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A B S T R A C T

The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork
tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory ten-
derness and SSF are weakly correlated (R2= 0.2). Raman spectral data were collected in 6 s using a portable
Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores
and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction
accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples.
Classification models were developed to predict tenderness at two ends of sensory quality as “poor” vs. “good”.
The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day
15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential
to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality
and/or cull poor quality to meet market demand/expectations.

1. Introduction

Pork meat can be classified into quality groups, according to mea-
surements taken in the carcasses like pH 45min postmortem, pH 24 h
postmortem, drip loss, and L* value (Bendall & Swatland, 1988; Joo,
Kauffman, Kim, & Kim, 1995; Kauffman, 1993; van Laack et al., 1994;
Warner, Kauffman, & Greaser, 1997) but these methods may not be
amenable to line-speed measurement. Trained sensory panel evaluation
is considered the best evaluation method to predict tenderness and
provides the most accurate prediction of consumer's responses, but,
they are costly, laborious and time consuming, so, they cannot be used
as a routine quality assurance method in meat production systems.
Based on the available methods and with the difficulties/restrictions in
using them on-line, it becomes essential to develop a quick and non-
invasive method to evaluate pork sensory quality. A wide range of
methods have been investigated regarding an early postmortem as-
sessment of meat quality (ElMasry, Suna, & Allen, 2011; Honikel &
Fischer, 1977; Hoving-Bolink et al., 2005; Kamruzzaman, ElMasry, Sun,
& Allen, 2012; Toldrá & Flores, 2000) but, for on-line applications,

spectroscopic methods seem more appealing. Raman spectroscopy (RS)
is an alternative vibrational spectroscopic method that can be used to
evaluate structure and composition of food samples. It is non-invasive
and can provide in situ information about composition/structure of
proteins and lipids (Beattie, Bell, Borggaard, & Moss, 2008; Beattie,
Bell, Farmer, Moss, & Patterson, 2004; Fowler, Schmidt, Ven, Wynn, &
Hopkins, 2014; Herrero, 2008a, 2008b; Olsen, Rukke, Flåtten, &
Isaksson, 2007; Schmidt, Scheier, & Hopkins, 2013). An added ad-
vantage of RS is that water molecules are relatively weak Raman
scatters, and they don't yield strong interfering signals like NIR and FT-
IR do. The objective of this study was to evaluate the correlation be-
tween Raman spectral data measured from fresh and aged pork with
sensory characteristics as well with slice shear force (SSF), and to de-
velop classification models to allow rapid/accurate prediction of sen-
sory tenderness groupings based on objectively measured RS and SSF
data.
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2. Materials and methods

2.1. Animals and samples collection

In this work, pork from four different plants across the US were
studied. These plants were chosen to represent the variation in pro-
cessing and product quality. Two hundred loins were selected in each
plant. The data presented here comprises the Raman scans and slice
shear force measurements of 800 loins and sensory evaluations for 300
loins. The pork loins were removed from the carcass at 24 h postmortem
and after routine loin boning and trimming, loins were selected based
on color and marbling diversity by USMARC (Roman L. Hruska U.S.
Meat Animal Research Center, Clay Center, NE) personnel. After the
measurements in the plants, the boneless loins were vacuum packaged
and transported on the same day to USMARC where they were held
until 14 days postmortem at 0 °C. After aging, the loins were sliced into
2.54 cm chops with a Grasseli NSL 400 portion meat slicer (Grasselli
SPA, Albinea, Italy). Chops 5 and 6 were used for slice shear force,
chops 7 and 8 for trained sensory analysis and chop 9, for Raman. For
the sensory analysis only 75 loins out of the 200 from each plant were
chosen, based on the extreme differences in color and marbling. One
chop for Raman measurements (to be scanned on day 15 postmortem)
and two for trained sensory analysis were vacuum packaged and
transported in a cooler on ice blocks to the ISU Lab on day 14 post-
mortem.

2.2. Raman spectral data collection at day 1 postmortem in the plant

After they were selected for the study, the refrigerated loins (0–3 °C)
were brought to an off-line, safe area nearby and the ventral side was
scanned with the Raman portable system, under ambient light. The
Raman spectrometer (iRaman, B&W Tek, Newark, DE) used in this
study was equipped with a 785 nm laser, with a maximum power
output of 60mW. The excitation and Raman scattered photons were
collected with a fiber optical probe. According to previous tests, the
lean was scanned once, on the surface of Longissimusmuscle, around the
10th rib, perpendicularly to the muscle fibers, with an integration time
of 6 s. Spectral acquisition time (integration time, 6 s) was selected to
assure a minimum acceptable signal to noise ratio (SNR,> 3) was
reached, with as little interruption to the processing line operation as
possible during any future implementation. A home-made probe casing
was attached to the head of the optical probe to minimize ambient light
during spectral acquisition. For each sample, three spectra were ac-
quired.

