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CHAPTER I. INTRODUCTION 

The proposition that an economic system will function 

best when decisions are made in a decentralized manner has 

a long history in economic doctrine. Adam Smith's concept 

of the "invisible hand" involves just such a proposition. 

Walras' concept of tâtonnements embodies such a proposition 

stated in a mathematical form. Walras outlines an algorithmic 

process in which at each iteration decentralized decision­

makers respond to a set of prices which are in turn revised 

according to the amount of excess demand when those responses 

are aggregated. It was Walras' purpose to show that after 

successive iterations an equilibrium solution would be reached. 

Such an equilibrium will be associated with an optimum under 

the usual assumptions of convexity of preferences and produc­

tion processes (Arrow and Hurwicz, 1960, p. 35). 

The discussion of market socialism was concerned with 

the possibility of using a decentralized market mechanism 

to obtain an economic optimum in a socialist economy rather 

than a capitalist economy (Hayek, 1956; Lange and Taylor, 

1938). More recently, a number of different mathematical 

models have been formulated with the specific aim of effecting 

a certain degree of decentralization in the decision process. 

The models presented below are basically in this tradition. 

Some of these models have been concerned with the use of 
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transfer or internal prices in decentralizing decisions 

in business firms, e.g.. Arrow (1959) and Baumol and Fabian 

(1964). Others have been directed toward decentralizing 

planning decisions in a national economy, e.g., Malinvaud 

(1967), Komai and Liptak (1965), and Aoki (1970). To the 

extent that these models are presented in an abstract mathe­

matical form they may be considered generally applicable to 

different types and sizes of economic institutions (Arrow 

and Hurwicz, 1960, p. 34). In applying such models to a 

large public institution or to a national economy, however, 

there is the very basic difficulty of specifying a satis­

factory objective function or of circumventing the need 

for such a function. 

The preceding survey is not intended to be comprehensive. 

The literature on decentralization is vast, and a compre­

hensive survey would constitute a study in itself. Rather, 

it is intended that the brief introductory survey will help 

to identify the position of the models in this study relative 

to the literature on decentralization in general. Specific 

references directly related to each of the models presented 

in this study will be discussed below. 

Three related but essentially different types of 

resource allocation models are presented here. The first type 

is associated with a large economic system in which highly 

integrated sub units are linked together by a relatively small 
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number of constraints. It is assumed that the technological 

relations and resource constraints can be specified by the 

model and, more crucially, that a set of coefficients indi­

cating the relative value of each activity is available. 

This type of model will be analyzed in the framework of a 

decomposable linear program. The contribution to this first 

type of model includes extensions of the pricing and allocation 

rules with the intention of making the decentralized solution 

process more efficient. The theoretical considerations are 

discussed in Chapter II, and the computational results of 

an illustrative numerical model are presented in Chapter III. 

The second and third types of models "presented below 

are assumed to apply to situations in which the coefficients 

indicating the relative value of each activity are not readily 

available. Chapter IV contains a discussion of different 

alternatives which might be employed when a set of relative 

prices is not available so that the vector of outputs can be 

collapsed into a meaningful scalar value. One alternative 

presented is the possibility of specifying a vector of output 

goals and employing goal programming to obtain a solution 

which is optimal relative to the goals. A second alternative 

discussed is the possibility of computing output vectors 

which satisfy the less ambitious criterion of efficiency. A 

method is presented by which it is possible to compute all 

'efficient extreme points which are adjacent to a given 
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efficient extreme point. 

The second general type of model is introduced in 

Chapter V. It is specifically concerned with making resource 

allocation decisions in a university where relative prices 

for activities are difficult to obtain. The use of goal 

programming and efficient output computations are discussed 

and are applied to an illustrative numerical model. The 

possibility of effecting a multi-level decentralization 

through goal programming is also discussed. 

The third type of model is outlined in Chapter VI and 

is essentially theoretical in nature. It assumes a production 

system in a general equilibrium setting and is concerned with 

the relation between efficient production and a very specific 

type of noncompetitive price setting. In this context the 

relative prices are variables in the system. The possibility 

of decentralizing decisions when the noncompetitive price 

setting is present is discussed. 

Each of the models in the study is linear and can be 

written as a linear programming problem. Thus the usual 

assumption of constant returns to scale and divisibility 

must be made. A fairly complete comparison of marginal 

analysis and linear programming with respect to the theory of 

the firm is given in Naylor (1966) . An interesting theoretical 

study of the effects of indivisibilities can be found in 

Frank (19 69). The models are also essentially static and 
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deterministic. They could be expanded to include certain 

types of dynamic elements without basic difficulties. This 

could be accomplished by the well known procedure of defining 

products produced in different time periods to be different 

products and including constraints which effectively linik" 

the time periods together. Certain types of uncertainty 

could also be handled by known methods such as chance con­

strained programming or stochastic linear programming. 

By using only linear models which are static and deter­

ministic a number of important difficulties such as increasing 

returns to scale, more conplicated types of externalities, 

adjustments over time, and the treatment of stochastic elements 

have been avoided. Such difficulties are avoided only at a 

high cost to the richness of the model; however, the retention 

of linearity has the compensating advantage that computation 

is possible for relatively disaggregated models with many 

variables . Treating the types of difficulties listed sdaove 

in any very sophisticated manner requires the inclusion of 

many nonlinearities with the result that computation, where 

it is possible, is a very expensive process unless the model 

is highly aggregated. 
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CHAPTER II. TWO DECOMPOSITION PROCEDURES 

The Basic Models 

This chapter and the next will focus on optimal decision­

making in a large economic system in which highly integrated 

subcoitponents can be identified. The subcomponents are 

linked together by relatively few variables so that a 

satisfactory decentralized decision process greatly economizes 

the amount of information which the highest level decision­

makers need. 

We will assume that the system can be satisfactorily 

approximated by a linear model. The discussion will center 

around two different specific formulations of linear program­

ming models each of which can be decomposed into a group of 

smaller linear programming models appropriately linked to­

gether. 

Model (1) is the type discussed by Komai cind Liptak (1965) 

in their article on two level planning and by Sengupta (1970) 

in an article on the active approach; 

max Z cP xi, where c^ and x^ are n^xl vectors representing 
j=l respectively the direct returns and levels 

of activities of the subunit, (1) 

subject to 

^ 4 4 4 4 
E A/x^ ^ b, where A-" is the mxn-' matrix of activities of 

j=l the submit and b represents the 
vector of resources available. 
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x ^ ^ O ,  j  =  l t o n .  

In this case the resource vector b can be decomposed or allo-

cated such that Z ur < b and for each such decomposition 

there is em associated set of n subproblems with constraint 

sets: 

^ u^, x^ ^ 0 ̂ where iP is an allocation of re­
sources to the ith subproblem. 

Model (2) is the type discussed by Dantzig and Wolfe (Dantzig, 

1959; Dantzig and Wolfe, 1961) in their articles on the de­

composition principle and by Charnes and Cooper (1961) as a 

class of coupled models; 

^ "i ' i i "i 
max ^ c-* x-^, where c-* and x-" are defined as in (1), (2) 

j=l 

subject to 

n • • • 
Z A X ^ by where the matrices and the vector b have 

j=l as many rows as there are central resources, 

x^ ^ b^, j = 1 to n, where the matrix D and the 
vector b3 have as many rows as there are 
resources specific to the jth subunit, 

x ^ ^ O ,  j  =  l t o n .  

In this case each decomposition or allocation of resources is 

associated with a set of n subproblems with constraint sets: 
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xP ^ bi 

xi ^ 0 . 

The basic difference between these two models in economic 

terms is that in (1) all resources are viewed as being central 

resources allocable to the subunit; while in (2) certain 

resources specified by b^ are viewed as an essential part 

of the sub unit and other resources specified by b are viewed 

as central allocable resources. Such elements specific to the 

jth subunit might result from an immovable resource such as 

a plant or from a natural resource associated with a particular 

subunit and its geographical location. While in general we 

will refer to elements of b and b^ as quantities of resources, 

it should be noted that (as well as representing quantities 

of goods) they may also represent the amount of services avail­

able during the period from a stock of fixed capital or may 

even represent a capacity level imposed on certain activities 

by institutional regulations. Institutionally imposed 

capacity levels on certain activities would be necessary if, 

for example, a corporation were forced to keep its sales of 

a product below a certain market share so as not to face an 

antitrust suit, or if a public utility were forced by law 

to maintain a certain level of specific services even if a 
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loss were incurred. The capacity level on certain activities 

might also refer to the maximum amount of a particular 

polluting material which is allowed without violating a 

certain clean air or water standard. In this case the re­

source being allocated would be the right to produce a 

certain quantity of the polluting material. The final 

shadow price for such a constraint would then be interpreted 

as the cost which should be levied against the subunits for 

each unit of the polluting material produced. 

It should be pointed out that while all the constraints 

are written as less than or equal to inequalities, no 

generality is lost. Minimum output requirements are repre­

sented by using negative bj^ values and negative a^j or d^j 

coefficients to represent output per unit of activity. Cases 

where the assumption of free disposal is not acceptable (i.e., 

equality constraints) can be represented by two inequality 

restrictions. 

Actually in mathematical terms the structure of model 

(2) can be considered a special case of model (1) (Komai and 

Liptak, 1965). All that is required is that the A matrix of 

(1) have the following structure: 

A°1 A°2 ... A°"" 

0 . . .  0  

22 

.nn 

(3) 
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Then let , j = 1 to n and let = 0^, i = j = 1 to n. 

Even though (2) can be treated as a special case of (1), model 

(1) is considered separately because the difficulty of finding 

a solution is closely related to the number of central 

resources. 

Linear models with matrix structures such as (3) are of 

general importance because they result not only from situa­

tions where a number of subunits are linked together in a 

single time period, but also in dynamic models where the 

linking is between time periods (Orchard-Hays, 1968, p. 

260). Even if the system being modeled is not such that 

subunits or time periods are identifiable it still may be 

possible to rearrange the matrix into the block-angular form 

(Weil, 1968; Weil cind Kattler, 1969). 

To facilitate the solution process the original models 

(1) and (2) are each decomposed into a central or restricted 

master problem and a group of n subproblems. The central 

problem obtained from (1) is (4): 

max Z E . pi^, where p^^ = c^ x^^ and 
^jk j=l keK^ is a scalar, 

(4) 

subject to E E . _< b, where q^^ = A^ x^^ 
j=l kEK^ 

1 0, all j,k . 

The jth subproblem corresponding to the central problem (4) 
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and an allocation of central resources is (5): 

-ÎI k • -i n k 
max (c"' -n Ar)xJ, where H is a vector of shadow 

prices from (4)^ 

subject to (5) 

AÎ xi < uik 

xi ^ 0. 

An optimal solution for the jth subproblem (5), given u^^ and 

k "lie 
H , will be designated as x-" and the optimal dual values 

will be designated as vi^. 

The central problem obtained from (2) is (6); 

max E I . ^i^ pi^, where pi^ = ci xi^ 
^jk j=l kcK/ 

subject to Z E . xi^ qi^ £ b, where gi^ = Ai xi^ (6) 
j=l keFX 

Z . xi^ = 1, j = 1 to n 
keK^ 

xi^ ̂  0, all j,k . 

The shadow prices for the vector b and for the convexity 

k nk 
constraints of (6) are designated as n and y-^ respectively. 

The jth subproblem corresponding to the central problem (6) 

^ote that the n vector will always be non-negative 
since the constraints on central resources in (4) are all 
"less than" inequalities. 



12 

and an allocation of central resources is (7): 

T ' If ' 4 4 
max (c-^ -n A-')x-' 

xi 

subject to x^ _< u^^ (7) 

x^ <_ bi 

xi 2 0" 

An optimal solution for the jth subproblem (7) given u^^ and 

k . "ik 
n will be designated as x-^ and the optimal dual values for 

u^^ and b^ will be designated as v^^ and w^^ respectively. 

The Dantzig-Wolfe Decomposition 
Algorithm 

A quick summary of the Dantzig-Wolfe decomposition 

algorithm can easily be accomplished using central problem (6) 

and subproblems (7), with the assumption that the allocation 

of central resources u^^ is so large as to never be con­

straining to any subproblems. Assume also that the original 

model (2) has an optimal solution. 

If a set of vectors q^^ and their associated scalars 

p^^ are available such that (6) has a feasible solution, then 

the algorithm proceeds in the following steps. 

*1 k 
step 1. Solve (6) obtaining optimal values and the 

k "1 k 
optimal dual values n and v • 

Step 2. Substitute H of step 1 into the n subproblems 
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2 nk 
(7) and obtain optimal solutions x*' , j = 1 to 

n and their associated = (c^ -n^ 

Step 3. Pick 6°^ = max (z^^-y^^). If 6°^ ̂  0, then an 
j 

optimal solution to the original model (2) is 

given by x^ = Z . xP^, j = 1 to n. If 
ok keK 

6  > 0 ,  t h e n  f o r  j  s u c h  t h a t  z ^  - y ^  i s  a  

maximum compute x^^ and p^^ = c^ x^^ 

and use the resulting q^^ and p^^ to augment 

problem (6) . Then set k = k+1 and return to 

step 1. 

If the required initial feasible solution is not available 

for (6) then artificial vectors can be introduced and an initial 

feasible solution may be obtained by a phase 1 procedure 

following the steps just given (Dantzig, 1963, p. 454). 

The decomposition type algorithms are important purely 

as computational techniques for very large scale problems 

since they allow the large problem to be broken up into a 

number of smaller problems which can be solved sequentially. 

This facilitates the solution of problems too large for 

existing computer capacity but has more general implications 

for computational costs since marginal computational costs 

2 
The jth subproblem cannot be infeasible if the original 

problem has an optimal solution as assumed. If the jth sub-
problem is unbounded then a slight variation in the procedure 
is sufficient to solve the difficulty (Dantzig, 1963, p. 453), 
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are an increasing function of the problem size. It has been 

noted that for dynamic problems the number of rows and columns 

grows in proportion to the number of time periods involved 

while the computational effort grows about in proportion to 

the cube of the number of time periods involved (Dantzig, 

1970, p. 51). A similar statement would be true with respect 

to the number of subunits linked crossectionally as will 

be considered here. 

Since Dantzig and Wolfe first applied the decomposition 

principle to linear programming the principle has been 

applied to a number of specific nonlinear programming 

problems such as quadratic, convex, and geometric programming 

problems (Hass, 1969; Chames, Fiacco and Littlechild, 1966; 

Zangwill, 1967; Zener, 1964). While the decomposition 

algorithm for linear programming has not yet become an 

important method of computation in actual practice, it con­

tinues to receive much attention as is evident from the 

sections on large scale programming in Dantzig (1968) and 

Kuhn (1970). Orchard-Hays has stated that "...decomposition 

is the only really promising extension to mathematical pro­

gramming for large and complicated models" (Orchard-Hays, 

1968, p. 240). 
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Decomposition and Decentralized 
Decisions 

The intention here is to focus not on decomposition as 

a purely computational device so much as on the possibility 

of using decomposition to effect an optimal decentralized 

decision process within a large economic system. Such a 

system could be a large corporation composed of different 

plants, a national economy composed of different sectors, or, 

where prices for outputs are available, a public institution 

composed of different departments. From its very inception 

the importance of decomposition for decentralizing of deci­

sions has been apparent. Dantzig wrote a short dialogue in 

which decision-makers at two different levels used the de­

composition principle to solve a small transportation problem 

by sending only specific quantity and shadow price information 

to each other (Dantzig, 1963 , p. 456). Examples of references 

which discuss the use of the decomposition principle for de­

centralization of decision-making in national planning, multi-

plant firms, and multidepartment public institutions include 

(Malinvaud, 1967; Kornai, 1969; Gale, 1960, p. 85; Whinston, 

1964; 1966; Fox, McCamley, and Plessner, 1967). 

Noting the structure of (6) and (7) and the information 

which is communicated between the central and subproblems in 

the steps of the Dantzig-Wolfe algorithm, it is obvious 

that the information relevant to the solution is largely 
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decentralized. The decision-maker for the jth subunit needs to 

know the productive activities (i.e., the matrices and D^), 

the profit per unit of activity (i.e., the vector c^), and the 

specific resource levels or capacities (i.e., the vector 

b^) which constrain his jth subunit. The only information he 

needs concerning the other sub units is contained in the 

vectors of shadow prices, H , for the central resources, b. 

This sequence of price vectors is the only information 

which need be passed from the central to the subdecision-

maker during the solution process. After the optimal solution 

A Tf * 
has been obtained, the optimal weights, X-" 's, must also 

be sent to the subunit. 

The central decision-maker needs virtually no information 

about the production techniques of the subunits. He needs 

only to know the amounts of central resources available 

along with the specific proposals he receives from subunits. 

The proposed vectors of central resource use and/or production 

A Jr 
(i.e., the q-^ vectors) along with the amount of profit 

realizable from each proposal (i.e., the p^^ values) are 

the only pieces of information which need to flow from the 

subunits to the center to accomplish the desired solution. 

The solution is essentially obtained by charging (paying) 

the subunits for the quantities of central resources which 

Tr 
they use (produce) according to an imputed price, n . This 

inputed price is varied from proposal to proposal to reflect 
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the relative scarcity of the central resources and when the 

final central solution is obtained n provides an equilibrium 

imputed price for the system (Gale, 1960, p. 91). However, 

this equilibrium price vector alone is not necessarily suf­

ficient to insure that the subunit will be led to produce 

quantities consistent with the overall optimum. The break­

down occurs if some sub units have alternative suboptima 

for the equilibrium price vector (Chames, Glower, and Kortanek, 

1967, p. 299). To insure consistency, in this case, additional 

information such as the optimal weights, 's, or specific 

allocations of central resources must be transmitted to the 

sub unit. 

The major problem which is of concern here is that the 

original Dantzig-Wolfe algorithm has been found to converge 

quite slowly and to require too many major iterations to be 

effective as an actual decentralized planning mechanism 

(Beale, Hughes, and Small, 1965, p. 14; Kornai, 1969, p. 15 3). 

The following quote indicates the difficulty: "At each major 

iteration price imputations are computed by the central unit 

and a price vector is delegated separately to each division. 

However, not all divisions may take action with respect to 

these price vectors. It is possible for ninety-nine of one 

hundred divisions to be economically idle while for division 

one iterations will proceed through a long sequence of 

T T 
imputed prices , llg ,... . For an ordinary linear pro-
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gramming problem, solution techniques of the type described 

may involve thousands of iterations, which in terms of real 

life message time may be utterly impractical" (Chames, 

Glower, and Kortanek, 1967, p. 296). 

The reason for this can partially be traced to the fact 

that the imputed prices in iterations are likely to be 

extremely poor indicators of the relative scarcity of the 

central resources. Early imputed price vectors are likely 

to bear little resemblance to the final imputed price vector 

given by the dual of the central resource vector at the final 

optimal solution. Especially damaging is the fact that even 

the most important central resources will have zero shadow 

prices at different stages giving the sub unit no incentive 

to make proposals which economize in the use of that resource 

or proposals which would produce quantities of the resource 

for other firms. Given such unrealistic prices, without any 

constraints on central resources, the subunits are almost 

certain to return proposals which grossly over-use and over­

produce certain central resources while grossly under-using 

and under-producing others and as a result contribute little 

toward obtaining an optimal solution. 

The above propositions are supported by experience from 

a specific application of decomposition to a problem of 

planning a production and investment schedule for a group of 

oil fields. It was felt that the main reason for the slow 
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convergence of the original Dantzig-Wolfe algorithm could be 

traced to the fact that "the Il-values on the common rows 

oscillated wildly from one major iteration to another." 

And it was found that a considerable savings in the number 

of major iterations can be obtained if it is possible to 

"generate n-values at the start of the problem that are 

quite like the n-values at the final optimum" (Beale, Hughes 

and Small, 1965, pp. 14-15). 

The methods outlined below are proposed with the belief 

that they may prove to be more useful for decentralized 

economic planning than the original Dantzig-Wolfe algorithm 

and the existing similar methods. The goal is to obtain a 

solution with significantly fewer major iterations by a 

process that requires that somewhat more information be passed 

between the different levels at each major iteration and 

increases the number of rows in subproblems. 

The process combines a pricing mechanism with a resource 

allocation mechanism. It has been suggested that such a 

procedure would be closer to methods used in actual practice 

and would provide more useable theoretical conclusions 

(Malinvaud, 1967, p. 207). In the procedure outlined not only 

the shadow price vector, n, but also the vector of quantity 

allocations u^ will be passed from the center to the jth sub-

unit at each iteration. The purpose of the quantity alloca­

tions is to compensate for the poor price imputations which 
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must be used during early iterations, especially the zero 

values. Furthermore the quantity allocations make it 

possible to obtain vital dual price information which can be 

sent to the center along with the new quantity proposal and 

used by the center to make better reallocations at any later 

iteration. Economically the prices sent to the center 

can be viewed as the amount the subunit would bid for an 

additional unit of resource it uses as an input or the 

opportunity cost of the last unit of an output quota it must 

fulfill. 

In a planning model applied to the Hungarian economy 

with a structure identical to (2) except that the matrices 

were decomposed making a three level hierarchy, Kornai 

suggested using central resource shadow prices from the sub-

units for reallocating central resources in a heuristic manner 

(Komai, 1969, p. 156). Such shadow prices from a model 

structured like (2) have also been used in two decomposition 

algorithms which obtain a solution by making successive re­

allocations of the central resource vector but do not make 

use of shadow prices obtained from the center (Abadie and 

Sakarovitch, 1970). 

The subunits will vary in their profitability according 

to relative differences in the amount of return per unit of 

activity (i.e., c^ values) and due to their efficiency in the 

production and use of central resources (determined by the 



21 

elements of ). In the final solution subunits which are, 

in general, more profitable will be most important. They will 

use and produce the greatest portion of central resources. 

This would indicate that an iteration process which could 

identify the more profitable firms at an early stage should 

be able to arrive at a solution more efficiently by investing 

most of its effort in obtaining new revised proposals from 

those profitable firms. A criterion will be proposed by 

which the subunits can be identified according to profit­

ability or potential profitability at each major iteration 

so that different actions can be taken toward the subunits. 

Important properties of the Dantzig-Wolfe algorithm 

which are retained in the solution processes given here in­

clude the availability of a feasible solution at any itera­

tion and the fact that the objective function increases 

monotonically with each iteration. This means that while 

the effort of an additional iteration can be expected to 

yield an improvement in the solution, if the transactions 

cost of exchanging information, computing, and waiting 

for a solution exceeds the expected improvement, then the 

process can be terminated with a useable solution available. 

The importance of these properties for actual applications 

has been noted in the literature (Martos and Kornai, 1965, p. 

184). Furthermore it is possible to compute indices which 

aid in determining the potential for improvement from further 
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iterations and in special cases an upper bound for the objec­

tive function value can easily be obtained. Both types of 

information are important in deciding whether to terminate 

the iterations before a final optimum has been reached. 

Solution Process for Model (1) 

An outline of the proposed process for obtaining a solu­

tion to model (1) in a decentralized manner is given below, 

followed by a discussion of the mathematical and economic 

rationale for the process. After that an outline and 

discussion of the proposed solution process for model (2) will 

be given. 

Before presenting the precise steps of the process, a 

rough summary of the economic meaning of the steps will be 

given. In step 1 the central decision-makers take the 

proposed vectors of input and/or output quantities which 

have been obtained from the subunits and form a vector of 

total input cind/or output quantities for the whole system 

using a weighted sum of the proposal vectors. The weighted 

sum is formed in such a way that total direct returns to the 

system are maximized among those weighted sums which satisfy 

the total resource constraints for the system. The optimal 

weighted sum is obtained by a linear programming problem which 

also provides shadow price values for the resources. These 

shadow prices have the well known value of the marginal 
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product interpretation. They indicate the value of an addi­

tional unit of each resource or alternatively the loss which 

would be incurred by a one unit decrease in any resource.^ 

The new allocation vectors are determined in step 2. 

These allocation vectors indicate the maximum amount of input 

the subunit can use and/or the minimum amount of output it 

must produce. The objective is to make the allocations so 

that each resource will be used and/or produced most effi­

ciently. Thus the new allocation vectors are obtained by 

modifying those proposal vectors which are, at that stage, 

the most economic, i.e., proposals which break even when 

resources are valued according to the central shadow prices 

obtained in step 1. The specific breakeven proposals to 

be modified are determined by identifying maximum positive 

deviations between the price imputed to a specific resource 

by the subunit and the central shadow price for that re­

source. The maximum positive price deviation identifies 

the subunit which has a high potential for profitably using 

an additional allocation of the particular resource and using 

it more profitably than it would be used in the weighted sum 

solution of step 1. The new allocations then include a large 

^This interpretation may be valid only for a change in 
each resource less than a certain amount. The amount can be 
determined by a range analysis. If the optimal solution 
happens to be degenerate it may be that the interpretation 
will not hold even for a very small change in the resource 
level since any change could cause the optimal basis to become 
in feasible. 
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increase in the resource with the maximum price deviation 

and a small increase in other quantities of the proposal 

to allow the subunit some flexibility for reshuffling its 

input and output configuration. 

In step 3 the subunits form a new proposal such that 

the resource allocation which they received is satisfied and 

such that the value of production activities is a maximum given 

they are charged for inputs and credited for outputs according 

to the central shadow prices obtained in step 1. If a new 

proposal is found which is more profitable than the existing 

proposals it is sent to the center to be included in a new 

weighted sum solution for the whole system. The subunit 

linear programming problem provides a vector of dual variables 

corresponding to the new proposal vector. These dual variables 

indicate the value (cost) , over and above the central price 

at which the subunit was charged (credited), of each addi­

tional unit of the resource used (produced). Thus the sum 

of the central shadow price vector and the dual vector indi­

cate prices at which the subunit would demand additional 

units of input and/or supply additional units of output. 

This vector sum provides a sub unit price imputation for the 

quantities in the new proposal and is the vector used in 

step 2 for making new allocations. Step 4 merely indicates 

the conditions under which it is known that the system has 

reached an equilibrium cind an overall optimum. 

The specific steps of the process will now be given. At 
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the kth major iteration a set of vectors will be available 

4 
such that the central problem (4) has a feasible solution. 

The problem of obtaining an initial feasible central solution 

will be discussed below. The central problem must have a 

bounded optimal solution given the assumption that the 

4 
To aid the reader, model (1), the related central problem 

(4), and jth subproblem (5) are repeated below; 

n 
E 

j=l 

*1 * "1 max E c-* x-* 

^ i i subject to Z < b 
3=1 -i (1) 

x^ ^ 0, j = 1 to n 

n 
max E E . likpik, where = cP'sik 
j^jk j=l keK/ 

subject to Z Z . xi^qi^ < b, where q^^ = (4) 
j=l keRJ 

2 0, all j,k 

i ' k ' 1 i k 
max (c-" -n Ar)xJ, where n is a vector of shadow prices 
jjj from (1) 

( 5 )  

subject to A^xi _< u.]^, where u^^ is the jth subunit's 
. allocation of resources at the kth 

x^ >_ 0 iteration. 

The optimal primal and dual vectors for (5) are x^^ and v^^ 

respectively. 
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original problem has an optimal solution. Then at the kth 

iteration, the following steps are taken. 

Step 1. Solve problem (4) obtaining the optimal primal 

values , keK^, j = 1 to n and the 

corresponding dual values 11^ , i = 1 to m. 

Step 2. Let Q = {qikjxik* 0} and V = {v^^|>0}. 

Then the proposals in Q when evaluated at 

k central price imputations n just break even, 

and V is the set of subunit imputed prices 

for the same proposals. For each resource 

n k 
find that q-" EQ such that the difference 

ik y 
between v^-^ and 11^ * is a maximum. If the 

maximum difference is positive then that jth 

subunit is given an allocation u^^ equal to 

0 < 6 < 1, except for the addition 

of a large positive increment to the ith 

element. Periodically, (i.e., not necessarily 

every iteration) all subunits not receiving 

an allocation from the above rule are allocated 

T It T k n k 
U"^ = q-^ such that q-" eQ, or if some unit has 

no q^^eQ then u^^ is allocated such that u^^>0 

"1 k T k 
and u^-^ _> max q-' . 

keK^ 

^The term jq^^l indicates a vector in which each element 
is the absolute value of the element in qi*. 
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Step 3. Sub units solve (5) for all allocations received 

using the central shadow prices H obtained 

in step 1. If (c^ -n^ > 0, then a new 

profitable proposal has been obtained and the 

central problem is augmented by 

"1 Jc "1 ' "1 k 
and p-* =c-' . The corresponding subunit 

price imputations are obtained by setting 

unless v\i^=q^i^=0 for some 

resource i, in which case Vj|^ is set equal to 

0. Then return to step 1. If no profitable 

proposals are obtained go to step 4. 

Step 4. Make an allocation such that u^^ > 0 and 

"i k "1 Ic 
u. > max q. , to all sub units not receiving 

keK^ 
such a strictly positive allocation from step 2, 

Then go to step 3. If no profitable proposals 

are obtained then an optimal solution for 1 is 

given by xP = E j = 1 to n. 
j 

keK 

Feasible Solutions for 
Model (1) 

Following the process just given, the solution to (4) in 

step 1 will always correspond to a feasible solution to (1), 

since by subsitution of q^^=A^x^^ and p^^=c^ x^^ we get 

? r . likci'xik = ? ci'{ : . 
j=l keK^ j=l keK^ 
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and 

b  >  ?  E  ,  * 3 =  :  A i (  E  .  x i k x i k )  .  
j=l keK^ j=l keK^ 

Since each and is non-negative ( Z . X^^xP^) , j = 1 to 
keK^ 

n, is non-negative and is a feasible solution to (1) with an 

objective function value equal to that of (4). This iirplies 

that a feasible solution for model (1) will be available even 

if the process is terminated before a final optimal solution 

for model (1) is obtained. 

Reallocation of Resources 

The importance of the set Q in step 2 is that it con­

tains those proposals made by the subunits which can be 

considered to be the most profitable, given the available 

knowledge at the kth iteration. The difficulty involved in 

making the division between more and less profitable sub-

units involves the fact that profitability is defined in 

relation to the total value of central resources used and/or 

produced, and the equilibrium price imputation for these 

central resources is known only after the final iteration. 

Ir 
However, the vector of dual variables n obtained from the 

kth central problem does give the price imputation of central 

resources if they were to be used according to that kth 

central problem solution. This is easily seen from the follow­

ing string of equalities, the left hand term being the value 

« 
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• k • 
of central resources using the price vector n , the right 

hand term being the objective function value of (1) at the kth 

iteration: 

n ^ ' b  =  E  z  .  = '  z  c i '  (  z  .  .  
j=l keK^ j=l keK^ 

The first equality follows from the duality relation; the 

nk 
second from Wie definition of . 

Since n is the price imputation of central resources 

when used in the best plan obtained at that stage of itera­

tion, the jth subunit will be said to be profitable or to 

T T Ic ' "1 Ic 
break even if for some keK-', p-" -n q-' =0 and said to be 

unprofitable if p^^-II^ q <0 for all keK^ , The direct return 

T k 
from the jkth proposal is given by p-" , and for the proposal 

to break even this must be as large as the net value of 

central resources used and/or produced. Any output of a 

"1 k central resource i will show up as a negative q-" , in the 

proposal; so the subunit is credited for the value of outputs 

in the proposal and charged for the value of inputs. Since 

ik k * ik 
p-" -n qJ is nothing more than the "c^-z j " value of the jkth 

column of problem (4) it is very simple to determine which 

proposals are unprofitable and which break even. Any proposal 

having a strictly positive will break even, and the set 

of such proposals is defined as Q in step 2. The proposals 

contained in Q will, of course, change from iteration to 



30 

iteration. 

