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I. INTRODUCTION 

A. Introduction 

Although statisticians and research vjorkers have, for a 

long times appealed to preliminary tests of significance as a 

technique in their investigations, it was only in the last 

three decades that proper evaluation of their effects on sub

sequent inferences is being made. These Inference procedures 

incorporating preliminary tests usually occur in incompletely 

specified models. Recently Bancroft and Han (1977) has given 

a more appropriate designation of such inference procedures 

and termed them as inference based on conditional specifica

tion. 

The term, conditional specification as opposed to uncon

ditional specification, is used to describe the situation when 

the research worker is uncertain regarding the initial speci

fication of a model for his investigation. He may wish to 

determine the final specification based on available data, 

usually by using preliminary tests. However, the research 

worker, either from experience or some knowledge about the 

investigation, may be able to choose a complete model for his 

study. In such a case, the research worker has an uncondi

tional specification. 

A bibliography on inference based on conditional specifi

cations was recently compiled by Bancroft and Han (1977) . 

These include estimation, prediction, hypothesis testing and 
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others. In this dissertation, we shall consider the regres

sion estimation of a population mean under conditional speci

fication. 

B. Literature Review 

The earliest paper on the effect of preliminary tests was 

due to Bancroft (1944). He discussed the bias in the case of 

estimation of variances on the basis of a preliminary P-test. 

Since chen, many statisticians and research workers have 

worked on Inference procedures based on conditional specifica

tion. Most of these studies used the terminologies "inference 

procedures Incorporating preliminary test(s)," "pooling data," 

or "inference for Incompletely specified models." Recently, 

in a note by Bancroft and Han (1977), the terminology "infer

ence based on conditional specification" was suggested as a 

broader representation of the phrases used in the past. In 

this section, we shall review briefly the estimation of the 

mean 

In 1948, Hosteller studied the estimation of a population 

mean by pooling Independent samples on the basis of a signif

icance test. He investigated what he called the 'Disadvantage 

Coefficient' which is the efficiency of the never pool esti

mator relative to the preliminary test estimator, Bennett 

(1952) evaluated the bias and distribution of estimates of 

means based on one or more preliminary tests of significance. 

He extended the work of Mosteller to the cases where the two 
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copulation variances may be known but unequal or equal but 

unknown. Preliminary tests were also used by Bennett (1956) 

to provide interval estimates for the mean and variance of a 

normal population. 

Kitagawa (1963) continued the investigations of Bennett 

(1952) on the distribution of the preliminary test estimator 

for the mean of a normal distribution when the variance is 

unknown. He derived the bias and m.s.e. and expressed these 

as infinite sums which are very difficult to compute. However, 

Han and Bancroft (1968) worked on the same problem and were 

able to express the bias and m.s.e. as finite sums which are 

much easier to evaluate. They also recommended a procedure 

for determining a proper choice of the significance level of 

the preliminary test to ensure a relative efficiency to be 

larger than some preassigned value. 

A little before this time. Kale and Bancroft (1967) had 

considered the problem of pooling means of two independent 

random samples from discrete distributions (particularly the 

Poisson and binomial) which can be approximated by normal 

distributions after appropriate transformations. They studied 

two samples from N(ii^,a^) i = 1,2 assuming the parameter of in

terest was and was known. An estimator x* was proposed 

both for the estimation of and for the test of Hq : u^=]iQ. 

The bias and m.s.e. of x* and the size and power of the over

all hypothesis testing procedure were studied. They 



4 

recommended the preliminary test should be at the .25 level 

for the control of the m.s.e. and size of the test procedure 

based on x*. 

In 19719 Brogan used a preliminary test of significance 

and two-stage sampling to derive an estimator for the mean of 

a normal distribution. He derived the bias and m.s.e. and 

compared the latter, for a fixed total sampling cost, to the 

m.s.e. of some other estimation procedures. Ahsanullah (1971) 

studied the problem of estimation of the mean of one of the 

components of a bivariate normal distribution with equal 

marginal variances from a sample of size n. The result of a 

preliminary test of Hg: 11^=^2 was used to define an estimator 

for where is the mean of the other component of the dis

tribution. He studied the m.s.e. of the preliminary test esti

mator and tabulated its efficiency relative to the usual esti

mator. He also used the selection procedure recommended by 

Han and Bancroft (I968) to compute tables which can be used to 

determine a proper choice of the significance level of the 

preliminary test. 

Bancroft (1972) gave a summary of some recent advances in 

inference procedures using preliminary tests of significance. 

He briefly outlined the theory behind the use of preliminary 

tests in estimation, tests of hypothesis and prediction. This 

is based primarily on the desire to make inferences for incom

pletely specified models. Useful applications of preliminary 
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tests of significance based on results obtained in earlier 

papers were given in the text by Bancroft (1968). 

In 1973, Han (1973a) introduced the use of preliminary 

tests into regression estimation for bivariate normal distribu

tions. In estimating the mean of one of the components of 

a bivariate normal distribution and the mean of the other 

variable is known, the investigator can use X in a regression 

estimation to increase precision. When is unknown, Han 

proposed the use of a regression estimator which depends on 

the outcome of the preliminary test of Hq; studied 

the bias and m.s.e. of the preliminary test estimator and 

discussed the relative efficiency. Later, the same year, Han 

(1973b) extended his study to the case when the mean of X is 

unknown and double sampling can be employed. If in addition, 

the investigator has partial information about then Han 

proposed to perform a preliminary test and use the preliminary 

test estimator. He derived the bias, m.s.e. and relative 

efficiency of the preliminary test estimator and gave recom

mendations of the levels of the preliminary test and optimum 

allocation of sample sizes. 

