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ABSTRACT  

 The marine organism Moritella marina MP-1 produces the polyunsaturated fatty acid 

docosahexaenoic acid (DHA). While the basic metabolic pathway for DHA production in this 

organism has been identified, the impact of growth conditions on DHA production is largely 

unknown. This study examines the effect of supplemental carbon, nitrogen and salts, growth 

temperature and media composition and pH on DHA and biomass production and the fatty acid 

profile. The addition of supplemental nitrogen significantly increased the overall DHA titer via an 

increase in biomass production. Supplemental glucose or glycerol increased biomass production, 

but decreased the amount of DHA per biomass, resulting in no net change in the DHA titer. 

Acidification of the baseline media pH to 6.0 increased DHA per biomass. Changes in growth 

temperature or provision of supplemental sodium or magnesium chloride did not increase DHA 

titer. This organism was also shown to grow on defined minimal media. For both media types, 

glycerol enabled more DHA production per biomass than glucose. Combination of these growth 

findings into marine broth supplemented with glycerol, yeast extract and tryptone at pH 6.0 

resulted in a final titer of 82+5 mg/L, a nearly 8-fold increase relative to the titer of 11+1 mg/L 

seen in the unsupplemented marine broth. The relative distribution of other fatty acids was 

relatively robust to growth condition, but the presence of glycerol resulted in a significant increase 

in myristic acid (C14:0) and decrease in palmitic acid (C16:0). In summary, DHA production by 

M. marina MP-1 can be increased more than 5-fold by changing the growth media. Metabolic 

engineering of this organism to increase the amount of DHA produced per biomass could result in 

additional increases in titer.  

Keywords:  Moritella marina MP-1, polyunsaturated fatty acids, membrane fluidity, polyketide, 

marine broth 
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INTRODUCTION 

Polyunsaturated fatty acids (PUFAs) such as docosahexanoic acid (DHA, 22:6(n-3)) and 

eicosapentaenoic acid (EPA, 20:5(n-3)), have beneficial effects on human health through their 

effect on membrane fluidity and contribute to many aspects of health, including but not limited to,  

fetal development and prevention of cancer and obesity (Chapkin et al. 2008; Connor et al. 2000; 

Lagarde 2008; Li et al. 2008; Siddiqui et al. 2008; Valenzuela 2009). It is also established that 

these compounds downregulate inflammatory pathways that are known to be activated in chronic 

diseases such as rheumatoid arthritis, obesity and type 2 diabetes, among others (Wall et al. 2010). 

It is recommended that the general public consume at least 100 mg of omega-3 fatty acids such as 

DHA daily, with some agencies suggesting that this dose be increased 10-fold (Nishida et al. 2004). 

This increasing demand for PUFA supplements is complicated by the fact that even the current 

demand cannot be sustainably met by fish-derived PUFAs (Jenkins et al. 2009). Together with 

concerns about possible socio-economic effects, such as the inability of local populations to 

continue to use fish as a food staple (Alder and Watson 2007) and environmental contaminants in 

fish-derived oils (Hites et al. 2004)  there is a strong demand for non-fish-derived PUFA.   

Non-fish sources of PUFA include algae, recombinant plants and bacteria. Some marine 

bacteria, particularly psychrophilic deep-sea bacteria, are especially intriguing. It has even been 

speculated that these marine bacteria are the original source of PUFAs in the marine food web 

(Napier 2002). Large amounts of EPA (12-37%) and DHA (10-25%) have been detected in certain 

marine bacteria, with a general increase in the PUFA content as a function of decreasing 

temperature and increasing pressure, suggesting that these fatty acids are involved in the 

maintenance of membrane fluidity (Delong and Yayanos 1986). Two recent rigorous studies 

demonstrated that EPA production by Shewanella sp plays a crucial role in stabilizing the 

This is a manuscript of an article from Applied Microbiology and Biotechnology 97 (2013):2859, 
doi: 10.1007/s00253-012-4529-7. Posted with permission. The final publication is available at 
Springer -Verlag Berlin Heidelberg via http://dx.doi.org/10.1007/s00253-012-4529-7. 
 



membrane structure (Usui 2012) and maintaining the appropriate membrane hydrophobicity 

(Nishida 2010). Among the characterized marine isolates, Moritella marina MP-1, originally 

known as Vibrio marinus, is particularly interesting due to the presence of DHA in its membrane 

lipids as a fatty acyl component. A systematic comparison of several marine bacteria showed that 

M. marina MP-1 produced more than twice as much DHA as the other 9 species examined (Morita 

et al. 2005a). A draft genome sequence of this organism was recently announced (Kathaurapu and 

Jarboe, submitted). 