2.3. Raman spectral data collection at day 15 postmortem in ISU
laboratory

Prior to the scans, the chops were removed from the package and
allowed to bloom for at least 20min, at room temperature. Raman
measurements were performed inside a dark chamber to reduce the
interference from ambient light using the same iRaman portable system
described above with the same settings at 3 different locations on the
surface of the chops, with 6 s scanning time for each location. The
average of the three measurements was used to represent the Raman
spectra for each sample. It should be noted that the Raman spectra from
the 15 days postmortem samples were acquired from the cross-section
of the loins (i.e., chops), not the ventral side surfaces of the loins as in
the day 1 postmortem samples and were the average of 3 scans vs 1 scan
from day 1 postmortem measurements. Some of the differences we
observed in the spectral patterns may be partially due to these sampling
differences.

2.4. Physical evaluation - Slice Shear Force (SSF)

Slice shear force on all 800 loins was measured according to

(Shackelford, Wheeler, & Koohmaraie, 1999). Two 2.54-cm thick chops
were obtained from the 11th rib region of each loin. The following day
(i.e., 15 d postmortem), fresh (never frozen) chops were cooked (71 °C)
with a belt grill and longissimus slice shear force (SSF) was measured
with a single 1-cm-thick, 5-cm-long slice, removed from the lateral end
of each chop. SSF measurements were conducted in duplicate. The
obtained SSF values were then averaged and that value was used for all
analysis.

2.5. Sensory evaluation

After cutting, sensory chops (300, 75 loins from each processing
facility) were sealed in vacuum package bags and transported on ice to
the Iowa State University Sensory Evaluation Laboratory (Ames, IA).
The sensory evaluations occurred on the following three days, using
two chops per loin. The chops were cooked on clamshell grills
(Cuisinart Griddler Deluxe, Model GR-150, Cuisinart, East Windsor, NJ)
to an internal temperature of 68 °C. Individual chop temperatures were
monitored using thermocouples attached to a digital temperature
monitor (Omega Engineering Inc., Stamford, CT). When samples
reached 68 °C, they were removed, and the center of the sample was cut
into 2.54 cm cubes. Samples were placed in a Styrofoam cup which had
a random three-digit blind code and capped with a plastic lid. Blinding
codes were used to identify the sample and to ensure that there was no
sample bias. A trained sensory panel (n=8 to 10) evaluated samples
for juiciness, tenderness, chewiness, pork flavor, and off-flavor. A 15-
unit unanchored scale was used with terms which represented a low
degree of each trait on the left end of the line and a high amount of each
trait on the right end. Unsalted crackers and water were provided be-
tween samples. Sensory data were collected and summarized using a
computerized sensory software system (Compusense Inc., release 5.4,
Guelph, ON, Canada).

2.6. Classification (grouping) of loins

For groupings, we classified the 300 samples with tenderness scores
into 4 percentiles. For sensory tenderness scores, the samples that fell
into the top 25% (highest tenderness scores, 1st percentile) were clas-
sified as “good”, and the bottom 25% (lowest tenderness scores, 4th
percentile) were classified as “poor”. The groups of upper-medium and
lower-medium were classified for samples fell in the 2nd percentile
(50%–75%) and 3rd percentile (25%–50%), respectively. Each group
has 75 samples in it. The same principle also was applied to the 300
samples for SSF grouping analysis, as a comparison to the tenderness
score analysis. It should be noticed that high SSF values suggest tough
meat, which typically are coincident with low sensory tenderness
scores. For sensory tenderness, two hundred samples were randomly
selected as the calibration set; among the remaining one hundred
samples, fifty samples were again randomly selected as a testing set.
Samples from different plants were pooled together for data analysis.
Hence, the variances associated with different plants were included as
part of the intrinsic variances of the samples in the analysis. Ten re-
petitions were conducted to calculate the average classification accu-
racy.