Reallocation of Resources and the Use of Subunit 
Price Imputations 

The subunits which are to be given a new allocation of 

Ic 
central resources along with the price vector n and asked to 

make a new proposal are chosen from the subunits having a 

proposal contained in Q, while only at periodic iterations will 

all subunits, including those not having a proposal contained 

in Q/ be asked to submit a new proposal. Except for the 

periodic allocations to all subunits, the new allocations, u^^, 

will be basically modifications of the vectors contained 

in Q. 

"13c 
It is in choosing the q-" eQ to be modified that the im­

portance of the price information obtained from subunits 

enters the process. The set V is defined in step 2 to include 

the subunit price imputations for proposals contained in Q. 

The important thing to note is that for each vector of quanti-

T k 
ties q-' eQ there are available two different vectors of im-

k —"ik 
puted prices, n and v" . The first is the price imputation 

of central resources relative to the central problem; the 

second the price imputation of the quantities of central re-

ik 
sources q-' relative to the jth sub unit. If there are large 

differences between these imputed values for particular 

resources, then when the subunit is issued the new prices H 

it will have em incentive to change the original proposal, q . 
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To the extent that the new allocation vector and the techno­

logical structure of the subunits permit, the subunit will have 

an incentive to subsitute relatively less costly inputs for 

relatively more costly ones and relatively more valuable outputs 

for relatively less valuable ones. 

A major objective of decentralizing the decision process 

is to obtain a solution without forcing central decision-makers 

to have direct knowledge of the technological structure of the 

subunits. Thus they will not be in a position to know 

the degree to which substitution will be permitted by the 

technology. Making the new allocation, however, is a key 

decision which is made at the center. The allocation vector 

will never directly restrain a submit from using less of 

a resource than it is allocated or from producing more of a 

resource than the allocation vector requires. The converse, 

however, is not true. The allocation vector can restrain 

additional use of inputs and decreases in outputs. 

The rule for making new allocations is intended to 

identify those sub units which have a high potential for 

changing the relative mix of proposed quantities in such a 

way as to obtain new proposals which are profitable. The rule 

in step 2 proposes that this be accomplished by finding for 

each resource the highest subunit price imputation for those 

proposals contained in Q. If this highest subunit imputation 

exceeds the corresponding new central price then the subunit 
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which made the original proposal has the potential to profit­

ably increase its use or decrease its output of that resource. 

The addition of a large positive increment to the allocation 

of that particular resource permits the subunit to make such 

a change in a new proposal. The term "potential" is used be­

cause given the information available at the center it cannot 

be determined whether or not the technology of the subunit 

will be such that a profitable substitution of relative 

quantities can be accomplished. 

If a large proportion of the resources are produced by 

some of the subunits, then it would be reasonable to add to 

the rules in step 2 by also identifying proposals in Q having 

"1 If Jf 
the largest negative deviation between v^^-" and . This 

would imply a large incentive to decrease the use of or 

increase the output of that ith resource. In this case there 

would be no need to add a large positive increment in making 

the allocation. 

The addition of ô|q^^|, 0 < ô < 1 to the original 

"1 Jc 
proposal, q-" , also needs explanation. It essentially in­

sures that the original jkth solution will be feasible with 

additional slack to allow relatively small indirect adjust­

ments in the original proposal which may be necessary so that 

the subunit can take advantage of the large allocation of 

that particular resource which was valued so highly in the jkth 

solution. The specific value of 6 may be chosen arbitrarily. 
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Subunit Solutions and New 
Profitable Proposais 

Step 3 begins with submits solving (5) for all alloca-

k 
tions received, using the central shadow prices H . Note that 

because of the way in which the new allocations are made some 

submits may receive more than one allocation and must obtain 

a solution for each. 

Since each allocation to the submit is less restrictive 

than some previous proposal, the process assures that a 

feasible solution exists for each subunit under its new 

allocation. Making the usual assumption that any output 

requires a positive input of at least one of the central 

resources, the subunit problem will be bounded. It follows 

then that an optimal solution will always exist for the sub­

mit problems. 

The rule for deciding whether the submit's new proposal 

is profitable is a simple application of the "c.-Zj" cri-

*1 k 
terion of the simplex method. Given the definition of p-* and 

"i k 
q-' we have: 

= p3''-nV. (8) 

The right hand side of the equality is the "c^-z^" value 

which would be obtained for column q^^ if it were to be 

considered a nonbasic column of the kth central problem. 

"i ' k "i ik ik 
Thus (c-' -n Ar)xr >0 implies that the new proposal q-^ would 
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increase^ the value of the central problem in the next itera­

tion if it were included. A zero or negative value for the 

same quantity indicates that the new proposal would not by 

itself contribute to the central problem and thus is not 

included. 

Calculation and Meaning of Subunit 
Price Imputations 

Finally step 3 indicates how to compute submit price 

—"ik 
imputations, v-* , for each of the profitable proposals. 

The vector v^^ is simply the sum of the dual values, v^^, 

for (5) and the imputed prices from the center, n . The only 
*1 k "i k 

exception to this rule is when both v^-^ and q^-^ are zero 

for some resource i, in which case v^^^^ is set equal to zero 

k 
even if is strictly positive. 

The economic meaning of the elements of v^^ is quite 

• n k 
simple. If q^-^ is positive so that the ith resource is 

• "1 k 
an input, then 11^-^ is the price which was imposed by the 

nk 
center and v^-^ is the amount the subunit would be willing 

"1 k 
to pay, over and above , per additional unit of resource 

i. Therefore the sum v\i^ is the total price which the jth 

subunit would be willing to pay per additional unit of 

^If the current central problem solution is de­
generate, then, of course, an increase cannot be assured. 
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7 nk 
resource i. If <0, then the ith resource is produced 

*1 k • 
by subunit j. The subunit is paid per unit of product 

produced and represents the opportunity cost, over and 

ik  
above the return of to the subunit, of being forced 

to produce the last unit of resource i. In this case, the 

sum v^-^ represents the price which the firm would need to 

be paid to just cover the opportunity cost of the last 

unit. In the special case when v^-" is zero and none of the 

ith resource is used or produced by the subunit, v^^^ is set 

equal to zero since the resource has no value to the subunit 

even though the central price imputation for the ith resource 

is positive. 

Next we will indicate the sense in which it is meaningful 

to interpret and use the v^^ vectors as they are interpreted 

and used in the above discussion. First, we will show that 

n k the value imputed to the quantities in the vector q-^ using 

the prices in the vector v^^ is just sufficient to exhaust 

the direct return from that proposal, i.e., that v^^ q =P • 

For the jth problem (5) the Kuhn-Tucker conditions give us, 

I v i k ' a i - ( c i i x i k  _  ̂  O )  

which can be rearranged as, 

7 
This decomposition of the price imputation into the sum 

of the parts, one imposed from the outside and one obtained 
from the system, is similar to the problem studied by Nikaidô 
(1964) in which the imputation imposed from outside was assumed 
to be a result of monopolistic power. 
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(vik+nk)'Aixik-ci'x]k = 0 

and given the definition of v^^, and p # the result 

follows; 

-jk'gjk = pjk ^ 

Note that it is exactly the three vectors of information in 

this expression which are passed to the central problem. 

—"ik 
The imputed price vector v-^ is not generally valid for 

quantity configurations differing from q^^ by significant 

amounts; however, since the process uses v^^ only in con­

junction with q^^ this is not a problem. A more crucial 

consideration for the process is that the price v^^ for the 

ith resource is not necessarily independent of the price 

level for other resources even at the quantity configuration 

If the new allocation is a modification of a'qi^eO, 

then the subunit can at least obtain a proposal that will 

break even, since the original proposal is still feasible and 

breaks even. But the allocation was specifically chosen so 

that the differences between the elements of the new price 

vector and the price vector associated with the original 

proposal were relatively large. If these price differences 

are large enough that the original proposal is not optimal 

then the subunit will be able to find a proposal which is 

strictly profitable as desired. 
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Final Optimality Conditions 

When none of the new proposals from step 3 are profitable 

then step 4 indicates that a strictly positive allocation 

should be made to all subunits not receiving a strictly 

positive allocation from step 2. To insure that the alloca­

tion will be feasible it can be made so that it is larger 

than a previous proposal. If a profitable solution is ob­

tained the process proceeds as before. If no profitable 

proposals are obtained then an optimal solution has been 

A "k 
obtained. It is shown below that , j=l to n, given in 

step 4 will be optimal for model (1). 

Expression (10) follows from the constraints of (4) and 

the definitions of and x^ : 

n 
b ^  E E .  X 

j=l keK^ 

jk'gjk = I AU . xjk'xik 
4 = 1 Tr j=l keK 

- i n *  
E A^x^ (10) 

j=l 

Expression (11) obviously follows from (10): 

i i* 
E A-'x-' < b . 

j=l 
(11) 

ik* 
Since the values are an optimal solution to (4) we get 

(12) and (13): 

(b - E A^xi ) = 0, by duality, and (12) 
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E .  x ik*pik  =  E x ik*qik ,  (13)  

keK^ keK^ 

since 

> 0 -»• all j/k. 

"ik ik "1* 
Using the definitions of p , q / and x-' , (14) follows from 

(13) : 

(c^ -n'^ A^)x^ =0, j = 1 to n. (14) 

i * 
Given the allocation made in step 4 the vector x-' will 

be feasible in the jth problem (5). Then from (14) and the 

fact that no subunit could return a strictly profitable 

i* proposal, it follows that x-^ must also be optimal. The dual 

*1 Jc^ ' n 3c 
objective function will be v* u-" and it must also equal 

zero. But v^^ u^^=0 together with u^^>0 implies v^^ =0. 

Therefore from the constraints to the dual of the jth sub-

problem we get (15): 

v^^ A^=0 ^ c^ -n^ or A^ ^ c^ , j = 1 to n. (15) 

Finally we note that (11), (12), (14), and (15) are the 

Kuhn-Tucker conditions for the original problem (1). The 

fact that the x-^ and n values satisfy these conditions is 

sufficient to prove that they provide an optimal solution 

to (1) as asserted. 
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Solution Process for Model (2) 

An outline of the proposed process for obtaining a solu­

tion to model (2) in a decentralized manner is given below, 

followed by a discussion of the mathematical and economic 

rationale for the steps. The rough summary of the economic 

meaning of the steps for solving model (1) also applies to 

the steps for model (2) with a few exceptions. The exceptions 

result from the fact that in model (2) certain resources are 

identified with specific subunits and impose restraints on 

those subunits. Thus in step 1 when the center forms an 

overall solution from the proposals available it must be con­

cerned that not only central resources restrictions are ful­

filled but also that the subunit specific resource restric­

tions are not violated. By forming the overall solution from 

weighted averages or convex combinations of each subunit's 

proposals, the center can be assured that the subunit specific 

constraints will not be violated. There is a dual variable 

associated with each convexity constraint in the central 

problem. For each subunit such a dual variable exists and, 

in economic terms, it is equal to the difference between 

the direct returns and the net imputed value of central 

resources in the weighted average solution for that submit. 

Thus in step 3 a new proposal is profitable if the difference 

between direct returns and the net imputed value of central 

resources in the new proposal is larger than the dual value 
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for the convexity constraint. 

As in the solution process for model (1), step 2 is con­

cerned with reallocation of central resources. The realloca­

tion vector is a modification of one of the proposals having 

a strictly positive weight in the central solution. The 

modification is made taking into account the difference 

between the subunit and central imputed prices for resources. 

Step 4, as before, indicates the conditions under which the 

central decision-makers can be assured that they have reached 

an overall optimum for (2) . 

8 
The steps for the solution of model (2), will now be 

8 
To aid the reader, model (2), the related central problem 

(6) , and jth subproblem (7) are repeated below; 

^ i ' i max I c-' x"* 
j=l 

subject to Z A^xr < b (2) 
j=l 

D^x^ ^ b^, j = 1 to n x^^O, j=lton 

max Z Z . where p^^=c^ x^^ 
^jk j=l keK^ 

subject to Z Z . ^ b, where q^^=A^x^^ (6) 
j=l keK^ 

Z . X^^ = 1, j = 1 to n X^^ > 0, all j ,k 
keK^ 

i ' V ' 4 -i 
max (c"^ -n A/jxr 

xi 

subject to A^xi £ u^^, D^xi ^ b^, x^ ^ 0. (7) 

The optimal primal vector for.(7) is x^^. The optimal dual 
vectors for (7) are vî and wik. 
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"1 k 
outlined. At the kth major iteration a set of q-^ vectors 

will be available such that the central problem (6) has a 

feasible solution. The central problem must have a bounded 

optimal solution given the assumption that the original problem 

has an optimal solution. Then at the kth iteration the fol­

lowing steps should be taken. 

Step 1. Solve problem (6) obtaining the optimal primal 

n k* "1 
values A-* , kcK/, j = 1 to n and the correspond-

3c n k 
ing dual values n cind , j = 1 to n. 

Step 2. Let Q = {q^^l and V = {v^'^ | >0 }. 

For each resource find that q^^eQ such that the 

difference between v^-" and IL is a maximum. 

If the maximum difference is positive then 

that jth subunit is given an allocation u^^ 

equal to q^^+<S|q L 0 < 6 < 1 except for 

the addition of a large positive increment to 

the ith element. Periodically (i.e., not 

necessarily every major iteration) all sub units 

not receiving an allocation from the above 

rule are allocated u^^ = q^^ such that q^^eQ. 

Step 3. Subunits solve (7) for allocations received using 

the central shadow prices n , obtained in step 1. 

If (c^ -n^ A^)x^^ > yi^\ then a new profitable 

proposal has been obtained and the central 

problem is augnented by = A^x^^ and 
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ik 4 • -ik 
p-^ = cr . The corresponding sub unit 

price imputations are obtained by setting 

unless = qj^ = 0 for some i, 

in which case is set equal to 0. Then 

return to step 1. If no profitable proposals 

are obtained go to step 4. 

Step 4. Allocate all subunits a vector u^^ large enough 

so as not to be constraining, then return to 

step 3. If no profitable proposals are obtained 

then an optimal solution for (2) is given by 

xi = E . x^^, j = i to n. 
JceK^ 

Feasible Solutions for Model (2) 

The basic difference in the structure of (1) discussed 

above and (2) is that (2) assumes a certain vector of re­

sources, b^, is specifically identified with the jth subunit. 

The first effect of this different structure appears in the 

additional constraints of problem (6) solved in step 1. 

These convexity constraints of (6) force the weights on 

the proposals of the jth subunit to sum to one. They are 

necessary to insure that the central solution to (6) will not 

violate the subunit constraints ^ b^. A solution to (6) 

will always correspond to a feasible solution to model (2) 

since by substitution of q^^=A^x^^ and pi^=ci x^^ we get: 
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h ̂  I E . = Z Ai( Z . (16) 
j=l keK^ j=l keK^ 

n k T k 
which shows that E • X-" x-* , j = 1 to n, is feasible for 

keK^ 
the central constraints of model (2) , and (17) shows that the 

sub unit constraints of model (2) are also satisfied, 

D^xi^ _< b^, all j and k (17) 

^ X^^b^/ X^^ ̂  0, all j and k 

I . xi^xik b^ Z . xik = b^(l), all j. 
keK^ keRJ 

In the special case when b^^O# the jth convexity con­

straint of (6) may be changed from an equality to a less than 

ik 
or equal constraint (i.e., Z . X-* < 1) . In that special 

keK^ 
case expression (17) would be rewritten as (18): 

Z . xi^xik ^ Z . X^^ _< b^, all j. (18) 
keK^ keK^ 

Reallocation of Resources 

The definition of the sets Q and V in step 2 are the 

same as in the former process; however, the economic inter­

pretations of the proposals contained in Q must be modified. 

The "Cj-zj" value for each proposal in the central problem is 

given by p^^-(Il'^ q^^+y ) and for X^^ >0 we know that this 

value will equal zero. Therefore it follows that (19) will 

hold for any proposal contained in Q; 
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p3k.„k-qjk ̂  yik _ (19) 

The value of which is the dual variable for the jth 

convexity constraint can be interpreted economically as the 

difference between the direct returns of the jkth proposal 

contained in Q and the net value of central resources used, 

where the resources are priced at the current central im-

k 
puted prices II . From (19) it is obvious that the proposals 

in Q cannot be given a straightforward interpretation as 

being breakeven proposals as they were in the former procedure 

The set of proposals in Q were, however, chosen from all avail­

able proposals and used to form weighted average proposals 

which would maximize the central problem's objective function. 

It is for this reason that the proposals contained in Q are 

used in making new allocations. 

The rule in step 2 for making new allocations when there 

is a maximum difference between v^-^ and is the same as 

in the previous procedure and the explanation given there 

applies. As in the previous procedure it would be reason­

able to add to the rule in step 2 so that proposals in Q 

associated with large negative deviations between v^^-* and 

would also be used as the basis for new allocations at 

each iteration. Subunits not having proposals associated 

*1IC k 
with large absolute deviations between v^-' and indicc 

less potential for returning profitable new proposals and 
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thus it may be more efficient not to obtain new proposals 

from these subunits at every iteration. 

New Profitable Proposals 

The criterion for determining whether or not a new 

proposal is profitable differs from that of the previous 

procedure but is easily explained. As was noted above, the 

"Cj-Zj" value for the jkth proposal in the central problem 

*1 k k ' T Ic T k 
is given by p-" - (n q-^ +y-' ) and thus any "new proposal such 

that p-" - (n q-^ +y-' ) >0 would increase the value of the 

central problem in the next iteration and must be con­

sidered profitable. But given the definition of p^^ arid 

qi^, pi^-(n^ qi^+yi^)>0 implies (c^ -n^ q^^)x^^>y^^ which 

is the criterion given in step 3. Since the original jkth 

solution will remain feasible under the new allocation, the 

subunit will be able to obtain an objective function value 

"i k 
equal to y-* using that original solution. Any improvement 

upon the original solution will result in a profitable new 

proposal. If the allocations were not determined from q^^eQ 

the above statement would not hold in general. The procedure 

for obtaining v^^ values is identical to that in step 3 of the 

previous procedure and so no further discussion will be given 

here. 
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Final Optimality Conditions 

When none of the allocations from step 2 provide 

profitable new proposals in step 3, the rule in step 4 indi­

cates that all subunits should be given a new allocation 

large enough so as not to be constraining. If new profitable 

proposals are obtained from these allocations they are 

included in the central problem as usual. If no profitable 

proposals are obtained then an optimal solution has been 

obtained. Proof that the result is optimal follows by noting 

that when subunits are unconstrained in the use or production 

of central resources the process here is identical to the 

original Dantzig-Wolfe algorithm and therefore the same opti­

mality criterion applies. 

The optimal solution will be reached in a finite number 

of steps if the central problem (6) is nondegenerate at each 

iteration (or if appropriate perturbation methods are employed). 

This result follows from the fact that the Dantzig-Wolfe algo­

rithm terminates in a finite number of steps (Dantzig, 196 3, 

p. 452) and the fact that the solution process given above is 

identical to the Dantzig-Wolfe algorithm once step 4 has been 

reached. 
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Computing an Upper Bound 

Step 4 is also important for evaluating the opportunity 

cost of terminating the process before an optimal solution 

has been obtained. This is because after all submits have 

obtained solutions for which all central resource restraints 

are slack, it is possible to compute an upper bound for the 

final overall optimum. If the existing solution is near 

enough to the upper bound further iterations may not be worth­

while. The decision to terminate before reaching an optimal 

solution would be exercised if the cost of information 

involved in making additional major iterations were greater 

than the deviation between the existing solution and the upper 

bound. It should be noted that while the upper bound given 

below is guaranteed to be not less them the final optimal solu­

tion there is no guarantee that it will be close to the final 

solution, nor is there any guarantee that successive upper 

bounds will each get closer to the final optimal value. 

The theorem is due to Dantzig (1963, p. 452); however, 

the proof is approached in a different manner. If max z 

is the final optimal value for model (2), z^* the existing 

"ik 
central problem value, and x-" the solution for subunit j 

k 
corresponding to n , eind there are no constraining limits on 

central resources, then (20) follows: 
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max z < + 1 [(cP -n^ A^)x^^-y^^]. (20) 
j=l 

First note that when there are no constraining limits on 

central resources, then the dual constraints of the jth sub-

unit can be written as: 

w^^ + ^ c^ , j = 1 to n. (21) 

But (21) when taken for j = 1 to n is exactly the set of 

k "1 k 
constraints for the dual to (2). Therefore, n and w' , j = 1 

to n constitute a feasible solution to the dual of (2) and 

by a well known lemma (Gale, 1960, p. 10) the value of any 

feasible dual solution is always at least as large as the 

value of the optimal primal solution. Thus we have (22) which 

gives the required result: 

max z _< n^'b + Z b^'w^^ = n^'b + E (c^ ')x^^ (22) 
j=l j=l 

= n'b + E yi^ + E [(ci'-nk'Ai)xik-yik] 
j=l j=l 

= zk* + E [(ci'-nk'Ai)xik-yik]. 
j=l 

The first equality is due to the duality relation in the sub-

problems; the second results from adding and subtracting 

E y-" , and the third is due to the duality relation in the 
j=l 

central problem. 
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Convexity Constraints and Scale 
of Proposals 

The presence of the convexity constraints in (6) makes 

the scale of the proposals as well as the relative mix of 

central resources important. In the former procedure only 

the mix was important. Since the weights were not con­

strained (except of course to be non-negative) the central 

problem could use a particular proposal at any desired scale. 

Under this procedure, even when it is known that b^^O, the 

"ik weights must be constrained such that Z j _< 1 implying 
keK 

that proposals may be scaled down but not scaled up. The 

scaling problem is even more crucial if b^ is not non-negative 

"lie 
so the weights must be constrained such that E . X-' =1. 

keK J 

This forces the central problem to use, in its solution, 

proposals from the jth subunit even if all of the proposals 

from that subunit use central resources less profitably than 

proposals from other sub units. For this reason it is im­

portant that the central problem be augmented not only with 

proposals appropriately scaled upward from more efficient 

subunits but also with proposals appropriately scaled down­

ward from less efficient sub units. 

Alternatives for Steps 2 and 3 

Before continuing the discussion, alternatives to step 

2 and step 3 will be given and discussed. These alternative 

steps 2 and 3 decrease the amount of information obtained 



50 

and stored at the center by replacing a vector of price im­

putations with a scalar of imputed total value. The scalar 

r^^ provides an index indicating the degree to which profit­

able new proposals can be expected to involve, on the average, 

additions to or subtractions from the original proposal. 

The new allocations are very simply related to existing 

proposals, involving, at the most, proportional additions 

to each element. 

Alternative Step 2. Let Q = 0}. Then for each 

It ' I I 
compute = -—rr?—I? I . For each j take 

II |q]*l 

"1 k 
that r-" having the largest absolute value and 

n jc 
use the associated in making a new allocation 

such that ui^=qi^, if r^^<0 or u^^=q^^+ôr^^|q^^|, 

if ri^>0. 

Alternative Step 3. Subunits solve (7) for allocations 

received using the central shadow prices n ob­

tained in step 1. If (c^ -n^A^)x^^ > y^^ then a new 

profitable proposal has been obtained and the central 

problem is augmented by q^^=A^x^^ and p^^=c^ x^^. 

The corresponding total imputed value of central 

resources used and produced is given by 

ti^=(vi^+n^)'|qi^|. Then return to step 1. 
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If no profitable proposals are obtained go to step 4. 

Using alternative step 3, a single scalar number t*^ 

replaces the vector, v^^, of information indicating subunit 

imputed prices for the proposed quantities. This decrease 

in the amount of information to be communicated and stored 

will be significant unless the number of central resources 

is quite small. The value index t^^ is obtained by taking 

the inner product of the v^^ vector with the absolute value 

T 3c • 
of the vector of quantities q-" . This gives the total imputed 

value of central resources used and produced in the jkth 

proposal from the subunit's view point. 

The index t^^ is used in step 2 in making new allocations. 

Letting v-^ be defined as before we obtain the equality: 

T Jc 
and thus, the numerator of r-" can be interpreted either 

as the difference between the imputed total value of q^^ 

at subunit prices compared with central prices or as a sum 

of the deviations between the price imputations weighted by 

the corresponding quantities of resources in the proposal. 

The latter interpretation will be employed in explaining 

the use of r^^. 

If Vj^-* -n^ >0 and qj^-* >0, then the ith resource is used 

in the proposal and is imputed a larger value by the subunit 

than by the center. If and q^^<0 the resource 
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is produced and the opportunity cost of its production from 

the subunit's view point is greater than its imputed value 

at the center. In either case a positive deviation implies 

that, other things being the same, a new proposal should 

have a larger ith element. A negative deviation has the 

opposite interpretation, that use of the resource should be 

decreased or production of the resource increased. In either 

case this inplies a smaller ith element in a new proposal. 

Since the numerator of r^^ is a sum of these price devia­

tions weighted by the quantities involved, a large positive 

sum would indicate that the greatest potential for 

profitable changes involves increases in the values. A 

large negative sum would, of course, indicate the converse. 

To obtain r-" the sum of weighted price deviations is divided 

by Iqi^l which will always be non-negative^ and which is 

the total value imputed by the center to the quantities in 

the proposal. It can be considered a relevant measure of 

the scale of the proposal. The division normalizes r^^ for 

the scale of the proposal. 

• *1 k 
A large positive r-* indicates that the subunit has a 

potential to make relatively large profitable changes in the 

original proposal which will on the average involve addi-

.^In the unlikely case that |qi^| = 0 çne could divide 
by t^.J Note that in the special case when q3^>0 the value 
for Iqi I is easily obtained by taking the difference be­
tween pjk and y] . 
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tions to the original proposal elements. Therefore a new 

allocation must be made such that the additions will be feas­

ible. Alternative step 2 would make the additions be 

proportional to the original proposal and scaled according to 

the relative size of r^^. 

Similarly, a large negative r^^ indicates a potential 

for profitable changes which will, on the average, involve 

subtractions from the original proposal elements. Since the 

allocation vectors inpose only upper bounds, it is sufficient 

in this case to make the new allocation equal to the original 

proposal. 

Finally, a r^^ with a small absolute value may result 

either because the deviations between imputed subunit and 

central prices are relatively small or because they tend to 

cancel each other out. In the first instance we would say 

that the unit has a low potential for making profitable 

changes in the original proposal; in the second case that 

profitable changes could be expected to involve a reshuffling 

of the elements with some being increased, others decreased. 

In the final analysis the efficiency of using the index 

r-* cannot be determined without applying it to a number of 

large scale numerical problems and comparing the results 

with existing solution methods. This has not been done. 
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Initial Feasible Solutions 

The solution processes for both models (1) and (2) as­

sumed that a set of vectors was available such that the central 

problem had a feasible solution. The problem of obtaining 

such an initial feasible set may itself involve a significant 

amount of computation and information exchange. The economic 

problem is one of finding an initial plan that is at least 

internally consistent. 

If the initial allocations made to subunits are such 
n . 

that Z u^ < b and if these initial allocations all turn 
i=i 

out to be feasible for the subunits then the resulting 

proposals will provide a set of q-' such that a feasible 

solution will also exist for the relevant problem 

((4) or (6) depending upon which solution process is being 

initiated). In this case there is no difficulty since a 

consistent solution is immediately available. Even in this 

case, it may be efficient to obtain more than one proposal 

from each subunit by instructing the subunit to use various 

parameterized values for the price vector 11°, thus allowing 

the central problem a wider choice of proposals from which 

to form the initial solution. 

However, the initial allocations are not derived from 

existing proposals as are the allocations in step 2 of each 

procedure, and therefore there is no guarantee that all of 
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the initial allocations will be feasible. If a subunit 

does receive an infeasible initial allocation then it can 

solve a two step problem. First, by adding artificial 

variables to the central resource constraints as in (24), 

A^x^-Is^ ^ u^°, si ^ 0 (24) 

and minimizing a weighted sum of these variables, the subunit 

can find a vector of additions to just sufficient for 

feasibility. Second, the subunit can maximize the value 

of the standard objective function, subject to an additional 

constraint that the weighted sum of artificial variables 

not be larger than the value obtained in the first minimizing 

problem. Then, as usual, the new proposal will be 

When subunits are forced to add to their initial allo­

cations there is then no guarantee that the central problem 

will be able to form a feasible solution from the proposals 

which are returned. If necessary, the central problem can 

add a vector of artificial variables in the constraints and 

add large penalties in the objective function for positive 

values of the artificial variables. The artificial variables 

measure the amount of inconsistency in the central problem. 

They indicate for each central resource the total decrease in 

use and/or increase in production necessary to meet the 

constraints imposed on the central resources by the vector b. 

The large penalties associated with any artificial variable 
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in the optimal basis of the central problem will be reflected 

in a large shadow price for the corresponding central resource. 

J, 
This large value will have the desired effect of calling 

forth increased production or decreased use of each central 

resource for which there is a deficit in the existing central 

solution. Thus, from this point of the process on, the vector 

k 
n can be used as outlined in the four iteration steps. 

Furthermore, feasible proposals are available so that the allo­

cation rules in step 2 of each procedure can be used, 

eliminating any need for artificial variables in the subunits 

after the initial allocation. The iteration process will drive 

all the central problem artificial variables to zero and pro­

ceed on to an optimal solution. 
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CHAPTER III. NUMERICAL CALCULATIONS FOR 

A DECOMPOSITION MODEL 

In this chapter the calculations for a small illustrative 

decomposition model are presented and discussed. The solu­

tion process employed is that given in Chapter II for model 

(2). This model is intended to help clarify the solution 

process outlined in Chapter II by use of an explicit 

example. Furthermore it is instructive to note the inter­

action of the price and quantity variables in an actual 

example as the iterations proceed. 

The calculations presented here are not intended to pro­

vide a test of the efficiency of the solution process outlined 

in Chapter II. A test of the degree to which the process is 

able to decrease the number of major iterations would require 

that the process presented here be applied to a number of 

large scale problems and the results compared with those 

obtained by applying the original Dantzig-Wolfe algorithm. 

Such a test should be a next step; however, the necessary com­

puter routine for such large scale problems was not available. 

First, the characteristics of the numerical model will 

be indicated. Next, the method of obtaining the initial 

solution is outlined. This is followed by a presentation of 

the numerical values of the key variables throughout the 

iteration process. An upper bound is computed emd the final 
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optimal solution is presented. Finally the behavior of the 

dual variables is discussed. The chapter is concluded by 

an appraisal of decomposition and its use in economics. 

Characteristics of the Numerical Model 

The illustrative numerical model actually employed is 

given in Table 1. The model consists of 33 restrictions and 

37 activities; however, because of its structure it can be 

decomposed into a central problem like (6) and three subunit 

problems like (7). The central problem has six rows—one for 

each central resource and one convexity constraint for each 

subunit. The subunit problems are all relatively small 

with the largest having thirteen activities, eleven subunit-

specific rows, and three central restrictions rows. 