At the same time, many other statisticians and research 

workers have shown concern about estimation with high preci

sion. Consequently, many workers in the field were also 

carrying out investigations and proposing new estimators based 

on certain criteria. One such investigation was given by 
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Stein (1955) who discussed the inadmissibility of the usual 

estimator for the mean of a multivariate normal distribution 

for p >_ 3. He proposed a spherically symmetric estimator 

which is essentially a shrunken estimator. James and Stein 

(i960) continued with the same studies and gave more precise 

forms and merits of the shrunken estimator for the cases when 

the COvariance matrix is either known or unknown. In 196O, 

Stein investigated the improvement in m.s.e. by a transforma-

tion, on the regression coefficient of the form C§_: 0 < C < 1 

which is a shortening of the vector 

In 1968 ,  Thompson ( 1968a )  studied various ways of shrink

ing the minimum variance unbiased estimator of a population 

mean towards some known origin, thereby reducing its m.s.e. 

He employed a preliminary test of significance as a shrinking 

procedure. Later in the same year, Thompson (1968b) extended 

his work to shrinkage towards an interval centered at some 

origin. 

C. An Overview of the Present Research 

and Summary of Results 

The present thesis is divided into three main parts. The 

first part is an effort to extend the studies of Han (1973a) 

for bivariate normal distributions to (pifl) variate normal 

distributions (p+1 > 2). The second part attempts to extend 

the method of double sampling with partial information on 

auxiliary variables first studied by Han (1973b) for one 



7 

auxiliary variable to the case where the auxiliary variable is 

a pxl vector. The last part considers regression estimators 

with certain shrunken estimators for the mean of the auxiliary 

variable and compares them with the preliminary test estima

tors . 

In Chapter II, Section B, we define the preliminary test 

estimator, u, for the general p+1 variate normal distribution 

and study its bias when the covariance matrix, 2, is known. 

In Chapter II, Section C, we derive and discuss the m.s.e. of 

VI for E known. In Chapter II, Section D, the relative effi

ciency e, of u is considered while Chapter II, Sections E and 

P, respectively, deal with the derivation and discussion of 

the properties of the Bias and m.s.e. of u when 2 is unknown. 

Chapter II, Section G, gives the expression for and some 

computed values of the relative efficiency e'. 

In Chapter III, we consider double sampling with partial 

information on auxiliary variables and for Z known, we define 

the preliminary test estimator and exhibit its properties 

in Section B. The m.s.e. and the relative efficiency of 

are given and studied in Chapter III, Sections C and D, 

respectively. Chapter III, Section E, furnishes a discussion 

of the optimal sample design and some comparisons. When Z is 

unknown, the bias, m.s.e. and relative efficiency eg of 

are derived and investigated in Chapter III, Sections P, G and 

H, respectively. 
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In Chapter IV, we consider regression estimators with 

certain shrunken estimators for the mean of the auxiliary 

variable. A shrunken regression estimator u* Is given In 

Chapter IV, Section B, following Thompson (1968a). The rela

tive efficiency e^ of y* Is also discussed. In Chapter IV, 

Section C, a shrunken regression estimator is constructed 

following James and Stein (i960). We also give an expression 

for its relative efficiency. 

In general, the bias and m.s.e. of the preliminary test 

estimators are found to be functions of n, and a where 

2^2 Is the COvariance between Y and X. When Z Is known, the 

bias and m.s.e. are found in terms of the cumulative distribu

tion of the noneentrai Chi-squared distribution. For p = 1, 

Han (1973a, 1973b) expressed the bias and m.s.e. in terms of 

the cumulative distribution function of the standard normal 

distribution. Thus the computations in this dissertation 

afford a further empirical verification of the results of Han 

(1975) on some relationships between noncentral Chi-squared 

and normal distributions. The properties of the bias and 

m.s.e. for p > 1 are found to be identical with those recorded 

for p = 1. 

When Z is unknown, the bias and m.s.e. of the preliminary 

test estimators are also found to be functions of n, Z^^ 

and a , but In terms of the cumulative distribution of the 

noncentral P-distrlbution. For p = 1, Han (1973a, 1973b) 
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expressed these in terms of the moments of normal distribu

tion. The properties of the bias and m.s.e. for p > 1 are in 

general found to be identical with those recorded for p = 1. 

The m.s.e. of the shrunken regression estimator is found 

to be a function of n, Z and The efficiency of the pre

liminary test estimator relative to the shrunken regression 

estimator is generally found to be greater than unity when 

= £, or when the null hypothesis of the preliminary test 

is true. The value of the relative efficiency then decreases 

to a value smaller than unity, increases to above unity and 

finally decreases to unity as components of increase. 
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II. REGRESSION ESTIMATION 

FOR MULTIVARIATE NORMAL DISTRIBUTIONS 

A. Introduction 

Consider that we have a multivariate normal population, 

that is s consider the case: 

I ~ N(E,Z) 

where 

-(p+l)xl 

\ 

1x1 

pxl 
(2.1) 

4^ 

and Z = 

r, 
a' 

I 

\ 

\ 
21 

'12 

'22 
J 

Suppose we are interested in estimating the mean y. This 

happens in an investigation that the investigator is interested 

in primarily one variable while he uses other variables as 

auxiliary information. Following Han (1973a), we may use the 

remaining p variables as ancillary variables to increase pre

cision. If and Z are known and we have a random sample of 
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size n, we can use the regression estimator defined as 

i - y  * h 2  (kx -

where 

y ' : j, ̂1= : = & j, % • 

In this case We know the variance of the regression estimator 

is 

-[0^ - 2^2 ^22 ̂ 21^ n'-^12 ^22 ^21^ 

is considerably large, we have an appreciable gain in precision. 

