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I. INTRODUCTION

A. Introduction

Although statisticlans and research workers have, for a
long'time, appealed to preliminary tests of significance as a
technique in thelr investigations, it was only in the last
fhree decades that proper evaluation of their effects on sub-
sequent inferences 1s belng made. These inference procedures
incorporating preliminary tests usually oécur in incompletely
specified models. Recently Bancroft and Han (1977) has given
a more appropriate designation of such inference procedures
and termed them as inference based on conditional specifica-
tion.

The term, conditional specification as opposed to uncon-
ditional specification, 1s used to describe the situation when
the research worker is uncertain regarding the initial speci-
fication of a model for his investigation. He may wish to
determine the final specification based on avallable data,
“usually by using preliminary tests. However, the research
worker, elther from experience or some knowledge about the
investigation, may be able to choose a complete model for his
study. In such a case, the research worker has an uncondi-
tlonal specification.

A bibliography on inference based on conditional specifi-
cations was recently complled by Bancroft and Han (1977).

These 1nclude estimation, prediction, hypothesis testing and



others. In this dissertation, we shall consider the regres-
sion estimation of a population mean under conditional speci-

fication.

B. Literature Review

The earliest paper on the effect of preliminary tests was
due to Bancroft (1944). He discussed the bias in the case of
estimation of varlances on the basis of a preliminary F-test.
Since chen, many statisticians and research workers have
worked on inference procedures based on conditional specifica-
tion. Most of theée studies used the terminologles "inference
procedures incorporating preliminary test(s)," "pooling data,"
or "inference for lincompletely specified models." Recently,
in a note by Bancroft and Han (1977), the terminology "infer-
ence based on conditional specification” was suggested as a
broader representation of the phrases used in the past. In
this section, we shall review briefly the estimation of the
mean

In 1948, Mosteller studied the estimation of a population
mean by pooling lndependent samples on the basis of a signif-
icance test. He investigated what he called the 'Disadvantage
Coefficlent' which 1s the efficiency of the never pool esti-
mator relative to the preliminary test estimator. Bennett
(1952) evaluated the bias and distribution of estimates of
means based on one or more preliminary tests of significance.

He extended the work of Mosteller to the cases where the two



population variances may be known but unequal or equal but
unknown. Preliminary tests were also used by Bennett (1956)
to‘provide‘interval estimates for the mean and variance of a
normal population.

Kitagawa (1963) continued the investigatlons of Bennett
(1952) on the distribution of the preliminary test estimator
for the mean of a normal distribution when the variance is
unknown. He derlived the blas and m.s.e. and expressed these
as Infinite sums which are very difficult to compute. However,
Han and Bancroft (1968) worked on the same problem and were
able to express the bilas and m.s.e. as finifte sums which are
much easier to evaluate. They also recommended a procedure
for détermining a proper choilce of tﬁe significance level of
the prelimihary test to ensure a relative efficlency to be
larger than some preassigned value.

A little before this time, Kale and Bancroft (1967) had
considered the problem of pooling means of two independent
random samples from discrete distributions (particularly the
Poisson and binomial) which can be approximated by normal
distributions after appropriate transformations. They studled
two samples from N(ui,oz) i = 1,2 assuming the parameter of in-
terest was ul and 62 was known. An estimator ¥ was proposed
both for the estimation of ﬁl and for the test of HO: Hy=Hg e
The bias and m.s.e. of x*¥ and the size and pbwer of the over-

all hypothesls testing procedure were studied. They

~



recommended the preliminary test should be at the .25 level
for the control of the m.s.e. and size of the test procedure
based on X¥.

In 1971, Brogan used a preliminary test of significance
and two-stage sampling to derive an estimator for the mean of
a normal distribution. He derived the blas and m.s.e. and
compared the latter, for a fixed total sampling cost, to the
m.s.e. of some other estimation procedures. Ahsanullah (1971)
studled the problem of estimation of the mean LY of one of the
components of a bivariate normal distribution with equal
marginal varlances from a sample of size n. The result of a
preliminary test of HO: ul=ﬁ2 was used to defline an estimator
for Uq where Uo is the mean of the other component of the dis-
tribution. He studied the m.s.e. of the prelimlnary test esti-
mator and tabulated 1ts efficlency relative to the usual esti-
mator. He also used the selectlon procedure recommended by
Han and Bancrofit (1966) to compute tables which can be used to
determine a proper cholce of the significance level of the
preliminary test.

Bancroft (1972) gave a summary of some recent advances in
inference procedures using preliminary tests of significance.
He briefly outlined the theory behind the use of preliminary
tests in estimation, tests of hypothesis and prediction. This
is based primarily on the desire to make inferences for incom-

pletely specifiled models. Useful appllcations of preliminary



tests of significance based on results obtained in earlier
papers were given in the text by Bancroft (1968).

In 1973, Han (1973a) introduced the use of preliminary
tests into regression estimation for bivariate normal distribu-
tions. In estimating the mean ﬁy of one of the components of
a bivariate normal distribution and the mean U of the other
varliable is known, the investigator can use X in a regression
estimation to increase precision. When Uy is unknown, Han
proposed the use of a regression estimator which depends on
the outcome of the preliminary test of HO: My =Hg e "He studied
the bias and m.s.e. of the preliminary test estimator and
discussed the relative efficiency. Later, the same year, Han
(1973b) extended his study to the case when the mean of Xis
unknown and double sampling can be employed. If in addition,
the investigator has partial information about ux, then Han
proposed to perform a preliminary test and use the preliminary
test estimator. He derived the bias, m.s.e. and relative
efficiency of the preliminary test estimator and gave recom-
mendations of the levels of the preliminary test and optimum
allocation of sample sizes.

At the same time, many other statisticlans and research
workers have shown concern about estimation wilth high preci-
sion. Consequently, many workers in the field were also
carrying out investigatlions and proposing new estimators based

on certain criteria. One such investigation was given by



Stein (1955) who discussed the inadmissibility of the usual
estimator for the mean of a multivariate normal distribution
for p > 3. He proposed a spherically symmetric estimator
which is essentlally a shrunken estimator. James and Stein
(1960) continued with the same studles and gave more precise
forms and merits of the shrunken estimator for the cases when
the covariance matrix is either known or unknown. In 1960,
Stein investigated the'improvement in m.s.e. by a transforma-
tion, on the regression coefficient é, of the form CQ:O <C <1

~

which is a shortening of the vector 8.
In 1968, Thompson (1968a) studied various ways of shrink-
ing the minimum variance unblased estimator of a populatiorn
mean towards some known origin, thereby reducing its m.s.e.
He employed a preliminary test of significance as a shrinking
procedure. Later in the same year, Thompson (1968b) extended

his work to shrinkage towards an interval centered at some

origin.

C. An Overview of the Present Reéearch
and Summary of Results
The present thesls 1s divided into three main parts. The
first part 1s an effort to extend the studies of Han (1973a)
for bivariate normal distributions to (p#l) variate normal
distributions (p+l > 2). The second part attempts to extend
the method of double sampling with partial information on

auxiliary variables first studied by Han (1973b) for one



auxlliary variable to the case where the auxiliary variable is
a pxl vector. The last part considers regression estimators
wlth certaln shrunken estimators for the mean of the auxiliary
variable and compares them with the prelimlinary test estima-
tors.

In Chapter II, Section B, we define the preliminary test
estimator, ﬁ, for the general p+l variate normal distribution
énd study 1ts bias when the covariance matrix, Z, is known.

In Chapter II, Section C, we derive and dliscuss the m.s.e. of
ﬁ for I known. In Chapter.II, Section D, the relative effi-
ciency e, of ﬁ is considered while Chapter II, Sections E and
F, respectively, deal with the derivation and discussion of
the properties of the Bilas and m.s.e. of ﬁ when Z is unknown.
Chapter II, Section G, glves the expression for and some
computed values of the relative efficlency e'.

In Chapter III, we consider double sampling with partial
information on auxliliary variables and for Z known, we define
the prelimlnary test estimator ﬁlr and exhiblt its properties
in Section B. The m.s.e. and the relative efficiency of ﬁzr
are given and studled in Chapter III, Sections C and D,
respectively. Chapter III, Section E, furnishes a discussion
of the optimal sample design and some comparisons. When I 1is
unknown, the blas, m.s.e. and relative efficlency e, of ﬁzr
are derived and investigated 1n Chapter III, Sections F, G and

H, respectively.



In Chapter 1V, we consider regreésion estimators with
certaln shrunken estimators for the mean of the auxiliary
variable. A shrunken regression estimator ﬁ* is given in
Chapter IV, Section B, following Thompson (1968a). The rela-
tive efficlency e of ﬁ* is also discussed. In Chapter IV,
Section C, a shrunken regression'estimator ﬁl is constructed
following James and Stein (1960). We also give an expression
for l1ts relative efficilency.

In general, the bias and m.s.e. of the preliminary test
estimators are found to be functions of n, Hoes 212 and o where
2o 1s the covariance between Y and X. When I 1is known, the
blas and m.é.e. are found in terms of the cumulative distribu- .
tion of the noncentral Chi-squared distribution. For p = 1,
Han (1973a, 1973b) expressed the blas and m.s.e. in terms of
the cumulative distribution function of the standard normal
distributibn. Thus the computations in thils dlssertation
afford a further emplrical veriflcation of the results oi Han
(1975) on some relationships between noncentral Chl-squared
and normal distributlons. The propertlies of the blas and
m.s.e. for p > 1 are found to be i1dentical with those recorded
for p = 1.

When I is unknown, the bilas and m.s.e. of the preliminary
test estimators are also found to be functions of n, Ex’ 215
and oo , but in terms of the cumulative distribution of the

noncentral F-distribution. For p = 1, Han (1973a, 1973b)



expressed these in terms of the moments of normal distribu-
tion. The properties of the bilas and m.s.e. for p > 1 are in
~general found to be identical with those recorded for p = 1.
The m.s.e. of the shrunken regression estimator is found
to be a function of n, ¥ and gx. The efficiency of the pre-
liminary test estimator relative to the shrunken regression
estimator is generally found to be greater than unity when
By = 0, or when the null hypothesls of the preliminary test
is true. The value of the relative efficiency then decreases

to a value smaller than unity, increases to above unity and

finally decreases to unity as components of Ex increase.
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IT. REGRESSION ESTIMATION
FOR MULTIVARIATE NORMAL DISTRIBUTIONS

'A. Introduction

Consider that we have a multivariate normal population,

that 1s, consider the case:

Y ~ N(u,Z)
where
/vY\
Xy T lix1
Lpr)xy T . “\ % )px1 (2.1)
e/

/u\
My

= |- =Lgx) and I =

"D/

Suppose we are interested in estimating the mean u. This
happens in an investigation that the investigator is interested
in primarily one variable while he uses other variables as
auxiliary information. Following Han (1973a), we may use the
remaining p variébles as anclllary varlables to lncrease pre-

cision. 1If By and I are known and we have a random sample of
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size n, we can use the regression estimator defined as

W= 2 Ipp (e - B

where

In this case we know the variance of the regression estimator

1is

1. 2 -1 1 -1
Flo® - I;, T55 2] and 1f (2., I,5 2,1

is considerably large, we have an appreciable gain in precision.
If By is unknown, one may use y to estimate u. However, it

may happen that from certain sources, the experimenter may
expect that B, = By but not sure for certainty. In this case,
ameliminary test of HO: Hy = ¥y can be performed and the esti-
mator is made to depend on the fesult of the preliminary test.
In thls chapter we shall conslider the properties of thils pre-

liminary test estimator.

B. The Preliminary‘Test.Estimator
and its Bias when I 1s Known
Assume (yi, Xli’ .o Xpi) i=1, ...n is a random sample
from the (p+l) - variate normal distribution N(u, ;). Suppose

L 1s known and y unknown. Consider the hypotheses:
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Wlog (without loss of generality) we take 11PN to be the null

vector 0. The test statistic for H, versus H, is n(X' Zgé X)
2

which has a Chi-squared distribution, Xp, with p degrees of

freedom. A size o test is to reject H; if n(X' ZE% X) > X; o
. >

where x; o 15 the 100(1-a) percentage point of x;. Therefore
L
-1
22
n X' 252 X < ¢] by A then the prelimlnary test estimator can

ifwe let x; 4 = ¢ and denote the acceptance region [n X' o5 X
]

be written as

. ¥y -~ 2., Z2.-X given A
y given A
The expected value of il is
A - -] - - - -
(1) = B - N N
E(n) = BI(¥ - 3, 255 K)1A} P(A) + E(¥IR)P(R)
(2.3)

E(F) - £, I35 E(X[A)P(A)

But E(y) = u. Hence the bilas of {I 1s the second term and if

we denote this by B, we can write
_ -1 _,=
B = -3, Iy E(Z]A)P(A) (2.4)

Now we know X ~ N(E”,% Z,,) and since I,, is positive definite,

J a nonsingular T3 T'T = Z;é. Let Z = TX. Therefore



Z ~ N(Ty_ , =I)
~ N(v 1‘-I) say
=x ’ n

and we can write

B = -I,, I;5 T E[Z|n(2'2) < cl * P[n(2'2) < c]
where
{n(Z2'2):n(2'2) < c} = A .
Hence
B =-2,, 5ot 7L E[z]|AlP(A) (2.5)
12 %22 Z :

In general n(Z'Z) has a noncentral Chi-squared distribution
with p degrees of freedom and noncentrality parameter A =

? 1 - T -
n(y_x T'TY,.) = nyv . We shall denote the i-th component of
the pxl vector Ve by v;i).

c - o= 4 5 ]
R=PA) =S e E 'j—!- (—2-) hp+23(t)dt (2.6)
0 j=0
. . 2
where hp+23( ) 1s the probability density function of Xp+23 *

(1)

Differentiating (2.6) with respect to (w.r.t.) Vo

following

the method of justification in the Appendix, we obtain
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1

3R _ S "0 % 1 o2n (1) , Ad-1

T Le T B FT vy 3@ e

X

S 7L oon() e-%A : Ly £(dt)  (2.7)
o 2 X 3=0 Ji 2 p+2J
or

200y = nlHpp(esn) - B IVY (2.8)
\).'x : '

where Hp+2(c;k) is the cumulative distribution function of the
noncentral Chi-squared distribution with p+2 degrees of freedom
and noncentrallty parameter A.

Alternatively, we can evaluate P(A) by the use of the
distribution of Z and write

] n,,(J) (J)\2
P o =32 =Ty
ie = dz-°’ (2.9)

since components of Z are independent. If we differentiate
(2.9) w.r.t. vii) using the method of justification in the

Appendix, we obtailn

B o) ()42
3R e ]{ AN p(a) (1) 72 x 7 gg4d)
av(ij j=1 /37 2 Ux
X

(2.10)
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oR

1
avx

= n E(z‘Y) [a7 P(R) - nvﬁi) P(A) (2.11)

To obtain E(Z(i)IA)P(A) we equate (2.8) and (2.11),

n[Hp+é(C;A) - P(A)Jv;i) = nE[Z(i)IA]P(A) - nVii)P(A)
which gives

Bz [)pa) = 1, (et (2.12)

Substituting (2.12) in (2.5) and noting that the conditional
expectation of a vector 1s deflned as the vector of the condi-

tional expectation of its components, we have

=1

-1
2o T

B = -Z

12 %

. = _ -1 .
Hpaa(C3Muy = ~Zy5 Top Uyflpyp(esd)

As a partial check, when ¢=0, the estimator reduces to
the usual estimator y which i1s the case when we always reject
the null hypotheslis. In this case, B=0. When c¢=«, the null

hypothesls 1s always accepted and the regression estimator

y - £ 251 X is used. The bias in this case reduces to the

bias for the regression estimator, i.e.,

-1 -1y oy g-l

B =I5 I T vy 12
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We now check the result with that of Han (1973a) when

p=1l. Without loss of generality we let L., = I and o2=1.

22
Therefore

/o B = -KH,, ,(c3)) where K = Iy.u/n.

For p=1, I,, = p and we let ux/H = a.

Hence K pa and we observe that /nB changes sign with p
or a. Therefore for p=l, we may only study the blas for
positive values of p and a. It is obvious to see that vnB is
a function of p, a and a. The values of -/nB for certain

values of p, a and o were computed and examined and only very

few of these are given in Table 2.1.

Table 2.1. Values of -vnB for p=l.

a = .05 a = .50

a o o

.1 .5 .9 .1 .5 .9
0.0 . |o.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0342 0.1712 0.3082 | 0.0032 0.0159 0.0286
1.0 0.0583 0.2917 0.5250 | 0.0045 0.0226 0.0407
1.5 0.0658 0.3288 0.5918 | 0.0038 0.0192 0.0345
2.0 0.0570 0.2848 0.5126 | 0.0023 0.0115 0.0207
2.5 0.0392 0.1959 0.3526 | 0.0010 0.0051  0.0092
3.0 0.0215 0.1076 0.1937 | 0.0003 0.0017  0.0031
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From the computed values we note the followling properties
of the Bias.
1. The blas 1s zero when ux=0. This corresponds to the
case when the hypothesis 1ls true.
2. The value of the blas generally increases with p and
decreases as o increases.
3. For fixed n, o and p, the bias first increases then
decreases to zero as u  lncreases.
We also note that the values of -/nB given in Table 2.1 are
identical with the values obtained by Han (1973a). The only
difference is that while Han's results were given to three
" de¢imal places, the values here are computed to four decimal
places. The above properties of the Bias were also recorded
by Han. Furthermore, we note that Han expressed the bilas in
terms of functlons of the distribution function and probability
density function of the standard normal dlstribution while in
this paper, the bias is expressed in terms of the cumulative
distribution function of the ncncentral Chi-squared distribu-
tion with an odd degree of freedom. The above results thus
provide an empirical verification of the theoretical results
obtained by Han (1975) on some relationships between non-
central Chi-squared and normal distributions.
For p=2, the values of -/nB for some values of Z;,, W vn
and o are given in Table 2.2. Since the bias changes sign with

s the values were computed for only positive values of Hx'.
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Table 2.2. Values of -vnB for p=2.

a = .05
212 '
.-'.5 05 _05 "u7 07

(Hx/g). .5 f5 -7 -.7 T

( o0, 0) 0 0 0 0 0

( .5, 0) -.1931 .1931 -.1931 -.2704 L2704
( .5, .5) 0 .3723 .07l45 -.5212 .5212
(1.0, 0) -.3447 L34u7 ~.3447 -.4826 U826
(1.0, .5) -.1656 .4968 ~.0994 -.6955 .6955
(1.0,1.0) 0 .5839 .1168 -.8175 .8175
(1.5, 0) -.41091 .41901 ~. 4191 -.5868 .5868
(1.5, .5) -.2672 .5344 -.2138 -.7482 L7482
(1.5,1.0) -.1162 .5812 -.0232 -.8137 .8137
(1.5,1.5) 0 .5448 .1090 -.7627 L7627
(2.0, 0) -.4018 14018 -.4018 .5625 .5625
(2.0, .5) -.2866 777 -, 2484 -~.6687 .6687
(2.0,1.0) -.1637 Ah4912 -.0982 ~.6877 L6877
(2.0,1.5) -.0625 4376 .0125 ~-.6126 .6126
(2.0,2.0) 0 .3351 .0670 ~-.4691 A4691
(2.5, 0) -.3126 .3126 -.3126 ~-.4376 4376
(2.5, .5) -.2365 .3548 -.2129 ~-.4967 L4967
(2.5,1.0) -.1496 .3492 -.1097 ~-.4888 .4888
(2.5,1.5) -.0744 .2976 -.0298 ~-.4166 L4166
(2.5,2.0) -.0242 .2179 L0145 -.3050 .3050
(2.5,2.5) 0 .1356 .0271 ~.1898 .1898
(3.0, 0) -.1978 .1978 -.1978 -.2769 . .2769
(3.0, .5) -.1551 L2171 -.1427 ~.3040 .3040
(3.0,1.0) -.1031 .2062 = -.0825 ~.2886 .2886
(3.0,1.5) -.0563 .1690 -.0338 -.2366 . 2366
(3.0,2.0) -.0237 .1187 -.0047 ~.1662 .1662
(3.0,2.5) -.0064 .0708 .0064 -.0991 .0991
(3.0,3.0) ~.0b497 .olug7

0 .0355 .0071
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Table 2.2. (continued)

. a = ,20
L1o

-.5 .5 -.5 -.7 .7
(gx/ﬁ)' .5 .5 .7 R / .7
( 0, 0) 0 0 0 0 0.
( .5, 0) ~.1117 L1117 -.1117 -.1563 .1563
( .5, .5) 0 .2085 .0417 -.2919 .2919
(1.0, 0) ~.1814 .1814 -.1814 -.2540 .2540
(1.0, .5) ~.0845 .2536 -.0507 -.3550 .3550
(1.0,1.0) 0 .2728 L0546 -.3819 .3819
(1.5, 0) ~.1903 .1903 -.1903 -.2664 .2664
(1.5, .5) ~.1179 .2358 -.0943 -.3301 .3301
(1.5,1.0) ~.08472 .2361 -.0094 -.3305 .3305
(1.5,1.5) 0 .1940 .0388 -.2716 . 2716
(2.0, 0) ~.1507 .1507 -.1507 -.2109 .2109
(2.0, .5) -.1047 L1745 -.0908 -.2443 L2443
(2.0,1.0) ~.0554 .1663 -.0333 -.2328 .2328
(2.0,1.5) -.0187 .1311 .0037 -.1836 .1836
(2.0,2.0) 0 .0855 .0171 -.1197 .1197
(2.5, 0) -.0937 .0937 -.0937 -.1311 .1311
(2.5, .5) -,0692 .1038 -.0623 -.1454 L1454
(2.5,1.0) -.0408 .0953 -.0300 -.1334 .1334
(2.5,1.5) -.0182 .0726 -.0073 -.1017 .1017
(2.5.,2.0) -.0051 .0458 .0031 -.0641 L0641
(2.5,2.5) o .0238 .0048 -.0333 .0333
(3.0, 0) -.0l462 .0462 -,0462 -.0647 L0647
(3.0, .5) -.0355 .0497 -.0326 -.0695 .0695
(3.0,1.0) -.0221 .olUh2 -.0177 -.0619 .0619
(3.0,1.5) -.0109 .0327 -.0065 -.0458 .0458
(3.0,2.0) -.0040 .0200 -.0008 -.0281 .0281
(3.0,2.5) -.0009 .0101 .0009 -.0141 L0141
(3.0,3.0) 0 .0042 .0008 -.0058 .0058
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Table 2.2. (continued)

1 o = .50
212
-.5 5 -.5 -.7 .7

(y_x/ﬁ')v <5 5 T -.7 7

( 0, 0) 0 0 0 0 0

( .5, 0) -.0348 .0348 -.0348 -.0487 .0487
( .5, .5) 0 .0630 .0126 -.0883 .0883
(1.0, 0) -.0578 .0518 -.0518 -.0725 .0725
(1.0, .5) -.0235 .0704 -.0141 -.0985 .0985
(1.0,1.0) 0 .0698 .0140 -.0977 .0977
(1.5, 0) -.0474 o474 -.ob4Th -.0663 .0663
(1.5, .5) -.0286 .0572 -.0229 -.0801 .0801
(1.5,1.0) -.0106 .0530 -.0021 -.0742 L0742
(1.5,1.5) 0 .0386 .0077 -.0540 .0540
(2.0, 0) -.0314 .0314 -.0314 -.0440 L0440
(2.0, .5) -.0213 .0355 -.0185 -.0497 .0497
(2.0,1.0) -.0105 .0315 -.0063 -.0b442 L0442
(2.0,1.5) -.0032 .0222 .0006 -.0311 .031L
(2.0,2.0) 0 .0125 .0025 -.0174 L0174
(2.5, 0) ~-.0159 .0159 -.0159 -.0222 .0222
(2.5, .5) -.0115 L0172 -.0103 -.0241 L0241
(2.5,1.0) -.0063 .0148 -.0047 -.0207 .0207
(2.5,1.5) -.0025 .0102 -.0010 -.0142 .0142
(2.5,2.0) -.0006 .0056 .0004 -.0078 .0078
(2.5,2.5) 0 .0024 - .0005 -.0034 .0034
(3.0, 0) -.0062 .0062 -.0062 -.0087 .0087
(3.0, .5) -.0047 .0065 -.0043 -.0092 .0092
(3.0,1.0) -.0027 .0055 -.0022 -.0077 .0077
(3.0,1.5) -.0012 .0037 ~-.0007 -.0052 .0052
(3.0,2.0) -.0004 .0020 ~.0001 -.0028 .0028
(3.0,2.5) -.0001 .0009 .0001 -.0012 .0012
(3.0,3.0) 0 .0003 .0001 -.0004 .0004
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From Table 2.2 we observe the followlng properties of the Bias
for p=2.