The zero values in the first two elements of the central 

resource vector b iiiply that there are none of these two re­

sources available at the center; however, the negative values 

in activity 9 of subunit 1 and in activity 7 of subunit 2 

imply that these activities can produce resources 1 and 2 

respectively. These two resources are used as inputs in 

every subunit by several activities and the constraints force 

production to be at least as large as use. The third central 

resource is available up to 220 units at the center. It is 

not produced by any of the subunita but is used by each in 

several different activities. 



Table 1.^ De co n^o s able model 

Row pi, 
No. j ® 

Subunit 1 Activities 
5.00 3.75 2.75 1.50 1.50 1.50 

I 
d " (0 -H 
M U 
4J 4J 
C w 
0) <U 
U 05 +> 

U 
C 
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1 
2 
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10 
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10 
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10 
3 

5.6 

-24 

7.4 7.4 

4 3 1 -2 
5 1 1 1 -1/3 -1/3 -1 
6 3000 1500 750 5500 3600 3600 11,000 
7 -35 -30 
8 3 3 3 -6.5 
9 1 0.5 —6 -4 
10 1 1 - 2  -4 
11 -10 0.5 
12 1 1 1 
13 1 

(0 

§ 

+J o 
•H «H 

à m 
3 0) 
ca 05 

throughout Table 1, blank positions in the matrices represent zero elements. 



Table 1 (Continued) 

Row C 2.s Subunit 2 Activities 
No. ® 2.10 2.40 1.75 1.75 0 0 0 0 0 0 0 
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5.2 8.5 8.5 

S 14 1 1 -0.15 -0 .15 -1 

H H 1 / 

1000 2600 1500 1500 10,000 

H H 1 / 
-30 -25 

H H 1 / 3 3 -7 
B ij 18 1 0.6 -8.5 —6.0 
5 m 19 1 1 -.15 -4.0 
w 20 -10 0.4 

21 1 1 1 
22 1 



Table 1 (Continued) 

C.^'s Subunit 3 Activities 
No. 1 5 .40 4 .75 3.00 2 .00 2 .00 2 .00 

• s i  1  4  4  4  
W >4 w 2 
-P 4J C 
C Ui O 
OJ 0) -H 
U « -P 

3  5 . 5  9 . 0  9 . 0  

m 23 3 2 
g  2 4  1 1 1  - 2  - 0 . 2 5 - 0 . 2 5  - 1  

co-H 25 3000 1750 500 5400 3000 3000 12,000 
+> 

4J u 26 -40 -35 
" 2  2  2  7  9  9  - 1 8  
3 - P  2 8  3  3  9  - 7 . 5  
g  3  2 9  3  1  0  . 7  - 7  - 5  
m a  3 0  1 1 - 2 - 4  

3 1  - 1 2  0 . 3  
3 2  1  
3 3  1  



Table 1 (Continued) 

Subunit Specific 
Restri ctions 
bi vectors 

Row 
Number 

Central 
Restrictions 
b vector 

Central 
Restrictions 

1 
2 
3 
4 < 0 
5 T 0 
6 T 40 ,000 
7 T -1,850 
8 T 0 
9 T 0 
10 T 0 
11 T 0 
12 ? 5.5 
13 2.0 
14 < 0 
15 T 20 ,000 
16 T -2,750 
17 T 0 
18 "< 0 
19 "< 0 
20 T 0 
21 < 8.5 
22 ? 1.0 

< 0 
< 0 
< 220 

Subunit 1 
Restrictions 

Subunit 2 
Restrictions 



Table 1 (Continued) 

Sub unit Specific 
Restrictions 
bi vectors 

Row 
Number 

Central 
Restrictions 
b vector 

Sub.unit 3 
Restrictions 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

0 
0 
45,000 
-2 ,250 
- 210 

0 
0 
0 
0 
7.5 
3.0 



The negative elements in the vectors imply that 

x^=0 will not be a feasible solution for any of the sub-

units or that each subunit is forced to operate at least 

some of its activities at a strictly positive level. 

Initiating the Process 

The solution process used in solving this illustrative 

problem is essentially that outlined in the original four 

steps for solving problems with subunit-specific constraints. 

The process was initiated by making two allocations to each of 

the subunits and obtaining a proposal for each allocation 

using central resource prices of zero, i.e., II=0. The 

numerical allocations used are given in Tables 3-5 as 

values for k equal to 00 and 0. Assuming that nothing was 

known about the central resource needs of the subunits, the 

allocations were made by taking the approximate average 

amount of central resource per subunit available in vector 

b and, in the first case, subtracting 20 units from each 

element and, in the second case, adding 20 units to each 

element. This was an arbitrary choice but did provide in 

the first case a total allocation less than b and in the 

second a total allocation greater than b. 

The allocation vectors for k=0 proved to be feasible 

for each of the subunits; however, the allocations for k=00 

were infeasible for each sub unit, forcing the subunits to 



Table 2. Central problem values and profitability criterion 

Major 
Iteration k 1 2 3 4 5 6 7 

Central Prob. 
Value 
Upper bound 

32.2 82 50.277 53.512 60 .414 60.517 60.772 60.803 

Convexity 
Duals 

26.525 

.796 

-.555 

-17.889 

-9.822 

-34.711 

11.209 6.009 3.022 2.155 

y'" 4.961 -5.264 -17.692 13.162 6.402 2.382 1.252 

Subprob. 
Values 

213.000 

.796 

6.400 

-14.44 8 

-8. 397 

-33.227 

11.381 

-. 354 

6.440 

-.147 

3.022 

-13.648 

2.155 

-16.644 

z3k 6.5 74 -5.174 -12.451 13.782 7.640 2.414 1.252 



Table 3. Proposal, dual, and allocation values for subunit 1 

Major 
Iteration 

k 00 0 1 2 3 

Direct Returns P 10. 324 19.329 9.662 20.745 20.765 

Proposals 91 -20.000 20.000 -251.013 -152.173 21.000 

92 9.250 20.000 9.250 23.318 23.405 

^3 
55.294 55.294 57.967 57.967 55.294 

Included in yes yes yes yes yes 
Central Model 

Central Solu-., 1 2,3 2 3,4,5 4,5,6 
tions with X >0 

Subunit V, 0. 000 0.000 0.000 0.000 0.000 
Duals 1 

^2 
1.167 .500 0.000 0.000 0.000 

^3 
0 .000 0.000 0.000 0.000 0.000 

Central Duals 
^1 

0. 000 0.000 . 810 .038 .000 

^2 
0.000 0.000 .000 .027 .003 

:3 
0 .000 0.000 .000 . 336 .526 

Allocation 1 q°+.i|q°| qO+.05|q2| 
Derived from; 

1 q°+.i|q°| qO+.05|q2| 

Allocation Un -20.000 20.000 -18.000 22.000 -144 .564 
Vectors 1 

"2 
-20,000 20.000 10 ,000. 10 ,000. 10 ,000, 

^3 
55.000 95.000 60.824 60.824 58,059 



21.286 

-144.564 

24.401 

59 .988 

yes 

.023 

0 . 0 0 0  

0 . 0 0 0  

.003 

.010 

.16 8 

q^+.05iq'^| 

-144.564 

10 ,000. 

60.865 

20.764 

82.229 

23.405 

55.294 

20.764 

78.018 

23.405 

55.294 

20.764 

78.018 

23.405 

55.294 

yes 

6,7 

0 . 0 0 0  

0 . 0 0 0  

0  .000  

no 

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

no 

0 .000 

0 . 0 0 0  

0 . 0 0 0  

.004 

.004 

.264 

. 0 0 0  

.001 

.320 

. 0 0 0  

. 000  

.337 

10 ,000. 

10 ,000. 

10,000. 

10,000. 

10 ,000. 

10 ,000. 

10 ,000. 

10,000. 

10 ,000. 



Table 4. Proposal, dual, and allocation values for sub-
unit 2 

Major 
Iteration k 00 0 1 2 

Direct Returns P 8. 885 15.329 8. 885 13.260 

Proposals 9l 9.9 86 19.731 9.986 16.200 

92 -136.566 20.000 -136.566 -141.174 

^3 89.559 95.000 89.559 88.880 

Included in 
Central 
Model 

yes yes no yes 

Central Solu­
tions with 
x2k>o 

1,2 2,3,4,5,6,7 - 4,5,6,7 

Subunit 
Duals ^1 

1.050 0.000 0.000 0.000 

^2 0.0000 0.000 .-16 0.000 

^3 0.0000 .337 1.953 0.000 

Central 
Duals % 0.000 0.000 . 810 .000 

"2 0.000 0.000 .000 .003 

:3 0.000 0.000 .000 .526 

Allocation 
Derived from 

- - gOO qO 

Allocation 
Ve ctors "l -20.000 20.000 9.9 86 19.731 

^2 -20.000 20.000 -136.566 20 .000 

*3 55.000 95.000 89.559 95.000 
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4  

1 3 . 2 6 8  

16.200 

- 8 5 . 9 9 2  

88 .880  

1 4 . 6 0 1  

1 8 . 6 4 7  

• 1 3 4 . 1 1 5  

9 6 . 6 0 7  

8 0 . 6 4  3  

1 3 3 . 0 0 0  

4 4 3 . 3 3 3  

2 9 7 . 5 8 3  

5 1 . 3 7 7  

8 1 . 5 2 9  

2  7 1 . 6  7 5  

2 0 2 . 1 1 8  

1 3 . 2 6 8  

16.200 

5 4 . 0 0 0  

80. 880 

yes yes yes yes no 

4 , 5 , 6 , 7  

0 . 0 0 0  

0 . 0 0 0  

0 .  000  

0 . 0 0 0  

.018 

.080 

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

.000 

. 0 0 3  

. 5 2 6  

. 0 0 3  

.010 

.168 

. 0 0 4  

. 0 0 4  

. 2 6 4  

.000 

.001 

. 3 2 0  

. 0 0 0  

.000  

. 3 3 7  

q 

1 9 . 7 3 1  

20 .000  

9 5 . 0 0 0  

q'^+.05lq^l 

1 0 , 0 0 0 .  1 0  , 0 0 0 .  

• 1 3 4 . 1 1 5  1 0 , 0 0 0 .  

9 6 . 6 0 7  1 0 , 0 0 0 .  

10 ,000, 

10,000 

10,000 

10 ,000 

10,000 

10 ,000 



Table 5. Proposals, duals, and allocation values for sub 
unit 3 

Major 
Iteration k 00 0 1 2 

P 6.696 21.162 18.560 18.520 

91 2.143 20.000 14.796 .14.796 

92 0.000 0.000 0.000 0.000 

S3 70.446 76.377 69.222 68.835 

Direct Returns 

Proposals 

Included in 
Central Model 

yes yes yes yes 

Central Solu--, 
tions with X >0 1 1 , 2  2 3 

Subunit Duals 
^1 

1.063 .500 0 . 0 0 0  .425 

^2 
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  

"̂ 3 
0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  

Central Duals 
:i 

0 . 0 0 0  0 . 0 0 0  .810 .038 

^2 
0 . 0 0 0  0 . 0 0 0  . 0 0 0  .027 

:3 
0 . 0 0 0  0 . 0 0 0  . 0 0 0  .336 

Allocation 
Derived from; 

- - q00+.i|q00 

Allocation Vectors 
^1 

- 2 0 . 0 0 0  2 0 . 0 0 0  1 0 , 0 0 0 .  14.796 

"2 
- 2 0 . 0 0 0  2 0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  

^3 
55.000 95.000 77.491 69.222 
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2 5 . 5 7 3  

3 0 . 0 9  3  

0 . 0 0 0  

7 2 . 2  7 7  

2 6 . 6 9 8  

3 1 . 5 9  8  

0 . 0 0 0  

7 6 . 5 1 0  

3 4 . 1 9 9  

4 8 . 1 4 8  

0 . 0 0 0  

100.016 

2 5 . 5 7 8  

3 0 . 1 1 7  .  

0 . 0 0 0  

7 2 . 2  8 2  

2 5 . 5 7 8  

3 0  . 1 1 7  

0 

7 2  . 2 8 2  

yes 

4 , 5 , 6  

0 . 0 0 0  

0 . 0 0 0  

. 4 9 9  

yes 

5  

. 2 2 4  

0 . 0 0 0  

0 .000  

yes 

0 . 0 0 0  

0 . 0 0 0  

0 .000  

yes 

7  

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

no 

0 . 0 0 0  

0 . 0 0 0  

0 . 0 0 0  

. 0 0 0  

. 0 0 3  

. 5 2 6  

. 0 0 3  

.010 

.168 

. 0 0 4  

. 0 0 4  

. 2 6 4  

. 0 0 0  

.001 

. 3 2 0  

. 000  

. 000  

. 3 3 7  

q + . 0 5Iq I q + . 0 51q (  

1 0 , 0 0 0 .  3 1 . 5 9 8  1 0 , 0 0 0 .  1 0 , 0 0 0 .  1 0 , 0 0 0 ,  

0 . 0 0 0  0 . 0 0 0  1 0 , 0 0 0 .  1 0 , 0 0 0 .  1 0 , 0 0 0 ,  

7 2 . 2 7 7  1 0  , 0 0 0 .  1 0  , 0 0 0 .  1 0  , 0 0 0 .  1 0  , 0 0 0  
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solve a two step problem using artificial vectors in the 

constraints as outlined in (24). The initial proposals are 

given in Tables 3-5 as the values corresponding to k=00 

and k=0. The degree to which the allocation vectors were 

not feasible is evident from the difference between elements 

of the proposal vector q^^^ and corresponding elements of 

the allocation vector u^^^. For example u^^^ set an output 

q u o t a  f o r  s u b  u n i t  1  o f  a t  l e a s t  2 0  u n i t s  o f  r e s o u r c e  2 ,  

but the proposal which was returned, q^^^, indicates that, 

while the allocation values for resources 1 and 3 could be 

met, the quota for resource 2 could not. Rather than the 

production of 20 units, the proposal called for the use of 

9.250 units of resource 2. The fact that the proposal vectors 

q^^ were all at least as small as the allocation vectors u^^ 

confirms that each of the allocations for k=0 was feasible. 

The dual values for central resources are recorded in the v^ 

rows of Tables 3-5. 

Major Iterations of the Process 

The major iteration, k=l, begins by placing the 

initial proposals in the central problem (6) and obtaining em 

optimal solution. For this example, the initial proposals 

were such that the central problem was feasible so that 

artificial vectors were not necessary. The optimal value of 

the central objective function at k=l is given in Table 2, 
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as z , along with the optimal dual values for the convexity 

constraints. Tables 3-5 each give the central resource 

shadow prices obtained from (6) at each iteration and also 

list the iterations in which each proposal appeared with a 

strictly positive weight in the central solution. For example, 

in the first iteration the set of proposals with a strictly 

• "1 k 
positive X"" (i.e., the set Q) is given by; 

Q= g^»). (25) 

Thus at iteration k=l, four of the six available proposals are 

used to obtain a central solution value of 32 .2 82 and such that 

central resource 1 has the only positive shadow price of .810. 

After the central solution has been obtained, a new allo­

cation must be made. The subunit price imputations, s, 

used in making new allocations are obtained from Tables 3-5 

by summing, for each subunit, the kth values for v^ and n^. 

Then the set of v^^ vectors corresponding to proposals con­

tained in Q is given by the set V and at the first iteration 

V is given by: 

V = v^"}. (26) 

The maximum subunit price imputations in V for central re­

sources 1 and 2 are found to be respectively v^^^^ = 1.063 

and = 1.167. All proposals impute a zero value to 
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central resource 3. The differences between the maximum 

subunit imputation and the central imputation for resources 

1 and 2 are both positive and are equal to .251 and 1.062 

respectively. Thus, subunit 3 is given a very large alloca­

tion of resource 1, and subunit 1 a very large allocation 

of resource 2. The other elements of the allocation vectors 

for subunits 1 and 3 are obtained by modifying the elements 

of proposals and q^^^. The modification involves adding 

to the original element an amount equal to .1 of the absolute 

value of that element. This .1 represents the 6 value of 

step 2 in the procedure given in Chapter II. The new alloca­

tion for sub unit 2 is chosen from the proposals for sub unit 

2 contained in Q which in this case leaves only one choice 

of q°°. 

Tables 6-8 show how the subunit objective function 

coefficients are affected by the central price vector n^. 

Only those coefficients which are affected by n are shown. 

Any activity which does not produce or consume any of the 

central resources will not be affected by the n values. 

The first major iteration is completed when each of the 

sub units has obtained optimal solutions relative to the new 

allocations and new central prices. The resulting optimal 

objective function values (where the values in Tables 6-8 are 

used as coefficients) are recorded in the rows of Table 2. 

These are the values which must be compared with the y^^ values 



1 ' k' 1 k 
Table 6. Elements from vector c -II A which are a function of n 

Iteration " ^ = « 9 11 12 

00 and 0 1.500 1.500 1.500 0.000 0.000 0.000 

1 -6.601 -6.601 -6.601 19.442 0.000 0.000 

2 1.040 1.040 -.842 .910 -2.487 -2.487 

3 1.491 1.491 -1.455 0.000 -3.893 -3.893 

4 1.444 1.444 .505 .065 -1.241 -1.241 

5 1.446 1.446 -.030 .100 -1.950 -1.950 

6 1.497 1.497 -.297 0.000 -2.371 -2.371 

7 1.500 1.500 -.385 0.000 -2.490 -2.490 



2 ' k ' 2 k 
Table 7. Elements from vector (c -II A ) which are a function of II 

Major 
Iteration k Column 3 4 7 9 10 

and 0 1.750 1.750 0.000 0.000 0.000 

1 -.680 -.680 0.000 0.000 0.000 

2 1. 365 -.382 .407 -2. 857 -2.857 

3 1.719 -1.016 .046 -4.4 72 -4.472 

4 1.645 .773 .14 5 -1.425 -1.425 

5 1.697 . 326 .061 -2.240 -2.240 

6 1.741 .0 74 .014 -2.724 -2.724 

7 1.750 -.000 0.000 -2.861 -2.861 



3' k' 3 k 
Table 8. Elements from vector (c -n A ) which are a function of n 

IteraUon ^ Column 4 5 6 11 12 

00 and 0 2.000 2.000 2.000 0.000 0.000 

1 -1.240 -1.240 -1.240 0.000 0.000 

2 1.848 1.848 -.000 -3.025 -3.025 

3 2.000 2.000 -.893 -4.735 -4.735 

4 1.989 1.989 1.067 -1.509 -1.509 

5 1.983 1.983 .534 -2.372 -2.372 

6 2.000 2.000 .237 -2.884 -2.884 

7 2.000 2.000 .149 -3.029 -3.029 
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to determine whether or not the new proposal is profitable and 

therefore used to augment the .çentral problem for the next 

iteration. At the first iteration sub units 1 and 3 did return 

profitable proposals; sub unit 2 did not. 

The new proposals show that subunit 3 did propose a 

large increase in the use of central resource 1 relative to 

proposal The potential for such an increase had been 

evident from the subunit price imputations, and specific 

allowance had been made in the allocation vector. For sub-

unit 1 specific allowance had been made for a larqe increase 

in the use of resource 2; however, the new proposal contains 

a large increase in the production of resource 1 and no in­

crease in the use of resource 2, indicating that the negative 

difference between v^^^^ and was more important than the 

positive difference between V2^^^ and 

After the new profitable proposals are augmented to the 

central problem the second major iteration is initiated by 

obtaining an optimal solution to the central problem. Note 

that both of the proposals augmented to the central problem 

had strictly positive weights in the central solution at 

iteration k=2. The value of the central problem at iteration 

2 was 50.227 as compared with 32.282 at iteration 1. 
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Computing an Upper Bound 

The iteration process was continued up to the fifth 

iteration in the manner just described except that 6 was 

decreased from .1 to .05 for iterations 3 and 4. The results 

are recorded in Tables 2-8. The new proposals obtained from 

the fourth iteration resulted in only a very small increase 

in the central value of the fifth iteration. This seemed to 

be cin obvious place to obtain an upper bound for the final 

value. The allocations made at iteration 5 were all vectors 

with very large positive numbers so as to be unconstraining, 

since the upper bound formula is valid only under such an 

"ik allocation. Once the z-' values were obtained an upper bound 

of 71.913 was computed. The relevant calculations are given 

in expression (26) using the formula given in (20); 

S* ^ 4 ' 5'-i -iR -i^ 
max z _< z + E [c-" -n A^)x-^^-y^^] = 60.51728 (26) 

j=l 

+ (6 .44012-6. 00853)+ (-.14660+9. 87286) 

+ (7.63954-6.40187) = 71.913 . 

At this point the decision-maker could consider terminat­

ing the solution process. He has obtained a solution value 

of 60.517 and knows that additional iterations will obtain 

an optimal solution greater than the current solution but 

not greater than the upper bound of 71.913. The potential 
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gain must be compared with the information cost and waiting 

cost associated with further iterations. 

Final Optimal Solution 

In the example the process was continued until an optimal 

solution was obtained. The central solution at iteration 6 

again showed only a small increase, so unconstraining alloca­

tions were again made to each of the subunits and a new 

upper bound of 62 .292 was computed. At this point the deci­

sion-maker would know his current solution was less than 2 

units from the optimum. 

At iteration 7 none of the were strictly positive 

indicating that no profitable new proposals had been ob­

tained cuid satisfying the criterion for a final optimal solu­

tion. The value of the optimal solution is 60.803. The opti­

mal weights in the central problem at iteration 7 were; 

= 1, A^O* ^ .57897, ^ .42103, (27) 

and 

X = 0 for all other j and k. 

Using these weights and the formula in step 4 of Chapter 

II an optimal solution for the original problem can be ob­

tained. Using the weights in (27) the vectors of central 
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resources used and/or produced by each of the subunits is 

given in (2 8): 

-82.229 

23.405 (28) 

55.294 

19.731 

ql* = E 1 = (1) 
keK 

9* * Olr 
q = E , q^ = (.57897) 

keK 
2 0 . 0 0 0  

95.000 

' 16 .200" 18 .244 

+ (.42103) -85 .992 24 .626 

. 88 .880 92 .423 

q3* = z 3 
keK 

x3k*q3k ^ (1) 

30.117 

0 . 0 0 0  

72.282 

The vectors in (2 8) show an excess of production over use for 

the first two central resources. This excess supply is 

reflected in the final shadow prices of zero for the first 

two resources. Only resource 3 is used to the limit of 

availability, and it has a positive shadow price of .337. 
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Behavior and Interpretation of 
Dual Variables 

k • 
The elements in the n vectors fluctuate rather wildly 

throughout the iteration process as is to be expected. In 

fact, gives a positive shadow price to only the first 

resource which is a surplus resource in the final solution 

and gives a zero price to resource 3 which in the end is the 

only constraining resource. The effect of the II fluctua­

tions on the value of individual activities in the subunits 

can be observed in Tables 6-8. 

"1 k 
The Y values for the final central problem, in this 

case y^^ values, provide a measure of the net contribution 

of each subunit to the final solution. For example, y^^ = 

2.155 is equal to the difference between direct returns and 

the net value of central resources for the optimal solution 

of subunit 1. The calculations are shown in (29): 

p^^-n^'ql* = 20.764-.33654(55.294) = 2.155. (29) 

27 
The fact that y equals -16.643 implies that subunit 2 

makes a negative contribution to the final solution; the 

value of direct returns are not sufficient to cover the value 

of resource 3 used. Sub unit 2 is forced to operate (even 

though it is incurring a net loss) by the third subspecific 

constraint which places a lower bound on the weighted sum 

of the levels of activities 5 and 6. 
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An Appraisal of Decomposition 

In concluding this chapter a few general comments will 

be made concerning the importance of the decomposition 

principle for economics. First of all, it would seem that 

its promise as a computational method for really large scale 

models is of sufficient importance to warrant further study. 

However, we are most interested here in appraising its 

importance as a method for characterizing multilevel de­

centralized decision processes. For purposes of discussion 

it is important to distinguish between the attempt to charac­

terize a planning procedure where the models are explicitly 

employed to obtain an optimal plan and the attempt to 

characterize a real market adjustment process. The discussion 

of decomposition in Chapter II and this chapter has essential­

ly envisioned an explicit planning procedure; however, the 

possibility of employing a decomposition type algorithm to 

simulate and analyze a real market adjustment process is 

intriguing. Given that a model could.be constructed which 

essentially captured the production and exchange alternatives 

open to participants in a specific market economy, it is 

still not clear that the simplex type adjustment rule of 

the algorithm would adequately simulate an actual market 

adjustment process. For example, a gradient type adjustment 

rule might be more adequate. Furthermore, the decomposition 

algorithms discussed here are essentially tâtonnement adjust-
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ment processes in which no trading or production actually 

takes place until the final equilibrium has been reached. 

Adequate representation of actual market adjustments might 

require specification of a non-tâtonnement process in which 

trading and production take place with each new vector of 

prices, even though they are not equilibrium prices (Quirk 

and Saposnik, 1968, p. 191). Even given the possible dif­

ficulties just mentioned, the algorithm might be a useful 

method for gaining further insights into actual market 

adjustment processes. 

An important question concerns the relation of market 

prices and equilibrium shadow prices. The price systems are 

important elements of the effective decentralization in both 

an actual market and in the decision processes outlined above. 

A property of shadow prices which makes any close relation 

between them and market prices quite suspect is the fact that, 

for specific models, a zero shadow price is often obtained 

for a resource which would never have a zero price in the 

market. It can be argued, however, that "unrealistic" zero 

shadow prices are a result of a model which has failed to 

capture the degree of resource substitutibility present in 

the market rather than any inherent deficiency in the shadow 

price concept. An absolute surplus of a particular resource 

and the corresponding zero shadow price may result if, for 

exaitple, the model does not include activities which allow 
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resources to be transferred between subunits^ locations, or 

time periods, even though such transfers are possible alter­

natives in the economic system being modeled. A similar 

result can occur if the model fails to include all of the 

alternative input mixes possible for producing a particular 

output. If sufficient resource substitutibility is included 

in the model, zero shadow price values will not occur. 

Another difficulty encountered, especially when using 

linear models, is the possibility that the equilibrium shadow 

price vector will not be unique. In this case it is not at 

all clear which particular vector should be used for comparing 

with market prices. 

In the absence of the problem of nonuniqueness, and 

assuming that a model can be specified which embodies all the 

relevant economic alternatives, it does seem quite relevant 

to coup are equilibrium shadow prices with actual market. 

prices. If the shadow price corresponds to a constraint on 

the use of the resource then it is essentially a point on a 

derived demand function for that resource. If the market 

price is less than the shadow price it will be profitable to 

purchase additional units of the resource and vice versa. 

If the shadow price corresponds to a constraint imposing a 

minimum output of the resource, then it can be considered 

a point on the supply function and again comparison with the 

market price is relevant. 
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The most relevant question concerning the usefulness of 

decomposable models such as those outlined here for planning 

purposes would seem to involve a comparison of the expected 

gain from more nearly optimal decisions and the information 

cost of building and manipulating the necessary models. The 

major aim of the decomposable model allowing a decentraliza­

tion of decision-making is to decrease the information cost, 

but for a large scale organization the cost would still be 

considerable. It seems quite likely, however, that for 

some organizations the gains could be expected to exceed the 

in formation costs. 
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CHAPTER IV. THE VECTOR MAXIMIZATION PROBLEM 

In the preceding chapters we have taken as part of the 

data the price or value of resources used and goods produced. 

The possibility of formulating the problem of resource, allo­

cation and production decisions as that of maximizing a scalar 

value is entirely dependent upon the availability of such 

prices or measures of relative value. It is possible to 

collapse a vector of commodities into a meaningful scalar 

value only when the relative prices or rates at which one 

commodity should substitute for another are well established. 

For a decision-maker in a firm which produces only a small 

portion of the commodities of the larger economic system 

the assumption that prices are given as data is quite real­

istic. 

In the next two chapters we will deal with two models 

in which the price vector cannot be taken as given. The 

first model involves a public institution which does not 

necessarily follow a policy of profit or sales maximization and 

which may not sell its output in a well defined market or may 

not have an easily measurable output. In such a case one is 

faced with determining a "reasonable" price system through 

some type of estimation procedure or with making allocation 

and production decisions without the aid of prices. We 

will focus on a university as a specific example of such 
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a public institution. The second model involves a production 

model in a general equilibrium system which by its very 

nature must take prices as variables rather than as data. 

The discussion concerning this model will be theoretical 

in nature as opposed to the operational decision-making 

approach taken for the university planning model. 

In order to make resource allocation and production 

decisions which are in some sense optimal for the models 

considered in this chapter we are forced to consider certain 

aspects of consumption theory. Up to this point we have 

been able to discuss optimal resource and production deci­

sions independently of consumption considerations by assuming 

à given price system. 

The basic problem with which we must deal is that of 

determining how we should rank alternative possible bundles 

of commodities, or how we should choose from alternative 

bundles, that bundle or group of bundles which is in some 

sense "the best." The most common approach in consumption 

theory has been to begin by assuming for each consumer the 

existence of an ordinal utility function defined over the 

commodity space. Such a function, U (y) , will, for that con­

sumer represent a complete preference ordering of commodity 

1 2 
vectors or bundles such that for any two bundles, y and y , 

either U(y^)>U(y^), U(y^)=U{y^), or U(y^)<U(y^) implies 

1 2 1 
respectively that y is preferred to y , y is indifferent to 
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2 2 1 
y / or y is preferred to y . The problem of determining 

"the best" commodity bundle for a particular consumer then 

reduces to that of finding a vector which maximizes the 

utility function. However, once we consider an economic 

production system in which the resulting commodity bundle 

affects the utility of a large number of consumers, as in 

the case of a public institution or a general equilibrium 

model, we are immediately faced with the most difficult 

problems of welfare economics. Choices must be made between 

different commodity bundles which will increase the utility 

of one group of consumers at the expense of another. 

Actually in mathematical terminology the problem is that of 

defining a vector optimum where the elements of the vector 

are levels of utility for individual consumers. Two approaches 

have been followed in attempting to solve or circumvent the 

problem. One approach has been to attempt to extend the 

utility function concept in such a way that a new function 

represents a complete preference ordering for the whole 

group of consumers. The problem of choosing an optimal 

vector then reduces to maximizing this new function subject 

to production and resource constraints. The other approach 

has been to essentially retreat from the problem and be 

satisfied with the less ambitious concept of a partial order­

ing present in the concepts of Paretian optimum and effi­

cient production. The first approach has a long history 
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which can be traced at least to a paper by Bergson (1938), 

in which he proposed a social welfare function. The whole 

discussion of inter-personnel comparisons of utility and 

community indifference curves is, of course, closely related 

to the problem; see (Mishan, 1964). Arrow's (Arrow, 1963) 

important contribution concerning the possibility of a social 

welfare function is not encouraging with respect to the 

fruitfulness of this approach. Arrow poses the possibility 

of constructing, from individual orderings, a social 

ordering of social states consistent with certain conditions 

which are thought to be "reasonable." He proves that it is 

not possible to construct a social ordering consistent with 

those "reasonable" conditions. It follows that construction 

of such a social preference ordering is possible only if some 

different and probably less "reasonable" set of conditions 

is accepted. 

