 2004; Sauer et al., 1999; 

Siddiquee et al., 2004; Toya et al., 2010). 

Flux evaluation methodology:  

Fluxes were quantified using NMR2Flux software developed by Sriram et al (2004).  

NMR2Flux employs isotopomer balancing and a global optimization routine to find 

stoichiometrically feasible fluxes set consistent with experimental measurements.  Overall fluxes 

were estimated by minimizing the chi square error between experimentally measured and 
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simulated isotopomer fractions of amino acid.  Errors in evaluated fluxes were estimated from 

errors in the extracellular fluxes, biomass growth rate, biomass synthesis fluxes, and isotopomer 

abundances by performing a bootstrap Monte Carlo statistical analysis as explained previously 

((Sriram et al., 2004), Supplementary material IV).  

2.3. Using OptForce for fatty acid overproduction: 

The iAF1260 metabolic model of Escherichia coli (Feist et al., 2007) was used to 

perform the simulations with the OptForce procedure (Ranganathan and Maranas, 2010; 

Ranganathan et al., 2010; Xu et al., 2011b) for overproduction of fatty acids. Metabolic flux data 

for 35 reactions from the glycolytic, TCA and Pentose Phosphate pathway was used to define the 

phenotypic space of a base strain. All simulations were performed under aerobic minimal 

medium with glucose as the sole carbon source. Glucose minimal conditions were simulated by 

restricting the glucose uptake rate to 100 mmol gDW
-1 

h
-1

 and the oxygen uptake rate at 200 

mmol gDW
-1 

h
-1

. The lower bound for the remaining exchange fluxes corresponding to the 

metabolites present in the minimal medium was set to -1,000 and the non-growth associated ATP 

maintenance was fixed at 8.39 mmol gDW
-1 

h
-1

 (Feist et al., 2007). In addition, the biomass flux 

was fixed at the maximum achievable flux subject to the experimental flux measurements (i.e., 

52% of the maximum theoretical). The upper bound for all other reactions was set to 1,000 

whereas the lower bound was set to zero and -1,000 for irreversible and reversible reactions, 

respectively. All regulatory restrictions were imported from the iAF1260 model (Feist et al., 

2007) except for the regulatory constraints repressing the β-oxidation pathway under aerobic 

minimal condition with glucose as the sole carbon source, which was excluded in this study. This 

is because previous studies have reported on a significant increase in fatty acids production yield 

upon removal of the β-oxidation pathway (Steen et al., 2010) implying its activity under this 

condition. No additional acyl-ACP thioesterase catalyzed reactions were included in the model 

since it already contained thiolase reactions hydrolyzing fatty-acyl ACPs to fatty acids. Also, it is 

important to note that no chain specificity of thioesterases is captured in the iAF1260 model. The 

phenotypic space of the wild type strain consistent with stoichiometry/regulation, uptake rates 

and flux measurements was constructed by successively maximizing and minimizing each 

reaction flux in the network subject to the network stoichiometry and all of the constraints 

mentioned above. 
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Similarly, the flux ranges consistent with a desired over-producing target for fatty acids 

of specific chain lengths were obtained by iteratively maximizing and minimizing each flux 

subject to the network stoichiometry, uptake and medium conditions, regulatory constraints and 

overproduction target. In this study, we imposed a minimum production yield of 90% of the 

theoretical maximum for all fatty acids of different lengths, while the biomass flux was 

constrained to be at least 10% of its theoretical maximum. The remaining parameter values were 

unchanged from the wild-type case. OptForce was subsequently used to identify the minimal set 

of reactions/genes that must be up-/down-regulated or knocked out so as to maximize the 

formation of targeted fatty acids. OptForce contrasts the maximal range of flux variability 

between the wild-type strain against the ones consistent for the overproducing phenotype 

designed to meet a pre-specified yield for hexanoate, octanoate, decanoate, dodecanoate, 

tetradecanoate and palmitate, respectively. As outlined in earlier efforts, by superimposing the 

flux ranges one-at-a-time, we first identify the fluxes that must depart from the original ranges in 

the face of overproduction (MUST
U
, MUST

L
, MUST

X
 sets). You can extend this classification 

procedure by considering sums and differences of two fluxes (MUST
UU

, MUST
UL

, MUST
LL

 

sets) and arrive at a collective set of flux changes that must happen in the network for 

overproduction. In this study, we only considered up to MUST pairs as the available MFA data 

provided sufficient information to characterize the wild-type strain without having to consider 

higher order MUST sets. For example, we identified 193 MUST single reactions and 33 

reactions participating in MUST doubles reactions (for C8 fatty acid overproduction) providing a 

rich set of reaction alternatives to directly engineer. We subsequently extracted the minimal 

subset(s) of these reactions needed to guarantee the imposed bioengineering objective (i.e., 

FORCE sets). Here, we focused on elucidating the differences of the identified engineering 

strategies for different fatty acid lengths. 

In this study we slightly modified the original formulation presented in (Ranganathan et 

al., 2010) for identifying the FORCE set. In particular, we make use of a max-min bilevel 

optimization problem to identify alternative sets of k (pre-specified) engineering interventions 

that maximize the minimum product formation (worst-case scenario) in the network (see 

Supplementary Text S1). Modeled as a “worst-case” optimization problem, the OptForce 

procedure identifies metabolic interventions that guarantee an increase in the yield even when 

metabolic fluxes are allotted so as to directly counteract the desired overproduction. This 
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optimization problem is solved successively, starting with a low number of direct interventions 

(i.e., k = 1) and then considering more interventions (by increasing k) until the target yield is 

achieved. Given that the objective function of the outer problem is maximization of the product 

formation, manipulations with the highest impact on the product yield are identified first. By 

increasing the value of k, additional modifications that improve upon the previously identified 

ones are revealed, thereby providing a way of prioritizing the manipulations based on their 

impact on the product yield. Binary variables are used here to identify pertinent reactions from 

the MUST sets whose flux should be increased, decreased, or set to zero (i.e., removed) in order 

to maximize the minimal product formation yield. Removal of reactions associated with in vivo 

essential genes based on the KEIO collection (Baba et al., 2006; Feist et al., 2007) in minimal 

glucose growth medium under aerobic condition, was disallowed even for the ones that were not 

recognized as essential by the iAF1260 model.  For example, removal of phosphofructokinase 

(PFK) and fructose-bisphosphate aldolase (FBA) in the glycolytic pathway (which appear in the 

MUST sets for C12), and glutamate-5-semialdehyde dehydrogenase (G5SD) or glutamate 5-

kinase (GLU5K) reactions in the arginine/proline metabolism, (which appear in the MUST sets 

for all fatty acids), were prevented. Likewise, the removal of reactions catalyzed by multiple 

isozymes whose simultaneous knockouts have been experimentally verified to be lethal to the 

organism (Suthers et al., 2009) was also disallowed. Reactions whose isozymes formed synthetic 

lethal pairs include phosphoglycerate mutase (PGM) in the glycolytic pathway, transketolase 

(TKT1 and TKT2) in the Pentose Phosphate Pathway, and aconitase (ACONT) in the TCA 

cycle.  In addition, metabolic interventions in the reaction level inconsistent with gene-level 

manipulations were avoided in the FORCE sets. For example, the simultaneous up-regulation 

and down-regulation (or removal) of chain elongation reactions for two different fatty acids was 

prevented if they were encoded by the same gene(s). The binary variables corresponding to the 

reaction interventions that appear in all solutions, as well as those corresponding to trivial 

solutions (e.g., the up-regulation of the transport reaction corresponding to target product) were 

also fixed at one and zero respectively to reduce run time. A biomass flux of at least 10% of 

theoretical maximum was enforced in all OptForce simulations, along with other constraints 

mentioned before. The use of integer cuts allows for the identification of alternate optimal 

solutions that can serve as alternate genetic intervention choices. Notably, when the target yield 

is not achievable with interventions selected only from within the MUST (single and pair) sets 
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we allow for one (or more) interventions (knock out/up/down) from outside the MUST sets by 

addition of appropriate binary variables and constraints to the max-min optimization formulation. 

For example, this led to the identification of engineering strategies in the -oxidation pathway, 

which did not appear in any of the MUST single or double sets (see Results). The termination 

criterion for the OptForce procedure was either meeting a production yield of at least 90% of 

theoretical maximum for each fatty acid, or exceeding the maximum allowable number of 

reaction interventions (i.e., eight). It is worth noting that the OptForce procedure operates at the 

reaction level and the set of manipulations at the gene level are subsequently identified manually 

by using gene-protein-reaction (GPR) associations presented in the model. In principle, we could 

have run OptForce at the gene level by appending the corresponding GPR constraints in the 

formulation. However, we have found that it is more instructive to first identify interventions at 

the reaction level to fathom the reasoning behind the identified interventions.  

2.4. Metabolic interventions and fatty acid titer determinations 

Fermentation procedure:  

Each strain was freshly transformed and streaked on LB plate with 100 mg/L ampicillin 

overnight at 30 
o
C incubator. A single colony from the plate was grown in 5 mL M9 medium 

supplemented with 1.5% glucose and 100 mg/L ampicillin for 16-20 hours in orbital shaker at 

30
o
C and 250 rpm. The pre-culture was then inoculated into 250 mL flasks containing 40mL M9 

medium with 1.5% glucose and 100 mg/L ampicillin. The expression of acyl-ACP thioestersase 

was induced by the addition of isopropyl--D-thiogalactopyranoside (IPTG) to final 

concentration of 1mM. Samples were taken at 24 and 48 hours for fatty acid and extracellular 

metabolite analysis. 

Fatty acid analysis:  

Cell cultures were harvested and prepared for fatty acid analysis as described previously 

(Zhang et al., 2011). Fatty acids in the broth were extracted using chloroform, methylated into 

methyl esters and recovered using hexane. Tridecanoic acid, pentadecanoic acid and 

heptadecanoic acid were added as internal standards in all samples before extraction. The fatty 

acid content was analyzed using an Agilent GC-FID/MS system. The GC system occupies single 

quadrupole mass spectrometer with an electron impact ionization source and FID detector. The 

DB-5MS column (30m, 0.25 mm i.d., 0.25μm, Agilent) was used to separate the fatty acids into 
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different chain lengths. The oven temperature was initially set at 50 
o
C for 1 min and raised to 

140 
o
C with 20 

o
C/min ramping rate. The temperature was then increased to 220 

o
C with 4 

o
C/min ramping rate and then finally raised to 280 

o
C with 15 

o
C/min ramping rate. Helium was 

used as the carrier gas with flow rate of 1mL/min. Interface temperature and ion source 

temperature was set as 280 
o
C and 250 

o
C respectively. EI ionization was set at 0 kV relative to 

the tuning. Mass spectra were analyzed using the full scan method. Raw MS and FID data was 

integrated using Chemstation software. Compound peaks were assigned by running standards or 

referring to the mass fragmentation in the NIST library. 

3. Results  

3.1. Flux measurements:  

In vivo metabolic flux analysis, based on the use of 
13

C-labeled glucose followed by 

NMR analysis and isotopomer balancing, was used for the estimation of intracellular fluxes as it 

provides a more comprehensive description of the metabolic network operating under the 

physiological conditions.  Media and temperature conditions for the production of free fatty acids 

by E. coli include LB rich medium (Zhang et al., 2012b); (Zhang et al., 2011); (Li et al., 2012) at 

30 C, M9 minimal medium at 37 C (Zhang et al., 2012a), and MOPS minimal medium at 37 

C (Youngquist et al., 2012). A reduced temperature has been noted to help stabilize strains 

carrying the plant acyl-ACP thioesterase being unstable (Zhang et al., 2011).  Thus, two sets of 

flux experiments were performed; one for E. coli MG1655 in MOPS medium at 37 C and one 

for ML103 (MG1655 ΔfadD) in minimal M9 medium at 30 C, both kept under fully aerobic 

growth in 400 ml batch reactors.  

The flux maps for MG1655 under MOPS media and ML103 under M9 media are 

tabulated in Table S2 and shown in Figure S1 and S2 in the supplemental material. The flux 

values are all normalized to 100 mmol gDW
-1 

h
-1

. Inspection of the normalized flux data in Table 

S2 indicates that the flux values are nearly identical for the two experiments.  Most of the carbon 

flux (around 88%) is directed towards the glycolytic pathway, resulting in high activities of the 

lower glycolytic pathway. Around 10% of the carbon flux channels through pentose phosphate 

pathway to generate NADPH for reduction requirements. The ED pathway and glyoxylate 

pathway have negligible fluxes. The anapleurotic pathway of phosphoenolpyruvate (PEP) 
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carboxylase is active, which converts PEP to oxaloacetate (OAA) to refill the OAA pool for 

biosynthesis. These results are consistent with previous flux experiments showing active PEP 

carboxylase activity and inactive glyoxylate cycle under glucose aerobic batch culture (Fischer 

and Sauer, 2003a; Fischer and Sauer, 2003b). Acetate kinase is active to convert acetyl-CoA for 

acetate production. The TCA cycle operates at 45 mmol gDW
-1 

h
-1

 (based on 100 mmol gDW
-1 

h
-

1
) to generate ATP and NAD(P)H for energy and reduction requirements for cell growth. Malic 

enzyme activity is not significant (Fischer and Sauer, 2003a). 

3.2. OptForce results 

Targeted pathway: 

Figure 1 illustrates the pathways involved in fatty acid biosynthesis in E. coli. There are 

two important fatty acid pathways in E. coli metabolism (Fujita et al., 2007; Marrakchi et al., 

2002; Schweizer and Hofmann, 2004). Type II or dissociated fatty acid biosynthesis (FAB) 

pathway involves the ATP-dependent acetyl-CoA carboxylase (encoded by accABC) as the first 

step. Acetyl-CoA is converted into malonyl-CoA which is further converted into malonyl-ACP 

by the enzyme malonyl-CoA: ACP transacetylase encoded by the gene fabD. The initiation of 

fatty acid biosynthesis starts with the C4 chain where one mole of acetyl-CoA and one mole of 

malonyl-ACP synthesize a 4-carbon fatty acid acyl carrier protein (i.e. butyryl ACP). Butyryl 

ACP further elongates into the 6-carbon chain by recruiting one mole of malonyl-ACP to 

produce hexanoyl-ACP. This chain elongation step uses one mole of malonyl-ACP per cycle to 

form even-numbered fatty acid acyl carrier proteins. Fatty acid ACP is converted into a fatty acid 

by thioesterases in a single step enzymatic conversion. An alternative biosynthesis route for the 

production of fatty acids that has gained attention recently (Dellomonaco et al., 2011) is reversal 

of the β-oxidation pathway. While the native use of this pathway is to disassemble longer chain 

fatty acid ACP into smaller coenzyme-A derivatives, reversal of this pathway may lead to fatty 

acid synthesis as was recently demonstrated by Dellomonaco et al (2011) for overproduction of 

1-butanol and a number of long chain fatty acids. The calculated maximum theoretical yield for 

both pathways is similar; however, the type II fatty acid biosynthesis is dependent on the 

availability of ATP and the specificity of the termination enzyme (i.e. thioesterase) ((Dehesh et 

al., 1996); (Lennen et al., 2010)). In this paper, we use OptForce for identifying genetic 
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interventions in E. coli that result in increased production of free fatty acids using the type II 

fatty acid pathways. 

Identification of MUST sets:  

Figure 2 summarizes the set of fluxes in the network that MUST change when 

overproduction objectives for fatty acids of specific lengths are imposed. Results are presented in 

Figure 2 so as to highlight the conservation of MUST changes as the fatty acid chain length 

increases (Figure 2a) or decreases (Figure 2b). For example, in Figure 2a the additional reactions 

that enter the MUST set are shown within the growing ellipses as the fatty acid length changes 

from 6 to 16 carbons. In contrast, in Figure 2b the reactions added to the MUST set are listed as 

the fatty acid length decreases from 16 carbons down to 6.  Figure 2 provides a pictorial view of 

the conservation patterns of the required changes (i.e., MUST sets) in the metabolic networks as 

the fatty acid chain length increases or decreases, respectively. For example, increase in the flux 

for any of the chain elongation reactions 3-oxy-acyl-ACP synthase (3OAS40/60/80), 3-oxo-acyl-

ACP reductase (3OAR40/60/80) and 3-hydroxy-acyl dehydratase (3HAD40/60/80) ensure higher 

flow of carbon through the fatty acid synthesis pathway, and augment fatty acid production. 

These chain elongation reactions appear in the MUST sets of fatty acids up to C12, as is shown in 

the C12 ellipse on the right. Even though these reactions do not appear in the (single or double) 

MUST sets of C14 and C16 fatty acids, it is likely that they appear in higher order MUST sets (i.e. 

Must Triples, Quadruples). Elimination of acetate kinase (ACK) and phosphotransacetylase 

(PTA) appear in MUST Sets of all fatty acids as shown in the C6 ellipse on the left, as they 

prevent degradation of pyruvate towards fermentation byproducts. Similarly, elimination of 

malate dehydrogenase (MDH) and downregulation of citrate synthase (CS) redirects metabolic 

flux towards fatty acid synthesis by reducing consumption of acetyl-CoA in the TCA cycle and 

are universally found for all fatty acid lengths. 

In addition to these universal changes, a number of network modifications need to take 

place for a given chain length or higher (see left panel) or a given chain length or lower (see right 

panel). For example, up-regulation for enolase (ENO) in glycolytic pathway appear only for C10 

and longer chains, which is consistent with increased requirements of carbon flux towards fatty 

acid synthesis for longer chain lengths. Furthermore, up-regulation of pentose phosphate (PP) 

reaction 6-phosphogluconolactonase (PGL) for fatty acids C12 and longer, and eliminations of 
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glycolytic pathway reactions phosphofructokinase (PFK) and fructose-bisphosphate aldolase 

(FBA) are indicative of the increased need of rerouting flux through the PP pathway to produce 

reducing agents NADPH required in fatty acid chain elongation. 

Notably, reactions along the -oxidation pathway for the C8 fatty acid were classified in 

the MUST
U
 set of reactions only for hexanoic acid. This is because the iAF1260 metabolic 

model does not contain a fatty acid-acyl-ACP hydrolase that can directly convert hexanoyl-ACP 

into hexanoic acid. Instead, the favored pathway involves chain elongation into the C8 chain and 

subsequently, octanoyl-ACP is reduced into hexanoyl-CoA via the -oxidation pathway. 

Eventually, hexanoyl-CoA is converted into hexanoic acid by the thioesterase. However, for the 

higher chain fatty acids (C8 or higher), the -oxidation pathway is not the favored synthesis route 

because the hydrolase that directly converts ACP-bound end products to the corresponding acids 

is included in the iAF1260 model. It is interesting to note that in contrast to C6 results (see Figure 

3), reaction removals in the -oxidation pathway are required for overproduction of C8 (see 

Figure 4). 

Upregulation of pyruvate dehydrogenase (PDH), which appears in MUST sets of all fatty 

acids, leads to the production of acetyl-CoA which is converted to malonyl-ACP (mal-ACP) 

fueling the chain elongation reactions. In addition, eliminations in the TCA cycle and pathways 

branching out from glycolysis, such as glycine hydroxymethyltransferase (GHMT), prevent 

leaking of the glycolytic flux thus ensuring maximum carbon flow towards fatty acid synthesis 

chain.  

Identification of FORCE sets:  

Using as candidates the reactions that populate the MUST sets, OptForce max-min 

optimization formulation (see Methods) is next used to identify minimal sets of engineering 

modifications for each specific fatty acid chain length. As noted earlier, the termination criterion 

for the OptForce procedure was either meeting a production yield of at least 90% of theoretical 

maximum or exceeding the maximum allowable number of reaction interventions (i.e., eight). 

The identified FORCE sets for each fatty acid chain length are discussed in the subsequent 

sections. 

Hexanoic acid 
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Figure 3 depicts the genetic engineering strategies for overproducing hexanoic acid 

identified by OptForce using the MUST sets as candidate interventions. Results for hexanoic 

acid, as well as for all higher chain acids revealed that no non-zero minimal yield of product 

could be guaranteed by using only one intervention. By allowing up to two interventions 

OptForce predicted the upregulation of any of the reactions of -oxidation pathway along the C8 

chain (i.e., octanoyl-CoA dehydrogenase (ACOAD3), 3-oxooctanoyl-CoA dehydrogenase 

(HACD3) or 3-ketoacyl-CoA thiolase (KAT3)) coupled with the removal of any of the -

oxidation reactions along the C4 chain (i.e., ACOAD, HACD1 or KAT1). The up-regulation of 

the -oxidation reactions along C8 chain by at least two times the maximum achievable wild-type 

flux (i.e., from 28 to 54 mmol gDW
-1 

h
-1

) causes degradation of longer-chain fatty acids to 

hexanoic acid while the elimination of reactions along the C4 chain prevents further degradation 

of any hexanoate formed. It is worth noting that most fatty acid degradation steps corresponding 

to different chain-lengths in the -oxidation pathway are encoded by the same gene(s). For 

example, fadE encodes the acyl-CoA dehydrogenase (ACOAD) reactions for all chain lengths 

while fadA does the same for all thiolases (KAT). It is therefore impossible to simultaneously 

up-regulate the degradation step for a higher chain-length and down-regulate (or knock-out) the 

one for a shorter chain using interventions at the gene level. However, the enzyme catalyzing 

reaction ACOAD1 (EC 1.3.8.1) differs from the ones catalyzing the same reaction in longer 

chain acids (EC 1.3.99.3) thereby providing a feasible route for an independent manipulation. 

OptForce predicted that the aforementioned two interventions would be enough to achieve a 

theoretical yield of 90% for hexanoic acid and hence, we did not explore additional genetic 

manipulations.  

Octanoic and decanoic acid 

Metabolic interventions predicted by OptForce for octanoic (C8) and decanoic (C10) acids 

are quite similar relying on the strict redirection of carbon flux from glycolytic pathways to fatty 

acid biosynthesis (see Figures 4 and 5). OptForce predicts that at least four and five interventions 

respectively are required to achieve a theoretical yield of ~90% for both octanoic and decanoic 

acid. The primary interventions which account for approximately 86% of the yield increase 

include up-regulation of any of the chain-elongation reactions (i.e. 3-oxy-acyl-ACP synthase 

(3OAS), 3-oxo-acyl-ACP reductase (3OAR) or 3-hydroxy-acyl dehydratase (3HAD)) by at least 
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two times of the maximum achievable flux in the wild type (i.e., from 28 to 54 mmol gDW
-1 

h
-1

) 

followed by reaction removals in the -oxidation pathway. OptForce suggests up-regulating any 

one of the chain-elongation reactions along C8 chain that directly leads to synthesis of octanoate. 

Reaction removal in the -oxidation pathway along the C8 chain (i.e., ACOAD3, ECOAH3i, 

HACD3 or KAT3) prevents further degradation of the end product. This same holds true for 

interventions along the C10 chain.  

OptForce suggests the elimination of fumarase (FUM) in the TCA cycle to maintain a 

high pool of acetyl-CoA and redirect flux towards the fatty acid elongation chain. This is because 

the demand of mal-ACP, which serves as the primary building block of fatty acids, increases 

proportionally with the chain length. For example, each molecule of octanoate requires 3 

molecules of mal-ACP whereas one molecule of decanoate requires four. Mal-ACP is produced 

through the carboxylation of acetyl-CoA. In addition, OptForce suggests the elimination of 

acetate kinase (ACK) or phosphotransacetylase (PTA) possibly to prevent utilization of acetyl-

CoA towards production of acetate. Removal of transaldolase (TALA) in the Pentose Phosphate 

pathway was also suggested to further redirect glycolytic flux towards decanoate overproduction. 

Notably, OptForce does not suggest up-regulation of acetyl-CoA carboxylase as a 

potential intervention for any of the fatty acids.  This is consistent with previous reports where 

the up-regulation of acetyl-CoA carboxylase (ACCOAC) to increase the pool of malonyl-ACP 

(Lennen et al., 2010; Lu et al., 2008), did not lead to any significant increase in production of 

fatty acids. A possible reason for this may be that in the absence of a sink that consumes excess 

malonyl-CoA (e.g., fatty acid biosynthesis); it is mostly diverted towards biomass component 

formation.  

C12 and longer chain fatty acids 

Figures 6-8 show the genetic manipulations suggested by OptForce for the 

overproduction of dodecanoate (C12), tetradecanoate (C14) and palmitate (C16) in E. coli. 

Consistent with the trends observed for Octanoate and Decanoate, up-regulations of one of the 

chain elongation reactions for fatty acid pathways (matching the desired chain length) as well as 

removal of the corresponding β-oxidation pathway are predicted. Interestingly, the specific set of 

interventions for C12 and longer chain-length fatty acids includes redirecting glycolytic flux 
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through the oxidative phase of the Entner–Doudoroff (ED) pathway leading to additional 

NADPH at the expense of ATP production. 

Figure 6 represents the metabolic interventions suggested for C12. Similar to the previous 

cases, OptForce predicts chain-specific manipulations for reactions in the elongation step of fatty 

acid biosynthesis and β-oxidation pathways along the C12 chain. Interestingly, OptForce also 

requires an at least eight-fold reduction in the phosphoglycerate mutase (PGM) flux along with 

the removal of glucose-6-phosphate isomerase (PGI) to bypass the lower and upper glycolytic 

pathway and instead redirect the metabolic flux towards pyruvate through serine metabolism and 

Entner–Doudoroff (ED) pathway, respectively. This drastic rewiring of metabolism was 

suggested by OptForce in order to utilize a less energy efficient route towards production of 

pyruvate by bypassing the pyruvate kinase (PYK) reaction which generates one mole of ATP and 

redirecting the metabolic flux through ED pathway, which generates less ATP compared to 

glycolytic pathway. A possible reason for the preference of a low energy efficient pathway is to 

arrest the cell growth and channel more metabolic flux towards pyruvate and fatty acid 

biosynthesis, similar to what has been observed for ethanol production in Zymomonas mobilis 

(Zhang et al., 1995). We computationally explored the validity of this hypothesis by artificially 

decreasing the energy efficiency of the glycolysis pathway through reducing the stoichiometric 

coefficient of ATP (and ADP) in phosphoglucokinase (PGK). In particular, upon reducing the 

stoichiometric coefficient of ATP (and ADP) from one to 0.96, we observed a 1.6% increase in 

the production yield of C12 as well as a 1.9% decrease in the maximum biomass formation in the 

network supporting the put forth hypothesis. Using a less energy efficient pathway leads to the 

decreased availability of ATP for further conversion of dodecanoate towards tetradecanoate, as 

manifested by a 95% decrease in tetradecanoate formation. Notably, reducing the stoichiometric 

coefficient of ATP in PGK beyond 0.96 renders the optimization problem infeasible, as the 

imposed constraint on the minimum biomass formation in the network (i.e. 10% of theoretical 

maximum) cannot be satisfied. 

In addition, as fatty acid chain length increases, the NADPH demand for the reduction 

reactions in chain elongation steps also increases. Hence, OptForce suggests utilization of a more 

efficient NADPH producing pathway by redirecting the glycolysis flux towards the oxidative 

phase of PP Pathway in order to gain one additional mole of NADPH per mole of glucose 

(through glucose 6-phosphate dehydrogenase), which could be supplied to 3-oxo-acyl-ACP 
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reductase (3OAR) and enoyl-ACP reductase (EAR). A yield of ~66% of theoretical maximum 

was obtained after seven interventions as described above. Interventions for the overproduction 

of the C14 and C16 fatty acid (see Figures 7 and 8) follow the same pattern observed for C12. For 

example, OptForce predicts downregulation of PGM flux and removal of PGI to the lower and 

upper glycolysis, respectively. In addition, OptForce suggests a four-fold reduction of either 

methenyltetrahydrofolate cyclohydrolase (MTHFC) or methylenetetrahydrofolate dehydrogenase 

(MTHFD) to reduce metabolic flux from being diverted towards folate metabolism. Additional 

interventions for C16 fatty acid (see Figure 8), include up-regulation of pyruvate dehydrogenase 

(PDH) by at least 1.5 times its wild-type maximum value, thus directly enhancing the acetyl-

CoA pool for fatty acid production. After seven and eight interventions respectively, OptForce 

predicted a yield of ~65% of theoretical maximum for both tetradecanoate and palmitate. 

Allowing for further interventions did not lead any appreciable increase in the guaranteed yield 

for dodecanoate (C12) or tetradecanoate (C14). 

The genetic manipulations required in E. coli for the overproduction of palmitate (C16 

fatty acid) and corresponding impact on the yield are shown in Figure 9. As seen in the figure, 

the up-regulation of one of the elongation reactions in the C16
 
chain conjunction with a reaction 

removal in the β-oxidation pathway, along with redirection of the glycolytic flux leads to an 

increase in the yield of about 32% of the theoretical maximum. Additional deletions and knock-

downs result in improving the yield close to 66% of theoretical maximum. Notably, OptForce 

suggests that as we move towards longer chain fatty acids, the number of genetic interventions 

required in central metabolism increases as the carbon flow re-direction becomes more 

pronounced. 

3.3. Experimental characterization of metabolic interventions  

We chose to test OptForce predictions for the production of medium chain-length fatty 

acids as we had access to plasmids with acyl-ACP thioesterase gene from Ricinus communis, 

which produces a mixture of C14 and C16 fatty acids.  To the best of our knowledge, a 

thioesterase that strictly produces C14 or C16 alone has not been identified yet. The first set of 

prioritized interventions suggested by OptForce for overproduction of C14 and C16 fatty acid 

include up-regulation of one of the chain elongation reactions for fatty acid as well as removal of 

the corresponding β-oxidation pathway (Figures 7 and 8). We thus implemented these two 
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interventions by overexpresing fabZ, which encodes a β-hydroxyacyl-ACP dehydratase, and 

eliminating the β-oxidation pathway through the deletion of fadD.  

Strain ML103 (MG1655 ΔfadD) with plasmid pXZ18, which carries the gene for the C14-

16 thioesterase, serves as the reference strain for comparison since it was shown to produce free 

fatty acid titer and yield similar to those from strain MG1655 pXZ18 in rich media conditions (Li 

et al., 2012). Since OptForce predictions are based on flux data using defined minimal medium, 

experiments were performed using minimal M9 medium with 1.5% glucose as shown in Figure 

10. With the overexpression of fabZ, the fatty acid titer increased 3.5 fold (from 0.6 g/L for the 

base strain to 1.7 g/L total fatty acids) after 48 hours cultivation, whereas the yield was increased 

from 0.04 g fatty acid/g glucose for the base strain (~ 11% maximum theoretical yield) to 0.14 g 

fatty acid/g glucose (~ 39% maximum theoretical yield) (Figure S3).  These results are consistent 

with the OptForce predicted minimum yield of 0.12 g C16 /g glucose after first set of 

interventions (Figure 9). Overexpression of fatty acid elongation reaction pulls the carbon fluxes 

from acetyl-CoA in the central carbon metabolism to form malonyl-CoA as the precursor for 

fatty acid synthesis.  This “pull” is in addition to the one provided by expression of the 

heterologous thioesterase, as the expression of pXZ18 alone already lowered acetate yields from 

0.5-0.65 mol acetate/mol glucose in MG1655 and ML103 (Table S3) to ~ 0.08 mol acetate/mol 

glucose in ML103 pXZ18 and ML103 pXZ18z (Figure S4 and S5).  It is important to note that 

OptForce predictions are based upon network stoichiometry alone, and do not involve reaction 

kinetics. However, the above results suggest that the heterologous thioesterase is not rate limiting 

in fatty acid production, and that additional interventions in addition to fabZ overexpression 

should help increase the yield. 