In contrast to the traditional desaturase-based PUFA biosynthesis pathway, M. marina MP-

1 uses a distinct polyketide synthase (PKS)-type pathway that remains poorly characterized 

(Jenke-Kodama et al. 2005; Metz et al. 2001; Napier 2002). PKS-type pathways are important for 

a variety of complex natural products, such as cholesterol-lowering lovastatins (Campbell and 

Vederas), among others (Busch and Hertweck 2009; Calderone 2008; Shen 2003).   

While the effect of growth condition on EPA production by Shewanella sp has been 

characterized (Jeong et al. 2006; Wang et al. 2009), the effect of growth conditions on DHA 

production by M. marina MP-1 remains relatively unexplored. It has been demonstrated that 

growth in media rich in fatty acids or supplemented with the antibiotic cerulenin increased the 

overall DHA titer (Morita et al. 2005a; Morita et al. 2005b).  However, the current literature lacks 

a systematic investigation on the effect of growth media composition, nitrogen and carbon source, 

media pH, or growth temperature on DHA production by M. marina MP-1. Here, we investigate 

the effect of these variables on the biomass production, DHA production and fatty acid profile of 

M. marina MP-1. 

 

MATERIALS AND METHODS 
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Microorganism and culture condition. M. marina MP-1 (ATCC 15381) was maintained on a 

readily available marine broth medium-2216 (BD Bioscience) at 15ºC and 150 rpm. The marine 

broth medium contains 5.0 g/L peptone, 1.0 g/L yeast extract, 0.1 g/L ferric citrate, 19.45 g/L 

sodium chloride, 5.9 g/L magnesium chloride, 3.24 g/L magnesium sulfate, 1.8 g/L calcium 

chloride, 0.55 g/L potassium chloride, 0.16 g/L sodium bicarbonate, 0.08 g/L potassium bromide, 

34.0 mg/L strontium chloride, 22.0 mg/L boric acid, 4.0 mg/L sodium silicate, 2.4 mg/L sodium 

fluoride, 1.6 mg/L ammonium nitrate, 8.0 mg/L disodium phosphate. The medium was sterilized 

by autoclaving and pH was adjusted with 1N HCL or 1N NaOH. Supplemental yeast extract, 

tryptone and ammonium chloride were prepared as 200 g/L stocks and sterilized by either 

autoclaving (yeast extract and tryptone) or filtration (ammonium chloride). MOPS media was 

prepared as previously described (Wanner 1994), but modified by the addition of NaCl to a  final 

concentration was 20 g/L, hereafter referred to as MMOPS. MMOPS media was sterilized by 

filtration. 

Sampling and harvesting of cells.  The cells were harvested by centrifugation at 4,000 rpm for 10 

minutes at 4oC. Dry mass was determined after freeze drying cells for 12 to 24 hr.  

Extraction and DHA analysis. The DHA was measured as a fatty acid methyl ester (FAME), 

produced by fatty acid extraction of the dry cell pellet, followed by methylation and measurement 

by gas chromatography/mass spectrometry (Bligh and Dyer 1959; Kramer et al. 1997; Morita et 

al. 2005b). Briefly, total lipids were extracted from the dry pellet using a chloroform-methanol 

mixture and then mixed with 2.5ml of 0.37% KCl solution. The organic phase containing free fatty 

acids was separated and dried under nitrogen gas at 50oC.  FAMEs were made by a direct 

transesterfication procedure by using methanol-acetyl chloride as previously described (Kramer et 

al. 1997).   The FAMEs suspended in hexane were quantified by GCMS (Agilent 6890/5973) using 
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a BPX70 capillary column (SGE, 30.0m x 0.22mm x 0.25 μm Austin, TX) (Morita et al. 2005b).  

Helium was used as the carrier gas. Peak areas were quantified and compounds were identified by 

comparison of their retention times with those of known standards. Heneicosanoic acid (C21:0) 

was used as an internal standard and DHA was quantified from a DHA/ISTD curve. Each 

biological sample was analyzed in triplicate and at least three biological replicates were analyzed 

for each experimental condition.  Data are expressed as a mean ± standard deviation. DHA content 

is reported both on a per biomass basis (mg DHA per g of biomass) or as an overall titer (mg 

DHA/L culture broth), as calculated by the DHA per biomass multiplied by the amount of biomass 

per L. Statistical significance was determined by the Student's t-Test; a cut-off value of P < 0.05 

was used. 