In addition, another grouping analysis was carried out for the entire
800 sample set, with SSF values. Among the 800 samples, three groups
were defined as “good”, “medium” and “poor”. “Good” was defined as a
SSF value< 10; “medium was defined as a SSF value between 10 and
15; and “poor” was defined as a SSF value higher than 15. For this
analysis, 400 randomly selected samples were used for calibration, and
100 randomly selected samples were used for each validation tests. Ten
repetitions were conducted to calculate the average classification ac-
curacy.
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2.7. Spectral data processing

All Raman spectra were automatic baseline corrected and smoothed
to reduce the baseline variability at the region between 400 cm−1 to
2000 cm−1, and normalized using BWSpec Software Suite (B&W Tek,
Inc., Newark, DE). The first derivative and second derivative spectra
were calculated from the smoothed and normalized spectra, using
Matlab (MathWorks Inc., Natick, MA).

When Raman spectral data are used to construct chemometric
models to classify and/or differentiate pork samples with distinct
properties, the most important spectral signatures are the fingerprinting
Raman peaks that represent the biochemical landscape of the pork
samples. Raman peaks are represented by their wavenumber (Raman
shift) and intensity. The peak intensities are dependent on many factors
that may vary from sample to sample (i.e., laser spot size on sample,
exposure time, etc.), however, although the Raman shifts (i.e., the peak
wavelengths) may also down-shift or up-shift due to changes in mole-
cular structures that lead to changes in bond lengths, these changes are
due to internal changes, not external changes such as varying mea-
surement conditions often met in a factory floor, hence they tend to
remain more as constant during Raman measurement. Therefore, in this
study we utilized a binary barcode approach to eliminate variations in
the spectral data due to peak intensities and highlight the unique
Raman shift fingerprints of each sample. The binary barcode approach
was originally proposed by Ziegler and coworkers (Martens & Naes,
1992) to differentiate microorganisms based on their Raman spectro-
scopic signatures. In our previous work, we developed a similar ap-
proach to improve the classification accuracy of pork loins (Wang,
Lonergan, & Yu, 2012). Briefly, binary barcodes were generated based
on the second derivative spectra in the 400 cm−1 to 2000 cm−1 range.
A binary value (0 or 1) was assigned to each second derivative spectral
data point primarily based on the sign of the second derivative, i.e., 1
for upward curvature (positive second derivatives), and 0 for down-
ward curvature (negative second derivatives). Furthermore, a threshold
for zero was set at 6% of the maximum value of the second derivative
for positive second derivative readings (for all values larger than the
threshold, 1 was retained; otherwise it was switched to 0). This
threshold helps discriminate against residual noise components. Con-
tribution to the measured spectra from low level background noises was
removed by assigning 0 to it. Remaining 1 s represent contributions to
the measured spectra from meat components. The threshold value (6%)
was determined experimentally by finding the barcodes that provided
the best prediction for the sensory attributes.

The barcodes then were subjected to data compression to reduce the
dimension of the data set. Partial Least Square (PLS) regression was
used to compress the data sets (the binary barcodes) and generate in-
puts for the SVM model. Comparing to the unsupervised principal
component analysis (PCA), PLS is a supervised method in which the PLS
scores are obtained to maximize the separation between groupings
correlated with the predictors (e.g., SSF values and tenderness group-
ings). Our main goal is to predict sensory attributes (e.g., tenderness)
that are at the two ends of the panel evaluation spectrum (“poor” vs.
“good”). In this work, PLS is only used to compress the dimension of the
data. To calculate PLS loadings and scores, the spectral barcode data
were correlated to a grouping matrix which used “dummy variables”
assigned based on the grouping of the spectral data (for tenderness
classification dataset, the variables were 0 for good, 1 for upper-
medium, 2 for lower-medium, and 3 for poor; for the whole SSF dataset,
the variables were 0 for good, 1 for medium and 2 for poor), and the
PLS inherently sought loadings that best separated the group centers.
The PLS scores calculated this way were optimized to separate those
groups (Kemsley, 1998). This compression was conducted using Win-
DAS, a software package developed by Kemsley (John Wiley & sons,
Chichester, UK), and the PLS loadings and scores were output for the
classification model development and test. The loadings matrix was
used for transforming barcode data from the test set into PLS scores for

classification testing.

2.8. Classification and regression model development

The first ten PLS scores generated from the barcodes were employed
in a support vector machine (SVM) discriminant model (Steinwart &
Christmann, 2008) to classify unknown pork loin samples into different
quality categories implemented with Matlab SVM toolbox.