Notably, another intervention predicted by OptForce includes downregulation of the TCA 

cycle to maintain high pool of acetyl-CoA and channel the carbon fluxes towards fatty acid 

synthesis. Nonetheless, OptForce suggests that the fatty acid titer and yield improvement upon 

this intervention are not as significant as those achievable with overexpression of fabZ (see 

Figure 9). To test this prediction, we took advantage of an already available strain containing 

sucC deletion in the TCA cycle (MLK163 pXZ18) and it was observed that this intervention 

increased the fatty acid titer and yield in M9 medium by only 2.4 fold to 1.3 g/L after 48 hours, 

corresponding to a yield of 0.12 g fatty acid/g glucose (see Figure 10 and Figure S3), which are 
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lower than those achieved with overexpression of fabZ thereby corroborating the OptForce 

predictions.   

The relative composition of the fatty acids produced by the strains ML103 pXZ18 

(reference strain), ML103 pXZ18z (fabZ
++

) and MLK163 pXZ18 (∆sucC) at 24 and 48 hours are 

shown in Figure 11, which reveals an abundance of mostly C14 and C16 straight chain lengths. 

The fractional composition of C14 fatty acid increased over time at the expense of C16:1 mon-

unsaturated fatty acid. The composition of saturated C16:0 fatty acid did not change significantly. 

Changes in the composition of different fatty acid chain lengths over time can possibly be 

explained due to the changes in the cellular physiology at different phases of growth (Zhang et 

al., 2011). 

4. Summary and discussion 

In this paper, we described computationally derived predictions followed by experimental 

characterization of strategies for overproducing fatty acids in E. coli. Suggested modifications 

include not only straightforward up-regulations of terminal pathways but also many 

modifications distant to the fatty acid target that prune away competing pathways, up-regulate 

pathways to accommodate increased precursor flows or increase the availability of relevant 

cofactors. Contrary to many existing strategies (Davis et al., 2000; James and Cronan, 2004; 

Subrahmanyam and Cronan, 1998) that rely on augmenting acetyl-CoA and malonyl-CoA pools, 

OptForce does not suggest the overexpression of acetyl-CoA carboxylase (accABC). As noted 

earlier, this is to avoid diverting resources towards biomass formation as malonyl-CoA is a key 

precursor for many biomass constituents. This is in agreement with a recent study (Xu et al., 

2011a), that observed experimentally that an increase in the intracellular levels of malonyl-CoA 

leads to significant cell growth increase. By overexpressing fatty acid enzymes, malonyl-CoA is 

diverted from biomass formation towards fatty acid biosynthesis. Interestingly, OptForce 

suggested the up-regulation of one of the four reactions in the -oxidation pathway for 

overproducing hexanoate. In the iAF1260 E. coli metabolic model, acyl-ACP thioesterase 

enzyme that catalyzes the conversion of hexanoyl-ACP into hexanoic acid is absent. Hence, the 

desired route to produce hexanoic acid is by elongating the chain further into the C8 chain and 

degrading octanoyl-ACP through the -oxidation cycle. 
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The chain-dependent nature of the OptForce interventions is reflected in the Venn 

diagram shown in Figure 12. No universal engineering strategy was predicted for overproduction 

of all fatty acids, indicating the chain length specificity of each of the strategies. We observe that 

the up-regulation of fatty acid reactions is completely chain specific. For example, for 

overproducing C10 fatty acid the up-regulation of only the C10 pathway with elimination in the 

C10 β-oxidation pathway is needed. As we move along in a clock-wise direction (see Figure 12), 

genetic manipulations that reduce the activity of TCA cycle and reductive part of the Pentose 

Phosphate Pathway and increase the carbon flow towards the lower part of glycolysis start to 

emerge. Interventions for fatty acids of longer chain lengths (i.e. C12, C14 and C16) also 

necessitate diversion of glycolytic flux to the serine metabolism and ED pathway which are less 

efficient ATP but more efficient NADPH producing pathways. This redirects flux from cell 

growth towards satisfying the increased NADPH demand for the reduction steps of the chain 

elongation pathways. This suggests that upon targeting a fatty acid of higher chain length, a 

stricter redirection of central metabolic carbon flow towards the precursors becomes 

progressively more important.  

Computational predictions from OptForce were validated for the C14-C16 chain length by 

examining the fatty acid production of a large number of engineered strains carrying a designed 

medium chain (i.e., C14-C16) thioesterase from R. communis in minimal (M9) medium. As 

mentioned earlier, the common thread from OptForce indicates an upregulation in the fatty acid 

chain elongation pathway (except for C6 fatty acid, which lacks a thiolase to hydrolyze C6 fatty 

acyl-ACP) as the intervention of primal importance in the overproduction of fatty acids. 

Transcriptional and post-transcriptional control in Escherichia coli tightly regulates the 

metabolism of fatty acid biosynthesis, making it difficult to decide on specific genetic 

manipulations. OptForce can only predict the enzymatic steps which require alteration, but 

cannot provide any inference about regulatory genes. Therefore, several host strains and 

plasmids were constructed to test our current understanding of regulation in the fatty acid 

biosynthesis. In accordance with the OptForce prioritization of interventions, fabZ and fadD 

were upregulated and deleted, respectively (in a strain carrying upregulated C14-16 Acyl-ACP 

thioesterase) to arrive at a strain that produces 1.7 g/L of C14-16 fatty acids and 0.14 g fatty acid/g 

glucose (~ 39% maximum theoretical yield) in M9 medium.  
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We cannot, however, rule out the possibility that other manipulations may increase fatty 

acid production further. Independent from this work, San and co-workers recently used a 

classical “push and pull” concept in metabolic engineering, in which acetyl CoA supply is 

enhanced, acetyl CoA drains are minimized, by-product pathways are eliminated, and product 

formation pathways are enhanced.  A large number of engineered strains carrying a designed 

medium chain (C14-C16) thioesterase, pXZ18, were screened in their ability to increase fatty acid 

yield and titer in LB medium at 30 C. The results of their study are summarized in Figure 13 

(San et al., 2011). The increases/decreases shown are in reference to ML 103 (pXZ18), which 

had a titer of 3.1 g/L and yield of 0.17 g fatty acid/g glucose at 48 hours. Although these strains 

were grown in LB medium and the manipulations were performed independently, the results are 

in general agreement with OptForce predictions. For example, overexpression of fabZ (in a strain 

carrying fadD knockout) leads to the highest yield and titer in rich medium. Manipulation of 

transcription factors (fabR and fadR) in fatty acid biosynthesis, the deletion of genes in the TCA 

cycle (sucC, fumAC and gltA) and the deletion of genes in glycolytic pathway (glk, ptsG, pfkA 

and pykF) also improve fatty acid yield in rich media, but not as much as that obtained from fabZ 

overexpression (San et al., 2011). Note that the order of improvements in fatty acid titer was: 

fabZ
++

 > fadR
++

 > sucC > fabR> glk > pykF > fumAC. This independent classical 

genetic intervention study not only reinforces OptForce predictions to upregulate fatty acid 

biosynthesis, downregulate TCA cycle and redirect glycolysis flux towards fatty acid production, 

but also closely emulates the prioritization of interventions suggested by OptForce. 

Even though both fabA and fabZ are genes responsible for dehydration of β-hydroxyacyl-

acyl carrier protein (ACP) in E.coli, overexpression of fabA gene in fatty acid elongation cycle 

led to conflicting results on fatty acid titer and yield (Fig. 13) (San et al., 2011). The decrease in 

fatty acid production may be explained by the high complexity of fatty acid synthesis regulation. 

Indirect upregulation of fatty acid chain elongation reactions by deletion of fabR and 

overexpression of fadR was shown to increase fatty acid titer and yield (San et al., 2011). FabR 

and fadR transcription factors regulate fatty acid biosynthesis in E.coli simultaneously. FabR 

represses the expression of the fatty acid synthesis gene fabB and fabA. On the other hand, fadR 

acts as a repressor to regulate fatty acid degradation and it also activates fabA and fabB 

(Campbell and Cronan, 2001). Even though OptForce does not incorporate gene regulatory 

networks in its framework, the overall idea of upregulating fatty acid chain elongation steps can 
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pinpoint some target transcription factor to be engineered. Interestingly, an in vitro kinetic 

analysis carried out by Yu et al (2011) revealed that a specific combinatorial overexpression of 

all the enzymes (i.e. ACP, fabH, fabB, fabG, fabZ, fabI and tesA) in the fatty acid synthesis 

pathway is necessary for optimizing the productivity of fatty acids. Their observations infer that 

further research is required to fully understand the complexity of the fatty acid synthesis as a 

collective activity of all the enzymes, rather than as a sequence of individual steps as considered 

at present. 

Removal of fumarase (FUM) reaction suggested by OptForce was tested independently 

by San et al (2011)  using a strain carrying fumAC knockout, where only small increase of fatty 

acid titer and yield was achieved, which is in agreement with OptForce prioritization of 

interventions. An alternative for fumarase knockout to downregulate TCA cycle flux and redirect 

carbon flux to malonyl CoA pool was sucC knockout which was also tested by San et al (2011). 

It was observed that sucC deletion outperforms deletion of fumAC, however the reason for this is 

not clear yet. Overall, downregulation of TCA cycle is proven to be an effective strategy to 

reroute carbon fluxes towards fatty acid synthesis. 

OptForce also suggests downregulation of phosphoglycerate mutase (PGM) flux and 

removal of glucose-6-phosphate isomerase (PGI) reaction in the glycolytic pathway to redirect 

carbon fluxes through Pentose Phosphate Pathway for medium chain fatty acid production. Even 

though these interventions were not performed experimentally in this study, previous efforts 

have already indicated the impact of these removals on improving fatty acids production yield. 

For example, San et al (2011) manipulated upper and lower glycolysis with deletion of glk, ptsG, 

pfkA and pykF (Fig. 13). More than 20% of improvement in fatty acid yield was achieved among 

all the strains. Deletion of pfkF and pykF genes showed slight improvement in fatty acid titer, 

whereas deletion of ptsG and pfkA showed inferior productivity. A possible explanation is the 

biological burden on the cells causing slower growth and lower glucose uptake rate. However, 

R.communis thioesterase effectively pulls the carbons towards fatty acid synthesis even with 

lower glucose uptake, leading to improved fatty acid yield. 

In another study Steen and coworkers (2010) reported cytosolic expression of E.coli 

thioesterase TesA with deletion of β-oxidation pathway genes fadD and fadE to obtain ~0.7g/L 

and ~1.1g/L free fatty acid titer respectively. Since fatty acid production is highly regulated, 
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Zhang et al (2012a) subsequently developed a dynamic sensor-regulator system to produce fatty 

acid-derived products in E.coli. Fatty acid/acyl CoA biosensor was engineered based on fadR 

transcription factor and transformed into an E.coli strain carrying cytosolic TesA thioesterase. 

This strain was reported to produce 3.8g/L fatty acid after 3 day cultivation under M9 medium 

with 2% glucose supplemented with MOPS, mineral and micronutrients. The fatty acid titer was 

lower in M9 media than in LB media due to nutrient limitation. We anticipate higher fatty acid 

production for ML103 pXZ18z (∆fadD, fabZ
++

) can be achieved by using richer medium, higher 

glucose supplement and longer culturing period. Further effort can be explored by incorporating 

fatty acid/acyl CoA biosensor (engineered fadR) into E.coli strain ML103 pXZ18z (∆fadD, 

fabZ
++

) to increase fatty acid titer. Interestingly, deletion of fadD/fadE and overexpression of 

fadR as biosensor agree with OptForce suggestion to upregulate fatty acid synthesis and to 

eliminate β-oxidation of fatty acid for higher production. 

While many earlier studies are based on expert intuition and the use of rich media, a 

systematic quantitative approach (i.e. OptForce supplemented with experimental flux results) 

with the employment of defined minimal media employed in this study provide a paradigm to a 

shorter turnover for strain development and cost saving from an industrial standpoint.  
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Figure 2. Venn diagram representing the changes that MUST happen in the network when the 

overproduction objectives are imposed for fatty acids C6 through C16. 
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Figure 3. OptForce interventions for the overproduction of hexanoic acid in E. coli.  



81 

 

 

 
Figure 4. OptForce interventions for the overproduction of octanoic acid in E. coli.  
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Figure 5. OptForce interventions for the overproduction of decanoic acid in E. coli.  
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Figure 6. OptForce interventions for the overproduction of dodecanoic acid in E. coli. 
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Figure 7. OptForce interventions for the overproduction of tetradecanoic acid in E. coli.   
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Figure 8. OptForce interventions for the overproduction of palmitic acid in E. coli.  
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Figure 9. Impact of each genetic intervention predicted by OptForce on the yield of palmitic 

acid. 
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Figure 12. Venn diagram representing the shared genetic interventions predicted by OptForce for 

fatty acids of chain length C6 to C16.  
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Figure 13. Effect of different genetic modifications on the improvement of fatty acid titer and 
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Tables  

Table 1. List of strains and plasmids used 

 

Relative Genotype Source or Reference 

Strain Name   

MG1655 F
-
 lamda

-
 ilvG

-
 rfb

-
 rph

-
 ATCC 47076 

ML103 MG1655 (ΔfadD) (Li et al., 2012) 

MLK163 MG1655 (ΔfadD, Δ sucC) (San et al., 2011) 

Plasmid name   

pTrc99a pTrc99a, cloning vector Amersham 

Pharmacia 

PXZ18 pTrc99a carrying an acyl thioesterase 

R. communis 

(Zhang et al., 2011) 

PXZ18z pTrc99a carrying an acyl thioesterase 

R. communis  and overexpressed fabZ (San et al., 2011)  
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Table S1.  Metabolic pathways represented by stoichiometry, atom transition, and involved genes from Ecocyc database 

(http://ecocyc.org). 

Reaction 

name 
Stoichiometry chemistry Atom transition Gene 

Glycolysis pathway 

pts Glu+PEP → G6P+PYR abcdef+ABC → abcdef+ABC ptsG,manZ,ptsH,ptsP 

pgi G6P  →  F6P abcdef  → abcdef Pgi 

fbp F6P  → FBP 
 

abcdef  → abcdef pfkA,pfkB 

fba FBP → T3P+T3P abcdef  → cba+def fbaA,fbaB 

tpi T3P → G3P 
 

abc → abc 
 

tpiA 

pgk G3P → 3PG 
 

abc → abc 
 

pgk 

eno 3PG → PEP 
 

abc → abc 
 

eno 

pyk PEP →  PYR abc → abc 
 

pykF/pykA 

Entner Doudoroff pathway 

eda 6PG → PYR+T3P abcdef  →  abc+def eda 

Pentose phosphate pathway  

zwf G6P → 6PG abcdef  → abcdef zwf 

rpi 6PG → R5P+CO2 abcdef → bcdef+a gnd,rpe,rpiA,rpiB 

tkt R5P+R5P → S7P+T3P abcde+ABCDE → abABCDE+cde tktA,tktB 

tktAB R5P+E4P → F6P+T3P abcde+ABCD → abABCD+cde tktA,tktB 

talf S7P+T3P → F6P+E4P abcdefg+ABC → abcABC+defg talA,talB 

TCA cycle 

ace PYR → ACCOA+CO2 abc → bc+a lpd,aceF,aceE 

icd ACCOA+OAA → AKG+CO2 ab+ABCD → DCBba+A icdB,icd 

suc AKG → SUCC+CO2 abcde → bcde+a lpd,sucA,sucB 

frd SUCC → MAL abcd → abcd sdhA,sdhB,sdhC,sdhD 

fumA,fumB,fumC 

mdh MAL → OAA abcd → abcd mqo,mdh 
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Table S1 continued 

Acetate production 

ackf ACCOA → AC ab → ab pta,ackA,acs 

Anaplerotic pathway 

ppc PEP+CO2 → OAA abc+A → abcA ppc 

ana Mal → PYR+CO2 abcd → abc+d maeA,maeB 

aceA ACCOA+OAA → GOx+SUCC ab+ABCD → DC+ABba aceA 

aceB ACCOA+GOX →  MAL ab+AB → Abba aceB 

C1 metabolism 

ser 3PG → Ser abc → abc serA,serC,serB 

gly Ser → Gly+C1 abc → ab+c glyA 

Amino acid biosynthesis and metabolic pathway 

SdaRf Ser → PYR abc → abc sdaA,sdaB,tdcB,tdcG 

thr OAA → Thr abcd → abcd thrC 

thrgly Thr → Gly+ACCOA abcd → ab+cd ItaE 

GluDy AKG  → Glut abcde → abcde gdhA 

GlnDy Glut → Gln abcde → abcde glnA 

GLUSy AKG+Gln → Glut+Glut abcde+ABCDE → abcde+ABCDE gltB,gltD 

ALATA AKG+Ala → Glut+PYR abcde+ABC → abcde+ABC alaA,alaB,alaC 

ASPTA AKG+Asp → Glut+OAA abcde+ABC → abcde+ABC aspC 

Ala PYR → Ala abc → abc dadA 

Asp OAA → Asp abcd → abcd aspC 

Arg Glut → Arg abcde → abcde argH 

Pro Glut → Pro abcde → abcde proC 
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Table S2. Comparison of flux values between E coli MG1655 and ML103 strains. The flux 

values are based on 100 mol/g/hr glucose uptake rate.  

reaction name stoichiometry chemistry 
E coli MG1655 E coli ML103 

Average  SD Average  SD 

Glycolysis pathways           

pts Glu+PEP → G6P+PYR 100.00 0.00 100.00 0.00 

pgi G6P  →  F6P 88.20 0.54 87.70 0.90 

 
reversibility 0.99 0.00 0.06 0.08 

fba F6P → T3P+T3P 89.24 0.74 87.75 0.73 

tpi T3P → G3P 179.82 0.84 177.71 1.10 

 
reversibility 

 
0.62 0.30 0.15 0.28 

pgk G3P → 3PG 179.82 0.84 177.71 1.10 

eno 3PG → PEP 173.04 0.98 167.97 1.57 

pyk PEP →  PYR 50.33 1.32 44.72 3.08 

Entner Doudoroff pathway           

eda 6PG → PYR+T3P 2.46 1.05 3.74 0.93 

Pentose phosphate pathway            

zwf G6P → 6PG 10.64 0.50 10.98 0.92 

rpi 6PG → R5P+CO2 8.19 0.71 7.24 1.49 

tkt R5P+R5P → S7P+T3P 1.81 0.16 1.22 0.50 

 
reversibility 

 
0.79 0.02 0.90 0.02 

tktAB R5P+E4P → F6P+T3P -0.40 0.18 -0.73 0.58 

 
reversibility 

 
0.57 0.24 0.69 0.17 

talf S7P+T3P → F6P+E4P 1.81 0.16 1.22 0.50 

 
reversibility   0.99 0.00 0.09 0.11 

TCA cycle             

ace PYR → ACCOA+CO2 139.98 1.65 143.07 1.88 

icd ACCOA+OAA → AKG+CO2 50.50 2.51 49.16 3.75 

suc AKG → SUCC+CO2 44.13 2.46 42.21 3.76 

succ FUM → MAL 45.71 2.01 46.07 3.34 

 
reversibility 

 
0.80 0.08 0.50 0.28 

 
scrambling 

 
0.53 0.25 0.67 0.22 

mdh MAL → OAA 47.15 2.05 44.16 4.09 

 
reversibility 

 
0.98 0.01 0.64 0.15 

Acetate production           

ackf ACCOA → AC 65.29 0.63 67.66 1.22 

ac AC → ACout 65.29 0.63 67.66 1.22 

Anaplerotic pathway           

ppc PEP+CO2 → OAA 19.68 1.18 20.21 2.77 

 
reversibility 

 
0.10 0.06 0.39 0.11 

ana Mal → PYR+CO2 0.14 0.33 5.77 2.77 
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Table S2 continued 

aceA ACCOA+OAA → GOx+SUCC 1.58 0.92 3.86 0.83 

aceB ACCOA+GOX →  MAL 1.58 0.92 3.86 0.83 

C1 metabolism             

ser 3PG → Ser 3.74 0.58 6.26 1.11 

gly Ser → Gly+C1 0.30 0.01 0.28 0.03 

 
reversibility   0.94 0.01 0.98 0.00 

Amino acid biosynthesis pathway         

SdaRf Ser → PYR 1.43 0.54 3.47 1.11 

thr OAA → Thr 4.02 0.14 3.49 0.17 

thrgly Thr → Gly+ACCOA 2.64 0.01 2.28 0.04 

GluDy AKG  → Glut 4.09 1.18 0.47 1.72 

 
reversibility 

 
0.66 0.29 0.00 0.05 

GlnDy Glut → Gln 3.76 0.50 5.03 0.91 

 
reversibility 

 
0.95 0.02 0.99 0.00 

GLUSy AKG+Gln → Glut+Glut 2.19 0.49 3.39 0.91 

ALATA AKG+Ala → Glut+PYR 0.01 0.04 2.37 1.00 

 
reversibility 

 
0.24 0.33 0.33 0.20 

ASPTA AKG+Asp → Glut+OAA 1.30 0.91 0.45 0.78 

 
reversibility 

 
0.55 0.26 0.05 0.15 

Ala PYR → Ala 2.71 0.31 5.53 1.02 

 
reversibility 

 
0.34 0.29 0.56 0.32 

Asp OAA → Asp 2.76 0.90 1.69 0.81 

 
reversibility 

 
0.45 0.30 0.50 0.27 

Arg Glut → Arg 1.54 0.03 1.84 0.02 

 
reversibility 

 
0.44 0.33 0.48 0.26 

Pro Glut → Pro 1.16 0.02 1.37 0.03 

 
reversibility   0.40 0.31 0.46 0.29 

Transport pathway           

co2 CO2  → CO2out 223.26 5.22 227.23 8.13 

Biomass synthesis pathway           

G6pb G6P  →  biomass 1.16 0.11 1.32 0.09 

R5pb R5P  →  biomass 4.97 0.51 5.52 0.40 

E4pb E4P  → biomass 2.21 0.13 1.96 0.23 

T3pb T3P  → biomass 0.71 0.08 0.80 0.10 

PEPb PEP  → biomass 3.03 0.25 3.04 0.48 

PYRb PYR  → biomass 11.69 0.78 11.47 1.23 

ACCOAb ACCOA  → biomass 23.66 0.97 20.81 2.18 

AKGb AKG  →  biomass 0.49 0.00 0.27 0.02 

OAAb OAA  →  biomass 9.27 0.62 6.64 0.76 

3PGb 3PG  →  biomass 3.05 0.34 3.48 0.07 

F6Pb F6P  → biomass 0.37 0.02 0.44 0.05 
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Table S2 continued 

C1b C1  → biomass 0.30 0.01 0.28 0.03 

serb Ser  → biomass 2.01 0.16 2.51 0.00 

glyb Gly  → biomass 2.94 0.00 2.55 0.02 

thrb Thr  → biomass 1.38 0.13 1.21 0.15 

glutb Glut  → biomass 1.61 0.04 1.82 0.00 

glunb Glu  → biomass 1.57 0.11 1.64 0.00 

alab Ala  → biomass 2.69 0.30 3.16 0.14 

aspb Asp → biomass 1.46 0.07 1.23 0.18 

argb Arg  →  biomass 1.54 0.03 1.84 0.02 

prob Pro  → biomass 1.16 0.02 1.37 0.03 

(1) Abbreviation: Glu, Glucose; G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; T3P, Triose-3-phosphate; 

3PG, 3-phosphoglycerate;  PEP, Phosphoenolpyruvate; PYR, Pyruvate; ACCOA, Acetate- -

Ketoglutarate; SUCC, Succinate; MAL, Malate; OAA,  Oxaloacetate; 6PG, 6-P-gluconate; R5P, Ribose-5-

phosphate; S7P, Sedoheptulose-7-phosphate; E4P, Erythronate-4-phosphate; GOX, Glyoxylate; AC, Acetate; CO2, 

carbon dioxide; Ser, Serine; Gly, Glycine; Arg, Arginine; Pro, Proline; Asp, Aspartate; Thr, Threonine; Glut, 

Glutamate; Gln, Glutamine. 

(2) Reversibility (R) and the extent of scrambling (S) are defined as follows.  

 

 

   

 

 
 

 

 

 

 

 

Table S3. Fermentation data: growth rate, glucose uptake rate, and acetate production rate of MG 

1665 and ML103 in 13-C flux experiments. They were grown in MOPs and M9, respectively. 

 E coli MG1655 in MOPs E coli ML103 in M9 

Growth rate (hr
-1

) 0.772 0.389 

Glucose uptake rate (mmol/g/hr) 13.402 7.108 

Acetate production rate (mmole/g/hr) 6.794 4.512 

Acetate yield (mol/mol) 0.507 0.650 
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Table S4. Measured and simulated isotopomer distributions of proteinogenic amino acids from 2D-NMR for E. coli MG 1655 grown 

in MOPS and ML103 strain grown in M9 media. 

Cross peak MG 1655 ML103 
   

     (multiplet) Experimental Simulated Experimental Simulated Precursor Isotopomer 
 

Ala α (s) 0.174 0.121 0.063 0.074 Pyr [123]  

Ala α (d1) 0.040 0.056 0.068 0.092 Pyr [123]  

Ala α (d2) 0.115 0.028 0.051 0.076 Pyr [123]  

Ala α (dd) 0.671 0.795 0.818 0.759 Pyr [123]  

Ala β (s) 0.496 0.562 0.629 0.647 Pyr [x23]  

Ala β (d) 0.504 0.438 0.371 0.353 Pyr [x23]  

Arg β (s) 0.482 0.442 0.225 0.205 AKG [x234x]  

Arg β (d) 0.461 0.466 0.487 0.496 AKG [x234x] + [x234x]  

Arg β (t) 0.057 0.092 0.288 0.299 AKG [x234x]  

Arg δ (s) 0.143 0.185 0.129 0.181 AKG [xxx45]  

Arg δ (d) 0.857 0.815 0.871 0.819 AKG [xxx45]  

Asp α (s) 0.341 0.379 0.276 0.255 OAA [123x]  

Asp α (d1) 0.204 0.180 0.192 0.194 OAA [123x]  

Asp α (d2) 0.178 0.160 0.196 0.228 OAA [123x]  

Asp α (dd) 0.278 0.281 0.336 0.323 OAA [123x]  

Asp β (s) 0.414 0.446 0.330 0.344 OAA [x234]  

Asp β (d1) 0.258 0.208 0.231 0.253 OAA [x234]  

Asp β (d2) 0.230 0.195 0.214 0.212 OAA [x234]  

Asp β (dd) 0.099 0.152 0.225 0.190 OAA [x234]  

Glu β (s) 0.450 0.442 0.172 0.205 AKG [x234x]  

Glu β (d) 0.496 0.466 0.486 0.496 AKG [x234x] + [x234x]  

Glu β (t) 0.054 0.092 0.315 0.299 AKG [x234x]  

Gly α (s) 0.245 0.274 0.153 0.243 Gly [12x]  

Gly α (d) 0.755 0.726 0.847 0.757 Gly [12x]  

His δ2 (s) 0.522 0.513 0.461 0.498 R5P [12xxx]  

His δ2 (d) 0.478 0.487 0.539 0.503 R5P [12xxx]  

Ile α (s) 0.483 0.478 0.287 0.372 OAA/Pyr [12xx]·[x2x]  
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Table S4 continued 
Ile α (d1) 0.383 0.409 0.353 0.398 OAA/Pyr [12xx]·[x2x]  

Ile α (d2) 0.096 0.061 0.198 0.111 OAA/Pyr [12xx]·[x2x] 
 

Ile α (dd) 0.038 0.052 0.162 0.119 OAA/Pyr [12xx]·[x2x] 
 

Ile γ1(s) 0.577 0.580 0.484 0.460 Pyr/OAA [x2x]·[xx34]  

Ile γ1(d) 0.423 0.381 0.416 0.448 Pyr/OAA [x2x]·[xx34] +[x2x]·[xx34]  

Ile γ1(t) 0.000 0.039 0.100 0.093 Pyr/OAA [x2x]·[xx34]  

Ile δ (s) 0.570 0.582 0.605 0.647 OAA [xx34] 
 

Ile δ (d) 0.430 0.418 0.395 0.353 OAA [xx34] 
 

Ile γ2 (s) 0.527 0.562 0.449 0.428 Pyr [x23] 
 

Ile γ2 (d) 0.473 0.438 0.551 0.572 Pyr [x23] 
 

Leu α (s) 0.433 0.499 0.415 0.496 ACoA/Pyr [12]·[x2x] 
 

Leu α (d1) 0.396 0.389 0.270 0.274 ACoA/Pyr [12]·[x2x] 
 

Leu α (d2) 0.134 0.063 0.199 0.149 ACoA/Pyr [12]·[x2x] 
 

Leu α (dd) 0.037 0.049 0.116 0.082 ACoA/Pyr [12]·[x2x] 
 

 0.704 0.703 0.383 0.352 ACoA/Pyr [x2]·[x2x].[x2x] 

 0.296 0.274 0.465 0.523 ACoA/Pyr [x2]·[x2x].[x2x]+[x2]·[x2x].[x2x] 

 0.000 0.005 0.152 0.125 ACoA/Pyr [x2]·[x2x].[x2x] 

Leu δ1 (s) 0.638 0.643 0.667 0.647 Pyr [x23]  

Leu δ1 (d) 0.362 0.367 0.333 0.353 Pyr [x23] 

Leu δ2 (s) 0.854 0.859 0.780 0.770 Pyr [x2x]·[xx3] 

Leu δ2 (d) 0.146 0.151 0.220 0.231 Pyr [x2x]·[xx3] 

Lys β (s) 0.393 0.495 0.401 0.372 OAA/Pyr ½{[x234] + [x23]·[xxx4]} 

Lys β (d) 0.468 0.434 0.426 0.466 OAA/Pyr ½{[x234] + [x234] + 

      [x23]·[xxx4] + [x23]·[xxx4]} 

Lys β (t) 0.129 0.071 0.172 0.162 OAA/Pyr ½{[x234] + [x23]·[xxx4]}  

Lys γ (s) 0.344 0.459 0.174 0.195 OAA/Pyr [xx34]·[xx3]  

Lys γ (d) 0.503 0.453 0.520 0.494 OAA/Pyr [xx34]·[xx3] + [xx34]·[xx3] 

Lys γ (t) 0.153 0.088 0.305 0.312 OAA/Pyr [xx34]·[xx3] 
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Table S4 continued 
Lys δ (s) 0.425 0.495 0.344 0.372 OAA/Pyr ½{[x234] + [x23]·[xxx4]} 

Lys δ (d) 0.492 0.434 0.446 0.466 OAA/Pyr ½{[x234] + [x234] + 

      [x23]·[xxx4] + [x23]·[xxx4]} 

Lys δ (t) 0.083 0.071 0.211 0.162 OAA/Pyr ½{[x234] + [x23]·[xxx4]} 

Phe α (s) 0.120 0.111 0.083 0.061 PEP [123] 
 

Phe α (d1) 0.011 0.034 0.057 0.073 PEP [123] 
 

Phe α (d2) 0.039 0.028 0.075 0.065 PEP [123] 
 

Phe α (dd) 0.829 0.827 0.784 0.800 PEP [123] 
 

 0.385 0.442 0.146 0.205 AKG [x234x] 

 0.469 0.466 0.514 0.496 AKG [x234x] + [x234x] 

 0.146 0.092 0.339 0.299 AKG [x234x] 

Pro γ(s) 0.370 0.519 0.349 0.363 AKG [xx345] 

Pro γ(d) 0.503 0.448 0.486 0.482 AKG [xx345] + [x2345] 

Pro γ(t) 0.127 0.034 0.165 0.155 AKG [xx345] 

Pro δ (s) 0.137 0.185 0.150 0.181 AKG [xxx45] 

Pro δ (d) 0.863 0.815 0.850 0.819 AKG [xxx45] 

Ser α (s) 0.113 0.139 0.033 0.078 Ser [123] 

Ser α (d1) 0.194 0.162 0.120 0.148 Ser [123] 

Ser α (d2) 0.033 0.035 0.075 0.086 Ser [123] 

Ser α (dd) 0.661 0.665 0.772 0.689 Ser [123] 

Ser β (s) 0.613 0.641 0.689 0.667 Ser [x23] 

Ser β (d) 0.387 0.359 0.311 0.333 Ser [x23] 

Thr α (s) 0.356 0.357 0.260 0.255 OAA [123x] 

Thr α (d1) 0.252 0.256 0.165 0.194 OAA [123x] 

Thr α (d2) 0.172 0.139 0.233 0.228 OAA [123x] 

Thr α (dd) 0.220 0.249 0.342 0.323 OAA [123x] 
 

Thr γ2 (s) 0.520 0.576 0.418 0.428 OAA [xx34] 
 

Thr γ2 (d) 0.480 0.424 0.582 0.572 OAA [xx34] 
 

Tyr α (s) 0.029 0.111 0.050 0.061 PEP [123] 
 

Tyr α (d1) 0.162 0.034 0.054 0.073 PEP [123] 
 



 

 

9
8 

Table S4 continued 
Tyr α (d2) 0.045 0.028 0.121 0.065 PEP [123] 

Tyr α (dd) 0.805 0.827 0.775 0.800 PEP [123] 
 

Val α (s) 0.112 0.132 0.103 0.115 Pyr [12x]·[x2x]  

Val α (d1) 0.650 0.755 0.552 0.655 Pyr [12x]·[x2x] 
 

Val α (d2) 0.225 0.017 0.076 0.034 Pyr [12x]·[x2x]  

Val α (dd) 0.012 0.096 0.270 0.196 Pyr [12x]·[x2x]  

Val γ1 (s) 0.530 0.562 0.630 0.647 Pyr [x23] 
 

Val γ1 (d) 0.471 0.438 0.370 0.353 Pyr [x23]  

Val γ2 (s) 0.880 0.888 0.750 0.770 Pyr [x2x]·[xx3]  

Val γ2 (d) 0.120 0.112 0.250 0.231 Pyr [x2x]·[xx3]  
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Figure S1. Metabolic flux map of E. coli MG1655 grown in MOPs media with 1% glucose (25% 

1-13C glucose, 10% U-13C glucose, 65% unlabeled glucose) at 37 C. 
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Figure S2. Metabolic flux m fadD) strain grown in minimal M9 media 

with 1% glucose (20% U-13C glucose and 80% 1-13C glucose ) at 30C. 
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Figure S3. Free fatty acid yield per gram of glucose consumed of ML103 pXZ18(ΔfadD), 

MLK163 pXZ18 (ΔfadD,ΔsucC) and ML103pXZ18z (ΔfadD,fabZ
++

) at 24 and 48 hour. The 

data shown are means ± standard deviation of at least 3 replicates. 