1. The bias 1ls zero when B = 0. Again this corresponds
to the case when the hypothesis is true.

2. The value of the blas generally increases with 212
but decreases as o Increases.

3. The bias 1s zero 1f u has lidentical components and
212 has components which differ only in sign.

k. The bias is negative if elther p or I,, has non-
ldentical but positive components and the other has components
which differ only in sign.

5. If n, o, 212 and a component of By are fixed, the
bias first increases then decreases to zero as the other

component of By increases.

C. The M.S.E. of ﬁ when ¥ jis Known

In order to find the M.S.E. of fI, we first consider
A _ A2 ~ 2
V(u) = E(u") - [E(w)]° . (2.13)

Also we can write

<l

-1 -1
- 212222 T "2 given A

<
=l

glven
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Therefore

EL(F - 23,055 T 12)7[41 P(4)

1}

E(1%)

+ E(72|) B(R)

= B(5%) - 28,550 TOE(FZ|A) B(A)  (2.14)
-1 -15-1
L5055 T E[ZZ'IA] P(A)T' "I55%,

Therefore to evaluate E(ﬁ2), we need to find E(ZZ'|A)P(A) and
E(YZ|A)P(A). Let us consider E(Z22'|A)P(A) and denote the i-th
component of Z by Z(i). We need actually consider E[(Z(i) 2IA]
P(A) and E(Z(i)z(k)IA)P(A) for 1#k. These can be evaluated by
using the second derivatives of R.

Differentiating (2.7) w.r.t. vﬁi), we have

1 (1)
2 c ==\ © 2nv
B o-re? x oA (—E% 50-0GI P, . (6 at
WDE 0 g
1
C ==\ =
2 1 2n , 231
1 (1)
3 _ (1) "3 ® g 2nvy Ad-1
S lgamwt et IgT T IR Thpgy(®) at
3=0
1
¢ 3 - W
- g 52ne Jﬁo T (3 hp+2j(t) dt
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c 1 (1),2 s L (A3
PGB e s Glnggy ) ab
1 (1)
¢y (1) ~3* 2 1 2nv . 3-1,
- é 3 2nv,"7 e jEO TT T3 3(3)° Thy,,y(t) at

= nz(vgi))2Hp+u(c;A) + an+2(c;A) - n2(v§i))2Hp=2(c;A)

2 P(A) - n (v(i) 2 (ec3A)

- n P(a) + n?(v{1)) Hopo

= n2(v

c D2 (esn) + nli-an(e{P) P (esh)

+ n[n(v(i))2 - 1] P(A) . (2.15)

Similarly differentiating (2.9) twice w.r.t. v;i), we obtain

22R @ 2)25(1) (z(1)_ (1) SaDvihE
_ ____ a4 . X
T2 " 'E = (2 2)2z' (7 e dz
| 0 (3)_ (3)42
Cpeer T B . 227 v ) ()
A j=1v/2m -
g (), (9))2
s TOE@n2® M) 2 AED
A J=1 /on
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= 02 50(z3))2[a1 () - 2 BP0y pa) (2,16

- n p(a) - 0 Bz 1) Ba) + 0?12 pa)

Hence from (2.12)

2 2 2
9 R = n? Bz ) (a1 pa) —2nB P H_ L (esn) (2.17)
(1) P
oV
X
+ a2 p(a) - np(a)
Equating (2.15) and (2.17), we have .

2 (1),2 2.(1)2 )
n® E{(277)°|A} P(A) + n®v ~°[P(A) - 2Hp+2(c,x)]
- n P(A) = n2(vii))2Hp+4(c;A) + n{l-2n(v;i))2}Hp+2(c;X7’

+n [n(v{t)2 - 17 p(a)
or
E{Z(i)zlA} P(A) = ( (1)y2y (c3A) + L H 3 A
= (v ) Hpy (esh) + 2 Hyp(es)

Next we find E(z(1)z(K)|a)P(a). first by differentiating

(2.7) and (2.10) w.r.t. vik), then equating the results.
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From (2L7);
o T 1 (1) (k)
3R c -EA 0 1 2nv 2nvx Ay j=2
=/ e 5 = j J-1(x)° “h (t)dt
Bv;k)3v§i) 0 5=0 J 2 , 2 2 p+2] |
¢ . 1y (i)
- é 5 2nv§k) e 2 jEO f% J(= )'j l p+23(t)dt
1 (1) S (k) Lyd-1y
¢ 1 (1) (k) %" = J
- é (2 2n) v vy JZO 37( )’h J(t)dt
= ngvﬁi)v(k)Hp+4(c;k) - 2n2v§1)vik>Hp+2(c;A)
+n? (1K) pepy (2.18)
Similarly from (2.10),
av ‘k’au<1) PR /ff z %
n,.,(3)_.(3)\2
-5(2 Y =v Y 7) ’
-2 MEEE) | )e) - n?y ez [nypa)
+ nzv;i)v;k? P(A). (2.19)
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Hence by (2.12), (2.19).becomes

avtk-?g\;zi-f n? 5121200 a1 p(a) - 02 {PR o (esn)v ()
X

nzvik)H 2(c X)v(i) + n v(i) <k) P(A) (2.20)

Therefore, equating (2.18) and (2.20 we have

E[Z(i)Z(k) 'A] P(A)

Hoyy (e vt v {E) (2.21)

We may now let E[ZZ'|AJP(A) = D where D 1s a PXp matrix with

- = (1),2 . 1
i-th diagonal element ‘(vxv ) Hp u(c,k) + = p+2(c A) and
the (i,k)-th off dlagonal element = 4(0 x)v(i) (k)

Finally we note that

E(yz|A)P(A) = E{E(Zy|Z,A)}P(A)
= E{Z E[y|z]|A}P(R)

il 3 l llﬂ as
= Bliip ¥ 27,8557 "H2-%

\/

ala
X o

= p E(Z|A)P(A) + E(ZL,,555T “Z|A)P(A)

=11
- E(2Z,,255T gxlA)P(A)

-1.-1
But since 212222T Z is a scalar,

“1, -1, _ -1.-1
ZypZppT L = B'TVUINE,

s=ipmly =y ipimligtly

Simllarly 2,,2,5T "By = ¥y 20Z21 -
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Hence
E(FZ|A)P(A) = WE(Z|A)P(A) + E[22' |AJP(A)T' 15530,
-1.~-1
- E(§|A)P(A)1£T' 255857
or
E(FZ|A)P(A) = (e3M)y, + DT 1IgLs
- p+2 22721
-1.-1
p+2(° M VT "I 525, (2.22)
=2y _ 1 2 2
We also note E(y©) = S o7+t Substituting these into (2.14)

we obtain

EG) = L 0%« u? - ouny pppr ey
- Ty ,TppT DT T, + 2
From the last secfion we have
[B()1% = [n - 2y ,0557 T, o(e3h)
= u2 - 2uIy I E%T lH (c
+ 2055 T a(e30) 1P,

Substitution in (2.13) yields

s2(C30),
-1 -1 =1.-1 _
127227 Yyl PP AT
2
v,
A)v
! T -1ly=1
R T' 55T -
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2 -1 1

Ay _ 1 2
v(u) = . + pu° - 2u212222T p+2(c A)v
-1 -1 ~1.-1 -1l o ymy=lo-1
- 212222T DT 222221 + 25,8 22T v, T 222221 p+2(c A)
2 ~1.-1 .
- uc + 2u212222T H 2(°’A)2x
-1 vrmy=Lla=1
- 212222T [Hp+2(c A)] AR A )
_1 2 gl dpgmly=1s
= 50 = IpplppT DT TIGI, (2.23)
-1,.-1 iy 12e g mp=Lla=1
= B80T TLH (e Iy, v T T E
“1=l. o yme=le-1
+ 2212222T LIRM T 222221 +2(c A)
Again as partial checks, when c¢=0, we always use il = y
~ _ ']__. 2 - AL = _ -1=
and V(u) = S o, When c=», we always use y 212222§
A _ 1 R
and V(u) = H(o - 212 22 21) V(u)-
Now the M.S.E. 1s defined as M.S.E. = Variance + (Bias)z.
Hence
Ay _ L 2 -i~1
M.S.E.(u) = o 4] 212222T DT 222221
-5 IoiriE L (e3n) 13y VLT ~1ly-ls
12722 pt2 22721
-1-1 ~1.-1
* Zy,I,5T TIH o (e SR TR L s P
-1 l -1.-1
+ 25,,0 22T v, T 222221 p+2(c A)
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M.S.E. () = = 0° - £ ,055T lop~tasle,

“1 -1 yey=lo=l

+ 28 05Tty WP TR0 H o (esh)

12 -1 gl

=50 = Iyl I sk o (es))

1y 51
- 5 2122022 o Hp4p(es)
+ 2.3k wrTls  H O (esn) (2.24)
12% 22 xHEx 200201 421 C 3 .

D. Relative Efficiency (e)
In practice, we may want to select an estimator for u with
the smallest blias and M.S.E. Since blas is a part of M.S.E.,
it is reasonable to consider only the M.S.E. Using (2.24) we
may compare the performance of the preliminary test estimator,
i, with the usual estimator y. The relative efficlency of 1

to y is defined as

e =

M.s.E.(ﬁ)///Mls.E;(§)

Now using (2.24) and since y 1is unbiased, M.S.E.(y) = V(¥y) =
1l 2
oo - Hence

1 2
5O

(0]
"

5 =) oI, =T )
290l ool B ooy Hyyp(esd) - 12222221 LY

B
Q
)

-1,
28 HT 55U, M1 T55T Hosolesd)

o}

1
1+k(a)
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where
x(a) = & {-z..27 u wrtls (e3A)-xz. 171z (c3))
2 12500k My B0 o By nl12222% 218540
v o517l wstls o (esn)) (2.26)
12%22BxEx420% 21 p 42" ®5 .

Wlogwe let 222 = I and 02 = 1. Therefore for p=1, ).‘.12 =

p. Table 2.3 gives the values of e for p=1 and some choilces

of p,a and o. .

Table 2.3. Values of e for p=l.

a = .05 ‘ a = .5

a 1 .sp .9 1 .5p .9

0 1.0073 1.2199 2.4036 1.0007 1.0182 1.0613

.5 1.004% 1.1244 1.5586 1.0003 1.0084  1.0277
1.0 997k .9398 .8281 9996 .9898 L9677
1.5 .9900 7976 .5488 9992 9793 .9360
2.0 .9858 . 7357 4621 .9992 .9812 9U17
2.5 .9866 .Th62 CB757 9996 .9889 .9649
3.0 .9906  .8078  .5646  .9998 - .9953  .9850

From Table 2.3 we observe that for fixed n, p and o, the

relative efficiency of u assumes its maximum value when U, = 0,

it then decreases to a2 minimum and then increases as u

increases. For fixed n, My and a, e is an increasing function
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of p While for fixed n, Mo and p, e 1s a decreasing function
of «.

The-selection procedure for an estimator or the level of
the prelimlnary test such that the relative efficiency is the
largest when By equals the origin, say 0, suggested by the
experimenter's prior knowledge, and 15 at least as large as
some e ;. when M. # 0 was first recommended by Han and Bancroft
(1968) and was later used by Han (1973a) for the case p=1 for

the present problem. The values of e, and e, at certain

in ax

values of p and o are given in Table 2.4 where e hax is the

value of e at u, = 0.

Table 2.4. Values of €nin and € ax for p=1l.
N
PN 1 .5 .9
- .50 ?§§§’~ 129007 1.0182 1.0613
emin 0.9992 0.9793 0.9340
.05 €nax 1.0073 1.2199 2.4036
emin 0.9858 0.7337 0.4621

Thus for p = .9, a preliminary test at a = .05 ensures the
relative efficiency of the preliminary test estimator will be
at least 0.4621 and may be as large as 2.4036 when the null
hypothesis of the preliminary test is true or W, = 0. For a
more detalled table and full discussion on the properties and

uses of the above table, one is referred to Han (1973a2). The
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Table 2.5. Values of e for p=2.

o = .05
z'
. 12 --5 -5 _05

(u,vn)? .5 .5 T

( o, 0) 1.6673 1.6673 2.4530
( .5, 0) 1.4792 1.4792 2.0381
( .5, .5) 1.5930 1.1501 2.1800
(1.0, 0) 1.3336 1.1336 1.3953
(1.0, .5) 1.3819 .8604 1.8882
(1.0,1.0) 1.4124 .6690 1.6684
(1.5, 0) .8723 .8723 .9879
(1.5, .5) 1.0933 .6848 1.3871
(1.5,1.0) 1.2382 .5648 1.5209
(1.5,1.5) 1.2219 .5076 1.2865
(2.0, 0) . 7348 .7348 .7908
(2.0, .5) .9004 L6071 1.0595
(2.0,1.0) 1.0499 .5313 1.2508
(2.0,1.5) 1.1142 .5050 1.2257
(2.0,2.0) 1.0914 .5257 1.0923
(2.5, 0) .6950 .6950 . 7253
(2.5, .5) .8169 .6053 .9072
(2.5,1.0) .9398 .5580 1.0633
(2.5,1.5) 1.0198 .5538 1.1127
(2.5,2.0) 1.0u09 .552l 1.0734
(2.5,2.5) 1.0279 .6708 1.0198
(3.0, 0) .7273 L7273 LUy
(3.0, .5) .8152 .6650 .8676
(3.0,1.0) .9066 ‘ .6383 9779
(3.0,1.5) L9743 .6501 1.0336
(3.0,2.0) 1.0056 .6987 1.0356
(3.0,2.5) 1.0105 .T753 1.0168
(3.0,3.0) 1.0059 .8606 1.0020
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5475
4032
4329
1453

.3128
. 2265
.9633
.1295

L1614
.0833
.8844
.0084

.0705
.0584
.0208

.8805
.9611

e

-

.0134

.0257
-0145

.0030

.9156
.9603
.9928

H e

.0059
.0058
.0023
.0002

1.8816
1.5458
1.1008
1.0845

. 7985
6342
-8375
.6657

-5751
-5575
. 7536
L6444

.5941
.6020
.6619
. 7684

.6986
6740
.6967
-7593

.8425
.8367
.7968
.7891

.8146
.8637
.9183
.9609
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g = .50
z'
12 .5 .5 a .7

(gx /n)! .5 .5 T .7

( 0, 0) 1.0831 1.0831 1.1280 1.1769
( .5, 0) 1.0571 1.0571 1.0958 1.1184
( .5, .5) 1.0673 1.0068 1.1002 1.0134
(L.0, 0) 1.0055 1.0055 1.0313 1.0109
(1.0, .5) 1.0378 .9546 1.0703 .9148
(1.0,1.0) 1.0361 .9173 1.0489 .8498
(1.5, 0) .9688 .9688 .9833 L9407
(1.5, .5) 1.0029 .9310 1.0266 .8732
(1.5,1.0) 1.0167 .9107 1.0322 .8389
(1.5,1.5) 1.0130 .9162 1.0151 .8480
(2.0, 0) .9607 .9607 L9677 .9258
(2.0, .5) .9856 .9382 .9994 .8857
(2.0,1.0) 1.0010 .9303 1.0123 .8720
(2.0,1.5) 1.0049 .9399 1.0094 .8885
(2.0,2.0) 1.0031 .9596 1.0028 .9237
(2.5, 0) .9713 .9713 9742 .9453
(2.5, .5) .9852 .9606 .9917 .9256
(2.5,1.0) .9956 .9590 1.0016 .9227
(2.5,1.5) 1.0002 .9668 1.0034 .9369
(2.5,2.0) 1.0010 .9788 1.0017 .9593
2.5,2.5) 1.0005 .9894 1.0003 .9795
3.0, .5) .9913 .9814 .9938 L9642
3.0,1.0) .9964 L9817 .9988 .9648
3.0,1.5) .9991 .9859 .1.0006 .9727
3.0,2.0) 1.0000 .9914 1.0006 .9832
3.0,2.5) 1.0001 .9958 1.0002 .9919
3.0,3.0) 1.0000 .9984 1.0000 .9969

FTNSTNITN N P T Yo X o N
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few values for p=l given here .in Table 2.4 are only computed
as a partial check of the general results obtained in this
paper. The values agree with the results of Han (1973a).

For p=2, the values of e are given in Table 2.5 for some
choices of Zlé, By /n and a. Since e is a symmetric funection
of 212 and Bys values are computed for only positive vélues of
212 and By when the compohents are 1ldentical.

From Table 2.5 and (2.26) we note the following properties
of e for p=2.

1. The relative efficiency 1s maximum when By = 0 for
fixed n, a and 212. Thls corresponds to the case when the null

hypothesls 1s true.

2. The maximum value of e increases with 219 for any

given o but decreases as o increases for a given 212.

3. PFor fixed n, Bys O and 212, the relative efficlency
is generally larger when the components of 212 have differcent

lhhan whan +ha o
w L= LA R T T e

han when the signs are identical

4y, The relative efficiency remains the same for values
of 212 which differ only in sign.

5. For fixed a, n, 212 and some component of Bes the
relative efficiency decreases to a minimum and then increases
as the other component lncreases.

We also observe that since I 1s positive deflinite, its

determinant 1s greater than Zefo. Consequently for 1dentica1

components of 212, say 212 = (a, a); then
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1 a a
T = a 1 0
a 0 1

[}
[

|
o
v
o

= a_2<% or |a|<—l—*.70
V2
Thus the relative efficiency and Blas of ﬁ do not exist for
values such as I;, = (.9, .9), (.8, .8). Similarly for non-

identical components of X,,, say I, = (a, b), then

1 a b
r = a 1 0
b 0 1

= Jz|] =1-2a%2-b2>0
= a2 +p% <1

Hence the relative efficiency and bilas of (ﬁ) do not exist for
such values of Z;, as (.9, .T), ete.

Following Han (1973a), it is possible to extend the compu-
tation of Cnax and €nin to any value of p so that an investil-

L

gator can select an estimator or a such that €nax occurs when

b, = 0 and e is at least as large as e , when p # 0. Table

2.6 gives the values of e and e,

fo ome choices of o
max r s oices of a,

n
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212 = (.5, .5) and p=2. It also gives B; which is the value

of u  about which e , occurs for a search at .05 intervals.

Table 2.6. Values of e and e for p=2.

min max
5 . .05 .10 .20 .30 .ho .50
12
e ax 1-6673 1.5032 1.3141 1.2040 1.1322 1.0831

(.5,.5) €nin .}976 \.5904 .7098 <ToU1 .8587 .9085

u¥  (1.65, (1.60, (1l.40, (1.35, (1.35, (1.35,
1.65) . 1.60) 1.40) 1.35) 1.35) 1.35)

Thus for a relative efficiency of at least .75, with the
above selection procedure, the investigator would use a = .30
for the preliminary test when Zip = (.5,.5). This choice
guarantees a relative efficiency of at least .79. The relative
efficlency in this case can be as large as 1.2040. Also from
Table 2.6, we observe as before that for fixed 212,

1. e 1s a decreasing function of a,

max

2. e n is an increasing function of o, and

mi
3. H§ has identical components and 1ls a decreasing
function of a. We note that the negative values of

uX also give the same minimum values.

E. Bias of ﬂ when Z is Unknown
When ¥ 1s unknown and assume that Hq = 0, the preliminary

test estimator 1is defined as
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- -1 = = -l- 2
X y - 81,855 X if mm(X'S,5X) < T
o= (2.27)
7 1f nm(X's330) > T
where m = n-1, Tg is the 100(1l-o0)th percentile of a central

2

Hotelling's T distribution with m degrees of freedom, and

e
L}
5

n
= — kv - T\ !
Spp = I (%4 - DX -0

1=1
. (2.28)
n' ( ) ( )

8., = I (y, - y)(X X!

12 7,2 V1 1

S n ( )2

= % Vs = V¥
1145 e

In this section, we shall obtain the bias of u. If we
denote the acceptance region for the preliminary test
{nm(X'S X) mn(X' S ) < T } by G, then

E((J - 5,,553%) |G} P(Q) + E{F|T P(8)

E(})

E(y) - E{s iIG} P(G) (2.29)

12 22
Since E(y) = u, the second term is the bias and we write

b = - E{8,,8 22x|c} P(G) (2.30a)
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Let f£(X) be the multivariate normal density of X and

g(822,812,811) be the density of 8223 Sll and 812 which have
a Wishart distribution. Then

E{S 1316} P(G)
1252241 (2.30b)

)dXds, ,ds. ,ds

= [egS 81,53 2x £(X)g(s 22%°12%°11

1252 22257225717

Following Han (1973a) and Rao (1965), we make the following
transformations. Since 822 1s positive definite, there exists

a nonsingular matrix B 3 B'B = S,,. Also 3§ a nonsingular

matrix T3 T'T = 2’2'2 Let
- 1 : ]
W, = TB'BT
, 1
W.=[S.. - L, .T'"TB'B]z,2 .B~*
2 12 - Z1p 11.28 -

But since 211,2 is a constant scalar, we let

. 2
11-2 - K

N
n
.

)
|

-

Therefore

= 1 -1
W, = K[SlzB - ZlZT'TB'J

_ w2 -1,,-1
Wy = K°(Sy1~ 8,87 B'""S,,)

From (2.31),



ho

l‘..]_‘.'
B'B = T W, T = rlylwd
Sy, ='[KW, + ,,T'TB'] B
Therefore, .
510553 = S8 BT = KW2W§T + I, T'T

Substituting in (2.30b), we have

-1=
E{(8;,5,,5X)/G} P(G)

(2.32)

i

= S (KWW

daw., dX
G

2771

=N

T + 212T'T)Ef(&)g(wl,wz,w3)dw3dw

We claim

Wl ~ W(I,n-l)

W, ™ N(0,I)

W, ~ W(1l,n-p~1)

-~

ahd the three are mutually independent. To prove the above

claim, we note

1

(a) 3 B'B ~ W(T 7't n-1)

22

‘ 1_.-1
Wy

TB'BT' ~ W(TT ~T' ~T', n-1)

W(I,n-1) .
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"(b) Glven the X;'s, the conditional distribution of W} is

normal since Wélgi's is a linear combination of the yi's which
are normally distributed. If we denote this conditional dis-
tribution by g(Wh|X), and write

Wé‘= % B'~l(s.. - B'BT'TE

21 21)

then we only need find the mean and variance of W}|X.