The 10 PLS scores were also used to create a multiple linear re-
gression (MLR) model to calculate sensory tenderness scores and SSF
values. 200 samples were randomly selected from the 300 sample set to
create the MLR model, and the remaining 100 samples were used for
validation of the model (50 randomly selected samples were used in
each validation test). The calculated sensory tenderness scores and SSF
values were then compared to the measured values with different error
tolerance to evaluate how feasible it is to use such a predictive model to
calculate these values quantitatively.

All data analysis was conducted using Matlab (The MathWorks,
Natick, MA) software.

3. Results and discussion

3.1. Sensory tenderness and SSF

One of the key factors that determines the accuracy of statistical
predictions is the uniformity of the data distribution. Our primary goal
is to correctly predict pork samples that fall into the two extreme ends
of their sensory texture attributes (e.g., tenderness). However, it was
not feasible to find a large group of pork loins that had uniformly dis-
tributed sensory tenderness scores across the entire range of 0–15,
among the 300 samples available (Fig. 1a). The tenderness scores were
relatively evenly distributed within our evaluation range (0–15). SSF
data were measured for all 800 samples, and their distribution was
shown in Fig. 1b. The last batch of samples (No 601–800, from plant
No.4) showed a broader range of SSF values than the first three batches
(from plant No.1–3), where the tenderness scores for the 75 samples
from that batch did not show much discrepancy from the other batches.

For the 300 samples that both sensory tenderness scores and SSF
values were available, a least square regression model was developed to
evaluate the correlation between these two parameters. The results are
shown in Fig. 2. With a R2=0.20, it suggests that SSF and sensory
tenderness scores were only weakly correlated, which is inconsistent
with earlier reports from other groups that correlations between sen-
sory tenderness and SSF values generally are moderate to high
(Emerson, Woerner, & Belk, 2013; King, Wheeler, Shackelford, &
Koohmaraie, 2009; Shackelford, Wheeler, & Koohmaraie, 2004).

3.2. Raman spectroscopic analysis

Typical Raman spectra of pork samples in the 400–2000 cm−1 re-
gion are shown in Fig. 3. Baseline correction, smoothing and normal-
ization were applied to reduce background noises. The wave number
and intensity changes in the Raman bands were indicative of changes in
the secondary and tertiary structures and variations in local environ-
ments of meat proteins, which in turn determine the characteristics/
properties of the meat. The Raman band centered near 1653 cm−1

(Fig. 3) represents amide I band which is an indicator of the overall
concentration of proteins (Herrero, 2008a, 2008b). The Raman band
centered near 1250 cm−1 represents amide III which is sensitive to
secondary and tertiary structures of proteins (Beattie et al., 2008). Band
at 1450 cm−1 is assigned to CH2 scissor, which decreases with in-
creasing hydrophobicity in molecular environment; Band at 1003 cm−1

is assigned to Phenylalanine ring stretching, which is insensitive to
molecular environment. Bands centered around 900 cm−1 and
1130 cm−1 are assigned to stretching modes of CeC and N from lipids
and proteins, respectively (Beattie et al., 2008). Combined these
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spectroscopic characteristics illustrate the changing chemical properties
of the meat samples.

The Pearson correlation coefficients between sensory tenderness
scores, SSF values and Raman intensity at each wavenumber of all
spectra of 300 samples at day 1 and day 15 postmortem are shown in
Fig. 4a and b. In general, Raman intensities were only lowly (< 0.20)
correlated to sensory tenderness and SSF values; it is understandable,
sensory attributes are complex, nonetheless they cannot always be
completely explained by physically measured parameters. SSF values
represent the mechanical properties of the meat as a whole, they are
also moderately correlated to Raman signatures. Another expected
observation was that the correlations between tenderness, SSF and
Raman spectral data showed opposite trends. The correlation patterns
of tenderness scores and SSF to Raman peaks were similar to what we

have reported before (Wang et al., 2012). This suggests a mechanistic
correlation between SSF values and chewiness. Nonetheless, the var-
iations in the correlation readings suggested that the underlining me-
chanism for tenderness/SSF variations between pork samples might
originate from biochemical/compositional variations (e.g., protein
composition and structures, proteolysis, lipids content and distribution,
etc.).