 

 

 
Figure S4 Glucose utilization of ML103 pXZ18(ΔfadD), MLK163 pXZ18 (ΔfadD,ΔsucC) and 

ML103pXZ18z (ΔfadD,fabZ
++

) at 24 and 48 hour. The data shown are means ± standard 

deviation of at least 3 replicates. 
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Figure S5 Acetate accumulation of ML103 pXZ18(ΔfadD), MLK163 pXZ18 (ΔfadD,ΔsucC) 

and ML103pXZ18z (ΔfadD,fabZ
++

) at 24 and 48 hour. The data shown are means ± standard 

deviation of at least 3 replicates. 
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Abstract 

Fatty acids naturally synthesized in many organisms are promising platform intermediates for 

the catalytic production of industrial chemicals and biofuels. The tight transcriptional and 

translational regulation in fatty acid biosynthetic pathways complicates the engineering of 

microbial hosts for higher yields. In this study, we characterized the microbial physiology of the 

first generation engineered strain ML103 pXZ18Z (deletion of β-oxidation, over-expression of 

fatty acid elongation and thioesterase) under the control and fatty acid producing condition, 

along with transcriptomics and metabolomics analysis. We then redeployed an integrated 

approach of metabolic flux analysis and computational techniques for the overproduction of fatty 

acid. The OptForce procedure, a computational strain design algorithm, was employed to suggest 

and prioritize genetic manipulations to overproduce fatty acids. Metabolic flux analysis 

identified up-regulation of the TCA cycle to replenish the need of energy and reducing molecules 

for the biosynthesis of fatty acids under fatty acid overproduction. The elevation of metabolite 

level in the TCA cycle complements the flux findings. As a consequence, updated OptForce 

simulation suggested interruption of TCA cycle and enhancing acetyl-CoA pool. In accordance 

to OptForce suggestion, succinate dehydrogenase was deleted but does not improve the fatty acid 

production due to by-product accumulation. Using the whole genome transcriptional analysis by 

RNAseq, we observed acid stress response and membrane disruption during fatty acid 
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production as the result of product toxicity. This pinpoints the future effort to incorporate 

metabolic toxicity and genetic regulatory effects into the next generation OptForce to improve 

the accuracy of genetic predictions. Our study reinforces the advantage of integrating 

computational, experimental and omics tools for the design and engineering of microbial strains 

to overproduce value-added chemicals or biofuels.  

1. Background and introduction 

Concerns about crude oil depletion and climate changes have encouraged the 

development of processes that produce renewable biochemicals and biofuels from biomass-

derived feedstocks. The microbial production of fatty acids as biorenewable chemicals and 

biofuels has recently garnered extensive attention (Lennen and Pfleger, 2012). Free fatty acids 

can be used as precursors for the production of alkanes/ alkenes (Fjerbaek et al., 2009; Lennen et 

al., 2010), fatty esters (Steen et al., 2010), fatty alcohols (Dellomonaco et al., 2011) and alkyl 

ketones (Goh et al., 2012). Interestingly, medium chain fatty acids (C6-C14) can be used as 

sources for industrial applications such as detergents, soaps, lubricants, cosmetics, and 

pharmaceuticals (Steen et al., 2010). As fatty acid chain length can directly affect the chemical 

properties, it is desirable to be able to have predictable and tight control over this product 

property. Plant thioesterases, that can hydrolyze acyl-ACP substrates with specific chain length 

specificity, such as those recently described (Jing et al., 2011), open new avenue for the 

production of novel fatty acids. 

Even though bacteria are intrinsically capable of synthesizing fatty acids for lipid and cell 

membrane biosynthesis, Escherichia coli normally does not accumulate free fatty acids during 

the metabolic process. Wherein, fatty acid metabolism (i.e. consumption and production) is 

regulated at transcriptional levels by FadR and FabR transcription factors in E. coli (Fujita et al., 

2007). In addition, strong product inhibition tightly controls the rate of fatty acid synthesis in E. 

coli (Heath and Rock, 1996a, b). Furthermore, the toxicity of fatty acids reduces cell viability 

and causes loss of membrane integration, further hindering the production of fatty acids (Jarboe 

et al., 2011; Lennen et al., 2011; Royce et al., 2013). Therefore, strain design for fatty acid 

biological production remains a huge challenge and possibly requires significant reengineering 

of cellular metabolism. 

Recent metabolic engineering efforts have led to improvements in the synthesis of free 

fatty acids by E. coli. As the first step of fatty acid biosynthesis, acetyl-CoA is converted into 
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malonyl-CoA by an ATP-dependent acetyl-CoA carboxylase (ACC), followed by its conversion 

to malonyl-ACP through malonyl-CoA-ACP transacylase. This reaction has been previously 

identified as the initial rate limiting step of fatty acid production (Davis et al., 2000).  To 

overcome this bottleneck, the availability of precursors was augmented by overexpressing ACC 

(Lennen et al., 2010) and malonyl-CoA-ACP transacylase (Zhang et al., 2012c). Acetoacyl-ACP, 

which is generated from the condensation of acetyl-CoA and malonyl-ACP, enters the elongation 

cycle. The elongation cycle fully reduces the β-ketoacyl-ACP to an acyl-ACP, followed by the 

condensation with malonyl-ACP. The accumulation of long chain fatty acyl-ACP inhibits 

multiple enzymes in fatty acid biosynthesis (Davis and Cronan, 2001). To alleviate the feedback 

inhibition, there are reported strategies to increase expression of E.coli native thioesterase tesA 

gene (Steen et al., 2010) and  heterologous acyl-ACP thioesterases from plant (Liu et al., 2010; 

Lu et al., 2008; Zhang et al., 2011). In addition, fatty acid degradation through the -oxidation 

pathway can be blocked by deleting fadD (Li et al., 2012; Lu et al., 2008; Steen et al., 2010) or 

fadE (Steen et al., 2010) gene. Acetate is the major byproduct in aerobic fermentation for fatty 

acid production, however deletion of acetate formation pathway does not increase fatty acid yield 

(Li et al., 2012). More recently,  Zhang et al. developed a dynamic sensor-regulator system to 

produce fatty acid-derived products in E. coli by using FadR transcription factor as fatty acid 

biosensor (Zhang et al., 2012a). Most of these genetic interventions are based on expert intuition, 

and lack of systematic quantitative approach and omics-based system level metabolic 

engineering tools. Rational engineering complemented with omics approaches could unravel the 

underlying cellular response during fatty acid overproduction, providing insights for future strain 

engineering. This could potentially shorten the turnover time for strain development. 

Omics tools have been widely used to understand and engineer the molecular system. The 

latest development of high-throughput techniques for deciphering genomes, transcriptomes, 

proteomes, metabolomes and fluxomes, together with computational tools, can predict  gene 

targets  to enhance production of desired molecules (Lee et al., 2012). Transcriptome analysis is 

robust in elucidation of useful metabolic genes, identification of novel target genes for improving 

strain performance, and identification of regulators controlling pathway for target molecules 

production (Hirasawa et al., 2010; Jarboe et al., 2011; Serrania et al., 2008; Yano et al., 2003). 

Proteome analysis quantifies the abundance of proteins and their changes under particular 

genetic and environmental conditions (Zhang et al., 2010). Hence, it can capture regulation of 



106 

 

 

cellular response beyond the mRNAs, providing the information of complicated biological 

processes and posttranslational modifications (Han and Lee, 2006). The rate of an enzymatic 

reaction is controlled by the concentration of the substrate and enzyme abundance; often 

feedback regulation by the product also occurs. Thus, metabolomic data serves as a snapshot of 

the physiological state of the cell, which reflects the integrated output of multiple complex 

interactions (Ewald et al., 2009). Among the different levels of information, metabolic flux 

distribution in central carbon metabolism is the most direct approach to understand the complex 

metabolic control mechanism of the whole cell (Matsuoka and Shimizu, 2010). The goal of 

metabolic flux analysis (MFA) is to quantify intracellular metabolic fluxes and to scrutinize the 

functional aspects of metabolic network in depth (Kim et al., 2008; Sriram et al., 2004; Sriram et 

al., 2007). Combinations of omics investigations (i.e, transcriptomic, proteomic, metabolomic 

and fluxomic) are increasingly applied with the goal of gaining a comprehensive understanding 

of biological systems. However, to our knowledge, there are only few reported combinations of 

various omics techniques to study fatty acid production by E. coli. 

Integration of experimental and computational approaches has proven to be a successful 

systematic method for strain design (Ranganathan et al., 2012). The OptForce algorithm 

(Ranganathan et al., 2010) is an optimization procedure for identifying genetic manipulations to 

improve the production of useful chemicals in an organism. It uses MFA data to characterize the 

reference state, and subsequently identifies a minimum set of manipulations that could redirect 

the metabolic flux towards the desired product chemical. The OptForce procedure prioritizes 

these interventions in accordance of their impact on the yield of target chemical, as well as 

suggesting various genetic strategies for achieving the same target production. We have 

successfully employed OptForce to predict interventions for the production of fatty acids of 

specific chain-lengths in E. coli (Ranganathan et al., 2012). In accordance with the OptForce 

prioritization of interventions for medium-chain fatty acids, we implemented the first two 

suggested manipulations by up-regulating fabZ (β-hydroxyacyl-ACP dehydratases), and deleting 

fadD (fatty acyl-CoA synthetase) genes. A heterologous thioesterase from R. communis was 

expressed to restrict the chain-elongation specificity to medium-chain fatty acids. The engineered 

strain produced fatty acid primarily of C14 and C16 chain lengths with a yield of 39% of its 

theoretical maximum. The interventions suggested by OptForce were based on the metabolic 

characterization of the reference phenotype of the strain. As we implement each intervention, 
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regulatory effects, metabolic toxicity, and other factors beyond the purview of OptForce may 

increasingly affect the redistribution of metabolic fluxes, eventually causing significant 

departures between network phenotype predictions and experimental results. These factors are 

particularly significant for fatty acid production, since fatty acids are toxic to the host strain 

(Lennen et al., 2011).  

In this study, we propose an iterative strategy to re-deploy OptForce after short intervals 

in strain construction by taking advantage of multiple MFA measurements (Figure 1). We re-

characterized the first generation engineered strain, and subsequently re-deployed the OptForce 

procedure on the “new” reference strain to identify a new set of genetic manipulations. This 

process could be repeated until desired strain performance is achieved. In this set of new 

interventions, some of the old interventions remain unaltered, while entirely new ones, in 

accordance with the flux re-distribution, appear. In addition, the prioritization of the 

interventions is also significantly affected. Meanwhile, we conducted transcriptomics and 

metabolomics analysis to compare the physiology of first generation engineered strain under 

normal growth and fatty acid production conditions to unravel underlying cellular physiology 

and guide the genetic manipulation for the overproduction of fatty acids. We also reported on the 

production yield of fatty acids following the implementation of OptForce intervention, thus 

closing the metabolic engineering cycle.  

2. Material and methods 

2.1. Strains and plasmids   

E. coli strain ML103 (MG1655, ∆fadD) carrying plasmid pXZ18Z (fabZ+, thioesterase 

from R. communis) was used as the reference strain for this study. ML103 pXZ18Z was the first 

generation of C14-16 fatty acid-overproducing strain developed from our previous study 

(Ranganathan et al., 2012). In accordance to Optforce prediction, knockout of the succinate 

dehydrogenase (sdhABCD) in strain ML103 was performed following Datsenko and Wanner’s 

method (Datsenko and Wanner, 2000). The upstream 600 bp homologous region was amplified 

with primers sdh-UpF and sdh-UpR. The downstream 540 bp homologous region was amplified 

with primers sdh-DnF and sdh-DnR. The chloramphenicol resistant gene (cat) was amplified 

from plasmid pKD3 using primers sdh-F and sdh-R, which each have a 50 bp overlap with the 

upstream and downstream homologous region. Overlap extension PCR was carried out to 

assemble the upstream homologous sequence, chloramphenicol resistant gene, and downstream 
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homologous sequence, resulting in a 2180 bp PCR product which was used to knockout the sdh 

genes. To verify the knockout, two primers P1 and P4 were used to amplify the chloramphenicol 

resistant gene in the genome. PCR product was sequenced to confirm the correct sequence. All 

the primer sequences are listed in the Supplementary Table S1.  

2.2. Metabolic flux analysis experiments  

Strains and culture conditions: 

The 
13

C labeling experiment was performed in duplicate as described by Ranganathan et 

al. (Ranganathan et al., 2012). In brief, a freshly transformed E. coli ML103pXZ18Z was 

precultured in 25 mL minimal M9 medium supplemented with 1% glucose and 100 mg/L 

ampicillin in an orbital shaker at 250 rpm until exponential phase (OD ~2). The cells were 

inoculated into the bioreactor (INFORS HT, Switzerland) to a starting OD550 of 0.02.  20% U-

13
C glucose and 80% 1-

13
C glucose were used as the tracers to the final medium concentration of 

1% glucose. 1mM isopropyl--D-thiogalactopyranoside (IPTG) was added to induce fatty acid 

production. The aerobic fermentation was conducted at 30°C, pH 7.0, and 0.6 ml/min air flow 

rate. The pH of culture medium was maintained at 7.0 using 0.5M KOH. The dissolved oxygen 

level was maintained above 50% of saturated levels to ensure aerobic conditions by varying 

agitation speed. The cells were harvested at mid-exponential phase (OD ~2.0) after at least 5 

generations to ensure metabolic and isotopic steady state. Parallel experiments were conducted 

using natural glucose as biological replicates for transcriptomics analysis. 

Analytical techniques:  

Cell dry weight was determined by measuring optical density OD550 using a 

spectrophotometer (Genesys 20, Madison, WI). Media samples were taken during the 

exponential growth and filtered through 0.22 µm pore sized nylon filters (P.J. Cobert Associates, 

Saint Louis, MO) and kept at -20
o
C for extracellular metabolite analysis. Glucose and organic 

acids were measured using a Waters HPLC (Waters, Milford, MA) with 410 refractive index 

detector. The Aminex column (HPX-87H, Bio-Rad, Hercules, CA) was used at 30
o
C with 0.3 

mL/min of 5mM sulfuric acid as mobile phase. After the experiment, cell biomass were 

harvested and hydrolyzed into amino acids. The isotopomer labeling fractions were measured 

using 2D [
13

C, 
1
H] Heteronuclear Single Quantum Correlation (HSQC) spectra were acquired on 

a Bruker Avance DRX 500MHz spectrometer at 298 K. The isotopomer fractions are listed in 

Table S3. 
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Flux evaluation methodology: 

A metabolic network model for E. coli was constructed based on Ecocyc database, 

literature and transcriptome data (Ranganathan et al., 2012). Fluxes were computed using 

NMR2Flux software (Sriram et al., 2004) by cumomer and isotopomer balancing. A global 

optimization routine was applied to find stoichiometrically feasible fluxes set consistent with 

experimental measurements.  Optimal fluxes were estimated by minimizing the chi square error 

between measured and simulated isotopomer fractions of amino acid. Bootstrap Monte Carlo 

statistical analysis was then used to evaluate the standard deviations of the flux set.  

2.3 Using OptForce for fatty acid overproduction 

The iAF1260 metabolic model of E. coli  (Feist et al., 2007) was used to perform the 

simulations with the OptForce procedure for the overproduction of fatty acids. In our previous 

study, no alternation in the stoichiometric network of iAF1260 was required since the wild-type 

E. coli MG1655 strain was our reference strain. However, as a result of the genetic 

manipulations required to construct the engineered strain, the base model of iAF1260 is no 

longer consistent with the metabolic map of the new reference strain. Knock-out/in of genes, as 

well as up/down-regulation in gene expressions must be captured accordingly to accurately 

characterize the present state of the strain phenotype. Hence, we identified a set of general rules 

to incorporate the effect of genetic manipulations in the model of new reference strain. 

i. Gene knock-in/deletion: When a heterologous gene is expressed in the strain, reaction(s) 

encoded by the gene are added to the model, with appropriate reaction directionality. 

Likewise, reaction(s) encoded by genes that have been knocked out are set to carry zero 

flux. These genes could encode for a single reaction, multiple-reactions, or part of an 

enzyme-complex. For example, the fadD gene encodes for all the fatty-acid-CoA ligase 

reactions in the β-oxidation pathway that converts fatty acids to their respective fatty acyl-

CoA in E. coli. We set all the fluxes of these reactions to zero in order to implement the 

removal of fadD in our first-generation mutant. 

ii. Gene over-expression/down-regulation: Implementing the effect of gene up/down-

regulation is not as straightforward as gene knock-in/out. If we have direct flux 

measurements (through MFA) of a reaction(s) that is up-regulated due to increased 

expression of a gene, we set a lower bound for the flux equal to the new reference flux for 

the engineered mutant. In cases when direct measurement of the flux is not available, the 
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lower bound is set on the nearest measured flux in the pathway that directly affects the up-

regulated reaction.  Alternately, if such an up-regulation leads towards increase in the 

production of an external metabolite, we can set as a lower bound the experimentally 

measured exchange flux of the secreted metabolite. For example, up-regulation of fabZ 

gene increased the flux through fatty acid synthesis pathway. We implemented the 

intervention by setting a lower bound on the exchange flux for fatty acids equal to their 

experimental yield in the first-generation engineered strain. The changes to implement the 

down-regulation of genes are similar as above, with the difference being we set upper 

bounds on the fluxes of intracellular/exchange reactions instead of lower bounds. 

In addition, some manipulations could have metabolic effects that cannot be captured by 

the above simple rules, and should be dealt with on a case-by-case basis. For example, we 

expressed a heterologous thioesterase from R. communis in wild-type E. coli to produce fatty 

acids of C14-C16 specific chain length. GC-MS studies showed that the fatty acid secreted by the 

engineered mutant was composed of primarily C14 and C16 with traces of C18. Fatty acids of other 

chain-lengths were negligible. We used a constraint which fixes the flux ratios for the exchange 

reactions towards specific fatty acid chain-lengths in the values observed experimentally. These 

general rules for implementing the effect of interventions are appended for each intervention as 

additional constraints in all of the steps of the OptForce procedure (i.e. characterization of 

phenotypes, computation of MUST sets and the final FORCE sets). 

The operational strategy for re-deployment of the OptForce protocol on the first-

generation mutant overproducing fatty acid is structurally similar to the procedure followed in 

our previous study (Ranganathan et al., 2012). All simulations, using the iAF1260 model with 

added modifications, were performed in aerobic minimal conditions with glucose as the sole 

source of carbon in the medium. The upper and lower limits for all reactions in the model 

including those for uptake of glucose, oxygen, and other exchange nutrients were set at the same 

values as specified in our earlier study. Likewise, all regulatory restrictions were imported from 

our previous study. The new reference phenotype was characterized to be consistent with the 

redistribution of metabolic fluxes in the first generation engineered strain, as revealed from the 

13
C-isotopomer study (see Figure 1). The MFA data for 33 reactions from glycolysis, pentose 

phosphate pathway, TCA cycle and anaplerotic reactions were used for the characterization of 

the new reference phenotype. The biomass flux was set at the maximum achievable flux subject 
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to the experimental flux measurements. This value decreased from 52% of maximum theoretical 

yield (wild-type = base strain) to 22% (double mutant = base strain) in the second generation 

strain design. This indicates that more flux has been diverted away from biomass towards fatty 

acid production. It is important to note that this reduction in biomass flux is in agreement with 

experimental observations that showed that the specific growth rate is halved in the first 

generation mutant as compared to that of wild-type E. coli (see Figure S1). The overproducing 

phenotype was characterized to be consistent with 90% production of medium-chain fatty acid. 

The maximum theoretical production of medium-chain fatty acid was determined by maximizing 

the production of the sum of C14, C16 and C18 chain-length fatty acid in the same ratio of 

production as obtained in our previous study. 

After characterization of the reference and the desired phenotypes, the genetic 

interventions were identified implementing the same procedure as mentioned in our previous 

work (Ranganathan et al., 2012). Subsequently, we identified the minimum set of interventions 

that predicts a guaranteed yield of fatty acids (i.e. FORCE sets) by implementing the bilevel 

optimization. As in our previous study, we prevented the removal of reactions associated with in 

vivo essential genes (based on the KEIO collection (Baba et al., 2006; Feist et al., 2007)) and 

experimentally verified synthetic lethal genes (Suthers et al., 2009), even for the ones that were 

not recognized as essential by the iAF1260 model. In addition, any further manipulations on 

reactions that have already been manipulated (i.e. reactions in fatty acid chain-elongation 

pathway and the β-oxidation pathway) were disallowed. 

2.4 Intracellular metabolite profiling: 

E. coli ML103 carrying pXZ18Z plasmid was grown in shake flask (30
o
C, 250rpm) for 

metabolomics analysis between the control and fatty acid overproduction condition. Samples 

were harvested at 24, 48 and 72 hours. After harvesting, 1mL of samples were kept on ice and 

centrifuged for 10 minutes at 8000x g and 4
o
C. With the supernatant discarded, 5ng norleucine 

was added as internal standard to the cell pellet. Cell pellets were then reconstituted in 1mL 60% 

cold methanol to quench the cell and extract the intracellular metabolites. Cell debris was 

removed by centrifugation (8000x g, 4
o
C, 5 minutes). The extracts were transferred into fresh 

tubes and stored at -80
o
C for future analysis. The samples were dried completely in vacuum 

centrifuge and derivatized twice as described by (Ewald et al., 2009). In the first derivatization, 

20μL methoxyamine solution (20mg/mL methoxyamine hydrochloride (Sigma-Aldrich) in 
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pyridine (analytical grade, Sigma-Aldrich)) was added and incubated at 37
o
C and 250rpm for 90 

minutes. 7.5μL aliquots were transferred into GC glass vial and derivatized for the second time 

with 15μL N-methyl-N-(trimethylsilyl)-trifluoroacetamide with 1% tert-butyl-

dimethylchlorosilane (Fluka). The mixture was then incubated at 60
o
C for an hour. The 

intracellular metabolite content was analyzed using an Agilent GC-MS system with the DB-5MS 

column (30m, 0.25mm i.d., 0.25μm, Agilent). The oven temperature was initially set at 70
o
C for 

1 min and raised to 140
o
C with 20

o
C/min ramping rate. The temperature was then increased to 

300
o
C with 5

o
C/min ramping rate and held for a minute. Raw MS data was integrated using 

Chemstation software. Compound peaks were identified by running pure standards and 

quantified by normalizing to the internal standard. 

2.5 RNAseq transcriptome profiling 

Samples for RNA isolation were collected from the bioreactor at mid-log phase (OD 

~2.0) and immediately cooled in the dry ice-ethanol bath. After centrifuging for 10 minutes (4
o
C, 

8000x g), the supernatant was discarded and cell pellets were resuspended in 2mL RNA Later 

solution (Qiagen) and kept at -80
o
C. Total RNA was purified using Qiagen RNeasy mini kit 

according to the product handbook with application of DNase to remove genome DNA. The 

mRNA was then purified using MICROBExpress Kit (Life Technology, CA) following the 

manufacturer’s protocol. 

The high-throughput mRNA sequencing (RNA-seq) for three control and three IPTG 

treatment samples was performed at Iowa State University DNA Facility using the Illumina 

HiSeq 2000 platform. The short reads obtained were paired-end and 100 base pairs (bp) in 

length. Differential gene and transcript expression analysis was performed using the Tuxedo 

protocol (Trapnell et al., 2012). The E. coli K-12 MG1655 genome (Blattner et al., 1997) was 

used as a reference genome and a General Feature Format (GFF) file was generated from 

EcoCyc data to provide transcriptome annotations. 

In accordance with the Tuxedo protocol, TopHat (version 2.0.3) (Trapnell et al., 2012) 

was run to map reads from each sample to the reference genome. The underlying alignment 

algorithm was Bowtie2 (version 2.0.0-beta5) (Langmead and Salzberg, 2012). Next, Cuffdiff, 

from the Cufflinks RNA-Seq analysis tools (version 2.0.0), was used to estimate transcript 

abundance and test for differential expression. The three control and three treatment samples 

were each pooled for this analysis. Sets of genes with significant increases or decreases in 
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abundance were examined for common biological processes as described in associated Gene 

Ontology (Ashburner et al., 2000) annotations. BiNGO (Maere et al., 2005), a plugin for 

Cytoscape (Smoot et al., 2011), was used to identify overrepresented terms and generate a 

visualization of the ontology. Additionally, Network Component Analysis (NCA) (Kao et al., 

2004) was used to predict transcription factor activities based on fold changes of genes with a 

significant False Discovery Rate (FDR) corrected p-value. 

2.6 Metabolic interventions and fatty acid titer determinations 

Fermentation procedure:  

Strain evaluation was conducted in shake flask system with higher glucose content. Each 

strain was freshly transformed and streaked on LB plate with 100 mg/L ampicillin overnight at 

30
o
C incubator. A single colony from the plate was grown in 5 mL M9 medium supplemented 

with 1.5% glucose and 100 mg/L ampicillin for 16-20 hours in orbital shaker at 30
o
C and 250 

rpm. The pre-culture was then inoculated into 250mL flasks containing 40mL M9 medium with 

1.5% glucose and 100 mg/L ampicillin. The expression of acyl-ACP thioestersase was induced 

by the addition of IPTG to final concentration of 1mM. Samples were taken at 24 and 48 hours 

for measurement of fatty acids and extracellular metabolites.  

Fatty acid analysis:  

Cell cultures were harvested and prepared for fatty acid analysis as described previously 

(Ranganathan et al., 2012). Fatty acids in the broth were extracted using chloroform, methylated 

into methyl esters and recovered using hexane. Tridecanoic acid, pentadecanoic acid and 

heptadecanoic acid were added as internal standards in all samples before extraction. The fatty 

acid content was analyzed using an Agilent GC-FID/MS system. Raw MS and FID data was 

integrated using Chemstation software. Compound peaks were assigned by running standards or 

referring to the mass fragmentation in the NIST library. 

3 Results  

3.1 Flux measurements:  

Phenotype analysis of ML103 pXZ18Z (acyl-ACP thioesterase, fabZ overexpression and 

fadD knockout) between control and fatty acid producing condition was compared among four 

biological replicates, in which the carbon source is either natural glucose or mixture of 
13

C 

labeled glucose. There was no difference in macroscopic growth characteristics using 
13

C 
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glucose and natural 
12

C glucose (Leighty and Antoniewicz, 2012). The experiments were 

performed in M9 media under aerobic growth in batch bioreactor. The expression of acyl-ACP 

thioestersase and β-hyroxyacyl-ACP dehydratase was induced by IPTG. We observed similar 

macroscopic characteristics (growth rate and acetate yield) of ML103 pXZ18Z in the un-induced 

normal growth (control) condition, compared with the wild type E. coli MG1655 and ML103 

(∆fadD) (Ranganathan et al., 2012). When fatty acid production is induced, the cell growth rate 

and biomass yield both decrease by ~50% relative to the un-induced condition, though the 

glucose uptake rate remains unchanged (Figure S1). Fatty acid yield increases 2-fold over the 

control during the exponential growth with acetate as by-product. While, acetate yield during 

fatty acid overproduction was ~43% lower than the control. Increased expression of fatty acid 

elongation pathway and heterologous thioesterase pulls the carbon fluxes from acetyl-CoA in the 

central carbon metabolism to form malonyl-CoA as the precursor for fatty acid synthesis, instead 

of channeling carbon fluxes to amino acid biosynthesis and acetate formation. 

In vivo MFA quantifies the metabolic network operating under the physiological 

conditions. Flux experiments were performed to compare ML103 pXZ18Z under the control and 

fatty acid producing condition. The flux distributions from the latter experiment were then 

incorporated into OptForce to predict the second round of genetic manipulations. The flux maps 

for E. coli ML103 pXZ18Z under the control and fatty acid producing condition are tabulated in 

Table S2 and shown in Figure 2. The flux values are all normalized to 100 mmol gDW
-1 

h
-1

 

glucose uptake rate and an average of duplicate experiments. Overall, most of the carbon flux 

(around 90%) is directed toward the glycolytic pathway, resulting in ~7% of the carbon flux 

being channeled through pentose phosphate (PP) and Enter-Doudoroff (ED) pathways, 

presumably to generate NADPH for reduction requirements. The anaplerotic pathway of 

phosphoenolpyruvate (PEP) carboxylase is active, which converts PEP to oxaloacetate (OAA) to 

refill the OAA pool for biosynthesis. Acetate was formed as the major product at ~60 mmol 

gDW
-1 

h
-1

. The TCA cycle operates at 55 mmol gDW
-1 

h
-1

 presumably to generate biomass, ATP 

and NAD(P)H for cell growth.  