Economists working in the general area of quantitative 

economic policy have essentially followed the approach of 

choosing that set of policy variables which maximized a 

welfare function. They have, in general, circumvented the 

problem of constructing a social welfare function from 

individual utility functions by taking as their welfare 

function the function representing the preference ordering of 

the policy-maker involved (Fox, Sengupta, and Thorbecke, 1966, 

p. 448). The method by which such a policy-maker derives his 
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position is, or course, a very crucial question in itself. 

However, whether the policy maker's position is the result of 

some voting procedure, of negotiating procedures among ruling 

coalitions, or of personal dictatorial power, once his 

preference function is given, the procedure to be followed 

is unchanged. 

The second approach of being satisfied with only a 

partial ordering certainly has a very long history in eco­

nomics. The Paretian criterion which is fulfilled when no 

one can be made better off without someone else being made 

worse off and the sub-criterion of efficient production which 

is satisfied when no more of one commodity can be produced 

without producing less of some other commodity both imply 

a partial ordering. Such criteria involve a partial order­

ing since many points are not comparable, as opposed to a 

complete ordering in which every pair of points is com­

parable (i.e., one point is preferred to the other or they 

are indifferent) . For example, the difficulty of choosing 

between efficient points must still be faced and, while we 

know that for every nonefficient point there exists cin 

efficient point which is preferred, it is not possible on 

the basis of only efficiency criteria to say that an 

efficient point is preferred to a nonefficient point having 

more of at least one commodity. A similar statement is true 

for the Paretian criterion. Thus such a partial ordering of 
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alternatives simplifies the problem in that only Pare to 

optimal or efficient points need be considered but the problem 

of choosing between different Pare to optimal or efficient 

points must still be faced. The Pareto optimal or efficient 

point is usually assumed either to be chosen by some type of 

central planner or to result from some type of market mech­

anism. Under certain regularity conditions for a general 

equilibrium model, a price system exists which will sustain 

any Pareto optimal point as a competitive equilibrium. This 

price system allows a degree of decentralization of infor­

mation and decision-making within the system. The models 

used in this chapter will both be linear activity analysis 

models. In the special general equilibrium model we will 

explore the possibility of finding a price vector, consistent 

with certain noncompetitive pricing behavior, which will 

sustain an efficient commodity vector and allow a decentrali­

zation of information and decision-making. Thus in the 

general production model we will follow what has just been 

discussed as the second approach. We will be satisfied 

with exploring the relationship between efficient production, 

prices and decentralization, and leave the problem of choosing 

between efficient points undiscussed. In the university 

planning model such indeterminancy is not acceptable. Since 

we are proposing a planning and decision-making model which 

is to be operational, it must provide a way in which the 
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"best" commodity vector is actually chosen. We will follow 

the lead of the quantitative economic policy economists and 

choose the "best" vector from the point of view of the policy­

maker or policy-makers. The procedure outlined will indi­

cate how a combination of the approaches discussed above may 

be used in a university planning model. 

The linear activity analysis model outlined here is 

essentially taken from Koopmans (1951a; 195 7) . No attempt 

is made here to reproduce all the results of activity analysis; 

only a brief outline of the model and those results central 

to our interest will be given. The model assumes that there 

is a vector of primary commodities, y^, which is available 

at a rate of not more than n units per time period. These 

primary commodities may be transformed into vectors of inter­

mediate, y^, or final commodities, y^, by a set of linear 

activities. The technology matrix, A, the columns of which 

are the input-output coefficients for each activity, can be 

partitioned in the following way: 

Linear Activity Analysis Models 

A 
F 

A = A 
I 

A. 
P 

In all cases inputs are designated by negative numbers 



94 

(e.g., Ypf ri£0) and outputs by positive numbers (e.g., 

Yp^O). Intermediate commodities are outputs of certain 

activities, inputs to others, and are not desired in them­

selves so we set yj=0. Thus the elements of the input 

matrix, Ap, will all be nonpositive , those of the output 

matrix of final commodities, Ap, will be non-negative, while 

the coefficients of include both input and output coeffi­

cients and may be positive, negative, or zero. The level of 

each activity chosen, or bundle of basic activities, is 

represented by the non-negative vector x. The model may be 

compactly written as: 

'^F 
• « 

yp > o
 

X = > 0 

A /p. 
> n 
• 4 

(30) 

X, Yp lO, y <_ 0 

Any X which is feasible for b (30) is called attainable and 

defines an attainable bundle of activities. An attainable 

bundle is said to be efficient if no other attainable bundle 

produces as much of every final commodity cind more of at 

least one final commodity. 

Of interest for our purposes is the relation between 

efficient bundles and corresponding systems of prices and 

the use of these price systems for decentralizing decisions. 

Koopmans has shown that a necessary and sufficient condition 

for the efficiency of an attainable bundle is that a price 
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system exists such that the value of the output is equal to 

the value of the inputs, no single activity is profitable, 

the price vector of each of the final commodities, pp, is 

strictly positive, all primary commodities have non-negative 

prices, and primary commodities which are not used to the 

limit of their availability have a zero price. This condi­

tion may be compactly expressed as: 

yp associated with an attainable f31) 
X is efficient if and only 
if there exists a p such 
that: 1. p'y = 0 

2. p'A 0 
3. Pp >0 

4.a. p . ^ 0, all i 
4.b. pP^ = 0, if Ypi>ni. 

Koopmans used the topological properties of convex cones 

to obtain the above result; however, (Charnes and Cooper, 

1961, p. 310) have shown that the result can be obtained by 

using linear programming theory. We will make use of the 

linear programming formulation since it is closely related 

to the analysis used in the remainder of the dissertation. 

The following theorem is found in (Chames and Cooper, 

1961, p. 312). The proof which is short and straightforward 

is not given below. 

The vector yp is efficient if and only if the optimal 

solution to the following problem is zero: 
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min -e'Yp (32) 
subject to 

ApX - Yp =0 

AjX = 0 

ApX - Yp =0 

y? > 

yp-Yp = 

X, Yp 1 0 . 

where e is a vector with the same dimension as y^, and each 
element equal to one. 

A major advantage of this linear programming formulation 

is that the optimal solution to the dual of (32) provides a 

price vector which satisfies the conditions of (31) and which 

can be easily computed. The dual to (32) is given below as 

(33): 

max WpHp+t^fp 

subject to A^up+A|u^+A^up j< 0 (33) 

+tp = 0 

-Up+Wp = 0 

-tp 1 -ep 

W p  > 0 .  

It is not difficult to confirm that if we let Pp=Wp, Pj=Uj, and 

Pp=tF/ then the resulting vector p will satisfy the conditions 

of (31) for the corresponding efficient vector 

Also of interest for our purposes is the problem of the 
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existence of a nonzero efficient bundle of activities. 

Chames and Cooper (1961, p. 313) have shown that questions 

of existence can be einalyzed by use of a regularized linear 

programming model which is closely related to the topic, of 

goal programming. 

By assuming that no activity can produce at a positive 

level without using a nonzero amount of at least one input, 

we are assured that (32) will be bounded from below. If (32) 

is expanded by the vectors e^, e^, and Ep as in (34) below 

then (34) will always have a feasible solution (e.g., yp=Ep, 

yp= £p=n). The fact that (34) is bounded and will always have 

a feasible solution implies that it will always have an 

optimal solution. Furthermore since each element of the 

vector, M, is a so-called "preemptive priority factor" 

the optimal solution will have all e. values equal 
] 

to zero if there exists such a feasible solution. Such a 

solution with all Ej=0 will be feasible and optimal for (32) 

as well. Problem (34) is written as follows; 

min -e'yp+M^Ep+M^Ej+M^Ep 

Subject to ApX-yp +Ep = 0 

AjX +E^ = 0 

ApX -yp +Ep = 0 (34) 

Yp 1 n 

Yp -Yp = 

X, yp,E ^0. 

^°See Ijiri, (1965). 
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Problem (34) is very useful for computational purposes. 

First, if and only if the value of the optimal solution to 

(34) with #p=0 is strictly negative then a nonzero efficient 

point exists and equals the optimal value for Second, 

if the optimal solution for (34) with ^ 0 has e=0, then y^^ 

0 
is efficient where yp is the sum of ̂ p and the optimal value 

for yp. When no feasible solution to (34) exists such that 

e=0 then the optimal values for e immediately indicate minimum 

changes necessary to obtain a feasible solution. 

Problem (34) can also be easily interpreted as a type 

of goal programming. If the vector of final commodities ̂ p 

is considered to be a goal to be obtained then the optimal 

solution to (34) either indicates a bundle of activities which 

will satisfy that goal or indicates a bundle of activities 

which will come "closest," in a certain sense, to satisfying 

that goal. If e=0 the goal can be satisfied; if e^O then 

the optimal values for e indicate the minimum infeasibility 

possible. Specific measures for "closeness" and minimum 

infeasibility are discussed below. ' 

Goal Programming Models 

The discussion immediately following will be directly 

related to the university decision-making model. We will 

consider a number of possible variations for the goal 

^^See (Chames and Cooper, 1961, p. 317). 
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programming approach and point out the close relation 

between these and other types of analysis. The use of goal 

programming and efficient point computations for a linear 

activity analysis model of a university will then be dis­

cussed. Finally a numerical example with "reasonable" 

coefficients for a university department will be outlined and 

corresponding computational results will be given. 

It is possible to set different types of goals and to 

weight or place a priority ordering on the goals. There is 

a very close relationship between the different types of 

goals and the concepts of fixed and variable targets formu­

lated by Tinbergen for quantitative economic planning. The 

priority ordering can be used in cases where a lexicographical 

preference ordering exists or where decisions are to be made 

in a decentralized but hierarchical fashion. There is also 

a close relationship between the goal programming approach 

and the building of consistency models or models which in 

some sense minimize inconsistency or infeasibility. The idea 

of minimizing, in some sense, "organizational slack" will also 

fit into the general goal programming approach. Finally 

with respect to the concept of minimizing inconsistency or 

maximizing slack, different specific measures of the amount 

of deviation may and must be chosen. We will elaborate on 

each of these topics below. Most of the goal programming 

formulations can be found in the book by Ijiri (1965) . 
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We will, in general, identify three different types of 

goals. First, the goal of attaining consistency (i.e., 

satisfying as nearly as possible certain equality or inequality 

relations). Second, the goal of obtaining the largest value 

possible for given outputs or the smallest for inputs. Third, 

the goal of obtaining as nearly as possible a given value 

for certain commodities. Actually the difference between 

the first and third types is a matter of interpretation 

rather than of mathematical formulation. The correspondence 

between the concepts used here and those used by Tinbergen 

12 
(1955; 1956) is very close. For example, the second and 

third type of goal mentioned above correspond very closely 

to the concepts of flexible and fixed targets (Tinbergen, 

1956, p. 8). It should further be noted that the vector, 

x, of activity levels is very similar to the instrument 

variables in a policy model. Tinbergen's concepts of con­

sistency, boundary conditions, and side conditions (Tinbergen, 

1955, p. 15) correspond to the first type of goal cibove. 

While Tinbergen's theory of economic policy is primarily 

directed toward quite aggregative models at the national 

level, there is no reason why a similar approach cannot be 

taken for many public institutions facing economic decisions. 

The following quote from Tinbergen is given in support of 

this view: "In a narrower sense we may restrict the meaning 

^^(Contini, 196 8, p. 5 76). 
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of the term 'economic policy' to the behavior of organized 

groups, such as trade unions, agricultural or industrial 

organizations, etc." (Tinbergen, 1955, p. 1). Most of our 

discussion is in the terminology of goal programming because 

of the somewhat more general mathematical formulation and 

the more direct relation to conputational methods such as. 

linear programming; however, as indicated the approach 

corresponds very closely to that of an important group of 

economists interested in quantitative economic policy. 

Examples of the three types of goals outlined above can 

be given in relation to problem (34). First of all, the goal 

of minimizing M'e, for e>0, is easily seen to be a goal of 

attaining consistency. If e can be forced to zero then the 

relations, Ap=yp, Ap^n, A^x=0, hold, and the relations 

between production activities, commodity vectors, and the 

availability of primary commodities are all consistent. The 

goal of minimizing e^yp corresponds to the second type of 

goal (i.e., a variable target). The third type of goal would 

be represented in (34) by addition of a row constraint, 

yp2+Y*-Y =K with Y^,Y ^0 and =0 and augmenting the 

objective function by: 

min (y"*'+y~) . 

This corresponds to finding a value for yp^ which corresponds 

as nearly as possible to the constant, K, (i.e., a fixed 
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target value, K, for the variable Ypj^) • 

It is very simple to include a weighting system for 

goals, with larger weights for more important goals and vice-

versa. Of special interest is the possibility of using a 

13 
"preemptive priority" weight such as the M vector in 

problem (34). The use of such a priority weight is mathe­

matically equivalent to the linear programming computational 

'phase I' approach used for driving artificial vectors from 

the basis to obtain an initial feasible basis if possible. 

In this case we can give the procedure a meaningful inter­

pretation. The procedure provides a method for solving 

decision problems when the policy-maker has a lexicographic 

preference ordering such that certain goals are of such 

overriding inportance that it is preferred that they be ful­

filled as far as possible before others are even considered. 

This is quite important because, while the lexicographic 

ordering is a very plausible type of preference ordering, 

it is a well known example of a complete preference ordering 

which cannot be represented by a continuous utility 

function.Tinbergen (1956, p. 59) has used this type of 

priority ordering in his distinction between conditional and 

unconditional targets where unconditional targets are those 

l^see (Ijiri, 1965, p. 46). 

14 
See (Koopmans, 195 7, p. 19). 
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which should be fulfilled with the highest priority. Also 

of interest for our purposes is the possibility of using 

preemptive goals as a device for effective decentralization 

in an economic system with a hierarchical decision structure. 

For example, the highest level decision-makers' goals must 

be fulfilled, as nearly as possible, and only then are the 

goals of lower level de ci s ion-makers considered. We 

essentially follow Chames, Glower, and Kortanek (1967) 

in this approach and will consider it in more detail below 

with respect to the university decision-making model. 

The first type of goal indicated above was that of ob­

taining consistency. It is not uncommon to find a sharp 

distinction being made between consistency and optimization 

models. The comment that it is so difficult to build a 

reliable consistency model for a given economic system that 

it is not practical to attempt optimization is not uncommon. 

Consistency between interrelated variables is very important 

for a useful planning model and when, as is usually the case, 

a certain amount of uncertainty is involved in the parameters 

of the model, then consistency is not easily attained. We 

suggest that the problem should still be considered an 

optimization problem with a goal of the first type (i.e., a 

goal of minimizing inconsistency or of maximizing redundancy 

so that reliability may be increased in cases where un­

certainty is involved). References are common mentioning 
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goals for organizations or firms of maintaining excess or 

redundant resources in the face of uncertainty or of the 

need for "organizational slack" (Cyert and March, 196 3, p. 

36) . Contini (1968) has outlined a stochastic approach to 

goal programming which can be applied when it is known that 

the goals are related to the decision variables through a 

system involving normally distributed random errors. The 

object is to choose the decision or instrument variables 

such that the probability of the resulting vector of goals 

or targets lying in a specified region is maximized. The 

problem can be written as a quadratic programming problem so 

computation is possible. 

The question of how to measure the degree of inconsistency 

or amount of deviation from goals is not immediately obvious 

nor is the answer unique. In practice one of two norms is 

usually chosen, so that the problem is that of minimizing 

some function of absolute or squared deviations. Both norms 

are closely related to statistical estimation procedures — 

the first to the Chebyshev approximation, the second to least 

squares estimation. The norm chosen will be important with 

respect to the computational methods which can be applied. 

When absolute deviations are chosen the problem may be computed 

by linear programming methods while use of squared deviations 

will, if Lagrange multiplier techniques cannot be easily 

applied, require either the use of quadratic programming or 
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the use of generalized inverses (Ijiri, 1965, p. 30). 

It is of interest for us to examine more closely the 

use of linear programming methods to solve problems when 

absolute deviations are to be considered. Specifically we 

will compare Zukhovitskiy and Avdeyeva* s (1966, Chapter 5) 

Chebyshev approximation problem for an inconsistent system 

of linear equations and the goal programming approach of 

Chames and Cooper (1961, p. 215), and Ijiri (1965). Two 

differences may immediately be mentioned: First, while the 

criterion of minimizing a weighted sum of the absolute devia­

tions is considered in both cases, only the former authors 

consider the actual Chebyshev problem of minimizing 

the maximum absolute deviation or inconsistency. Secondly, 

in both cases the problem of minimizing the weighted sum of 

absolute deviations is shown to be equivalent to a linear 

program but the former authors augment the system of equations 

by defining one new variable per equation and replacing each 

equation by two inequalities. The latter authors define two 

new variables per equation and add the side condition that if 

one of the pair of variables is positive then the other must 

be zero. The following examples should help to clarify the 

close relation of the two approaches as well as the minor 

differences. 

Take for example the following set of equations and in­

equalities with ̂  and n vectors of constants: 
r 
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ApX = :?p (35) 

ApX > n 

x ̂  0 . 

Suppose that no value for x exists such that the system can 

be satisfied but it is desired to find a solution such that 

the sum of absolute deviation of ApX from ^p is a minimum. 

Then the usual approach in goal programming would be to ob­

tain the desired answer by solving the following problem: 

min e^e^+epC~ 

subject to ApX + le^ - le -

ApX > n 

+ • e e =0 

X,E^,E" ̂  0 . 

Strictly speaking, this is not a linear programming problem 

4- t __ 
because of the nonlinear side condition e e =0; however, 

if the remainder of the problem is solved by a usual simplex 

routine which always maintains a basic solution then the non­

linear condition will be maintained also. This is so because 

the vector involving is a linear combination of the vector 

involving and thus both vectors cannot be in the same 

basis. The optimal value x^ would minimize the sum of absolute 

deviations of Yp-^p where yp=ApX^ and the difference between 

— "i" 
the vectors e and e would equal the deviations (i.e.. 
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Ziokhovitskiy and Avdeyeva (1966, Chapter 5) would use 

the following linear program to obtain the desired solution: 

». min e e 

subject to ApX + le^ ̂  (36) 

-ApX + 1 -9p 

ApX > n 

+ 
x, e >0 . 

Thus while (35) adds two columns per equation, (36) adds one 

variable and row per equation but does not require the non-

4* ' ~ + 
linear condition e e =0. In this case e would give the 

absolute deviation, Yp-^p. 

The problem of minimizing the maximum absolute deviation 

can be obtained from the linear program (37) which is very 

similar to (36) but smaller in that only a single variable, 

Ej^/ need be added rather than a vector of new variables 

(Zukhovitskiy and Avdeyeva, 1966): 

min (37) 

subject to ApX + >_ where is a vector with the same 
, variable, E,+, for every element. 

-ApX + e >-^p 

ApX ^ n 

x, ^0 

The optimal value for E^^ will give the maximum absolute 

deviation. 
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Thus if a vector of desired final commodities, yp, 

which was not attainable were proposed by a policy-maker 

then any of the last three linear programming problems out­

lined could be used to find the vector of activities which 

would come "closest" in a certain sense to producing the 

desired commodities. The solution would also show the devia­

tions from the desired values. 

Computation of Efficient 
Output Vectors 

One procedure for using a model of the type which will 

be outlined in Chapter V to aid in university decision-making 

would be to compute all efficient points for the model and 

then present these to the decision-maker as alternative 

choices. For a linear activity analysis model the set of 

efficient points can be represented as convex combinations 

of a finite number of efficient extreme points. Chames and 

Cooper (1961, p. 30 8) have outlined a computational method 

for computing all efficient extreme points. An attempt was 

made to apply this method to the numerical model in Chapter 

V but was abandoned in favor of a procedure less ambitious 

computationally but hopefully more promising for the purpose 

here. 

There were two reasons for abandoning the attempt to 

compute all efficient extreme points. First, even for the 

small aggregated type of illustrative model in Chapter V it soon 
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became obvious that the number of efficient extreme points 

would be quite large. Over 80 different efficient extreme 

points were actually computed for this small model. A 

large number of efficient extreme points would make it diffi­

cult to present the set of efficient points in a manner 

easily comprehensible to the decision-maker. Furthermore, 

since only a small subset of the efficient points are likely 

to be actively considered as alternative choices, the compu­

tation of all those efficient extreme points which do not 

receive active consideration represents wasted computational 

expense. 

The second reason that the attempt to compute all 

efficient points was abandoned involved difficulties with 

the method itself^^ and lack of an adequate computer routine. 

The alternative procedure is to compute all efficient 

points adjacent to a particular efficient extreme point 

which is "close" to the desires of the decision-maker and 

which has been previously obtained by a goal programming 

problem. The mathematical procedure for computing all 

efficient extreme points adjacent to a given point will be 

outlined below; the rationale for such a procedure will be 

discussed in Chapter V, along with numerical computations 

indicating how the procedure would be initiated. 

The basic model used for computing efficient points is 

^^See (Gruver, 1970). 
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structured as the one in Chames and Cooper (1961, p. 309): 

max c^Yp 

subject to ApX - lYp =0 (38) 

AjX = 0 

-Ap* i-ip 

x>0, Cy>0 . 

The vector, is an efficient point if and only if there 

exists a positive vector, c^^, such that the vector, Yp^, 

is the optimal solution of (38). Suppose that it has been 

determined that y^^ is efficient and it is desired to com­

pute all efficient points adjacent to y_^. Let A be the 
0 16 

matrix for (38) including slack vectors; let, B , be the 

matrix of those vectors forming the optimal basis for, y^^, 

and the associated x^. Let the vector c'=[c^|c^|c^] such that 

c^, Cy, and c^ correspond respectively to the x, yp, and slack 

columns of A. Note that c^=0 and Cg=0. Adjacent extreme 

points can be obtained by exchanging a nonbasic vector, a^, 

for basic vector, a^^, in the optimal tableau. However, the 

adjacent extreme point will be efficient if and only if there 

exists a Cyl>0 such that the yp^ resulting from the new basis 

would be an optimal solution to (38). More specifically, 

there must exist a vector Cy^>0 such that all the 

l^To simplify the initial discussion assume that the 
basis matrix, B", corresponding to y^O is unique. This 
assunption will be relaxed below. 
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Zj -cj values for nonbasic columns remain non-negative 

except for the value of that vector which is to enter 

the basis; it must be zero. It is not always simple to deter­

mine whether or not such a vector Cy^>0 exists for a 

particular nonbasic vector; that is, to determine whether 

the adjacent extreme point produced by bringing that vector 

into the basis will in fact be efficient. Summarizing the 

above statements more compactly we can say: 

Let , x^, be an optimal solution to (38) with 

indicating the matrix of basis vectors in the optimal 

solution and where c^=c^^>0 and c^=0; Cg=0. Let y^^ be 

obtained by bringing into the basis, the vector, 

a^, and choosing in the usual manner the vector, a^, 

to be dropped. Then y^^ will be adjacent to yp^ and will 

be efficient if and only if there exists a price vector 

c^=c^+(fi f such that c "^>0, c„^=0, c_^=0, and the scalar 
c y X s 

, 0 0  „  0  0  
\ . i (J) = - — mm - 4—-—i 

where 

jeJ if fgB°'^aj-fj < 0 

and where the vector f=[0|fy|0] with the sub vector f^ specify­

ing the relative changes in c . f„ is the vector of elements y •o 

from f corresponding to basis vectors; f^ is the jth element 

of f while aj is the jth column of A . 
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Proof: and yp^ are adjacent extreme points because when 

a new basic feasible solution is obtained by changing one 

vector according to the usual rule for picking the vector to 

leave then this is equivalent to moving along an edge of 

the convex set from the extreme point corresponding to the 

original basis to an adjacent extreme point corresponding 

to the new basis (Hadley, 1962, p. 165). 

First we will show that existence of a price vector c^ 

implies that yp^ is efficient. We will show .what the 

Zj*-Cj* values would be for basis and vector c^, (Hadley, 

1962, p. 380): 

Zj"*"-Cj''=(cB°+<^cfB)B°"V-Cj°-4.cfj=Zj°-Cj°+<|>c(fBB°-^a.-fj) 

where c„^ is the vector of c.'s corresponding to basis 
® ] 

vectors. Substituting in for we get 

1 0, jT̂ k . 

Next we will note how the values change when the 

vector, a^, is brought into the basis, (Hadley, 1962, p. 110): 

A  + + + + ^^Lj /_+ + .  +  +  T i -
S. -o. .Zj -Cj - ̂  -o^ ) = Zj -c. , all J 

since 
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The scalar and x^ are elements of the existing 

tableau. 

Thus all of the nonbasic vectors have 2. -c.^0; the new 

+ ^ 1 
basis is optimal for c=c and therefore is efficient. 

Now we will show that if y^^ is efficient then there 

exists a c^. If y^^ is efficient then there exists a vector 

c^ with sub vectors, Cy^>0, c^^=0, and Cg^=0, such that y^^ is 

an optimal solution to (38). Suppose c^=Xc^+(1-X)c^/ 

0 ^ X 1. From the optimality conditions we have 

Cg^B^ ^aj-Cj^ ^ 0, all j 

Cg^B^ ^aj-Cj^^O, and 

Let 

-(Xc'+d-Xjo^) , 

then for X = 0 ,  ^  0/ 

+ + 
and for X=l, -c^ 0. 

+ + 
Since -Cj^ can be written as a linear function of X, the 

above inequalities imply that there exists O^X^^l such that 

z^^-c^^=0. By a similar argument Zj^-Cj^^O for O^X^l, and 

j^k. Then c^=X^c^+(1-X^)c^ is the c^ vector required. The 

elements of c^^ are strictly positive since X is non-negative 
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and and are strictly positive; similarly c^^=0 and 

Cg^=0. If fy is set equal to Cy^-Cy^, then will equal 1 

at the minimum over je J since 

, _ 'k°-°lc° 1 

( ) -(=k°-Gk°) 

and for j^k, Zj -Cj >0, thus: 

_ 

' (C +-CBO)B°-Ia.-(0.+-C.) -(z.°-o.°)+(z.+-c +|- *=' 
o  a  ]  ]  J  ]  ]  3  3  

Therefore if y^^ is efficient then there does exist a c^ 

defined as above. 

From the above proof it is clear that if the required c^ 

can be obtained then the new adjacent extreme point will be 

efficient. We will present three methods for finding the 

required c^. 

Case 1. If the nonbasic vector, a^, which is to enter 

is a vector corresponding to a yp variable then the re­

quired c^ is easily obtained by letting f^=z^^-c^^ and 

f .=0 for jj^k. Then (p becomes: 
J c 

2 °-C ° 

*c= • —7—5—57= 
OB a^-(z^ -Ck ) ^ ^ 
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and 

Cj*=Cj^+(l)fj = Cj^, j 7^ k 

0 . , = # ] = k. 

Case 2. If all the vectors corresponding to 

variables are in the basis then it may be possible to 

find a c^ which will bring in a nonbasic vector aj^ 

by analyzing the effect of varying one of the c^^ 

elements while holding the others unchanged. That is, 

set f.*=l, where c.* corresponds to a yp variable in 

0 * 
the basis, B , and set f.=0, . Then finding <|) 

J G 

and which vector will enter simplifies to computing the 

minimum of a series of quotients of values already 

available in the tableau. Since f.=0, for j^j*: 

4) = - = min - —J , where jeJ if x.*. < 0, 
^ *]*k jeJ *]*] ] ] 

X.*. = B9*^a. cind where is the row of B^ ^ 
]*] ]* ] ]* 

corresponding to j*. 

Then c^=c^+(()^f will bring a^^ into the new basis. By 

letting fj*=-l and following the same procedure it is 

possible to determine which a^ will be first to come 

0 . 
into the basis when c.* is decreased rather than in-

] 

creased. 

After exhausting the information provided by the above 

two cases there will be a certain set of the nonbasic vectors 
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for which a c^ has been found implying that the entrance of 

that vector into the existing basis will lead to an efficient 

extreme point. There will usually be a number of nonbasic 

vectors, however, for which a c^ has not yet been found. 

In general, of course, the required c^ will not exist for all 

nonbasic vectors, but if all efficient extreme points adjacent 

to yp^ are to be confuted then it is imperative that we 

determine for each and every nonbasic vector whether or not 

+ 
such a c does exist. The procedure in case 3 provides the 

needed information. It is much more involved computationally 

but only need be applied to nonbasic vectors for which a c 

has not been obtained by the procedures in case 1 or case 2. 

Case 3. To determine whether a c^ exists for a 

specific nonbasic vector, a^^, we can solve the follow­

ing linear programming problem: 

min Cg' (B°~^aj^)-Cj^ 
C  Q  ̂  T  

subject to Cg' (B aj)-Cj _> 0, all j including k 

Cy'I 11 

^X=°' =9=0 • 

If the objective function equals zero at the optimum 

then the optimal c is the required c^ vector and thus bring­

ing in the vector a^^ will lead to an efficient adjacent 

extreme point. If the objective function is strictly 

positive at the optimum, then c^ does not exist and bringing 

in the vector a^^ will lead to an adjacent point which will 
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not be efficient. 

It can easily be shown that when the objective function 

is zero the optimal c satisfies the conditions for c^ by 

letting *^=1 and &=c-c^. Then 

_ . 'k°-°lc° , 

and 1 is the minimum over jeJ since for j^k 

-(Zj^-C^^) 

-(Zj°-Cj°)+CBB°"^a.-c. -

A separate optimal solution must be computed each time 

an aj vector is checked for the existence of a c^; however, 

only the objective function varies from one problem to the 

next. The original c^ provides an initial feasible solution 

and each successive optimal c will be feasible so that 

iterations for new objective function values can always begin 

from the existing basis. The linear program will have a 

lower bound for each c^ element plus as many rows as there 

were nonbasic vectors in the original problem. Any rows 

which are strictly non-negative can be dropped. 

When the assumption that the basis matrix corresponding 

to yp^ is unique is relaxed, then the process becomes some­

what more involved. Nonuniqueness of the basis may 

be recognized in two ways. First, if there exists a zy-Cj 
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value equal to zero for nonbasic vectors, then bringing in 

that vector will result in the usual alternative optimal 

solution. If this alternative optimal solution changes 

the Yp vector from yp^ then an adjacent efficient extreme 

point has been reached. However, if the new y^ vector is 

not changed from y^^ and only Xj variables change then a new 

representation of the same efficient vector, yp^,has been 

obtained and a new matrix of basis vectors corresponding to 

yp^ has been obtained. 

A second way of recognizing nonuniqueness of the basis 

matrix corresponding to yp^ arises when degeneracy exists, 

since even when Zj-Cj>0 it may be possible to bring the 

vector into the basis at a zero level and obtain a different 

representation and different basis matrix corresponding to -

It will be possible to bring in the vector a^ at the zero 

level if the ith element of the vector ^a^ is not equal to 

zero where i corresponds to a basic variable equal to zero 

for the basis . The above cases are closely related to 

the discussion of determining all optimal solutions in Hadley 

(1962 , p. 166-167). 