If 11^ is unknown, one may use y to estimate u. However, it 

may happen that from certain sources, the experimenter may 

expect that U= iJq but not sure for certainty. In this case, 

a preliminary test of Hq: p^ can be performed and the esti

mator is made to depend on the result of the preliminary best. 

In this chapter we shall consider the properties of this pre

liminary test estimator. 

B. The Preliminary Test Estimator 

and its Bias when S is Known 

Assume (y^, ... i = 1, ...n is a random sample 

from the (p+1) - variate normal distribution N(ji, E). Suppose 

2 is known and ]i unknown. Consider the hypotheses: 
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Ho: î x = iio 

Hi: î x ^ ̂ 0 

Wlog (without loss of generality) we take Uq to be the null 

vector 0_. The test statistic for Hq versus is n(X' %) 

which has a Chi-squared distribution, with p degrees of 

freedom. A size a test is to reject Hq if n(X' > Xp ^ 

where « is the 100(1-a) percentage point of xf- Therefore p p 

if we let Xp = c and denote the acceptance region [n X' 2^2 

^22 -

be written as 

n X' 2^2 X < c] by A then the preliminary test estimator can 

y - 2^ 2", X given A 
P = ^ ^ (2.2) 

y given Â 

The expected value of y is 

E(u) = E{(y - S~2 i)|A} P(A) + E(y!Â)P(Â) 

(2.3) 

= E(y) - 2^2 ^22 E(X|A)P(A) 

But E(y) = li. Hence the bias of u is the second term and if 

we denote this by B, we can write 

B = -2^2 ̂ 22 E(2|A)P(A) (2.4) 

Now we know X ~ N(]i^,^ ^22^ and since 2^2 is positive definite, 

3 a nonsingular T 3 T'T = Let Z_ = TX. Therefore 
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Z - NdEx . 

~ N(^ , |l) say 

and we can write 

B = -E^2 ^22 E[Zln(Z'Z) < c] ' P[n(Z'Z) < c] 

where 

{n(Z'Z):n(Z'Z) < c} = A . 

Hence 

B = ^22 E[Z|A]P(A) (2.5) 

In general n(Z'Z) has a nbncentral Chi-squared distribution 

with p degrees of freedom and noncentrality parameter X = 

n(ji^'T'Tu^) = n^v^. We shall denote the i-th component of 

M \ 
the pxl vector by . 

c "jX ~ 1 1 , 
R = P(A) = f e Z A h„.p.(t)dt (2.6) 

0 j=o 

where hp+gj(') Is the probability density function of Xp+2j• 

Differentiating (2,6) with respect to (w.r.t.) following 

the method of justification in the Appendix, we obtain 
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" 0 ® ^ j=0 ̂  ̂ hp+2j(t)dt 

- / ? 2nv(^) e Z (4)^ h_.p t(dt) (2.7) 
0 ^ X 3' d 

or 

;;7IT = n[Hp+2(°:&) - P(A)]v(i) (2.8) 

where Hp+g^G»^) Is the cumulative distribution function of the 

noncentral Chi-squared distribution with p+2 degrees of freedom 

and noncentrality parameter X. 

Alternatively, we can evaluate P(A) by the use of the 

distribution of Z and write 

H = pu) = /.../ ^ (2.9) 
A j=l /2¥ 

since components of ̂  are independent. If we differentiate 

(2.9) w.r.t. using the method of justification in the 

Appendix, we obtain 

P _ny7(j)_v(J)\2 

—^ =/•••/ IT 2(z(^) - v^^^)e ^ ^ dZ^^^ 
A j=l /2TT 

(2.10) 
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= n E[z(^) |A] P(A) - P(A) (2.11) 
3v(l) 

To obtain E(Z^^1a)P(A) we equate (2.8) and (2.11), 

n[Hp^2(°î^) - P(A)]v^^^ = nE[z(l)|A]P(A) - nv^^^P(A) 

which gives 

E(z(l)|A)P(A) = Hp+2(c;X)v(l) (2.12) 

Substituting (2.12) in (2.5) and noting that the conditional 

expectation of a vector is defined as the vector of the condi

tional expectation of its components, we have 

As a partial check, when c=0, the estimator reduces to 

the usual estimator y which is the case when we always reject 

the null hypothesis. In this case, B=0. When c=«>, the null 

hypothesis is always accepted and the regression estimator 

y - 2^2 ^22 — used. The bias in this case reduces to the 

bias for the regression estimator, i.e., 

B = - 2 ^ 2  ^ 2 2  ^  - X  " ^ 1 2  ^ 2 2  ^ x  "  
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We now check the result with that of Han (1973a) when 

p=l. Without loss of generality we let = I and a^=l. 