Under fatty acid production, the combined effect of the heterologous thioesterase 

expression and fabZ up-regulation pulls more flux in the central metabolism towards acetyl-CoA 

and fatty acid synthesis. As a result, we observe a 20% increase in flux in lower glycolysis as 

compared to the control, while the flux through the PP and ED pathways decreases ~60%. In 



115 

 

 

addition, the flux through the TCA cycle increases 40%. We also observe 50% increase of 

carbon flux through pyruvate kinase, instead of the PEP carboxylase (ppc) pathway. With the 

decrease in cell growth rate and biomass yield during fatty acid production, the amino acid 

biosynthesis reactions are generally lower than the control. The increase of flux from acetyl-coA 

to fatty acid synthesis is complemented with the decrease of flux toward acetate (byproduct 

formation). In addition, the ED pathway and glyoxylate pathway have negligible flux values. For 

fatty acid overproduction, carbon flux at the acetyl-CoA node should be ideally channeled to 

fatty acid biosynthesis pathways, as well as minimizing the acetyl-CoA drain toward the TCA 

cycle and acetate formation. From the in-vivo flux distribution, we could hypothesize the TCA 

cycle should be down-regulated in order to increase carbon fluxes toward fatty acid synthesis. 

However, it should also be noted that the TCA cycle is a source of metabolites that are critical to 

biosynthesis, such as -ketoglutarate. 

Even though cofactor balance was not included in MFA, we derive the net cofactor 

production from the in-vivo flux distribution. Figure S2 illustrates the use and production of 

NADH, NADPH and ATP in the central carbon metabolism. For example, NADPH is produced 

by the oxidative PP pathway, TCA cycle and malic enzyme. Interestingly, malic dehyrogenases 

are encoded by maeA (Yamaguchi, 1979) and maeB (Iwakura et al., 1979) genes, which are 

specific to NAD+ and NADP+ as precursor respectively.  The malic dehydrogenase catalyzed by 

these enzymes cannot be distinguished by 
13

C-MFA, which is constrained by reaction carbon 

stoichiometry. The malic enzyme is thus considered to produce either NADH or NADPH, and 

treated as the measurement errors in cofactor production.  The net productions of ATP, NADH 

and NADPH per glucose consumed were increased 12-20% in the fatty acid production 

condition (Figure S2). 

Overall, 
13

C-MFA reveals flux increase in pyruvate kinase and the TCA cycle to channel 

pyruvate generated mostly through glycolysis towards acetyl-coA and the TCA cycle during 

fatty acid production. In addition, cofactor balancing estimated from the MFA deciphers the 

importance of NADPH and ATP in E. coli fatty acid synthesis. 

3.2. OptForce results 

The reconfiguration in flux distribution in the central carbon metabolism of the first-

generation engineered strain has an impact on the updated set of OptForce predictions, as 

illustrated in Figure 3. All the interventions were not from the fatty-acid synthesis pathway and 
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concentrated around central carbon metabolism, since we had already engineered the fatty acid 

synthesis pathway in the first-generation mutant. While some of the original interventions were 

identified again, entirely new interventions, such as the deletion of C-acyltransferase (GLYAT) 

and acetaldehyde dehydrogenase (ACALD), replaced others in the light of new MFA data. In 

addition, the priority of the interventions was dependent on whether the flux redirection was 

consistent with the worst-case predictions of OptForce. 

The combined effect of the heterologous thioesterase expression and fabZ up-regulation 

pulls more flux in the central metabolism towards acetyl-CoA and fatty acid synthesis, leading to 

40% increases in the TCA cycle activity. As a consequence, the updated OptForce predictions 

suggest that down-regulation of TCA cycle activity and up-regulation of flux towards acetyl-

CoA as the most important interventions for improving medium-chain fatty acid production. 

Removal of succinate dehydrogenase (SUCD) reaction severs the TCA cycle into two separate 

branches. The additional flux can now be routed towards fatty acid synthesis. OptForce suggests 

at-least one-and-half fold up-regulation in pyruvate dehydrogenase (PDH) flux from its reference 

flux to further increase the availability of the precursor acetyl-CoA towards fatty acid. It is worth 

observing that even though these two strategies (i.e. down-regulation of TCA activity and up-

regulation in PDH flux) were identified in the original set of interventions (see Figure 3), the 

present strategy assigns them higher priority in accordance with the new flux distribution. As the 

next intervention, OptForce identifies the removal of either phosphotransacetylase (PTA) or 

acetate kinase (ACK) reactions to prevent the conversion of acetyl-coA towards acetate. The 

lower priority for this intervention when compared with SUCD removal/ PDH up-regulation can 

be explained in terms of the observed redistribution of metabolic fluxes. Acetate production for 

the first generation mutant decreases by 40% relative to the control, without having to impose 

any direct interventions. This indicates that the OptForce imposed safeguards against such a 

“worst-case” re-direction in flux are not warranted and therefore received lower priority in the 

revised predictions. For the final set of interventions, OptForce suggests the removal of glycine 

C-acyltransferase (GLYAT) and acetaldehyde dehydrogenase (ACALD), which was absent in 

the original set of interventions. Removal of GLYAT and ACALD reactions prevents the 

conversion of acetyl-CoA towards biomass precursor threonine and acetaldehyde respectively, 

channeling the flux towards fatty acid synthesis. Further interventions did not provide significant 

improvement in medium-chain fatty acid yield. OptForce predicted a minimum guaranteed yield 
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of 0.24 gm medium-chain fatty acid/gm of glucose after implementation of five interventions, 

which corresponds to 66% of the maximum theoretical yield of the product (see Figure 3). Even 

though the new manipulations do not improve on the yield predicted after the original set of 

interventions, OptForce suggests it can be achieved by one fewer intervention compared to the 

previous strategy. 

The comparison of the new set of suggestions with the old strategy also reveals the 

absence of interventions which were inconsistent with the new flux distribution. The original 

strategy suggested re-routing of glycolytic flux through the ED pathway through down-

regulation of phosphoglycerate mutase (PGM), removal of glucose-6-phosphate isomerase (PGI) 

in glycolysis, and removal of transaldolase (TALA) in the PP pathway. This re-direction was 

suggested to arrest excess ATP generation in the organism that will lead to higher biomass 

production, as well as to generate cofactor NADPH for increased fatty acid pathway activity. 

However, contrary to expectations, the MFA data of the first-generation mutant showed that both 

the PP pathway and ED pathway show 65% decrease in activity, and the gluocse flux was being 

routed through glycolysis instead. A possible reason for this could be the strong pulling force of 

the thioesterase and FabZ, which pulls glucose through the shortest route towards fatty acid 

synthesis, which is the main glycolytic pathway. Consistent with such observations, OptForce 

refines its predictions by not identifying any of these interventions in the updated set of 

manipulations. 

3.3 Intracellular metabolite profiling results 

Metabolomics has complemented genomic, transcriptomic and fluxomic study by 

characterizing the rapid cell response to metabolic flux changes via allosteric or feedback 

inhibition regulations (Mashego et al., 2007). We investigated the relative change in 

concentrations of intracellular metabolites (Figure 4) and amino acids (Figure S3) of our first 

generation E. coli fatty acid producer under the control and fatty acid production condition. The 

strain was grown in shake flasks in M9 minimal media with 1.5% glucose. The strain produces 

up to 2.3 g/L fatty acids after 72 hour cultivation. Under fatty acid production, most of the 

intracellular metabolites in the TCA cycle (i.e. succinate, fumarate and malate) exhibit increase 

in concentration at 48 and 72 hours compared to the control condition. However, citrate 

abundance during fatty acid production is lower than the control. Notably, the increase in the 

concentrations of the TCA cycle metabolites positively correlates with the increase in the TCA 
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cycle fluxes. This accumulation of intracellular metabolites in the TCA cycle diverts carbon 

away from fatty acid production. As a consequence, metabolomics study suggests that down-

regulation of the TCA cycle activity could alleviate the accumulation of intracellular TCA cycle 

metabolites and increase carbon flux toward fatty acid biosynthesis. 

In addition, free amino acid analysis reveals an overall increase trend in concentrations of 

isoleucine, valine and alanine during fatty acid overproduction. Valine and alanine are 

synthesized from pyruvate, while pyruvate and oxaloacetate are the precursor for isoleucine 

formation. Remarkably, the fluxes in central carbon metabolism around pyruvate (pyruvate 

kinase and pyruvate dehydrogenase) and oxaloacetate nodes (malate dehydrogenase and citrate 

synthase) are also increased during fatty acid production. On the contrary, the concentration of 

leucine, which originates from pyruvate and acetyl-CoA, decreases under fatty acid production 

condition. Despite the elevated concentration of free amino acids derived from pyruvate, this 

may suggest low level of acetyl-CoA as the possible bottleneck for fatty acid production. 

Notably, pyruvate dehydrogenase (PDH) is suggested by OptForce to increase the availability of 

acetyl-CoA pool as the precursor for fatty acid synthesis. In addition, glycine concentration is 

lower under fatty acid production, complementing the decrease in biomass fluxes from 3-

phophosglycerate toward serine and glycine. Proline concentration however decreases at 72 hour 

under fatty acid production despite up-regulation in the TCA cycle fluxes. 

3.4 Experimental characterization of metabolic interventions 

The updated OptForce interventions for palmitic acid (medium-chain fatty acid) include 

deletion of succinate dehydrogenase and up-regulation of pyruvate dehydrogenase. We thus 

implemented the prioritized intervention by deleting sdhABCD, which encodes succinate 

dehydrogenase, to redirect carbon flux toward fatty acid biosynthesis instead of the TCA cycle. 

The fatty acid titer experiments were performed in minimal M9 medium with 1.5% glucose 

using ML103 pXZ18Z as the reference strain. Surprisingly, the fatty acid titer of TJ103 pXZ18Z 

(sdhABCD deletion mutant) decreases 25% compared to ML103 pXZ18Z after 48 hours 

cultivation, along with 25% decrease in fatty acid yield (Figure 5). Interruption of the TCA cycle 

will ideally channel most of the acetyl-CoA flux toward fatty acid synthesis. However, deletion 

of succinate dehydrogenase could lead to an incomplete TCA cycle, in which succinate could not 

be oxidized and would accumulate. Extracellular metabolite analysis revealed the accumulation 

of succinate (20mM), acetate (16mM) and pyruvate (5mM) after 48-hour cultivation 
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(Supplementary Figure S4). So instead of the desired effect of diverting carbon to fatty acid 

biosynthesis, it seems that deletion of succinate dehydrogenase resulted in increased carbon flux 

to fermentation by-products. Notably, the acetate accumulation is 3-fold higher for the succinate 

dehydrogenase knockout strain after 48-hour cultivation. This could suggest the by-product 

accumulations might have allosteric regulation on the thioesterase and fatty acid pathway, which 

is not considered in OptForce simulation. 

3.5 RNAseq analysis 

Transcriptome analysis was performed to explore the effect of fabZ overexpression. 

Using a transcriptome of 4,498 annotations generated from EcoCyc gene data, 4,114 genes were 

successfully tested using Cuffdiff. Of these, 146 genes have FDR corrected p-values < 0.05 and 

are determined to exhibit significant change between the control and treatment samples. 116 

genes had positive fold changes that range from 2.45 to 10.72, and 30 genes have negative fold 

changes that range from -2.23 to -4.53. Significantly perturbed transcripts are listed in Table 1, 

while the full transcript data set is listed in Electronic Supplementary Material. NCA was 

performed using connectivity matrices with predicted transcription factor-gene links (Table S4). 

Transcription factors ArgR, CRP, H-NS, NtrC, and RcsAB are predicted to have increased 

activity, while FlhDC, FNR, and LexA are predicted to exhibit decreased activity. 

We first validated the RNAseq result with specific gene markers. No fadD transcripts 

were detected, consistent with our deletion of the fadD gene. Under IPTG induction, fabZ and 

tesB gene are expressed about 2.0-2.6 fold higher than the control (Table 1). Keasling and 

coworkers reported over-expression of FadR transcription factor led to the increase in fatty acid 

production and gene expression in fatty acid pathway (fabB, fabF and accA) (Zhang et al., 

2012b). However, our result shows no significant perturbation in genes involved in fatty acid 

pathway except fabZ. This could be due to the difference in strain genetic engineering, as FadR 

is the global regulator to tune the expression of genes involved in fatty acid biosynthesis, 

degradation and membrane transport (Zhang et al., 2012b).  Nonetheless, the over-expression of 

fabZ gene and FadR transcription factor are distinct strategies to increase the expression of 

specific genes in fatty acid biosynthesis pathway, enhancing the carbon flux toward fatty acid 

production. 

Stress response 
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Perturbations in gene expression related to oxidative hydrogen peroxide stress and acid 

stress were observed under fatty acid production. Genes responding to oxidative stress were up-

regulated, including ydeI, ychH, ygiW, and yodD. These oxidative stress-related genes were 

previously discovered to be altered under the presence of carboxylic acids in E. coli (Lennen et 

al., 2011) and S. cerevisiae (Legras et al., 2010). On the other hand, the glutamate-dependent 

acid resistance genes are significantly increased conferring resistance to extreme acid condition. 

These genes include gadA, gadB, gadC, gadE, gadW and gadX (table 1). The expression of 

hdeAB, which is a periplasmic acid stress chaperone, was up-regulated (>2-fold). hdeAB gene is 

identified to defend against acid stress (Kern et al., 2007).  

E. coli contains several inducible acid resistance systems to survive extreme acid 

environments (Richard and Foster, 2004). For instance, acid resistance system 2 (AR2) is 

induced by extracellular glutamate during growth at acidic minimal medium. AR2 comprises of 

isoforms of glutamate decarboxylase (gadA and gadB), and glutamate-aminobutyric acid 

(GABA) antiporter (gadC). Meanwhile, acid resistance system 3 (AR3) requires extracellular 

arginine and is composed of the acid-inducible arginine decarboxylase adiA and the adiC 

antiporter, which exchanges extracellular arginine for the intracellular agmatine. AR2 and AR3 

protect the cells from acid stress by consuming intracellular protons through amino acid 

decarboxylation to maintain an internal pH compatible with cell viability (Figure 6a). The NCA 

result revealed the up-regulation in ArgR transcription factor, which represses the transcription 

of genes involved in biosynthesis and transport of arginine. This scenario might cause arginine to 

be the limiting substrate for AR3 system.  

Membrane disruption 

Decreased membrane integrity had been identified as a problem during exposure to our 

production of fatty acids (Lennen et al., 2011; Liu et al., 2013; Royce et al., 2013). We observed 

significantly increased expression of several membrane protein genes during production of fatty 

acids (e.g. wza, yneM, yohC, ymgE, yjiY, yaiY, yibI, yibH, yqaE, yfeN and yncL). However, the 

ompF and ompW, which encode outer membrane proteins, showed decreased gene expression. 

On the contrary, NCA result showed up-regulation of Fur, a transcriptional activator for ferric 

uptake regulation. Liu et al. (2013) showed that activation of iron starvation pathways might be a 

symptom of membrane disruption in S. cerevisiae (Liu et al., 2013). Given the perturbed 

activities in membrane protein and iron uptake regulation followed by the lack of improved fatty 
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acid titer despite supplementation (Figure S5), we hypothesize the membrane properties (leakage 

and fluidity) might be disrupted during fatty acid overproduction. Royce and coworkers recently 

studied the membrane fluidity and leakage using E. coli ML103 pZX18Z in MOPS medium in 

bioreactor (Royce et al., 2013). They observed that fatty acid production is associated with an 

increase in membrane leakage; no change in membrane fluidity was observed.  Membrane 

leakage indicates the porosity of the cellular membrane, in which membrane can selectively 

exclude harmful compound and retain valuable metabolites in cell. Membrane leakage thus 

might cause metal ions and cofactors to leak out of the cells and could not maintain optimum 

environment for cell homeostasis.  

4 Summary and discussion 

In this paper, we performed 
13

C metabolic flux analysis on the engineered E. coli strain 

ML103 pXZ18Z which is derived from the first generation integrated approach of OptForce and 

experimental flux analysis of wild type E. coli (Ranganathan et al., 2012) . Incorporated with 

omics tool, we then extended to second round of computationally derived predictions followed 

by characterization of strategies for overproducing fatty acids in E. coli, thus closing the 

metabolic engineering loop. From phenotype analysis, the fatty acid-producing E. coli illustrates 

reduced cell growth with similar glucose consumption rate, despite the increase in fatty acid 

yield. IPTG was applied to induce the cells to express fabZ and R. communis thioesterase, 

leading to increase fluxes toward fatty acid synthesis instead of maximizing the cell growth and 

acetate formation. MFA revealed up-regulation of TCA cycle and down-regulation of PP 

pathway when the cells are producing fatty acids. Fatty acid biosynthesis is known as an energy 

intensive process and also requires reducing equivalents for its elongation cycle.  The TCA cycle 

is a key component of metabolic pathway for ATP generation under aerobic condition. Similarly, 

each complete TCA cycle can generate 2 NADHs and a NADPH. We interpreted the up-

regulation of the TCA cycle functions as the sources for ATP, NADH and NADPH production 

for fatty acids biosynthesis. Despite the role to provide NADPHs for cell growth, the PP pathway 

was down-regulated during fatty acid production. However, the increase in the TCA cycle offset 

its decrease to replenish the NADPHs by isocitrate dehydrogenase. Therefore, the overall 

availability of ATP and NAD(P)H were higher under fatty acid producing condition. The flux 

changes were complemented by the increase in TCA cycle metabolite concentrations. In 

accordance of increasing carbon fluxes through the TCA cycle, we observed accumulation of 
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succinate, fumarate and malate in the TCA cycle. MFA and metabolomics studies depicted the 

increase of TCA cycle to possibly replenish energy and reducing powers for fatty acid 

biosynthesis. On the contrary, the increase of acetyl-CoA fluxes toward the TCA cycle would 

trade off the fluxes toward fatty acid synthesis. Independent to any computational prediction, 

down-regulation of TCA cycle is hypothesized to redirect more carbon fluxes toward fatty acid 

biosynthesis. 

We updated our original OptForce predictions on medium-chain fatty acid production in 

E. coli using MFA information on the first-generation engineered strain. Consistent with 

observations from the new flux distribution, down-regulation of TCA activity and up-regulation 

of the flux towards acetyl-CoA were identified as the most important interventions for increasing 

fatty acid productions. In contrast, the strategy to re-direct of flux through the ED pathway was 

omitted since it was inconsistent with the new flux redirection.  

Independent from this work, San and co-workers used a classical “push and pull” concept 

in metabolic engineering to enhance acetyl-CoA supply toward fatty acid pathway by amplifying 

fabZ, and to minimize the acetyl-CoA drains by deleting sucC in the TCA cycle (San and Li, 

2012). The beneficial interventions are combined to derive the best strain with highest fatty acid 

titer and yield. The results are depicted in Figure 9, in which the combination of fabZ over-

expression and sucC deletion led to the highest titer and yield (~100% theoretical yield). 

However, the study was conducted in LB rich medium. Interestingly, the interruption of the TCA 

cycle, combined with the up-regulation of fatty acid pathway and deletion of beta oxidation, 

agrees with updated OptForce suggestions. Moreover, the down-regulation of 

phosphoglucomutase (pgm) predicted by the original OptForce simulation shows detrimental 

effect on fatty acid titer and yield (Figure 9), reinforcing the advantage of re-deploying OptForce.  

This study highlights the advantages of re-deploying the OptForce procedure in suitable 

intervals of strain construction to adjust with unanticipated changes in flux due to metabolic 

toxicity, and other regulatory effects in the phenotype. The new set of measured fluxes re-

calibrates the phenotype a closer point of reference to the ultimate desired phenotype, which 

improves the accuracy of OptForce predictions. More importantly, we gain valuable insight on 

whether the flux re-distribution is in accordance with the worst-case simulations of OptForce. 

This information aids in weeding out incorrect strategies, as well as re-prioritizing the original 

interventions. Our results show that this iterative method of re-deployment of OptForce results in 
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more accurate prediction of genetic manipulations than a “once-only” implementation of the 

procedure. Furthermore, this method provides a first-of-its-kind protocol for incorporation of 

multiple MFA measurements for constructing an engineered strain. In our present study, we 

measured the fluxes after implementing the first two implementations suggested by OptForce. 

Ideally, it is desirable to re-deploy OptForce after implementing each of the suggested 

interventions. However, such a procedure would require a large number of flux re-

measurements, which is expensive, time-consuming and impractical. In addition, the metabolic 

phenotype may not change much with a single intervention, rendering such a procedure sub-

optimal. Alternatively, interventions located in series along a pathway, or having a common 

impact on the network, could be implemented before re-characterization of the phenotype. For 

example, we measured the fluxes again after implementing both the interventions located in the 

fatty acid synthesis pathway, which had the similar effect of pulling flux towards fatty acid 

synthesis. However, with further experience with this strategy, we expect to gain more insight as 

to the optimum number of interventions for re-deploying OptForce that would yield the best 

results.  

Transcriptomics analysis reveals significant perturbed gene expression profiles under 

overproduction of fatty acid. We identified acid and oxidative stress genes response that might 

be induced by endogenous fatty acid production. Elevation of membrane protein gene and iron 

uptake regulation shed insight on the membrane stress, in which the membrane leakage enhanced 

with increasing fatty acid titer. Lennen et al. performed a thorough transcriptomic study on fatty 

acid-inducible stresses in an engineered fatty acid-producing E. coli strain (Lennen et al., 2011). 

Some changes described in Lennen’s work were observed in our data (Table 1). For example, 

phage shock proteins are induced by the exposure to cell envelope stress (exposure to organic 

solvent, heat and osmotic shock) and by endogenous fatty acids (Lennen et al., 2010). Over-

expression of phage shock proteins stabilizes the membranes (Brissette et al., 1990) and 

increases cell viability under fatty acid overproduction (Lennen et al., 2011). This study also 

exhibited the increase (>1.5 fold) in the transcription of phage shock proteins encoded in 

pspABCDE and pspG during mid-log phase of fatty acid production. In addition, genes in the 

marA/rob/soxS regulon were activated by the endogenously produced fatty acid (Brissette et al., 

1990). These genes might involve in resistance to oxidative stress, antibiotics and organic 

solvents (Zhang et al., 2012b). Our data only showed few genes (spy, hdeA, hdeB and poxB) 
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were up-regulated under fatty acid production (Table 1). Lennen et al. also reported the increase 

in genes involved in energy metabolism, which are in the nuo and cyo operon (Lennen et al., 

2011). However, these genes were not perturbed significantly in our data. Whereas, some genes 

involved in amino acid ATP-binding cassette membrane transporter were up-regulated 

significantly (Table 1). The deviation in observation might be due to differences in growth phase, 

fermentation condition and strain genetic manipulation. The transcriptomic analysis unraveled 

the importance of cell membrane and acid stress as the target for future metabolic engineering 

effort to enhance the robustness of biocatalyst in fatty acid production. Moreover, genes related 

to colanic acid biosynthesis and biofilm formation are significantly up-regulated under fatty acid 

overproduction. These phenomena depicted by transcriptomics analysis will be investigated in 

our future study. Overall, the transcriptome profiling elucidates toxicity effects of endogenous 

fatty acid which is not captured by OptForce. Omics-based data and gene regulation could be 

incorporated into the next-generation OptForce to improve accuracy of predictions. Integration 

of omics data with computational tools can help in the engineering of robust biocatalysts for 

biorenewable chemicals production, and provide a paradigm to a shorter turnover for strain 

development and cost saving from an industrial standpoint. 
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characterization and accuracy of OptForce predictions. 
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Figure 2.  In vivo metabolic flux distribution for E. coli ML103 pXZ18Z under control condition 

(black font) and fatty acid producing condition (blue font) as calculated via isotopomer balancing 

using NMR2Flux software. Estimated fluxes are normalized to 100 mmol/g DCW.hr based on 

the average specific glucose uptake rates. The colored arrows indicate a significant difference 

(>20%) between the control and fatty acid production condition. The flux values shown are 

average from two replicates ± standard deviation.  
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Figure 3. Original and updated OptForce interventions and their impact on product yield for 

overproduction of medium-chain fatty acids in E. coli. A) Original and updated interventions as 

predicted by OptForce. The dotted and solid arrows indicate previous and updated interventions 

respectively. B) Impact of each intervention of medium-chain fatty acid yield. The interventions 

on top and bottom represent original and updated OptForce predictions respectively.  
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) under IPTG induction. The total fatty acids in uninduced strain were always less 

than 300mg/L. (b) The relative concentration of intracellular metabolites in the TCA cycle of E. 
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++
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++

) under control condition and fatty acid 

producing (induced by IPTG) condition. The concentration of intracellular metabolites are 
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C. Error bars represent standard deviation of 
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135 

 

 

(a) 

 
(b) 

 
Figure 5. (a) Accumulation of free fatty acids and (b) fatty acid yield over glucose by 

ML103pXZ18z (ΔfadD, fabZ
+
) and TJ103 PXZ18Z (ΔfadD, fabZ

++
, ∆sdhABCD). The strains 

were grown in shake flasks in M9 minimal medium with 1.5% glucose at 30
o
C and 250rpm, and 

sampled at 24 and 48 hours. Error bars represent standard deviation of at least triplicate cultures. 
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Figure 6. Effect of different genetic modifications on the fatty acid titer and yield reported by 

(San and Li, 2012). All the genetic modifications were carried out in E. coli strain ML103 

(ΔfadD). An acyl-ACP thioesterase (pXZ18) was overexpressed in engineered strains to test the 

effect of the gene knockout (Δ) or overexpression (++). The strains were cultured in LB media 

with 1.5% glucose and sampled at 48 hours.  
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Table 1. Relative gene transcript changes measured by RNAseq for ML103 pXZ18Z under the 

control versus fatty acid over-production condition. The genes were selected based on their 

function group, which was referred from Ecocyc data base. The magnitude of transcriptional fold 

change was color-coded, in which red and green represent an increase and a decrease in gene 

expression respectively. q-value represents False Discovery Rate (FDR) corrected p-value. The 

strain was cultured in M9 minimal medium with 1.5% glucose in fermentors.  

gene b-num log2(fold_change) p-value q-value 

Colanic Acid Production     

wcaE b2055 6.68 0.000 0.000 

wcaF b2054 5.82 0.000 0.000 

wcaD b2056 5.55 0.000 0.001 

wcaI b2050 5.53 0.000 0.000 

wcaB b2058 5.40 0.010 0.154 

wcaJ b2047 5.40 0.000 0.000 

wcaC b2057 5.37 0.000 0.002 

wcaA b2059 5.27 0.000 0.000 

wcaK b2045 4.91 0.000 0.002 

wcaL b2044 3.55 0.001 0.037 

wcaM b2043 3.14 0.000 0.002 

wzb b2061 5.74 0.000 0.000 

wzc b2060 5.42 0.000 0.000 

wza b2062 5.42 0.000 0.000 

wzxC b2046 4.92 0.000 0.000 

gmm b2051 6.66 0.000 0.000 

gmd b2053 6.17 0.000 0.000 

cpsG b2048 5.82 0.000 0.000 

cpsB b2049 5.25 0.000 0.000 

fcl b2052 6.57 0.000 0.000 

mcbA b0806 3.74 0.000 0.001 

Biofilm Formation 

  yjbE b4026 8.34 0.000 0.000 

bdm b1481 5.28 0.000 0.000 

ydeI b1536 4.00 0.000 0.000 

ychH b1205 3.34 0.000 0.009 

ycfJ b1110 3.09 0.000 0.013 

ariR b1166 3.14 0.000 0.019 

hha b0460 1.72 0.029 0.286 

tomB b0461 2.26 0.015 0.196 

bssR b0836 3.68 0.001 0.035 

bssS b1060 2.34 0.022 0.248 
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Table 1 continued 

Stress Response 

  ydeI b1536 4.00 0.000 0.000 

ychH b1205 3.34 0.000 0.009 

ygiW b3024 3.09 0.001 0.033 

yodD b1953 3.07 0.001 0.038 

gadA b3517 3.32 0.004 0.088 

gadB b1493 3.27 0.007 0.126 

gadC b1492 3.22 0.005 0.108 

gadE b3512 2.88 0.003 0.064 

gadW b3515 1.75 0.059 0.423 

gadY b4452 1.65 0.106 0.550 

gadX b3516 2.12 0.026 0.266 

hdeD b3511 2.43 0.008 0.141 

hdeA b3510 2.30 0.031 0.297 

hdeB b3509 2.28 0.027 0.273 

Membrane Protein 

  wza b2062 5.42 0.000 0.000 

yneM b4599 4.42 0.000 0.000 

yohC b2135 4.38 0.000 0.001 

ymgE b1195 3.65 0.000 0.002 

yjiY b4354 3.37 0.000 0.002 

yaiY b0379 3.16 0.000 0.005 

yibI b3598 3.01 0.000 0.010 

yibH b3597 2.78 0.001 0.028 

yqaE b2666 2.74 0.001 0.025 

yfeN b2408 2.52 0.001 0.036 

yncL b4598 2.45 0.001 0.035 

b1256 ompW -3.07 0.000 0.002 

b0929 ompF -3.26 0.007 0.120 

Fatty Acid Biosynthesis 

  b0180 fabZ 2.62 0.015 0.195 

b0452 tesB 2.00 0.011 0.164 

Phage Shock Protein 

  pspA b1304 2.69 0.009 0.143 

pspB b1305 2.42 0.092 0.517 

pspC b1306 2.62 0.037 0.316 

pspD b1307 2.29 0.004 0.085 

pspE b1308 1.64 0.033 0.302 

pspG b4050 1.63 0.034 0.305 

MarA/Rob/SoxS regulon 
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Table 1 continued 

hdeB b3509 2.27 0.027 0.272 

hdeA b3510 2.30 0.032 0.295 

poxB b0871 2.05 0.046 0.364 

spy b1743 4.00 0.000 0.000 

Energy Metabolism/Transporter 

  ddpA b1487 4.54 0.000 0.000 

glnH b0811 4.19 0.000 0.007 

argT b2310 4.11 0.000 0.005 

ydcS b1440 3.77 0.000 0.007 

ydcT b1441 3.21 0.000 0.011 

yhdW b3268 5.22 0.000 0.000 

yhdX b3269 3.14 0.000 0.001 

yhdY b3270 2.57 0.000 0.021 

yhdZ b3271 2.04 0.004 0.086 

rbsA b3749 -2.51 0.001 0.033 

artJ b0860 -3.06 0.001 0.022 

 

 

 

Table 2. Transcription factors significantly perturbed by IPTG induction for fatty acid production 

as determined by network component analysis 

TF  TFA125  TFA381  Description  

ArgR  2.78  2.78  Arginine repressor  

CRP  3.05  3.05  cAMP receptor protein/catabolite gene activator protein  

FlhDC  -2.51 -2.51  FlhDC DNA-binding transcriptional dual regulator  

FNR  -3.23  -3.23  FNR DNA-binding transcriptional dual regulator  

Fur  3.08  3.08  Ferric Uptake Regulation  

H-NS  -2.42  -2.42  Histone-like nucleoid structuring protein  

LexA  4.44  4.22  LexA DNA-binding transcriptional repressor  

NtrC  4.99  4.61  NtrC transcriptional dual regulator  

RcsAB  2.78  2.78  Regulator capsule synthesis B  
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Supporting information 

Figure S1. Selected physiological states comparison of E. coli ML103 pXZ18Z (∆fadD, fabZ
++

 

and thioesterase
++

) under control condition and fatty acid producing (induced by 1mM IPTG) 

condition. The strains were grown aerobically in fementor in M9 minimal medium with 1% 

glucose at 30
o
C. Error bars represent standard deviation of at least triplicate cultures. An asterisk 

indicates significantly different values from the control (p-value <0.05). 