Sop =

ne~ss

- - n
(%, - D, -¥) = =

(X, - Y. .
1 INty 1 1 i

1 1

Now there exists an n-th order Helmert matrix C = (cij) such
1 - = - = -
that Qi (Uli"'Upi)’ Uji i-th element of Czﬁ, Wy i-th

element of CY so that making an orthogonal transformation,

m
Soy = E U; wy where m = n-1l.

i=1
Irr o~ wntre memrT T \
bt R fyelzs =y 2 <11-2°
= N(UJT'TZ, 5 Z77.5) -
Therefore
m
= rtmyme
E(Sp; D) = 2 U, U TTIE,,
i=1
= B'BT'TZ

21 °
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Hence
E(W,|U) = & B'"1(B'BT'TZ,, - B'BI'TE, )
2= K 21 21
=Q_-
1 o,-1 -1
] = — Rt
Var(W5|U) 2 B V(s,,|U)B
1 .,-1 , = -1
= =5 B! (U, Z.,., U!)B
K2 g=1 1 "11-2 A
2 _
where recall K~ = 211.2 is a scalar.
=_.1_ l"‘lv "1= '
" Z,,., B' "B'BB I

Therefore (wzlg) ~ N(0,I) and this does not depend on X.

Hence W2 ~ N(0,I).
_ 1l,a L -1,,-1
(e) W3 = K2(811~ leB B! 821) and from Anderson (1958),

2 = - -l ""l ~
Theorems 4.3.2 and 4.3.3, we know K W3 S1l Sl2B B

w(211-2 , n=-p-1) and hence W3 ~ W{i, n-p-1l). Finally, to
establish the mutual independence of Wl’ W2 and W3 we note

that by fixing the zi's, we also fix W, and since the

1

conditional distribution of either W, or W3 with X, fixed does

not depend on X, then either conditional distribution 1s equiv-
alent to the actual unconditional distribution and each is

independent of Wl' Thus W1 is independent of W, and W,. To

2 3
show w2 and W3 independent we employ Cochran's theorem as

foliows:
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Let

= - - - ~ )
u, =gy - o= I T, E“i) NID(0,Z,, .,

and

1 1

T

V=X-yu, ~NOT )
be fixed. Then

- = | < 1
= - - ' - ~ =

_ - 2
~ nﬁz N n[y - H - 212T'T(}_('1-EX)]

-~ 2
= x“(1)
7 1.2 211.2
n
Suy 121 u, (v, - ) S;,-I;,T'TB'B ~ N(0,Z,, ,B'B)
- 2 -1m,-1 -1 .
=3 W, = L;7,, (8;,-2,,T "T' "B'B)B N(0,I)

Similarly defining

then finally



by

-1 _ -1
211 208uu ~ SuySyitvy)
_ | _ -1 -1 . o2 (e
= W3 = 27508778158 "B' "55;) “x"(n-p-1) .
But
n - 2 -1
Suu = 1§1ui -nu =,qu§YE§YP-+(Suu-suzgyyg_u)
and hence
-1 n o2 -1 =2 -1 -1
Bilez 2% T Epae® F 217 . 2(8uySyvSyl)
-1 -1
MIRIERY (suu—SuYSYXSYu)
or
-1 n
- - - ' .
i=1 1
+ (51‘“x1)'T'T221212T'T(51"Ex1)
e n[y-u-z. ,T'T(X, ~ )]2 + W WL + W
112 =275 £17 By 2%2 3
or

x%(n) = x2(1) + x*(p) + x*(n-p-1) .
Thus W2 and W3 are independent.
Therefore Wl, w2 and W3 have a joint distribution given
by

%(n—2p-2) %(n-p-2)

W, | W,

1
—Ztr (WLW +W_+W. )
_ per NN T 3TNy
g(Wy Wy, Wo) = Coe

(2.33)
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The region of integration 1s given by
= i L%y - e 2
C= {nm(X'T'W,"TX) : nm(X'T'W, TX) < T}

The integral in (2.32) becomes

1 1
® ® =St (WAW,+W +W, ) 1
SeoodSJ (KW2W12T+21 T'T)XE(X)Cqe 2 371 . l2(n--2p-2)
G -»0 3
-%(n—p-z) _
lel dW5dW,dW, dX .
© o -5 -tr(ugW SHIgHI) L(n-2p-2)
=[S S S KC, W, “Te |w, |
G - ( 3
1(n-p-2) - _
AL | gf(g)dw3dw2dwld§
@ o ~FEr (WG, AW H,)  H(n-2p-2)
+ [eeof ST CuT ,T'Te |w3|
G - 0
L(n-p-2)_ _ _
Jwyl gf(g)dw3dw2aw1dg

But from independence and the fact E(Wg) = 0, we know the first

term is zero. The second integral is equivalent to

‘V‘12T'T _ .+ fem ST 2(5‘9‘2)
B o\ .=
Ip(n-1) Fp(p-1 Pyl (R aZaw,
2 T P[E(n-i)]
i=1
e l -1 ' l —— =
Now X ~ N(p,, 2T "T' 7). Let.Z = TX. Therefore
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~ 1
72~ N(Tu,, ¢ I)

= 1
= N(gx, = I) say.

1

1 1 1 -1

Now X = T T tTT Nz = 2'W]7Z, we have

Z and X'T'W,"TX = 2'T'"

(I='{nm(§'wzlg) : nm(;'WIlg) < TS}. Hence we wish to evaluate

_1 | 1 1
2., T'TT -=trW. = Z(n-p-2)
my 1)1§ T foosTe 2 1lel2 7(2)dzaw
5p(n-1) Tp(p-
22 e T ritcn-1)7
j=1 2

1

(2.34)

where nm(2'W;1z) = T2 has the Hotelling's T® distribution with

T2(n_ ) ¥
n-1 degrees of freedom and _ETE:%T = F* has the noncentra;
FP-distribution with p and n-p degrees of freedom and non-
centrality parameter A = ng%gx.
Following Alam and Risvi (1967), we define a random

variable G glven by

1
- e-il 1 g (2.35)
£(6) = £ (&) = Frampray 5 3T @70, np(E)aE
’ 27972 Te50,%50

where



b7

Byso
_ g% 7 Tr(Bry+R)
G nep (&) = 2 2
s B2 ErED)
2 2 /.
(1+g) r(5+3)
Therefore
P(G) = P(T? < T2)
= =%
=p(r? < REL 5 (a))
2 - (2.36)
= P(%:T b3 535 n—p(a))
= P(G < ¢)

where G has the density function given in (2.35) and ¢ =

B _ &
hep Fp n— p(a) where Fp,n_p(a) is the 100(l-a) percent point of

the central F-distribution with p and n-p degrees of freedom.

Therefore
L
c 2 o
R=P() =f=2— 1 & Hle (g)dg (2.37)
o r5R) g=o0 v° T 5+,
Differentiating (2.37) w.r.t. v;i), we have
1
-= (1)
3R C e 2 % 3 aj-1 2DV
— " J I s 3 () G _(g)ag
a\)xi 0 (_'R) J=0 J 2 2 (%"‘J sn2
(1) 1
. 2nv e-EA . (2.38a)
- HF @ e, ()
0 r¢3R) - (5+3,%5R)
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For the first term if we let j-1 = J', then j = j'+1l and

consequently we may write

1

-ZA (1)
c 2 ©  2nv
oR e X 1 AJ!
— - S ———— I ()7 G (g)dg
(1) _1
c 2n_\e§_ 2 3 13 $? e n-p(8)de
0 2r(23R) j=0 J* (5+3,5%5
so that
3R _ (1) s . (1)
m = n\)x Gp+2’n_p(0,l) - nvx P(CG) (2.38b)
X
where G;+2 n_p(c;k) is the cumulative distribution of the non-
3

central G random variable with p+2, n-p degrees of freedom and

nencentrality parameter 1. Also making use of the separate
distributions of Z and Wl and noting that these are independent,

we may wrlte

R=7P(C) = feouf T B2 X (2.39)
G j=1 V2rm
1 1 |
) 1 W |§(n—p—2)e-§trw1dz(j)dw

1 1

B(n-1) §p(p-1) £
22 T ridin-1)1
i=1
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L)
X

Differentiating (2.39) w.r.t. s We obtailn

b _n g (3)_y(3)52
) /n (1)_, (1), 2 X
ORI
X

1 1
l2(n—p-z) -zt

|w e 1
E(l 1) p(p-1) g(z)dg(J)dwl
n— -
22 ﬂnp P “-P[ =(n=-1)]
i=1
Hence
1 1
av;i> P-(n—l) Hp(p -1) ﬂ" G 1
2 2 3(n-1)] (2.40)

2 Bg(mrazan, - m{tle()

Equating (2.38b) and (2.40) we have

1 , -%trwl %(n-p-Z)
B(n-1) $p(p-1) £ foole ¥yl |
22 ~wE Trr[%(n-i)]
i=1

(2.41)

1 x pt2,n- p(csk)

Finally we let
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1 1
~Lerw L(n-p-2)
B(n-1) 1 . goeese 2 My 2
n- (p-1) G
22 Y ﬂ_r[ (n-1)]
i=1
2P g(zyazan, = 1z1))

and note (2.34) is leT'TTnll(g) where I(Z) 1is a pxl vector
with i-th component I(z(1)). From (2.41), I(z) =

* .
Vo Gp+2,n-p(°’k)' Hence (2.34) becomes
5, 0Tty ax (c31)
12 —x p+2,n-p " °
= I

12% 22 By GF4n npleid)
Where

G§+2 - p(c;A) = P(G < ¢)

and G has p+2 and n-p degrees of freedom and noncentrality

parameter A. Thereflore

L':

GB+o,nple3r) = (_'% p+2 c)
" PPfi2,np S 572 " i Fpon-p(®)
= P(F;+2,n—p = c2)
where
¢y = ohz Fiopop(@)
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Therefore Bias = =X, 3o+ u_F¥ (¢551) where F¥ (ey31)

12722 ~x"p+2,n-p p+2,n-p
is the cumulative distribution function of the noncentral F

distribution with p+2 and n-p degrees of freedom and non-
centrality parameter A.

As a partial check, when c2=0, the estimator reduces to
the usual estimator ¥ which is the case when we always reject

the null hypotheslis. In thls case Bias = 0. When Co=%®> the

null hypothesis 1s always accepted and the regression estimator

y - Slzszéz is always used. The bias in this case is the usual

bias for the regression estimator slnce F¥

pt+2,n-p
- -1
Bias = 212222 H.

Now for the purpose of comparison with the results of

(cz;k) = 1 and

Han (1973a), we let p = 1 and

1
£ =5 %
leT'T = opT
50
_..Bi:_i'_a;s.:: * .
= ETHpr+2,n-p(c2’A) . (2.42)

For p = 1 we have

H U2

- Bias = —}’2 w® J‘. _.2.(.
o P Oy F3,n-l(3Fl,n—1(°‘)’ noz)

X
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Wlog we set I,, = I and o2 = 1, Therefore for p = 1,
212 = p and we study the bias for positive values of p and u
since Bias changes sign with either parameter. Table 2.7
gives the values of -Bias for p = 1, n = 9 and some choices

of ux, p and a.

Table 2.7. Values of -Bias for p =1 and n = 9.

o = .05 o = .10
P P

My .1 5 .9 .1 5 .9

0 0 0 0 0 0 0
0.3 .020 .102 .184 .015 077 .139
0.6 .028 .139 .251 .018 .090 .161
0.9 .020 .101 .180 .010 .050 .090
1.2 008 .0l2 076 .003 015 027
i.5 002 01l .019 001 .003 005

The above values are essentially the same as those ob-
tained by Han (1973a) although differences are observed. The
differences occur because the expression for the bias given
here is 1n terms of nbncentral F distribution, while that of
Han 1s glven in terms of moments of normal distributions.
Therefore there may be rounding off errors in the computation.

We can observe that Bias = 0 when He = 0 or when the null
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hypothesis of the prelimlnary test is true. Also it can be
seen that -Bilas 1s an increasing function of p for fixed n, o
and ux but a decreasing function of a for fixed n, p and “x'
However, -Blas lincreases and then decreases to zero as My
increases whenever a, n and p are fixed.

For p = 2 and n = 9, the values of -Bias are given in

Table 2.8 for some values of Z15s M, and o.

Table 2.8. Values of -Bias for p = 2 and n = 9.
. 005
\J
Z1o

-og _05 -5 07
B; I5 .5 .7
(- o, 0) 0.0 0.0 0.0 0.0
( .3, 0) -0.1193 -0.1193 0.1193 0.1670
( .3, .3) =0.1112 0.0 0.2225 0.3114
( .6, 0) -0.1911 -0.1911 0.1911 0.2675
¢ .6, .3) -0.1761 -0.0880 0.2641 0.3668
( .6, .6) -0.1352 0.0 0.2704 0.3786
( .9, 0) -0.1847 -0.1847 0.1847 0.2585
( .9, .3) -0.1677 -0.1118 - 0.2236 0.3131
( .9, .6) -0.1240 -0.0413 0.2066 0.2893
( .9, .9) ~-0.0721 0.0 0.1443 0.2020
(1.2, 0) -0.1201 . -0.1201 0.1201 0.1681
(1.2, .3) -0.1075 -0.0807 0.1344 0.1882
(1.2, .6) -0.0766 -0.0383 0.1149 0.1609
(1.2, .9) -0.0424 -0.0106 0.0742 0.103¢9
(1.2,1.2) »-0.0177 0.0 . 0.0354 0.0496
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Table 2.8. (continued)

Z|

12 <.5> <..g> (.g> <.;>

0 . . .

By
( 0, 0) 0.0 0.0 0.0 0.0
( .3, 0) -0.0691 -0.0691 0.0691 0.0968
( .3, .3) -0.0585 0.0 0.1171 0.1639
( .6, 0) -0.0831 -0.0831 0.0831 0.1163
( .6, .3) -0.0696 -0.0348 0.1044 0.1462
( .6, .6) ~0.0403 - 0.0 0.0807 0.1130
( .9, 0) -0.0502 0.0502 0.0502 0.0703
( .9, .3) -0.0416 -0.0277 0.0554 0.0776
( .9, .6) ~0.0233 -0.0078 0.0389 0.0544
( .9, .9) ~0.0086 0.0 0.0173 0.0242
(1.2, 0) ~0.0172 -0.0172 0.0172 0.0241
(L.2, .3) ~0.0141 -0.0106 0.0176 0.0246
(1.2, .6) ~0.0077 -0.0038 0.0115 0.0161
(1.2, .9) -0.0027 -0.0007 0.0047 0.0066
(1.2,1.2) ~-0.0006 0.0 0.0012 0.0017
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PN NN NN N NN PN OTNITNITN

2o
<_.5> <.5' (‘g) -7
. 0 -5 . '7
By
0, 0) 0.0 0.0 0.0 0.0
.3, 0) -0.0211 ~-0.0211 0.0211 0.0295
.3, .3) -0.0159 0.0 0.0319 0.0446
6, 0) -0.0181 ~0.0181 0.0181 0.0254
6, .3) -0.0137 -0.0068 0.0205 0.0287
.6, .6) -0.0058 0.0 0.0116 0.0162
.9, 0) ~0.0065 -0.0065 0.0065 0.0091
.9, .3) -0.0049 -0.0033 0.0065 0.0091
.9, .6) -0.0020 -0.0007 0.0034 0.0048
.9, .9) ~-0.0005 0.0 0.0009 0.0013
1.2, 0) -0.0011 -0.0011 0.0011 0.0016
1.2, .3) -0.0008 ~-0.0006 0.0011 0.0015
1.2, .6) -0.0003 -0.0002 0.0005 0.0007
1.2, .9) -0.0001 0.0 0.0001 0.0002
1.2,1.2) 0.0 0.0 0.0 0.0
Prom Table 2.8, the lowing p erties of the Rias of

"{i are apparent.

1. The bilas is zero when the null hypothesis of the

preliminary test of significance is true, that 1s, when B = 0.

2. For fixed n, o and By the value of the blas generally

1ncreases wlth 212.

3. For fixed n, o and 212, the bias generally decreases

as o lncreases.



56

4. The bias is zero when either R or I,, has identical
components and the other has components which differ only in
sign.

5. For fixed n, I, and o and some component of Bes the
value of the bias first increases, then decreases to zero as

the other component increases.

F. The M.S.E. of ﬁ when 2 is Unknown
The M.S.E. of 1 is

M.S.E.({l) = V(}) + B? (2.43)

where

B = Bias(in) ,

and

V(i) = E(3%) - [E(1)1°

When I is unknown, the preliminary test estimator i1s given in

(2.27). Hence, making use of the notations of Section E,

E(71%)

E{(Sf- = 12 22 2| }P(G')

* E(§215>P<E>

(2.414)

-+

E[(Slzszzxx S22 21 [G1P(C)
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Thus we need to evaluate

-1-= -l==, -1
E[S,,5,,¥X|GIP(@ and E[(S,,8,5XX'S;58,,)|C1P(G)

-le= =1
Since 812322Xz522821 is a scalar,
E[(S, ,8553%'S555 )] G1P(0)
12722== 22721

-1 -l=w

E{tr (8,55, 5; 55553%" ) [G}P(G)

-1 =lee
tr E{(822821812822xx,)FI}P(G)

Now using the transformation of (2.31), we have

L L
e !—2 1 2 ' ¥ I
trf ; SUCKT'W, S WL + T'TZ,, ) (KWW, °T + 2, ,T'T)EX' £(X)
g(W, sW,,W3) AW dW,dW, dX
2 wm ot <5 =3tT(WAN ) 2(n-p-3)
= KStrSeeef SIT'W, SWIW W, “TEX'£(X)e e 1N
1 "2"2"1 = 3
G 0
%(n-p~2) -
e Wy | dW 5dW,dW, dX
o 3 . =BEr (WU,
+KtrSeeof SIT'T 21 WoW; “TEX' F(X)c e
a -0

(n-p-3)  3(n-p-2)

-|w3| [wy | dw ,dW ,dW, dX
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w3 26 (WA +W_+W)
+KtrSe oS SIT'W.C W'E =T 00T T2 3tWy
G w1 5 pT'TXX'f(X)c-e
1
5(n-p-3) 5(n-p-2) _
-|w3| |w, | dW AW ,dW, dX
1
caco o - tr(W'W PRLESLY, 5(n-p-3)
e ' ! t
+trf(1 f_iéT T2 512, ,T'TXX ' £(X)c e |w3|
$(n-p-2) ]
|w, | dW 5aW ,dW, dX

Now from independence and the fact

% -%trWéWz
# 0 W =
c - W2w2e dw2 I,
the first term equals
1 1
2 -= -=trW
. £ te s 2rREe(De 2t
E_D(_n—l) 'I"D(D"l) 'rr" a
2 ™ H F[ 5(n-1) ] Lin-p-2)
lwy |2 aw. d%
1
2 -=trW
= LS IIX'T'WllTXf(X)e 2771
5(p(n-1) ﬁp(p—l)-j—
2 rez 5(n-1)]
%(n—p-2) _
W | aw, dX

(where we recall G = {an'T'WIlTZ;an'T'WIlTZ < Tg} and
-1 -1
1 =
T wl T 322)
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_ w2 or3ra-ls 1oLz 2
= K° E[X'S55X | nmX's55X < T4
_ 22 or t t 2
= X Elgtapy | omitampy < To!
n(n-p) — nmp n-p p,n-p
X%
= <
n(n-p) ELt]t < Fp,n-p{®)]
k% ¢
- iy é t £(t) = Q (2.45)
where 4 = Fp n_p(o:.) and t has the noncentral F distribution
3

with p and n-p degrees of freedom and noncentrallty parameter
_ -1
Also from independence and the fact E(WZ) = 0, the second

and third terms are zero and the fourth term is equivalent to

, S S | ~5rWy  3(n-p-2)
tr{{T TE,21,T'TT “22'T' “g(Z)cqe lel dzdw,
sepr s, 5 TrTT -trW,  Z(n-p-2)
= Sf2Z2'g(2)e (W, | dZaw
1 1 P G 1 A |
Sp(n-1) §p(p-1) 1
2 . T ridcne-1)1
i=1 (2.46)

We evaluate the dlagonal elements of the above integral by
differentiating each of the two representations of P(C) twice
w.r.t. vgi) and equating the results. The off-diagonal

elements can simlilarly be evaluated by differentiating the two
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(1)

representations first w.r.t. v .=’ and then w.r.t. viK) and
equating the results.

Differentiating (2.38a) w.r.t. y;i), we have

1 (1)
3R c -zA * 4 A J=2,20V 77 o
=S e I v J 8-1(xz) (—5=—)"G (g)dg
2 o Jt 2 2 n-
av;i) 0 F(E%E) 3=0 (%*J,—EE)
c --é- .
+ f e 1 AJ-1,2n
- X = J(3) ()G _ (g)dg
0 r(BR) j=o 9* °°2 27 B4y, 2R
c -=A o (1)
(1) 2 2ny
-/ 2nv e X 1 A J-1 Ix
; ) —_—G a
_ 7 én BRI L (g)dg
> g 37 3 D.., n-
O 7 rER) s=0 ! (53,752
C Env(i) 5 —lh oo
7 (—2—)2 e ? : 2 (3 __(g)ag
0o ° r(2R) 470 TR BnR
g B s gt (£)a
2 FENEAY 2 R,; D=py 2/%8
0 T (BR) j=0 (5+)»=5=



61

Therefore
R __ - ,2,,(1),2 .
R R2OU g () ¢ e (o)
ayx
- nzgyiii?z G;+2’nfp(c;k) - np(@) + n?(v{1)2p(a)
- nfithZer,, | (esn) (2.47)

Similarly differentiating (2.40) w.r.t. vﬁi), we obtain

P ' n.,(J)_y,(3)y2
2 5 e CACELES!
SR =g | 2 (2,2)2(?(1)_v;1))2 o2 M

(12 6 3-1 /o7

1 1
-é'( n-p-2) —§tr’w

l 1| e 1 )
. aztd aw,
R(n—l) Ep(p—l)
W I{(n-1)]
i=1
P _:‘:(Z(J) vid)ye
- j .o -U_ ;ég % 2 = X
1
Y E(n-p 3) e-gtrwl
] 1 dz(J)dwl
5(n-1) Ep(p—l)
22 1T r(n-1)]

j=1
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Therefore
1 1

2 2 -=trW =(n-p-2)
2R =% ;2 g(z)e 2 Yw, )2 az'd)aw,
ay{1) a

b'e

1 1
' -=trW =(n-p-2)
2 i i

2
+ 02" p(g) - np(a)

But from equating (2.38b) and (2.40), we know the middle term

02y (1) 254
Vg Gp+2 e p(c A). Hence

1 1
2 2 ~=trW =(n-p~2)

av;i)

(2.48)
2
- 2n2y§i) G2 p noplesA) + n2v§i) P(G) - nP(G)
Equating (2.47) and (2.48) yields
1 1
2 -=trW =(n~-p-2)
: 72 g@e B, |2
—p(n—l) Hp(p -1)
22 ]T rih(n-1)1
1=1
qz(J)dwl = (v(i))2 B+, n- p(c A) + lG5+2 n— p\o;k) (2.49)
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Next we differentiate (2.38a) w.r.t.