Therefore 

/n B = -KHp_^2(o;X) where K = . 

For p=l, 1^2 ~ P and we let = a. 

Hence K = pa and we observe that /nB changes sign with p 

or a. Therefore for p=l, we may only study the bias for 

positive values of p and a. It is obvious to see that /nB is 

a function of p, a and a. The values of -/ÏÏB for certain 

values of p, a and a were computed and examined and only very 

few of these are given in Table 2.1. 

Table 2.1. Values of -i^B for p=l. 

a = . 05 a = . 50 

a 
P P 

.1 .5 .9 .1 .5 .9 

0 .0  0 .0  0 . 0  0 .0  0 . 0  0 .0  0 . 0  

0.5 0.0342 0.1712 0 .3082  0.0032 0.0159 0 .0286  

1 . 0  0.0583 0.2917 0 .5250  0.0045 0 .0226  0.0407 

1.5 0 . 0658  0 .3288  0 .5918  0 .0038  0.0192 0.0345 

2 .0  0 . 0570  0.2848 0 .5126  0 .0023  0.0115 0.0207 

2.5 0 . 0392  0.1959 0 .3526  0 .0010  0.0051 0 .009 2  

3.0 0 .0215  0 .1076  0 .1937  0.0003 0 .0017  0 .003 1  
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Prom the computed values we note the following properties 

of the Bias. 

1. The bias is zero when U^=0. This corresponds to the 

case when the hypothesis is true. 

2. The value of the bias generally increases with p and 

decreases as a increases. 

3. For fixed n, a and p, the bias first increases then 

decreases to zero as increases. 

We also note that the values of -/nB given in Table 2.1 are 

identical with the values obtained by Han (1973a). The only 

difference is that while Han's results were given to three 

decimal places, the values here are computed to four decimal 

places. The above properties of the Bias were also recorded 

by Han. Furthermore, we note that Han expressed the bias in 

terms of functions of the distribution function and probability 

density function of the standard normal distribution while in 

this paper, the bias is expressed in terms of the cumulative 

distribution function of the noncentral Chi-squared distribu

tion with an odd degree of freedom. The above results thus 

provide an empirical verification of the theoretical results 

obtained by Han (1975) on some relationships between non-

central Chi-squared and normal distributions. 

For p=2, the values of -/nB for some values of ^2.2' 

and a are given in Table 2.2. Since the bias changes sign with 

U^, the values were computed for only positive vâlues of 
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Table 2.2. Values of -/rÏB for p=2. 

.05 
12 

0  0) 0 0 0 0 0 
.5 0) -.1931 .1931 -.1931 -.2704 .2704 
.5 .5) 0  .3723 .0745 -.5212 . 5212  
1.0 0 )  -.3447 .3447 -.3447 -.4826 .4826 

1.0 .5) -.1656 . 4968  -.0994 - . 6955  .6955 
1.0 1.0) 0 .5839 . 1168  - . 8175  . 8175  
1.5 0 )  -.4191 .4191 -.4191 - . 5868  . 5868  
1.5 .5) - . 2672  .5344 - . 2138  -.7482 .7482 

1.5 1.0) - . 1162  .5812 - . 0232  - . 8137  .8137 
1.5 1.5) 0  .5448 . 1090  - . 7627  .7627 
2 .0  0 )  -.4018 .4018 -.4018 .5625 .5625 
2 .0  .5) -.2866 .4777 -.2484 -.6687 .6687 

2 .0  1.0) - . 1637  .4912 - . 0982  - . 6 8 7 7  .6877 
2 .0  1.5) - . 0625  .4376 .0125 - . 6126  . 6126  
2 .0  2 . 0 )  0  .3351 . 0670  -.4691 .4691 
2.5 0 )  - . 3126  . 3126  -.3126 -.4376 .4376 

2.5 .5) - . 2365  .3548 - . 2129  - . 4967  .4967 
2.5 1.0) -.1496 .3492 -.1097 -.4888 .4888 
2.5 1.5) -.0744 . 2976  - . 0298  -.4166 .4166 
2.5 2 .0 )  -.0242 . 2179  .0145 -.3050 . 3050 

2.5 2.5) 0  .1356 . 0271  - . 1898  . 1898  
3.0 0 )  -.1978 .1978 -.1978 - . 2769  . 2769  
3.0 .5) -.1551 . 2171  -.1427 -.3040 .3040 
3.0 1.0) - . 1031  . 2062  -.0825 - . 2886  .2886 

3.0 1.5) - . 0563  . 1690  - . 0338  - . 2366  . 2366  
3.0 2 .0 )  - . 0237  . 1187  -.0047 —. 166  2  .1662 
3.0 2.5) -.0064 . 0708  .0064 -.0991 . 0991  
3.0 3.0) 0 .0355 .0071 -.0497 .0497 
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^12 
a = . 20 

( 0 0) 0 0 0 0 0 
( .5 0) -.1117 .1117 - . 1117  -.1563 .1563 
( .5 .5) 0 .2085 .0417 - . 2919  .2919 
(1.0 0) -.1814 .1814 -.1814 -.2540 .2540 

(1.0 .5) -.0845 .2536 - . 0507  -.3550 .3550 
(1.0 1.0) 0 .2728 .0546 - . 3819  . 3 8 1 9  
(1.5 0) -.1903 .1903 - . 1903  -.2664 .2664 
(1.5 .5) -.1179 .2358 -.0943 -.3301 .3301 