Figure S2. Cofactor (NADH, NADPH) and energy (ATP) production in central carbon 

metabolism. The red triangle represents NADH, the purple triangle represents NADPH and the 

green rectangular represents ATP. The total production in central carbon metabolism for control 

and fatty acid producing conditions is show in the graph.  Malic enzyme activity involves 

production of both NADH and NADPH, the overall reducing power production can be captured 

by NAD(P)H. 

Figure S3. Relative concentration of intracellular free amino acids of E. coli ML103 pXZ18Z 

(∆fadD, fabZ
++

, thioesterase
++

) under control condition and fatty acid producing (induced by 

1mM IPTG) condition. The strains were grown in shaker flasks using M9 minimal medium with 

1.5% glucose at 30
o
C. Error bars represent standard deviation of at least triplicate cultures. 

Figure S4. Accumulation of acetate, succinate and pyruvate by TJ103 pXZ18Z (ΔsdhABCD, 

ΔfadD, fabZ
++

, thioesterase
++

).  The strains were grown in shake flasks in M9 minimal medium 

with 1.5% glucose at 30
o
C and 250rpm, and sampled at 24 and 48 hours. Error bars represent 

standard deviation of at least triplicate cultures.  Asterisk represents p –value <0.05 

Table S1. The primers used for TJ103 strain construction with succinate dehydrogenase 

(sdhABCD) and acyl-CoA synthetase (fadD) knockout 

Table S2. Comparison of flux values of E.coli ML103 pXZ18Z between the control and fatty 

acid producing condition 

Table S3. Measured and simulated isotopomer distributions of proteinogenic amino acids from 

2D-NMR 
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and thioesterase
++

) under control condition and fatty acid producing (induced by 1mM IPTG) 

condition. The strains were grown aerobically in fementor in M9 minimal medium with 1% 
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o
C. Error bars represent standard deviation of at least triplicate cultures. An asterisk 

indicates significantly different values from the control (p-value <0.05). 
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Fi

gure S2 Cofactor (NADH, NADPH) and energy (ATP) production in central carbon metabolism. 

The red triangle represents NADH, the purple triangle represents NADPH and the green 

rectangular represents ATP. The total production in central carbon metabolism for control and 

fatty acid producing conditions is show in the graph.  Malic enzyme activity involves production 

of both NADH and NADPH, the overall reducing power production can be captured by 

NAD(P)H. 
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Figure S3. Relative concentration of intracellular free amino acids of E. coli ML103 pXZ18Z 

(∆fadD, fabZ
++

, thioesterase
++

) under control condition and fatty acid producing (induced by 

1mM IPTG) condition. The strains were grown in shaker flasks using M9 minimal medium with 

1.5% glucose at 30
o
C. Error bars represent standard deviation of at least triplicate cultures. 
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Figure S4. Accumulation of acetate, succinate and pyruvate by TJ103 pXZ18Z (ΔsdhABCD, 

ΔfadD, fabZ
++

, thioesterase
++

).  The strains were grown in shake flasks in M9 minimal medium 

with 1.5% glucose at 30
o
C and 250rpm, and sampled at 24 and 48 hours. Error bars represent 

standard deviation of at least triplicate cultures.  Asterisk represents p –value <0.05. 
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Figure S5. Accumulation of free fatty acids by ML103 pXZ18z (ΔfadD, fabZ

+
) with the 

supplementation of 0.5mM ferrous chloride (Fe2+) and 0.5mM ferrous chloride (FE3+). The 

strains were grown in shake flasks in M9 minimal medium with 1.5% glucose at 30
o
C and 

250rpm, and sampled at 24 and 48 hours. Error bars represent standard deviation of at least 

triplicate cultures.  Asterisk represents p –value <0.05. 

 

 

 

Table S1. The primers used for TJ103 strain construction with succinate dehydrogenase 

(sdhABCD) and acyl-CoA synthetase (fadD) knockout 

Primer Sequence 

sdh-UpF (5’-AAGAGGGGAAAACCTGGGTA-3’) 

Sdh-UpR (5’-GAATAACGCCCACATGCTGT-3’) 

Sdh-DnF (5’- AAGCGTCGCATCAGGCAAC-3’) 

Sdh-DnR (5’-GGTCGGAGATCGTTGAAGAG-3’) 

Sdh-F (5’-TGTGCCCGTAGTCCCCAGGGAATAATAAGAAC 

AGCATGTGGGGTTATTCATGGGAATTAGCCATG GTCC-3’) 

Sdh-R (5’-CGGCACTGGTTGCCTGATGCGACGCTTGCGCG 

TCTTATCAGGCCTACGGTGTGTAGGCTGGAGCT GCTTC-3’) 

P1 (5’-ACCCAGCGTTGTAACGTGTC-3’) 

P4 (5’- ACTTCGCCGTGGATACTACCA-3’) 
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Table S2.  Metabolic pathways represented by stoichiometry, atom transition, and involved genes from Ecocyc database 

(http://ecocyc.org). 

Reaction name Stoichiometry chemistry Atom transition Gene 

Glycolysis pathway 

pts Glu+PEP → G6P+PYR abcdef+ABC → abcdef+ABC ptsG,manZ,ptsH,ptsP 

pgi G6P  →  F6P abcdef  → abcdef Pgi 

fbp F6P  → FBP 
 

abcdef  → abcdef pfkA,pfkB 

fba FBP → T3P+T3P abcdef  → cba+def fbaA,fbaB 

tpi T3P → G3P 
 

abc → abc 
 

tpiA 

pgk G3P → 3PG 
 

abc → abc 
 

pgk 

eno 3PG → PEP 
 

abc → abc 
 

eno 

pyk PEP →  PYR abc → abc 
 

pykF/pykA 

Entner Doudoroff pathway 

eda 6PG → PYR+T3P abcdef  →  abc+def eda 

Pentose phosphate pathway  

zwf G6P → 6PG abcdef  → abcdef zwf 

rpi 6PG → R5P+CO2 abcdef → bcdef+a gnd,rpe,rpiA,rpiB 

tkt R5P+R5P → S7P+T3P abcde+ABCDE → abABCDE+cde tktA,tktB 

tktAB R5P+E4P → F6P+T3P abcde+ABCD → abABCD+cde tktA,tktB 

talf S7P+T3P → F6P+E4P abcdefg+ABC → abcABC+defg talA,talB 

TCA cycle 

ace PYR → ACCOA+CO2 abc → bc+a lpd,aceF,aceE 

icd ACCOA+OAA → AKG+CO2 ab+ABCD → DCBba+A icdB,icd 

suc AKG → SUCC+CO2 abcde → bcde+a lpd,sucA,sucB 

frd SUCC → FUM abcd → abcd sdhA,sdhB,sdhC,sdhD  

fum FUM → MAL abcd → abcd fumA,fumB,fumC 

mdh MAL → OAA abcd → abcd mqo,mdh 
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Table S2 continued 

Acetate production 

ackf ACCOA → AC ab → ab pta,ackA,acs 

Pox PYR → AC + CO2 abc →bc +a poxB 

Anaplerotic pathway 

ppc PEP+CO2 → OAA abc+A → abcA ppc 

aceA ACCOA+OAA → GOx+SUCC ab+ABCD → DC+ABba aceA 

aceB ACCOA+GOX →  MAL ab+AB → Abba aceB 

ana Mal → PYR+CO2 abcd → abc+d maeA,maeB 

C1 metabolism 

ser 3PG → Ser abc → abc serA,serC,serB 

gly Ser → Gly+C1 abc → ab+c glyA 

Amino acid biosynthesis and metabolic pathway 

SdaRf Ser → PYR abc → abc sdaA,sdaB,tdcB,tdcG 

thr Asp → Thr abcd → abcd thrC 

thrgly Thr → Gly+ACCOA abcd → ab+cd ItaE 

GluDy AKG  → Glut abcde → abcde gdhA 

GlnDy Glut → Gln abcde → abcde glnA 

GLUSy AKG+Gln → Glut+Glut abcde+ABCDE → abcde+ABCDE gltB,gltD 

ALATA AKG+Ala → Glut+PYR abcde+ABC → abcde+ABC alaA,alaB,alaC 

ASPTA AKG+Asp → Glut+OAA abcde+ABCD → abcde+ABCD aspC 

Ala Ala → PYR abc → abc dadA 

Pro Glut → Pro abcde → abcde proC 

argA Glut+ACCOA →acGlut  abcde+AB → abcdeAB argA 

argD acGlut+Glut→acOrn+AKG 
abcdefg+ABCDE 

→abcdefg+ABCDE 
argD 

argE acOrn→Orn+AC abcdefg →abcde+fg argE 

 

argH Orn+Asp→Arg+Fum abcde+ABCD →abcde+ABCD argH 
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Table S3. Comparison of flux values of E. coli ML103 pXZ18Z (∆fadD, fabZ+, thioesterase+) 

under control and fatty acid producing (induced by 1mM IPTG) condition. The flux values are 

based on 100 mol/g/hr glucose uptake rate. The average and standard deviation is obtained from 

a duplicate of 13C flux experiments 

reaction name stoichiometry chemistry 
Control 1mM IPTG 

Average  SD Average  SD 

Glycolysis pathways       

pts Glu+PEP → G6P+PYR 100.00 0.00 100.00 0.00 

pgi G6P  →  F6P 91.60 1.11 96.93 0.02 

 
reversibility 0.27 0.15 0.14 0.11 

fbp F6P  → FBP 90.98 1.09 96.18 0.26 

 
reversibility 0.46 0.20 0.57 0.30 

fba FBP → T3P+T3P 90.98 1.09 96.18 0.26 

 
reversibility 0.40 0.24 0.57 0.22 

tpi T3P → G3P 181.62 0.74 191.77 0.84 

 
reversibility 

 
0.37 0.08 0.51 0.09 

pgk G3P → 3PG 181.62 0.74 191.77 0.84 

 
reversibility 0.37 0.08 0.51 0.09 

eno 3PG → PEP 172.34 0.08 184.83 1.05 

 
reversibility 0.43 0.05 0.35 0.09 

pyk PEP →  PYR 42.74 0.05 67.85 1.88 

 
reversibility 0.76 0.03 0.77 0.04 

Entner Doudoroff pathway   
    

eda 6PG → PYR+T3P 1.48 1.45 0.59 0.14 

Pentose phosphate pathway    
    

zwf G6P → 6PG 7.34 1.14 2.47 0.05 

rpi 6PG → R5P+CO2 5.86 0.31 1.89 0.10 

tkt R5P+R5P → S7P+T3P 0.88 0.04 0.22 0.05 

 
reversibility 

 
0.71 0.32 0.94 0.01 

tktAB R5P+E4P → F6P+T3P -1.14 0.04 -0.79 0.15 

 
reversibility 

 
0.47 0.49 0.14 0.04 

talf S7P+T3P → F6P+E4P 0.88 0.04 0.22 0.05 

 
reversibility   0.31 0.39 0.33 0.22 

TCA cycle     
    

ace PYR → ACCOA+CO2 141.47 1.17 169.65 3.81 

icd ACCOA+OAA → AKG+CO2 55.30 3.34 81.80 3.71 

suc AKG → SUCC+CO2 49.44 3.63 78.71 4.12 

frd SUCC →FUM 51.80 3.75 79.45 4.18 

 
reversibility 

 
0.88 0.03 0.54 0.09 

 
scrambling 

 
0.88 0.04 0.35 0.01 

fum FUM→MAL 
 

53.30 3.73 80.25 4.10 

 
reversibility 

 
0.68 0.08 0.36 0.01 

 
scrambling 

 
0.824 0.073 0.10 0.01 
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Table S3 continued 

mdh MAL → OAA 44.83 2.50 74.22 3.46 

 
reversibility 

 
0.19 0.06 0.13 0.01 

Acetate production   
    

ackf ACCOA → AC 60.52 0.29 37.65 0.28 

 
reversibility 0.56 0.20 0.73 0.02 

ac AC → ACout 4.16 1.95 2.50 0.09 

Anaplerotic pathway   
    

ppc PEP+CO2 → OAA 26.85 0.16 15.43 0.67 

 
reversibility 

 
0.15 0.12 0.49 0.07 

ana Mal → PYR+CO2 2.36 0.12 0.74 0.05 

aceA ACCOA+OAA →GOx+SUCC 2.36 0.12 0.74 0.05 

aceB ACCOA+GOX →  MAL 10.82 1.35 6.77 0.70 

C1 metabolism     
    

ser 3PG → Ser 6.48 0.69 5.46 0.00 

gly Ser → Gly+C1 0.35 0.03 0.14 0.01 

 
reversibility   0.98 0.01 0.99 0.00 

Amino acid biosynthesis pathway 
    

SdaRf Ser → PYR 3.74 0.35 4.18 0.14 

 
reversibility 0.93 0.00 0.59 0.12 

thr Asp→ Thr 4.06 0.18 1.87 0.29 

thrgly Thr → Gly+ACCOA 2.75 0.10 1.21 0.20 

 
reversibility 0.05 0.01 0.04 0.00 

GluDy AKG  → Glut 23.42 1.09 13.52 1.25 

 
reversibility 

 
0.54 0.03 0.57 0.03 

GlnDy Glut → Gln 1.14 0.11 0.24 0.28 

 
reversibility 

 
0.53 0.01 0.48 0.05 

GLUSy AKG+Gln → Glut+Glut -0.22 0.03 -0.47 0.18 

ALATA AKG+Ala → Glut+PYR -3.96 0.10 -3.21 0.10 

 
reversibility 

 
0.43 0.01 0.46 0.03 

ASPTA AKG+Asp → Glut+OAA -12.20 0.72 -6.13 0.86 

 
reversibility 

 
0.95 0.05 0.69 0.02 

Ala Ala → PYR 1.26 0.10 1.81 0.10 

Pro Glut → Pro 1.18 0.11 0.61 0.09 

 
reversibility 

 
0.53 0.01 0.50 0.04 

argA Glut+ACCOA→acGlut 1.50 0.02 0.80 0.07 

argD acGlut+Glut→acOrn+AKG+AKG 
 

1.50 0.80 0.07 0.26 

 
reversibility 0.50 0.03 0.50 0.05 

argE acOrn->Orn +AC 1.50 0.02 0.80 0.07 

argH Orn+Asp->ARG+FUM   1.50 0.80 0.07 0.29 

 
reversibility 

 
0.52 0.10 0.20 0.01 

  scrambling 
 

0.384 0.028 0.23 0.05 
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Table S3 continued 

Transport pathway   
    

co2 CO2  → CO2out 240.20 10.96 325.89 12.82 

Biomass synthesis pathway   
    

G6pb G6P -> biomass 1.06 0.03 0.59 0.07 

R5pb R5P -> biomass 5.24 0.37 2.23 0.34 

E4pb E4P ->biomass 2.02 0.08 1.01 0.10 

T3pb T3P ->biomass 0.67 0.03 0.38 0.04 

PEPb PEP ->biomass 2.75 0.13 1.55 0.16 

PYRb PYR ->biomass 10.45 0.42 5.84 0.65 

ACCOAb ACCOA ->biomass 22.19 2.20 49.12 0.41 

AKGb AKG -> biomass 0.32 0.01 0.17 0.02 

OAAb OAA -> biomass 1.82 0.08 0.97 0.12 

3PGb 3PG -> biomass 2.80 0.13 1.47 0.20 

F6Pb F6P ->biomass 0.36 0.01 0.19 0.03 

C1b C1 ->biomass 0.35 0.03 0.14 0.01 

serb Ser ->biomass 2.39 0.31 1.14 0.13 

glyb Gly ->biomass 3.11 0.14 1.35 0.21 

thrb Thr ->biomass 1.30 0.08 0.66 0.10 

glutb Glut ->biomass 1.50 0.06 0.80 0.12 

glunb Glu ->biomass 1.37 0.08 0.71 0.11 

alab Ala ->biomass 2.70 0.19 1.40 0.20 

aspb Asp->biomass 1.32 0.13 0.63 0.09 

argb Arg -> biomass 1.50 0.02 0.80 0.07 

prob Pro ->biomass 1.18 0.11 0.61 0.09 

(1) Abbreviation: Glu, Glucose; G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; T3P, Triose-3-phosphate; 3PG, 3-

phosphoglycerate;  PEP, Phosphoenolpyruvate; PYR, Pyruvate; ACCOA, Acetate-CoA; AKG, Ketoglutarate; SUCC, 

Succinate; MAL, Malate; OAA,  Oxaloacetate; 6PG, 6-P-gluconate; R5P, Ribose-5-phosphate; S7P, Sedoheptulose-7-

phosphate; E4P, Erythronate-4-phosphate; GOX, Glyoxylate; AC, Acetate; acGlut,acetyl glutamate; acOrn, acetyl ornithine; 

Orn, ornithine;  CO2, carbon dioxide; Ser, Serine; Gly, Glycine; Arg, Arginine; Pro, Proline; Asp, Aspartate; Thr, 

Threonine; Glut, Glutamate; Gln, Glutamine; Arg, Arginine. 

(2) Reversibility (R) and the extent of scrambling.  
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Table S4. Measured and simulated isotopomer distributions of proteinogenic amino acids from 2D-NMR for E.coli ML103 pXZ18Z 

strain grown in M9 media under the control and fatty acid producing condition. 

Cross peak Control 1 Control 2 IPTG 1 IPTG 2 
   

(multiplet) Expt Sim Expt Sim Expt Sim Expt Sim Precursor Isotopomer 
 

Ala α (s) 0.143 0.070 0.051 0.074 0.063 0.087 0.086 0.079 Pyr [123]  

Ala α (d1) 0.104 0.079 0.078 0.069 0.070 0.058 0.093 0.051 Pyr [123]  

Ala α (d2) 0.038 0.051 0.091 0.040 0.085 0.052 0.057 0.045 Pyr [123]  

Ala α (dd) 0.715 0.801 0.780 0.817 0.782 0.804 0.763 0.825 Pyr [123]  

Ala β (s) 0.635 0.666 0.671 0.667 0.669 0.661 0.661 0.663 Pyr [x23]  

Ala β (d) 0.365 0.334 0.329 0.333 0.331 0.339 0.339 0.337 Pyr [x23]  

Arg β (s) 0.233 0.209 0.222 0.193 0.193 0.179 0.205 0.178 AKG [x234x]  

Arg β (d) 0.489 0.497 0.492 0.493 0.481 0.488 0.483 0.488 AKG [x234x] + [x234x]  

Arg β (t) 0.278 0.294 0.286 0.315 0.326 0.333 0.312 0.334 AKG [x234x]  

Arg δ (s) 0.104 0.172 0.098 0.169 0.083 0.151 0.079 0.140 AKG [xxx45]  

Arg δ (d) 0.896 0.828 0.902 0.831 0.917 0.849 0.921 0.860 AKG [xxx45]  

Asp α (s) 0.277 0.267 0.268 0.264 0.277 0.243 0.271 0.244 OAA [123x]  

Asp α (d1) 0.186 0.188 0.203 0.180 0.153 0.193 0.155 0.191 OAA [123x]  

Asp α (d2) 0.189 0.244 0.145 0.218 0.186 0.220 0.186 0.225 OAA [123x]  

Asp α (dd) 0.347 0.302 0.384 0.338 0.385 0.344 0.388 0.340 OAA [123x]  

Asp β (s) 0.332 0.349 0.334 0.381 0.367 0.385 0.368 0.381 OAA [x234]  

Asp β (d1) 0.212 0.267 0.227 0.256 0.230 0.251 0.224 0.255 OAA [x234]  

Asp β (d2) 0.212 0.198 0.215 0.195 0.186 0.207 0.185 0.204 OAA [x234]  

Asp β (dd) 0.243 0.187 0.223 0.168 0.217 0.157 0.224 0.160 OAA [x234]  

Glu β (s) 0.178 0.209 0.198 0.193 0.124 0.179 0.140 0.178 Glut [x234x]  

Glu β (d) 0.472 0.497 0.516 0.493 0.441 0.488 0.438 0.488 Glut [x234x] + [x234x]  

Glu β (t) 0.296 0.294 0.287 0.315 0.360 0.333 0.336 0.334 Glut [x234x]  

Glu γ (s) 0.388 0.356 0.367 0.389 0.439 0.404 0.445 0.399 Glut [xx345]  

Glu γ (d1) 0.244 0.307 0.195 0.275 0.192 0.256 0.199 0.262 Glut [xx345]  

Glu γ (d2) 0.223 0.181 0.282 0.197 0.249 0.208 0.240 0.204 Glut [xx345]  

Glu γ (dd) 0.145 0.156 0.157 0.139 0.120 0.132 0.116 0.134 Glut [xx345]  

Gly α (s) 0.166 0.214 0.161 0.214 0.191 0.193 0.189 0.203 Gly [12x]  

Gly α (d) 0.834 0.786 0.839 0.786 0.809 0.807 0.811 0.797 Gly [12x]  
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Table S4 continued 
His β (s) 0.081 0.066 0.083 0.045 0.078 0.047 0.078 0.044 R5P [x234x]  

His β (d1) 0.473 0.489 0.492 0.513 0.527 0.531 0.504 0.517 R5P [x234x]  

His β (d2) 0.018 0.016 0.012 0.009 0.001 0.009 0.014 0.008 R5P [x234x]  

His β (dd) 0.428 0.429 0.414 0.434 0.393 0.413 0.404 0.431 R5P [x234x]  

Ile α (s) 0.341 0.399 0.344 0.371 0.305 0.352 0.320 0.359 OAA/Pyr [12xx]·[x2x]  

Ile α (d1) 0.369 0.389 0.395 0.409 0.362 0.415 0.399 0.411 OAA/Pyr [12xx]·[x2x]  

Ile α (d2) 0.170 0.107 0.147 0.105 0.133 0.107 0.104 0.107 OAA/Pyr [12xx]·[x2x] 
 

Ile α (dd) 0.120 0.104 0.114 0.115 0.200 0.126 0.177 0.122 OAA/Pyr [12xx]·[x2x] 
 

Ile γ1(s) 0.479 0.488 0.487 0.499 0.478 0.490 0.464 0.490 Pyr/OAA [x2x]·[xx34]  

Ile γ1(d) 0.416 0.432 0.413 0.422 0.414 0.426 0.413 0.426 Pyr/OAA [x2x]·[xx34] +[x2x]·[xx34]  

Ile γ1(t) 0.105 0.081 0.100 0.079 0.107 0.084 0.123 0.083 Pyr/OAA [x2x]·[xx34]  

Ile δ (s) 0.456 0.426 0.451 0.431 0.445 0.389 0.461 0.387 OAA [xx34] 
 

Ile δ (d) 0.544 0.574 0.549 0.569 0.555 0.611 0.539 0.613 OAA [xx34] 
 

Ile γ2 (s) 0.618 0.666 0.608 0.667 0.631 0.661 0.633 0.663 Pyr [x23] 
 

Ile γ2 (d) 0.382 0.334 0.392 0.333 0.369 0.339 0.367 0.337 Pyr [x23] 
 

Leu α (s) 0.465 0.523 0.462 0.518 0.437 0.506 0.458 0.510 ACoA/Pyr [12]·[x2x] 
 

Leu α (d1) 0.287 0.266 0.277 0.262 0.234 0.261 0.262 0.261 ACoA/Pyr [12]·[x2x] 
 

Leu α (d2) 0.143 0.140 0.158 0.146 0.213 0.154 0.162 0.152 ACoA/Pyr [12]·[x2x] 
 

Leu α (dd) 0.106 0.071 0.104 0.074 0.116 0.079 0.119 0.078 ACoA/Pyr [12]·[x2x] 
 

 0.382 0.366 0.379 0.343 0.356 0.317 0.375 0.316 ACoA/Pyr [x2]·[x2x].[x2x] 

 0.472 0.521 0.486 0.534 0.506 0.546 0.495 0.548 ACoA/Pyr [x2]·[x2x].[x2x]+[x2]·[x2x].[x2x] 

 0.146 0.113 0.135 0.123 0.138 0.137 0.130 0.135 ACoA/Pyr [x2]·[x2x].[x2x] 

Leu δ1 (s) 0.709 0.666 0.688 0.667 0.688 0.661 0.709 0.663 Pyr [x23] 

Leu δ1 (d) 0.291 0.334 0.312 0.333 0.312 0.339 0.291 0.337 Pyr [x23] 

Leu δ2 (s) 0.813 0.789 0.810 0.780 0.802 0.767 0.829 0.770 Pyr [x2x]·[xx3] 

Leu δ2 (d) 0.187 0.211 0.190 0.220 0.199 0.233 0.171 0.230 Pyr [x2x]·[xx3] 

Lys β (s) 0.369 0.384 0.388 0.410 0.425 0.419 0.426 0.417 OAA/Pyr ½{[x234] + [x23]·[xxx4]} 

Lys β (d) 0.440 0.461 0.434 0.450 0.414 0.450 0.410 0.450 OAA/Pyr ½{[x234] + [x234] + 

          [x23]·[xxx4] + [x23]·[xxx4]} 

Lys β (t) 0.192 0.155 0.178 0.140 0.161 0.131 0.164 0.133 OAA/Pyr ½{[x234] + [x23]·[xxx4]}  

Lys γ (s) 0.155 0.197 0.182 0.187 0.153 0.160 0.110 0.158 OAA/Pyr [xx34]·[xx3]  
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Table S4 continued 
Lys γ (d) 0.525 0.494 0.515 0.491 0.522 0.480 0.529 0.479 OAA/Pyr [xx34]·[xx3] + [xx34]·[xx3] 

Lys γ (t) 0.320 0.310 0.303 0.322 0.326 0.359 0.360 0.363 OAA/Pyr [xx34]·[xx3] 

Lys δ (s) 0.364 0.384 0.394 0.410 0.412 0.419 0.396 0.417 OAA/Pyr ½{[x234] + [x23]·[xxx4]} 

Lys δ (d) 0.443 0.461 0.428 0.450 0.408 0.450 0.420 0.450 OAA/Pyr ½{[x234] + [x234] + 

          [x23]·[xxx4] + [x23]·[xxx4]} 

Lys δ (t) 0.193 0.155 0.178 0.140 0.180 0.131 0.184 0.133 OAA/Pyr ½{[x234] + [x23]·[xxx4]} 

Phe α (s) 0.062 0.065 0.050 0.068 0.050 0.081 0.056 0.074 PEP [123] 
 

Phe α (d1) 0.028 0.062 0.020 0.056 0.038 0.050 0.063 0.043 PEP [123] 
 

Phe α (d2) 0.093 0.045 0.083 0.031 0.082 0.045 0.074 0.038 PEP [123] 
 

Phe α (dd) 0.818 0.828 0.847 0.845 0.831 0.824 0.807 0.846 PEP [123] 
 

Phe (s) 0.507 0.524 0.481 0.521 0.450 0.509 0.475 0.513 PEP [x23].[2x] 

Phe (d1) 0.268 0.264 0.294 0.261 0.292 0.261 0.282 0.260 PEP [x23].[2x] 

Phe (d2) 0.133 0.141 0.124 0.145 0.181 0.152 0.171 0.150 PEP [x23].[2x] 

Phe  (dd) 0.092 0.071 0.102 0.073 0.077 0.078 0.073 0.076 PEP [x23].[2x] 

Pro (s) 0.145 0.209 0.146 0.193 0.128 0.179 0.123 0.178 PRO [x234x] 

Pro  (d) 0.508 0.497 0.514 0.493 0.486 0.488 0.493 0.488 PRO [x234x] + [x234x] 

Pro  (t) 0.347 0.294 0.340 0.315 0.386 0.333 0.384 0.334 PRO [x234x] 

Pro γ(s) 0.360 0.356 0.336 0.389 0.396 0.404 0.397 0.399 PRO [xx345] 

Pro γ(d) 0.472 0.488 0.499 0.472 0.441 0.464 0.438 0.467 PRO [xx345] + [x2345] 

Pro γ(t) 0.169 0.156 0.165 0.139 0.162 0.132 0.165 0.134 PRO [xx345] 

Pro δ (s) 0.211 0.172 0.094 0.169 0.168 0.151 0.212 0.140 PRO [xxx45] 

Pro δ (d) 0.789 0.828 0.906 0.831 0.832 0.849 0.788 0.860 PRO [xxx45] 

Ser α (s) 0.052 0.080 0.050 0.078 0.064 0.074 0.056 0.076 Ser [123] 

Ser α (d1) 0.116 0.183 0.120 0.139 0.191 0.192 0.184 0.173 Ser [123] 

Ser α (d2) 0.135 0.075 0.082 0.060 0.060 0.076 0.081 0.075 Ser [123] 

Ser α (dd) 0.697 0.662 0.748 0.723 0.686 0.659 0.679 0.677 Ser [123] 

Ser β (s) 0.715 0.697 0.743 0.686 0.729 0.707 0.684 0.700 Ser [x23] 

Ser β (d) 0.285 0.303 0.257 0.314 0.271 0.293 0.317 0.300 Ser [x23] 

Thr α (s) 0.262 0.264 0.306 0.263 0.288 0.241 0.281 0.243 THR [123x] 

Thr α (d1) 0.198 0.198 0.156 0.188 0.139 0.201 0.144 0.199 THR [123x] 

Thr α (d2) 0.251 0.238 0.223 0.215 0.199 0.217 0.191 0.222 THR [123x] 



 

 

1
5
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Table S4 continued 
Thr α (dd) 0.289 0.299 0.315 0.335 0.374 0.341 0.384 0.337 THR [123x] 

 
Thr γ2 (s) 0.435 0.442 0.450 0.442 0.429 0.403 0.419 0.399 THR [xx34] 

 
Thr γ2 (d) 0.565 0.558 0.550 0.558 0.571 0.597 0.581 0.601 THR [xx34] 

 
Tyr α (s) 0.068 0.065 0.060 0.068 0.075 0.081 0.073 0.074 PEP [123] 

 
Tyr α (d1) 0.089 0.062 0.068 0.056 0.076 0.050 0.071 0.043 PEP [123] 

 
Tyr α (d2) 0.090 0.045 0.081 0.031 0.077 0.045 0.075 0.038 PEP [123] 

Tyr α (dd) 0.753 0.828 0.792 0.845 0.772 0.824 0.782 0.846 PEP [123] 
 

Tyr β (s) 0.486 0.524 0.578 0.521 0.521 0.509 0.554 0.513 PEP [x23].[2x]  

Tyr β (d) 0.385 0.405 0.378 0.406 0.367 0.413 0.334 0.410 PEP [x23].[2x]+ [x23].[2x]  

Tyr β (t) 0.129 0.071 0.044 0.073 0.113 0.078 0.112 0.076 PEP [x23].[2x]  

Tyr δ (s) 0.499 0.474 0.536 0.464 0.474 0.464 0.516 0.486 PEP/E4P [xxx].[23].[1x]+[xxx].[2].[43x]  

Tyr δ (d) 0.372 0.441 0.398 0.448 0.388 0.447 0.363 0.431 PEP/E4P [xxx].[23].[1x]+[xxx].[2].[43x]+  

          [xxx].[23].[1x]+[xxx].[2].[43x]  

Tyr δ (t) 0.130 0.085 0.066 0.088 0.138 0.090 0.122 0.083 PEP/E4P [xxx].[23].[1x]+[xxx].[2].[43x]  

Tyr ε (s) 0.073 0.128 0.033 0.089 0.059 0.094 0.063 0.123 PEP/E4P [xxx].[x3].[12]+[xxx].[x].[432]  

Tyr ε (d) 0.290 0.288 0.297 0.302 0.308 0.286 0.302 0.282 PEP/E4P [xxx].[x3].[12]+[xxx].[x].[432]+  

          [xxx].[x3].[12]+[xxx].[x].[432]  

Tyr ε (t) 0.637 0.584 0.670 0.609 0.634 0.620 0.635 0.595 PEP/E4P [xxx].[x3].[12]+[xxx].[x].[432]  

Val α (s) 0.121 0.095 0.084 0.089 0.090 0.106 0.103 0.096 Pyr [12x]·[x2x]  

Val α (d1) 0.602 0.694 0.640 0.692 0.626 0.661 0.642 0.675 Pyr [12x]·[x2x] 
 

Val α (d2) 0.040 0.025 0.024 0.025 0.036 0.032 0.027 0.029 Pyr [12x]·[x2x]  

Val α (dd) 0.238 0.186 0.252 0.194 0.247 0.201 0.228 0.201 Pyr [12x]·[x2x]  

Val γ1 (s) 0.648 0.666 0.636 0.667 0.652 0.661 0.646 0.663 Pyr [x23] 
 

Val γ1 (d) 0.352 0.334 0.365 0.333 0.348 0.339 0.354 0.337 Pyr [x23]  

Val γ2 (s) 0.806 0.789 0.803 0.780 0.791 0.767 0.779 0.770 Pyr [x2x]·[xx3]  

Val γ2 (d) 0.194 0.211 0.197 0.220 0.209 0.233 0.221 0.230 Pyr [x2x]·[xx3]  
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Abstract 

Short-chained fatty acids synthesized via fermentation from biorenewable feedstocks are 

a potential source of platform chemicals, and thus could help replace the traditional 

petrochemical’s dependence on crude oil. However, toxicity of fatty acids is an obstacle in the 

high titer of fatty acid production and it remains a key challenge in metabolic engineering. 