1
. S s
av oyl o r(ER) I g
(g)dg - T Lo
By, 55 02 X
C.1 (1)
] (g)dg - J 5 2nv,
(5+3,=52) 0
(e)ag + f (%-2m)2
G g)dg + «2n v
n- 2
(%33_22) 0
n2y (i) (K)
G (g)dg =
Beg, Ry F T e Tx

*
GP+2sn-P

(es3A) + nzvﬁi)v;K) P

(K)
?x to get
(1) (K)
2nv_. 2nv
‘X X AJ-1
1 (1)
-\ ) 2
e 2 3 -J-l———n—— 3(HIt
r(agR) 470
1 (X)
-=A @ 2nv
e? 3 J—l,'-—-—-—:l( yd-1
r(agey 370
1)\ -
(1) ,(K) : L}y
-n Ji°2
r(E%R) J=0
G*+4 e p(c;)\) - 2n2v;i)vix)

(@)

(2.50)
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Similarly from (2.40),

P

I [N RO MONTL S
av{F)ay (1) g =1 vom

1 1
: Z(n-p~-2) =-=trW

‘ (3)
e g(2z)dz v’‘aw
p-(n-l) EP(P—I) - 1
22 }r_ r[3(n-1)]
1=1
_neo(d)_ (J) 2
- n’ 5 g(1)5() 202 )
B(n-1) $p(p-1) T G
2 m T ridm-13
—(n-p-2) —trW
Jwy |2 e 27 lg(zaz'au,
(K) n.,(J3)_ (3) 2
- n® Vx ; PRCON (277 7=, ")
B(n-1) 3p(p-1) G
22 gt T rid@-1
—(n—p-2) —trw
<y |2 e 2 lg(gyazld)d
(i) _neo(J)_ (J) 2
- g 7 (072 )
5(n-1) p(P-l)
r ﬂ_r[ (n=1)7

1 1
5(n-p-2) =-3trW
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Again we know each of the two middle terms equals

n?v{Dy(Kgs (c31) from (2.38) and (2.40). Therefore
2
3R n (1),(K)
= Irz Z
.1 "~ B I 7 4
v T’ av (n-1) 7p(p-1) G
x X 22 n ﬂ—r[%-(n—i)]
n.,(J)_, ()2 1 1
-5(2 Y =v ) Z(n~p-2) -3trW
e 2 * 0 w2 e 2 lg(zyazaw,
eno{DvBax (es2) + n?vii)v'}(cK) P(G) (2.51)

Equating (2.50) and (2.51) we have

B(n-1) 3p(p-1) + |
2° ? wE -”‘P[—
i=1

(n-i)]
(2.52)

%(n—p-2) ~EtrW

vy | 1 x ’x p+ »N=Dp

l e

We may now let

1 1
-5ty 5(n—p-2)

L I 2z'g(2)e W, | dzaw,

2(n-1) #p(p-1) +-
22 _ LI‘[%(n—i)] @ (2.53)
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M where M 1s a pxp matrix with i1-th diagonal element
— (1)2* . 1*
= (g ) G5 np(e3) * 38540 nop

= (1) K)oy
diagonal element = v, ™'V "GE,) , o

(c3A) and the (1,k)th off-

(c3A). Hence

E[(S,,55588'5555,1) 181 R(G)

-1 -1
Q + trT! T'TZ21212T'TT M

: -l.-1 -1.~1 .
Q + trT! 222221212222T M (2.54)

=11 -1lo-1
Q + tr212222T mT' 222221

Lo lypr-ip7ls

= Q+ I;5505, 22%01

sinqe the second term is a scalar.

Next we note that

-]
ELS, ,8,,9X]|C1 P(G)

E{E(slzsgéZEIS,G)IG} P(G)

E{E(S, ,5;3%55,%,G)|a} P(q)

E{S,,555X E[7|Z1|C} P(G)

N -1 .= -1 ,=

= B{S, 555 Xlu+z;,255(X-p,)1la} (@)

= WE[S. ,SI1%|a] P(G) + E[(S,,S5i%z.,Z5i%)|GIP(G)
HELO2Pp02I Y 2 12°22%8%12% 222

5 T |
- E(815855KE 52551, [G) P(G)
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-1z -1
But since 21.22223(_ and 2122221“-x are scalars, they are equal to

X! 222221 and -Exz22221’ respectively. Hence

. -
E[slzszzyzla] P(a)

uE[Slst%XIGJ P(G)

~lgo,o—1
+ E[(8),8,,XX'Z,55,,[G] Pga)

_l_ [ -l
- E(81 585K T 5505 [G] P(G)

To evaluate the middle term,

~lge, -1
E[S) ,8,58X"2,52,; [G] P(G)

-1 ]l
E{tr(zzzzlelzszazz')|G}.P(a)

1

2

1-

= tr $,52,, E{S],85,5%X"' |G} P(Q)

and with the transformation of (2.31)

1

MWy °T + 2 ,T'TXX ()

trT'TL,, U KW
G =
g(Wy ,W,,W3) AW aw,aw, dX
3 o =T (UL A, )
' '
trT 'I‘Zzl.l'é KW2W1 TXX f(_}_(_)coe

%(n-p—3) %(n—p—2)

| v, | dW 5 dW ,aW, dX
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__ - tr(W2W
X't

T /S
G-

+ trT'TL

7

o< 8

2121oT' (X)epe

W I§(n p-3)
3

But from independence and the fact E(W2)

0 and using (2.46) and (2.53)

-1z
12 22—

-1

E[S >

XX'I,5%,7 1G] P(G)

-1 1

trT!? T'TZ21212T'TT_ M

-1
22

-1

iy 1yl

Zp5lp

Z45L

12

Therefore
E(S,8 22yX|G) P(G)

-1 ¥ .
= UZ3oZoolyOReo pap(e3h)

-1.~1

+ 3, 82T ~lg-1
L cc

g
[~y -4

[N

MT!

lZ G¥

z 22%221%542 n-p

12 ZZExExz

2 2

+ u

Finally E(§2) = )

ST

2

A 1 2
B({%) = 20% + w® - 2w

-1.-1

-1.~-1
2T MT!

DD > z

1272

22%o1

+ 2‘)‘12 ZZExHxE G2

+ Q

Wy

-1 *'
122228540 np

22 21 p+2 n-p

3+W1)

'|%(n—p-2)

daw dW2dW

3 1

0, the first term

(2.55)

(e3l)

Substituting into (2.44), we have

(es3n)

-
I\

(e3A)

dX
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[u - £ 2ot ly g# (c31)1°

~y 2
[E(W)] 125227 %% 4o np

g7in 1y g% (c3A)

2
= W - 2uZ95255T TN GRS nep

12222T v, V'T' L, I, LG

22%21 CHE

p+2,n-p

Therefore

E(1%) - [E({)1°

V(1)

2 _ g 1ol lMT' ly-1

12%22 Zyp +Q

22721

e

(2.56)
o5, z7ly urpTly g (c3))
122 200bx By Z 55251 %540 noplcs

-

=11, yeqe=lg=ls 112
I v VI T I [GF (c31)]

12 p+2,n-p

To be able to make any partial checks, we need to compute
the variance of }I for the cases when ¢ = 0 and when ¢ = =,

When ¢ = 0, we always reject the null hypothesis and so the

estimator reduces to B = ¥ with variance

V(i) = V(F) = o° (2.57)

For ¢ = », we always accept and so use the estimator

A—_ _l—
=¥ - 895804 -
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Now
V(T - 81555;8)

=E V(y - S

t - 1
12 22xlx s) + VE(y - 5,,8 22xlx s)
1 - I - = =1=
= = - - - 1
E [$2,1,, = 20ov(y, I (y;-¥)(X;-X)S,5X|X;"s)

i=1

e =l=
t Iy, X" 5K]

+ VLU + 5,055 (Fey) = 2,055K]
= 1y + 1., B(X'S55E)
nl1ll-2 11. 22=
But nm(X'S ) = T2 ~ noncentral 72 distribution with n-1
degree of freedom where recall m = n~1 and 2%%%5%1 ~ noncentral
F distribution with p and n-p degrees of freedom and non-

centrality parameter ngézzégx. Hence

V(y - S, 28-:)%13_{ )

S

= = ' nm n-p  p(n-1)
n211-2 + zll 2E{(X S X)nm p(n 1) n-p }

= =1 +z

S S
nf11.2 ¥ 211.2 ainpy E(Y)

~F A). But
where t p-n-p( )

amx2}ﬂ]

E(t) = H?ggg— [1 + 5
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Hence
_ 1el 1 e 2nu'22éu
V(Y - 8158555%) = 3Z17.0 * I17.p (aopody LT ¥ — D —]
n

So now for partial checks, when ¢ = 0, (2.56) is V(i) =
%02 which 1s the variance of the estimator when we always
reject. For ¢ = =, we note that

= w8 P
Q= K ) f t £(t)dt

= b
= I17.2 n(n-p) E(t)

2nu

‘ ZEx
Z11-2 n(n-p-2) [1+ P ]

and (2.56) reduces to

1.2 _ -1, _lp o-1c
n 212 22£xﬂx 22%21 T n*12%22%21
2nu'Z E
22—X
+ z11-2 n(n-p-2 (1 + P ]
+ 2% -1y
12 22£x x222%01
-z s71iz
12 22Ex x222%01
L 2nu'EoTu
= af11.2 ¥ 11.0 nlnop-3y L1 ¢ 5

y



72

which by (2.58) is the variance of the regression estimator
when we always accept HO'

Now we obtain the M.S.E. of il.

1.2 -1 ~1 -1.-1

M.S.E. (1) .. +Q

22721

B T |

* .
20 ol U M B o505 BF o pop(C3R)

-1,-1

~1g-1,
122257 " XyVy

!
-z T 222 o1

ek (c;A)]2

pt+2,n~-p

-1.-1 -1 1

Sy 92
+ Io055T TV WITT TN o1 [G¥ (c3n)]

pt+2,n-p

or

2 _ 5 5=lolympe-l

-1
L1525 Iy + 8

M.S.E. (1) 5801

BL“

z

1

+ 25,5k 22HxBx 22221

Gp+2 n-p

(e3)
2 -1 -1c

1
AR PUPPI WO PPOPE

p+4, n-p(csl)

=z. .z l G#* (c32) + Q

n
1
nl1lz2 22 21 p+2,n-p

-1 1

221 ol ooty T3 910540, n-p (C32) (2.59)

G. Relative Efficiency (e')
To evaluate the gain and loss of precision of the prelim-
inary test estimator, we consider the relative efficlency of

ﬁ to the usual estimator y. This is defined as

A S A

= M.S.E.(ﬁ)// M.S.E.(¥)
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so that using (2.59),

g
t =
e T+n 4 (2.60)
where
h =% {2 urtisly gx (c3A)
2 12 2ZEx UeZooZoy G040 nplCs
S 0 S THRTLE e S (c3n)
12%ooMxglyZ 00251 GRsn nplcs
Ly 57ir. . g* (e32) + QF

T n®12°22%217p+2,n-p

Wlog we let 222 =TI, 62 = 1. Therefore

- . - ] * .
h = 202y )R, W2 PR o np(CosA) = Il X FRoy nop(Cysh)
i d
- * . -
212800 F o nop(Casd) + (1-Z 53,058 é tf(t)dt

=K z

If we let 2,8, = Kis Z75057 = &5
h = 2nK°F# (c.3\) - nKoF#* (c)31)
1 p+2,n-p ' 2 1 p+4 n-p Yy

- S o
81F 4o, n-p(CaiM)+ (1 gl)n — é tf(t)dt

We note that e' 1s a functilon of n, 212, B and o for
any given p. For the computation of e' for certain choices of
n, 212, By and o, we use the incomplete Beta approximation to

the noncentral F distribution. We denote the cumulatlve
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distribution function of the noncentral F random variable with
vy and vy degrees of freedom by Fti,vz(dgl) where A is the non-

centrality parameter. That is, we let

d
= ¥
6 £(£]vy5v552)dt F¥ V1sv, (a,xr)

Therefore

A
T2,0\3 1
d o (%) V., =V, +]
2 1,2°1 (2.61)
F#* (d,A) =S ¢ - (==)
V122 0 g=0 J° Vo
L. +j-1
t2 1 vl 2(v +v +2J)
. S (14—=t) at
Y2 Vo

and since l—I (a b) = I (b a) where I (a,b) 1is the incomplete
B function given in Karl Pearson (1934), then from Tiku (1967),

F* v (d,r) =
V122 J

™8

To obtain an analogue of (2.62) for

d
é tf(tlvl,vz,k)dt s

we use (2.61) and note
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where

oo d
d = .__1__... .
1 vld+v2

For the purpose of comparison wlth the results of Han
(1973a), we compute the values of e' for p = 1 and certain
values of n, 212 = p, ux and ao. These'values are shown in
Table 2.9 and reveal no significanﬁ difference from the values
obtained by Han. Han's results were in terms of moments of
normal densitles while the present results are expressed as a
function of the cumulative distribution and the expected
values of the truncated noncentral F distribution. Subroutines
using an incomplete Beta distribution to approximate the non-
central F distribution were used in the computation and the
slight differences for small values of o are due to these
approximations and rounding off errors.

Table 2.9 shows e' assumes its maximum value when u_ = 0.
It then decreases to some minimum before increasing to 1.0
as W, increases. The value of 1.0 for large values of L
corresponds to the fact that when U gets very large, then the
difference from zero is significant and we always reject the
null hypothesis, thus making the two estimators the same. For
fixed n, My and o, e"increases wlth p .while for fixed n, u

X
and p, e' 1s a decreasing function of a.
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The values of e' for p = 2 are given in Table 2.10 for
some values of 212, Ueo 1 and o. From the table, we note the
following properties.

1. The relative efficlency e' is maximum when p = 0
for fixed n, o and 212. This corresponds to the case when the
null hypothesis 1s true. |

2. Por a fixed sample size, the maximum value of e'
increases with 212 for any given a but decreases as o increases
for a gilven Zioe

3. e' remains the same for values of 212 which differ
only in sign.

4y, For fixed o, n, 212 and some component of Ex’ the
relative efficiency decreases to a minimum and then lncreases
as the other component increases.

5. The value of e' equals 1.0 for large values of n or
By This is because the two estlimators tend to be the same
a8 n gets large: while for large values of Uos We would always
reject the null hypothesis and use 1 = y.
| 6. For a fixed o and small values of u , the value of
e' increases with 212, but e' 1s a decreasing function of 212

for mcderately large values of Hx' For large values of Bx’

e' equals 1.0 as explailned in 5 above.



Table 2.9. Values of e' for p = 1.

n=9 L o = ..05
.
3 .5 7 9
ux
. 0 .9924 1.1512 1.5046 2.5468
. 2 .9530 1.0290 1.1688 1.4275
.U .8657 .8166 .7525 .6812
. 6 . 7979 .6753 .5488 L4391
. 8 . 7800 .6282 .14863 .3737
1.0 .8166 .6598 .5153 .3988
1.2 .8732 .T48T7 .6169 .4996
1.5 9577 .9038 .8335 . 7551
g = .10
. 0 .9945 1.1205 1.3644 1.9434
. 2 .9661 1.0201 1.1135 1.2685
' .9016 .8508 . 7845 L7107
. 6 .8611 .7520 .6318 .5208
. 8 .8659 L7434 .6132 4972
1.0 .9044 .8021 .6857 5745
1.2 .9498 .8870 .8069 .7203
1.5 .9893 .9738 .9515 .9232
aga = .20
. 0 1.0018 1.0766 1.2122 1.4569
.2 .9803 1.0099 . 1.0578 1.1292
. 4 9423 0.9009 0.8452 0.7808
. 6 .9266 0.8510 0.7582 0.6620
. 8 .9406 0.8700 0.7819 0.6888
1.0 .9670 0.9226 0.8633 0.7951
1.2 .9871 0.9683 0.9413 0.9077
1.5 .9983 0.9958 0.9919 0.9868
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Table 2.9. (continued)

n=9 . ... e = .30
P
My 3 5 7 9

.0 1.0020 1.0477 1.1247 1.2470
.2 .9883 1.0049 1.0309 1.0677
A .9657 0.9363 0.8953 0.8460
.6 .9597 0.9116 0.8479 0.7756
.8 L9714 0.9326 0.8800 ‘0.8184
1.0 .9865 0.9667 0.9383 0.9031
1.2 .9957 0.9889 0.9790 0.9661
1.5 .9996 0.9989 0.9980 0.-967

o = .40
.0 1.0015 '1.0284 1.0715 1.1340
.2 .9932 1.0023 1.0163 1.0355
LU .9803 .9613 L9342 .9003
.6 .9782 .9498 .9101 .8621
.8 .9860 .9656 .9366 .9005
1.0 .9942 .9852 .9720 .9549
1.2 .9984 .9958 .9919 .9867
1.5 .9999 .9997 +.9994 .9990

a = .50
.0 1.0010 1.0157 1.0388 1.0711
.2 .9963 1.0010 1.0082 1.0179
A .9893 .9783 .9621 L9414
.6 .9888 | .9753 .9609 .9327
.8 .9933 .9832 .9684 .9493
1.0 .9975 .9935 .9875 .9796
1.2 .9994 .9983 .9968 .9947
1.5 1.0000 .9999 .9998 .9997
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Table 2.9. (continued)

‘n=11 ... ... ... o = .05
‘ p
My 3 .5 7 9
.0 1.0078 1.1632 1.5131 2.5263
.2 .9578 1.0169 1.1206 1.2968
A .8632 . 7889 .6986 .6062
.6 8045 .6654 .5284 LA41hs5
.8 .8102 .6562 .5106 .3940
1.0 .8660 L7341 .5976 L4789
1.2 .9328 .8519 .7538 .653L
1.5 .9880 .9707 .9458 .9145
o = .10 ,
.0 1.0083 1.1273 1.3699 1.9212
.2 . .9689 1.0083 1.0739 1.1759
A .9002 .8304 .T438 .6530
.6 .8703 .7532 .6267 .5120
.8 .8930 .7806 .6566 5418
1.0 Lololu .8665 L7751 .6796
1.2 .9778 L9464 .9030 .8510
1.5 .9976 .9939 .9883 .9810
o = .20
.0 1.0067 1.0792 1.2097 1.4424
.2 .9813 1.0012 1.0324 1.0772
.l 9420 .8896 .8211 .T446
.6 .9344 . 8591 L7664 .6700
.8 9567 .8998 .8262 .T449
1.0 .9820 .9557 .9188 .8738
i.; .9952 .9877 L9767 .9623

.9997 .9992 9985 9975
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Table 2.9. (continued)
n =11 o = .30
o
u .3 .5 T .9

.0 1.0048 .0490 .1231 .2399
.2 .9886 .9990 .0151 .0374
.4 .9656 .9298 .8807 .8229
.6 .9648 .9190 .8579 .7880
.8 .9800 .9511 .9108 .8621
1.0 9931 .9824 .9668 .9468
1.2 .9985 .9961 .9925 .9877
1.5 .9999 .9998 .9997 .9994

o = .40
.0 1.0031 .0290 .0705 .1313
.2 .9933 .9987 .0069 .0181
A4 .9803 .9578 .9259 .8866
.6 .9814 .9552 .9184 .8736
.8 .9906 .9762 .9553 .9289
1.0 .9972 .9926 .9859 9770
1.2 .9995 .9986 9973 .9956
1.5 1.0000 .0000 .9999 .9998

o = .50
.0 1.0018 .0160 .0381 .0691
2 .9963 .9990 .0030 .0084
AU .9894 .9765 .9578 .9340
.6 .9906 9767 .9565 .9309
.8 .9956 .9887 .9786 .9653
1.0 .9988 .9960 .9940 .9902
1.2 .9998 .9995 .9990 .9983
1.5 1.0000 .0000 .00C0 .0000
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Table 2.9. (continued)
n=19 . ... . . ... . .o = .05
o)
u .3 .5 o7 .9
.0 1.0330 .1867 1.5276 L4760
.2 .9560 .9595 L9647 .9718
LU . 8524 7222 .5876 4706
.6 .8487 .6987 .5522 L4316
.8 .9210 .8227 .7093 .5991
1.0 .9796 .9493 .9071 .8564
1.2 L9974 .9933 .9872 .9791
1.5 1.0000 .0000 .0000 .0000
o = .10
.0 1.0264 L1417 .3730 .8812
.2 .9653 .9600 .9520 L9u17
A .8965 . 7885 .6678 5547
.6 .9132 .8085 .6899 5770
.8 .9665 .9183 8544 .7818
1.0 .9939 .9843 .9702 .9520
1.2 .9995 .9986 .9973 .9956
1.5 1.0000 .0000 .0000 .0000
o = .20
.0 1.0170 .0855 .2076 .4206
.2 9779 .9689 .9558 .9388
A .9433 .8726 L7844 .6912
.6 .9633 .9110 8424 .7655
.8 .9900 .9TU2 .9515 .9227
1.0 .9988 .9967 .9937 .9897
1.2 .9999 .9998 .9996 .9994
1.5 1.0000 .0000 .0000 .0000
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Table 2.9. (continued)

n =19 =030
p
My 3 .5 7 9
.0 1.0107 1.0520 1.1207 1.2275
.2 .9861 .9784 L9671 .9524
A 9677 .9234 .8640 L7957
.6 .9825 .9555 .9178 .8719
.8 .9962 .9899 .9806 .9685
1.0 .9996 .9990 .9981 .9968
1.2 1.0000 1.0000 .9999 .9998
1.5 1.0000 - 1.0000 1.0000 1.0000
o = .40
.0 1.0065 1.0305 1.0688 1.1245
.2 .9916 .9862 .9781 .9676
U .9821 .9559 .9191 8742
.6 .9915 9778 .9579 .9327
.8 .9984 .9958 .9918 .9866
1.0 .9999 .9997 .9993 .9989
1.2 1.0000 1.0000 1.0000 1.0000
1.5 1.0000 1.0000 1.0000 1.0000
.0 1.0036 1.0167 1.0371 1.0655
.2 .9953 .9920 .9870 .9804
U .9906 .9763 .9555 .9292
.6 .9959 .9893 L9794 .9666
.8 .9993 .9982 .9965 .9943
1.0 1.0000 .9999 .9998 .9996
1.2 1.0000 1.0000 1.0000 1.0000
1.5 1.0000 1.0000 1.0000 1.0000
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Values of e' for p = 2.

Table 2.10.
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(continued)

Table 2.10.
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(continued)

Table 2.10.
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III. DOUBLE SAMPLING WITH PARTIAL INFORMATION

ON AUXILIARY VARIABLES

A. Introduction

Consider a p+l variate normal population

<§> ~ N(u,Z)

where Y 1s a univariate random variable and X is a pxl random

vector with p > 1,

2
u c 212
and z '

Yy Ly Zoo

=
]

(3.1)

Suppose we are lInterested in estimating the population mean u
of Y. It is well known that the precision of the estimator
can be increased if auxiliary information is avallable. For
example, if the relationship is linear, a linear regression
estimator may be constructed. We shall consider here the
regression estimator. 1In the glven multivariate normal dis-
tribution, the vector X is correlated with Y and so can be
used as an anclllary varliable to increase precision 1ln esti-
mating u. To use the regression estimator we need to know
the population mean By of X. When By is unknown, we may take
a preliminary sample to estimate it. This sampling procedure

is the double sampling technique. 1In certain situations, an
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investigator may have partial information about L, In order
to make use of this partial information, the investigator can

perform a preliminary test about the hypothesis Ho: Ex Ky

versus H,: Ko # U where 1ls some constant vector that he

0 Eo
believes"that the population mean M should be based on the
partial information.

As an example, consider estimating the average growth of
some rats. It 1s known that the growth is highly correlated
with the amount of a certain vitamin in the feed. Hence the
vitamin content of the feed can be used as an auxiliary
variable. The investigator usually does not know the popuia-
tion mean value of the vitamin content but from the growth of
Neurospora mycelium (or some other fungus) on agae plates and
the comparison of this with the growth on some control plates
with known concentration of the vitamin, the experimenter may
believe that the population mean should be Bye Once a prelim-

lnary sample is avallable, the investigator may test HO: Ex
EO against Hl: | # Ko He then will use By in the regression
estimator if H0 is accepted, otherwise he uses the sample mean
based on the preliminary sample. This estimator is usually
known as the prelliminary test estimator. If tﬁe investigator's
prior information or experience is reliable, then the true
mean H_ of X will be expected to be very close to Ug- In this
situation, the efficlency of the preliminary test estlimation

is very high. Thus in practice, 1t 1s desirable to use the
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preliminary test estimator when some partial information 1s

avallable to the investligator.