(1.5 1.0) -.0472 . 2361  -.0094 -.3305 .3305 
(1.5 1.5) 0  .1940 . 0388  - . 2716  . 2716  
(2.0 0) -.1507 .1507 -.1507 - . 2109  . 2109  
(2.0 .5) -.1047 .1745 - . 0908  -.2443 .2443 

(2.0 1.0) -.0554 . 1663  -.0333 - . 2328  . 2328  
(2.0 1.5) -.0187 .1311 . 0037  - . 1836  . 1836  
(2.0 2.0) 0 . 0855  . 0171  -.1197 .1197 
(2.5 0) -.0937 .0937 -.0937 - . 1 3 1 1  . 1311  

(2.5 .5) -.0692 . 1038  - . 0623  -.1454 .1454 
(2.5 1.0) -.0408 .0953 - . 0300  -.1334 .1334 
(2.5 1.5) -.0182 . 0726  - . 0073  - . 1017  . 1017  
(2.5 2.0) -.0051 .0458 .0031 -.0641 .0641 

(2.5 2.5) 0  . 0238  .0048 -.0333 .0333 
(3.0 0) -.0462 .0462 -.0462 -.0647 .0647 
(3.0 .5) -.0355 .0497 -.0326 - . 0695  .0695 
(3.0 1.0) -.0221 .0442 -.0177 - . 0619  . 0619  

(3.0 1.5) -.0109 . 0327  - . 0065  - . 0458  .0458 
(3.0 2 .0 )  -.0040 . 0200  - . 0008  - . 0281  . 0281  
(3.0 2.5) -.0009 . 0101  . 0009  -.0141 .0141 
(3.0 3.0) 0 .0042 . 0008  - . 0058  . 0058  
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Table 2.2. (continued) 

.50 
12 

( 0 0) 0 0 0 0  0 
( .5 0) -.0348 .0348 -.0348 -.0487 .0487 
( .5 .5) 0 .0630 . 0126  — .0 8 8 3  . 0883  
(1 .0  0) -.0578 . 0 518  - . 0518  - . 0725  .0725 

( 1 . 0  .5) -.0235 .0704 -.0141 - . 0985  . 0985  
(1 .0  1 . 0 )  0 . 0698  .0140 -.0977 .0977 
(1.5 0) -.0474 .0474 -.0474 - . 0663  . 0663  
(1.5 .5) -.0286 .0572 -.0229 - . 0801  . 0801  

(1.5 1.0) -.0106 .0530 -.0021 -.0742 .0742 
(1.5 1.5) 0 . 0386  .0077 -.0540 .0540 
(2.0 0) -.0314 .0314 -.0314 -.0440 .0440 
(2.0 .5) -.0213 .0355 -.0185 -.0497 .0497 

(2.0 1.0) -.0105 .0315 -.0063 -.0442 .0442 
(2.0 1.5) -.0032 .0222 .0006 - . 0311  . 0311  
(2.0 2.0) 0 .0125 .0025 -.0174 .0174 
(2.5 0) -.0159 .0159 -.0159 -.0222 .0222 

(2.5 .5) -.0115 .0172 -.0103 -.0241 .0241 
(2.5 1.0) -.0063 .0148 -.0047 - . 0207  . 0207  
(2.5 1.5) -.0025 . 0102  - . 0010  -=0l42 .0143 
(2.5 2.0) — «0006 .0056 .0004 - . 0078  . 0078  

(2.5 2.5) 0 .0024 .0005 -.0034 .0034 
(3.0 0) -.0062 .0062 —.0062  - . 0087  . 0087  
(3.0 .5) -.0047 .0065 -.0043 - . 0092  . 0092  
(3.0 1.0) -.0027 .0055 -.0022 - . 0077  .0077 

(3.0 1.5) -.0012 .0037 - . 0007  - . 0052  . 0052  
(3.0 2.0) -.0004 .0020 -.0001 —.0 0 2 8  .0028 
(3.0 2.5) -.0001 .0009 .0001 -.0012 .0012 
(3.0 3.0) 0 ,0003 .0001 -.0004 -0004 
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Prom Table 2.2 we observe the following properties of the Bias 

for p=2. 

1. The bias is zero when = 0_. Again this corresponds 

to the case when the hypothesis is true. 

2. The value of the bias generally increases with 2^2 

but decreases as a increases. 

3. The bias is zero if VL^ has identical components and 

has components which differ only in sign. 

4. The bias is negative if either or has non-

identical but positive components and the other has components 

which differ only in sign. 

5. If n, a, 9-nd a component of ]i^ are fixed, the 

bias first increases then decreases to zero as the other 

component of increases. 

C. The M.S.E. of y when Z is Known 

In order to find the M.S.E. of 0, we first consider 

Yiu) = E(w2) _ [E(M)]2 . (2.13) 

Also we can write 

given A 

given A 
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Therefore 

E(%2) = E[(y - 2^2^22 T"'^2)^|A] P(A) 

+ E(y^|A) P(Â) 

= E(y^) - 22^2^22 T"^E(yZlA) P(A) (2.14) 

+ 2^2^22 T""^E[^' |A] P(A)T'"^222^21 

Therefore to evaluate E(p^), we need to find E(ZZ'|A)P(A) and 

E(y^|A)P(A). Let us consider E(^'|A)P(A) and denote the 1-th 

component of ̂  by Z^^^. We need actually consider E[(Z^^^)^|A] 

P(A) and E(Z^^^Z^^^1A)P(A) for Ij^k. These can be evaluated by 

using the second derivatives of R. 