Metabolic flux analysis (MFA), the quantification of fluxes in metabolic pathways, is an integral 

tool for the development of strategies for genetic modification and the identification of metabolic 

regulation, by comparing fluxes under different environments. Transcriptome analysis allows 

examination of mRNA transcript levels for thousands of genes of multiple strains simultaneously 

to understand cell physiology and regulatory mechanism at the whole-cell transcript level by 

analysis them under various genotypic and environmental conditions. We used Saccharomyces 

cerevisiae as a model system to study the effect of toxicity of octanoic acid. The exposure of 

octanoic acid to yeast caused significant growth inhibition. We elucidated the metabolic flux 

differences in central metabolism between control and octanoic acid inhibition by conducting 
13

C 

labeling experiments using fermentors.  The yeast cultures were fed with a mixture of uniformly 

13
C labeled glucose and 1-

13
C positional labeled glucose.  We quantified glucose uptake rate and 

fermentation product secretion rate using HPLC. The amino acid isotopomer fractions were 

measured using 2D [
13

C, 
2
H] HSQC NMR. Flux distributions were computed from simulating 

isotopomer distribution and then fitting it to the experimental measurements. We found 

distinctions in central metabolism flux distribution between control and treatment, especially in 
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the TCA cycle. Interestingly, transcriptome analysis revealed membrane stress and intracellular 

acidification based on the perturbation of membrane protein genes and the up-regulation of 

plasma membrane ATP-required transporter. Coupled with the elevation of active efflux 

transporter, yeast cells under octanoic acid stress tend to generate more energy and reducing 

power to counteract the effect of membrane stress and acidification through the plasma 

membrane transporter activity. Further efforts can focus on improving membrane integrity to 

enhance the tolerance against octanoic acid. 

1. Background and introduction 

With the depletion of fossil fuel supplies and intensifying environmental concern, the 

demand for production of fuels and chemicals from biorenewable sources becomes increasingly 

apparent for sustainability. Tremendous research efforts have been conducted to engineer 

microbes for efficient synthesis of biofuels and biochemicals (Atsumi et al., 2008; Steen et al., 

2010; Yim et al., 2011). Advances in metabolic engineering expand the portfolio of fuels and 

commodity chemicals that can be synthesized biologically (Bozell and Petersen, 2010; Nikolau 

et al., 2008). Carboxylic acids recently gains extensive attention in the global research 

community due to its potential as fuels and chemicals (Nikolau et al., 2008; Stephanopoulos, 

2007). Diversity of plant thioesterases, that can cleave acyl-ACP substrates at specific chain 

length, presents the opportunity for novel fatty acid production  (Jing et al., 2011). As platform 

molecules, carboxylic acids naturally synthesize through fermentation can be transformed into 

building blocks for industrial chemicals such as fatty alcohols (Dellomonaco et al., 2011), fatty 

esters (Steen et al., 2010),  and alkyl ketones (Goh et al., 2012). It has been recently shown that 

short-chained fatty acids could be catalytically deoxygenated via heterogeneous metal catalysts 

to produce -olefins, which serve as building blocks of important polymerization products 

(Alonso et al., 2010; Shanks, 2010).  

S. cerevisiae which grows well at low pH is a promising biocatalyst for carboxylic acid 

production. Their robustness, fast division, pH tolerance, simple nutrient requirement, 

completely sequenced genome and long history as industrial workhorse make it an excellent 

microbial cell factory to produce carboxylic acids (Abbott et al., 2009). In order to produce fuels 

and chemicals at high titers and yields, product inhibition to the biocatalysts becomes an 

increasingly serious problem that needs to be resolved (Jarboe et al., 2011). For example, 
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isobutanol is inhibitory for cell growth of the microbial host system when the production titer 

exceeds the toxicity level (Atsumi et al., 2010). The toxicity effect can be mitigated by in-situ 

product removal from the broth in bioreactor to further enhance product titer (Baez et al., 2011).  

However, this method does not work for all compounds and involves additional process cost. 

Another common strategy to attenuate product toxicity is by selection-based approach from 

metabolic evolution and random mutagenesis of certain key enzyme/ transcription machinery 

(Atsumi et al., 2010; Minty et al., 2011).  However this black box model does not explain the 

mechanism of tolerance and requires extensive reverse engineering to unveil it. With the 

advances in DNA recombinant technology, we can use system metabolic engineering tools to 

understand the underlying inhibitory mechanism for rational engineering to mitigate the product 

toxicity. 

Carboxylics acids such as octanoic and decanoic acids have been reported to inhibit cell 

growth of S. cerevisiae by reducing the cell viability and even cause death (Cabral et al., 2001; 

Viegas et al., 1989). Medium-chain fatty acids penetrate inside the cell by passive diffusion in a 

non-ionized form and dissociate in the cytosol at higher internal pH, leading to a decrease of the 

intracellular pH and accumulation of toxic anion (Alexandre et al., 1996; Cabral et al., 2001; 

Legras et al., 2010). Decanoic acid stress increased membrane fluidity in yeast and changed the 

membrane lipid composition (Alexandre et al., 1996). Furthermore, Abbott et al. (2007) 

investigated the effect of weak acids (benzoate, sorbate, acetate and propionate) using microarray 

based transcriptome analysis and revealed consistent up-regulation trend of genes related to cell 

wall, mitochondrial superoxide removal and DNA synthesis/repair. Recently, another 

transcriptome study, which investigated yeast response to the exposure to octanoic and decanoic 

acids, unraveled activation of oxidative stress response (Legras et al., 2010). Notably, membrane 

transporter genes were activated under octanoic acid stress.  

Despite the above efforts to understand the medium-chained acid stress on yeast, in-vivo 

flux distribution is not studied. Metabolic flux analysis (MFA) quantifies internal metabolic 

fluxes and provides a snapshot of cellular physiology to pinpoint genetic manipulations (Koffas 

and Stephanopoulos, 2005; Peebles et al., 2010; Stephanopoulos, 1999). Due to a hierarchy of 

information in organism, MFA could determine the phenotype by quantifying the integration 

system response for gene-protein-metabolites interactions (Gregory N. Stephanopoulos, 1998; 

Sauer, 2006; van Rijsewijk et al., 2011). In this study, we employed MFA along with 
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transcriptome study to understand Saccharomyces cerevisiae response to octanoic acid stress, 

thus providing the platform for rational engineering of product-tolerant biocatalyst for 

production of short-chained fatty acids. 

2. Material and methods 

2.1. Strains and plasmids:  The wild type Sacchromyce cerevisiae BY4741 (MATa his3Δ1 

leu2Δ0 met15Δ0 ura3Δ0) was used throughout this work. The strain was a gift from Dr. Nancy 

Da Silva’s lab. 

2.2. Metabolic flux analysis experiment 

Strains and culture conditions: 

The BY4741 strain from glycerol frozen stock was streaked on Yeast Peptone Dextrose 

(YPD) plate and incubated overnight at 30
o
C.  The colonies from YPD plate was transferred in 

250mL baffled flasks containing 50mL of the following synthetic dextrose (SD) minimal 

medium: 10 g/L glucose, 6.7 g/L  yeast nitrogen base without amino acid, 100 mg/L uracil, 100 

mg/L histidine, 100 mg/L methionine and 300mg/L leucine. The medium pH was adjusted to 5.0. 

After preculturing for about 24 hours on the rotatory shaker at 30
o
C and 150 rpm, cells were used 

to inoculate 50mL medium in baffled flasks to optical density (OD) at 600nm of 0.05 for 

hexanoic acid and octanoic acid toxicity studies.  

For 
13

C labeling experiment (CLE), cells were centrifuged at 4000 rpm for 5 min at 4°C 

and re-suspended in fresh SD minimal medium to inoculate 400 mL of SD minimal medium in 

the 500 mL bioreactor (INFORS HT, Switzerland) to a starting OD600 of 0.02.  For better 

identification of fluxes, 20% U-
13

C glucose and 80% 1-
13

C glucose was used as the tracer to final 

medium concentration of 1% glucose (Fischer et al., 2004). The aerobic fermentation was 

conducted at 30 °C, with a gas flow rate at 0.4 ml/min and agitation speed of 600 rpm. The pH 

was controlled at 5.0±0.05 by adding 1M potassium hydroxide. The dissolved oxygen level was 

maintained above 50% of saturated levels to ensure aerobic conditions. The cells were harvested 

at mid-exponential phase after at least 5 generations to ensure metabolic and isotopic steady 

state. Parallel experiment was conducted as biological replicate. 

Analytical techniques:  
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Cell biomass dry weight was determined by measuring optical density OD550 using a 

spectrophotometer (Genesys 20, Madison, WI). Cell dry weight was estimated by the correlation: 

1 OD600 =0.56 g cell dry weight/L. Biomass composition was determined based on literature data 

(Forster et al., 2003). Media samples were taken during the exponential growth and filtered 

through 0.22 µm pore sized nylon filters (P.J. Cobert Associates, Saint Louis, MO) and kept at -

20 
o
C for extracellular metabolite analysis. Glucose, glycerol, ethanol and acetate were measured 

using a Waters HPLC (Waters, Milford, MA) with 410 refractive index detector. The Aminex 

column (HPX-87H, Bio-Rad, Hercules, CA) was used at 30 
o
C with 0.3 mL/min of 5mM sulfuric 

acid as mobile phase. The substrate uptake rate and production secretion rate in batch culture are 

constant during exponential phase. The substrate uptake rate and product secretion rate are 

defined as the coefficient of substrate/product concentration versus biomass divided by the 

growth rate.  

Amino acids in the medium were analyzed using HPLC with Waters AccQ Tag column 

and UV detector. The samples were derivatized and the HPLC was programmed according to the 

manufacturer protocols. α-aminobutyric acid was used as the internal standards for 

quantification. 

Octanoic acid in the medium was quantified as described by Jing and coworkers (Jing et 

al., 2011). Octanoic acid samples were centrifuged and the supernatant was acidified with HCl. 

The samples were extracted using chloroform-methanol mixture and then concentrated to 

~100uL. Samples were analyzed on an Agilent Technologies 6890 Series gas chromatograph 

system with an Agilent CP-Wax 58 FFAP CB column (25 m × 0.15 mm × 0.39 mm). 10μg 

heptanoic acid was used as the internal standard for quantification using AMDIS software. 

2-Dimensional NMR analysis:  

Cells were harvested and hydrolyzed into amino acids as described previously 

(Choudhary et al., 2011; Ranganathan et al., 2012). The sample was dissolved in deuterium 

oxide for NMR analysis. 2D [
13

C, 
1
H] Heteronuclear Single Quantum Correlation spectra were 

acquired on a Bruker Advance DRX 500 MHz spectrometer at 298 K and processed as described 

previously (Choudhary et al., 2011; Sriram et al., 2004). The amino acids isotopomer abundances 

are related to the precursor metabolites with the reference to amino acids biosynthesis pathways 
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(Maaheimo et al., 2001).  The resulting isotopomer fractions are shown in Supplementary Table 

S4.  

Metabolic network model for MFA:  

A network model for E. coli metabolism was constructed based on existing literature and 

yeastgenome database (see Table S2). The model includes glucose transport and phosphorylation 

pathway, Embden-Meyerhof-Parnas pathway, oxidative pentose phosphate branch, non-oxidative 

pentose phosphate branch, TCA cycle, anaplerotic pathways, metabolite exchange reactions, all 

amino acids biosynthesis pathways. Eukaryotic compartmentation into mitochondrial and 

cytosolic subsystems was considered by distinguishing distinct pools of pyruvate, oxaloacetate, 

and acetyl-coA in both compartments (Fiaux et al., 2003). The pyruvate transport into the 

mitochondria is considered unidirectional, driven by the proton motive force. Glyoxylate cycle 

(Gancedo, 1998) and phosphoenolpyruvate carboxylase kinase (Haarasilta and Oura, 1975; Yin 

et al., 1996) are repressed under the presence of glucose, thus not included in our network. 

Flux evaluation methodology:  

Fluxes were computed using NMR2Flux software developed by Sriram et al (2004).  

NMR2Flux employs isotopomer balancing and a global optimization routine to find 

stoichiometrically feasible fluxes set consistent with experimental measurements.  Overall fluxes 

were estimated by minimizing the chi square error between experimentally measured and 

simulated isotopomer fractions of amino acid.  Bootstrap Monte Carlo statistical analysis was 

employed to evaluate the standard deviations of the fluxes. 

2.3 Microarray  

Microarray experiment was performed to examine the whole-gene transcript perturbation 

for insights on the cell physiology and regulatory mechanism under octanoic acid stress. 

Independent from CLE, S. cerevisiae BY4741 was grown in SDC medium with 2% glucose at 

30
o
C with orbital shaking at 150rpm. SDC medium contained 0.67% (w/v) yeast nitrogen base 

without amino acids, 0.5% (w/v) casamino acids, and 20mg/L uracil. The pH was adjusted with 

HCl to 5.0 before inoculation. 0.3mM octanoic acid was added in the treatment cultures. Cells 

were harvested during mid-log growth. The triplicate samples were processed and analyzed as 

described previously (Liu et al., 2013). Log2 ratio of transcription factor activities between 
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octanoic acid stress and the control were estimated based on Network Component Analysis 

(NCA) algorithm (Chang et al., 2008). The transcriptome data has been reported by Jarboe and 

coworker (Liu et al., 2013). 

3. Results: 

3.1 Toxicity of medium-chain fatty acids in yeast cells 

S.cerevisiae was grown in SD minimal medium with 1% glucose under exposure to 

various concentrations of hexanoic and octanoic acid to characterize the growth behavior. This 

analysis showed that the growth of S. cerevisiae BY4741 can only tolerate haxanoic and octanoic 

acid concentrations of less than 5mM in the shake flask systems (Supplementary Figure S1). The 

growth inhibition escalates with increasing concentration of fatty acids. In addition, the 

inhibitory effect is more severe with increasing carbon chain length of fatty acids. This finding 

agrees with the supplementation of C6-C10 fatty acid in rich SDC medium with higher glucose 

concentration (Liu et al., 2013) even though the overall cell growth rates are higher in  rich 

medium.  

The inhibition effects of octanoic acid in the fermentor experiment were alleviated 

compared to shake flask experiments (Supplementary Table S1). This is probably because acid 

inhibition is dependent upon the rate of acid penetration, the subsequent decrease in internal pH 

and the effect of pH on specific enzyme systems. Lower medium pH during fermentation in the 

shake flasks also leads to the accumulation of undissociated form of fatty acid, which is toxic 

(Liu et al., 2013). Therefore we conducted 
13

C labeling experiment in fermentor system with 

controlled pH, agitation and aeration rate to minimize the environmental variations. 

3.2 Metabolic flux analysis results 

Phenotype comparison between control and C8 stress 

S. cerevisiae was grown in minimal SD medium with 1% glucose in the bioreactor at 

30
o
C, pH 5.0 and dissolved oxygen above 50% saturation to characterize the effects of octanoic 

acid on cell growth. Phenotype differences were observed when the S. cerevisiae cells were 

under 0.4mM octanoic acid during aerobic batch fermentation as shown in Figure 1. The cells 

exhibited respiratory-fermentative metabolism with secretion of ethanol, acetate and glycerol. 

Under octanoic acid exposure, cells grew slower with 25% lower specific growth rate and 



162 

 

 

slightly higher specific glucose uptake rate. Ethanol and acetate yield increased by 10% and 2-

fold respectively, coupled with the decrease in biomass yield of 41% under C8 fatty acid 

inhibition. Interestingly, glycerol yield decreased 7-fold under octanoic acid inhibition. Notably, 

glycerol plays important roles in yeast physiological processes such as combating osmotic stress, 

managing cytosolic phosphate levels and maintaining the NAD+/NADH redox balance 

(Blomberg, 1997; Wang et al., 2001). 

Since S. cerevisiae BY4741 strain is auxotrophic for histidine, leucine and methionine, 

we quantified the residue concentrations of the amino acids to obtain amino acid uptake rate 

(Supplementary Figure S2). Among the amino acids, leucine was the most consumed under the 

control condition (0.7mM/g.hr). Compared to the glucose uptake rate of ~17mM/g.hr, leucine 

uptake is just about 4% of the total carbon substrate, thus negligible to affect the flux 

distributions. Octanoic acid was also quantified using GC-MS, but we found no significant 

evidence of octanoic acid oxidation that is being degraded and catabolized by the cells (data not 

shown). 

In vivo metabolic flux analysis, a robust tool to estimate intracellular fluxes, was 

performed to unravel the metabolic network under the physiological conditions (i.e. 0.4mM 

octanoic acid exposure). The flux maps for S. cerevisiae under the control and octanoic acid 

stress are tabulated in Supplementary Table S2 and shown in Figure 2. The flux values are all 

normalized to 100 mmol gDW
-1 

h
-1

 and an average of the two replicate experiments. Most of the 

carbon flux (around 80%) is directed towards the glycolytic pathway, resulting in high activities 

of the lower glycolytic pathway in respiro-fermenting cells. Around 20% of the carbon flux 

channels through pentose phosphate (PP) pathway to generate NADPH for reduction 

requirements. These results are consistent with previous flux experiments showing active PP 

pathway under glucose aerobic batch culture (Fiaux et al., 2003; Gombert et al., 2001). The 

fluxes through the TCA cycle which operated as oxidative cycle, showed low activity under 

aerobic batch fermentation to generate ATP and NAD(P)H for energy and reduction 

requirements for cell growth. Gombert et al (2001) reported the same observation of low TCA 

activity under batch aerobic condition. Nonetheless, most of the carbon fluxes are drained 

towards formation of ethanol (150 mmol/gDW.h) through pyruvate decarboxylase and 

regenerated NAD
+
. Glycerol and acetate are the other products in yeast aerobic fermentation 



163 

 

 

with 15 mmol/gDW.hr and 2 mmol/gDW.hr respectively. The flux through malic enzyme which 

reroutes malate to pyruvate is negligible. 

When cells were exposed to 0.4mM octanoic acid stress, the oxidative TCA cycle 

activities are observed to be up-regulated 12 fold while reactions in the PP pathway remain rigid. 

The glycerol secretion decreases by 85%, leading to 10% increase in fluxes flowing through 

lower glycolysis pathway. At the pyruvate node, pyruvate dehydrogenase converting pyruvate to 

acetyl-CoA increases 11-fold, while pyruvate carboxylase that converts pyruvate to oxaloacetate 

is inhibited by 40% under octanoic acid stress. With the increase in ethanol and acetate yield, 

carbon fluxes through pyruvate decarboxylase slightly increases ~6%. In addition, along the 

decrease of cell growth rate during fatty acid stress, the amino acid biosynthesis reactions are 

generally lower than the control. 

Even though cofactor balance is not included in MFA, the net cofactor production is 

derived from the in vivo flux distribution. Figure 3 illustrates the role of NADH, NADPH and 

ATP in the central carbon metabolism. For example, NADPH is produced in the oxidative PP 

pathway, TCA cycle and malic enzyme activities. Interestingly, malate dehyrogenases can use 

both NAD
+
 and NADP

+
 as reaction precursor (Boles et al., 1998; Yamaguchi, 1979).  Aldehyde 

dehydrogenase converts aldehyde to acetate through reduction of NAD
+
 and NADP

+ 
(Bostian 

and Betts, 1978). The malic dehydrogenase and aldehyde dehydrogenase catalyzed by different 

enzymes cannot be distinguished by 
13

C-MFA, which is constrained by reaction carbon 

stoichiometry. The malic enzyme and aldehyde dehydrogenase are thus considered to produce 

either NADH or NADPH and treated as the measurement errors in cofactor production.  The net 

productions of ATP per glucose consumed are up-regulated 20% under fatty acid stress (Figure 

3). The net production of NADH and NADPH are 5-fold higher and 13% lower respectively, 

leading to ~2.8 fold increase in the overall reducing power NAD(P)H under octanoic acid 

inhibition. 

3.3 Microarray analysis  

Liu et al. performed transcriptomics analysis of S. cerevisiae BY4741 during mid-log 

growth in SDC media to compare gene transcriptional perturbation under the control and 

exposure to 0.3mM octanoic acid, which was sufficient to decrease the specific growth rate by 

25%. This analysis identified 937 genes with significantly (p<0.01) perturbed expression under 
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octanoic acid stress relative to the control; 136 of these genes have expression that is perturbed 

more than 2-fold ((Liu et al., 2013), supplementary materials). Despite the difference in culture 

medium and environment, 0.3mM octanoic acid exposure led to the similar extent of cell 

inhibition. This transcriptomics study thus serves as the reference to compare with in vivo flux 

study to unravel inhibition mechanism of octanoic acid. We mapped the gene transcriptional 

perturbations under octanoic acid stress on the central carbon metabolism as shown in 

Supplementary Figure S4. However, most of the genes in the central carbon metabolism did not 

change significant except TKT1 in the oxidative PP pathway and MAE1 in the malic enzyme 

activity. The TKT1 and MAE1 genes were down-regulated 13.8 fold and 2.1 fold respectively 

under octanoic acid inhibition, but the corresponding reaction fluxes of transketolase and malate 

dehydrogenase did not perturb. This might be due to unknown post translational regulation or 

indirect interaction among gene, protein, metabolite and flux levels. 

Interestingly, the genes related to plasma membrane ATP-binding cassette (ABC) 

transporter such as PDR3, PDR12, PDR15 and PDR16 were up-regulated significantly (>2-fold) 

under octanoic acid stress (Supplementary Table S5). In addition, the expression of PDR5 and 

YOR1 increased >1.5 fold complementing the up-regulation of ABC plasma membrane proteins. 

ABC membrane transporter mediates cellular detoxification by effluxing the harmful xenobiotics 

(Jungwirth and Kuchler, 2006). PDR plasma membrane transporter ABC superfamily is the first 

line defense to be involved in active expulsion of weak lipophilic acids (Mira et al., 2010b). The 

increase of PDR gene transcription might imply octanoic acid stress acidified the intracellular pH 

of the cytosol and mitochondrion, and then disrupt the integrity of cell membrane. The low pH 

would activate the plasma membrane transporter to repel the toxin out of the cells, at the 

consumption of energy. 

The microarray data also depicted the gene perturbation of membrane proteins and metal 

ion uptake (Supplementary Table S5). Most of the membrane proteins were down-regulated 

under octanoic acid exposure, probably interrupting the membrane function to maintain cell 

homeostasis. This could suggest the potential loss of membrane integrity resulting from octanoic 

acid toxicity. We also observed up-regulation of the gene expression related to uptake of metal 

ions (iron, zinc, copper, calcium and ammonia). This finding was in agreement with the literature 

(Hazelwood et al., 2010; Lawrence et al., 2004), suggesting these metal ions might be crucial for 

tolerance against octanoic acid. Lipophilic acid could chelate metal cations and then limit metal 
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availability to affect the cellular metal homeostasis (Abbott et al., 2008; Hazelwood et al., 2010).  

On the other hand, it might be the symptom of membrane disintegrity to perturb the intracellular 

metal ions availability (Liu et al., 2013). Given the transcriptional change in the membrane 

protein and metal uptake, we hypothesized the presence of octanoic acid disrupted the membrane 

integrity and thus inhibit the cell growth. Jarboe and coworkers quantitatively confirmed the 

membrane leakage problem exacerbates with increasing concentration and chain length of C6-10 

fatty acids. 

Network component analysis was performed with and without the new regulatory links 

from the reconstruction of gene regulatory networks. The results exhibited the significant 

perturbation of Hap5, Haa1,and Stb5 transcription factor in all analyses ((Liu et al., 2013), 

supplementary material). Moreover, War1, Pdr3 and Pdr1 were predicted to be significantly 

changed based on either one or more regulatory network in the NCA analysis. Hap5 was reported 

to be involved in regulation of iron homeostasis (Liu et al., 2013). Haa1 regulates membrane 

stress proteins and adaptation to weak acid stress, while Stb5 regulates multidrug resistance and 

oxidative stress. War1 regulates Pdr12p for resistance to weak lipophilic acid (Legras et al., 

2010). Pdr1 and Pdr3 transcription factors also play roles in regulating pleiotroplic drug 

resistance in yeast (Mira et al., 2010b). Based on the NCA results, it suggested the presence of 

octanoic acid induces acid stress response and triggers multidrug efflux and ABC membrane 

plasma transporter activities. Membrane stress response was also detected indirectly from the 

perturbation in iron uptake regulation (Liu et al., 2013). 

4. Summary and discussion 

Short-chained fatty acids are potential platform molecules synthesized biologically for 

biorenewable fuels and chemicals. In order to make the microbial production economically 

viable, we have to overcome increasingly vexing biocatalyst inhibition by the products and 

achieve high product yield and titer. In the present work, we performed 
13

C metabolic flux 

analysis on S. cerevisiae BY4741 along with the reported transcriptomics analysis to investigate 

cell response under octanoic acid inhibition. From phenotype analysis, the yeast cells under 

octanoic acid stress illustrate reduced cell growth with slight increase in glucose consumption 

rate. The glycerol yield significantly decreases 7-fold, while the yield of acetate and ethanol 

increase 2-fold and 10% respectively. Extracellular octanoic acid might cause osmotic stress and 
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disrupt the function of glycerol production. We therefore deleted some key genes in glycerol 

formation (GDP1, GPP1) to test the tolerance towards octanoic acid toxicity in the SDC media. 

However, neither improvement nor deterioration in cell growth was found under octanoic acid 

stress.  This led to proposition that octanoic acid might not lead to the increase of osmotic stress 

but the acidification of intracellular cytosol resulting in membrane stress. 

The plasma membrane is a highly specialized organelle in yeasts to selectively transport a 

multitude of molecules (Spira et al., 2012). It also serves as a platform for various signaling 

complexes (Spira et al., 2012). Organic solvents could impair the function cell membrane, 

leading to retarded growth and even death (Ramos et al., 2002; Segura et al., 2012). Figure 4 

explains the mechanism of acidification caused by octanoic acid exposure and the activation of 

ATP-binding cassette transporter for remediation. Octanoic acid is known to be toxic in 

undissociated form (Viegas et al., 1989) and could permeate the plasma membrane by diffusion. 

In the nearly-neutral cytosol, the dissociation of octanoic acid would cause intracellular 

acidification and the accumulation of the protons and anions.  In addition, the spatial 

composition of membrane plasma is likely disrupted, resulting in the function disruption of 

membrane embedded proteins (Mira et al., 2010b). This would increase nonspecific cell 

permeability to ions and small metabolites. This would stimulate protons to diffuse passively into 

the cytosol, further reducing the intracellular pH. Intracellular acidification would inhibit 

metabolic activity and dissipate the electrochemical potential maintained across the plasma 

membrane (Mira et al., 2010b).  When yeasts are exposed to lipophilic acid, the activity of 

plasma membrane H
+
-ATPase is induced to generate the transmembrane proton gradient and 

regulate intracellular pH, thus maintaining pH homeostasis (Cabral et al., 2001; Legras et al., 

2010; Viegas et al., 1998). The activation of H
+
-ATPase couples with ATP hydrolysis to proton 

extrusion. The up-regulation of plasma membrane ABC transporter PDR gene expression 

strengthens the acidification of cytosol by external octanoic acid leading to cell inhibition. 

Pdr12p gene, which is regulated by WAR1 transcription factor and facilitates ATP-dependent 

efflux of moderately lipophilic short-chain acid anions, has been identified as a key determinant 

in organic acid tolerance (Legras et al., 2010; Piper et al., 1998).  

The MFA data revealed up-regulation of the TCA cycle and glycolysis, when the cells 

are exposed to octanoic acid, along with the up-regulation of plasma membrane ATP-binding 

transporter genes indicated by the transcriptome analysis.  The activation energy-intensive 
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defense mechanism (H
+
-ATPase ABC transporter) would enhance ATP depletion in the cells 

under octanoic acid stress. The increase in TCA cycle and glycolysis activities generates more 

ATPs for H
+
 ATPase activity to efflux the protons and anions through plasma membrane ATP 

binding cassette transporter. Independent with this study, yeasts under lipophilic acid stress 

exhibited up-regulation of genes and proteins encoding the glycolysis and the TCA cycle to 

compensate the depletion of ATP (Abbott et al., 2007; Abbott et al., 2008; Almeida et al., 2009; 

Mira et al., 2010a; Mira et al., 2009; Mira et al., 2010b). 

The gene transcript perturbation of membrane proteins and metal uptake regulation lead 

to the hypothesis of loss membrane integrity, in which Jarboe and coworkers quantitatively 

confirmed the membrane leakage problem under octanoic acid exposure. Decreased integrity of 

the plasma membrane can cause leakage of intracellular materials, leading to the decreased 

availability of important cofactors for biological process and then growth inhibition (Osman and 

Ingram, 1985). To mitigate the membrane leakage, yeast cells might tightly regulate the fluxes 

through central carbon metabolism to replenish the cofactors (ATPs and NAD(P)Hs) for cell 

survival. Notably, MFA elucidated the overall energy and reducing powers productions are 

higher under octanoic acid stress to compensate for the effect of membrane leakage. In addition, 

the up-regulation of genes related to ion uptake is crucial to maintain metal homeostasis for 

survival under octanoic acid stress. The above findings suggest the ability to control membrane 

composition as the crucial strategy to enhance tolerance against organic acid as illustrated by 

Jarboe and coworkers (Liu et al., 2013). 

In conclusion, we have integrated the metabolic flux analysis and transcriptome analysis 

reported by Jarboe et al. to identify the up-regulation of the TCA cycle fluxes and gene 

expression related to plasma membrane ATP-dependent transporter, membrane proteins and 

metal ion uptake as the key determinant in octanoic acid stress to yeast. Membrane integrity is 

disrupted under octanoic acid inhibition, thereby modifying the membrane composition, 

replenishing cofactor supplies and over-expressing efflux transporter may further enhance the 

tolerance against octanoic acid.  
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Figure 1. Phenotype analysis of S.cerevisiae under 0.4mM C8 fatty acid inhibition. Specific 

glucose uptake rate and ethanol yield were scaled down 100x and 10x respectively. Unit: specific 

cell growth rate, hr-1; specific glucose uptake rate, mmol/g DCW.hr; biomass yield, g DCW/g 

glucose; fermentation product yields, mol/mol glucose 

Figure 2  In vivo metabolic flux distribution for S.cerevisiae BY4741 under control condition 

(red font) and 0.4mM octanoic acid stress (blue font) as calculated via isotopomer balancing 

using NMR2Flux software. Estimated fluxes are normalized to 100 mmol/g DCW.hr based on 

the average specific glucose uptake rates. The colored arrows indicate a significant difference 

(>20%) between the control and fatty acid production condition. The flux values shown are 

average from two replicates ± standard deviation. 