B. The Preliminary Test Estimator and its Bilas
when I is Known

Let (}) have a multivariate normal distribution as given
in section_A. We assume X is cheaply observed while the pair
(Y,X) is more expensive to observe. We wish to estimate u, the
population mean of Y. Let (yi,Xii,Xzi,...,Xbi)!.i = 1,...,n2
be a random sample from N(u,Z). This is supplemented by m
more Iindependent observations on X' = (;l,...,zb)'. In
practice, the sample of n, observations is usually a subsample

from the sample of nl = n2+m observations. From all the

observations, we define

n
- (L

Ny 4

n
1
Xli’o-."'ﬁ]'-_" Z Xi)"
1 11=1 P

o

and from the subsample in which X and Y are observed, we

define

n2 n2 n
Tz 1 1 - 1
Ly T ( z X PR Yo z X )' y =
2 Ny 423 1i Ny 427 pil n

If the vector Hy and I are known, then the regression estima-

tor of u 1s
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The regression estimator 1s unbiased with variance

dea e
n2{° EPRETLIIE

Ir

. n, %122 25%a1}
ls considerably large, we have an appreciable gain in
precision. If By is unknown and 1t happens that from certain
sources, the experimenter 1s pretty sure but not certain that
By = Hgo then he méy perform a preliminary test of HO: Ex = Yy
In this case he can make the regression estimator depend on
the result of the preliminary test. The new estimator 1s. then
the preliminary test estimator. Without loss of generality,

we let By = 0. Thus the preliminary test estimator is defined

as
f— Z z'—l-)-( _f —_—_:__—le-_ ~ < 2 L A NN
) Y = Bpofopdy I ml&j2o587) S Xp oy V3es)
Hop °
F o+ I ,055(% -k if n (R52%) > K2
12722 =1 =2 22 1 P,0
where the subscript 2&r denotes linear regression and x is

p,a
the 100(1l-a) percent point of the Chi-squared distribution

with p degrees of freedom. a 1s the level of significance of
the preliminary test.
The joint distribution of (21,2255)' is normal with mean

(U, o4, >n)' and covariance matrix
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“?|P FPlH

w5 |-

1
1y
22 nl 12
1
22 oo Z12
2
1 2
—
12 n2

Denote the acceptance region for the preliminary test by

A and its complement by & and let X2 _ =

¢c. The expected

P,a

value of uzr is
E(l, ) = E{(F - 2,,255%,) |A}P(A)

+ BUF + 2;,255(%;-%,) 1|A}B(E)

= B(J - 5;,555%,)

+ I,8 22 E{X |A}P(R)

= u - I Sotu + I,,550 E(X, |R}R(R) (3.3)
Hence the bias of ﬁlr 1s given as

By = I;,%55 E{X |KIR(R) - 2,555 (3.4)

In order to evaluate the bias,

Now X; ~ N(E_x,n 222) and

a nonsingular matrix D 3 D'D

we need to find the first term.

slince 22 is poslitive definite,

-1
22°

2

= I Let
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then

I
I

Dzl,

z  N(Dp_,=,I)
- an

N ,
N(lx’HI’I) say .

Hence {nl(g'g):nl(g'g) > c} = &,

-1.~-1

p! E[z|A1P(R) - %,,2I5%

B, = I_ .z 122558, (3.5)

1 12722

It 1s known that nl(g'g) has a noncentral Chl-squared distri-
bution with p degrees of freedom and noncentrality parameter

§ = nl(Ex'D'DEx) = nl(l%l§)- Y, is a pxl vector and we denote
1

the 1-th component by Yx

Hence

1
© ==§ o
= Y = 2 1.68+vJ
T = P(R) = £ e z F7(3) hp+2J(t)dt (3.6)

where h_.,,(*) 1s the probability density function of Xé+2i'

Differentiating (3.6) with respect to ygi), we obtain

= —-J=6

9 T 9 2
. = f e
ayii) ayii) c . J

1 A&, (e)at

K p+2]

and by the Lebesgue Dominated ConVergence'Theorem (LDCT) as
Justifled in the Appendix, we can take the differentiation

inslide the 1ntegral and have



aT “'%6“-1 1(1) 8y3-1,
ay}({i) = g e JE T IR TTh s ()as (3.7)

o PR _

- Loony{Pe I 28, (0at

= n [1-H ,,(c;8) - p(R) v

= 0y [P(A) - Hy,,(e36) (Y

where
1
P(A) = Z o2 jgo L&, (et

and Hp+2(c;6) is the cumulative distribution function of the
noncentral Chi~squared distribution with p+2 degrees of freedom

and noncentrality parameter §.

Alternatively, we can evaluate P(A) by the use of the

distribution of Z and write

p
- -y
| —e ° P TACE (3.8)

If we now differentiate (3.8) w.r.t. Y(i) by the LDCT as
shown in the Appendix, we have

P
ai) _ ﬂ'

B1,03) J(3).2
. —T( Z -Yx )
ﬁ j=

7% 22y (1) az(3)

WL

n, e[z >|§1 P(E) - nyyVe(R) (3.9)
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Hence we may obtain E(Z(i)IK)P(K) by equating (3.7) and (3.9).
That is

ny (10, 5(56) = 2BV = nyE@M [Dp@) - v{Me(B)]
E(z(idlﬁ)P(K) = [1-H,,5(c; G)JY(1> (3.10)

Substituting (3.10) in (3.5), then

By = 5,520 [1"Hp+2(c §) 1y, - 1zzgéﬂx

-1.-
-Z 5755

D~ I H

p+2(C38)

-1
=Z1 o2 oty o (e36) (3.11)

As a partial check, when ¢ = 0, the estimator reduces to y +

21225%(21—22) with zero bias which is the case when we always

reject the null hypothesis. In this case Hp+2(c;6) = 0 and

Bl = 0. When ¢ = », the null hypothesis 1s always accepted

and the estimator reduces to ﬁzr =y - 21225222. Here

H  -(ec:8) =1 and B, = -Z,ﬁZnEu which is the blas for the
pte L L

regression estimator, y - 21222252.

Wlog we let Z,, = I and 02 =1, Again forp = 1, we
observe that B1 changes sign with 212 = p or u,  so we need
only study the bilas for My >0 and p > 0. The values of -B1
for p = 1 and n, = 30 and certailn values of p, My and o are

given in Table 3.1 and are independent of n,.
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Table 3.1. Values of -Bl for n,y = 30 and p =1
o = ,05 a = .10 o = .25
p

Uy T 9 T 9 T .9
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0474 0.0610 0.0362 0.0465 0.0173 0.0222
0.2 0.0781 0,.1005 0.0561 0.0722 0.0245 0.0315
0.3 0.0827 0.1063 0.0543 0.0698 0.0207 0.0266
0.4 0.0648 0.0833 0.0380 0.0489 0.0121 0.0156
0.5 0.0387 0.0497 0.0199 0.0256 0.0052 0.0067
0.6 0.0176 0.0227 0.0079 0.0102 0.0017 0.0021
0.7 0.0061 0.0079 0.0024 0.0030 0.0004 0.0005
0.8 0.0016 0.0021 0.0005 0.0007 0.0001 0.0001
0.9 0.0003 0.0004 0.0001 0.0001 0.0000 0.0000
1.0 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

From Table 3.1 the following properties of the bias are
obvious.

1. The bias is zero when My = 0 which is when the null
hypothesis is true.

2. The bilas is an increasing function of p, but a
decreasing function of a.

3. For fixed n, o and p, the blas first increases from
zero and then decreases to zero as “x increases from zero to
one.

We observe that the values obtained here correspond with those

of Han (1973b) which are used as a further check of the expres-

sion for the bias.
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values of I
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1 for nl

2; B and o are given in Table 3.2.

2, the values of -B

= 30 and certain

Table 3.2. Values of -Bl for p = 2 and n, = 30.
aga = .05
ZI
' 12 (‘7) 05 -7 _05
By 0 .5 .7 .7
( 0, 0) 0.0 0.0 0.0 0.0
( .5, 0) 0.0659 0.0471 0.0659 -0.0471
( .5, .5) .0622 0.0888 0.1244 0.0178
(1.0, 0) .0002 0.0001 0.0002 0.0001
(1.0, .5) .0002 0.0002 0.0003 0.0000
(1.0,1.0) .0002 0.0002 0.0003 0.0000
o = .10
( 0, 0) 0.0 0.0 0.0 0.0
( .5, 0) 0.0383 0.0274 0.0383 -0.0274
( .5, .5) 0.0358 0.0511 0.0715 0.0102
(1.0, 0) 0.0001 0.0000 0.0001 0.0000
(1.0, .5) 0.0001 0.0001 0.0001 0.0000
(1.0,1.0) 0.0000 0.0001 0.0001 0.0000
a = .25
( 0, 0) 0.0 0.0 0.0 0.0
( .5, 0) 0.0126 0.0090 0.0126 -0.0090
( .5, .5) 0.0116 0.0165 0.0232 0.0033
(1.0, 0) 0.0 0.0 0.0 0.0
(1.0, .5) 0.0 0.0 0.0 0.0
(1.0,1.0) 0.0 0.0 0.0 0.0
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From Table 3.2 we note that for o = 2 and n, = 30

1. The bias 1s zero when M = 0. Thls once more
corresponds to the case when the null hypothesis is true.

2. The bilas 1s generally an lncreasing function of 212,
but a decreasing function of a.

3. For fixed n, o and 212, the bias first increases from
zero and then decreases to zero as u; increases from (0,0) to

(1.0,1.0).

C. The M.S.E. of ﬁlr when % is Known
By definition, the M.S.E. of ﬁZr is given by M.S.E.(ﬁzr)

= V(ﬁzr) + (Blas)?. Therefore to find M.S.E.(ﬁzr), we may
first find

V(fi,,) = E(fi, )% - [EG, )17 (3.12)

From (3.2), we have

I
ﬁ
”~~
!

Lin

-nl"2 \ - ll\
Lr’ Z12Z,5%,) 1A

+ EL(F - £,,253%,)°|RIB(E) + E[(212 S5 t2) 2| RIR(E)

23D TEL(FZ) |K1R(R) - 23, ,233E0(X,Xy) |BIP(R)2;

-+

2% 5L

12 22 21

Therefore

E(F - 5,055%,)° + 25,5550 "E[(F2) |AIP(R)  (3.13)

E(“zr)

- 2z E[(x )|K]P(A)z

12 22 22 21

-1 +1ly-1s
+ I5L 22D E[ZZ'IA]P(A)D L5801
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Therefore to evaluate E(ﬁ% ), we need to find E[2Z2'|A]P(R),
E[(¥2)|AR]1P(E) and E[Xl |EJP(R). As before, we denote the
i-th component of Z by Z(i) and note that it 1s Sufficient to
consider only E[(Z(i))zlijP(E) and E[Z(i)Z(K)]E]P(K) for i # K.
To evaluate these, we use the second derivatives of T where T

is given in (3.6). Thus differentiating (3.7) w.r.t. Yéi),

we have
1 (i)
2 ) -=8 )
3°T  _ 2 1, My J-2,
()2 £e Jzo J1(————-2 )2 3(3-1) (& 5) p+2j('t:)dt
A
1
0 ==§ o 2n
2 e Y R o |
e RN J(Z) T hy (Bt
1 (1)
o -5 2n.y
_ 1 (1), 2 1 “1vyx §yj-1
T3amyle t B FT T IR Thpagy(R)ae
=1 36 = 4 g J
-— — 2 — | ——
é 5 2ny e jEO FT(3) By, (t)at
© —-1'-6 0
+ 1 Gy e? 2 FHin (0)as
c j=0
1 (1)
© -56 = 2n.y
1 (1) | 2 1 MY J -1
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Therefore
;3§§;§ = 0, 22008, (e38)1 + ny[1-H o (e38)]
x

- n 2 {20 (03601 - ) + 0 PP Pe(E)
- 0, 2 {P)201-H 5 (e38)]

Hence

ajzf>2 - ni2(Yii))2[l-Hp+u(C;6)] + ny (120, (V2300 (560
+n 00y (vi1)2 - 1328) (3.14)

Similarly, differentiating T twice w.r.t. Y}({i') where T 1is
given in (3.8), we obtailn

P | P13 L (3),2

S TS e 12, (1) (1) _ (1), 22 -1, ) (3
(12 F g2 T T st

ayx

P Ty (3) ()42

g TP D )
I 3=1 V27 °
P amT on -?}-(Z(j)—y('j))z
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Therefore
P2r 2 (1)% - - 2. (1)ey o (L) 1 7rm
——— = n, “E[Z |21P(R) - ny <Y, 'E(Z |2)P(R) (3.15)
(1)
oy
- n 2B - n Y WD DHe@E) + 020 {)2e@

Hence from (3.10),

G

2
5 = n 2z K1) - 20 2P 21a-m (e300
ayii) ‘

+ nlz(yii>)2P(K) ~ n,P(R) (3.16)

Equating (3.16) and (3.14), we have

2
n, 2602871102 (R) - 2n 2 (M) P1aEp (05600 + 0y Pr M) Pe(E)

- nPA) = 0 2(r )P 1-n(e36))

+ ny(1-2n (V{20018 o (e56)1 + nyIng (vgH)2 - 122(E)
or

2
Bz DP@) = (r{MHP11-8,, (e38)] + ﬁitl-Hp+2<°55>]

Next we find E[z(i)z(K)|E]P(E). Differentiating T w.r.t.
(K)

(1)
Yx and then w.r.t. Yx

where T is given in (3.6), we have



1 (1) (K)
® ==§ o c2n.yY an.y
T 2 1 1'x 1'x . §\j=2
fe I 37 jJ-1(3)° “h (t)dt
.YﬁK)aYéi) . =0 JT 2 2 2 p+2]
1 (1)
o -=3 o 2n Y
1 () "2 1 MiVx L 8,8-1,
- é S 2nqy, e jzo R j(x3) p+2J(t)dt
(1) 1 (X)
© 2n.Y -=§ 2n .
_ 1'x 2 1 1'x S J-1
g 5 e jEO 3 5 3 (3 hp+2j(t)dt
b Ty ) (K)e—%‘S £ S, (t)as
L 2 Yx Yx j=gd ' 2 Tpt2
oT - . 2,(1) (K) . 2 (i) (K) .
BY;K)BYﬁi) = n v,y TL1-Hp L, (e38) 1-2n) Ty, Ty PO LL-H L 5 (e58) ]
+ nl2yﬁi)Y;K)P(K) (3.17)

Similarly using (3.8) we have

<K>ay<17

Therefore

P
n 1 2,,(1)_ (i) () . (K)
—=)(z Y(Z'\ =
jll = ( Yo )

21,030 (3)y2
=52 =y )
e 2 - TACR



103

0T _ 2 (1), (K) = - 2 (i) (K)
E,, (D © M BT ZIBDR®R) - ny Ty R RRA)
YX YX
- 0 FeEP DHr@) + 0 I 0@ (318
Therefore using (3.10)
AT (1),(K) 2, (1) (K)
oy (K)ay(i) E[Z IA]P(A) 1 x [1- H 2(0 S)JY
(3.19)
- 0 5 rn e i+ A Py Pra)
Equating (3.17) and (3.19), we have
B2V R1p (@) = (11, (e50) Iy (D) (3.20)

and so we have evaluated E(ZZ'{|A)P(R) completely. For conve-
nience, we let E[ZZ'|A]P(A) = W where W is a pxp matrix with
the i-th diagonal element

(vOIN2riE (03601 + 2L1-H___(c:8)]
X ‘ pt4 1’11 p¥vc

and the (i,K)th off dlagonal element [1—Hp+u(c;6)]ygi)yiK)

Next we evaluate other terms in (3.13).

- o2 -1
E(F - I1,055%, )2 = EG?) - 212 22E(VX ) + £ ,T53E(X k)55,
= 252 4+ 12 - 25 57 0ov(5R.) + E(FIE(R,)}
n, H 12%22 VES) Y BE,
-1
+ 212222{222 + [E(X )][E(Xz)] }222 o1



‘qUueqSUO0D ® ST

Hmw

12,22
Sk S

cc

le

T—

(R a(Y]Z)E -

va(y)dly] 2219 + (¥)d(¥|Z)an =

(V)a(y|z4)a

20USH
12,22 T = % _a@%eT
HINHI.Q. HI K
pue
12,22 5 _ % ZC.eT
2102 = Ty a3lx
*T_ a®%z°Tz pue JeTeos B ST 7 a®©7°t¢ souts ang
=-"1- T=-"T-
X
(Dacg| xSz Tzz)a -
(¥)d(¥]Z,_as%=°taD)a + (Y)aly|Zlan =

(Y| LCF-T)

T[22 MR REEe2 Ty 4+ ¥MnZegilyz - T8q8%5eT 0
1 I T
12,22 Xq¥p2eo2ly , T2
RECT/T AT+ Cx
N.l
ZZeelae - 2a2%geT

22, 2T
ascz

(9)d{y|[Z]| 415z }x
(Y)d{(YZ|4£z)a}=

0T

+1]Z 33

¢c,CclL

T

Cu

T

K{

NII

c

(£)alyl (z£)1a

MON
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or
- = - A -1l.-
E(FZIDP(R) = ull-H_,,(e38)]y, + WD' 1255z,
[1-Hp+2(c;6)]1xy_;{D'_1252221 (3.21)
Finally,
E[X;X5|A]P(R) = E{E(X; X)X, »A)}P(R)
= E{X;E[X} X;1|R)IP(R)
= E(X, [u} + (R1-u))1|E1B(E)
= E[(X,X])|31p(R) .
Therefore
ECX, X5 [E1P(E) = D™twpr ™t (3.22)

and substituting these into (3.13) and then into (3.12), we

have

~ = 1 2 - 1 -.1 l 1 ' -l
Viugy) n,’ 2212222221 2%, pTopHH, + Iy oEoou M Es5T sy
+ 2% z’l [1-H (c38)] - 571y [1- (c368)]

12%22HEx p+2'¢3 Xy 22ExEx 22Zpp LI-Hy o
+ oot lypristls o4 oy (¢38)
12%22 22%21 Hylyol 22 Hoeo

-1

= Iyl nly o5 LH o (es 8)1°
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Noting that

S1-l-lo-lo - _ \ .
Z1pZpD WD'TTINZE,y = Il 238 UE55% 5, [1- ~Ho 4y (e38)]

1 “1p,-1p-1p
t gy z12222]3 ID' LTy [1-H 5 (e58) ]

and that D-ip'~1 = %,y then

Aoy _ 1, 1. -1 1 -1
V(igp) n ~ nyr1efesfa t Zq o2 ool HyE o5k

5 21

-1 1y=d o
= 2y R ool M B a5T gy [1-H, 5(e38) ]

-1s .
RSP 22—xEx 2221 [1-Hy y (c38) ]

1. -1 .
) + l 12222221[1 +2(C,6)]
-1 -1, Layq2
= 2yl pol ooty [ p(e38) ] (3.23)

As a partial check, when ¢ = 0 and we always reject the

null hypothesis, then ﬁzr reduces to y + 212252(21-22). Now

. “lio o o\ - uee -1 ~1g
VIT + 2y,855(%3=25)] = V() + V(Z15255K;) + V(I 5255%,)

2%
+ 23 .2 icov(§ %) - 5= loov(R. ,%.)2T
12%22 > 29025500V (%X, 22 21
01 ., 1. -1 1, -1,
- 221222200"(3”X ) = no ¥ n1212222221 + 2212 22221
2. ;-1 2. -1 2 -1
+ 1212 2221 - 1212 2ploy - 2212222221
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Therefore

- JL{ z'l
n

V(y + I P12 55k op(3.24)

Sl .. 1 -1
2(x x2)) =0 + = D b X

12 2 5 1 12722721

Therefore putting ¢ = 0 in (3.23), i.e. Hp+2(c;6) =
Hp_l_u(c;G) =0

Vi, ) = Lo 12 s7ls 4 ﬁLz 571

- z
n, n, 12 22721 1

12722721

which is the same as (3.24).

When ¢ = », we always accept H0 and the preliminary test

- -1=
estimator reduces to y-212222X2 Now
VG - £..275%.) = V(§) + V(E..523%.) - 25, . 2oicov(y,X,)
12%22&2 12%2242 12%22 MEP:3)
X (3.25)
_ 2 . 1. -1 2 S GP e |
ny Tom, Z1oko0%07 2212222 21 = n° 2212 22%21

putting ¢ = » in (3.23), then H_,,(¢;8) = H_,,(c38) = 1 and
p+2 p+l

A - L2 _ 1 -1
V(Hg,) = B, n2212222221

which is the same as (3.25). We now give the M.S.E. of ﬁlr'

M.S.E. () = V(i) + Bias® = gécz ;;212222 51 [1-Hy 4 5(038)]

1 -1 -1 -1, -1 gLy ,
- 2212222221 Z1 9T ool ok oy = 205 pRool M Eo5E oy [1-Hy, 5 (e38) ]

-l [} ""l - .
* Iyl oty ZonZpy [1-Hyyy (e38) ]
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or
M.S.E.(ﬁzr) =g *+h (3.26)
where
_ 1z, 1y gl _ 1. .-l
& " * nlzl2z22z2l n2212222221
and

hl = M'S°E°(u2r) - 8 -

We note that g, is the variance of y + 212252(21-22) which is
the linear regression estimator ignoring the information of

Hx'

D. Relative Efficilency (el)

In practice, we would want to select an estimator for u
with the smallest bias and M.S.E. . Again we consider only the
M.S.E. of the preliminary test estimator since blas is a part
of M.S.E. Using (3.26), we compare the performance of the

preliminary test estimator ﬁzr with the usual linear regres-—

. . - -l,= = . .
sion estimator, y-kzlzzzz(zl—gz), when the information of 1
-1

is ignored. The relative efficiency of ﬁzr to y + 0855

(21-22) is defined as
- -1l,= =
_ M5By + Iy 255 (K -X)) 27)
€1 ~ MS.E. (% (3.27
Mg '(UR’r)
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- -l,= =
and since y + 212222(§1'§2) is unbiased, its M.S.E. is equal to

its variance. Therefore, using (3.24) and (3.26), we have

g

el = m (3.28)

Wlog we let Z,, = I and 02 = 1. Hence for p=1, I, =

p. Table 3.3 gives the values of ey for n, = 30, n, = 10,
p = 1 and certain values of p, Uy and o.
Table 3.3. Values of ey for p = 1, n, = 30, n, = 10.
o = .05 o = .10 a = .25
P
My 7 9 .7 9 7 9

1.2119 1.7336 1.1574 1.4907 1.0719 1.1936
1.1044 1.2964 1.0717 1.1932 1.0291 1.0735

.9096 .8061. .9207 .8275 L9547 .8970
- .T769 .5901 .8279 .6653 9171 .8205
.7380 .53709 .8168 .6U482 -9263 .8385
L7762 .5891 .8636 .7235 .9569 .9017
.8574 .71.30 .9273 .8405 .9826 .9588
.9347 .8553 .9726 .9361 .9950 .9880

.9788 .9503 .9926 .9823 .9990 .9975

.9992 .9980 .9998 .9995 1.0000 1.0000

= o OO O [oNeNe O OO
L4 [ L] L] * * L] - L] L] -
o\ o0 =W MHEHEO

From Table 3.3 we can easlily observe the following properties.
1. The relative efficiency of ﬁzr assumes 1ts maximum

value when My = 0.
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2. For W, < .1 and fixed &, n, and n

1 5s € is larger for
p = .9 than for p = .7 and is a decreasing function of o with-

in this range.

3. For .2 < ux < .7, e 1s larger for p = .7 than for

p = .9 and is an ilncreasing function of o within this range.
4, PFor U > .8, there is no appreciable difference in

the values of e, for either values of p or different values of

a.