Differentiating (2.7) w.r.t. we have 

° ~ n '2nv^^^ p > 
9 K = /e 2 Z ^ (—7^—)2 j(j-l)(4)J h_^^,(t) dt 

Sv(l)2 0 j=0 J: < ^ 
X 

C -4x 00 

0® ^ J=0 ̂  ̂ DT 

- I I jio It at 

° 1 " 1 X 1 ^ ?n e ^ V -4- /Ai J 
- ^ 2 ® j!o jT (2) V2,(t) dt 
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+ / (| 2nv<^>)2 e 2^ ^2^ i (i)^hp+2j(t) « 

/ I 2nv(^> i 
0 * j=0 ̂ ' 

2nv 
(i) 

— J(3)^-\+2j(t) dt 

n2(v(l))2Hp+%(c;X) + nHp+gCc;^) -

n P(A) + )2 P(A) - n2(v(l))2Hp+2(c;X) 

n^(v^^^^)^Hp^^(c;X) + n{l-2n(v(l))2}Hp+2(o;X) 

+ n[n(v(l))2 - 1] p(A) (2.15) 

Similarly differentiating (2.9) twice w.r.t. we obtain 

2 p _ _îif 2^*^ ^ ̂ ^ 
*,?\2 = /'"'/ !^ — (| 2)2z(l)(z(l)-v(l))e ^ ^ d%(J) 

A j=i /Tit * 

P /- „ -#(z(j)-v(J))2 
^ n ^ .-2^4 -^x ^ ,,(j) 

A j =1 v^TT 
- /• ••/ J ̂  2 2 e < ^ dZ 

j=i /nw ^ " 
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= E[(z(l))2|A] P(A) - E(Z^^^|A) P(A) (2.16) 

- n P(A) - E(z(l)|A) P(A) + P(A) 

Hence from (2.12) 

2 2 2 
—= n^ E[(z(l) )|A] P(A) -2n2v^l) (o;X) (2.17) 
3v( l )  

+ n2(v(l))2 P(A) - n p(A) 

Equating (2.15) and (2.17), we have 

n^ E{(z(l))2|A} P(A) + n^v^^^^[P(A) - 2Hp+2(c;A)] 

- n P(A) = "2(^(1) )2Hp+%(c;X) + n{l-2n(v^^h^}Hp^.2(c;;\-) 

+ n [n(v(i))2 _ l] P(A) 

or 

2 
E{z(l) |A} P(A) = (v(l))2Hp+%(o;X) + ̂  

Next we find E(Z^^^|A)P(A). first by differentiating 

(2.7) and (2.10) w.r.t. then equating the results. 
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From (2.7), 

• ; -'"M 

- ; Î »•"' ' '"ji, fr "I'^'Va""" 

- I I fr 

= n2v(l)v(k)Hp+4(c;A) - 2n2v^^^v^''^Hp^,2(o;X) 

+ n^ 1^) P(A) . (2.18) 

Similarly from (2.10), 

P 
3R — =/.../ IT ) 

3v(k)av(i) • A • j=i ,/Iî" 2 
X X 

_n,7(j)_ (J)N2 

e ^ lA)P(A) 

lA)P(A) - n2v(k)E(z(l)|A)P(A) 

+ P(A). (2.19) 
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Hence by (2.12), (2.19) becomes 

(k)"^(l)' E[(z'"z(«)|A] P(A) - n2v(l)Hp+2(o;A)vHk) 

X 

- n^v(k)Hp+2(o;X)v(l) + P(A) (2.20) 

Therefore, equating (2.l8) and (2.20 we have 

E[z(l)z(k)|A] p(A) = Hp+4(c;X)v^l)v(k) (2.21) 

We may now let E[ZZ'jA]P(A) = D where D is a pxp matrix with 

i-th diagonal element = (v(^))^Hp+^(c;X) + ̂  and 

the (i,k)-th off diagonal element = (c;X). 

Finally we note that 

E(yZ|A)P(A) = E{E(̂ !Z,A)}P(A) 

= E{Z E[y|Z]|A}P(A) 

- E{Z[P 4 

= y E(ZjA)P(A) + E(ZS^2^22^"^2lA)P(A) 

- E(ZZi2Z22T"^%xlA)P(A) 

But since 212^22"^"^— ^ scalar, 

similarly ' 
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Hence 

E(yZ|A)P(A) = yE(ZlA)P(A) + EC^' |A]P(A)T'"^Z22^21 

- E(ZJA)P(A)2^T'"1Z22%21 

or 

E(yZlA)P(A) = %Hp+2(o;A)Vx + DT'-Izgzfzil 

-  ( 2 - 2 2 )  

We also note E(y^) = ̂  Substituting these Into (2.14) 

we obtain 

E(Û^) = H - 2>ii:i2^22'^"^S+2'°'^'-x 

From the last section we have 

[E(2)]2 = Cii -

= u2 . 2*Zi2Z:;lT-lHp+2(c:A)Vx 

+ Zl2Z;]F'^[Hp+2(c;A)]2vx2;T'-lz-lz2i . 