Figure 3 Cofactor (NADH, NADPH) and energy (ATP) production in central carbon 

metabolism. The red triangle represents NADH, the purple triangle represents NADPH and the 

green rectangular represents ATP. The total production in central carbon metabolism for control 

and fatty acid producing conditions is show in the graph.  Malic enzyme activity and aldehyde 

dehydrogenase involve both NADH and NADPH, the overall reducing power production can be 

captured by NAD(P)H.  

 

Figure 4. Mechanistic model for the yeast response to octanoic acid stress. The H
+
ATPase ATP 

Binding Cassette transporter is stimulated in the membrane plasma to recover the intracellular 

pH. 
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Figure 4. Mechanistic model for the yeast response to octanoic acid stress. The H

+
ATPase ABC 

transporter is stimulated in the membrane plasma to recover the intracellular pH. 
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Supplementary information 

 

Figure S1 Short-chain fatty acids hexanoic acid (C6) and octanoic acid (C8) inhibit yeast growth. 

The specific growth rate of S. cerevisiae BY4741 was measured in optimized SD minimal media, 

pH 5.0, 30
0
C, 150 rpm with various concentrations of the indicated acids. 

Figure S2. Amino acid uptake rate during the exponential growth of S.cerevisiae BY4741.  The 

strain was grown aerobically in the fermentor at 30
o
C, 600rpm and pH 5.0.  

Figure S3.  Transcript level perturbation in the central carbon metabolism under 0.3mM octanoic 

acid inhibition along with the flux difference from another independent experiment under 0.4mM 

octanoic acid stress. The transcriptomic experiment was conducted in shaker flasks using SDC 

medium under 0.3mM octanoic, the gene perturbations were reported as the ratio to the control 

condition shown in the parenthesis. Color and green reaction arrows representation 

downregulation and upregulation of fluxes respectively under 0.4mM octanoic acid exposure in 

the fermentor under SD minimal medium. 

 

Table S1: Specific growth rate of S.cerevisiae BY 4741 under octanoic acid exposure in shake 

flasks and fermentor system. 

Table S2. Metabolic pathways represented by stoichiometry, atom transition, and involved 

genes. 

 

Table S3. Comparison of flux values of S.cerevisiae BY4741 between the control and octanoic 

acid inhibition condition. 

 

Table S4. Measured and simulated isotopomer distributions of proteinogenic amino acids from 

2D-NMR 

 

Table S5: Gene transcripts significantly pretreated by 0.3mM octanoic acid stress(Liu et al., 

2013) 
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Figure S2. Amino acid uptake rate during the exponential growth of S.cerevisiae BY4741.  The 

strain was grown aerobically in the fermentor at 30
o
C, 600rpm and pH 5.0.  
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Figure S3.  Transcript level perturbation in the central carbon metabolism under 0.3mM octanoic 

acid inhibition along with the flux difference from another independent experiment under 0.4mM 

octanoic acid stress. The transcriptomic experiment was conducted in shaker flasks using SDC 

medium under 0.3mM octanoic, the gene perturbations were reported as the ratio to the control 

condition shown in the parenthesis. Color and green reaction arrows representation 

downregulation and upregulation of fluxes respectively under 0.4mM octanoic acid exposure in 

the fermentor under SD minimal medium. 

 

Table S1: Specific growth rate of S.cerevisiae BY 4741 under octanoic acid exposure in shake 

flasks and fermentor system. 

 
Specific growth rate, hr

-1 

Condition  Flask Fermentor 

EtOH Control  0.252±0.013 0.338 

0.15mM C8  0.186±0.009 0.303 

0.25mM C8  0.143±0.004 0.261 
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Table S2.  Metabolic pathways represented by stoichiometry, atom transition, and involved genes from yeastgenome database. 

Reaction name Stoichiometry chemistry Atom transition Gene 

Glycolysis pathway 

gluin Glu → G6P abcdef → abcdef glk1, hxk1, hxk2 

pgi G6P → F6P abcdef  → abcdef pgi 

fba FBP → T3P+T3P abcdef  → cba+def pfk1, pfk2, fba1 

pgk T3P → 3PG 
 

abc → abc 
 

tdh1, tdh2, tdh3, pgk1 

glyc T3P → glycerol 
 

abc → abc 
 

gpd1, gpd2, rhr2, hor2 

eno 3PG → PEP 
 

abc → abc 
 

gpm1,eno1,eno2 

pyk PEP →  PYR abc → abc 
 

pyk2, cdc19 

Pentose phosphate pathway  

zwf G6P → 6PG abcdef  → abcdef zwf 

rpi 6PG → R5P+CO2 abcdef → bcdef+a sol3,sol4,gnd1,gnd2 

tkt R5P+R5P → S7P+T3P abcde+ABCDE → abABCDE+cde tkt1,tkt2 

tktAB R5P+E4P → F6P+T3P abcde+ABCD → abABCD+cde tkt1 

talf S7P+T3P → F6P+E4P abcdefg+ABC → abcABC+defg tal1 

TCA cycle 

mdh MALm → OAAm abcd → abcd mdh1 

frd SUCCm→MALm abcd → abcd sdh1,sdh2,sdh3,sdh4,fum1 

icd ACCOAm+OAAm→AKGm+CO2 ab+ABCD→DCBba+A cit1,cit3,aco1,aco3,idh1,idh2 

succ AKGm→SUCCm+CO2 abcde→bcde+a lpd1,kgd1,kgd2,lsc1,lsc2 

Acetyl-CoA biosynthesis and fermentative pathway 

ace PYRm→ACCOAm+CO2 abc→bc+a pdb1, pda1, lat1 

pyc PYR+CO2→ OAA abc+d→abcd pyc1,pyc2 

pdc PYR→ACETALD+CO2 abc→bc+a pdc6.pdc5,pdc1 

adh ACETALD→EtOH ab→ab adh1,adh2,adh3,adh4,adh5 
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Table S2 continued 

ald ACETALD→ACE ab→ab ald2,ald5,ald4 

acs ACE+CO2→ACCOA ab→ab acs1,acs2 

Anaplerotic pathway 

ana Mal → PYR+CO2 abcd → abc+d mae1 

C1 metabolism 

ser 3PG → Ser abc → abc ser1,ser2,ser3,ser33 

gly Ser → Gly+C1 abc → ab+c shm1,shm3 

Amino acid biosynthesis and metabolic pathway 

thr OAA→Thr abcd→abcd thr1,thr4 

thrgly Thr→Gly+ACCOA abcd→ab+cd gly1 

Transport pathway 

ac ACE→ACEout 
  

etoh EtOH→EtOHout 
  

glyc GLYC→GLYCout 
  

co2 CO2 →CO2out 
  

pyrt PYR →PYRm 
  

oaat OAA →OAAm 
  

acct ACCOA→ACCOAm 
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Table S3. Comparison of flux values of S.cerevisiae BY4741under the control and 0.4mM 

octanoic acid stress. The flux values are based on 100 mol/g/hr glucose uptake rate. The average 

and standard deviation is obtained from a duplicate of 13C flux experiments 

reaction name stoichiometry chemistry 
Control 0.4mM C8 

Average  SD Average  SD 

Glycolysis pathways   
    

gluin Glu → G6P 100.00 0.00 100.00 0.00 

pgi G6P  →  F6P 74.88 0.13 77.44 0.80 

 
reversibility 0.99 0.00 0.99 0.01 

fba FBP → T3P+T3P 87.48 0.30 89.95 0.19 

 
reversibility 0.99 0.00 0.99 0.00 

pgk T3P → 3PG 165.70 0.35 183.77 0.29 

 
reversibility 0.44 0.05 0.55 0.08 

glyc T3P → glycerol 15.70 0.67 2.16 0.36 

eno 3PG → PEP 164.92 0.10 183.26 0.22 

 
reversibility 0.58 0.01 0.48 0.13 

pyk PEP →  PYR 163.92 0.07 182.62 0.21 

Pentose phosphate pathway    
    

zwf G6P → 6PG 20.08 0.05 19.22 0.89 

rpi 6PG → R5P+CO2 20.08 0.05 19.22 0.89 

tkt R5P+R5P → S7P+T3P 6.66 0.01 6.43 0.30 

 
reversibility 

 
0.53 0.23 0.86 0.01 

tktAB R5P+E4P → F6P+T3P 6.13 0.02 6.43 0.30 

 
reversibility 

 
0.37 0.40 0.83 0.02 

talf S7P+T3P → F6P+E4P 6.66 0.01 6.08 0.31 

 
reversibility   0.36 0.16 0.10 0.08 

TCA cycle     
    

mdh MALm → OAAm 0.46 0.55 16.94 2.39 

 
reversibility 0.64 0.37 0.58 0.00 

frd SUCCm→MALm 1.32 1.46 17.03 2.36 

 
reversibility 0.65 0.40 0.32 0.02 

 
scrambling 0.46 0.35 0.09 0.00 

icd ACCOAm+OAAm→AKGm+CO2 2.83 1.41 18.03 2.28 

succ AKGm→SUCCm+CO2 1.32 1.46 17.03 2.36 

Acetyl-CoA biosynthesis and fermentative pathway   
    

ace PYRm→ACCOAm+CO2 1.07 0.91 11.94 1.45 

pyc PYR+CO2→ OAA 4.15 0.97 2.20 0.26 

pdc PYR→ACETALD+CO2 157.14 0.87 167.05 1.03 

adh ACETALD→EtOH 152.45 1.24 155.95 1.67 

ald ACETALD→ACE 4.87 2.31 11.19 0.55 

acs ACE+CO2→ACCOA 2.76 2.29 6.76 0.75 
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Table S3 continued 

Anaplerotic pathway   
    

ana Mal → PYR+CO2 0.85 0.91 0.09 0.03 

C1 metabolism     
    

ser 3PG → Ser 0.78 0.25 0.52 0.07 

gly Ser → Gly+C1 0.41 0.23 0.28 0.08 

 
reversibility   0.51 0.04 0.41 0.04 

Amino acid biosynthesis pathway 
    

thr OAA→Thr 0.57 0.19 0.34 0.11 

thrgly Thr → Gly+ACCOA 0.19 0.20 0.09 0.09 

 
reversibility 0.17 0.23 0.08 0.11 

Transport pathway   
    

ac ACE→ACEout 2.09 0.18 4.43 0.20 

etoh EtOH→EtOHout 153.33 1.52 155.95 1.67 

glyc GLYC→GLYCout 15.23 1.34 2.16 0.36 

co2 CO2 →CO2out 177.00 1.61 231.16 6.18 

pyrt PYR →PYRm 2.33 1.55 13.03 1.54 

oaat OAA →OAAm 2.36 0.86 1.09 0.12 

 
Reversibility 0.88 0.14 0.29 0.06 

acct ACCOA→ACCOAm 1.76 2.32 6.10 0.83 

 
Reversibility 0.12 0.17 0.71 0.05 

Biomass synthesis pathway   
    

G6pb G6P -> biomass 5.32 0.30 3.34 0.09 

R5pb R5P -> biomass 0.46 0.03 0.29 0.02 

E4pb E4P ->biomass 0.53 0.03 0.35 0.01 

PEPb PEP ->biomass 1.02 0.06 0.64 0.01 

PYRb PYR ->biomass 1.49 0.09 0.94 0.01 

ACCOAb ACCOA ->biomass 1.02 0.06 0.66 0.08 

AKGb AKG -> biomass 1.55 0.08 1.00 0.09 

OAAb OAA -> biomass 1.27 0.07 0.77 0.03 

3PGb 3PG -> biomass 0.07 0.00 0.04 0.00 

C1b C1 ->biomass 0.57 0.04 0.28 0.08 

serb Ser ->biomass 0.39 0.02 0.39 0.02 

glyb Gly ->biomass 0.62 0.04 0.38 0.02 

thrb Thr ->biomass 0.39 0.02 0.25 0.02 

alab Ala->biomass 0.99 0.06 0.58 0.00 

(1) Abbreviation: Glu, Glucose; G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; T3P, Triose-3-

phosphate; 3PG, 3-phosphoglycerate;  PEP, Phosphoenolpyruvate; PYR, Pyruvate; ACCOA, Acetate-CoA; 

AKG, Ketoglutarate; SUCC, Succinate; MAL, Malate; OAA,  Oxaloacetate; 6PG, 6-P-gluconate; R5P, 

Ribose-5-phosphate; S7P, Sedoheptulose-7-phosphate; E4P, Erythronate-4-phosphate; GOX, Glyoxylate; 

AC, Acetate; GLYC, glycerol;EtOH, ethanol;  CO2, carbon dioxide; Ser, Serine; Gly, Glycine; Ala; alanine. 
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Table S4. Measured and simulated isotopomer distributions of proteinogenic amino acids from 2D-NMR for S.cerevisiae BY4741 

strain grown in SD minimal media under the control and octanoic acid inhibtion. 

Cross 

peak 
Control 1 Control 2 C8-1 C8-2 

   

(multiplet) Expt Sim Expt Sim Expt Sim Expt Sim Precursor Isotopomer 
 

Ala β (s) 0.700 0.675 0.671 0.646 0.728 0.653 0.695 0.653 Pyr [x23]  

Ala β (d) 0.300 0.325 0.329 0.354 0.273 0.347 0.305 0.347 Pyr [x23]  

Arg β (s) 0.063 0.082 0.081 0.084 0.153 0.187 0.161 0.192 AKGm [x234x]  

Arg β (d) 0.467 0.456 0.462 0.459 0.499 0.491 0.518 0.492 AKGm [x234x] + [x234x]  

Arg β (t) 0.471 0.462 0.457 0.457 0.348 0.322 0.384 0.316 AKGm [x234x]  

Arg γ (s) 0.419 0.500 0.456 0.485 0.345 0.383 0.356 0.366 AKGm [xx345]  

Arg γ (d) 0.413 0.419 0.396 0.427 0.435 0.473 0.442 0.481 AKGm [xx345] + [xx345]  

Arg γ (t) 0.168 0.081 0.148 0.088 0.220 0.143 0.202 0.152 AKGm [xx345]  

Arg δ (s) 0.082 0.079 0.094 0.076 0.090 0.060 0.079 0.068 AKGm [xxx45]  

Arg δ (d) 0.918 0.921 0.906 0.924 0.910 0.940 0.921 0.932 AKGm [xxx45]  

Asp α (s) 0.127 0.101 0.144 0.099 0.143 0.084 0.165 0.107 OAA [123x]  

Asp α (d1) 0.096 0.085 0.035 0.042 0.076 0.063 0.083 0.089 OAA [123x]  

Asp α (d2) 0.074 0.086 0.124 0.114 0.102 0.117 0.146 0.142 OAA [123x]  

Asp α (dd) 0.702 0.728 0.698 0.744 0.679 0.736 0.607 0.662 OAA [123x]  

Asp β (s) 0.498 0.477 0.464 0.471 0.484 0.463 0.471 0.449 OAA [x234]  

Asp β (d1) 0.303 0.242 0.243 0.257 0.241 0.255 0.228 0.257 OAA [x234]  

Asp β (d2) 0.112 0.183 0.158 0.167 0.166 0.180 0.165 0.184 OAA [x234]  

Asp β (dd) 0.088 0.097 0.135 0.105 0.110 0.102 0.136 0.110 OAA [x234]  

Glu β (s) 0.034 0.082 0.055 0.084 0.127 0.187 0.152 0.192 AKGm [x234x]  

Glu β (d) 0.413 0.456 0.430 0.459 0.451 0.491 0.485 0.492 AKGm [x234x] + [x234x]  

Glu β (t) 0.483 0.462 0.467 0.457 0.347 0.322 0.324 0.316 AKGm [x234x]  

Glu γ (s) 0.500 0.500 0.482 0.485 0.419 0.383 0.416 0.366 AKGm [xx345]  

Glu γ (d1) 0.167 0.152 0.152 0.158 0.279 0.270 0.282 0.286 AKGm [xx345]  

Glu γ (d2) 0.252 0.267 0.258 0.269 0.207 0.204 0.207 0.195 AKGm [xx345]  

Glu γ (dd) 0.081 0.081 0.108 0.088 0.095 0.143 0.095 0.152 AKGm [xx345]  

Gly α (s) 0.156 0.143 0.140 0.130 0.162 0.151 0.148 0.144 Gly [12x]  

Gly α (d) 0.844 0.857 0.860 0.870 0.838 0.849 0.852 0.856 Gly [12x]  
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Table S4 continued 

Ile α (s) 0.130 0.137 0.147 0.167 0.126 0.158 0.161 0.196 OAA/Pyrm [12xx]·[x2x]  

Ile α (d1) 0.514 0.597 0.552 0.614 0.616 0.630 0.540 0.593 OAA/Pyrm [12xx]·[x2x]  

Ile α (d2) 0.091 0.050 0.058 0.047 0.054 0.043 0.070 0.052 OAA/Pyrm [12xx]·[x2x] 
 

Ile α (dd) 0.266 0.216 0.244 0.173 0.204 0.169 0.228 0.159 OAA/Pyrm [12xx]·[x2x] 
 

Ile γ1(s) 0.584 0.528 0.620 0.568 0.627 0.566 0.615 0.557 Pyrm/OAA [x2x]·[xx34]  

Ile γ1(d) 0.330 0.397 0.302 0.372 0.301 0.374 0.304 0.381 Pyrm/OAA [x2x]·[xx34] +[x2x]·[xx34]  

Ile γ1(t) 0.086 0.074 0.078 0.060 0.072 0.060 0.081 0.062 Pyrm/OAA [x2x]·[xx34]  

Ile δ (s) 0.460 0.410 0.439 0.420 0.444 0.400 0.430 0.392 OAA [xx34] 
 

Ile δ (d) 0.540 0.590 0.562 0.580 0.557 0.600 0.570 0.608 OAA [xx34] 
 

Ile γ2 (s) 0.635 0.677 0.638 0.643 0.677 0.652 0.682 0.652 Pyrm [x23] 
 

Ile γ2 (d) 0.365 0.323 0.362 0.357 0.323 0.348 0.318 0.348 Pyrm [x23] 
 

Lys β (s) 0.279 0.281 0.258 0.269 0.227 0.249 0.200 0.242 AccoA/AKGm [x2] [23xx] 

Lys β (d) 0.527 0.524 0.518 0.520 0.529 0.511 0.517 0.507 AccoA/AKGm [x2] [23xx]+ [x2] [23xx] 

Lys β (t) 0.194 0.195 0.224 0.211 0.245 0.240 0.282 0.251 AccoA/AKGm [x2] [23xx]  

Lys γ (s) 0.034 0.082 0.058 0.084 0.119 0.187 0.133 0.192 AccoA/AKGm [xx] [234x]  

Lys γ (d) 0.464 0.456 0.472 0.459 0.519 0.491 0.541 0.492 AccoA/AKGm [xx] [234x]+ [xx] [234x] 

Lys γ (t) 0.502 0.462 0.470 0.457 0.362 0.322 0.327 0.316 AccoA/AKGm [xx] [234x] 

Lys δ (s) 0.498 0.500 0.512 0.485 0.399 0.383 0.438 0.366 AccoA/AKGm [xx] [x345] 

Lys δ (d) 0.418 0.419 0.422 0.427 0.440 0.473 0.468 0.481 AccoA/AKGm [xx] [x345]+ [xx] [x345] 

Lys δ (t) 0.084 0.081 0.067 0.088 0.161 0.143 0.104 0.152 AccoA/AKGm [xx] [x345] 

Lys ε (s) 0.098 0.079   0.100 0.060 0.107 0.068 AccoA/AKGm [xx] [xx45] 
 

Lys ε (d) 0.902 0.921   0.900 0.940 0.893 0.932 AccoA/AKGm [xx] [xx45] 
 

Phe α (s) 0.032 0.030 0.040 0.027 0.032 0.044 0.043 0.051 PEP [123] 
 

Phe α (d1) 0.021 0.003 0.028 0.003 0.031 0.011 0.061 0.015 PEP [123] 
 

Phe α (d2) 0.045 0.068 0.062 0.094 0.036 0.076 0.034 0.084 PEP [123] 
 

Phe α (dd) 0.902 0.899 0.870 0.875 0.901 0.869 0.862 0.851 PEP [123] 
 

Pheβ (s) 0.524 0.514 0.439 0.512 0.503 0.516 0.484 0.516 PEP [x23].[2x] 

Pheβ (d1) 0.298 0.277 0.334 0.279 0.318 0.274 0.310 0.274 PEP [x23].[2x] 

Pheβ (d2) 0.121 0.136 0.149 0.135 0.126 0.137 0.163 0.137 PEP [x23].[2x] 

Phe β (dd) 0.057 0.073 0.078 0.074 0.053 0.073 0.044 0.073 PEP [x23].[2x] 

Pro β (s) 0.041 0.082 0.059 0.084 0.132 0.187 0.151 0.192 AKGm [x234x] 
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Table S4 continued 

Pro β (d) 0.421 0.456 0.443 0.459 0.513 0.491 0.487 0.492 AKGm [x234x] + [x234x] 

Pro β (t) 0.538 0.462 0.498 0.457 0.354 0.322 0.361 0.316 AKGm [x234x] 

Pro γ(s) 0.467 0.500 0.450 0.485 0.400 0.383 0.364 0.366 AKGm [xx345] 

Pro γ(d) 0.413 0.419 0.430 0.427 0.451 0.473 0.485 0.481 AKGm [xx345] + [x2345] 

Pro γ(t) 0.120 0.081 0.120 0.088 0.148 0.143 0.152 0.152 AKGm [xx345] 

Ser α (s) 0.033 0.040 0.038 0.037 0.023 0.050 0.040 0.054 Ser [123] 

Ser α (d1) 0.100 0.120 0.120 0.134 0.119 0.111 0.138 0.110 Ser [123] 

Ser α (d2) 0.077 0.073 0.026 0.087 0.077 0.079 0.040 0.083 Ser [123] 

Ser α (dd) 0.790 0.768 0.816 0.741 0.781 0.760 0.782 0.752 Ser [123] 

Ser β (s) 0.728 0.690 0.718 0.697 0.728 0.688 0.690 0.688 Ser [x23] 

Ser β (d) 0.272 0.310 0.282 0.303 0.272 0.312 0.310 0.312 Ser [x23] 

Thr α (s) 0.126 0.101 0.130 0.099 0.141 0.084 0.159 0.107 THR [123x] 

Thr α (d1) 0.081 0.087 0.093 0.074 0.039 0.064 0.119 0.097 THR [123x] 

Thr α (d2) 0.144 0.086 0.105 0.110 0.103 0.116 0.067 0.140 THR [123x] 

Thr α (dd) 0.649 0.726 0.673 0.717 0.718 0.735 0.655 0.656 THR [123x] 
 

Thr β (s) 0.566 0.477 0.476 0.462 0.544 0.463 0.496 0.447 THR [x234] 
 

Thr β (d) 0.352 0.426 0.419 0.431 0.365 0.435 0.405 0.443 THR [x234]+ [x234] 
 

Thr β (t) 0.082 0.097 0.105 0.107 0.091 0.102 0.099 0.110 THR [x234] 
 

Thr γ2 (s) 0.426 0.412 0.380 0.445 0.408 0.401 0.399 0.401 THR [xx34] 
 

Thr γ2 (d) 0.574 0.588 0.620 0.555 0.592 0.599 0.601 0.599 THR [xx34] 
 

Tyr α (s) 0.033 0.030 0.033 0.027 0.031 0.044 0.045 0.051 PEP [123] 
 

Tyr α (d1) 0.037 0.003 0.024 0.003 0.020 0.011 0.064 0.015 PEP [123] 
 

Tyr α (d2) 0.034 0.068 0.083 0.094 0.059 0.076 0.064 0.084 PEP [123] 

Tyr α (dd) 0.897 0.899 0.860 0.875 0.891 0.869 0.828 0.851 PEP [123] 
 

Tyr β (s) 0.515 0.514 0.519 0.512 0.519 0.516 0.554 0.516 PEP [x23].[2x]  

Tyr β (d) 0.346 0.413 0.328 0.415 0.363 0.411 0.326 0.411 PEP [x23].[2x]+ [x23].[2x]  

Tyr β (t) 0.139 0.073 0.153 0.074 0.118 0.073 0.120 0.073 PEP [x23].[2x]  

Tyr δ (s) 0.555 0.512 0.592 0.509 0.545 0.514 0.603 0.512 PEP/E4P [xxx].[23].[1x]+[xxx].[2].[43x]  

Tyr δ (d) 0.379 0.414 0.351 0.416 0.389 0.412 0.344 0.413 PEP/E4P [xxx].[23].[1x]+[xxx].[2].[43x]+  

          [xxx].[23].[1x]+[xxx].[2].[43x]  

Tyr δ (t) 0.066 0.074 0.058 0.075 0.066 0.074 0.054 0.074 PEP/E4P [xxx].[23].[1x]+[xxx].[2].[43x]  
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Table S4 continued 
Val α (s) 0.185 0.210 0.173 0.128 0.093 0.099 0.113 0.109 Pyrm [12x]·[x2x]  

Val α (d1) 0.535 0.524 0.585 0.652 0.663 0.689 0.637 0.680 Pyrm [12x]·[x2x] 
 

Val α (d2) 0.084 0.076 0.058 0.036 0.029 0.027 0.036 0.029 Pyrm [12x]·[x2x]  

Val α (dd) 0.197 0.190 0.184 0.184 0.215 0.185 0.214 0.182 Pyrm [12x]·[x2x]  

Val γ1 (s) 0.668 0.677 0.661 0.643 0.703 0.652 0.709 0.652 Pyrm [x23] 
 

Val γ1 (d) 0.332 0.323 0.339 0.357 0.297 0.348 0.291 0.348 Pyrm [x23]  

Val γ2 (s) 0.747 0.734 0.757 0.780 0.807 0.788 0.785 0.789 Pyrm [x2x]·[xx3]  

Val γ2 (d) 0.253 0.266 0.243 0.220 0.193 0.212 0.215 0.211 Pyrm [x2x]·[xx3]  
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Table S5: Gene transcripts significantly pretreated by 0.3mM octanoic acid stress (Liu et al., 

2013) 

Name Y-ID Fold p 

Plasma membrane ABC proteins 
PDR16 YNL231c 2.01 0.001 
PDR5 YOR153w 1.60 0.000 
PDR15 YDR406w 4.51 0.000 
PDR12 YPL058c 4.18 0.000 
YOR1 YGR281w 1.63 0.005 
PDR3 YBL005w 3.42 0.000 
Membrane proteins     
HSP12 YFL014w -4.81 0.000 
AQR1 YNL065w -5.04 0.014 
DIC1 YLR348c 2.03 0.000 
SUR7 YML052w -2.02 0.001 
FMP45 YDL222c -10.34 0.072 
HSP12 YFL014w -4.81 0.000 
SUR7 YML052w -2.02 0.001 
AQR1 YNL065w -5.04 0.014 
SPI1 YER150w -3.67 0.009 
MMP1 YLL061w -2.32 0.007 
Uptake of iron, zinc, copper, potassium, calcium and 
ammonia 
IZH4 YOL101c 2.02 0.001 
IZH1 YDR492w -2.11 0.008 
ATX1 YNL259c 2.39 0.001 
CCC2 YDR270w 2.02 0.000 
FIT2 YOR382w 12.60 0.000 
FIT3 YOR383c 5.19 0.000 
SIT1 YEL065w 2.87 0.000 
QDR2 YIL121w 2.20 0.000 
FIG1 YBR040w 3.72 0.000 
ATO2 YNR002c 2.22 0.015 
GRE2 YOL151w 2.18 0.001 
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Abstract 

Fatty acids synthesized via fermentation from biorenewable feedstocks are a potential 

source of platform chemicals, and thus could help addressing the increasing environmental 

impacts and insecurity of future energy. However, toxicity of fatty acids remains an obstacle for 

high titer production of fatty acid in Sacchromyces cerevisiae. The commercialization of fatty 

acids using S. cerevisiae is not feasible and uneconomical unless all the toxicity issue is resolved 

in metabolic engineering cycle. Oleaginous yeasts, which store energy as lipids, may have 

enhanced potential as host organism for the production of industrially chemicals through 

polyketide pathways. Yarrowia lipolytica is the most extensively studied oleaginous yeast with 

complete genome sequenced, thus could become an attractive platform organism. However, the 

metabolism of Y. lipolytica is less known compared to the conventional yeast. In this study, we 

characterized phenotype and morphology of Y. lipolytica under nitrogen and carbon-limited 

environment. We observed higher fatty acid production under nitrogen starvation and possible 

correlation between filamentous cells and lipid accumulation. Glycerol 3-phosphate 

dehydrogenase (gut2), which oxidizes glycerol-3-phosphate to dihydroxyacetone, was deleted to 

increase fatty acid production. Metabolic flux analysis (MFA) was applied to quantify fluxes in 

metabolic pathways and identify metabolic regulation by comparing fluxes under different 

environments. We elucidated the metabolic flux differences in central metabolism between Y. 

lipolytica wild type and gut2∆ mutant by conducting 
13

C labeling experiments in shake flasks 

with a mixture of uniformly 
13

C labeled glucose and 1-
13

C positional labeled glucose. No 

significant distinction in central metabolism flux distribution between the wild type and gut2∆ 
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mutant was observed under carbon-limited environment. Interestingly, the TCA cycle and 

pentose phosphate pathway were the major pathway for generations of NADPHs and ATPs for 

cellular requirement. Fluxomic data will be integrated with RNASeq transcriptomic data of Y. 

lipolytica into the hybrid kinetics-flux balance analysis (FBA) framework. The hybrid model, 

which includes dynamics regulation of gene and enzymes, will be incorporated into in-silico 

computational tools to guide the strain design. 

1. Introductions 

The demands for sustainable production of fuels and chemicals have substantially 

increased with detrimental environmental impact of fossil-based industry. Microbial 

fermentation using renewable feedstock has potential to replace the traditional fossil-based 

production and thus address environmental and energy concerns. Carboxylic acids derived from 

microbial fermentation could be the platform biochemicals to generate an array of industrial 

chemicals (Chia et al., 2012; Nikolau et al., 2008).  For instance, free fatty acid synthesized from 

biocatalysts could be converted to alkanes, fatty esters, and fatty alcohols (Lennen et al., 2010; 

Steen et al., 2010). The synthesis of these biochemicals involved polyketide pathway, 

particularly acetyl-CoA and malonyl-CoA.  However, the growth of Sacchromyces cerevisiae is 

known to be inhibited by the presence of lipophilic acids (Mira et al., 2010). Jarboe and 

coworkers reported dose-dependent and chain length-dependent toxicity effects on S. cerevisiae 

(Liu et al., 2013). The cell growth was completely inhibited by less than 5 mM of C6-10 fatty 

acids due to the loss of membrane integrity (Liu et al., 2013). The product toxicity problem 

renders the strain to be infeasible and uneconomical for future commercialization. To overcome 

this menace, directed evolution and genetic engineering might root in success (Jarboe et al., 

2011). However, we could select other host organisms that can naturally accumulate fatty acid 

without much product toxicity issue. 