5. For fixed nq s n p and o, e, first decreases from a

23
value above unity to some minimum and then increases again to
unity as My increases.

Table 3.4 gives the values of eq for p = 2, n, = 30, n, = 10
and certain values of,le, o and'gx. From the table, the
following properties of e, are apparent.

1. has 1ts maximum when p_ = 0.

€1
2. The maximum at K, 0 1s an 1ncreasing function of ¢
for fixed o, nqy and N,e.
3. For fixed a, nl, n2 and 212, e, decreases from the
maximum value to a minimum and then increases to unity as g%

increases from (0,0) to (1.0,1.0).

E. The Optimal Sample Design and Comparisons
The problem here 1is to find the optimum allocation of the
sample slzes ny and n, for some given cost function. Usually

the cost function is of the form
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Table 3.4. Values of ey forp =2, n

1 2
L o = ..05
2o

, .7 .5 .7 -.5

ui 0 .5 T o7

( 0, 0) 1.2410 1.2502 4,0695 1.6385

( .5, 0) .6869 .8255 .5566 .8010

( .5, .5) .6987 .5172 .2213 1.0363

(1.0, .0) .9965 .9982 .9934 9977

(1.0, .5) .9968 .9963 .9861 .9999

(1.0,1.0) .9975 .9948 .9805 .9998
o = .10

( 0, 0) 1.1939 1.2010 2.7094 1.4836

( .5, 0) .7803 .8839 .6688 .8654

( .5, .5) .7915 .6375 .3182 1.0188

(1.0, 0) .9990 .9995 .9981 .9993

(1.0, .5) .9991 .9989 .9959 1.0000

(1.0,1.0) .9993 .9985 .994l .9999
a = ,25

( 0, 0) 1.1085 1.1122 1.6131 1.244Y

( .5, 0) 9079 L9544 L8474 .34535

( .5, .5) L9147 .8329 .5695 1.0051

(1.0, 0) .9999 .9999 .9998 .9999

(1.0, .5) .9999 +9999 .9996 1.0000

(1.0,1.0) .9999 .9998 .9994 1.0000
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cost = C = C(nl,n2) = nyeq + n,e, (3.29)

where c, 1s the cost of observing the vector X and c, is the
cost of observing Y. The optimum values of n,y and n, are
obtained by minimizing the m.s.e.(ﬁlr) given in (3.26) subject
to the constraint (3.29). We recall that in practice, under
the supposition of a conditional specification, the experi-
menter has only partial 1nfofmation based on which he believes
that u  is close to 0. The relative efficiency of ﬁzr is
largest at B, =0 and so it would be best to consider the
problem of optimum allocation under the optimum situation by
letting u. = 0 in m.s.e.(ﬁzr).

When p = 0, from (3.26)

=
=

o = 14 _2
1 2
where
= ., 3555, [1-H__,(c;0)]
Ky 12Z0pZ 1 Li-Hy o(C30)]
and
_ .2 -1
Ky =07 = L1,585505

Thus we wish to minimize (3.30) subject to (3.29). From
(3¢29)’
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Thus
.. K,c . K
m.s.e.(ﬁzr) = 5:%;%; + Hi
and
am.s.e.(ﬁzr) _ K10102 K2
N, B (C—n202)2 B n,
or

c/ﬁg
n, =
Vchlc2 + cz/K2

Substituting in (3.29 we have

cvE]
n —
1
- VEyeqe, + ey VEy

Substituting for n, and n, in (3.30), the optimum value of

1 2
m.s.e.(ﬁzr) is

Kl{/K c.c te

17172

~ 2"1°2 "1
m.s.e. (i, ) =
riopt cVE;

_ Kjeg + 2/K Kyeie e K,

C

(VKjey + 'ﬁzcz)z
T

/KI} X K2{/K c-cC +c2/fg}

c/ﬁ;

(3.31)
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The regression estimator under double sampling without using

- -1,= =
the preliminary test is y + 212222(§1—L2) with variance

-1 2 _ -1
Z1o%22%1 , 9 T E1o%2%;
m )
K! K!
=_]: + ._.g_
N ny
where
K! = 5. To%%
1 12Z22%21
and
- 2 -1
Ky = 0% = Z,5055L,

- -l,= =
Next we note that since y + 212222(51-52) is unbiased, its
varlance equals its m.s.e. and so denoting this m.s.e. by M

and following the above method of minimizing m.s.e.(ﬁzr) we

(VKoo + /Kip.)°

Now to compare (3.31) and (3.32) we note from (3.31) that

(l-Hp+2(c;O) 1s a decreasing function of ¢ with a maximum equal

to unity at ¢ = 0. Hence the numerator of m.s.e.(ﬁZr) is at

most as large as that of Mo and so we are led to conclude

pt
that m.s.e.(ﬁzr)opt < Mopt with equality holding for ¢ = 0

which i1s the point at which the two estimators coincide.
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We shall now compare ﬁzr with the preliminary test esti-
mator, ﬁ, of Chapter II for a fixed total budget. For the
double sampling scheme, the cost function in (3.29) remains
'unchanged and when My = 0, we are led to the optimum value of
m.s.e. (ﬁzr) in (3.31). Under the optimum situation, we shall
find the optimum value of m.s.e.(y1) which we denote by

m.s.e. (1) When p, = 0, from (2.24), the m.s.e. of the

opt’
preliminary test estimator is % where

1

= 2 .
v o 2221Hp+2(c’0) .

21227

If the total budget is devoted to a single sample, this sample

has sigze
n= -
2
and
a c2V
m.S-e-(u)opt = ‘_C_' .

Hence under the optimum situation, i.e. L, = 0, double sampling

gives a smaller m.s.e. if
eV > (yK.c, + /K.cC )2
2 171 2°2 *

When p # 0, from (3.26)
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where K2 is as defined in (3.30) and

¥ =
K7 212222 21 [1-H,5(e38)]

—l

= -1 '
01 = 2Ly ool oot o H p+2

(c;38)

-l [ _l .
= Z ol E 5T o  Hpyy (e38)
~ V*
- Similarly, when p # 0, from (2.24), m.s.e.(n) = — + 6
where

V¥ = g2 - 3 ~Lls

12Z 25221840 (e32)

= _l 1] "'1 .
2 T 2Byl ol M Baolog Hoo(es )

-1

-1 ' .
= 3% ool Eoslo Hoyy(esd)

We may now compare the two mean square errors by substituting

for nl, n2 and n in the expression,

?7* K? K,‘
1 2

Double sampling gives a smaller m.s.e. 1f the expression is

positive.

The detailed expression is complicated and would not be

glven here.
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F. Bias of ﬁzr when I is Unknown
When I 1s unknown, the linear regression preliminary test

estimator becomes

(5 s. .s71x if m.n (X'S_li ) < 72
Y~ S12”2082 171 Y89°00837 2 g
e = ¢ (3.33)
y + 8 sT1(x.-%.) if mn (i's'li ) > 2
\ 12°22'281785 101 V& P00 0

where m, = nl—l, Tg is the 100(1l-o)th percentile of the

Hotelling's T2 distribution with my degrees of freedom and we

define
S11 S12
S=
So1 S22
where
L
y = = y
Ny 427 °1
n
1
- 1
I,= % X
11839 7
n
I, =% : &
Ny 4=1
N



118

Ba
Sis = . 2 (y;-¥)(X.-X,)'
12,2 O 1725
ol _ _
S22 7 2, (X3-X1 ) (X-Xy)

In this section, we shall obtain the bias of ﬁgr when £

is unknown. If we denote the rejection region for the prelim-

inary test

{mlnl(X1822Xl) imin (X soix ) > T, 2y by G

315204 ’
then
E(fly,) = E{F-51,555%,101P(0) + E(7+5,855(%;-X,) G}P (@)
= E(3-8,,573%,) + E{8,,875%, |G}P(T) (3.34)

Now (X;, X, ¥) has a normal distribution as in section B and
is independent of (822, Sll’ 812) whilch has a Wishart
distribution.

E(y) = u and so if we write E(ﬁzr) = U + B2, we see that
the bias is

5=l e
12522% 1|G}P(G) E(8,,8,5%,) -

B, = E{S

2

=1 —
Since 812322 and 52 are independent, we know

E(S;,8 2% X,) = E(8;,8 22) ‘E(Xp)
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where

_1 .
E(S;,555) ,E{E(slz 22|x)}

E{E[slzlzlsgé}

n,

B(EL 3 (y,-5) (%;,-%,) " |X1853}

E(yy|X) = u + 2,58 22(x )

==> E(S,553) = B{Z ,2538,,855) = T1,853
and
E(S1,555%p) = Ip0500, -
Hence
B, = E(5,85:% [83P(6) - £ 550, (3.35)

It remains to evaluate the first term.

Let £(X,) be the multivariate normal density of X, and

g(S22,812,Sll) the joint density of S5 812 and Sll’ then
B{S, ,S71%. |G}P(Q)
125254y
l_
= JeoS 815855% F(X))8(8,5,58, 55811)dX,;d8,,d8, ,dS, (3.36)

We make the following transformations as we did in (2.31).
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- 1 1
Wl TB'BT
1
W, = [S., - Z, T'"TB'B]Z 2g=1 (3.37)
2 +T12 12~ 11.2 *
_ (a2 L ~1g,-1
Wy = (817 =818 "B' "857)11,.5
Substituting in (3.36) we have
E{S,,8 22 IG}P(G) (3.38)
L
—4 ” ¢ o 2
= [ : J (KW2W1 T + leT'T)X f(X )g(Wl,W2,W )aw dW2dW1dX1
G
where as before Wy ~ W(I,np-1), W, ~ N(Q,I), Wy ~ W(1,n,-K)
and they are independent. The joint density is
1 1
—Etr(w W +W l) E(nl-p—3 2(n -p=-2)
g(W,,W,,W3) = cpe Wl W |
(3.39)

—= ol -1z (T 1 -1 2
G = {nm (X "T'W; TTX;): (% T'Wl TX. J)nqm, > Ty}

Hence (3.38) becomes
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foeds é(sz 1 THE L, TITX T(X )eqge
G_w

é ltr(W'W W

3 3ty)

—(n 1-P=3) %(nl-p-2) -
LE | |W | AW AW, aW, aX

o © é ;tr(W'W2+W3+Wl) %(nl-p-3) %(nl-p-2)
=[S JKe 2,5 |w3| W | W,
¢ =0
1

W 2

1 dw.,dXx

X; T(X, ) dWaW,dW, dX,

® -4 -2
R CLIPC P

1
tr(W'W +w3 1)| §(nl—p-3)
&

W3|

%(nl—p-2)_ _
W, | zdf(gl)dw dwzdwldx1

But E(W2) = 0 so that from the independence of the W,'s, the

i
first term is zero. Hence (3.38) is equal to

1 1
ZlaT'T ' -=trW 2(nl-p-2)

1 1 P
= p(n,~1) #p(p-1)
2 LT T ridm -1

X, £(X,)aw,dx,

- 1 -1 ,-1
X ~ N(Ex’E—T T )
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- v - ~ ———l
We let Z = TXl and Vo ,Tux. Therefore 7 N(vx,nlI).
‘ = . -1 -1 2
- 1 . ' > S
Therefore G._{nlml(Z Wl Z).nlml(Z Wl Z) To}. Hence we wish

to evaluate

-1 1 1
212T'T T -Etrwl §(n1-p_2)
l l P f'_'_‘fe lel
Ep(n-l) ﬁp(n-l)'n Ptl( 7 G (3.40)
2 il =(n. -
421 21 2g(Z)dzdw,
and
(n,-p)
= -1 1
F!' = nl(g'w Z) 5

has the noncentral F distribution with p and n,-p degrees of

freedom and noncentrality parameter A = nlg&yx. Therefore

P(G) = P(F' >
(@) = P(F' > Fy (@)
= > ——2_—
P(G > =5 Fy —p(®)
1 1
where
G = —2—- F'
nl—p
Let
= P
o] nl_p Fp,nl_p(a) s

then
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1
_ ®© =) o .
R=p@) =sse? 3 e | _ (gag (3.41)
o 5=0 Jr r2 oo Ry7P
’ (%"'J’ >
where
G (g)
n,-p

is as defined in (2.35). Differentiating (3.41) w.r.t. vii),

we have
1 (1)
= o ==\ oo 2n.v
3R _ 2 1'x 1 ,A\J!
v c Jr=0 +2 1
x (B5=+3 1, =5
(1) 1
© 2n.v -=)\ o
-r e ® oAl (e
c J=
| (5+3 =5
or
3R __ .- , (1) (1)
w = 1 x [l Gp+2 nl p(c }\)] = nl X P(G) (30)42)
X
where
G§+2’nl_p(csk)

is the cumulative distribution of the noncentral G distribu-
tlon with pt+2, n,-p degrees of freedom and noncentrality

parameter A.
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Next we make use of the distributions of Z and Wl' From

the independence, we may write

s 'n
P mT __2]_-_(2(3)_\)}({3))2

B=PG) =/Seoof 1.
G J=1/2mw
(3.43)
1 o 1
I I"z‘(nl"P"2)e"—2-'CI'Wl
—= az{d) qw
B(n,-1) fp(p-1) T 4 1
2 m r[5(n;-1)]
1=1
Differentiating (3.43) w.r.t. vﬁi)’ we obtain
1 15302
_3 -n— _/_—l-. 1 2(Z(i) (i))e (Z )
8v§1 2
1
'§(n -p-2) -—2'tI'Wl
[, ° 2 (3)
B(n,-1) ip(p-1) & 27 aHy
5271 1[74_ '”" I'[;Lg-(nl-i)]
1=1
= ni -%trwl -]2=(nl—p-2).
© B(n;-1) Ble-1) T g e v, |
n,- p-
22t e T riden,-11 (3.44)
1= (1) (1), =
z'-'g(2)dzaw, = n v, P(G)
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Therefore equating (3.42) and (3.44), we have

- -3trW,  H(n,-p-2)
T 5 [+ Se |W1|
B(n,-1) zp(p-1) G
22 1 T ][ [Z(n 1-1) ]
101 (3¢ 21 g(2)azau,
= v 068,y p(es] = 1) say. (3.45)

This gives (3.40) to be zlzzgéT'll(g) where I(Z) is a

pxl vector with i-th component = I(Z(i)). From (3.45)

I(z) = v [1-G%,, n _plesd)]
Hence (3.40) is

£,,5ppT Ty, [1-G¥ (e3n)]

12722 p+2 n -p

We now obtaln the blas of ﬁzr to be

~1 -1
2 = ZqpZooy [1-GE. o n, _p(esM) T = Zy,Z55m,

= ~I (c3))

-1 *
12222£pr+2,n1-p

- - ¥ .
2 222Epr+2,nl-p(c2’x)

12

where

°2 = 5+2 "p,n -p"*
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As a partial check, when ¢ = 0, we always reject HO and
- -1,= =
the estimator reduces to y + 812822(51-§2) which has zero
* o = =
blas. In this case, Fp+2,nl—p(°2’l) 0 and B2 0.

When ¢ = », we always accept H, and the estimator is

0
v -1z = - .-l ¥ . =
¥y = 81,8,5%X, with Bias 2150550, . Here Fp+2,nl—p(°2’k) 1
= - -1
and B, 2152550,
In order to evaluate B,, we let Z,, = I and g2 = 1 wlog.
The values of -B2 for p = 2 and nl = 15 are glven in Table 3.5

for a few values of a, B and 212. From Table 3.5, the
following properties of the blas can easlly be observed.

1. The bias is zero when the null hypothesis HO: Be = 0
is true.

2. For fizxed nl, gk and 212, the blas generally decreases
as o lncreases.

3. The bias 1s 2Zero when elther u or Z,, has ldentical
components and the other has components which differ only in
sign. |

4, For fixed n, 210 and o and some component of u_, the
value of B2 first increases and then decreases to zero as the
other component of By increases from 0.0 to 1.0.

5. For fixed n, a and Bys the value of the blas 1s an

increasing function of 212.
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for p = 2 and n

15.

I=
Nd

o]

§

(2

v v v v v v v v v v v w v v »
.

v v w

PN ONITNTN NN N NN ST PN NN PN\ TN NI TN

|
e o o « o o o o o « o * o ®
QWO OGO\ I £ o (oo o] [cNeoNe

v v v

-

L ] - - L[] L] - - . L) . L] L) L] L [ ]
OO0 OWOW OO O OFEN O OO\ =N o

N S N s N N s N N S N N S N Nt N N

o« o o o o o
OO O (>N oNo]

[

.0730
.0585
.0381

.0191
.0070
.0912

.0573
.0276

.0097

.0514
.0235
.0079

.0135
.0043
.0000

0.0
0.0780
0.1264

0.1253
0.0847
0.0392

0.0
0.0585
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3.5.

(continued)
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Table 3.5. (continued)

, a = 0.5
1
Z12 ;

u : : )

( 0, 0) 0.0 0.0 0.0 0.0

( 0, .2) 0.0 0.0137 0.0137 0.0192
( 0. .4) 0.0 0.0142 0.0142 0.0198
( 0, .6) 0.0 0.0069 0.0069 0.0097
( o) .8) 0.0 0.0019 0.0019 0.0026
( 0.,1.0) 0.0 0.0003 0.0003 0.0004
( .2, .2) -0.0110 0.0 0.0221 0.0309
( .20 .4) -0.0057 0.0057 0.0170 0.0238
( .2) .6) -0.0018 0.0037 0.0074 0.0103
( .2, .8) -0.0004 0.0011 0.0019 0.0026
( .2.1.0) -0.0000 0.0002 0.0003 0.0004
(48 -0.0058 0.0 0.0116 0.0162
( .4, .6) -0.0019 0.0009 0.0047 0.0065
( 4. .8) -0.0004 0.000% 0.0011 0.0016
¢ 4.1.0) -0.0000 0.0001 0.0002 0.0002
( .6, .6) -0.0009 0.0 0.0018 0.0025
( .6, .8) ~0.0002 0.0001 0.0004 0.0006
( .6.1.0) 0.0000 0.0000 0.0001 0.0001
( .8, .8) 0.0000 0.0 0.0001 0.0001
( .8.1.0) 0.0000 0.0000 0.0000 0.0000
(1.0.1.0) 0.0 0.0000 0.0000
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G. The M.S.E. of ﬁzf when £ is Unknown

In this section, we find the mean squared error of ﬁlr'

M.S.E.(f,,) = V(ii, ) + (Bias Szr)2

For © unknown, ﬁzr is given in (3.33) and hence

aA 2 - “1= .2 - 1o \2|Z =
E(f,,2) = EL(F - 5,,8;2%,)2|a1p(@) + BL(F - 8,,553%,)2[G 12(@)
+ E[(S,,S22%.)2|GIPG) + 2E(S..STi5%. |G)P(E)

122241 12°22Y4
— 2E[S.,S33% X1sTis. |GIP(G) = E[S..STiX.%!sTis. . |GIP(G)

12°22%1 4557557 12°22%1247555°]
+ 2E(S,,8°15%. | ©)P(C) - 2BE[S.. ST %.XLST3s.. | dP@)

12°22Y2; 12°22281 28052221 G

- 1z |2

Recall that

- -1=
G = {n,m, (X!S,5X,) :n,m,
[ R d. LT Jd [ S

-1, . o1 2
{nm (Z'W;72) :nym, (2'W,;72) > Tl

Then following arguments similar to those used to obtain

(2.54), we obtain the first term of (3.46).

“le oiamle  1E10(Ey - o ~1, -1 gr=lo-1
E[S),8,5%X]8,55,9 [G1IP(G) = Q% + 3, ,3,5T "MAT! "X 515,
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where

[«
¥ =
W7 Fe gy o MO

t has a noncentral F distribution with p and n,-p degrees of
freedom and noncentrality parameter nlgizzégx and M¥ 1s a pxp
matrix with i1-th diagonal element

(c3A)] + == [1-G*

= (v(1)y2 :
= (v )" (=GR, n,-p(®3 n, p+2’nl_p(c,l)]

and the (1,K)th off-dliagonal element

Vx p+h,n p(c M1

Similarly, by arguments analogous to those used to obtailn

(2.55), the second term equals

2R(8. S le Ir\P(r\ = 21Zu.2-%

TTrTleTeeY =1t e TTlz2 T 22=x “p+2,nl-p ’
11 g, =Llo=1

DR s gt VL L e JY

- or sty wrstiz [1-a (c3n)]

. 12722=x==x"22"21 p+2,n1 p*?

For the third term,

E[S,, X1X2822 21IG]P(G)

= tTE{S;38,:5,,5,,% X3 1G1P (@)



trE{E

[}

trE{s,

trE{S,

[}

trE[S,
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-1 —-]= = - = -
555501512520 % 2318,%,,G1P @)
5352151 2553%, E(X1%; ) [G1R (@)
5350151 5555%, [u! + (X{-u1)1[G1P@)

35,15, ,553%, X1 1G12(8)
2252158125754, 2]

-1n-1 -1.-1
Z12%p0T TMHT! 2555

and hence third term of (3.46)

= _2Q* -

-1.-1 -1l.~1
2212222T M¥T' "I, ,I

22721

Finally the fourth term of (3.46) is

E(y - S

by using

~2
E(“zr)

12

“lo \2 _ o= -1z -
Spokp)” = V(T - 81,85%,) + (B - 81,85,%,)1°
an,u'isy
= i P + 3 P [l 2BX 22:&}{]
n, "11-2 11:2 n,(n,~p-2)"-"~ p
2 21
-1
MU PL PPN

(2.58). Substituting into (3.46) we have

I I, T J | 1 oy ,
Z1pZppT MET'TTINZE, - 2212222“Bpr+2,n1-p(°P*>
25 ~ly . [1-g¥ (c3A)] - Q%
12 2zﬂxﬂx 22%21 p+2,n,-p
2n -1
2Bx 32Hx

1 P
—_ 3 + 3 [l"‘
ny 11-2 11-2 n2(n2—p-2)

p
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Aﬂwmmmmﬂmv> - (%%%8gRTlg-gy)
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Tgcc CTneCzCe NH
("ELis© s Xils

g)aope -

IHI wV> +

/2]
t
>
e
g
]

(0=0|"Tt)A

aJ0J9a9Y]

- TEe%CTs + F3s%Ts - £ = Ty

pue om q09faa shemTe sM ‘Q = O UayM

*(£E°E) JODPTSUOD OM €S34TNSSJI SA0QR SU3 ¥O3YUD 03 a3pJ0o Ug

[ ovml u N+Q uHN Cq Kﬂ&ﬂmm Nﬁ - Lc NN ﬂ NN NH

4 H I+
g —d-Cu eu =- . 2
[y + 1] (2 1 )" 21T, , 2 TT, JM +
oo ue
(Ln°€) T
: uzs+d > o
[(xfo) 8™ ® o118 a8 AL T -
ol £ . I
elle _waan, 15828 7 = 1(*Tmal - Tz = (P
-1 -1 v ;
12,22 X722 .2 T 4
Hn m :Haw 7.+ > +

EET
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Now

-1=
<Amymm. X.)