  

RESULTS 

 Here we have investigated the impact of media composition, media pH and growth 

temperature on production of DHA and other fatty acids by M. marina MP-1. The control 

condition for this study was unsupplemented marine broth, initially adjusted to pH 7.0, 

maintained at 15oC with rotary shaking at 150 rpm. In the unsupplemented broth, the DHA titer 

was 11+1 mg DHA/L after 96 hours of growth; this corresponded to 16+1 mg DHA/g dry cell 

mass (Table 1).  

Supplemental glucose and glycerol increase growth but not DHA titer 

While marine broth is rich in nutrients and metabolites, it is desirable to provide a 

supplemental carbon source to fuel production of carbon-rich DHA. Therefore, the efficacy of 

glucose, xylose and glycerol as supplemental carbon sources was tested at 15oC (Table 1, xylose 

data not shown).  
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Supplemental glucose and glycerol both had a positive impact on biomass production, 

resulting in a roughly 6- and 3-fold increase, respectively. However, there was a negative impact 

on the DHA content on a per biomass basis, decreasing the DHA per dry cell mass more than 3-

fold. Thus there was no significant change in the DHA titer compared to the baseline condition. 

No growth was observed in the presence of supplemental xylose (data not shown). Similar results 

were obtained for glucose and glycerol at 100C: supplemental carbon increased biomass 

production but there was no change in DHA titer due to the corresponding decrease in the amount 

of DHA per biomass (Table 1) 

Supplemental nitrogen increases growth and DHA titer 

Our unsupplemented marine broth contains nitrogen in the form of 5.0 g/L peptone, 1.0 

g/L yeast extract and 1.6 mg/L ammonium nitrate. To test the impact of increased nitrogen 

availability on DHA production, an additional 10 g/L yeast extract or 10 g/L tryptone was used. 

As with the supplemental carbon, nitrogen supplementation resulted in increased biomass 

production and decreased DHA per biomass (Table 1). But unlike carbon supplementation, the 

magnitude of the increase in biomass was sufficient to result in an increase in the DHA titer. The 

effect was moderate with tryptone, but yeast extract resulted in a more than 2-fold increase. Note 

that the addition of 15 g/L of either nitrogen source did not significantly increase the DHA titer 

relative to 10 g/L (data not shown). When the two nitrogen sources were both added to the growth 

media at 10 g/L of each, there was a 5-fold increase in DHA titer relative to the baseline condition 

(Table 1).  

Thus, while provision of supplemental organic nitrogen results in a decrease in DHA per 

biomass, the corresponding increase in biomass production is sufficient to increase the DHA titer 

by 5-fold. 
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DHA production is increased at moderately acidic pH 

Production of DHA was found to be dependent on the cultivation pH (Table 1, Figure 1), 

with pH 6.0 promoting a significant increase in both DHA per biomass and DHA titer relative to 

pH 7.0. At pH of 5.0 the growth was drastically decreased and no measurable amount of DHA was 

produced. Media pH values above 7.0 did not increase DHA titer or DHA per biomass (Figure 1). 

Thus, decreasing the media pH from 7.0 to 6.0 significantly increases both the DHA per biomass 

and the DHA titer, but a further decrease to pH 5.0 has a detrimental effect on DHA production. 

Defined media supports DHA production 

 Existing studies with MP-1 have used complex media (Morita et al. 2005a; Morita et al. 

2005b). Here we have tested MOPS minimal media, modified to contain 20 g/L NaCl 

(MMOPS), for its ability to support M. marina MP-1 growth and DHA production at 10, 15 and 

200C (Table 1). No growth was observed with glucose at 200C (data not shown). While glycerol 

supports a higher DHA titer in minimal media than glucose, the titer was not increased relative to 

unsupplemented marine broth at the same temperature. 

These results demonstrate that defined minimal media can be used for growth and that 

glycerol is a preferable carbon source for both biomass and DHA production relative to glucose 

in MMOPS media.  

Supplemental carbon increases temperature sensitivity 

 In order to determine the effect of temperature on growth and DHA production, M. marina 

MP-1 was grown in marine broth with either no carbon source or 1% (w/v) glucose or glycerol at 

5, 10 and 200C in addition to our standard temperature of 150C (Table 1, Figure 2). 