It is possible for more than one basis matrix to 

correspond to a particular vector of final outputs, Yp^. There­

fore, to find all efficient vectors adjacent to yp^ it is 

necessary to take each nonbasic vector corresponding to each 

alternative basis and check for the existence of a c^ 
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satisfying the definition given above. Only when all non-

basic vectors corresponding to each alternative basis have 

been checked can we be certain that we have located all 

adjacent efficient extreme points. It is obvious that the 

existence of alternative basis matrices rapidly increases 

the necessary computations. 

We can summarize the procedure outlined above as follows. 

First, pick a desired vector of final outputs. Second, run 

a goal program to obtain the efficient (and therefore feasible) 

point "closest" to the desired values. Then coirpute all 

efficient points adjacent to the efficient point y^^ obtained. 

To obtain all efficient adjacent points follow the three 

steps below. 

Step 1. Find for each nonbasic vector if the required 

c^ exists. Use the procedures of case 1 and case 2 

given above where possible. Use the case 3 procedure 

for all other nonbasic vectors. 

Step 2. Compute the new solutions using the c^ 

vectors obtained in step 1. If y^® changes, an adjacent 

efficient extreme yp has been obtained. If y^^ does 

not change, an alternative basis matrix has been obtained 

and step 1 must be completed for this alternative basis. 

Step 3. Check each alternative basis to see if, due to 

degeneracy, it is possible to find new alternative bases. 

If so, then step 1 must be completed for each of these 
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alternative bases. 

When it is not possible to find any new alternative basis 

matrices and when all nonbasic vectors for each existing 

alternate basis matrix has been checked for the existence 

a c^ then all adjacent efficient extreme points have been 

obtained. 
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CHAPTER V. AN APPROACH TO EFFICIENT 

DECISION-MAKING IN A UNIVERSITY 

Education in general and specifically the graduates and 

knowledge produced by the university have become increasingly 

important elements of our social and economic system. The in­

creasing proportion of the population and of the public 

budget directly committed to the educational process has 

made imperative the need for a close analysis of the effi­

ciency of the educational process and of its present and 

future effect on the remainder of the economic system. 

Actually the amount of work which has been done in the 

last few years on the general subject of the economics of 

education has been quite significant. Blaug (1968, p. 8) 

has delineated two general classes into which this work may 

be placed. The first "analyses the economic value of 

education" and "is concerned with the impact of schooling 

on labor productivity, occupational mobility,and the 

distribution of income." The second "analyses the economic 

aspects of educational systems" and "deals with the internal 

efficiency of schools and with the relations between the 

costs of education and methods of financing, these costs," 

Blaug's (1968) book gives important examples of papers 

falling in the first class. The subject matter of this 

chapter falls in the second class and is specifically con-
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cemed with developing analytical techniques which could 

aid decision-meUcers in increasing the internal efficiency of 

their university. People from a number of different 

disciplines such as management science, operations research, 

systems analysis, and economics have worked on the problem or 

closely related problems (Keeney, Koenig, and Zemach, 

1967; Judy, 1969; Weathersby, 1967; Sengupta emd Fox, 1970) . 

The approach taken in this chapter is very much in the 

tradition of other activity analysis type models for uni­

versity planning investigated by Fox, McCamley, and Plessner 

(196 7) and Plessner, Fox, and Sanyal (196 8). The model con­

sidered here will be an attempt to generalize the types of 

objectives or goals to be optimized and to discuss the 

possibility of a meaningful link of the university with the 

remainder of the economy through the input vector. While the 

discussion will be only with respect to a university system we 

believe that the general approach could be used to aid 

decision-making in many nonmarket institutions. 

We will first identify the environment in which a 

university operates as well as the structural characteristics 

and objectives of the university itself which are important 

for our analysis. Once we have identified these character­

istics we will formulate a model which closely approximates 

these characteristics and a methodology of using the model to 

make efficient decisions within the university. We will 
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formulate a department level numerical model and present 

confutational results. Finally we will discuss inadequacies 

of the model and the possibility of extending the model so 

that stochastic and dynamic elements could be considered. 

The University Environment 
and Structure 

A public university is constrained by or linked to the 

larger economic-political system in a number of important 

ways. Most of the links found between a multiproduct firm 

and the larger economic system have counterparts in the links 

between a university and the larger economic system. The 

public university, however, has other important links which 

affect its objectives and feasible actions. If not given 

precise directives, the public university is at least con­

strained by the political authority (e.g., the state legis­

lature) in matters such as the setting of tuition levels, 

the introduction of new programs or the cancellation of 

existing ones, the addition of new faculty or physical plant, 

the size of the operating budget, and even in setting the 

number of students to be admitted. Thus decisions related 

to pricing policy, product mix, capital expenditure, and 

level of operation are much more constrained for the university 

decision-maker than for his counterpart in the multiproduct 

firm. The political authorities can be considered as higher 

level decision-makers and one purpose of a university decision 
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model should be to aid decision-making at this level. 

Outputs of the University 

Even more important than the constraints inç)osed by the 

political system on feasible actions, however, is the diffi­

culty of evaluating the outputs of a university. As will be 

discussed below, the inputs of a university can be measured 

by market values, but the situation is apparently not so 

simple in the case of outputs since a well defined market 

does not exist. For the multiproduct firm a system of 

prices is available for evaluating the output link between 

the firm and the remainder of the econory. Such a set of 

prices .is not directly available for university outputs. 

Thus the vector maximization problem, which was the subject 

of the last chapter, must be faced. Either a suitable set 

of prices or relative weights must be estimated, or an 

approach must be followed which does not require that explicit 

relative weights be obtained. 

In a very broad or aggregative sense we can view the 

outputs of the university as falling into one of two classes. 

The production of "educated" persons or of skilled or trained 

manpower is one output class. The production of new knowledge 

resulting from the increasingly important research activities 

undertaken in the university is the second output class. 

These two outputs, educated persons and new knowledge, are 
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used here in a broad sense and include such often mentioned 

functions of the university as extension work and service 

to the community. 

With respect to the general output of educated persons 

we believe that it is possible, with some reservations, to 

define meaningful measures of output and to estimate a system 

of prices or relative weights which, at least for some pur­

poses, are useful. With respect to the output of new knowledge 

we believe that the problem of measurement and relative 

valuation is inherently more difficult. 

The university maintains an extensive record system of 

course units, credit hours, and grades for each student for 

the purpose of measuring the type, quantity, and quality of 

"education" obtained by each student. While it is not diffi­

cult to criticize this system of measurement, it is easily 

argued that an output index using the system is as reason­

able as many other output indexes of quite heterogeneous 

products which are found to be useful. 

A significant cimount of work has been done with respect 

to estimating the value of educated manpower. This work 

falls into Blaug's class which is concerned with analyzing 

the economic value of education. The results of this work 

' provide the university decision-maker with a partial answer 

to the problem of evaluating the effect of the output of 

educated manpower on the larger system. Two different 



126 

approaches have been followed and we will discuss examples of 

each as well as the usefulness of the results for a uni­

versity decision-maker. There does, of course, exist a 

market for the services of educated manpower. The two dif­

ferent approaches will be discussed with respect to their 

different implicit assumptions about the shape of the demand 

curve in this market. We will refer to the first as the 

rate-of-return approach and the second as the manpower 

planning approach (for a related discussion see Anderson 

and Bowman, 196 8). 

The general idea of the rate-of-return approach is to 

estimate the increase in lifetime earnings (which is assumed 

to be closely related to productivity) due to education and 

express these earnings as a rate-of-return on investment in 

education (Schultz, 1968). Such calculations can be made 

for national average data or much more specific situations 

such as for graduates from a particular university in a 

particular discipline (Craft and Kaldor, 1968). The concept 

can either be used to determine a social rate-of-return or a 

rate-of-return to the particular graduate by using either 

social costs and benefits (e.g., public subsidies to education 

would be included in costs and before-tax earnings in 

benefits) or those costs and benefits relative to the indi­

vidual. Rather than computing the rate-of-return or cost, it 

may be of interest to compute the discounted present value 
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of increased benefits due to education. In any case, for the 

results to be meaningful, an accurate forecast of the salary 

structure over the relevant time period must be made. Usually 

it is assumed that the salary structure will remain virtually 

constant into the relevant future. To use such calculations 

for decision purposes one must assume that increases in 

educated manpower will not affect the structure of the salary 

system. In other words, the assumption of a nearly hori­

zontal demand schedule must be implicitly made. 

The manpower planning approach begins by forecasting the 

number of persons with specific types of training which will 

be "needed" in the economy over a certain time period. 

The assumption is made that if that number is not met there 

will be a shortage; if it is more than met there will be 

an excess of manpower. In other words the demand schedule 

is quite steep and the salary structure sticky. 

The choice between the rate-of-retum and manpower type 

approach could apparently be made on empirical grounds and is 

closely related to the amount of substitutability which 

exists between persons with different training. Arrow and 

Capron (1968) have discussed the operation of the market 

for scientists and engineers and have concluded that the 

market does react to allocate in the short run cind modify 

the supply in the long run. 
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The university can view its role as that of directly 

supplying the demand for the services of educated manpower. 

The university is not a supplier for this market in the usual 

sense of the term since it does not receive payment directly 

for the services of its graduates. The flow of educated 

manpower from a particular university must be viewed as 

adding to the body of educated manpower (i.e., increasing 

the stock of human capital) which supplies services to a 

market which for most purposes must be considered at least 

national in scope. Thus the decisions of a single uni­

versity will have, at most, a small effect on the market. 

If the university decision-maker uses the results of 

rate-of-return and manpower planning studies and expands 

those programs corresponding to high rates-of-return or high 

manpower needs we would think that he would be contributing 

to an adjustment process. However, such decentralized 

action by all universities will not insure that the aggregate 

adjustment will not be either too large or small. In the 

one case an accurate feedback of information concerning 

adjustments in the rate-of-return would be required, in the 

second a centralized informational system which aggregated 

the plans of all relevant institutions. 

The university can, alternatively, view its role as 

that of supplying instructional services directly to students 

who desire those services as a consumption good or as an 
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investment in their own human capital. In practice the 

instructional services supplied by most universities are 

heavily subsidized with the price paid directly by students 

usually accounting for less than one-half the cost. A 

market does exist for instructional services but since these 

services are quite differentiated by factors such as geo­

graphical location and real and perceived differences in 

quality a rather wide range of tuition rates (i.e., prices) 

can and do exist. This leaves open the possibility of using 

tuition as an instrument variable, at least within a certain 

range. In general, tuition charges are not differentiated, 

within the university, according to course of study (even 

though the cost of instruction in, say, science is much 

more than in the humanities (see Weathersby, 196 7). A 

certain amount of tuition differentiation does take place 

through the granting of scholarships and other forms of 

student aid. Jenny (196 8) has noted that the granting of 

student aid amounts to a type of price discrimination. 

Some knowledge of the shape of the demand schedule for 

instructional services would appear to be necessary if 

tuition rates and student aid are to be used as instrument 

or control variables. The need for such information is 

especially important in most private institutions (e.g., 

see Jenny, p. 2 75, for a discussion concerning the shape of 

such a demand schedule for small private colleges). 
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As we indicated above we believe that the research work 

just discussed provides a partial answer to the problem of 

evaluating the effect on the larger economic system of the 

university's output of educated manpower. We believe that 

the problem is only partially answered for at least two 

importcint reasons. The first involves the consumption aspect 

of education; the second concerns the presence of external­

ities . 

The university decision-maker can use the results of 

rate-of-retum analysis to place relative values on different 

instructional activities or he may use the results of man­

power analysis research to set fixed goals for certain out­

puts. These criteria, however, are related almost solely 

to the effect of education on human capital or productivity; 

the consumption component of education, which must be rela­

tively significant, is not even considered. If students 

are free to purchase alternative instructional services, 

their consumption preferences as well as their choice of 

investment in human capital should be revealed. While the 

information about future salary levels necessary to make 

optimal investment decisions may not be available to students, 

there would not appear to be any major informational problem 

with respect to consumption choices. The importance of the 

consumption component then would appear to be an argument in 

favor of the university viewing its role as that of supplying 
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instructional services directly to students. For at least 

two reasons, however, this university role is too narrow. 

The first reason is that it is difficult for students 

to obtain good information with respect to forecasts of 

the future salary structure. The second involves the 

importance of externalities present in the educational 

process (Bowen, 1968, p. 85). A good case can be made for 

the importance of external effects both in the productive 

and consumption effects of education. The productivity of 

highly trained persons must be increased by the possibility 

of communicating ideas with others possessing similar or 

supporting training so that the productivity of the group 

is greater than the sum of individuals working separately. 

Observe that research personnel often work in teams. The 

level and type of education possessed by a given individual 

must enter the utility function of many other individuals 

as well. For example, in a democratic society a more in­

formed electorate should enter positively in almost 

everyone's utility function. 

As is well known the presence of externalities often 

interferes with the efficient operation of market mechanisms. 

The presence of externalities does not preclude the effi­

cient operation as Arrow (1969 , p. 57) has shown that by a 

"reinterpretation of the commodity space, externalities can 

be regarded as ordinary commodities, and all the formal 
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theory of competitive equilibrium is valid, including its 

optimality." However, as Arrow points out, the presence 

of externalities is often associated with two other factors 

which adversely affect the functioning of the market. The 

first is the problem of appropriability or the problem of 

exclusion; the second is the problem of a small number of 

buyers and sellers. 

It is difficult to imagine the possibility of excluding 

certain persons from the benefits due to the consumption of 

education by others. While exclusion may be more realistic 

with respect to productive externalities the number involved 

in the transaction is likely to be small and the cost of 

negotiating a price high. As Arrow (1969 , p. 58) has noted: 

"If in addition the costs of bargaining are high, then it 

may be most efficient to offer the service free." 

We can make the following conclusions concerning our 

discussion of evaluating the university's output of educated 

manpower. Use of a set of relative values from a rate-of-

return type analysis or a set of output targets from a man­

power planning analysis does not insure a correct aggregate 

adjustment if each university follows such a policy inde­

pendently. Even more important such analysis disregards the 

iirportance of the consumption congonent of education. While 

the free choice of students in purchases of instruction 

should reveal consumption preferences accurately, lack of 
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information probably precludes optimal investment in their 

human capital. Finally the difficulties due to the presence 

of externalities in education (Weisbrod, 1964) indicate that 

the market cannot be expected to operate optimally. Thus 

we feel that such a criterion for evaluating the output of 

educated manpower provides important guidelines but probably 

should not completely dominate the preferences of well in­

formed responsible university policy-makers. 

As was stated above, the measurement and valuation of 

new knowledge, the second broad class of university output, 

is apparently inherently more difficult than that of edu­

cated manpower. Research has become an increasingly important 

activity in the university and in the economy in general. 

Questions concerning the importance of research, the level 

at which research activities should be supported, and the 

method of choosing between alternative projects have received 

significant attention in the literature (Smith, 1965). 

We will discuss two inherent properties of research and 

new knowledge which indicate that a market mechanism cannot 

be relied upon to allocate an optimal budget to research 

activities or to efficiently allocate the benefits of 

new knowledge. Most important is the fact that knowledge 

fits almost exactly the definition of a collective or public 

good (i.e., a good having the property that its use by one 

individual does not decrease the amount available for use by 
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others). Leon tie f (1960 , p. 4) has very explicitly noted 

this property of knowledge: 

Not only can the same person make use of an idea, 
of some specific piece of technical information, 
over and over again without the slightest danger of 
exhausting it through wear, but the same idea can 
serve many users simultaneously, and as the number 
of customers increases, no one need be getting less 
of it because the others are getting more. 

It is well known that decentralized market mechanisms break 

down in the presence of public goods. For example, Samuel s on 

(1954, p. 388) has indicated the impossibility of devising 

a decentralized pricing system which will optimally determine 

levels of collective consumption. 

The second important fact is that research activities 

by their very nature involve a high degree of uncertainty. 

Arrow (1969, p. 54) has noted that uncertainty is closely 

related to the costliness of information necessary for 

participation in a market. Obtaining information of even a 

probabilistic nature with respect to the outcome of many 

research projects will be exceedingly costly. The costliness 

of information will inhibit the operation of a market 

mechanism. 

The above comments are not meant to indicate that re­

search must be undertaken blindly, but that attempting to 

institute or define a market mechanism for optimal budget 

allocation to research, or between research projects, does 

not appear to be a fruitful exercise. Because of the special 
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nature of research, we feel that a preference ordering result­

ing from the interaction of policy-makers who, in some 

general sense reflect society's desires and of researchers 

with the best information concerning the probable results 

of various projects is likely to be a better allocation 

criterion than any type of market prices. 

The production of masters theses and doctoral disserta­

tions apparently has elements of both production of new 

knowledge and educating manpower. Added difficulties are 

involved in attempting to evaluate outputs in such cases of 

joint production. 

We conclude that the output linkage between the univer­

sity and the larger economic system in very difficult to 

evaluate suitably. It is possible to obtain rough estimates 

of the contribution to national income of students who 

graduate. It should be of interest to have a decision-mo del 

which could provide the solution which would maximize this 

contribution. However, such an objective is apparently much 

too narrow to be prescribed in general and a de ci s ion-model 

should be flexible enough to provide solutions for a broader 

range of objectives. No set of prices or weights is directly 

available nor apparently possible to estimate from market 

data, such that production of new knowledge and the consunp-

tion component of instruction as well as the productive 

contribution of graduates are satisfactorily commeasurable. 

i 
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Thus the vector maximization problem of Chapter IV is 

present. A decision-model flexible enough to provide 

solutions which meet as closely as possible multiple goals 

set by the policy-maker or which can provide the policy­

maker with a subset of efficient combinations from which to 

choose should be useful in pursuing a broad range of 

objectives. 

Inputs of the University 

Measurement and evaluation of input links between the 

university system and the larger economic system is much more 

straightforward than for output links. The university like 

a firm buys goods and services through the market system. 

It purchases new physical plant capacity, supplies, and labor 

services through the same markets as many multiproduct firms. 

In the market for faculty personnel the university conpetes 

with many private firms as well as other universities. 

Student time used in the learning process must be con­

sidered an input for most purposes. Even it, however, can 

be treated as an opportunity cost measured by potential 

earnings in the labor market. T. W. Schultz (1968, p. 25) 

says that for the United States "well over half of the costs 

of higher education consists of income foregone by students." 

For decision-making purposes the physical plant and the 

faculty (due to tenure and institutional hiring practices) must 
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be considered relatively fixed in the short run and essential­

ly involve questions of capacity expansion. The inputs of 

basic supplies, secretarial and computational services and 

to a large extent the input of student time are more short 

run decisions. 

The Decentralized Structure 
of Decisions 

The fact that certain university goals and constraints 

are set outside the university by higher level political 

authorities was discussed above. The decision structure 

within the university itself involves a large degree of de­

centralization. The typical university is composed of 

colleges which are themselves decoirposed into departments 

corresponding to disciplines of study. This type of decision 

structure has not gone un cri ti ci zed; see, for example, Ackoff 

(1968) , but much can be said in its defense and its pre­

valence in practice cannot be denied. At each level of the 

hierarchical structure is a decision-maker whose decisions 

are closely related to the type of knowledge he possesses. 

The president must possess general knowledge about the whole 

university, the dean about his school, and department head 

detailed and specific knowledge about his department. The 

de ci s ion-maker at each level has the responsibility of making 

"good" decisions given his knowledge and directives from 

higher level de cis ion-makers. 
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This type of multilevel, multigoal structure has been 

outlined in Sengupta and Fox, (1970, p. 98) and in the follow­

ing quotation from Plessner, Fox, and Sanyal (1968, p. 256): 

The university president is thus a multiple-goal deci­
sion maker. Between the president and the department 
chairman there may be a number of administrators, such 
as the vice-president for research, the dean of the 
graduate college, and the director of the extension ser­
vice, each of whom contributes to only one of the 
president's goals. Their actions impose constraints on 
the department chairman whose decisions must take 
cognizance of several of the presidential goals. 

The directives from higher level decision-makers may be 

in the form of quotas of inputs and outputs or may be a pricing 

system which indicates how specific inputs and outputs are to 

be valued. The type of process described above is very similar 

to the usual characterization of a decentralized multi-

divisional firm. 

Decentralization in the university, however, not only 

involves decisions concerning the best way to fulfill given 

goals from higher levels, it also involves the actual setting 

of goals at lower levels. Decisions about what should be 

taught in a given course and which courses should be offered 

(i.e., which ideas and bits of knowledge have the "highest 

value") usually are departmental level decisions. Decisions 

concerning the mix of courses which should be included in a 

given major area of study are made at the departmental or 

college level. 

In a decentralized firm each output can usually be 

closely identified with the revenue it generates for the firm 
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and thus it is relatively easy to collapse the overall 

objective into a scalar value in terms of money. While it 

may be possible to roughly estimate the present value of 

the contribution to national income of a given degree, 

such a value is not sufficiently disaggregated to aid in 

many of the inçortant decisions at the departmental level. 

Decisions must be made involving the relative value of 

different courses, class sizes, or of staff members per­

forming different tasks. Apparently the preference function 

of those with the most detailed and specific knowledge of 

the discipline and department must be relied upon. Thus 

there is sufficient reason to believe that decision-makers 

at the departmental level should be responsible for setting 

certain department goals as well as being responsible for 

actions of the department which will best fulfill goals 

or objectives of higher level decision-makers. 

The organization of a university is such that more 

general or aggregative goals set at one level of decision­

making must be fulfilled in the best way possible by lower 

level decision-makers and once this is accomplished all the 

remaining feasible actions are evaluated according to more 

specific goals set by the lower level decision-maker. This 

envisions a kind of lexicographical or preemptive decision 

structure. 



140 

Characteristics of a Useful University 
Decision Model 

The environment and structure of the university requires 

a useful decision model to have two important characteristics. 

First, it must be flexible enough to accommodate a wide range 

of optimization and goal criteria. Second, it must be able 

to accommodate the decentralized nature of the university 

and specifically to allow for goal setting by lower level 

decision-makers. 

We will discuss three related approaches for character­

izing the objectives of decision-making. The first approach is 

that of obtaining a general preference function from the 

policy-maker and maximizing this function subject to the 

restrictions of the model. Nonlinear functions can be con­

sidered; however, unless the function is concave, a global op­

timum will be very difficult to obtain and except for the 

special case of quadratic programming, computational expenses 

will be prohibitive for large models. Tinbergen (1955, p. 2-3) 

in his discussion of quemtitative economic policy has noted 

the difficulty of actually specifying such a function and 

that in practice specifying and maximizing such a function 

will often be passed over and targets will be directly 

chosen. Some important initial work on the problem of 

determining such a function has been done by van Eijk and 

Sandee (1959). If the function is linear then the problem 
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reduces to choosing a set of relative weights which may 

not be too difficult a problem. However, the implicit 

assumption of constant marginal value for each commodity 

involved in the linear function will usually not result in 

a satisfactory answer unless bounds are placed 

on certain variables. The setting of such bounds actually 

amounts to setting a type of target after all. 

The second general approach for characterizing ob­

jectives is that of attempting to fulfill as closely as 

possible a vector of goals set by the policy-maker. Lee 

and Clayton (1969) have discussed the application of goal 

programming to a university decision model. The goals may 

be classified according to type, as in Chapter III (i.e., 

the goal of minimizing inconsistency, the goal of mini­

mizing deviations from fixed targets, and the goal of 

maximizing flexible target values). Strictly speaking the 

setting of such goals can be said to specify the policy­

maker's preference function; however, we wish to make a 

distinction between the two for discussion purposes. The 

first approach is in the tradition of constrained value 

maximization; the goal approach may be viewed as being more 

concerned with meeting quantity quotas and insuring con­

sistent functioning of the production system. The goals may 

be given different weights, some of which may be preemptive 

priority factors. We would assert that the general idea 



142 

of goals corresponds more closely to the implicit 

thought processes of policy-makers than does the idea of a 

general preference function. In other words we feel that 

university policy-makers are more likely to be able to easily 

specifyf say, certain quantity quotas which they think should 

optimally be fulfilled than to be able to specify for every 

conceivable combination the relative values they would 

place on commodities. 

The third general approach for characterizing objectives 

in a model is to compute efficient points from which the 

policy-maker then chooses one. Even if one is not willing to 

put either absolute or relative values on the outputs of a 

university system there is still much which can be done to 

aid in the consideration of alternatives. If it is possible 

to reach agreement on the identification of outputs and 

agree that more is preferred to less then we know that 

only efficient, feasible alternatives need be considered. 

There may be a very large range of efficient, feasible 

alternatives which must be con^ared to each other and from 

which a unique choice must be made; however by having ex­

cluded all infeasible output combinations and all combina­

tions which are dominated by other combinations with as much 

of every output the range has been greatly narrowed. The 

policy-maker is thus able to focus on a specific set of 

output vectors (efficient, feasible vectors) knowing that for 
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any feasible alternatives not in this set there is at least 

one corresponding vector in the set which is more desirable. 

The preference ordering of the policy-maker is effective 

ly revealed when the unique choice is made from these al­

ternative efficient vectors. This means that without en­

countering the difficult problems of empirically estimating 

a utility function to represent the preferences of the 

decision-maker or even determining a system of weights or 

goals, a solution which is optimal with respect to the 

decision-maker and the given output possibilities can be 

obtained. For a linear model the set of efficient points 

can be computed by systematic use of a linear programming 

simplex routine. It is necessary to compute only the set of 

adjacent efficient extreme points, and then the set of 

efficient points consists of convex combinations of adjacent 

efficient extreme points. 

The difficulty for this third approach is that even 

for moderately sized models the number of adjacent efficient 

extreme points may become excessively large for purposes of 

computation. Even if computation poses no problem it must 

be possible to present the set of efficient alternatives in 

a compact enough manner so that choosing between them is not 

beyond the capability of the policy-maker. Even when the 

model is small and the commodities are aggregated so that 

the number of different final commodities considered is small 
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the number of efficient extreme points may exceed a manage­

able number. In practice, high level decision-makers are 

usually forced to work with relatively aggregated indexes 

because of the costliness of gathering and processing highly 

detailed data at a central point, and for many specific 

situations it will not be difficult to specify a subregion 

which would contain all efficient points worthy of con­

sideration. Formally specification of such a subregion 

could be considered a preemptive goal. 

The approach used in the computations of this chapter 

is to use goal programming to obtain an initial efficient 

point worthy of consideration, and then compute adjacent effi­

cient points and allow the policy-maker to decide if he 

wishes to move to any of the efficient points on the line 

segments between adjacent points. If he decides that he 

would prefer to move to one of the adjacent points then 

the process could be repeated until none of the points 

"around" the point he has chosen are preferred to the point 

he has chosen. 

Of interest to an economist is the fact that each 

efficient vector is associated with imputed prices for not 

only the outputs but also the inputs and intermediate com­

modities. These prices are also computable and are interest­

ing in two respects. First, they provide an intra-model 

pricing vector which is consistent with the chosen optimal 
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output vector. Secondly, these imputed prices give a link 

between the educational institution and the remainder of 

the economy. Most inputs can be given a reasonable market 

price, and the imputed prices are only relative so they can 

be normalized such that one of the inputs serves as the 

numg'raire (preferably the budget input measured in dollars). 

Comparing the market and imputed valuations may then be 

meaningful. Possible use of these imputed prices for short . 

run adjustments and dynamic considerations will be discussed 

below. 

Specification and Computation for 
a Department Level Model 

The model specified in Table 9 will be used to give 

numerical examples of the three different approaches for 

characterizing university objectives. The coefficients are 

meant to be "reasonable" and the units of measurement and 

other relevant assumptions are given in Table 10. Discussion 

of the specification of the model will be divided into 

three parts concerned with the time period involved, the 

commodities, eind the activities. We assume that some type 

of university-wide decision process, such as that described 

in the above section, has been completed and that the depart­

ment has been allocated certain commodities and directed to 

pursue certain goals. 