Substitution in (2.13) yields 
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V(C) = i 

- :12:2|T'^DT-Iz;iz2i + 2Zi2:;2T"^%x%^:T''^:;2:2iHp+2(°:t) 

- / + 2MCl2Z22f^Hp+2(°:t)%% 

= ÏÏ - :l2Z22T'^D*"^Z;%:21 (2-23) 

-  : : i 2 : 2 2 T " ^ W p + 2 ^ ° ^ ^ 2 1  

+ zSisîia^'^W^ïiaïsiHp+aCoîX) 

Again as partial checks, when c=0, we always use u = y 

and V(u) = When 0=*, we always use y = y - ^12^22— 

and V(u) = n^*^^ " ̂ 12^22^21^ ~ V(u). 

Now the M.S.E. is defined as M.S.E. = Variance + (Bias)^. 

Hence 

M.S.E.(u) = ^ - Zi2%22T"^DT'"^%22Z21 

~ ^12^22^ CHp^.2(c;X)] v^vj^T' ^22^21 

+ Zi2:;2T"^[Hp+2(° :%)] 

+ 2%! 2^i2T'^ïxii^ 2lHp+2 ' <= 5 ̂  > 
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n ® - 2]^2^22^^x^22^21^p+4^°'^^ 
1 -2 

(2.24) 

D. Relative Efficiency (e) 

In practice, we may want to select an estimator for y with 

the smallest bias and M.S.E. Since bias is a part of M.S.E., 

it is reasonable to consider only the M.S.E. Using (2.24) we 

may compare the performance of the preliminary test estimator, 

U, with the usual estimator y. The relative efficiency of u 

to y is defined as 

Now using (2.24) and since y is unbiased, M.S.E.(y) = V(y) = 

/ 
e 

Hence 

e 

n ̂  - ^12^22ii-x^i^22^21^p+4^°»^^ 

+ 22^2^22^xi^-x^22^21^p+2^°-'^^ 

1 
l+k(a) 



30 

where 

^ ̂  ̂"^12^22^x^x^22^21^p+4^°»^^"n^l2^22^21^p+2^°'^^ 

+ 2Zi2^22%xy%^22%2lHp+2(°'^)} (2.26 

2 Wlog we let Zgg = I and a =1. Therefore for p=l, 2^2 ~ 

p. Table 2.3 gives the values of e for p=l and some choices 

of p,a and a. , 

Table 2.3. Values of e for p=l. 

a 

p II 0
 

Ul
 

a = . 5  

a .1 
p 

. 5  .9 .1 
P 

.5 .9 

0  1.0073 1 .2199  2.4036 1 .0007  1 .0182  1 .0613  

.5 1.0044 1.1244 1 .5586  1.0003 1.0084 1 .0277  

1.0 .9974 .9398 . 8281  .9996 . 9898  .9677 

1.5 .9900 .7976 .5488 .9992 .9793 .9360 

2.0 . 9858  .7357 .4621 .9992 . 9812  .9417 

2.5 . 9866  .7462 .4757 .9996 . 9889  .9649 

3.0 . 9906  .8078  .5646 .9998 .9953 . 9850  

Prom Table 2.3 we observe that for fixed n, p and a, the 

relative efficiency of y assumes Its maximum value when y = 0, 
* 

it then decreases - to a minimum and then increases as y^ 

Increases. For fixed n, y^ and a, e is an increasing function 
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of p while for fixed n, and p, e is a decreasing function 

of a. 

The selection procedure for an estimator or the level of 

the preliminary test such that the relative efficiency is the 

largest when equals the origin, say 0_, suggested by the 

experimenter's prior knowledge, and is at least as large as 

some when / 2 was first recommended by Han and Bancroft 

(1968)  and was later used by Han (1973a) for the case p=l for 

the present problem. The values of e and e„„^ at certain min max 

values of p and a are given in Table 2.4 where e__^ is the 

value of e at = 0. 

Table 2.4. Values of e^^^ and e^^^ for p=l. 

a .1 .5 .9 

50 

05 

max 

'min 

max 

'min 

1 .0007  

0.9992 

1 .0073  

0 .9858  

1 .0182  

0.9793 

1 .2199  

0.7337 

1 .0613  

0.9340 

2.4036 

0.4621 

Thus for p = .9, a preliminary test at a = .05 ensures the 

relative efficiency of the preliminary test estimator will be 

at least 0.4621 and may be as large as 2.4036 when the null 

hypothesis of the preliminary test is true or = 0. For a 

more detailed table and full discussion on the properties and 

uses of the above table, one is referred to Han (1973a). The 
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Table 2.5. Values of e for p=2. 

(Ex/n)' 

a = .05 

(  0  0 )  1.6673 1 .6673  2.4530 4 .6391  
( .5 0)  1.4792 1.4792 2 i038 l  2.7394 
( .5 .5) 1.5930 1 .1501  2 .1800  1.3437 
(1 .0  0) 1.3336 1 .1336  1.3953 1 .3004  

(1 .0  .5) 1 .3819  .8604 1 .8882  .7587 
(1 .0  1 .0 )  1.4124 . 6690  1.6684 .5077 
(1.5 0)  . 8723  .8723  .9879 .7771 
(1.5 .5) 1.0933 .6848 1 .3871  .5257  

(1.5 1 .0 )  1 .2382  .5648 1 .5209  .3984 
(1.5 1.5) 1 .2219  .5076  1 .2865  .3447 
(2.0 0)  .7348 .7348 .7908 .5857 
(2.0 .5) .9004 . 6071  1.0595 .4408 