Both the production of biomass and DHA depends on the cultivation temperature, though 

there was no apparent linear trend observed in all conditions (Figure 2). No growth was observed 
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at 5oC for any of the conditions tested or with glucose at 20oC (data not shown). However, it is 

apparent that the presence of supplemental glucose or glycerol enhanced the temperature 

sensitivity of biomass production, with 15oC being the optimal cultivation temperature. At each 

temperature, biomass production was increased relative to the unsupplemented condition while 

DHA per biomass was decreased when supplemental carbon was added. Thus, we have concluded 

at 150C remains the best growth temperature for maintaining biomass production and sufficient 

DHA titers with a variety of carbon sources. 

Supplemental salts do not increase DHA production 

Given that M. marina MP-1’s natural marine habitat is rich in salts, we tested the impact 

of additional sodium chloride and magnesium chloride. Neither species resulted in a significant 

increase of biomass production, DHA per biomass or DHA titer (Table 1). 

Integrated Results 

The results described above show that adding supplemental carbon or nitrogen to the 

standard marine broth increases biomass production by M. marina MP-1. Adjustment of 

unsupplemented media pH to 6.0 instead of the standard 7.0 significantly increases the amount of 

DHA per biomass. We combined these findings into three new growth conditions in marine broth 

at 150C, pH 6.0 (Table 2). Combination of just the pH and supplemental carbon results did not 

significantly increase the DHA titer relative to the unsupplemented pH 7.0 marine broth. However, 

the simultaneous provision of supplemental glycerol, yeast extract and tryptone at pH 6.0 resulted 

in a nearly 10-fold increase in biomass production and 8-fold increase in DHA titer (Table 1).  

Extension of the pH and nitrogen supplementation results in the rich marine broth to the 

MMOPS defined media did not result in an increase in DHA per biomass or DHA titer (Table 2). 

Note that in this case nitrogen was added in the inorganic form as 10 g/L ammonium chloride.  For 
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the case where MMOPS glucose media at pH 6.0 was supplemented with ammonium chloride, no 

growth was observed (data not shown). 

 

Fatty acid profile changes  

While profiling of other fatty acids was not quantitative, we did observe changes to the 

relative fatty acid profile according to growth condition (Table 3). The impact of supplemental 

glycerol was the most dramatic effect: for each media type and temperature tested, the relative 

abundance of myristic acid (C14:0) increased by roughly two-fold relative to the no supplemental 

carbon and/or glucose-supplemented culture while palmitic acid (C16:0) decreased roughly two-

fold (Figure 3). In fact, the presence of glycerol had more influence on fatty acid profiles than 

either changes in temperature or changes from rich to defined media (Figure 3, Table 3). The 

simultaneous supplementation with yeast extract and tryptone in marine broth at 150C, pH 7.0 also 

resulted in an increase of C14:0 abundance, but not the corresponding decrease in C16:0 seen with 

glycerol (Table 3). 

  

DISCUSSION 

M. marina MP-1 naturally produces DHA and is an attractive biocatalyst for sustainable, 

safe, production of this valuable nutraceutical. Here we have investigated the impact of several 

growth condition parameters on both DHA and biomass production by this organism (Table 1). 

We found that supplemental carbon in the form of glucose or glycerol or nitrogen in the form of 

yeast extract or tryptone increased the amount of biomass produced. For glucose and glycerol, the 

corresponding decrease in the DHA per biomass meant that there was no significant change in the 

DHA titer. For organic nitrogen supplementation, the magnitude of the increase in biomass 
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production was sufficient to result in an increase in the DHA titer. While we have attributed this 

positive effect to the organic nitrogen found in yeast extract and tryptone, it is also possible that 

this result is due to a specific metabolite found in these mixtures.  

The only factor that we found to increase the amount of DHA per biomass was acidification 

of the media to pH 6.0 instead of 7.0 (Figure 1), resulting in an increase of both DHA per biomass 

and biomass concentration. However, further acidification to pH 5.0 drastically decreased growth 

and DHA production. Growth and DHA production without supplemental carbon is largely 

insensitive to the temperatures that we tested. However, the presence of the supplemental carbon 

sources increased sensitivity to temperature, with 15oC being optimal for biomass production 

(Figure 2). Defined minimal media can be used in place of marine broth, with glycerol supporting 

an increased DHA titer relative to glucose. This finding is particularly intriguing, given the 

availability of glycerol as a by-product of the biodiesel production process. 