3.3. Prediction of sensory tenderness and SSF values based on PLS
regression model

Direct regression modeling using the entire spectral data is very
inefficient computationally. Therefore, dimension reduction to the
spectral data was conducted before SVM modeling. The first 20 PLS

Fig. 1. Distribution of Tenderness scores and Slice Shear Force (SSF) values (n=300 samples; a. Tenderness scores; b. SSF values).
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Fig. 2. Linear regressional correlation between Tenderness scores and Slice Shear Force (SSF) values (n=300 samples).
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components were calculated from the Raman spectral data,> 95% of
the total variances were accounted for by the first 10 PLS components.
Also, the first 10 PLS components were well correlated to the attributes
(sensory tenderness and SSF) by the calculation of the Pearson corre-
lation coefficients. Hence, the first 10 PLS components were used for
regression model development without further optimization.

To develop the MLR model, spectra of 200 pork samples were
randomly selected as training set. Within the remaining 100 pork
samples, 50 were randomly selected as the validation/testing set.
Table 1 shows the validation results. For day 1 postmortem samples, for
an error tolerance of 25% (i.e., (1.0–0.25)× observed value <
predicted value < (1.0+ 0.25)× observed value), the prediction ac-
curacies are 50.1% and 30.8% for tenderness scores and SSF values,
respectively; for an error tolerance of 50% ((1.0–0.5)× observed
value < predicted value < (1.0+0.5)× observed value), the pre-
diction accuracies are 61.5% and 57.7%, respectively; for an error
tolerance of 100% ((1.0–1.0)× observed value < predicted value <
(1.0+1.0)× observed value), the prediction accuracy is 92.3% and
88.5%, respectively. It is clear that regression model does not yield
accurate prediction of specific values, for either SSF or tenderness
scores. Nonetheless, the prediction accuracies for day 15 postmortem
samples are significantly higher than that for day 1 postmortem sam-
ples, both for tenderness scores and SSF values. For the same 25% error
tolerance, the prediction accuracies for tenderness scores and SSF are
75% and 88.5%, respectively. It is understood that postmortem aging
influences the biochemical and structural features of muscle and meat
components and these were reflected in their spectral characteristics.
The data collection sites were different on day 1 (ventral side) and day
15 (cross-section), it might cause some variations in the spectral mea-
surements. However, since the underlining chemical fingerprints ulti-
mately determine the spectral signatures, and the intrinsic chemical
differences between these two sites, which are still within close distance

from each other, are fairly insignificant. It is therefore reasoned that
these variations should be minimal, comparing to what would be
caused by aging. Because both tenderness and SSF were evaluated at
day 15 postmortem, it is reasonable to deduce that the spectroscopic
signatures of the day 15 postmortem samples were better correlated to
them than that of day 1 postmortem samples, which in turn resulted in
better prediction results.

The standard deviations of the sensory panel values were around
5%. Apparently, an accurate prediction of either tenderness scores or
SSF values based on Raman spectroscopic data is not feasible. Due to
the complexity of the mechanism which determines meat tenderness
and its mechanical properties, this is to be expected. However, to pre-
dict consumer responses to a meat product, it may not be necessary to
know the precise sensory panel values, which are subjectively defined.
If a prediction can be acquired that distinguishes the extreme cases (i.e.,
very good quality vs. very poor quality) with good reliability, such
prediction would be beneficial to a meat producer to classify its meat
products. Therefore, we further developed classification models using
Raman spectral data to differentiate and classify pork loins into groups
that are defined based on their sensory tenderness scores or SSF values.

3.4. Classification of pork loins by sensory tenderness and SSF

A primary question to answer in this project was to determine if
Raman spectra acquired with a portable spectrometer in a short time
span (6 s per sample) from freshly cut pork loins could be used to
classify pork loins into distinguishable quality grade groups (good,
upper-medium, lower-medium, poor) as defined by their tenderness or
SSF values. The classification accuracies for each group were presented
in Table 2. For day 1 postmortem, the classification was only moder-
ately successful; for both tenderness scores and SSF values, ~70%
correct classification was achieved for each group. Such accuracy was

Fig. 3. Typical Raman (iRaman, B&W Tek, Newark, DE) spectrum of pork samples. From top to bottom: Raman spectrum with peak assignment, 1st derivative
spectrum, 2nd derivative spectrum, and binary barcode spectrum.
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certainly not high enough for practical application. For day 15 post-
mortem samples however, a substantial improvement in classification
accuracies was observed. Consistent with what we have observed for
the regression modeling results, spectral signatures of day 15 post-
mortem samples correlated much better with either tenderness scores
or SSF values. Aging is having a significant effect on the samples, the
exact mechanism of which needs further investigation.