The model is essentially static and applies to a nine 
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Table 9a. Definitions of activity codes for Tcible 9b 

Code Instruction Activities 

XSPI Small principles section taught by instructor 
XLPU Large principles section taught by undergrad. faculty 
XLPG Large principles section taught by grad. faculty 
XIIU Freshman-Soph, class taught by undergrad. faculty 
XIIG Freshman-Soph, class taught by grad. faculty. 
XI2U Jr.-Sr. class taught by undergrad. faculty 
XI2G Jr.-Sr. class taught by grad. faculty 
XIM M.S. course instruction 
XID Ph.D. course instruction 

Research/ Dissertation, and Thesis Activities 
XRESl Research activity no. 1 
XRES2 Research activity no. 2 
XRES3 Research activity no. 3 
XRES4 Research activity no. 4 
XRES5 Research activity no. 5 
XSM M.S. thesis supervision 
XSD Ph.D. dissertation supervision 

Intermediate Commodity Activities 
XTAC Teaching assistant, course stage 
XTAT Teaching assistant, thesis stage 
XINC Instructor, course stage 
XIND Instructor, dissertation stage 
XRAMC Research assistant, M.S. course stage 
XRAMT Research assistant,M.S. thesis stage 
XRADC Research assistant, Ph.D. course stage 
XRADD Research assistant, Ph.D. dissertation stage 
XSEC Secretarial services 
XCOMP Computational services 

Final Commodity Activities 
YUI Undergrad. instruction 
YMI M.S. level instruction 
YDI Ph.D. level instruction 
YMT M.S. theses 
YDD Ph.D. dissertations 
YSRY Standard research years 



Table 9b. Basic model 

Codê  XSPI XLPU XLPG XIlU XIIG XI2U XI2G XIM 

UI 105.000 840.000 840.000 105.000 105.000 90.000 90.000 

MI 90.000 

DT 

MT--

DD 

SRY 

TA -1.000 -1.000 

INST -.083 

RAMC 

RAMT 

RADC 

RADD 

SEC -.020 -.030 -.030 -.020 -.020 -.020 -.020 -.020 

COMP 

UF -.083 -.083 -.083 

GF -.083 -.083 -.083 -.083 

GSMC -2.500 

GSDC 

GSMT 

GSDD 

US 12 -2.188 -17.500 -17.500 -2.188 -2.188 

US34 -1.875 -1.875 

BUDG 

GSSO 

^Activity and commodity codes are defined in Table 9a 
and Table 10 respectively. 
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Table 9b (Continued) 

Code'T XI n XR["SI XRES2 XRES3 XRES4 XRES5 XSM XSD 

Ul 

MI 

DI 90.000 

MT 

DD 

SRY 

TA 

INST 

RAMC 

RAMT 

RADC 

RADD 

SEC -.020 

COMP 

UF 

GF -.083 

GSMC 

GSDC -2.500 

GSMT 

Gsnn 

US I 2 

US 34 

BUDG 

GSSO 

,300 

.300 

4.000 4.000 

2.000 

2.000 !.000 

I .000 

.000 2.333 3.667 1.667 3.667 

.000 

.600 

I .000 

-1.000 -1.000 

-I .000 

-2.000 -2.000 

-2.000 

• I .000 

-I.500 

-.400 

- .600 

.000 

.000 

.000 

.000 

.000 

.200 -.150 -.300 

.000 -1.000 -1.000 -.049 -.098 

-.450 

-.900 



Table 9b (Continued) 

Codef XT AC XTAT XINC XIND XRAMC XRAMT XRADC XRADD 

UI 

MI 

DI 

MT 

DD 

SRY 

TA .500 .500 

INST .500 .500 

RAMC .500 

RAMT .500 

RADC .500 

RADD I.000 

SEC 

COMP 

ur 
G F 

GSMC -.500 -.500 

OSDC -.500 -.500 

GSMT -.500 -.500 

GSDD -.500 -1.000 

US 12 

US34 

BUDG -2.700 -2.700 -3.600 -3.600 -2.700 -2.700 -3.600 -7.200 

GSSO -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 
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Codef XSEC XCOMP YUÎ YMI YDI YMT YDD YSRY 

Ut -I .0 = 0.0 

MI -I.0 = 0.0 

D1 -I.0 = 0.0 

MT -I .0 = 0.0 

DD -1.0 0.0 

SRY -1.0 = 0.0 

TA = 0.0 

INST = 0.0 

RAMC = 0.0 

RAMT = 0.0 

RADC = 0.0 

RADD = 0.0 

SEC I.0 = 0.0 

COMP I .0 =0.0 

UF 2 -20.0 

GF i -40.0 

GSMC k -120.0 

GSDC > -60.0 

GSMT > -40.0 

GSDD > -30.0 

US 12 >-600,0 

US34 >-375.0 

BUDG -7.2 -1.0 >-1000.0 

GSSO -1.0 >-260.0 
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Table 10. Assumptions and codes 

Assumptions about class size, student course load, and 
faculty teaching load consistent with the activities 
specified 

Average class size 
Large freshman and sophomore lecture sections 2 80 

Small freshman and sophomore classes 35 

Junior and senior level classes 30 

M.S. level classes 30 

Ph.D. level classes 25 

A 3-credit undergrad. course requires = .0624 academic 
man years per student 

A 3-credit grad. course requires = .0 833 academic man 
years per student 

Each 3-credit course requires fy faculty or instructor man 
year 

Large lecture section require faculty man years and 1 
teaching assistant man year 

Primary Commodities 

Type Code 
Grad. faculty GF 
Undergrad. faculty UF 
Grad. (Masters course stage) GSMC 
Grad. (Ph.D. course stage) GSDC 
Grad. (Masters thesis stage) GSMT 
Grad. (Ph.D. dissertation stage)GSDD 
Undergrad. (Fresh., Soph.) US12 
Undergrad. (Jr., Sr.) US34 
Budget BUDG 
Offices (Grad. students and GSSO 

secretaries) 

Units of Measurement 
Academic man years 
Academic man years 
Academic man years 
Academic man years 
Academic man years 
Academic man years 
Academic man years 
Academic man years 
Thousands of dollars 
Number of offices 
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T cible 10 (Continued) 

Final Commodities 

Type Code 
Undergrad. instruction UI 
Masters level instruction MI 
Ph.D. level instruction DI 
M.S. theses MT 
Ph.D. dissertations MD 
Standard research years SRY 

Intermediate Commodities 

Unit of Measurement 
Man-credits 
Man-credits 
Man-credits 
Number 
Number 
Standard research man years 

Type Code Unit of Measurement 
Teaching assistants TA Academic man years 
Instructors INST Academic man years 
Research assistants 
(M.S. course level) RAMC Academic man years 
(M.S. thesis level) RAMT Academic man years 

Research assistants 
(Ph.D. course level) RADC Academic man years 
(Ph.D. dissertation level)RADD Academic man years 

Secretarial assistants SEC Academic man years 
Computing COMP Thousands of dollars 

A standard research man year is defined as the amount 
of research output which would result from one graduate 
faculty academic man year supported by 1/3 man year of 
secretarial services and $300 of computation services. 
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month academic year and the decisions relevant to such a time 

period. A quarter system is assumed and the model repre­

sents an aggregation over these three time periods which 

for cases of actual planning might not be sufficiently de­

tailed. For exaiiple it is assumed that forty man years 

(the terra man year will always refer to academic man year) 

are available from students at the masters thesis stage, 

but that fact in itself does not indicate how these forty 

man years are distributed over the three quarters. To 

insure that the solution of our model is consistent we must 

assume that all commodity availabilities are evenly 

distributed over the time period. If in reality this assump­

tion is not true it would be necessary to disaggregate the 

model such that a separate submodel would apply to each 

quarter with the appropriate links between the quarters. 

As in the typical activity analysis model the commodities 

are classified as primary, intermediate, and final. The pri­

mary commodities include the budget and physical space as 

well as man years of faculty and student time. We assume 

that the vector of available primary commodities is the 

result of a longer term, university-wide planning process 

which has allocated a general budget sufficient for faculty 

and physical plant needs and classroom and office space 

consistent with the faculty and students. Therefore the 

budget considered in the model is only that portion 
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allocated for purchasing of supplies and of services of 

less permanent employees such as graduate student employees 

and secretarial or clerical personnel. Likewise the physical 

space considered is the allocation of offices for such less 

permanent personnel. For many actual situations it is likely 

that the budget will need to be decomposed into several 

sub-budgets each designated for specific purposes and that 

several different classifications of physical space will be 

necessary. A further disaggregation of faculty man years 

according to level of ability and field of speciality 

could easily be made and would probably be necessary for 

many actual planning purposes. 

The intermediate commodities consist of graduate student 

research and teaching assistants and instructors as well 

as secretarial and computational services used in the 

production of the final commodities. As will be noted in 

the discussion of activities, each of these intermediate 

commodities can be produced, in a very broad sense of the 

term, from some combination of primary commodities. 

The final commodity vector of the model is highly 

aggregated. The degree of aggregation used is due, in 

part, to the need to keep the model to a manageable size for 

purposes of exposition here; however, a central point of our 

discussion involves the possibility of using relatively 

aggregated quantities in the decision process. The aggregated 
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final commodity vector is quite appropriate when higher 

level goals are considered or when efficient points are 

computed. Once a solution has been obtained with respect 

to the aggregated goal or efficiency criterion, one can 

choose between those more detailed or less aggregative 

vectors which maintain efficiency or satisfy the aggregate 

goal. 

The final outputs designated in the model are quite 

obvious choices. A good case could be made for considering 

experience gained by graduate students through teaching and 

research as a final commodity since it presumably increases 

their productivity and can be considered as an investment 

in their human capital; however the model used here does not 

include such experience as a final commodity. The choice 

of units for measuring final commodities is easily criti­

cized but apparently not easily improved upon. 

The use of credit hours, theses, and dissertations con­

forms to well established university measurement systems. 

For many purposes the measurement of undergraduate instruc­

tion only by credit hours is not satisfactory. Salary 

structure and job qualifications often treat undergraduate 

degrees as a discrete variable, not divisible by credit 

hours, and aggregation of credit hours into degrees is 

complicated by the necessity to consider dropouts. 

The difficulty of measuring and evaluating the output of 
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new knowledge and the research activities which produce it 

has been discussed above. Our approach here defines an 

arbitrary unit called a standard research year which is the 

average amount of research produced by one graduate faculty 

man year supported by one-third man year of secretarial 

services and $300. of computational services. Hence the 

definition is in terms of a specific combination of inputs; 

however, as will be discussed below, a number of other 

different input combinations are assumed to produce a 

certain number of standard man years of research. For many 

purposes the research commodity would need to be dis­

aggregated. Basic and applied research might be considered 

separately, or separate components might be considered 

according to subject matter researched. 

Before discussing the activities specified in the model 

we will note the importance of the restraints imposed by 

linearity. Specifically the assumption of constant returns 

to scale and the restraints on input substitutibility will 

be considered with respect to the model outlined. For the 

instructional activities which transform intermediate com­

modities from primary commodities the assumption of constant 

returns to scale should be adequate since each new unit 

of activity is essentially a duplication of the former 

with little interaction. The possibility of a single 

preparation for more than one section of a given course is an 
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element which could contribute to increasing returns but 

is not considered here. Research activities are likely to 

involve some increasing returns to scale since data and 

techniques used for one project represent a fixed invest­

ment of time which may be spread over related research proj­

ects. We will assume that for the model considered here 

constant returns to scale form a sufficiently close approxi­

mation to reality. It has been argued that "For the typical 

college or university, the fixed proportions function is, 

in fact, utilized by the administrators who behave as 

though they were faced with just such a function" (South-

wick, 1969, p. 169). We should note that those university 

decisions in which significant returns to scale are most 

probable are not relevant to ttiis model due to its short 

term departmental level nature. Decisions concerning 

capacity expansion of physical plant, computer and library 

facilities, and administrative staff would be among those 

considered most likely to involve significant returns to scale. 

The amount of restraint on input substitutability in 

the model is entirely dependent upon the choice of activities 

to be considered. When the possibility for input substi­

tution exists, determination of optimal input proportions 

is an important problem. 

For example, within a certain range there must certainly 

be a trade-off between the input of instructional time and 
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student time such that the quantity of a given quality of 

knowledge gained by the students can be represented by iso-

quants. For many types of courses it should be feasible 

to set up controlled experiments and testing techniques so 

that empirical estimates could be made of such isoquants. 

Once the isoquants were estimated, the input substitution 

could be approximately represented in the model by placing 

a number of alternative production activities in the model 

for consideration. The mix of student and faculty input time 

involves the multiple questions of class size, expected 

course load for students and teachers, and the number of hours 

students are expected to spend outside the classroom per hour 

of instruction.^^ 

In practice such questions are apparently not considered 

to involve interrelated decision variables and are often 

considered not to involve variables at all but fixed 

parameters. When decisions concerning optimal class size 

are made and don't involve consideration of available class­

room space, they are often posed as an isolated decision 

where instructional cost is traded off against quality. We 

would hypothesize that within certain limits quality can be 

^^For a siitple but interesting analysis of the inter­
relation between class size, teachers' salaries, and other 
variables see Herbert Simon (1967). 
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maintained while student input time is substituted for 

faculty input time and that given knowledge of the rate of 

substitution, the optimal ratio of inputs is an economic 

consideration involving a price ratio of student and 

faculty man years. 

The activities considered in our model do not allow 

for large ranges of input substitution. Some possibility 

for substitution exists in the instruction of large principles 

courses where teaching assistants are used in combination 

with a smaller input of faculty time as well as in research 

where some activities use larger rates of research 

assistants to graduate faculty than other activities. In 

general the input proportions used in the model here are 

chosen to correspond quite closely with existing practices 

in many departments. Once a solution has been obtained for 

the type of model used here, it is possible to use the dual 

variables to determine whether or not a vector representing 

a new activity or program could be profitably introduced. 

The activities specified are highly aggregated. The 

need for a detailed departmental plan and the type of 

commodity disaggregation discussed above would require a 

corresponding disaggregation of activities. The joint 

production of some of the research activities should be noted. 

These activities not only produce new knowledge measured by 

the standard research man year proposed above but also 
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produce masters theses and doctoral dissertations. The 

coefficients used for research activities are defended only 

as reasonable approximations of input-output proportions in 

common use and could certainly be in%>roved upon by extensive 

study of research programs. 

The first illustrative computation is for the following 

problem: 

max c'yyp 

subject to ApX-Iyp = 0 (39) 

AjX = 0 

ApX 1 n 

X' Yp 1 0 

which maximizes a linear function of the final commodities. 

The vector of coefficients c^ is assumed to represent the 

preference function of the decision-maker. Table 11 gives 

the results of the computations for (39). The matrix coeffi­

cients and commodity codes used are those in Table 9. 

The values used for c^ are only example values. The optimal 

final output values are given as well as the dual values 

for the primary commodities. A price range is given for 

each element of yp. This indicates the range in which a 

single price can be changed without changing the optimal 

output levels. For exairç)le, the price of a doctoral disser­

tation could vary between 9.332 and 28.111 without affecting 

the optimal solution, and the price of un de rgradiiat e 
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Table 11. Problem (39) results 

Final 
Output 
yp 

Price 
Vector 

"y 

Price 
Range 

.0 39 
YUI 46 800 1.000 00 

.873 
YMI 4320 1.500 00 

1.225 
YDI 2160 2 .000 00 

6.774 
YMT 80 9.000 30.62 3 

9.332 
YDD 24.494 24.000 28.111 

17.983 
YSRY 62.996 28.000 42.833 

Dual 
Values 

UF 42.668 

GF 42 .668 

G SMC 52.578 

GSDC 70.578 

GSMT 29.332 

GSDD 42.668 

US12 46.375 

US34 46.104 

BUDG .000 

GSSO .000 

instruction, M.S. level instruction, or Ph.D. level instruc­

tion could each be increased by any amount, however large, 

without affecting the optimal yp. Note that these price 

ranges are valid only if all other prices are held constant 



160 

while a single price is changed. Note also that the optimal 

dual values will not remain unchanged. 

Three different examples of goal programming problems 

were computed. Problems (40) and (41) are closely related to 

(36) and (37) of Chapter IV. They are problems combining 

variable goals which should be fulfilled at a minimum level 

and fixed goals (i.e., a quota of final outputs which should 

not be over or underfulfilled). Problem (40) minimizes a 

weighted sum of negative deviations from the variable goals 

and absolute deviations from the fixed goals 

min c'e„ 
e F 

C'Bp < Y 

ApX-lEp < 

A*x+Ie* > n 
AjX = 0 

-ApX < -n 

X, Ep.^ 0, 

(40) 

For the computation, M.S. level instruction (YMI) and Ph.D 

level instruction (YDI) were chosen as commodities with 

variable minimum goals of 3600 and 1800 man-credits 

respectively. The other final commodities were considered 

to have fixed goals the values of which are given in 

Table 12. 

The matrix values used are those of the original model 

in Table 9. The starred symbols, A^, are equivalent 
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to their uns tarred counterparts except that the rows corre­

sponding to YMI and YDI have been dropped. They have a row 

for each of the fixed goals but not the variable goals. 

In general the elements of Cp are weights for the goals and 

can be specified according to the relative importance of 

the goals. For the computations here each element was 

set equal to one. 

Problem (41) minimizes the maximum absolute deviation: 

min 

subject to ^ Y (41) 

A|x+e* > y* 

AjX = 0 

-ApX <_ -n 

X, L ̂  ' where e^ and e^ are vectors with 

the same variable e, for every 
element. 

The starred symbols have the same interpretation as in (40). 

For variable goals only negative deviations are considered 

while both positive and negative deviations are considered 

for fixed goals. 

For both problems (40) and (41) y is initially set as a 

very large number which will not affect the solution. Once the 

initial optimal solution has been completed y is set equal 

to the optimal value of the objective function of each problem 

respectively. Then any new objective function c.an be 
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maximized (i.e., subgoals may be maximized) subject to this 

constraint which insures that goals are fulfilled or ful­

filled as nearly as possible. 

For (40) the optimal value of the objective function was 

23.874 which resulted from a single nonzero deviation. Only 

the goal of 100 standard research years could not be fulfilled. 

The optimal level of final commodities, yp=ApX^, as well as 

the corresponding levels of production activities, x^, are 

given in Table 12. It would, *t. this stage, be possible to 

maximize any set of sub goals subject to the constraint that 

the sum of absolute deviations from the initial goals not ex­

ceed the minimum value by setting y==23.874 in (40). 

For (41) the optimal value of the objective function was 

14.336. The optimal level of final commodities and correspond­

ing activity levels are given in Table 12. Note that in 

this case every commodity deviated from the desired level 

and all but one, Ph.D. dissertations, deviated by the same 

amount, 14.336. For maximizing subgoals y in (41) should be 

set equal to 14.336. 

The different results from the two different criterion 

(i.e., minimizing the sum of absolute deviations and 

minimizing the maximum absolute deviation) can be expected 

to occur in general, the min-max gives a solution in which 

more of the goals fail to be fulfilled relative to the minimum 

sum criterion; however, no single deviation will be as large 
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Table 12. Solutions to problems (40)-(43) 

Solution Solution Solution to 
^ to m to (4]) (43 to (4 3) 

YUI 46800 .000 46800.000 46785.666 46800 .000 
YMI 3600 .000 3600.000 3585.664 3600.000 
YDI 1800 .000 1800.000 1785.664 1800.000 
YMT 40 .000 40.000 54.334 80.000 
YDD 30 .000 30.000 27.168 30.000 
YSRY 100 .000 76.126 85.664 84. 729 

XSPI 94.190 144.205 120.048 
XLPU 20.000 12.832 0.000 
XLPG 0.000 0.000 9.163 
XIIU 20.096 27.423 40.096 
XIIG 0.000 0.000 40.837 
XI2U 200.000 199.841 200.000 
XI2G 0.000 0.000 0.000 
XIM 40.000 39.841 40.000 
XID 20.000 19.841 20.000 
XTAC 0 .000 0.000 18.326 
XTRT 40 .000 25.664 0.000 
XINC 13.692 18.360 20.000 
XIND 2 .000 5.664 0.000 
XRAMC 40.000 40.796 21.674 
XRAMT 40.000 54.336 80.000 
XRADC 6.30 8 2.4 36 0.000 
XRADD 20.000 27.168 30 .000 
XSEC 28.081 31.370 31.829 
XCOMP 31.207 32.929 34.002 
XRESl 5.599 1.655 0.000 
XRES2 0.000 0.000 5.000 
XRES3 8.423 12 .975 15.000 
XRES4 16.846 19.180 10.837 
XRES5 3.154 1.218 0.000 
XSM 0.000 0.000 0.000 
XSD 10.000 0.000 0 .000 

as for the minimum sum criterion. 

Problem (42) is a series of linear programs which are solved 

sequentially. The first program (42) will minimize the weighted 

sum of deviations from minimum goals, y^. By minimum goals 
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we mean that we wish to minimize the extent to which goals 

are underfulfilled but do not care if they are overfulfilled. 

The first step is to solve, 

min c/Ep 

subject to ApX-yp+Sp ^ ̂ p (42) 

AjX = 0 

ApX 1 n 

yp'Ep 1 0 

and note that the optimal vectors Ep^ and yp^ give the 

amounts by which the goals are underfulfilled and overful­

filled respectively. The next step is to solve program (43) 

which will find an efficient vector of final commodities 

subject to the constraint that the optimal weighted sum 

of deviations from minimum goals obtained from (42) be 

maintained. Set c^Ep^=g^. Then solve: 

max c^yp 

subject to (43) 

ApX-yp+Ep 1 9p 

AjX = 0 

ApX > n 

X/ y p /  E p  ^0, and cy > 0, 

and the efficient vector will be yp=5'p+y|-e*, where y* and e* 

are optimal vectors from (43) . The vector c^ must be strictly 
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g 
positive to insure that is efficient. The elements of 

Cy give the relative weights of additions to . Finally 

we can maximize certain sub goals while maintaining efficiency 

and maintaining minimum deviation from major goals. The 

final sub goal program may be approached in two different 

ways. If there is no reason to maintain the specific effi­

cient vector yp obtained from (43), then set Cy^=gy and solve 

the program: 

max c^x 

subject to c^yp < g^ (44) 

ApX-yp+Gp > :^p 

AjX = 0 

ApX > n 

x/yp/ Ep >0, 

which will result in an efficient vector of final output, but 

it will not necessarily be the same vector as yp obtained 

from (43) since the first constraint in (44) allows trade-offs 

at the relative rates designated by c^, and therefore any 

alternative optimal solution to (43) will also be feasible in 

(44) . 

If, on the other hand,it is desired that the specific 

efficient vector y^ obtained from (43) be maintained then the 

more restrictive program: 
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max c^x 

subject to c/Ep _< (45) 

ApX-Yp+Ep > 

A j X  0 

ApX > n 

X/ yp'Ep 1 0 

should be solved. It is more restrictive since any feasible 

solution for (45) is also feasible for (44), but the converse 

is not true in general. 

Programs (42) and (43) were computed using the values for 

given in Table 12; the solutions obtained are also shown. 

For this particular vector of minimum goals the solution 

obtained from (42) was not altered by program (43). The ele­

ments in the two vectors c^ and c^ were all set equal to unity 

for this computation, and since the only goal underful­

filled was research YSRY which deviated by 15.271, the value 

for CgGp^ = g^ = 15.271. The programs (44) and (45) were not 

computed for shown in Table 12; however, the full sequence 

of programs was computed for a different and the results 

are given in Table 13. 

Note that in this case programs (42) and (43) give dif­

ferent vectors and the vector obtained from (42) is clearly not 

efficient since the other vector is either as large or strictly 

larger in every component. In this case all of the minimum 
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goals are fulfilled and the optimal solution to (42) is 

c'e^=0. The elements of c and c were all unity as above, G c y 

and for the programs (44) and (45) the vector c^ was composed 

of zeroes except for elements corresponding to XLPU, X12G, 

and XTAC, each of which were set equal to unity. The optimal 

value for (42) was c^y^ = 1117.103. The meaning of the values 

in in terms of sub goals is that we would like to have as 

large as possible the number of large principles courses 

taught by undergraduate faculty, the number of junior, senior 

courses taught by graduate faculty, and the number of teaching 

assistants at the course stage. However, none of the higher 

level objectives are to be sacrificed to increase these sub-

goals . That is, changes will be allowed in the x vector 

only if the higher level goals, can still be met and only 

if the final output vector is an efficient one. And (45) 

requires that the final output vector be not only efficient 

but the same efficient vector obtained in (43). 

For these particular example computations both of the sub-

goal programs have the same solution. In both cases the 

vector of final commodities is the same as obtained from 

(43); however, the x vector differs from the solution to (43). 

The subgoal programs were successful in increasing two of 

the subgoal variables, XLPU and X12G, (large principles 

sections taught by undergraduate faculty and junior, senior 

level courses taught by graduate faculty). It was not 
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Table 13. Solutions to problems (42)-(45) 

Yp Solution Solution Solution Solution 
r to (42) to (43) to (44) to (45) 

YUI 46800 .000 46800.000 46800.000 46800.000 46800.000 
YMI 3600 .000 3600.000 4320 .000 4320.000 4320.000 
YDI 1800 .000 1800.000 2160.000 2160.000 2160.000 
YMT 40 .000 40.000 77.102 77.102 77.102 
YDD 30 .000 30 .000 30.000 30.000 30 .000 
YSRY 55 .000 55.000 55.001 55.001 55.001 
XSPI 5.833 0.000 0.000 0.000 
XLPU 0.000 0.000 2.304 2.304 
XLPG 0.000 2.304 0.000 0.000 
XIIU 40.096 40.096 2 37. 792 237.792 
XIIG 22 8.35 7 215.756 18.060 18.060 
XI2U 200.000 200.000 0.000 0.000 
XI2G 0.000 0.000 200.000 200.000 
XIM 40.000 48.000 48.000 48.000 
XID 20.000 24.000 24.000 24.000 
XTAC 0.000 0 .000 0.000 0 .000 
XTAT 0.000 4.60 8 4.60 8 4.608 
XING 0.000 0.000 0.000 0.000 
XIND .972 0.000 0.000 0.000 
XRAMC 19 .999 0.000 0.000 0.000 
XRAMT 40.000 60 .000 60 .000 60.000 
XRADC 19.999 0.000 0.000 0.000 
XRADD 20.000 30.000 30.000 30.000 
XSEC 25.686 25.626 25.626 25.626 
XCOMP 22 .500 25.065 25.065 25.065 
XRESl 0 .000 0.000 0.000 0.000 
XRES2 0 .000 0.000 0.000 0.000 
XRES3 5.000 15.000 15.000 15.000 
XRES4 0.000 0.000 0.000 0.000 
XRES5 10.000 0.000 0 .000 0.000 
XSM 0 .000 17.102 17.101 17.101 
XSD 10.000 0.000 0.000 0.000 

possible to increase the other sub goal, XTAC (teaching 

assistants at course stage). The increases in XLPU and 

X12G were compensated in the model by changes in XLPG, 

XIIU, XIIG, and XI2U. 

Once a solution to (43) (hasbeen obtained the higher level 
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policy-maker who set the goals may be interested in know­

ing the efficient output points "around" the efficient 

£ vector yp. By using the procedure outlined in the last 

part of Chapter IV it is possible to obtain all of the 
g 

efficient extreme points which are adjacent to yp. By 

joining these adjacent extreme points by line segments and 

noting that each point on the segment is an efficient 

point we can construct a whole set of efficient points 

"around" y^. 

The set of efficient points provides a set from which 

the decision-maker may choose that point which he most pre­

fers and thus effectively reveal his preferences. On the 

other hand, the line segments may be viewed as defining the 

trade-offs which must be made between final commodities 

when moving from one efficient point to another on the 

segment. 

If problem (38) is solved where c^ is set equal to the 

dual values from (4 3) corresponding to then the solution of 

final output yp will be the same as obtained in (43). Table 14 

gives the values for c^, the final output vector obtained 

from (38) and the dual prices for the primary commodities. 

Also given are the price ranges which have the same inter­

pretation as those in Table 11 along with the nonbasic vector 

which will enter the basis when a single price change reaches 

a limit of the price range. That is, if the value of YDI 
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were dropped to .092, holding all other prices constant, 

then the vector XINC would enter a new optimal basis. Note 

that any symbols corresponding to rows in the original 

model, such as US34, represent, in this context, slack 

vectors for the corresponding row. 

The procedure outlined at the end of Chapter IV could 

now be employed to compute all efficient extreme points 

adjacent to the final output vector given in Table 14. 

First, note that every vector corresponding to yp variables 

is in the optimal basis for the solution given in Table 14. 

Therefore, case 1 of the procedure in Chapter IV cannot be 

used. Case 2, however, can be used. In fact, the price 

ranges in Table 14 are computed by the formula given in 

case 2. 

For example, to find the increase in the price of YSRY 

which will be sufficient to bring in a new vector we compute 

(|)^ as in (46) : 

From the tableau given in Table 15 we see that only for 

for j = XRES2 we get a minimum. Thus by adding <J)^ = .267 

to 1 (the existing price of YSRY) we obtain the new price 

vector which will just be sufficient to bring a new vector 

into the optimal basis and that vector will be X]^ES2. 

c 
— = min 
•6k jEj 

.623 
-2.33 267 (46) 

j = XRAMC, XRESl, and XRES2 are the values of Xg^ < 0 and 
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Table 14. Efficient point 0 and corresponding prices 

Final Price Price Vector 
Output Vector Range Entering 

yp ^ Basis 

.003 US34 
YUI 46800 .000 1.000 00 -

.055 XTAC 
YMI 4320 .000 1.000 00 -

.092 XINC 
YDI 2160 .000 1.000 00 -

.789 XRES2 
YMT 77 .102 1.000 1.000 XIND 

2 .856 XIND 
YDD 30 .000 2.856 6.343 XSD 

1.000 XIND 
YSRY 55 .001 1.000 1.267 XRES2 

UF 3.211 

GF 3.211 

GSMC 35.893 

GSDC 35 .89 3 

GSMT 1.873 

GSDD 3.211 

US12 47.878 

US 34 47.857 

BUDG .000 

GSSO .000 



172 

Table 15. Optimal tableau values for yp and nonbasic 
vectors 

YUI YMI YDI YMT YDD YSRY 

UI 1.000 .000 .000 .000 .000 .000 1.000 
MI .000 1 .000 .000 .000 .000 .000 1.000 
DI .000 .000 1 .000 .000 .000 .000 1.000 
MT .000 .000 .000 1.000 .000 .000 1.000 
DD .000 .000 .000 .000 1.000 .000 2 .856 
SRY .000 .000 .000 .000 .000 1.000 1.000 

TA .000 .000 .000 1.873 .000 .000 1.873 
INST .000 .000 .000 3.211 .000 .000 3.211 
RAMC .000 .000 .000 -1.606 .000 1.833 .228 
RAMT .000 .000 .000 1.873 .000 0 1.873 
RADD .000 .000 .000 -1.478 1.000 1.833 3.211 
SEC .000 .000 .000 .000 .000 .000 .000 
COMP .000 .000 .000 .000 .000 .000 .000 
UF .000 .000 .000 3.211 .000 .000 3.211 
GF .000 .000 .000 3.211 .000 .000 3.211 
GSMC .000 36 .000 .000 -.107 .000 .000 35.89 3 
GSDC .000 .000 36 .000 -.107 .000 .000 35.89 3 
GSMT .000 .000 .000 1.873 .000 ,000 1.873 
GSDD .000 .000 .000 -.478 1.000 1.833 3.211 
US12 48.000 .000 .000 -.122 .000 .000 47.878 
US 34 48.000 .000 .000 -.143 .000 .000 47.857 

XLPG .000 .000 .000 .000 .000 .000 .000 
XIRG .000 .000 .000 .000 .000 .000 .000 
XIAC .000 18 .000 .000 -.990 .000 .000 17.010 
XINC .000 .000 18 .000 -1.659 .000 .000 16.341 
XIND .000 .000 .000 -2.345 .500 0.917 =0 
XRAMC .000 18 .000 .000 .749 .000 -.917 17.833 
XRADC .000 .000 18 .000 -.054 .000 .000 17.947 
XRESl .000 .000 .000 3.211 .000 -1.000 2 .211 
XWSS2 .000 .000 .000 2.956 .000 -2.333 .623 
XRES4 .000 .000 .000 1.606 .000 .167 1.772 
XSD .000 .000 .000 -1.016 -.100 1.650 .349 
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Each of the price levels and vectors entering the basis 

shown in Table 15 may be obtained by analogous calculations. 

There are six different nonbasic vectors (US34, XTAC, 

XINC, XRES2, XIND, and XSD) which will enter the basis 

when elements of c^ are changed one at a time. Each of the 

resulting six different optimal sets of basis vectors will 

produce an efficient extreme yp adjacent to the y^ in Table 

14. These six different vectors were computed and are given 

in Table 16 along with the corresponding prices for final 

and primary commodities and price ranges for y^ commodities 

within which the basis will remain optimal. 

At this point six adjacent efficient extreme points 

have been obtained but there remain 20 other nonbasis 

vectors which might produce em efficient adjacent extreme 

point if interchanged with one of the basic vectors. To 

determine whether or not such interchanges would produce 

efficient points we must use the analysis of case 3 in 

Chapter IV. That is, we must solve the linear programming 

problem (47): 

min (B°"la%)' Cg-C^ 

subject to ^gO Cg-Cj >_ 0, all j including k 

iGy 1 1 

Cx = 0' Cg = 0. 