22=1

Hence

V(it, . [c=0)

Similarly

V(i le==)
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- _ IHI .
Cov[E(y|X,; 's),E(S; mmlp_xH s)]
E[Cov(F,S npn x)1%, "
%v Hm
Cov[u + & Ax -u_ ),z |H| ]
12%22(X1 "1, ) 521 ,T 55X
1 -1
ny Z12Z05%07
EV(S, ,555k, 1%, 's) + VE(S, ,STL% [ X, ')
1 12522% 1%
g-lg ;g
17.0B(X]8,5%)) + V(Z,055k)
mspmmewmx 1 -1
2y1-2 iy (n;-5-2) [1+— u+|m.wmmmmm
T 2n -1
1 ¢ oll:2 _p oy, “Tobxtooby,
n, 112 n, bmlﬁlm P
2n. p'zot
5 P (1 +—1ix”22bx,
11-2 SHASHuvumV P
1 -1
ny 212255857 (3.48)
V(F-S, STE%.) (3.49)
12°224&
n, f11.2 * %11.2 smﬁsmlvumvmp.* SR
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As a partial check, when ¢ = 0, (3.47) becomes

. =l
1!
v ) ! P D rl.Fangxzzzgx]
r n, "11.2 11-2 n2(n2-p-2)L D
2n u'Z_lu
11.2 n, (n,-p-2)" P n. -“12%22%21
11 1

which is identical with (3.48), the variance of ﬁlr when we

always reject Hy. When ¢ = =, (3.47) reduces to

-1

1

1 3 +z e EsaylL ¢ 2Poliytoolly
n, 11-.2 11-2 n, 2-p-2 P 4

which 1s identical with (3.49), the variance of the prelim-

inary test estimator when we always accept HO'
H. Relative Efficiency (e2)

As 1in section D, we compare the performance of the pre-

liminary tTest estimator ﬁ%r with the usual lincar regressiocon
- -1,= =

estimator, y + S;,8,5(X;-X,), when the information of M  is

ignored. We denote the relative efficiency of ﬁzr to

- -1l,= =
vy + 812822(51—52) by e, and define

- -l,= =
M.S.E.(¥y + S,.8.5(X,-X.))
M.S.E.(uZP)
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Since y + 51,8 22(x -X,) 1s unbiased, its M.S.E. equals its
variance which is given in (3.48), we denote it by g,. Using
(3.47), we obtain

M.S.E.(§,,) = 212222T Lyeme 1222 o1
_ 2% zolz . [1-F* (c.37)]
12 22HxHx 22t 21 p+2,n, p' - 2?
-1
en u'z Su
1 p 27X 22X

- * —

¥ + 2, o Y I nmopey i YT ]

2 2\Ho
-l '-l

MR AT N P Pep
I + oy 5Tl [1-m (¢.30)]

n, “11-2 © n; “12 22221 p+2,n,-p "2
- 5. .zt 157l pe (e, 32)

122 00BxEx200%07 p+h,n -p" o4
+ 25, .50% r57ls _Fe (eq3A)

12%22Bxty2 0020 p+2,n,-p" °2°
0

-z D feE{t)at

11-2 annl-p) é ‘v

-1
2n,ul L Su
oBx%ooly —
tig.0 n2(n2-p—2)[l + P ] h2 say .
Therefore
g
e = 2
e, = g (3.51)
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Wlog we let I,, = I, g% = 1 and write

o =22
2 " b,
where
. o L 2n.u'y
_ 1 1 D oHyHy
= = (l-g) + —¢ + (1~ 1 + — XX
g " o, (1-g) n e (1-g2) i, (f-p-2) C 5 ]
. 2n E'H
- (1- P _1tx x
(1-g) n, (n,-p-2) [1 4 —5]
h, = 2 (1-g) + == g[1-F* Ce.30)]
- K2 p* (c,3A) + 2K2 F¥ (c3h)
1 p+4,n1-p y» 1 p+2,nl-p 22
p o g
- (1-g) a(n=py S tf(t)dt
1Yy a
2n,u i
_ D 25x=x
+ (l-g) n2(n2—p-2) 1+ D ]
and
- . = . =
g = I15Zy 5 Ky = Zioly 5 ¢y =505 Fp,nl-p(“)

= . = . - )
Cy EEE Fp,nl-p(a> 3 d Fp,nl-p(a) 3oA Ny Byely

In the computation of the values of €5, We agaln use the

incomplete Beta distribution to approximate the noncentral F

[
distribution. For é tf(t)dt, we use the fact that
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© d ©
é t £(t)dt - J t £(t) = S ¢t £(t)dt (3.52)
. 0 . d

since Z t £(t)dt exists and

*® . n -p 2n }.'l.'l‘l_
0 nl p p
Using (3.52), we write
h, = =4 (l-g) + = g[l-F*# (on:2)]
2 n / n, p+2,n,-p " 2°
2 1 1
- K¢ F* (¢, 3\) + 2KZ p* (e 3)
17 pi,ng-pt 1" p+2,ny-p 72°

1 [1 + Ef;ﬁiﬁz] + (1-g) "_TE—__T ? t £(t)dt
= -g)nl ny-p-2 b "8 n n-p)

?
2n2H'X‘Ex ]

p

+ (lfg) 2) [l +

D

n2(n2-p-

For the purpose of comparison with the results of Han
(1973b), we compute the values of e, for p = 1 and certain
values of n, n,, 0, ux and o. These values are shown in
Table 3.6 and again reveal no significant difference from the
values obtained by Han. Any differences are due to the
approximations and rounding off errors 1in the computations.

From Table 3.6 we observe that e, assumes its maximum
value when My = 0. It then decreases to a minimum and then

increases to 1.0 as My increases. This 1s because for large
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values of Hys We would always reject HO and use the usual

linear regression estimator. For fixed n e and small

1> Bo»
values’of My s e, increasés wlith p while for moderately large
values of ﬁx,_it decreases as p lncreases. The values of e,
is a decreasing function of a for fixed Nys Nys P and small
values of Hys while for moderately large values of Moo it is
an increasing function of a.

The values of e, for p = 2 are given in Table 3.7 for

2
some values of 212, Bys nl, n, and o. From thilis table we
observe the following.

1. PFor fixed values of Ny, Ny, 212 and a, the relative
efficiency e, is maximum when the null hypothesis is true, 1l.e.
when p = 0.

2. For fixed n, and Ny the maximum value of e, is an

increasing function of Z but a decreasing function of a.

12?2
3. For fixed a, Nys Ny, 212 and some component of Bys

ve ¢fficliency decreases tc 2 minimum and then

the rela
increases to 1.0 as the other componenit increases.
4, For moderately large values of Les €5 1s a decreasing

function of & and increasing function of a.

12
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Table 3.6. Values of é2 forp=1
n, = 30, n, = 15 o = 0.05 o = 0.10
My 5 .7 5 7
0.0 1.0985 1.2833 1.0755 1.2088
0.1 1.0458 1.1326 1.0320 1.0907
0.2 0.9398 0.8853 0.9489 0.8988
0.3 0.8599 0.7338 0.8953 0.7916
0.4 0.8380 0.6928 0.8924 0.7821
0.5 0.8672 0.7358 0.9243 0.8381
0.6 0.9195 0.8270 0.9619 0.9132
0.7 0.9643 0.9174 0.9862 0.9670
0.8 0.9884 0.9718 0.9964 0.9910
0.9 0.9972 0.9930 0.9993 0.9982
1.0 1.0000 1.0000 1.0000 1.0000
a = 0.25 o = 0.50

0.0 1.0365 1.0946 1.0093 1.0231
0.1 1.0132 1.0366 1.0029 1.0081
0.2 0.9718 0.9410 0.9922 0.9830
0.3 0.9520 0.8969 0.9885 0.9740
0.4 0.9597 0.9109 0.9919 0.9813
0.5 0.9780 0.9493 0.9964 0.9915
0.6 0.9917 0.9801 0.9989 0.9974
0.7 0.9978 0.9945 0.9998 0.9994
0.8 0.9996 0.9989 1.0000 0.9999
0.9 0.9999 0.9998 1.0000 1.0000
1.0 1.0000 1.0000 1.0000 1.0000
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Table 3.6. (continued)

n. =50, ny, =10 . ~a=0.05 . , e = 0.10

ux '5 '7 '5 07
0.0 1.0395 1.1151 1.0305 1.0876
0.1 1.0081 1.0264 1.0044 1.0149
0.2 0.9528 0.8889 0.7636 0.9122
0.3 0.9308 0.8382 0.9547 0.8899
0.4 0.9498 0.8779 0.9730 0.9317
0.5 0.9789 0.9458 0.9909 0.9761
0.6 0.9947 0.9860 0.9982 0.9952
0.7 0.9992 0.9978 0.9998 0.9994
0.8 1.0000 1.0000 1.0000 1.0000
0.9 1.0000 1.0000 1.0000 1.0000
1.0 1.0000 1.0000 1.0000 1.0000

o = 0'25. o = 0.50

0.0 1.0149 1.0417 1.0038 1.0105
0.1 1.0008 1.0035 1.0000 1.0002
0.2 0.9825 0.9563 0.9956 0.9888
0.3 0.9832 0.957r - - 0.9966 0.9911
0.4 0.9926 0.9807 0.9988 0.9969
0.5 0.9982 0.9953 0.9998 0.9994
0.6 0.9998 0.9993 1.0000 0.9999
0.7 1.0000 0.9999 1.0000 1.0000
0.8 1.0000 1.0000 1.0000 1.0000
0.9 1.0006 1.0000 1.0000 1.0000
1.0 1.0000 1.0000 1.0000 1.0000
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Table 3.7. Values of e, for p = 2.

2
ny =A30,.n2,=;10 : . o a = 0.05
zv
12, 0.5 0.5 0.7 -0.5
' <0.0> <0.5> <0.'D <0.9
Ex
(0.0,0.0) 1.0534 1.1822 4.0500 1.5020
(0.0,0.2) 1.0377 1.0190 1.1762 0.9871
(0.0,0.3) 1.0241 0.9180 0.7166 0.7713
(0.0,0.4) 1.0126 0.8662 0.5544 0.6796
(0.0,0.5) 1.0052 0.8665 0.5261 0.6814
(0.2,0.2) 0.9642 0.8076 0.4662 1.2459
(0.2,0.3) 0.9704 0.7555 0.3729 1.0521
(0.2,0.4) 0.9788 0.7553 0.3530 0.9139
(0.2,0.5) 0.9873 0.7997 0.3911 0.8646
(0.3,0.3) 0.9373 0.7315 0.3294 1.1010
(0.3,0.4) 0.9586 0.7526 0.3369 0.9980
(0.3,0.5) 0.9770 0.8101 0.3950 0.9453
(0.4,0.4) 0.9524 0.7872 0.3656 1.0271
(0.4,0.5) 0.9746 0.8475 0.4443 0.9899
(0.5,0.5) 0.9797 0.8987 0.5429 1.0038
a = 0.10
(0.0,0.0) 1.0448 1.1495 2.7384 1.3924
(0.0,0.2) 1.0303 1.0085 1.0934 0.9719
(0.0,0.3) 1.0184 0.9307 0.7462 0.8037
(0.0,0.4) 1.0090 0.9005 0.6321 0.7478
(0.0,0.5) 1.0035 0.9129 0.6402 0.7752
(0.2,0.2) 0.9706 0.8367 0.5136 1.1704
(0.2,0.3) 0.9781 0.8057 0.4424 1.0297
(0.2,0.4) 0.9862 0.8227 0.4494 0.9379
(0.2,0.5) 0.9929 0.8726 0.5233 0.9152
(0.3,0.3) 0.9566 0.7988 0.4161 1.0614
(0.3,0.4) 0.9744 0.8314 0.4506 0.9964
(0.3,0.5) 0.9876 0.8870 0.5449 0.9686
(0.4,0.4) 0.9731 0.8688 0.5069 1.0137
(0.4,0.5) 0.9874 0.9182 0.6168 0.9945
(0.5,0.5) 0.9910 0.9526 0.7284 1.0015
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Table 3.7. (continued)

4n1‘=:30,.n2.=:10. ) L - = 0.25 o
212 (?.%) (?.f) <?.z> Lo.5
. 0.0 0.5 0.7 0.7

vy _ |

(0.0,0.0) 1.0271 1.0866 - 1.6345 1.2084
(0.0,0.2) 1.0169 0.9986 1.0152 0.9676
(0.0,0.3) 1.0093 0.9589 0.8310 0.8783
(0.0,0.4) 1.0040 0.9526 0.7895 0.8680
(0.0,0.5) 1.0014 0.9672 0.8320 0.9063
(0.2,0.2) 0.9831 0.9003 0.6477 1.0756
(0.2,0.3) 0.9894 0.8954 0.6190 1.0087
(0.2,0.3) 0.9894 0.8954 0.6693 0.9723
(0.2,0.5) 0.9978 0.9551 0.7722 0.9704
(0.3,0.3) 0.9815 0.9040 0.6269 1.0219
(0.3,0.4) 0.9910 0.9331 0.6976 0.9975
(0.3,0.5) © 0.9965 0.9646 0.8057 0.9904
(0.4,0.4) 0.9919 0.9566 0.7730 1.0036
(0.4,0.5) 0.9969 0.9784 0.8664 0.9985
(0.5,0.5) 0.9982 0.9899 0.9285 1.0002

o = 0.50

(0.0,0.0) 1.0104 1.0318 1.1762 1.0714
(0.0,0.2) 1.0059 0.9975 0.9944 0.9827
(0.0,0.3) 1.0030 0.9851 0.9315 0.9539
(0.0,0.4) 1.0011 0.9862 0.9295 0.9590
(0.0,0.5) 1.0003 0.9925 0.9566 0.9774
(0.2,0.2) 0.9940 0.9625 0.8384 1.0219
(0.2,0.%) 0.9968 0.9659 0.8425 1.0013
(0.2,0.4) 0.9987 0.9788 0.8892 0.9925
(0.2,0.5) 0.9996 0.9906 0.9435 0.9938
(0.3,0.3) 0.9951 0.9727 0.8637 1.0050
(0.3,0.4) 0.9980 0.9843 0.9919 0.9992
(0.3,0.5) 0.9994 0.9934 0.9581 0.9982
(0.4,0.4) 0.9985 0.9915 0.9473 1.0006
(0.4,0.5) 0.9995 0.9966 0.9765 0.9997
(0.5,0.5) 0.9998 0..9987 0.9901 1.0000
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Table 3.7. (continued)

n, =30, n, =15 . R a = 0.05 . .
212 0.5 0.5 0.7 0.5
. 0.0 0.5 0.7 0.7

By

(0.0,0.0) 1.0897 1.3-01 4, 4866 1.7881
(0.0,0.2) 1.0643 1.0294 1.1836 0.9827
(0.0,0.3) 1.0418 0.8768 0.7086 0.7100
(0.0,0.4) 1.0223 0.7995 0.5434 0.5991
(0.0,0.5) 1.0094 0.7943 0.5132 0.5930
(0.2,0.2) 0.9408 0.7283 0.4568 1.3712
(0.2,0.3) 0.9497 0.6585 0.3631 1.0746
(0.2,0.4) 0.9629 0.6517 0.3421 0.8804
(0.2,0.5) 0.9770 0.7010 0.3781 0.8109
(0.3,0.3) 0.8942 0.6246 0.3192 1.1511
(0.3,0.4) 0.9273 0.6442 0.3254 0.9971
(0.3,0.5) 0.9580 0.7115 0.3810 0.9195
(0.4,0.4) 0.9152 0.6827 0.3524 1.0413
(0.4,0.5) 0.9530 0.7590 0.4284 0.9845
(0.5,0.5) 0.9615 0.8310 0.5252 1.0060

o = 0.10

(0.0,0.0) 1.0749 1.2419 2.8992 1.5916
(0.0,0.2) 1.0513 1.0131 1.0970 0.9626
(0.0,0.3) 1.0317 0.8952 0.7387 0.7482
(0.0,0.4) 1.0159 0.8479 0.6217 0.6763
(0.0,0.5) 1.0064 0.8619 0.6281 0.7013
(0.2,0.2) 0.9511 0.7659 0.5041 1.2494
(0.2,0.3) 0.9625 0.7213 0.4320 1.0422
(0.2,0.4) 0.9756 0.7377 0.4375 0.9128
(0.2,0.5) 0.9870 0.8009 0.5096 0.8788
(0.3,0.3) 0.9257 0.7081 0.4050 1.0903
(0.3,0.4) 0.9545 0.7458 0.4378 0.9947
(0.3,0.5) 0.9772 0.8193 0.5302 0.9533
(0.4,0.4) 0.9513 0.7938 0.4926 1.0208
(0.4,0.5) 0.9764 0.8641 0.6015 0.9916
(0.5,0.5) 0.9828 0.9176 0.7140 1.0023
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Table 3.7. (continued)

nl, = 30, .n2. = 15 . o = 0.25
210 0.5 . fo.5 0.7 0.5

e 0.0 0.5 0.7 0.7
B .

(0.0,0.0) 1.0448 1.1355 1.6682 1.2944
(0.0,0.2) 1.0283 0.9979 1.0157 0.9568
(0.0,0.3) 1.0160 0.9368 0.8255 0.8397
(0.0,0.4) 1.0071 0.9252 0.7819 0.8225
(0.0,0.5) 1.0025 0.9461 0.8246 0.8682
(0.2,0.2) 0.9717 0.8522 0.6390 1.1066
(0.2,0.3) 0.9817 0.8424 0.6090 1.0122
(0.2,0.4) 0.9904 0.8753 0.6586 0.9605
(0.2,0.5) 0.9960 0.9258 0.7624 0.9566
(0.3,0.3) 0.9677 0.8519 0.6160 1.0316
(0.3,0.4) 0.9837 0.8924 0.6866 0.9964
(0.3,0.5) 0.9935 0.9404 0.7963 0.9855
(0.4,0.4) 0.9850 0.9276 0.7628. 1.0054
(0.4,0.5) 0.9942 0.9626 0.8588 0.9976
(0.5,0.5) 0.9964 0.9818 0.9236 1.0004

a = 0.50

(0.0,0.0) 1.0170 1.0484 1.1829 1.0963
(0.0,0.2) 1.0099 0.9961 0.9942 0.9769
(0.0,0.3) 1.0050 0.9767 0.9290 0.9375
(0.0,0.4) 1.0020 0.9778 0.9265 0.9428
(0.0,0.5) 1.0006 0.9875 0.9544 0.9672
(0.2,0.2) 0.9899 0.9426 0.8332 1.0303
(0.2,0.3) 0.9945 0.9465 0.8368 1.0018
(0.2,0.4) 0.9976 0.9655 0.8844 0.9892
(0.2,0.5) 0.9992 0.9841 0.9405 0.9907
(0.3,0.3) - 0.9914 0.9561 0.8582 1.0072
(0.3,0.4) 0.9964 0.9739 0.9077 0.9989
(0.3,0.5) 0.9988 0.9887 0.9556 0.9973
(0.4,0.4) 0.9972 0.9855 0.9443 1.0009
(0.4,0.5) 0.9991 0.9940 0.9749 0.9996
(0.5,0.5) 0.9995 0.9976 0.9893 1.0000
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Table 3.7. (continued)

nl = 50,.n21=:10 .......... o= 0.,05. .. ... . ..
. Z'
12 0.5 0.5 0.7 ~0.5

Y 6'9 G'5 ’ D "
=X

(0.0,0.0) 1.0352 1.1133 3.4684 1.3150
(0.0,0.2) 1.0219 0.9725 0.8563 0.8837
(0.0,0.3) 1.0116 0.9122 0.5854 0.7548
(0.0,0.4) 1.0044 0.9134 0.5627 0.7628
(0.0,0.5) 1.0012 0.9505 0.6778 0.8539
(0.2,0.2) 0.9659 0.8176 0.3762 1.1049
(0.2,0.3) 0.9789 0.8185 0.3609 0.9875
(0.2,0.4) 0.9903 0.8731 0.4412 0.9396
(0.2,0.5) 0.9968 0.9407 0.6229 0.954Y4
(0.3,0.3) 0.9689 0.8436 0.3878 1.0227
(0.3,0.4) 0.9867 0.9033 0.5033 0.9888
(0.3,0.5) 0.9960 0.9597 0.7024 0.9861
(0.4,0.4) 0.9904 0.9475 0.6458 -~ 1.0017
(0.4,0.5) 0.9973 0.9806 0.8246 0.9977
(0.5,0.5) 0.9989 0.9935 0.9302 0.9999

a = 0.10

(0.0,0.0) 1.0295 1.0935 2.4876 1.2520
(0.0,0.2) 1.0167 0.9738 0.8560 0.8953
{0.0,0.3) 1.007S g.9348 0.6582 0._Rags
(0.0,0.4) 1.0027 0.9457 0.6792 0.8417
(0.0,0.5) 1.0006 0.9748 0.8087 0.9217
(0.2,0.2) 0.9746 0.8586 0.4489 1.0684
(0.2,0.3) 0.9862 0.8745 0.4653 0.9896
(0.2,0.4) 0.9947 0.9259 0.5887 0.9652
(0.2,0.5) 0.9986 0.9720 0.7829 0.9785
(0.3,0.3) 0.9819 0.9036 0.5235 1.0119
(0.3,0.4) 0.9934 0.9U497 0.6714 0.9941
(0.3,0.5) 0.9983 0.9828 0.8502 0.9941
(0.4,0.4) 0.9958 0.9766 0.8085 1.0006
(0.4,0.5) 0.9990 0.9928 0.9277 0.9991
(0.5,0.5) 0.9996 0.9980 0.9770 1.0000
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Table 3.7. (continued)

nl.=i50,.n2.=:10,. L a = 0.25 .
212 0.5 0.5 0.7 ~0.5
. 0.0 0.5 0.7 0.7

By

(0.0,0.0) 1.0178 1.0550 1.5722 1.1397
(0.0,0.2) 1.0086 0.9820 0.8923 0.9309
(0.0,0.2) 1.0034 0.9684 0.8035 0.9016
(0.0,0.4) 1.0009 0.9806 0.8589 0.9389
(0.0,0.5) 1.0002 0.9936 0.9437 0.9791
(0.2,0.2) 0.9876 0.9269 0.6285 1.0274
(0.2,0.3) 0.9947 0.9474 0.6918 0.9947
(0.2,0.4) 0.9984 0.9768 0.8277 0.9891
(0.2,0.5) 0.9997 0.9937 0.9423 0.9951
(0.3,0.3) 0.9942 0.9671 0.7744 1.0033
(0.3,0.4) 0.9984 0.9869 0.8905 0.9984
(0.3,0.5) 0.9997 0.9967 0.9676 0.9989
(0.4,0.4) 0.9992 0.9952 0.9545 1.0001
(0.4,0.5) 0.9998 0.9989 0.9881 0.9999
(0.5,0.5) 1.0000 0.9997 0.9967 1.0000

o = 0.50

(0.0,0.0) 1.0067 1.0203 1.1617 1.0492
(0.0,0.2) 1.0028 0.9927 0.9528 0.9724
(0.0,0.3) 1.0009 0.9906 0.9333 0.96395
(0.0,0.4) 1.0002 0.9957 0.9654 0.9861
(0.0,0.5) 1.0000 0.9990 0.9906 0.9966
(0.2,0.2) 0.9963 0.9770 0.8495 1.0071
(0.2,0.3) 0.9987 0.9867 0.9024 0.9985
(0.2,0.4) 0.9997 0.9956 0.9624 0.9979
(0.2,0.5) 1.0000 0.9991 0.9915 0.9993
(0.3,0.3) 0.9988 0.9932 0.9447 1.0006
(0.3,0.4) 0.9997 0.9979 0.9809 0.9997
(0.3,0.5) 1.0000 0.9996 0.9960 0.9999
(0.4,0.4) 0.9999 0.9994 0.9940 1.0000
(0.4,0.5) 1.0000 0.9999 0.9988 1.0000
(0.5,0.5) 1.0000 1.0000 1.0000 1.0000
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IV. THE REGRESSION ESTIMATOR WITH
" A CERTAIN SHRUNKEN ESTIMATOR FOR THE MEAN

OF THE AUXILIARY VARIABLE

A. Introduction

Let u be the mean of Y and My be the mean of the pxl
vector of auxiliary varlables X. We consider in this chapter
a regression estimator of ﬁ by using a shrunken estimator of
the form c¢X:0 < ¢ < 1 for gx, when prié} information about By
is available, 1l.e. By is close to ﬁ ; instead of the usual
minimum variance unbilased linear estimator X. We first con-
sider the case p = 1 and following Thompson (1968a), we find
the optimal value of ¢ which minimizes the m.s.e. of ﬁ*, the
regression estimator of u which 1s defined below. The m.s.e.
of ﬁ* will be derived and the efficiency of the preliminary
test estimator of Chapter II relative to ii* will be discussed.
Since Ko is known, without loss of generality, we let Uy = 0.