Yarrowia lipolytica, an oleaginous yeast, can accumulate up to 70% of its biomass in lipids, 

making it an attractive testbed organism for strain development (Beopoulos et al., 2009). Unlike 

Saccharomyces which stores its energy as polysaccharide, oleaginous yeasts store energy as 

lipids and may therefore have enhanced potential for production of industrially desirable 

compounds (Beopoulos et al., 2009). Y. lipolytica is an obligate aerobic yeast that can survive 

under hydrophobic substrates (alkane, fatty acid and hydrocarbons). This oleaginous yeast was 
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known to accumulate fatty acids as lipid bodies under nitrogen starvation (Beopoulos et al., 

2009). During nitrogen exhaustion, the organism could not continue to proliferate through the 

synthesis of proteins and nucleic acids. The carbon source is assimilated to synthesize fatty acids 

with the resulting accumulation of triglycerides as lipid bodies. The complete genome of Y. 

lipolytica has been sequenced (Dujon et al., 2004) and was found to be distantly related to the 

conventional S. cerevisiae. Similarly, genome-scale metabolic network of Y. lipolytica has been 

recently released to guide the metabolic engineering and conceptualize high-throughput data 

(Loira et al., 2012; Pan and Hua, 2012). The development of genetic tools for Y. lipolytica 

establishes the technology platform to engineer the strain. For instance, Dupont has demonstrated 

the production of omega-3 and omega-6 polyunsaturated fatty acids in Y. lipolytica by expressing 

heterogeneous genes encoding the ω-3/ω-6 biosynthetic pathway (Beopoulos et al., 2010). Thus, 

Y. lipolytica is an excellent organism for polyketide pathway-based biochemical products. 

However, oleaginous yeast metabolism is not as well understood as that of S. cerevisiae 

so that improvements in characterization of oleaginous strains would be useful for strain 

development.  
13

C metabolic flux analysis (MFA) provides a realistic in vivo profile of metabolic 

flux distributions (fluxomics) of an organism by relying on the 
13

C carbon tracing patterns as 

additional constraints rather than a growth objective function typical in flux balance analysis 

(FBA) (Chen et al., 2011). 
13

C MFA using GC-MS has been implemented to obtain the 

fluxomics of the yeasts under various conditions (Kleijn et al., 2007).  With the availability of 

complete genome sequence, transcriptomics analysis could be performed to understand cell 

physiology and regulatory mechanism at the whole-cell transcript level by analyzing them under 

various genotypic and environmental conditions simultaneously (Wang et al., 2009). In addition, 

computational tool can be applied with the availability of genome-scale metabolic model to 

identify genetic manipulation to enhance product yield (Lee et al., 2012). However, most of the 

in-silico tools do not include gene regulation (Burgard et al., 2003; Ranganathan et al., 2010). 

Integration of fluxomic data and existing RNASeq transcriptomic data of wild type Y. lipolytica 

into the hybrid kinetics-FBA framework of the genome-scale reconstructed model of Y. 

lipolytica could overcome this limitation by accounting for the dynamics range of enzymes.  

In this study, we investigated the growth properties, the respiration rate, and the 

morphology of Y. lipolytica under aerobic fermentation with glucose as feedstock. We 

performed 
13

C-MFA to compare carbon flux distribution of wild type Y.lipolytica and its 
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engineered mutant strain. Truncated metabolic network was constructed based on the genome-

scale metabolic model and applied for 
13

C- MFA simulations. 

2. Material and Methods 

Strains and plasmids:   

The wild type Y. lipolytica and ∆GUT2 mutant were used throughout this work. The strains were 

gifts from Dr. Suzanne Sandmeyer’s lab.  

Strains and culture conditions: 

The Y. lipolytica strains from glycerol frozen stock was streaked on Yeast Peptone Dextrose 

(YPD) plate and incubated overnight at 30
o
C.  The colonies from YPD plate was transferred in 

50mL tubes containing 10mL of the following synthetic dextrose (SD) minimal medium: 10 g/L 

glucose and 6.7 g/L yeast nitrogen base without amino acid. The medium pH was adjusted to 5.5. 

The preculture cells were centrifuged at 4000 rpm for 5 min at 4°C. The supernatant were 

discarded, and the pellet was re-suspended in fresh SD minimal medium. The appropriate 

quantity of the washed cell suspension was used to inoculate 50 mL of SD minimal medium in 

the 250mL flasks to a starting OD600 of 0.02. For better identification of fluxes, a mixture of 

uniformly labeled [U-
13

C], first carbon labeled [1-
13

C] and natural glucose was used for 
13

C flux 

analysis (Fischer et al., 2004). Specifically, 20% U-
13

C glucose and 80% 1-
13

C glucose was used 

as the tracer to final medium concentration of 1% glucose. The aerobic fermentation was 

conducted at 25 °C and 250 rpm. The cells were harvested at mid-exponential phase after at least 

5 generations to ensure metabolic and isotopic steady state. 3 parallel experiments were 

conducted as biological replicates. 

Analytical techniques:  

Cell biomass dry weight was determined by measuring optical density OD600 using a 

spectrophotometer. Cell dry weight was estimated by drying centrifuged cell pellets (20mL) in 

the 80
o
C oven. The increase in tube weight was measured and correlated with the sample’s OD. 

Biomass composition was determined based on literature data (Pan and Hua, 2012). Media 

samples were taken over the times and filtered through 0.22 µm pore sized nylon filters (P.J. 

Cobert Associates, Saint Louis, MO) and kept at -80 
o
C for extracellular metabolite analysis. 

Only glucose was detected using Waters HPLC (Waters, Milford, MA) with 410 refractive index 
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detector. The Aminex column (HPX-87H, Bio-Rad, Hercules, CA) was used at 30 
o
C with 0.3 

mL/min of 5mM sulfuric acid as mobile phase. Glucose was analyzed using enzymatic assay kit 

(Sigma, St Louis, MO) according the manufacturer protocol. The substrate uptake rate in batch 

culture is constant during exponential phase.  

The morphology of the oleaginous yeasts was observed under confocal microscope where the 

cells were dyed with Nile red to stain the lipid bodies. The oxygen consumption rate was 

measured by Hansetech oxygen probe according to the manufacturer’s protocol. 

Fatty acid quantification: 

1-2 mL samples were collected and processed for fatty acid analysis as described by 

Ranganathan et al. (Ranganathan et al., 2012). The fatty acids were extracted using chloroform 

and methylated into fatty acid methyl esters for GC-MS/FID analysis. The fatty acids were also 

analyzed using sulfo-phospho-vanilin assay (Knight et al., 1972).  

Proteinegenic amino acid analysis:  

Cells were prepared as described by Zamboni et al. (Zamboni et al., 2009). Briefly, cells are 

centrifuged, washed twice with saline water containing 0.9% NaCl, and then hydrolysed with 6 

N hydrochloric acid at 110
o
C for 18-24 hours. The samples were filtered and the acids were 

evaporated. Finally, the sample was dissolved in DMF and derivitized with TBDMS for GC-MS 

analysis. The isotopomer peak integrations were performed in Chemstation software. Natural 

abundance of the amino acids were corrected using FiatFlux software (Zamboni et al., 2005). 

Metabolic network model for MFA:  

A network model for Y. lipolytica metabolism was constructed based on the available genome-

scale network models (see Table S2) (Loira et al., 2012; Pan and Hua, 2012). The model includes 

glucose transport and phosphorylation pathway, Embden-Meyerhof-Parnas pathway, oxidative 

pentose phosphate branch, non-oxidative pentose phosphate branch, TCA cycle, anaplerotic 

pathways, glyoxylate cycle, metabolite exchange reactions, all amino acids biosynthesis 

pathways. Eukaryotic compartmentation into mitochondrial and cytosolic subsystems was 

included in the model by considering distinct pools of pyruvate, oxaloacetate, citrate and acetyl-

CoA in both compartments (Fiaux et al., 2003). The pyruvate transport into the mitochondria is 
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unidirectional, driven by the proton motive force. Phosphoenolpyruvate carboxylase kinase (Yin 

et al., 1996) was repressed under the presence of glucose, thus not included in the network. 

Flux evaluation methodology:  

Fluxes were quantified using 13C-FLUX2 software developed by Wiechert et al. (Weitzel et al., 

2013).  13C-FLUX2 employs cumomer/ elementary metabolite unit (EMU) balancing and a 

global optimization routine to find stoichiometrically feasible fluxes set consistent with 

experimental measurements.  Overall fluxes were estimated by minimizing the chi-square error 

between experimentally measured and simulated isotopomer fractions. Statiscal analysis was 

performed using a bootstrap Monte Carlo or linearized statistical analysis. 

3. Results and discussions 

Phenotype characterization of Y. lipolytica  

We characterized the growth properties and lipid production of Y. lipolytica under carbon and 

nitrogen limitation conditions. A growth curve for both of these conditions was constructed (Figure 

1a).  Lipid production was measured for cells in log, late log, early stationary, and late stationary.  In 

late stationary, nitrogen-limited cultures produced four-fold greater lipid than carbon-limited cells. 

The major fatty acid was C18:1, with second highest C18:2 in both carbon- and nitrogen-limited 

growth. This reflected greater than 0.02 g fatty acid per gram wet weight in the nitrogen-limited 

sample (Figure 1b).  The fatty acids produced under nitrogen-limited condition were significantly 

higher (>5 fold) than carbon-limited environment. 

The mitochondrial glycerol-3-phosphate dehydrogenase (gut2) is involved in glycerol 

degradation to oxidize glycerol-3-phosphate to dihydroxyacetone in mitochondria. Glycerol-3-

phosphate is then transported back to cytosol to enter glycolysis or gluconeogenesis. Gut2 gene was 

deleted to prevent the degradation of glycerol, in which glycerol is the precursor for triglyceride 

biosynthesis. Gut2 was deleted using URA3, flanked upstream and downstream by 1000bp of gut2 

flanking sequence, selected on ura- medium, screened on glycerol for no growth, and confirmed by 

PCR (data not shown). This strain was grown under nitrogen-limiting conditions and unsaturated 

lipids were evaluated using the phospho-vanillin assay.  The unsaturated fatty acid contents of gut2∆ 

mutant was higher than the control (data not shown), but the whole fatty acid profile would need to 

analyzed using GC-MS. 
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We characterized a cellular morphology difference between the wild type and gut2∆ Y. 

lipolytica in stationary phase. The gut2Δ mutant maintains a high percentage of filamentous cells 

compared to the budding cells in the wild type Y. lipolytica (Figure 2). The increase of filamentous 

behavior might be linked with nutrient limitation and the elevation of lipid production. In addition, we 

investigated the effect of oxygen consumption on the filamentous percentage during mid-logarithm 

and stationary growth stage (Figure 3).  With glucose as the carbon source, we observed the 

percentage of filamentous cells was higher during mid-log growth than during the stationary phase. 

Similarly, oxygen consumption was higher during mid-log phase. This might imply respiration (which 

requires oxygen) is correlated to the tendency of cells to be filamentous, indirectly linked to lipid 

production. 

Metabolic flux analysis 

13
C MFA experiments were performed on both wild type and gut2∆ Y. lipolytica using a 

combination of 20% uniformly labeled 
13

C glucose and 80% 1-
13

C labeled glucose as the only carbon 

tracers. The phenotype analysis revealed similar growth rate, glucose consumption rate and biomass 

yield between wild type and mutant (Figure 4a, 4b). The growth rate of wild type and gut2∆ Y. 

lipolytica were very similar (0.21 hr
-1

) during growth phase. With higher glucose consumption, the 

biomass yield of gut2∆ mutant decreased 25% compared to that of wild type. However, Sauer and 

coworkers reported higher growth rate and glucose consumption rate in their study (Christen and 

Sauer, 2011). The deviations might be possibly due to differences in cultivation temperature and 

medium. No by-product formation was detected by HPLC analysis. The isotopomer fraction of 

proteinogenic amino acids quantified using GC-MS depicted high similarity between wild type and 

gut2∆ mutant (Figure 5).  

We have successfully constructed a data consistent metabolic model of Y. lipolytica for 
13

C 

MFA via multiple rounds of iterative modifications to the metabolic model of the previous S. 

cerevisiae 
13

C MFA (Gombert et al., 2001) (Figure 6). S. cerevisiae network model was used as the 

scaffold. Y. lipolytica specific reactions from genome scale reaction models were incorporated 

incrementally (Loira et al., 2012). Finally, cross-validation of the resulting simulated fluxes between 

the general net flux ratio approach and the detailed global optimization approach was used as the 

fitness function to determine next iteration. The resulting fluxomics from the carbon tracing 

simulations via 13CFlux2 are then mapped to the model using Omix (Figure 7). The flux distributions 
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between Y. lipolytica and gut2∆ mutant were similar at carbon-limited condition at exponential growth 

phase. Most of the carbon fluxes (around 83%) channel through pentose phosphate pathway to 

generate NADPH for reduction requirements. The remaining carbon flux (around 13%) is directed 

towards the glycolytic pathway, resulting in low activities of the lower glycolytic pathway. The TCA 

cycle operates at 57 mmol gDW
-1 

h
-1

 (based on 100 mmol gDW
-1 

h
-1

)
 
to generate ATP and NAD(P)H 

for energy and reduction requirements for cell growth. The glyoxylate cycle is active with 15 mmol 

gDW
-1 

h
-1 

to bypass the TCA cycle. Anaplerotic reactions (phosphoenolpyruvate carboxylkinase and 

malic enzyme reactions) are not significant (Fischer and Sauer, 2003)(Fischer and Sauer, 

2003)(Fischer and Sauer, 2003)(Fischer and Sauer, 2003)(Fischer and Sauer, 2003)(Fischer and 

Sauer, 2003)(Fischer and Sauer, 2003).  

Contrast with S. cerevisiae (chapter 6), glucose was mostly catabolized through glycolysis to 

form ethanol, glycerol and acetate. The TCA cycle flux was negligible. However, pentose pathway 

pathway and the TCA cycle oleaginous Y. lipolytica became the major pathways for sugar catabolism 

and cofactor generations. These findings were in agreement with Christen et al. (Christen and Sauer, 

2011) that aerobic Yarrowia species exhibited high respiratory fluxes. High similarity in flux 

distribution between wild type and gut2∆ Y. lipolytica might be due to the similar phenotype and fatty 

acid production under carbon-limited condition. Difference in flux distributions might be observed 

under nitrogen limited environment where gut2∆ mutant produced more lipids than the wild type, 

which is yet to be investigated. 

4. Summary and discussion 

Due to the membrane disruption, S.cerevisiae can only tolerate less than 5mM octanoic acid 

which is not feasible for commercialization (Liu et al., 2013). Unlike S. cerevisiae which stores its 

energy as polysaccharide, oleaginous yeasts store energy as lipids and may have enhanced potential 

for production of industrially desirable compounds and tolerance against lipid inhibition. Thus we 

characterized the growth and lipid production of Y. lipolytica under carbon- and nitrogen-limited 

conditions. Nitrogen deprivation promoted Y. lipolytica to accumulate lipid bodies. Glycerol-3-

phophaste dehydrogense deletion led to higher unsaturated fatty acid production correlated with 

filamentous Yarrowia cells formation. Respiration rate of wild type Y. lipolytica was observed to be 

higher during growth phase compared to stationary stage. Metabolic flux analysis was performed on 

Y. lipolytica wild type strain and its gut2∆ mutant under carbon-limited environment. The TCA cycle 
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and pentose phosphate pathway fluxes were the major pathways to generate ATPs and NADPHs. 

RNAseq experiments would be conducted at University of California, Irvine to identify the key 

metabolic differences between conditions and mutant isolates which favor and disfavor lipid 

synthesis. The fluxomic data will be integrated with RNASeq transcriptomic data of Y. lipolytica into 

the hybrid kinetics-flux balance analysis (FBA) framework. The hybrid kinetics-FBA model will 

include gene and enzyme dynamic regulation in order to predict the range of possible in-vivo fluxes in 

each enzymatic reaction. Finally, the hybrid-FBA could be incorporated into OptForce (Ranganathan 

et al., 2010) to predict for minimal genetic manipulation for yield improvement of desired chemicals. 
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Figure 1 (a) The growth curve and (b) lipid productions of of Y. lipolytica under carbon-limited 

and nitrogen-limited condition. 

 

 

Figure 2. Dimorphism in Y. lipolytica. Morphology of WT vs gut2Δ in early stationary phase via 

differential interference contrast microscopy. Nile red dye stains for intracellular lipid droplets. Images 

provided by Virginia Bilanc of the Sandmeyer lab. 
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Figure 3. The filamentous percentage and oxygen consumption of Y. lipolytica wild type strain during 

mid-log growth (19, 21 and 26 hours) and stationary phase (41 and 45 hours).  The fermentation was 

performed in shake flasks at 25
o
C and 250 rpm with glucose as the carbon source.  

 

 

Figure 4a. The growth profile of Y. lipolytica wild type (WT) and gut2∆ (GUT) mutant during 
13

C labeling experiment with 1% glucose (80% uniformly 
13

C labeled and 20% 1-
13

C  labeled). 

The strain was grown aerobically in the shake flasks at 25
o
C and 250 rpm. The average and 

standard deviation are based on at least 3 replicates. 
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Figure 4b. Phenotype analysis of Y. lipolytica wild type and gut2∆ mutant. The strains were 

grown using 1% glucose (80% uniformly 
13

C labeled and 20% 1-
13

C  labeled). The strain was 

grown aerobically in the shake flasks at 25
o
C and 250 rpm. The average and standard deviation 

are based on at least 3 replicates. 

 

 

 
Figure 5. Isotopomer fraction of Y. lipolytica wild type and gut2∆ mutant 
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Figure 6. Metabolic pathway model of Y. lipolytica. Model was constructed in Omix for use in 13C 

MFA carbon tracing simulation. Metabolites are shown as rectangular boxes, with blue representing 

carbon source, purple - intermediate metabolites, white - potential extracellular metabolite products, 

and orange - amino acids. Reactions are shown as diamond shapes, and are grouped into sub-

pathways, with cyan representing substrate uptake, purple – glycolysis pathway, aqua green – 

gluconeogenesis, brown – pentose phosphate pathway, light orange – anaplerotic pathway, red orange 

– transport to mitochondria, light green – TCA cycle pathway, green – reaction going into biomass, 

and red – exchange with media.  
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Figure 7. Fluxomics of wild type Y. lipolytica (displayed in 3D via Omix). Fluxomics representing the 

optimal simulation of WT Y. lipolytica metabolic fluxes as constrained by the mass fraction labeling 

patterns derived from the 13C carbon tracing. Blue arrow edges representing forward fluxes, while red 

arrow edges representing reverse fluxes. The size of the edges are displayed in log scale. 

 



207 

 

 

CHAPTER 8 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 

Fatty acids of varying chain lengths (C6 – C16) naturally synthesized in many organisms 

are promising starting points for the catalytic production of industrial chemicals and diesel-like 

biofuels. However, bio-production of fatty acids from plants and other microbial production 

hosts relies heavily on manipulating tightly regulated fatty acid biosynthetic pathways. In 

addition, precursors for fatty acids are used along in other central metabolic pathways for the 

production of amino acids and biomass, which further complicates the engineering of microbial 

hosts for higher yields.  

With the advent of systems metabolic engineering, we demonstrated an iterative 

metabolic engineering effort that integrates computationally driven predictions and metabolic 

flux analysis techniques to meet this challenge. Metabolic flux analysis (MFA), the 

quantification of fluxes in metabolic pathways, is an integral tool for the development of 

strategies for genetic modification and the identification of metabolic regulation, by comparing 

fluxes under different environments. With wild type E. coli fluxomic, the OptForce procedure 

was used to suggest and prioritize genetic manipulations that overproduce fatty acids of different 

chain lengths from C6 to C16. We identified some common but mostly chain-specific genetic 

interventions alluding to the possibility of fine-tuning overproduction of specific fatty acid chain 

lengths. In accordance with the OptForce prioritization of interventions, fabZ and acyl-ACP 

thioesterase were upregulated and fadD was deleted to arrive at a strain that produces 1.70 g/L 

and 0.14 g fatty acid/g glucose (~ 39% maximum theoretical yield) of C14-16 fatty acid in 

minimal medium. These results highlight the benefit of using computational strain design and 

flux analysis tools to systematically guide the strain design to produce free fatty acids.  

However, OptForce simulation does not infer gene regulation and enzyme inhibition. We 

extended the above study to close the metabolic engineering cycle by fine-tuning the phenotype 

and flux distribution of the first generation engineered strain. Along with transcriptomics and 

metabolomics analysis, we performed second round of OptForce simulation using the redefined 

flux distribution as constraints to predict genetic manipulations for second generation fatty acid-
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overproducing strain. Metabolic flux analysis identified the up-regulation of the TCA cycle and 

down-regulation of pentose phosphate pathway to replenish the need of energy and reducing 

molecules for biosynthesis or fatty acids. The elevation of metabolite level in the TCA cycle 

complemented the flux findings. Using the whole genome transcriptional analysis, we observed 

acid stress response, membrane disruption, colanic acid and biofilm formation during fatty acid 

production, thus pinpointing the targets for future metabolic engineering effort. In accordance to 

OptForce suggestion, succinate dehydrogenase was deleted to improve the fatty acid titer and 

yield further 7-10% in M9 minimal media. Our study reinforces the advantages of integrating 

computational, experimental and omics tools for the design and engineering of microbial strains 

to overproduce value-added chemicals. 

Product toxicity remains a tangible challenge that needs to be overcome in order to 

enhance the strain robustness. Saccharomyces cerevisiae can grow well at low pH with simple 

nutrient requirement. The robustness and extensive knowledge of genetics and physiology make 

S. cerevisiae a potential biocatalyst for fatty acid production. We elucidated the metabolic flux 

differences in central metabolism between the control and octanoic acid inhibition by conducting 

13
C labeling experiments in fermentors. Distinctions in central metabolism flux distribution 

between control and octanoic acid stress were observed, especially in the TCA cycle. 

Interestingly, transcriptome analysis revealed membrane stress and intracellular acidification 

based on the perturbation of membrane protein genes and the up-regulation of plasma membrane 

ATP-required transporter. Coupled with the elevation of active efflux transporter, yeast cells 

under octanoic acid stress tend to generate more energy and reducing power to counteract the 

effect of membrane stress and acidification through the plasma membrane transporter activity. 

Further efforts can focus on improving membrane integrity to enhance the tolerance against 

octanoic acid. 

Nonetheless, S. cerevisiae can only resist to less than 1mM fatty acids, thus not feasible 

to be the industrial host for fatty acid production. Oleaginous yeast (Yarrowia lipolytica), which 

stores energy as lipids, may have potential to be host organism for fatty acids production. 

However, the metabolism of Y. lipolytica is less known compared to the conventional yeast. We 

observed higher fatty acid production under nitrogen starvation. The morphology study depicted 

filamentous cells formation might correlate with lipid accumulation. Glycerol-3-phosphate 

dehydrogenase (gut2), which oxidizes glycerol 3-phosphate to dihydroxyacetone, was deleted to 
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increase fatty acid production. MFA elucidated no significant distinction in the central 

metabolism flux distribution between the wild type and gut2∆ mutant. Interestingly, the TCA 

cycle and pentose phosphate pathway were the major pathways for generations of energy and 

reducing equivalents for growth requirement. Fluxomic data will be integrated with RNASeq 

transcriptomic data of Y. lipolytica into the hybrid kinetics-flux balance analysis (FBA) 

framework. The hybrid model, which includes dynamics regulation of gene and enzymes, will be 

incorporated into in-silico computational tools to guide the strain design.  

Future perspectives 

In order to produce commercial fatty acid via biological processes, we would need to 

achieve higher product yield and productivity, while increasing the product tolerance in the 

organisms. These objectives could be attained via systems metabolic engineering efforts and 

fermentation process development strategies. 

Systems metabolic engineering aspect 

Metabolic flux analysis (MFA) has been demonstrated to be a powerful tool to diagnose 

cell physiology during exponential growth phase. However, MFA requires the attainment of 

isotopic and metabolic steady states. This limits the application of MFA to have a snapshot of 

cell physiology during stationary or late stationary stage. The synthesis of desired products in 

engineered organism mostly peaks during stationary phase after sufficient cell growth and 

protein expression during mid-logarithm growth. Moreover, it remains a challenge to apply MFA 

during fed-batch fermentation which is broadly used in industry. To overcome these challenges, 

nonstationary 
13

C-MFA uses short-time isotopic transient data to resolve fluxes within much 

shorter labeling experiments (Nöh et al., 2006). Its application, however, raises new challenges 

in computation and analytics aspects. For organism with slow growth rate, it will take prolonged 

duration to reach isotopic and metabolic steady states, leading to impractical long experiment. 

13
C tracers will be incorporated into the intracellular metabolites and free amino acids in the 

range of seconds to minutes. With the fast turnover, 
13

C incorporated metabolites would wash 

out the existing pool of metabolites. Hence, MFA, which is based on intracellular metabolite 

isotopomer, can dramatically shorten the experimental time.  

Systems biology, which consists of genomic, transcriptomic, proteomic, metabolomic 

and fluxomic, could elucidate the underlying cellular network and reveal interactions and 
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regulations between hierarchy structure of information (Lee et al., 2012). However, there is a 

lack of integration of these omics tools to study the biological problem. Each method has its 

advantages and limitations under certain circumstances. Integration of omics tools, therefore, can 

pinpoint the bottleneck of the biological system collectively to increase product yield and 

tolerance against product inhibition. Solving biological problems from a multiple integrated 

perspectives would be more effective and reliable. 

In-silico genome-scale metabolic simulations had been proven for its robustness in 

guidance of strain design. It accounts for all redox potentials balance and cofactor requirements. 

However, most of the computational tools do not include regulation network of gene and 

enzyme. Thus, in-silico based simulations could include omics inputs and gene/enzyme 

regulatory network to define the dynamics range of enzymatic reactions in the metabolic 

networks. The incorporation of these omics constraints will improve the reliability of the 

simulated genetic interventions, thereby is an effective strategy for engineering metabolism at 

the systems level for the production of desired chemicals. 

Fatty acid toxicity was proven to hinder the cell viability and the productivity of fatty 

acid synthesis. Omics analysis revealed the possible culprits are the loss of membrane integrity 

and possible intracellular acidification (Lennen et al., 2011; Liu et al., 2013).  Further metabolic 

engineering efforts to enhance tolerance could be focused on engineering transporter mechanism 

to pump out the toxic products, or strengthening membrane cell wall to defend the membrane 

stress. Synthetic biology tools could be applied to facilitate the strain construction processes. 

Fermentation process engineering aspect 

The advances in systems metabolic engineering, which comprises of classical metabolic 

engineering, system biology, synthetic biology and directed revolution, could root in success in 

strain design with shorter turnover time. Besides that, a sustainable bacterial fermentation route 

to produce carboxylic acids is required for commercialization. Most of the microbiology labs still 

opt to shake flasks and culture tubes to evaluate the strain performance preliminarily. 

Fermentation under well-controlled bioreactors is required to further characterize the strain and 

enhance the strain robustness. Fermentation in bioreactors aims to increase cell growth and 

maximize the conversion of substrate to desired products. In order to commercialize a biological 

process, the scale-up, separation and recovery processes play important roles to minimize the 
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overall production cost. Therefore, fermentation process development is crucial to optimize the 

strain performance in term of pH, temperature, dissolved oxygen, agitation rate and substrate 

concentration. In this context, bioreactor cultivation could be conducted in batch, fed-batch and 

continuous mode under a wide range of environmental conditions.  

The fed-batch fermentation is the most widely used fermentation mode to achieve high 

cell density, high product titer/yield. The feed profile and oxygen uptake rate are the most 

intriguing parameter to be controlled in designing fed-batch fermentation. Therefore, the first 

generation fatty acid-overproducing strain (ML103 pXZ18Z) (Ranganathan et al., 2012) was 

grown in M9 minimal medium using batch and fed-batch mode in the bioreactors. Figure 1 and 2 

illustrate the cell density, glucose, acetate and fatty acid profile throughout the fermentation 

period. During the batch fermentation, we observed acetate production till the depletion of 

glucose. When glucose was depleted, acetate was assimilated back into the metabolism to form 

fatty acids. On the other hand, the fed-batch fermentation shared the same characteristics till  

glucose was fed into the system. Unlike the batch fermentation, acetate production slowed down 

when glucose concentration was low, and continued to increase after glucose was fed. We 

observed the glucose consumption and fatty acid production were slower after the addition of 

glucose. Given the decrease in cell density, endogenous fatty acid (4.8g/L) might cause toxicity 

effect by affecting the cell growth, glucose consumption and fatty acid production. Fed-batch 

fermentation produced higher titers of fatty acids and acetate by-product. Interestingly, the fatty 

acid yield of fed-batch culture (0.18 g/g) was significant higher than the batch culture (0.14 g/g). 

Manipulation of glucose level could possibly increase the productivity of fatty acid. The fed-

batch fermentation could be extended to constant, linear and exponential feeding strategies. 

Feedback control based on dissolved oxygen and pH could be applied to control the glucose 

feeding and avoid overfed scenario. Process development of fed-batch fermentation will help 

increase the productivity and the yield of desired products, thus aiding the technological 

transition to the scale-up in the industrial fermentation. 

Separation and recovery remain one of the major costs for the downstream process of 

fermentation products. Fatty acids could not be vaporized through flash tank or extracted through 

gas-stripping. Distillation and solvent extraction appear to be potential strategies to recover fatty 

acids from the fermentation broths. However, these extraction methods may involve harsh 

chemical treatment and require excessive energy input. Based on the density and solubility of 
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fatty acids, we investigated the feasibility of centrifugation and the temperature effects on the 

separation efficiency. Figure 3 depicts the separations of fatty acids (white layers above the 

supernatants) after centrifugation for 30 minutes. Low temperature (4
o
C) was believed to further 

assist fatty acid separations. Further engineering efforts for fermentation process development 

and downstream product recovery, are required to reduce the operating cost. 
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List of figures 

Figure 1a. Glucose and acetate profile of E. coli ML103 pXZ18Z under batch fermentation in 

bioreactor in M9 minimal media with 1.5% glucose. 

Figure 1b. Cell density and fatty acid production of E. coli ML103 pXZ18Z under batch 

fermentation in bioreactor in M9 minimal media with 1.5% glucose. 

Figure 2a. Glucose and acetate profile of E. coli ML103 pXZ18Z under fed-batch fermentation 

in bioreactor in M9 minimal media with 1.5% glucose. Glucose was pulsed into the system at 37 

hour. 

Figure 2b. Cell density and fatty acid production of E. coli ML103 pXZ18Z under fed-batch 

fermentation in bioreactor in M9 minimal media with 1.5% glucose. . Glucose was pulsed into 

the system at 37 hour. 

Figure 2. The fatty acid fermentation broth after centrifugation for 30 minutes at 4
o
C (left) and 

room temperature (right). The broth was vacuum-filtered and fatty acid solid layers remained on 

the filter papers. 
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Figure 1a. Glucose and acetate profile of E. coli ML103 pXZ18Z under batch fermentation in 

bioreactor in M9 minimal media with 1.5% glucose. 

 

 

 
Figure 1b. Cell density and fatty acid production of E. coli ML103 pXZ18Z under batch 

fermentation in bioreactor in M9 minimal media with 1.5% glucose. 
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Figure 2a. Glucose and acetate profile of E. coli ML103 pXZ18Z under fed-batch fermentation 

in bioreactor in M9 minimal media with 1.5% glucose. Glucose was pulsed into the system at 37 

hour. 

 

 

 
Figure 2b. Cell density and fatty acid production of E. coli ML103 pXZ18Z under fed-batch 

fermentation in bioreactor in M9 minimal media with 1.5% glucose. . Glucose was pulsed into 

the system at 37 hour. 
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Figure 2. The fatty acid fermentation broth after centrifugation for 30 minutes at 4

o
C (left) and 

room temperature (right). The broth was vacuum-filtered and fatty acid solid layers remained on 

the filter papers. 

 