This will determine whether a c exists for each specific 

vector aj^. The jth column of the optimal tableau gives the 



Table 16. Efficient points adjacent to point 0 and corresponding prices 

I 5 T~ 
Final Price Price Final Price Price Final Price Price 
Output Vector Range Output Ve ctor Range Vector Vector Range 

.002 .00 3 .1)03" 
YUI 45077.263 .003 .003 46800. 1.000 00 46800.000 1.00000 00 

.055 .055 .055 
YMI 4320 .000 1.000 00 4320 .000 1.000 00 4320.000 1.00000 00 

.092 .069 .092 
YDI 2160.000 1.000 00 2104. 449 .092 .092 2160.000 1.00000 00 

.996 1.000 .000 
YMT 82.222 1.000 1.083 82 .222 1.000 1.001 69.834 1.00000 1.000 

2.838 2.856 2.367 
YDD 30 .000 2. 856 6.377 30.000 2.856 6.344 30.000 2.8562 3 10.750 

.990 1.000 1.267 
YSRY 55.001 1.000 1.263 55.001 1.000 1.267 60.737 1.26706 2.460 

UF 3.19 8 3.211 3.211 
GF 3.198 3.211 3.211 
G SMC 35.89 3 35.893 35. 893 
GSDC 35.89 3 3.211 35. 893 
GSMT 1.874 1.873 1.873 
GSDD 3.217 3.211 3.701 
US12 .020 47.878 47.878 
US 34 .000 47.878 47.878 
BUDG .000 .000 .000 
GSSO .000 .000 .000 



Table 16 (Continued) 

4 S 6 
Final Price Price Final Price Price Final Price Price 
Output Vector Range Output Vector Range Output Vector Range 

.003 .00 3 .00 3 
YUI 46800.000 1.000 00 46800.000 1.000 00 46800.000 1.000 00 

.041 .055 .055 
YMI 4226. 879 .055 .055 4320.000 1.000 00 4320 .000 1.000 00 

.092 .092 .092 
YDI 2160.000 1.000 00 2160.000 1.000 00 2160 .000 1.000 00 

1.000 1.000 1.000 
YMI 82.222 1.000 1.003 82 .477 1.000 3.187 83.478 1.000 3.80 8 

2.856 1.74 8 6.343 
YDD 30.000 2.856 6.344 28.854 2.856 2.856 30.62 8 6.34 3 8.367 

1.000 .735 .773 
YSRY 55.001 1.000 1.267 52. 899 1.000 1.000 44.693 1.000 1.000 

UF 3.211 3.211 3.211 
GF 3.211 3.211 3.211 
GSMC 1.872 35.89 3 35.89 3 
GSDC 35.89 3 35.89 3 35.89 3 
GSMT 1.873 1.873 1.873 
GSDD 3.212 3.211 6.698 
US12 47.878 47.878 47.878 
US 34 47.857 47.878 47.878 
BUDG .000 .000 .000 
GSSO .000 .000 .000 
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coefficients for ). Since only objective function 
J 

values of c^ are non-zero the only rows of the tableau 

which need be considered are those corresponding to y^ (i.e., 

those values given in the columns of Table 15). And those 

columns of the tableau (rows of Table 15) containing only 

non-negative values need not be included since their inner 

product with the strictly positive c^ will always be non-

negative. Thus the above linear program simplifies to: 

min tj^Cy 

subject to TCy 0 (48) 

ICy>_ 1, 

where the matrix T is given in Table 17. From T we note 

that 17 rows have dropped out because they contained only 

non-negative elements and six of the remaining 15 correspond 

to the nonbasic vectors which we already know will produce 

efficient adjacent extreme points when brought into the 

basis. Thus we are left with nine linear programs to solve. 

Each of the nine programs was computed and each had a 

strictly positive optimal objective function value. Thus a 

c^ vector does not exist for any of the nine and bringing 

any one of them into the basis would not produce an 

efficient yp. 

To see that the linear program will, in fact, give a 
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Table 17. Elements of matrix T for problem (4 8) 

YUI YMI YDI YMT YDD YSRY 

RAMC .000 .000 .000 —1.606 .000 1. 833 

RADD .000 .000 .000 -1.478 1.000 1.833 

GSMC .000 36 .000 .000 -.107 .000 .000 

GSDC .000 .000 36 .000 -.107 .000 .000 

GSDD .000 .000 .000 -1.478 1.000 1.833 

US12 48.000 .000 .000 -.122 .000 .000 

US 34 48.000 .000 .000 -.143 .000 .000 

XTAC .000 18 .000 .000 -.990 .000 .000 

XING .000 .000 18 .000 -1.659 .000 .000 

XIND .000 .000 .000 -2.345 .500 .917 

XRAMC .000 15 .000 .000 .749 .000 -.917 

XRADC .000 .000 18 ; 000 -.054 .000 .000 

XRESl .000 .000 .000 3.211 .000 -1.000 

XRES2 .000 .000 .000 2.956 .000 -2.333 

XSD .000 .000 .000 -1.016 -.100 1.650 

+ 18 
required c if it exists we solved program (48) by using tj 

as the row corresponding to XRES2. We have shown above by 

18 In obtaining the numerical solution the right hand side 
was replaced by a vector with .2 for each element except in 
the row corresponding to XRES2 where a -.1 value was used. 
These changes were made to insure that rounding errors would 
not be a problem. In specific cases these changes could pre­
vent the program from locating the required c+ vector even 
when it existed. 
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case 2 procedures that bringing XRES2 into the basis will 

produce an efficient adjacent yp. The values for the optimal 

Cy for program 48 are given in Table 18 along with the re­

sults of using that price vector in the original problem. 

Note that the efficient adjacent obtained is the same as 

that obtained previously by introducing XRES2 into the basis. 

If the basis matrix for the original efficient vector 

yp were unique then we could be assured that the six 

different adjacent efficient vectors which we have obtained 

include all adjacent efficient vectors. The basis matrix 

for the original yp is, however, not unique. 

First of all, two nonbasic vectors (XLPG and XI2G) have 

zero z.-c. values and when either of these is brought into 
] ] 

the basis the yp vector remains unchanged. Furthermore XSPl 

and XRES5 are in the original basis at zero level so the 

solution is degenerate. Thus it would be possible to bring 

any vector into the basis, if in the column of the tableau 

corresponding to that vector, the elements in the rows 

for either XSPI or XRES5 were nonzero. From the optimal 

tableau it was found that this was true for the following 

nonbasic vectors: INST, RAMC, XINC, XIND, SRAMC, XRADC, 

and XRES4, Bringing in any one of these seven nonbasic 

vectors would produce an alternative basis matrix for 

the original yp vector. To insure that all efficient 

vectors adjacent to the original yp are included in the six 
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Table 18. Efficient point 6 and alternative prices 
obtained from problem (4 8) 

Final Price Price 
Output Vector Range 

.0 32 
yui 46800.000 1.000 00 

.591 
ymi 4320.000 1.000 00 

.990 
ydi 2160 .000 1.000 CO 

.000 
ymt 69.834 10.72 8 10.762 

25.407 
ydd 30.000 25.711 115.629 

13.593 
ysry 60.737 13.637 13.59 3 

UF 34.49 8 
GF 34.49 8 
GSMC 34.851 
GSDC 34.851 
GSMT 20.116 
GSDD 34. 802 
US12 46.686 
US 34 46.46 7 
BUDG .000 
GSSO .000 

that have been obtained it would be necessary to repeat 

for each of the alternative basis matrices the type of 

analysis done for the original basis. These computations 

were not performed because without additional computer 

routines they would be a much larger computational task 

than justified by the importance of this particular numerical 

example. 

As indicated in Chapter IV an initial atteirpt was made 
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to compute all efficient points (i.e., not only those adja­

cent to a particular point) for the model specified here. 

The efficient yp vectors which were calculated are listed 

in Appendix I. Note that many of these vectors would 

receive consideration only under a very unusual configura­

tion of relative prices or weights for the commodities in­

volved. The computational expense of obtaining such vectors 

is likely to be wasted. The method which was substituted 

will eliminate much of this unnecessary computational expense. 

Let us designate the final output vector of Table 14 

as point 0. Then the six adjacent points given in Table 16 

provide a policy-maker with information concerning the optimal 

trade-offs which can and must be made in order to increase 

any component of 0 by a small amount. For example, if a 

policy-maker were interested in considering relative changes 

in M.S. theses, Ph.D. dissertations, and standard research 

years while holding the levels of the other three final 

commodities fixed he could consider the adjacent extreme 

points 3, 5 and 6. These points have been plotted in Figure 

1. Every point along the lines connecting these adjacent 

efficient extreme points is also efficient. From the figure 

we see that for each M.S. thesis he is willing to give up 

he will be able to obtain 1.25 additional standard research 

years; however, if he were to obtain an additional M.S. 

thesis he would be forced to give up 1.60 standard research 
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years. 

If the policy-maker were interested in relative trade­

offs between undergraduate and M.S. instruction and M.S. 

theses he would consider points 0, 4, and 1. These points 

have been plotted in Figure 2. If the policy-maker were 

concerned with the trade-offs between graduate student 

i n s t r u c t i o n  a n d  M . S .  t h e s e s  h e  c o u l d  c o n s i d e r  p o i n t s  0 ,  2 ,  

and 4, which have been plotted in Figure 3. 

Other examples are, of course, possible but those given 

indicate the type of information concerning output possi­

bilities which the adjacent efficient extreme points provide 

the policy-maker. It would seem that such information would 

be quite an aid in rational decision-making. 

The fact that a system of dual prices is associated 

with each efficient output vector leads to the possibility 

of using this imputed price information to effect a de­

centralized decision process in the system. Such a proposal 

immediately runs into some difficulties resulting from the 

nonuniqueness of quantity and imputed price relationships 

in a linear model. 

First,consider the possibility of using the vector 

of dual prices solely for effecting decisions within the 

department, completely disregarding any relationship between 

this vector of inputed prices and amy vector of prices 

for similar commodities existing in the larger economic 

system. For this purpose the dual variables will provide 
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a vector of imputed prices which when used to compare the 

value of inputs with the value of outputs of any particular 

activity will, in a completely decentralized manner, dis­

criminate between unprofitable activities and activities 

which just break even. In general, however, for those 

activities which do just break even, these prices alone, 

without coordination concerning quantities, will not be 

sufficient to insure that optimal quantities will be chosen. 

Alternatively, it is of interest to consider comparing 

the relative iirputed prices of the primary commodities 

with their relative prices in the larger economic system. 

Then primary commodities for which the relative value is 

higher in the department than the larger economic system 

would be the primary commodities to be increased in later 

periods. Such a link is not, however, as straightforward as 

one would hope. The policy-maker chooses a particular 

efficient output vector and we can find a price vector, c^, 

for final outputs which, when substituted in the original 

problem will give that efficient output vector as an optimal 

solution. In fact there is likely to be a whole set of 

values for c^ which will give that particular vector of final 

outputs. The imputed prices for primary commodities will 

depend upon which value for Cy is used. The arbitrariness 

of the choice must be removed if the imputed prices for 

primary commodities is to serve as a useful link to the 
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larger economic system. 

One possibility for removing the arbitrariness is to 

rely upon the policy-maker to choose that Cy which best 

represents the relative weights which he places upon the 

outputs. Another possibility is to choose that Cy which 

most nearly meets the estimated value of outputs in the 

larger economic system. In either case the choice of Cy 

is not free since it must be a Cy vector consistent with 

the desired efficient vector of final output. Assuming that 

Cy could be chosen in an acceptable way, then the dual 

variables for primary commodities could be used as a link 

to the larger economic system. 

Beyond the difficulties arising from nonuniqueness, 

decisions concerning changes in the primary commodities 

over time involve important dynamic considerations, which 

can only be adequately dealt with by expanding the model 

to include sequential time periods, identifying flows 

through the system over time emd explicitly including in­

vestment activities for primary commodities using actual 

or opportunity market values. Such an expansion of the 

model has not been attempted for this study. 

It is of interest to compare the importance of prices 

in the different models considered. In problem (39) prices 

play a very central role since the relative prices are taken 

as given either from the policy-maker or the larger economic 
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system and then the model is used to choose a feasible 

output vector which is optimal given the prices. This is 

opposed to the type of model just discussed in which an 

efficient vector of outputs is chosen from competing vectors 

of outputs, then a price vector is chosen which is con­

sistent with the efficient vector chosen. If the relative 

prices for final outputs for problem (39) can be reliably 

estimated then the optimal dual variables for inputs provide 

an important link to the larger economic system. The goal 

programming models can be viewed as a case where the im­

portance of the price vector lies in between the two 

extreme cases above. On the one hand the vector of outputs 

is chosen so as to closely approximate a particular vector 

of desired outputs, but the goal programming approach does 

require that policy-makers specify different vectors such 

as Cg, Cy, and c^ each of which indicates the relative im­

portance of different outputs and can be considered to be 

relative price vectors. However, these relative prices are 

only marginally important since c^ and c^ apply only to 

commodity additions or subtractions around the particular 

desired level of outputs, The vector, c^, is also only 

marginally important since it applies only to changes in 

activity levels which do not violate higher level objectives. 

Thus the ability of the policy-maker to specify his 

preferences in the form of output goals, y^, as well as 

his ability to specify his preferences in the form of 
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relative prices is important for the success of the goal 

programming approach. 

The possibility of using the goal programming approach 

to implement a decentralized hierarchical decision process 

is quite evident. The high level policy-maker can set his 

goals with top priority in terms of a few highly aggre­

gated outputs and leave to lower level policy-mcikers the 

decisions concerning which specific activities can best be 

used to meet the aggregated outputs (i.e., to leave for 

lower level policy-makers the responsibility to set and opti­

mize subgoals). It is hoped that the computational examples 

given in this chapter help elucidate how such a decentralized 

process could be carried out with the aid of similar models. 

The model outlined here was intended only as an 

example and a number of important criticisms can be directed 

toward it in its present form. Some of the deficiencies 

can be relatively easily accommodated; others pose more 

fundamental problems. There is little doubt that an appli­

cable model would need to be greatly disaggregated by 

activity and by commodity. Such an expansion of the problem 

poses very little difficulty even with respect to computation 

expense. 

The applicability of the model would be greatly en­

hanced if it were expanded to cover several time periods with 

explicit allowance for changes in the stocks of students. 
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faculty, and physical space and with the flows of students 

through the system specifically included. The necessary 

relations linking the periods should be relatively easy to 

specify and an expanded model with the main matrix assuming 

the familiar block triangular structure should be sufficient 

to accomplish such a generalization without basic diffi­

culties. 

The specified model is completely deterministic and the 

real world is, of course, filled with many elements of 

uncertainty. If the important elements of uncertainty 

proved to be in the vector of primary commodities (e.g., 

the number of students available is known only as a random 

variable) then the use of chance constrained progreunming 

could be applied. More complicated types of uncertainty 

might not be accommodated in such a straightforward manner. 

However, Chames, Glower, and Kortanek (1967, p. 316) have 

shown that "the preemptive goal method is a robust one; small 

errors in assignment of preemptive goals result in small 

errors in total profit." The stochastic approach to goal 

programming outlined by Contini (1968) provides a possible 

way of treating uncertainty, but the problem immediately 

becomes nonlinear and increases in the size of a nonlinear 

model are likely to quickly become important in terms of 

computational expense. 
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The fact that the model is linear can also be criti­

cized. As noted above input substitution can adequately be 

approximated by a linear model but the assumption of constant 

returns to scale is implicitly accepted in the use of a 

linear model. To the extent that increasing or decreasing 

returns to scale are important, the present model is in­

adequate. Adequate nonlinear models could of course be 

specified but would fundamentally change the models we have 

discussed in both theoretical and computational aspects. 

Finally, the assumption of complete divisibility of 

commodities implicit in the model used may prove too much of 

a simplification especially in assigning faculty and students 

to specific class sections. By using units of man years, 

which are divisible, we have evaded this difficulty. While 

such an approach is adequate if the model is sufficiently 

aggregated it is likely to be increasingly inadequate as 

the model is disaggregated. 
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CHAPTER VI. THE RELATION BETWEEN A NONCOMPETITIVE 

PRICE SETTING RULE AND EFFICIENT PRODUCTION 

In this chapter we will discuss the relation between a 

specific noncompetitive price setting rule and efficient 

production in a linear activity analysis model. The possi­

bility of decentralizing decisions and information under 

the noncompetitive rule will be discussed, as well as the 

implications of the results with respect to the general 

theory of the second best. Finally a numerical exemple 

and relevant calculations will be presented. 

There are, of course, many types of noncompetitive 

behavior, each a result of special characteristics in the 

economic system. Noncompetitive behavior may result, for 

example, if information is not complete, if increasing 

returns are present, or if a certain degree of monopolistic 

power exists. The analysis of systems having such character­

istics can be approached in many different ways, but in 

general will require stochastic or nonlinear models and may 

require quite different techniques such as game theory. It 

should be made clear that no attempt is being made here to 

analyze noncompetitive behavior in general. Rather we are 

concerned with a very special case of noncompetitive price 

setting which can be analyzed within the framework of a 

linear activity analysis model. 
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The specific assumption which is made is that certain 

economic agents set minimum price levels for certain pri­

mary commodities. Unlike the competitive case for the linear 

modely these minimum prices will not be zero when there is 

a surplus of the primary commodity involved. The set of 

minimum prices are assumed to be given external to the model 

rather than being considered variables determined simul­

taneously with other variables in the model. The mechanism 

by which they are determined is only assumed to exist, and 

the exact conditions under which such minimum price levels 

can be maintained are not spelled out beyond assuming a 

sufficient degree of monopoly control or eUoility to form 

coalitions. 

We will now proceed to show that for a model somewhat 

less general than (30) that an alternative price vector 

exists which satisfies conditions l-4a given by (31) but 

not 4b (i.e., some primary resources may have positive prices 

even when not used to the limit of availability). This al­

ternative price vector will be referred to as a non­

competitive price vector, p*, while the p satisfying condi­

tion (31) will be called the competitive price vector. Our 

major interest is showing the relationship between such 

noncompetitive price vectors and efficient commodity vectors, 

similar to (31) for competitive prices. Linear programming 

problems (32) and (33) will be used in the analysis. 

The results of Nikaidô (1964) are very closely related 
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to the relationships shown below. In fact, Nikaidô (1964, 

p. 29 8) states that the purpose of his article is "to 

try a challenge to the monopolistic prevalence of this linking 

of linear programming to competition." 

We are interested in a model in which the prices of 

primary commodities have rigid minimums, some or all of 

which are strictly positive. The vector, X^O, will be used 

to symbolize the lowest limit which primary commodity prices 

are allowed to assume. This new condition is explicitly in­

cluded in the former mo^el by adding constraint rows to the 

linear programming problem (33) to obtain a new linear 

programming problem which is given as (50) below. The dual 

to (50) which is given as (49) corresponds to linear 

programming problem (32) for the competitive case: 

min -e'yp-A's 

subject to ApX-yp 0 (49) 

0 

0 

Yp-s A ^ 

yp-Yp = 

X' Yp, s ̂ 0 
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max n'Wp+fptp 

subject to A^Up+AjUj+A^Up i 0 (50) 

-Up +tp = 0 

-Up+Wp = 0 

-tp 6 -ep 

-Wp 4 

Wp è: 0* 

Using (49) and (50) and a somewhat limiting assumption 

that Ap be square and nonsingular we will give in (52) a re­

sult for noncompetitive prices, p*, corresponding to result 

(31) for competitive prices. 

First we will give a preliminary result, (51), relating 

efficiency to an optimal solution of problem (49). 

If problem (49) is such that e'>-X*ApAy , X^O, where 

e is a vector of ones, then is efficient if and only 

if (49) has an optimal solution such that yp=0. (51) 

To show that efficiency implies an optimal solution 

such that yp=0, note that by the definition of efficiency there 

must exist a feasible solution to (49) but also by the defi­

nition of efficiency of ^p, it is possible to find a 

feasible y^iO and yp^ such that yp=yp+$p only if yp=0. 

Furthermore, the vector, s, also has a definite upper limit; 

therefore, (49) is bounded and an optimal solution must exist. 
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To show that an optimal solution such that yp=0, implies 

efficiency, an equivalent statement will be employed, i.e., 

not efficient iirplies (49) does not have an optimal solu­

tion such that yp=0. There are two cases. Case 1. If is 

not attainable then there does not exist a Yp^O which is 

feasible for (49), and therefore (49) does not have an optimal 

solution. Case 2. If #p is attainable but-^ere exists a 

19 
feasible yp such that Yp^p then any optimal solution to 

(49) must have Yp^O. We will show that any solution with 

yp=0 will be strictly larger than some solution with Yp^O and 

therefore cannot be optimal. It is at this point that the 

20 
property of a square nonsingular Ap is employed. 

Suppose that x* and & are both attainable, (i.e., feasi­

ble for problem (49)) where ApX* = Yp ̂  9p 

and Ap& = pp 

since Yp = Yp-?p, y| = Ap(x*-&) >_ 0. 

We assume -e'X'ApAp <0 and it follows that, 

-1 — 
(-e'-X'ApA )y* < 0, since the first vector is 

strictly negative and the second 
non-negative with at least one 
element positive, 

thus 

19 
Only in Chapter VI is the convention employed which dis­

tinguishes between the_inequality signs <_ and For example, 
YpiP implies yp<0 and YpT^O. 

20 
It seems quite possible that the requirement of a square 

nonsingular Ap matrix could be relaxed by employing the con­
cept of a generalized inverse (Ijiri, 1965, p. 3C) . 
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-e 'y*-X 'ApAp"^Ap (x*-&) <0 

or, 

-e'y*-X'Ap(x*-&)<0. 

But this last expression is exactly the change in the value 

of the objective function of problem (49) when the solution 

corresponds to x* rather than A since, 

z*-è =  ( - e ' s * )  -  ( - ^  0 - x ' â ) = - e ' y ^ - X  '  ( - n  ( + y ^ + n - ^ p )  

= -e'y^-A'Ap (x*-it) <0 

or 

z* <2. 

We have shown that if there exists a y^^O which is feasible 

for problem (49) it must be in the optimal solution. 

Next, the relation between the noncompetitive price 

vector, p* and an efficient vector is given in (52); 

For a model with Ap square and non-singular, an 

attainable ^p is efficient if and only if there exists a 

price vector p* such that: (52) 

1. p*'y = 0 

2. %f'A ^0 

3. P|; ̂  e'>-X'ApAp"̂ , X̂ O 

4a. p*^ i X^, all i 

4b. p*^ = X^, if fpi>ni . 
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Part I will show that p* satisfying 1-4 for an attain­

able irtplies that ^p is efficient. The attainability of ̂ p 

implies that (49) has a feasible solution, and p* satisfying 

conditions 2-4 implies that (50) has a feasible solution 

with 

P| = tp = Up 

p* = U; 

Pp = Wp = Up" 

Since problem (49) and its dual problem" (50) both have feasible 

21 
solutions, they must both have optimal solutions, the 

values of which must be equal. Thus there exist optimal 

solutions such that -e'yp^-X's^=n'Wp^+^^tp^ and for all 

feasible nonoptimal solutions we have -e'yp-X's>n'Wp+^p'tp. 

Condition 1, p*'#=0, has not yet been used. In terms of 

the variables of problem (49) and (50) this condition im­

plies that 

or that 0=tp'$p+w^yp, and there exists a feasible s=#p-n 

such that t^9p+w^?p = t^:^p+w^ (n+s) or -w^s = t^fp+w^n 

and by condition 4.b, -X's = -w^s so -X's=tp#p+w^n, where 

s,tp,Wp are feasible for problems (49) and (50). But from above 

we have -e'yp-X's>tp#p+w^n for all feasible yp, s, tp, and Wp, 

21 
See Goldman and Tucker (1956, theorem 2, page 61). 
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and if equality holds, these solutions are optimal. There­

fore, the s, tp, and Wp satisfying -X •s=t^;^p+w^n must be 

optimal solutions such that yp=0. We have shown that the 

existence of a vector, p*, satisfying conditions 1-4 implies 

that the optimal solution of problem (49) must have yp=0. 

And from (51) it follows that is efficient. 

Part II of the proof is that an efficient inplies 

the existence of a p* satisfying conditions l-:4. From (51) the 

efficiency of implies (49) has an optimal solution such 

that yp=0. For the optimal solution we have: 

-e'yp°-X's° = -X's° = ^ptp^+n'Wp^. 

The first equality results from the fact that for ^p efficient 

yp must equal zero. The second equality results from the 

equality of optimal dual objective functions. For the optimal 

solutions we also have: 

-X's° = -Wp° s° = Wp° (n-yp°). 

The first equality results from the fact that at the optimal 

Wp^>Xp s® = 0 and the second since -s^>n-yp^ ->• Wp^=0. 

Thus we have: 

Wp° (n-yp°) = ^j^tp"+n'Wp" 

or 

tp°'v^p°'yp° = 0. 
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If we let Up° = tp° = lOp® = Wp° = p*, yp° = and 

= p*, and note that = 0, then condition 1, (i.e., 

p*'y=0) follows from the above equation. Conditions 2 ,  3 

and 4.a follow directly from the constraints of problem (50) 

and condition 4.b follows from the properties of an optimal 

22 
solution to a linear programming problem. This completes 

the proof of Part II and of (52). 

Since the assumption that was square and non-

singular was used in the proof of (52) but is not necessary 

for (31), the latter applies to a more general model than the 

former. The assumption of a square Ap is limiting in that 

it implies that the model applies only to an economic system 

in which the number of production activities and the number 

of final commodities are equal. In many actual economic 

systems the number of possible production activities will 

greatly exceed the number of final commodities produced. 

The importance of the square and nonsingular assumption 

may be given a more interesting interpretation in economic 

terms by noting its implications with respect to the aggre­

gation of activities into final commodities and the dis­

aggregation of a vector of final commodities into production 

activities. The matrix, Ap, can always (i.e., even when 

Ap is not square) be viewed as providing the weighting 

22 
See Goldman and Tucker (1956; corollary 2b, p. 62). 



200 

coefficients for the aggregation of activities into a unique 

vector of final commodities. However, only when Ap is square 

and nonsingular so that Ap ^ exists can we, in general, dis­

aggregate a vector of final commodities into a unique bundle 

of basic activities, x (i.e., x=Ap ^ Yp)• In the more general 

case it may be possible to disaggregate a given vector of final 

commodities into a number of basic activity bundles and con­

versely a number of combinations of basic activities may be 

aggregated into the same vector of final commodities. 

Since the problems of determining efficient vectors and 

corresponding price vectors may be characterized as linear 

programming problems, standard computational routines may be 

employed. However, for large economic systems the problem of 

obtaining all the necessary information (i.e., the values for 

the technology matrix. A, and the levels of primary resource 

availability n) at one central location may be very costly or 

even impossible. Even if all the necessary information can be 

obtained it may exceed the size of available computational 

equipment. The decomposition processes such as those discussed 

in Chapter II would seem to provide the most promising possi­

bilities for surmounting these difficulties in situations 

where actual numerical solutions are desired. 
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Decentralization Under a Noncompetitive 
Pricing Rule 

Certain more theoretical questions concerning the possi­

bility of decentralizing economic decisions may be posed within 

the context of a linear activity analysis model such as 

that outlined here. It is upon certain of these questions that 

we will focus at this point. Specifically we will examine the 

possibility of developing certain decentralized pricing rules 

which will sustain an efficient point once it has been attained. 

The important questions concerning decentralized dynamic price-

quantity adjustment processes and the conditions under which 

they are stable or converge to an efficient point when starting 

from a point which is not efficient will not be discussed, even 

though these questions have received much attention in the 

literature. Important examples are Arrow eind Hurwicz (1960) 

and the survey article by Negishi (1962). 

The linear activity emalysis model can be viewed as 

decentralized with respect to technological information and 

decision-making. Assume that each column of the A matrix 

is known to only one decision-maker who is also informed of 

prices relative to his activity but has no information about 

other activities. Assuming such a decentralized economic 

organization, Koopmans (1951a, p. 93) has shown that the 

following proposal will maintain an efficient point once it 

has been obtained: 
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Let the players in our allocation game be called 
helmsman (or central planning board), a custodian for 
each commodity, and a manager for each activity. 
Consider the following rules of behavior: 
I. For the helmsman: Choose a vector of posi­

tive prices on all final commodities, and inform the 
custodian of each such commodity of its price. 
II. For all custodians: Buy and sell your commodity 
from and to managers at one price only, which you 
announce to all managers. Buy all that is offered at 
that price. Sell all that is demanded up to the 
limit of availability. 
III. For all custodians of final commodities: Announce 
to managers the price set on your commodity by the 
helmsman. 
IV. For all custodians of intermediate commodities: 
Announce a tentative price on your commodity. If 
demeind by managers falls short of supply by managers, 
lower your price. If dememd exceeds supply, raise it. 
V. For all custodians of primary commodi tie s: Regard 
the available inflow from nature as a part of the 
supply of your commodity. Then follow the rule on 
custodians of intermediate commodities, with the follow­
ing exception: Do not announce a price lower than 
zero but accept a demand below supply at a zero price 
if necessary. 
VI. For all managers: Do not engage in activities 
that have negative profitability. Maintain activities 
of zero profitability at a constant level. Expand 
activities of positive profitability by increasing 
orders for the necessary inputs with, and offers of the 
outputs in question to, the custodians of these 
commodities. 

This set of pricing rules can be considered a restatement 

of (31). If these rules are followed then an attainable bundle 

and a price, p, satisfying conditions 1-4 of (31) will be main­

tained, which is a necessary and sufficient condition for 

efficiency. Koopmans (1951a, p. 95) has discussed the rela­

tion of these rules to the competitive bidding process of 

2 3 
Pfin corresponds to Pp in our notation. 
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competitive markets. For example note the following quote: 

The reader will have noticed that the behavior 
prescribed from individuals by the rules I-VI is simi­
lar to that which results from the operation of com­
petitive markets. The rules on the custodians are only 
personalizations of the properties of competitive 
markets. The vector p.., which ultimately gives 
direction to the allocation of resources in production, 
instead of being set by a helmsman, could equally 
well be the result of competitive bidding by many con­
sumers, each of which maximizes his individual utility. 
The behavior attributed to each manager could also 
come about as the result of each activity being carried 
out independently by many entrepreneurs bidding compe­
titively for the input commodities of that activity and 
selling its output commodities competitively. 

The fact that such a process will maintain an efficient output 

vector is proposed as support of the long-standing belief 

that a competitively organized economic system will produce 

efficiently. Such a process assumes that decision-makers 

are price-takers rather than price-setters; an assumption 

which is insured if no coalitions are formed and if the 

number making decisions with respect to any given activity or 

commodity is large. 

Below we will indicate certain revisions of rules I-VI 

such that an efficient vector of final commodities will be 

maintained even though noncompetitive elements are present 

in the system. The term noncompetitive is used here in the 

limited special sense that certain primary commodities are 

assumed to be controlled by an individual or a coalition of 

individuals who may thus act as price-setters rather than 

price-takers. It will be assumed that a minimum positive 
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price is set for primary commodities and any amount up to 

the limit of availability will be sold at this price. If 

the amount demanded at this minimum price exceeds the amount 

available, then a competitive type rule of increasing the 

price until the amount demanded equals the maximum amount 

available will be followed. We will replace rule V for 

custodians of primary commodities by the above noncompetitive, 

minimum price-setting type behavior, letting the minimum 

price be designated by the vector X' and chosen such that 

e'>-X'ApAp ^. We will add to rules I and III the constraint 

that the price of final commodities should never be less than 

unity (i.e., Pp^e).^^ Then by noting the relation of (52) 

and this revised set of pricing rules, it is evident that 

the revised set will maintain an efficient final output 

vector. If we let X=0, the revised rules are identical to 

Koopmans'. 

The possibility of defining prices such that primary 

commodities not used to the level of their availability may 

continue to have a positive price would seem to be a step 

in the direction of reality. As simple examples, observe 

that theaters charge for tickets even though the theater 

24 
Actually the unity vector, e, is used here merely be­

cause it was convenient in the proof of (51). All that is re­
quired is that pp>-X'ApAj,-^. No generality is lost since for 

any price, p*, satisfying the conditions of(52),a new price, 
p**=Yp*, where y is a positive scalar, will satisfy the same 
conditions with y replaced by yX. 
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remains unfilled, and that laborers command positive wages 

even when a large amount of unemployment exists. Finally, 

to quote Nikaidd (1964, p. 299), "The above confietitive 

situation is certainly unrealistic, because zero prices are 

imputed to factors not fully employed there, while in reality 

such factors seldom become free goods." 