Let ﬁx = ¢X and assume o;, G;, p known, then ii* is defined
as {i¥ = y-BcX where

B =—}{l

02
X
m.s.e.(N¥%) = E(F-BeX-u)? (4.1)

In order to find ¢ to minimize (4.1), we differentiate w.r.t.

¢ and equate to zero. Thus
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N _ _
3o E(y-BcX-u)2 = 0

and since integrand 1s absolutely integrable,
9 4= = 2 _

E 55 (y-BeX~-u)™ = 0.

- E 2(§y~-BcX-1)(-BX) = 0

E yX - BcE}_(2 - uEX = 0

Bc(ui + =

Therefore

(4.2)

Since My is unknown, we may estimate it by X as in Thompson

(1968a). Therefore

-~

o) L

%

(4.3)

0>’
]

2

o
2+ X
n

>4l

Hence the regression estimator of u using a shrunken estimator

for ux is

5 oo
Q

3
+

2_
xX
2
o
X
n
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or

..... o2
_:ﬁ__lgg_. (4.4)

The case p = 2 can be treated similarly even though the
derivations are more difficult. This case wlll not be treated
here. The case p > 3 wlll be treated 1n section C of the

present chapter.

B. The M.S.E. of 1* and Relative Efficiency (e3)

m.s.e.(ﬁ*) E[§ - —:—2————-——

- u1®
2__ e
E(F-w)° - 288 — 2By ogyg — X X

nX -+G; ‘nX“- ¥ o2
2
0 -
+ BEE( —2xx )2
nX< + o2
X
The second term can be evaluated as
~2802E ——51———— = -2802EE[—z2L—|X]
nX + c nXx° + o;
= -2B07 Em—a—r——éE[y|xj
nxX - + c
= -2802B—"——[u + 8(%-u,)]

2
nx  + °x
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, . = 2
= —2802 (u-Bu JE—st—— - 28% 25— KX
: nX< + o2 nX< + o2
X X
(4.6)
Therefore
m.s.e (ﬁ*) = E(§4u)2 + 282ﬁ 02E X - 26262E 22
TXXT%2 ¢ g2 X n%° + ol
=2
+ B2cuE —5 X 5
(nX° + o02)
1 2 % 2 %2
= 502 + 28°u o;E —5 - 28 G;E —5
X nXc + 0 nX° + o2
=2
+ g% X (4.7)
(nX° + o2)

We may now use the Gauss-Hermite quadrature to evaluate the
above expected values. The relevant approximation given in
equation 25.4.46 and Table 25.10 of Davis and Polonsky (1964)
is

[ e f(x)dx =

Wif(xi) + R
y."3 i

” (4.8)

nMR

1

where x, are the i-th zeros of Hermite polynomials Hk(x),

which are the related orthogonal polynomials. The welghts

okl 7
" K°[H, - (x,)1°
w-1'%1
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The remalilnder

R - _kIVW

| £
ko Keop)

2kig) (~w<g<wm)

To use (4.8) we make the following transformation.

0-2
X = y ~ N(ux"?x) .

Therefore
y=-u
— ) _E.(_._}S.)g
E—_—_—g-x——-; = [ 2y " vn e 2 GX dy
nX- + o, =2ny +o0, 2“0;
Let
Y=, o)
()W 5 =x
X
/2
=> y = n(xox) + My
73
> 4y = o/ ;5 dx .
Therefore
2
- o ¢ =(xo_.) + u_ _<2
B X = f —N X X % o~ X /godx
niz n x

+ 0 - /2, 2,2 2
X nﬁ/;(xox) + ux] +6?  V/2mo
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Therefore o

% o ﬁ%txax)‘+ Be oo 1 -x2'
E— - = ‘ — e dx (4.9)
nxX- + o, nB/_(xc ) + My ] +o a

Similarly
I o V2(x0_) + )2 >
Bt = X X . %e-x dx (4.10)
nX~ + o - 2 . 2, T
X n[/’ﬁ-'(x"x) + ol +c;
and
22 o /2(x0 ) + u)? -
E — i J — e dx (4.11)
(nX% + o3) °°[n(»/'uw ) + u)%40212 VT

Efficiency of the preliminary test estimator (#) relative to

ﬁ* is

N R A

B "3 M.S.E.('{I)/ M.S.E.(ii#%)

_ M.S.E.(3i%)
M.S.E.(u)

(4,12)

Therefore, using (2.24) and noting that B8 =_212252, we have
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. L= =2 eV
e =,lgz + 262ux0;E _§ - 2326 §2 + B2cuE g —>
3..m o TR X nX“+c? nX°+0 (nx +07%)
1l 2 .
n° - 8% Hoeyesd) = oo, ol 5(e32) + 2% p+2(°’*)
and wlog we let o; = g2 = 1. Hence
. <2 22
o nX~+1 nX“+1 (nX +l) (4.13)
L 0% (e31) - 1 %y (c3A) + 20°u 2 (e32) '
n X p+4 p+2 p+2

The values of e3 for n =9, énd k = 20 are given in Table
4,1 for certain choices of Hys P and o. From the table we

observe that

1. e3 has a maximum greater than unity at u#

0. Again
this corresponds to the case when the null hypothesis of the
preliminary test is true.

2. For fixed n, B, and o, eé is in general a decreasing
function of p.

3. For fixed n, My and p, e3 is also generally a
decreasing function of «a.

4y, For fixed n, p and a, €3 first decreases to a minimum,
then increases to above unity and then finally drops back to

unity as My increases.
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Table 4.1. Values.of e for n =9 and k = 20.
....... o= .05 .. .. . ¢ = ..10 . o = ,25
p .

Uy 7 .9 7 9 T .9
0.0 1.1430 1.3674 1.0193 1.0424 0.8550 0.7330
0.1 1.0836 1.1930 0.9821 0.9632 0.8491 0.7286
0.2 0.9568 0.9184 0.9023 0.8243 0.8398 0.7270
0.3 0.8299 0.7269 0.8217 0.7155 0.8342 0.7331
0.4 0.7352 0.6174 0.7650 0.6541 0.8414 0.7551
0.5 0.6751 0.5586 0.7359 0.6293 0.8630 0.7933
0.6 0.6444 0.5325 0.7320 0.6318 0.8966 0.8449
0.7 0.6407 0.5332 0.7515 0.6596 0.9395 0.9087
0.8 0.6608 0.55T4 0.7904 0.7091 0.9844 0.9761
0.9 0.7030 0.6055 0.8440 0.7782 1.0250 1.0391
1.0 0.7638 0.6767 0.9047 0.8600 1.0558 1.0888
1.3 0.9694 0.9528 1.0390 1.0625 1.0810 1.1332
1.6 1.0478 1.0782 1.0583 1.0961 1.0624 1.1032
1.9 1.0444 1.0734 1.0450 1.0744 1.0452 1.0747
2.2 1.0338 1.0559 1.0338 1.0559 1.0338 1.0559
2.5 1.0262 1.0433 1.0262 1.0433 1.0262 1.0433
2.8 1.0209 1.0345 1.0209 1.0345 1.0209 1.0345
3.1 1.0170 1.0282 1.0170 1.0282 1.0170 1.0282
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C. The Shrunken Regression Estimator for p > 3
In this sectlion we consider the shrunken regression
estimator for p > 3. Suppose I is known. Wlog we let £,, =1

22
and 62 = 1 and consider the regression estimator

b, = § - %(1 - =2
M, =¥ - 2.,k i'}’c) (4.14)

where following James and Stein (1960), we use

as an estimator of u_.
We shall now derive the m.s.e. of ﬁl and the efficlency
of the preliminary test estimator, ﬁ, relative to ﬁl. We

shall denote this relative efficiency by ey

m.s.e.(dy) = E[¥ - I;,X(1 - B=2y _ 412 (4.15)
%%
- B(-w)? - 25 B7X(1 - R=2) + 2uz EX(1 - 22
by '3

D= =2
+ 3. E[(1L - 5% (1 - &25)13
12 X'X & Sl

Now

EyX = EEyX|X

EX[M + I, ,(F-u)]

qu - HxEx'EZI + E(zz')z2l
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Similarly
yX X |
Ev— = B—— [u + I ,(X-p )]
X'X 'X
= ME-— - E(z)u!%,, + E(Z)s
XX g * 2L %z 2L
Therefore .
. 1 L X
= -~ - - ——— |
m.s.e.(ul) =+ 2212ngx221 2(p 2)212E(2,2)Exz21
T, E(XX")Z,, + (p-2)°c E(:Z') '
- XX + (p- —s 'L
12 21 125552 21

I, o2

Using (2.24) and wlog letting Loy =

1, the efficiency

of the preliminary test estimator relative to ﬁl

3
1 X
a2 Il iy - 2(p'2)212 (x X)3%221
WTLT 'y (c3)) - z—— (c3A)
n 12BgleZoq n+u nZ12%o1H540(05
2 (___z') i =T,
* (p-2)"L,, E T2 Zop = ZpoB(XX"NZ,

* 22y oI Hopo(esd)

To evaluate e,s we need to evaluate

X

(1) E

I
Il

(4.16)



(2).

(3)

where X ~ N(gx,

where

then

n

1y,

|58
It

I®

Let X = U so that X

158

EXX'

>4l

» and

X'

E
(

I><1

/

E

u
Ho

(

%)°2

1

p

———————re——e
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We now consider the 1-th component of (;) and note that

2 2 2
wy = 2u5 = YUl ® ~ 3o Nl
(4.17)
~ 2
xp+2K
wheré
~ n 2
K Poisson(zlngx“ )
l.e.
n 2
'§ “Bx” n-: 2.k
e (.—i_ IE “ )
p(K=f) = : 2l
¢ k! .
Therefore
(——) =E(—2—)
llull Xp+2K
= EE( 21 |K)
xp+2K
- o1
p-2+2K
Therefore
p
_n 2 P
. 2 LM (@ 1)k
. i=1 2 +_-"1
B(—=—3) = Bz = I poaveE o =
lul| k=0 R (4.18)

Alternatively using the independence and marginal denslty of

each component, we may also wrlte
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. P ,
B -3 T (u-up)?
(1 2 %=1 o - (h.19)
= - e o ol
Jull® “-= B2 2 17
j=1 9 (2m)
Differentiating (4.18) w.r.t. ¥y we have
p .
1 2 P |
. 2 E ¥y (B bk
aa E(— 5) = L _—'k'-é+2 (-nu, ) £ 4=1
Y1l k=0 P k!

n
+ g L e 2 leuj) n
poq P-2¥2k Bt My
p
n 2 P
~> I u; ,/n 2.k
=1z
- . 2 421 3 (3 z Hy)

1
ny
1,2, P-2+2(R¥1)

b
SRR R
LS 1 e 717 "2,
Ty 2, P-2F2R Iy
Therefore
! 1 ) = n 1 1
= nu, E—5% - np, E(— ) (4.20

Mg T REE T g 2
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Similarly differentiating (4.19) w.r.t. u,, we have

. o)
w 5 -3 Z (U,-u )2
8 m(—L—) = seeor B pn(u,-p,) 2 2 ) av....au
TR P B 1
= 20 (2m)2
_ Usj=Hy
= E(_——__i
llull (4.21)
Equating (4.20) and (4.21), we obtain
U
i 1
E(——3) = u, E(Z>%) (4.22)
||H||2 1 p+2K
Hence we may denote
X
E(=)=
L'X
by L where L 1s 2 pxl vector whese i-th component

— 1
ui E(p+2K)
P 2nP 2k
1 e T 4=l v =1
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Now the second term is

E(XX')

[
<
~—~
I
~
+
=
A
I=
x -

The third term,

sl

(>t
(>t

is a pxp matrix with 1-th diagonal element

2
E_h_____
P
(z U2

j=1 9

and i-4th off-diagonal element

to evaluate

we may twice differentiate alternative expressions for

1 )2

E (———
2
(Al

(4.23)



w.r.t. M

i
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and then equate the results. Thus using an expres-

sion similar to (4.18), we have

Next, usling an

2

1

9
2
aui

E(

2
Hull

)2

- 1
- nE(p+2K)
n.2,n2 2.k-1
. —5 zujk(iﬁil uj)
1
+ oy o 1(p+2k) o miy
P D
< 2(~nyy ) 2 leug(% I ug)k
ke kio (5:55) ' k1
1 2
—nE(——-—-—-) - ny {nu E(==5=)" - nu E(———=)
lul) 2 e 1 Yy
_ 1 .2 2 2
= mE (i) + (nwy)® Blrgm)” - (any) *Elghy)
1 \2 1.2
- nE( )T = (nu,) E( ) (nu, ) "E( )
llulf D” B 1 julf
(4.24)
expression similar to (4.19), we have
U
3 i ) 1 2
= n E -n {p, E(———=5)°}
- 2
My Tl B i N 1]
(U, =, ). C (U, =Yy )
C gl = flull Cllull *)
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2
. U oo U, . _
n2E i 2 1 1 2

—s - n“Y, E————— -« nE(———)
( Jlu]] %2 Tl ® (gl @

| U -
2 i 2 2 1 2
- n°U, B—2—— + n%u°E(——s) (4.25)
Y ul &8 7 1w @
Therefore equating (4.24) and (4.25), we have
1T\ 2 2,2 1 .2 2,2 1 2
nE(5Ep) "+ n ME(Grai) - 20 ME(pray) - nE ol 2
+ n2ulE(—2—)°
Hulf
2 Ui 2 1 2. 22
= n°B————=n——= - 2n“u E( ) (——=)° + n“UE(————5 L 2
5.2 +2K 7 1 2
Cligll =) P ol II_H
2
n°E % 57 nE(piZK)z + n° 2E(p3r2+.21<)
C gl =
72
1 = ipe 1 1
e 52 - ) * ViR raeer) - (h.26)
Similarly to evaluate
U, Uy,
E——rr— ’
P 2.2
( £ U3
J=1

we differentiate each of the alternative expressions for

12
E(——=)
lhull



first w.r.t. ﬁi and then w.

Thus using
E( 1

lhull

2 _ .1 2
)" = Blg=owax)

0

z
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r.t..uz and equate the results.

1
'V fa]

( 1 )2 e
k=0 p—2+2k

we have

”82

32 | 2
dup Uy

E nui

(—=—)
full

nui

nuy

2
n

+ nzuiuz

' 1 .2
Wy EGeesr) -

E(

1 2
2n"u, vy E(BIEK)

1

2
)
lull 2

(4.27)
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Next using
p
-% L (U,=-u )2 '
' oo = 'j J
1 2 e =1
E(_—) = f.“f p E dUltoodUp s
izl (T UD® 2
j=1 9 (2mw)
we have
32 1 2 _ nU; (Ug-wg) S (Uz'“z)
2 2.2
ugduy |l ( Hull® Nl 2
_ 25 1l n?y g
n 2y2 Yo 2y2
¢ llull ( flull
n2u E———E&———— + n2u M E———l————— (4.28)
- i 2.2 1M 2 .
Cllull ®) (gl 52
Further we note that from (4.22) we can deduce that
U
1
E——————— = E( )
2.2 +2K
Cllall P
and
U
2
B———————— = E( )
2.2 +2K
Cllall 9 P
Thus (4.28) is equivalent to
2 . U,Uu _ 5
2 B(——)? = n?p—1 2 22 5 = 2n2u-uoE(—}T§f)
sugon,  llull @ ¢ lull AR
. = (4.29)
+ nzuiugE( 2)2
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Therefore equating (4.27) and (4.29), we have

2 e . L. L,
U U I U T T
- . U.U
2 iV 2 1 2 2 1 2
= n“E———5—= - 2n“U, 4, E(=55%)° + n“u y E(——z)
2 ivR +2K ive 2
Cllull @ P lull
U.U
12 1 2
:::%} E——--— = U, U, B(—=—=) (4.30)
2.2 i*2 +24+2K
Cllull © P -
Denote
E
(X'%)°

by M, then M 1is a pxp matrix whose i-th diagonal element

2 .

U

5 1,1 2, 2., 1 .2
E( 1ol 52 = 525 * WiE(GEaTey)

n £ 2n £ 2.k
2 I RN
1 2 1 .2 J= =
== I (SR
p P -
Iog W@ 3 Ak
o0 "2 . -1 j 2 =1 J
2 1 2e 971 =1
+ u T ( )
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and the 1-2th off-dlagonal element

U.U .
i L 1 2
E—————x = W, H E(—=5=5%)
2.2 ive +2+2K
Cllgll P
P p
—g b u?(% z u?)k
==} _—_1 J -._..1 J
= wu, = ( L )2 e ! ’
179 k=0 p+2+2k k!

Thus substituting

X
E(—)
X'X
2%
o
(X'3)°
and
E(XX')
into (4.16), we may write
e = h(a)
4 k(2)

where
_ 1 ' - _ '
h(a) = &+ I 0 u 2y = 2(p=2)2, L 2y

, 2 _ 1
+ (p=2)72 MZ5 = 5 I8y

(4.31)
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VII. APPENDIX

To justify the result in (3.7) we consider, wlog, the
differentiation of T w.r.t. 6.

37 © ® _lé 1.8 j
8T _ 3 2" 1.8 ' ‘
55 = 38 £ JEO e 7(5) hp+2j(t)dt (A.1)
Let
1
o  ~=5
= 2" 1 ,6,J
g(t,8) = jﬁ e © 37(3)hy 05 (E) (4.2)

We can differentiate under the integral sign in (A.1l) by the

Lebesgue Domlnated Convergence Theorem if % ¢,

g(t,6+s) - g(t,8)
S

< G(%)

for every |s| < s, where G(t) is integrable over (c¢,»). Using

triangular inequality,

lg(t,5) - g(t,6+s)‘ L lg(tas) -,So(t36+s)[

+ Jgo(t’6+s) -,g(t:6+s)‘

where
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then
g(t,8) - £(t,8+s) °° '%6" '("e'-'§ =1)| 1,83
s =5 © s l 3T(2) p4py(F)
(A.3)
% -—(6+s) J_gd
{(6+s) -8}
Pt © | | S5y tovas(®
1 1
2% ) G200
!e — < for |s] <s
s Sy 0

lﬁ 1 ls L
207 2 218, e? 0 2°0
S5— 7 Ioe © g(R)h,oy(0)dt = [l—Hp(c;G)]<e <
0 ¢ j=0 * 0 54
-3 3=l 5%
Next e <e < e
Also,if we let f(x) = xj, £1(x) =,Jx3"1.

(6+s)j = £(8§+4s) = £(8) + sf'(8+8s)

by the Mean Value Theorem =.GJ + sJ(6+es)j-l.

(5+s)d - &9
.S_

< J(s+e|sr)3'l < j(5+eso)3‘1

< as+s I or 5 > 15 (0 <8 =8(s) < 1)
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This implies that the integral of the second term of (A.3)

| A
o
N
()
0 -8

[]
o
08

fl
o

[1-

Therefore

Let

gy (t,6) = e

'-%a I(s+s, yd

-1

1 23 51

P

08

) n

p+2(c 6+s )] < e

o
37 Bp4ay (8)

0 <

+2]

p+2)+2

oo

(t)at

(t)dat

(A.4)

In order to differentliate under the summation, we must show

that for every

gj(taﬁ)-"

fixed %,

gj(t,6+s)

8

< Uj(t), If{ < 8y
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where
o0
z UJ(t) < ®» ,
J=0
t . pZZJ -1
e 2(3)
hp+2j(t) =
+
2 r(%z—i')
pt2j _
oo -
r(BF2dy =y e x 2 ax
0
£ p+2J
2 -X 2 -1
> [ e X dx
0
t £ ptay
-5 2 > -1
> e J x dx
0
ptad
£ oLy 2
_ . 2%
pt2j
2
Therefore
& p+2) _
e 2 (3) 2 T v
h (6) < N2l (pr2dy _ 1 p*ag
pt2j ¥’ = T E " pt+2] 2 t 2
e 2 (%) 2

(A.5)
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By triangular lnequalilty,

|8, (£,8) = g5(t,8+8)| < |gg(t,8) = gyo(t,8+8)]
+ ,Igjo(ts‘s"'s) - gj(t,6+s)|

where

1
: -=(8+s)
Byo(ts6%8) = e 2 é%(%)j hy 4oy (8)

By similar arguments as above and using (A.5),

_gj(t,a) - gJ(t,6+s)

S
1
w -=8
<k, I (p+25)e 2@ 2(&yd
T Ji'2
3=0
1
Ry, I {p*23) g ()" = T Ut} < e
_J=0 ) J=0

since each term is some moment of a Poisson distribution and

kl, k2 are fixed constants.

To justify the result in (3.9), we let

P M1 (3) ., (3),2
-—(ZY’= )
e 2 Yx azy) = rar (A.6)
yam  j=1 '
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Therefore (3.8)

.n :
__é:!-_(z‘(i)_yx(i))2

= ,f"'f e sz(i)d']_‘ .

iy
Let

n

€ T = g(T,Yx(i)) .

We must show that for every fixed T

g(T, Y}({i)"'h) - g(T, Yx(i))

h ! < ®T),|n| < h, (A.7)
where
foeor a(myazttlar < o
A
Now
01 (1) (1) 2 Ny (1) (1)
e'—z"[Z --('Yx +h) ] ) e-—é—(z _yx )
h
n .n
N1y (1).2 | 2 nz®y 1)y S L2
-—5LZ - 2. 2
T b = =1 (.8)
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If £ (h) = gkh £, (h) = ke, Let

Moo (1) o (1), _ _ '
FBE=r, ) = £y (h) = £(0) + by r(ogn) (A.9)

n n0.h gy (1)
1 —(Z - )
1+ h??(z(i)—vx(i))e 2 x

Let

e -

27 _ =
e = fz(h) f2(0) + hfzf(ezh)
2,2
_ nlezh
- 2 - T2 )
=1 - n162h e {A.10)
Multiplying (A.9) and (A.10) we have
n n
___J_-_h(z(i)_Y (i)) __1h2
2 X 2
e e
2. 2
n162h
Padal ), (1), o n2 T2
n -y - n e
X
2,2
n,8,h nlelh(z(i)_ (i))
2 2 Yx

2 -
-1’1—21-62h3(z(1)_.yx(1))e

Therefore for |h| < h,, the expression in (A.8)
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Dy (1) L (1)-2 BBy gy ()
ST, i 21y (1)].72 1257 =y
2.3 MRy ) (1)
ncn - A |
+ nlhi + _%?llz(i)_Yx(i)le 2 x }
T (1) . (1),2 1. (1) i,-2
——[z'\t e ] -—5LZ2 " =¥(y)]
= e 2 Yx + Cllz(i)-Yx(i)le 2 X
n
—7%EZ(1)-YX(1)]2
+ 02e
where
n-h
0; = —<5=(1 + nyhy?)
and ?(yx(i) is some function ol Yx(i)- Finally we note
P P13, (3),2
s \r_i;rTr ﬁ ,_\-'—é—(z _Yx ) (1'7(3)
\.LTL2/J - i < Q%
A Jj=1 V/2r
M1.(1) (1)yq2 P
(1) (1) (ﬁz ’7?[2 -W(Yx )] 'W fﬁi
+ clf-;-flz Y4 |— e
A e j=1 v/2n
j#i

Ty (3) . (3)42
Lz )
e 2 x az(3gqz(3)
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c f---le(i)-Y
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