Accuracies for crossing prediction into the incorrect extreme cate-
gories (good vs. poor) for tenderness ratings are shown in Table 3. Even
for the day 1 postmortem samples, the SVM model performed well in
not classifying the really tough meat (“poor”) into tender category
(“good”), and vice versa. For day 15 postmortem, the classification of
good and bad samples into their appropriate categories was reasonably
good, and the cross prediction into these extreme categories was rare
(< 2.5%).

We also investigated the effect of changing the definition of the
grade categories on the classification accuracy. For the 800 samples
that we had SSF values, we defined categories based on their SSF va-
lues, not on percentiles. As stated above, “good” was defined as SSF
value< 10, “medium” 10–15, and “poor” above 15. The overall pre-
diction accuracies for SSF value-based grouping was listed in Table 4.
Apparently, pork samples that belong to the medium quality category
are more difficult to predict based on their Raman spectroscopic char-
acteristics. We also observed the same trend, that day 1 postmortem
samples only provide moderately accurate classification results.

Another observation, which was consistent with our earlier report

Fig. 4. Pearson Correlation Coefficients (r) between Raman (iRaman, B&W Tek, Newark, DE) spectral data and sensory tenderness and Slice Shear Force (SSF);
n=300 samples; a. d1 postmortem; b. d15 postmortem).

Table 1
Acuracy of the PLS regression prediction for sensory tenderness and SSF (Slice
Shear Force) with different error tolerance, for samples at d 1 postmortem and d
15 postmortem.

Error tolerance ± 25% ±50% ±100%

Tenderness Day 1 50.1% 61.5% 92.3%
Day 15 75% 98.1% 100%

SSF Day 1 30.8% 57.5% 88.5%
Day 15 88.5% 98.1% 100%

Table 2
The average accuracies for classifying pork Raman (iRaman, B&W Tek, Newark,
DE) spectra into 4 groups based on percentiles. The average accuracies are
calculated from 10 training and testing using Support Vector Machine.

Grouping 1st 25%
percentile

2nd 25%
percentile

3rd 25%
percentile

4th 25%
percentile

D1 postmortem
tenderness

76.3% 62.4% 67.7% 68.6%

D15 postmortem
tenderness

93.5% 90.1% 92.2% 95.5%

D1 postmortem SSF 76.1% 73.5% 72.6% 69.9%
D15 postmortem

SSF
92.8% 93.1% 96.7% 100%

Table 3
The average classification accuracies for pork Raman (iRaman, B&W Tek,
Newark, DE) spectra between Poor (1st 25% percentile for tenderness) and
Good (4th 25% percentile for tenderness), for samples at day 1 and day 15
postmortem. The average accuracies are calculated from 10 training and testing
using Support Vector Machine.

Poor Good

Classified as “poor” Day 1 76.3% 5.1%
Day 15 93.5% 1.5%

Classified as “good” Day 1 4.8% 68.6%
Day 15 2.3% 95.5%
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(Wang et al., 2012), was that the prediction accuracy for “good” sam-
ples, either for tenderness or SSF, was consistently better than that for
“poor” samples. It is hypothesized that the proteolysis of the muscle
fibers results in more distinguishable Raman band structures in protein
bands that may be highlighted in the barcode calculation. Further study
is needed to identify these biochemical compositional markers that
differentiate pork samples.

4. Conclusions

In this report, Partial Least Squares Regression models were devel-
oped to predict the value of sensory tenderness scores and SSF values
based on Raman spectroscopic characteristics of pork loins. It was de-
monstrated that sensory tenderness attributes of pork loins were lowly
correlated to their Raman spectroscopic characteristics. Furthermore, a
classification model was created to classify pork loins into grades by
sensory tenderness and SSF values based on spectral data acquired with
a portable Raman spectrometer rapidly enough to potentially be ap-
plied in an online situation. The method was demonstrated to yield
moderate performance in identifying pork loins that belong to extreme
categories of their sensory tenderness (i.e., superior and inferior) with
freshly cut loins. The classification became much more accurate as the
spectra from aged samples were used to match the time of the sensory
evaluation and SSF measurements. The results of the report suggest that
Raman spectroscopy, in combination with performance enhancing data
processing and multivariate statistical discriminant modeling, has the
potential to become a rapid on-line screening tool for pork quality.
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