The setting of the level of the minimum price, X, could 

correspond to a number of real world situations. The mono­

polist with exclusive control over a primary commodity is an 

obvious example. Probably of more importance are the numerous 

economic and political coalitions which are formed and which 

result in the setting of minimum prices, implicit or explicit. 

Labor union contracts, minimum wage and fair pricing laws, 

agricultural support prices, and understandings between 

businessmen about not "ruining the market" are but a few 

important examples. The study of how such coalitions form 

and the method by which final agreement is reached is quite 

interesting in itself; however, it would require a somewhat 

different analytical approach (e.g., game theory) and will 

not be discussed or reviewed here. We will be content to 

assume that agreement on a X can be reached. 

It is quite important, however, to note that the level 

at which X is set is also limited by the formal conditions 

necessary for maintaining an efficient final commodity vector. 

The condition that prices of final commodities must be 



206 

strictly greater than -X'ApAj, ̂  must be fulfilled to maintain 

efficiency. The economic meaning of this condition becomes 

clear once the dimensions of the expression -X'ApAj, ̂  have 

been ascertained. First, take X'Ap which is a Ixn vector 

and the dimensions of element j will be dollars/jth activity, 

since X has dimensions of dollars/ith input and the jth 

column of Ap has elements with dimensions of ith input/jth 

activity. Since x=Ap ^y^, it is clear that the kth column 

of Ap ^ has elements with dimensions of jth activity/kth 

final commodity. So finally, the dimensions of the Ixn 

vector -X'ApAp"^ will be dollars/kth final commodity, and 

the vector values will simply be the value of primary com­

modities (priced at the minimum level X) per unit of kth final 

commodity. Thus the condition Pp+X'ApA^ >0 merely states 

that the price of final commodities must be strictly greater 

than the minimum value of primary commodities necessary to 

produce that final commodity. If for the kth element this 

condition does not hold and the kth element is negative, then 

production of the kth commodity will involve a loss, even 

when all primary commodities are priced at their minimum 

level, and it is clear that an efficient vector of final 

commodities would not be maintained. A related discussion 

concerning the numerical example is given below. 

Once X has been set "low enough" so that the condition, 

Pp+X'ApAp ^>0, is satisfied, the decentralized decision-
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making with decentralized information can be carried out. 

However, the level that is "low enough" for each element of 

X is not independent of the values set for the other elements 

of X . In fact, it is apparent that complete centralization 

of information (i.e., knowledge of Ap and Ap as well as X and 

Pp) would be necessary to determine values of X so that the 

condition would be satisfied. We conclude that a decision­

making process which will sustain an efficient point when 

noncompetitive price-setters are present cannot be decentral­

ized to the same degree possible for the competitive counter­

part. 

Implications for the Theory of 
Second Best 

The result of (52) and the revised noncompetitive pricing 

rules would appear to have implications for the "General 

Theory of Second Best" as outlined by Lipsey and Lancaster 

(1957, p. 12). 

The general theorem for the second best optimum states 
that if there is introduced into a general equilibrium 
system a constraint which prevents the attainment of 
one of the Paretian conditions, the other Paretian 
conditions, although still attainable, are, in general, 
no longer desirable. In other words, given that one 
of the Paretian optimum conditions cannot be fulfilled, 
then an optimum situation can be achieved only by 
departing from all other Paretian conditions. 

Koopmans (1957, p. 95) has clearly outlined the possibility of 

considering the linear activity analysis model as describing 

production in a general equilibrium model. Assuming convex 
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preference orderings and nonsaturation of at least one 

consumer for each final commodity, all Pareto optimal points 

would be efficient points. Thus for this simplified model 

the "Paretian conditions" can be considered to be the price 

conditions in (31) and rules I-VI. The relation of these 

competitive pricing rules and the "Lemer-Lange" type rules 

has been thoroughly discussed by Koopmans (1951a, p. 95; 

1951b). Lipsey and Lancaster (1957, p. 17) clearly indicate 

the intended application of their theorem to such situa­

tions in the following quote: "A nationalized industry con­

ducting its price-output policy according to the Lemer-Lange 

'Rule' in an imperfectly competitive economy may well diminish 

both the general productive efficiency of the economy and 

the welfare of its members." 

For the simple linear activity analysis model, which 

admittedly leaves much to be desired in terms of representing 

a realistic general equilibrium system, the general theorem 

for the second best apparently does hold. In (52) the condi­

tion 4b for clearly "prevents the attainment of one of 

the Paretian conditions" (i.e., condition 4b of (31)); never­

theless, the other conditions (i.e., 1-3) remain necessary for 

a Paretian optimal which in this case reduces to being an 

efficient point. We have indicated how the strictly positive 

values can be attributed to monopolistic power or imperfect­

ly competitive situations. The fact that the theorem does not 
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hold for this model is apparent in that the pricing rules 

I-VI, when revised for the presence of monopolistic power, 

retained all the rules for the competitive case, except for 

rule V involving custodians who set minimum price levels. 

Not only are the other rules still "desirable" they are 

necessary for an efficient output vector and if 

p*+X'ApAp ^>0 is also fulfilled they are sufficient condi­

tions . 

Numerical Examples 

In order to illustrate the relationship between efficient 

points and the alternative pricing systems, a number of com­

putations have been made using two very simple linear 

25 
activity analysis models. Written in a format corresponding 

to (30) the fifst model is as follows: 

1 0 0 0 = 
^F1 

0 

0 1 0 0 = 
^P2 0 

-1 -1 1 0 H ^11 
= 0 

0 0 -1 1 
^2 ^12 

0 

-3 -2 0 0 
^3 

= 
Ypi -12 

-5 0 0 0 ^4 ^P2 2. -10 

-1 -2 0 0 /pa -9 

x, / y 
• 

(5 3) 

25 
The first model used was taken from Chames and Cooper 

(1961, p. 292) in order to help facilitate comparisons. It 
is somewhat unfortunate that the intermediate commodities 
do not play a significant role in the model. 
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The linear programming problem (54) which corresponds to 

(50) was used to perform the actual computations ; 

1 0 

0 1 

0 0 

0 0 

-1 0 

-1 0 

1 -1 

0 1 

-3 -5 -1 

-2 0 -2 

0 0 0 

0 0 0 

0 

0 

0 Kl\ ° 
Uf2^ 0 

^11 ° 

-1 0 

0 -1 
0 0 0 

1 0 U;2 = 0 

0 1 Up, 0 

0 0 

- 1 0  0  

0 - 1 0  

0  0 - 1  

10 0 

0 10 

0 0 1 

Up2 ̂  0 

0 Up3 0 

Wpl 0 

0 0 0 0 
-1 0 Wpp -1 

» -1 "P3 

0 0 0 

- 1 0  0  

0 - 1 0  

0  0 - 1  

tpl 

® _^2_ ^2 

J :^3i 

Wp à 0 

where 

. 2 
1.50 

>
 w
 

•
 

II 

3.75 

II 

4.5 
' yp = ^ ' \ ,  9/= 

4.25 ^ 4.75 

and 

= f X = 
.131 
. 0 0  

.00 

, x-" = 

.13 

.02 

.02 
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Note that when X=0 the problem corresponds to (33). The first 

model, corresponding to (53) and (54) , involves no joint 

production but the matrix, Ap, is altered in the second 

model, (55), so that the first two activities jointly 

produce both final commodities: 

Problem (55) is identical to problem (54) except for the 

upper left submatrix which is as follows: 

1 

.3 

0 

0 

. 8  

1 

0 

0 

(55) 

where 

= 
2.9 

II 

2.625 

II 
o
 

" .o' 

4.6 4.950 » 4.5 

and 

o" \ l 3  

= 0  >
' w

 

II . 0 2  

o
 

. 0 2  

The efficient final outputs for the first model consist of the 

1 2  3  
points $p , #p , ?p ; those points on the straight line joining 

12 2 
}?p to j^p ; as well as the points on the line joining Jp to 

#p^. These efficient final outputs are plotted in Figure 4. 

The efficient final outputs for the joint production model are 

plotted in Figure 5 and consist of ̂ p^, ?p^ and the points on 

the straight line joining these points. The results of the 



212 

Table 19. Solutions to problem (54) 

Primary Final 
Commodities Commodities 

r 
1 2 3 1 2 

ÎF" .00 .00 .00 

P .50 .00 .00 1.50 1.00 

y -12.00 -10.00 -8.00 2 .00 3.00 

n-Yp .00 .00 -1.00 

îp' .13 .02 .02 

p* .48 .02 .02 1.56 1.00 

y -12.00 

o
 

o
 

0
 

rH 1 -8.00 2 .00 3.00 

n-Yp .00 .00 1.00 

?F' .00 .00 .00 

p .50 .00 .00 1.50 1.00 

y -12.00 -7.50 -9.00 1.50 3.75 

n-Yp .00 -2.50 .00 

9/ x3 .13 .02 .02 

p* .13 .02 .51 1.00 1.28 

y -12.00 -7.50 -9.00 1.50 3.75 

n-Yp .00 -2.50 .00 

îp' x^ .00 .00 .00 

p .00 .00 1.00 1.00 2.00 

y -9.00 .00 -9.00 .00 4.50 

n-Yp -3.00 -10.00 .00 
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Table 19 (Continued) 

Primary Final 
Commodities Commodities 

1 2 3 1 2 

9/ X2 .13 .00 .00 

P* .13 .00 .61 1.00 1.48 

y -9 .00 .00 -9.00 .00 4.50 

-yp -3.00 -10.00 .00 

.13 .02 .02 

p *  .13 .02 .51 1.00 1.28 

y -9 .00 .00 -9.00 .00 4.50 

n-Yp -3.00 

o
 

o
 

0
 

1—
j 1 .00 

îp' .00 .00 .00 

p  .00 .00 1.00 1.00 2.00 

y • -10.00 -2.50 -9.00 .50 4.25 

n-Yp —2 .00 -7.50 .00 

îp' 
x2 . 1 3  .00 .00 

p *  . 1 3  .00 .61 1.00 1.48 

y • 

o
 

o
 

0
 

H
 

1 -2.50 -9.00 .50 4.25 

n-Yp -2.00 -7.50 .00 

.13 .02 .02 

p *  . 1 3  .02 .51 1.00 1.28 

y 

o
 

o
 

0
 

rH 1 

o
 

m
 

CM 1 1 vo
 

o
 

o
 

.50 4.25 

n-Yp 1 to
 

o
 

o
 

-7.50 .00 
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Figure 4. Efficient points for problem (54) 
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Figure 5. Efficient points for problem (55) 



217 

Table 20. Solutions to problem (55) 

h 
Primary 

Commodities 
Final 

Commodities h 
1 2 3 1 2 

.000 .000 .000 

P .691 .000 .000 1.273 1.000 

y -12.000 -10.000 •8.000 2.900 4 .600 

n-Yp 0 0 -1 

)p' .130 .020 .020 

p* .6 87 .020 .020 1.382 1.000 

y -12.000 -10.000 •8.000 2.900 4.600 

n-Yp .000 .000 i.oop 

.000 .000 .000 

p .691 .000 .000 1.273 1.000 

Y -12 .000 -7.500 •9.000 2.625 4 .950 

n-Yp .000 -2.500 .000 

yp" .130 .020 .020 

P* .525 .020 .125 1.000 1.000 

Y -12.000 -7.500 •9.000 2.625 4.950 

n-Yp .000 2.500 .000 

îp' .000 .000 .000 

p .5 75 .000 .0 75 1.000 1.000 

Y -12.000 -7.500 9.000 2.625 4.950 

n-Yp .000 -2.500 .000 
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Table 20 (Continued) 

Primary Final 
Commodities Commodities 

r  — — — — —  '  
1 2 3 1 2 

to
 

.130 .020 .020 

p* .525 .020 .125 1.000 1.000 

y -12.000 -7.500 -9.000 2 .625 4.950 

n-Yp .000 -2.500 .000 

solutions are given in Tables 19 and 20 respectively. The t 

vector of (54) and (55) gives the prices for final commodi­

ties, Pp: Wp gives the primary commodity prices, Pp, and u^ 

the in te mediate commodity prices p^. However, for this par­

ticular model pj=0 for all solutions and thus is not given in 

the tables. The dual variables for (54) and (55) correspond to 

activity levels and commodity values. With reference to the 

partitioned right hand side vector of (5 4) dual values corre­

sponding to the next three partitions given values for y^, yp, 

yp respectively, and when Xj>0 those corresponding to the last 

partition give values for Ey=ypj+nj. Thus from the optimal 

simplex tableau, all of the information present in Tables 19 

5Uid 20 may be obtained. 

All of the numerical results conform to the theoretical 

results of (31) and (51) as of course they must unless there is 

a mistake in the theory. Those problems with X^=0 and 

efficient result in prices satisfying the conditions in (31). 
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Those with and efficient result in prices satisfying 

the conditions in (52) . Those with which are not attain­

able result in unbounded solutions to problems (54) and (55). 

This is as expected since an unattainable vector results 

in the dual linear programming problems of (54) and (55) being 

infeasible. The results of these unbounded solutions are 

not recorded in the tables. Finally, those problems which 

were run with which are attainable but not efficient 

4 c 
(i.e., ^p for the first example and ^p for the second 

example) Save positive yp elements such that yp=^p+yp 

is efficient, and it is this vector of values which is given 

in the tables along with corresponding price vectors. 

The pricing solutions given in the tables are not 

necessarily unique. Any positive scalar multiple of the 

competitive price vectors in Table 19 will also be competi­

tive price vectors for the corresponding efficient vector 

of final commodities. Any positive scalar multiple of the 

noncompetitive prices given in Table 20 will satisfy our 

conditions for a noncompetitive price vector if the 

corresponding minimum price vector level is multiplied 

by the same positive scalar. There often exist other price 

vectors which differ by more than a scalar constant. For 

example, alternative price vectors for the problems with 

yp^, #p^, and #p^, are respectively: 
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0 
1 

\ l 3  1.00 
".395 .64474 

0 ' Pf= / P|= .00 , Pp= , and pp= .000 ' PF= 
. 8065 8 

0 
2 .61 

1.48 
W m 

, and pp= 

.105 
. 8065 8 

To gain a better understanding of the economic meaning 

of the vector quantity m'=X'ApAp ^ and its relationship to 

the noncompetitive and competitive price vectors for a given 

commodity vector we will compare the price vectors for . 

31 
The noncompetitive vector for X =[.13, .02 , .02] is given 

in Table 20 as [p*| p*'] = [.525, .02, .125, 1.0, 1.0]. 

The corresponding competitive price for is [ppipp] = 

[.395, 0, .105, .64474, .3065 8], We can see that these two 

price vectors are related through the vector [X'|m'] in 

the following manner: 

[p*'lp*'] + [-X'|m'] = [p^lpp'] . 

For our specific example we have: 

[.525,.02,.125,1,1] + [-.13,-.02,-.02,-.35526,-.19342] 

= [.395,0,.105,.64474,.80658] 

since 

m'=X'ApAp"l= [.13,.02,.02] 

= [-.35526,-.19342] . 
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Thus m represents a kind of "lump sum" amount which 

measures the difference between the noncompetitive and competi­

tive pricesof final commodities. It is that portion of the 

value of final commodities which is imputed to primary com­

modities as a result of the ability of primary commodity 

custodians to set a minimum price level X even before any 

type of maximization process takes place. But the levels of 

the various elements of \ are not unimportant. First of 

all, as was discussed above, X must be small enough so that 

Pp+X'ApAp ^>0» if we desire that an efficient output vector 

will result. And the particular values for X affect not 

only absolute but also relative prices of final commodities. 

Note the different slopes of the iso-revenue lines in Figure 

5. These different lines correspond to the noncompetitive 

and competitive prices given above for efficient point 

Up to this point in the discussion we have implicitly 

assumed that the economic system corresponding to the model 

was a closed system and that no possibility existed for ex­

change of commodities with some other economic system. 

Koopmans(1951a, p. 91) has allowed for the possibility of 

exchange by augmenting the existing model with an exchange 

matrix, n, of the following form: 
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n = 

-n. 

n. 

-n. 

0 

n. 

"^4 • • 
-n 
n 

n. 
0 
n. 

This matrix defines a set of relative exchange rates or 

prices, n=(n^...n^), between commodity one and all other, 

commodities. Commodity one can be considered the numeraire 

and must be strictly positive for the matrix to have any 

meaning. 

This exchange matrix IT is added to the former model 

in such a way that the dual linear programs (49) and (50) would 

be enlarged as follows: 

subject to 

min -e'yp-X's 

HpG + ApX-yp 

+ AjX 

HpC + ApX -yj 

•s ± 

-Yx 

= 0 

= 0 

= 0 

= 0 

A n 

Y f  

(56) 

X, yp, siO 
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max n'Wp + 

subject to n^Up + nj-Uj. + n^Up 

A^Up+A-Uj+A^Up i 0 

0 (57) 

+t, 
F 0 

-Up+Wp 0 

-t, F X -e F 

w. p £ .  -X  

Koopmans (1951a, p. 9 3) has proven that a necessary and suf­

ficient condition that an efficient vector remain efficient 

after such an exchange matrix has been added is that the 

exchange prices, II, be competitive prices. Charnes and 

Cooper (1961, p. 318) have shown that for Uj^>0 the following 

relation must hold between the vectors n and u: 

This follows from noting that the initial constraints of 

problem (57) give -RjU^+n^Uj = 0 for j=2,n. 

We are interested in what happens to a system with the 

noncompetitive imputed prices once exchange opportunities 

with an outside economic system are introduced. It is 

immediately obvious that Koopman's results for competitive 

prices will not carry over. We merely note that with non-
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competitive prices it is possible for primary commodities to 

have positive prices even when not used to the extent of 

the availability. Thus with exchange opportunities correspond­

ing to such a price it would be possible to continue producing 

the same final output as before and exchange the unused 

quantity of primary commodities for a positive amount of 

some final commodity, so the old commodity vector would no 

longer be efficient. 

Four different numerical examples using yp^ were run 

using two exchange matrices corresponding to the competitive 

and noncompetitive price vectors for and (see Table 

20). The results of these solutions are given in Table 21. 

The first example corresponds to Koopmans ' case and gives 

the expected result (i.e., that y^^ remains efficient). 

The second example using exchange prices, n, equal to the 

competitive price vector, p, but a nonzero X results in an 

infeasible solution for the maximization problem (57) and will 

be unbounded for (56). The fact that (56) will be unbounded is 

immediately obvious when we note that primary commodities 2 

and 3 may be obtained through the exchange matrix in unlimited 

quantities to increase the values of Sg and Sg which both 

have values of -.02 in the objective function. The last 

two examples are of more interest. They show that 

using exchange prices, H, equal to noncompetitive prices it is 

possible to obtain no less of yp2 and a larger amount of y^^^ 
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Table 21. Solution to problem (55) with exchange matrix added 

Primary Final 
Commodities Commodities 

1 2 3 1 2 

yp" .691 .000 .000 1.000 1.273 

.000 .000 .000 

p .691 .000 .000 1.000 1.273 

y -12 .000 -7.500 -9.000 2.625 4.950 

n-Yp .000 -2.500 .000 

.691 .000 .000 1.000 1.273 

.130 .020 .020 

P 

y Solution was infeasib le 

n-Yp 

fpb n3 .525 .020 .020 1.000 1.000 

.000 .000 .000 

p .525 .020 .125 1.000 1.000 

y -12 .000 -10.000 -9.000 2 .675 4.950 

n-Yp .000 .000 .000 

.525 .020 .020 1.000 1.000 

.130 .020 .020 

p .525 .020 .125 1.000 1.000 

y -12 .000 -10.000 -9.000 2.6 75 4.950 

n-Yp .000 .000 .000 
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than was possible without the exchange opportunities. 

Thus an efficient output will not necessarily remain effi­

cient when exchange opportunities at noncompetitively im­

puted prices are added. 

The above discussion is closely related to the fact 

that when noncompetitive pricing is present the well known 

correspondence between imputed prices and productivity of 

resources (Samuelson, 1958) is no longer valid. Nikaido 

(1964, p. 300) has discussed this fact for a model in 

which the net value added due to each activity is given 

as data for the problem rather than obtained as a result 

of the maximization process. 

To focus the discussion we will take as an example the 

efficient commodity vector and noncompetitive price 

vector corresponding to (see Table 20). If we increase 

the availability of the second primary commodity from -10 

to -11 units there will be no increase in output since even 

-10 units results in an excess over the amount used. So 

for the second primary commodity the value of the final 

commodities resulting from one more unit is zero but the im­

puted price is strictly positive, (i.e., .02). 

If, on the other hand, we increase the available amount 

of the first primary commodity from -12 to -12.1 there will 

be an increase in the final commodity vector. The amount 

of final commodity one will increase from 2.625 T:O 2.66 75 
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and yp2 will increase from 4.95 to 4.965. The value of 

this increase is .95 75 since the corresponding noncompetitive 

price vector does not change. The noncompetitive price of 

the first primary commodity is .525 or .0525 for .1 units. 

Thus the noncompetitive price of yp^ is clearly less than 

the value of its productivity in this case. The difference 

between the two values, .0525 and .0575, is imputed to the 

additional -.25 units of yp^ used, the noncompetitive price 

of which is .02 even though in neither case is yp2 used to 

the level of its availability. Since the introduction of 

noncompetitive price setting behavior to such a simple model 

results in clear deviations between prices and the value of 

marginal product, we concur with the statement of 

Nikaidô (1964, p. 301) that "marginal productivity can 

hardly account for factor price imputation in a more realistic 

situation." 
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CHAPTER VII. TOPICS FOR FURTHER 

RESEARCH 

A number of possibilities for research beyond that which 

has been done in this study can be suggested. First of all, 

to actually determine the computational efficiency of the 

solution procedures proposed in Chapter II, these procedures 

need to be applied to a number of large scale decomposable 

programming models. By applying the original Dantzig-Wolfe 

algorithm to the same models it would be possible to deter­

mine whether the proposed procedures are successful in 

decreasing the number of major iterations. 

Beyond the purely technical consideration of computation­

al efficiency much more study is needed of the possibility of 

using such a decision process in an actual planning situation. 

Use of the decomposition principle to simulate a market 

adjustment process is an interesting possibility. While it 

is not entirely clear how one should proceed, it seems quite 

possible that by obtaining solutions for relevant parameter-

izations of the coefficients and applying regression analysis 

to the results, one might be able to obtain an interesting 

picture of the behavior of the modeled economic system. 

There is of course the need to move beyond the restric­

tive static and deterministic linear models used. The possi­

bility of relaxing these restrictions has received attention 

in the literature, but much more research in this direction 
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seems to be needed. For example, the possibility of de­

composing a large system and treating it as a group of linked 

subsystems has also been analyzed theoretically using the 

methods of control theory. Such work seems to hold promising 

possibilities for analyzing economic models which are 

essentially dynamic (Mesarovié, Macko, and Takahara, 1970). 

The next step in determining the usefulness of goal 

programming and efficiency criteria for university decision­

making might be to obtain the opinion of relevant university 

decision-makers. It is important to know whether they feel 

that their objectives could be characterized in the form of 

goals or their decisions aided by knowledge of efficient alter­

natives open to them. Given that it is felt that such analysis 

could aid their decision-making, a much more comprehensive and 

disaggregated model would need to be constructed. 

The results of Chapter VI apply to a very specific type 

of noncompetitive price setting embodied in a quite restric­

tive model. At the very least the possibility of relaxing 

the assumption of a square matrix should be explored. A 

more interesting generalization would be an investigation 

of how the specific noncompetitive price setting rule would 

affect efficiency in nonlinear models satisfying the usual 

convexity assumptions. 
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APPENDIX I 

Efficient Output Vectors, y^, for Departmental 
Model Given in Table 9 

yui  46800 .  000 46800 .000 46800 .000 46800 .000 46 800.  000 
ymi 4320 .000 4320 .000 4320 .000 4320 .000 4320.  000 
ydi  2160 .000 2160 .000 2160 .000 2160 .000 2160.  000 
ymt 82 .477 77 .012 83 .478 84 .9  84 88.  889 
ydd 28 .854 30 .000 30 .62 8 33 .333 33.  333 
ysry 52 .899 55 .001 44 .643 20 .499 6 .  872 

yui  46 800 .000 46800 .000 46 800 .000 46800 .000 46800.  000 
ymi 4320 .000 4320 .000 4320 .000 4320 .000 4320.  000 
ydi  2160 .000 2160 .000 2160 .000 2160 .000 2160.  000 
ymt 69 .  834 80 .000 80 .000 86 .557 88.  889 
ydd 30 .000 24 .494 10 .492 10 .492 11.  658 
ysry 60 .  737 62 .996 67 .663 44 .779 28.  504 

yui  46800 .000 46 800 .000 46 800 .000 46 800 .000 46800.  000 
ymi 4320 .000 4320 .000 3628 .6  79 3469 .615 36 80 .  903 
ydi  1457 .712 1457 .712 1457 .712 1169 .39 8 1288.  366 
ymt 88 .  889 82 .222 82 .222 82 .222 80.  000 
ydd 33 .333 30 .000 30 .000 30 .000 30.  000 
ysry 27 .0  30 73 .564 87 .007 95 .706 97.  0  39 

yui  46800 .000 28800 .000 25210 .000 25210 .000 —2 .  000 
ymi -2  .000 -2 .000 -2  .000 -2 .000 -2 .  000 
ydi  -2  .000 -2  .000 -2  .000 -2  .000 -2 .  000 
ymt 80 .000 80 .000 80 .000 80 .000 80.  000 
ydd 30 .000 30 .000 30 .000 22 .058 23.  69 7 
ysry 102 .011 114 .194 116 .277 116 .  764 110 .495 

yui  -2  .000 25210 .080 25210 .0  80 2  8800 .000 46800.  000 
ymi -2  .000 -2  .000 -2  .000 -2 .000 —2. 000 
ydi  1292 .325 1350 .655 1543 .954 1621 .237 2073.  375 
ymt 80 .000 80 .000 80 .000 80 .000 80.  000 
ydd 24 .102 22 .482 30 .000 30 .000 30.  000 
ysry 118 .177 115 .387 114 .732 112 .466 99.  209 

yui  46800 .000 46800 .000 2 8800 .000 25210 .080 25210.  0  80 
ymi -2  .000 2552 .620 3616 .645 3798 .5  39 4320.  000 
ydi  2160 .000 2160 .000 2160 .000 2160 .000 2160.  000 
ymt 80 .000 80 .000 80 .000 80 .000 80.  000 
ydd 30 .000 30 .000 30 .000 30 .000 30.  000 
ysry 96 .669 92 .731 91 .090 90 .809 80 .  669 
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YUI 28800. 000 28800 .000 28799 .990 46800 .000 46800 .000 
YMI 4320. 000 379 8 .538 3611 .403 3368 .745 3215 .926 
YDI 2160. 000 2160 .000 2160 .000 2160 .000 2160 .000 
YMT 80. 000 80 .000 82 .855 86 .557 88 .889 
YDD 27. 152 27 .152 27 .152 10 .492 0 .000 
YSRY 78. 771 88 .910 82 .585 63 .276 61 .116 

YUI 46800. 000 28800 .000 25210 .0 80 25210 .080 25210 .0 80 
YMI 4320. 000 4320 .000 4320 .000 3652 .885 3211 .227 
YDI 2160. 000 2160 .000 2160 .000 2160 .000 1359 .464 
YMT 88. 889 82 .855 82 .222 82 .222 82 .222 
YDD —2 . 000 27 .152 30 .000 30 .000 30 .000 
YSRY 29. 647 68 . 80 7 72 .914 85 .886 110 .0 39 

YUI 25210. 080 -2 .000 -2 .000 -2 .000 -2 .000 
YMI 3422 . 515 3367 .929 3299 .512 30 70 .083 3156 .641 
YDI 1478. 432 1379 .490 1255 .4 80 1168 .615 1260 .522 
YMT 80. 000 80 .000 80 .000 82 .769 82 .222 
YDD 30. 000 30 .000 25 .126 27 .538 30 .000 
YSRY 111. 373 114 .358 114 .850 112 .945 113 .025 

YUI -2. 000 0 .000 2 5210 .0 80 2 8800 .000 39511 .530 
YMI 3315. 800 -2 .000 -2 .000 -2 .000 -2 .000 
YDI 1250. 243 12 86 .202 1342 .850 1386 .640 1539 .078 
YMT 80. 000 80 .000 80 .000 80 .000 80 .000 
YDD 30. 525 30 .636 30 .811 30 .946 31 .417 
YSRY 114. 217 117 .431 114 .435 112 .119 104 .058 

YUI 46800. 000 46800 .000 46800 .000 46800 .000 46800 .000 
YMI 0. 000 0 .000 0 .000 26 74 .2 74 3895 .9 85 
YDI 1330. 879 1712 .279 2160 .000 2160 .000 1457 .712 
YMT 80. 000 80 .000 80 .000 80 .000 80 .000 
YDD 31. 76 8 31 .951 33 .333 33 .333 33 .333 
YSRY 99. 211 94 .899 71 .223 67 .098 66 .287 

YUI 46 800. 000 28800 .000 25210 .000 25210 .000 2 8800 .000 
YMI 4320. 000 4320 .000 4320 .000 3920 .192 3916 .658 
YDI 1457. 712 2057 .472 2160 .000 2160 .000 2057 .472 
YMT 80. 000 80 .000 80 .000 80 .000 80 .000 
YDD 33. 333 33 .333 33 .333 33 .333 33 .333 
YSRY 58. 052 57 .49 7 57 .402 65 .176 65 .340 

YUI 28800. 000 46800 .000 46 800 .000 28800 .000 25210 .080 
YMI 3334. 045 3313 .373 3522 .394 3377 .870 3353 .164 
YDI 2057. 472 1457 .712 895 . 36 7 1246 .456 1306 .4 86 
YMT 88. 889 88 .889 80 .000 80 .000 80 .000 
YDD 33. 333 33 .333 31 .598 30 .830 30 .699 
YSRY 45. 647 46 .604 96 .610 109 .058 111 .185 
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YUI 25. 210 28800 .000 46 800 .000 25210. 0 80 25210. 0 80 
y MI 3091. 785 309 7 .546 3131 .249 3337. 579 4320. 000 
YDI 1213. 735 114 6 .994 756 .571 2160. 000 2160. 000 
YMT 83. 048 83 .269 84 .561 88. 889 88. 889 
YDD 30. 413 30 .523 31 .169 33. 333 33. 333 
ySRY 109. 433 10 7 .178 93 .988 45. 483 26. 380 

YUI 2 8800. 000 46800 .000 46800 .000 46800. 000 46800. 000 
YMI 4320. 000 4320 .000 3774 . 332 36 80. 90 3 34 87, 711 
YDI 2057. 472 1457 .712 1457 .712 1288. 366 14 32. 756 
YMT 88. 889 80 .000 80 .000 80. 000 80. 000 
YDD 33. 333 30 .000 30 .000 30 . 000 15. 34 7 
YSRY 26. 475 81 .319 91 .9 30 97. 0 39 97. 988 
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APPENDIX II 
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Figure 6. Flow chart for steps on pages 26 and 27 
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Figure 7. Flow chart for steps on pages 41 and 42 