Combination of our findings such that supplemental carbon and nitrogen were added to 

marine broth acidified to pH 6.0 resulted in a 7-fold increase in DHA titer to 82 + 5 mg/L (Table 

2). This titer is 5-fold higher than the 13.7 mg/L achieved by supplementing M. marina culture 

with the antibiotic cerulenin (Morita 2005b), but drastically lower than the 4.3 g/L reported to be 

produced by the marine thraustochytrid Aurantiochyrium limacinum (Nagano 2009).   

Despite our observed increase in the DHA titer, the amount of DHA produced per biomass 

is still significantly lower than the baseline condition. This difficulty in increasing the amount of 

DHA per biomass suggests tight control of DHA production by this organism. Additional increases 

in DHA production by M. marina MP-1 could be attained upon mitigation of these regulatory 

features. Mitigation of these regulatory features would be greatly aided by their identification and 

characterization.  
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The additional trends we observed in the overall fatty acid profile could provide some 

insight into this regulation. Most intriguing was the fact that glycerol has a drastic impact on the 

relative abundance of myristic (C14:0) and palmitic (C16:0) acids (Figure 3). The magnitude of 

the change in the presence of glycerol is larger than that seen in response to temperature changes, 

media type or the presence of supplemental glucose. Given that DHA production by this organism 

is presumably a means of controlling membrane fluidity, it is reasonable that the membrane 

composition is sensitive to environmental conditions. EPA content in Shewanella marinintestina 

is known to affect the entry of hydrophobic compounds into the bacterial cell (Nishida 2010). The 

octanol/water partition coefficient for glycerol is known to be an order of magnitude larger than 

that of glucose at room temperature (Wolosin 1978, Stevens 1988). The difference in the 

hydrophobicity of these two compounds could explain their differing effect on the membrane 

composition. However, the mechanism for sensing and controlling the composition remains 

unknown. 

In summary, modification of a few key growth parameters can result in a drastic increase 

in DHA production by this organism. Similar studies have been performed on the DHA-producing 

fungal species Thraustochyrium aureum (Hur 2002, Ge 2011) and marine thraustochytrid A. 

limacinum (Nagano 2009) found quite different patterns from those that we have observed for M. 

marina. For example, Hur et al found that glucose supplementation had no impact on DHA content 

per biomass, while we found that DHA content per biomass decreased in the presence of glucose. 

Hur et al also concluded that a low temperature decreased cell growth but increased the DHA 

content per biomass; we did not observe either of these trends in our analysis. These differences 

most likely reflect the different natural histories, and thus different regulatory structures, for 

controlling DHA production. Note that Lee et al’s study of Escherichia coli engineered for EPA 
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production did observe a negative relationship between EPA production and glucose 

supplementation (Lee 2006). Given that this engineered E. coli strain uses a PKS type pathway 

similar to the one present in M. marina, it is not surprising that its response to glucose availability 

would be more similar to M. marina than to T. areum. 

Future work aimed at identifying and characterizing control of DHA production could 

enable further increases in production of this valuable compound and provide insight into the 

regulatory pathways that control its production. Such findings could have a broader impact on the 

production of fatty acids, and other hydrophobic compounds, as biofuels and biorenewable 

chemicals. 
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Figure Legends: 

Figure 1: Effect of initial media pH on biomass and DHA production. Cells were grown in 

unsupplemented marine broth at 15oC and 150 rpm for 96 hours. Data from at least 3 biological 

replicates are expressed as mean ± one standard deviation. 

 

Figure 2: Effect of temperature on (A) DHA per biomass, (B) biomass production and (C) DHA 

titer. Cells were grown in marine broth containing either no supplemental carbon or 1% (w/v) 

glucose or glycerol at pH 7.0, 150rpm for 96 hours. Data from 3 biological replicates are 

expressed as mean ± one standard deviation. No growth was observed for the marine broth with 

glucose at 20oC. 

* indicates at P value less than 0.05 relative to the baseline condition at the same temperature 

 

Figure 3: Effect of supplemental glycerol on the relative abundance of myristic (C14:0) and 

palmitic (C16:0) fatty acid methyl esters. Cells were grown at pH 7.0, 150rpm for 96 hours. Data 

from at least 3 biological replicates are expressed as mean ± one standard deviation.  
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