(2.0 1.0) 1.0499 .5313 1 .2508  . 3664 
(2.0 1.5) 1.1142 . 5050  1 .2257  .3424 
(2.0 2.0) 1.0914 .5257 1 .0923  .3612  
(2.5 0)  . 6950  .6950  .7253 .5376 

(2.5 .5) . 8169  .6053 . 9072  .4390 
(2.5 1.0) .9398 . 5580  1 .0633  .3917 
(2.5 1.5) 1 .0198  .5538 1 .1127  .3877 
(2.5 2.0) 1.0409 .5924 1.0734 . 4258  

(2.5 2.5) 1 .0279  .6708  1 .0198  .5097 
(3.0 0)  .7273 .7273 .7444 .5764 
(3.0 .5) . 8152  .  6650  .8676  . 5031  
(3.0 1.0) . 9066  . 6383  .9779 ,4738 

(3.0 1.5) .9743 . 6501  1 .0336  .4867 
(3.0 2.0) 1 .0056  .6987  1 .0356  .5419 
(3.0 2.5) 1 .0105  .7753 1 .0168  .6377  
(3.0 3.0) 1 .0059  .8606  1 .0020  .7591 
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Table 2.5. (continued) 

a = . 20 

*7 

(  0 ,  0 )  1.3141 1.3141 1.5475 1 .8816  
( .5, 0) 1.2197 1 .2197  1.4032 1.5458 
( .5, .5) 1.2634 1.0490 1 .4329  1.1008 
(1.0, 0) 1.04l4 1.0414 1.1453 1.0845 

(1.0, .5) 1.1574 .8859 1 .3128  .7985 
(1.0,1.0) 1.1579 .7726 1 .2265  .6342 
(1.5, 0) .9099 .9099 .9633 .8375 
(1.5, .5) 1.0250 .7960 1 .1295  .6657  

(1.5,1.0) 1.0818 . 7262  1.1614 .5751 
(1.5,1.5) 1 .0691  .7118  1 .0833  .5575 
(2.0, 0) . 8570  .8570  .8844 .7536 
(2.0, .5) .9464 . 7803  1.0084 .6444 

(2.0,1.0) 1 .0107  .7415 1 .0705  .5941 
(2.0,1.5) 1 .0307  .7477 1.0584 . 6020  
(2.0,2.0) 1 .0218  .7932 1 .0208  .6619  
(2.5, 0) .8667 . 8667  .8805  .7684 

(2.5, .5) . 9271  .8196  .9611  .6986  
(2.5,1.0) .9774 . 8020  1.0134 .6740 
(2.5,1.5) 1 .0031  .8183  1.0257 .6967 
(2.5,2.0) 1. 0081  .8608  1,0145 • 7593 

(2.5,2.5) 1.0048 .9130 1 .0030  .8425 
(3.0, 0) .9095 .9095 .9156 . 8367  
(3.0, .5) .9439 .8849 .9603 . 7968  
(3.0,1.0) .9748 . 8800  .9928 .7891 

(3.0,1.5) .9936 . 8960  1 .0059  .8146 
(3.0,2.0) 1.0006 . 9255  1 .0058  .8637  
(3.0,2.5) 1.0014 .9566 1 .0023  .9183  
(3.0,3.0) 1 .0007  .9797 1.0002 . 9609  
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Table 2.5. (continued) 

(u^ /n)' 

a = . 50  

0  0) 1 .0831  1 .0831  1 .1280  1.1769 
. 5  0) 1.0571 1 .0571  1 .0958  1.1184 
. 5  .5) 1 .0673  1 .0068  1 .1002  1.0134 

1 .0  0) 1.0055 1.0055 1.0313 1 .0109  

1 .0  .5) 1.0378 .9546 1 .0703  .9148 
1 .0  1 .0 )  1 .0361  .9173 1.0489 .8498 
1.5 0) . 9688  .9688  .9833 .9407 
1.5 .5) 1 .0029  .9310 1 .0266  .8732  

1.5 1 .0 )  1 .0167  .9107 1 .0322  .8389  
1.5 1.5) 1 .0130  .9162  1 .0151  .8480 
2.0 0) .9607 . 9607  .9677 .9258 
2.0 .5) . 9856  .9382  .9994 . 8857  

2.0 1 .0 )  1 .0010  .9303 1 .0123  .8720  
2.0 1.5) 1.0049 .9399 1.0094 . 8885  
2.0 2.0) 1 .0031  .9596 1.0028 .9237 
2.5 0) .9713 .9713 .9742 .9453 

2.5 .5) .9852 . 9606  .9917 .9256 
2.5 1 .0 )  .9956 .9590 1 .0016  .9227  
2.5 1.5) 1 .0002  .9668  1.0034 .9369 
2 .5  2 .0 )  1=0010  , 9788  1 .0017  .9593 

2 .5  2.5) 1.0005 .9894 1 .0003  .9795 
3.0 0) .9853 .9853 . 9863  .9717 
3.0 .5) .9913 .9814 .9938 .9642 
3.0 1 .0 )  .9964 .9817 . 9988  .9648 

3.0 1.5) .9991 .9859 1 .0006  .9727 
3.0 2.0) 1 .0000  .9914 1 .0006  .9832  
3.0 2.5) 1 .0001  .9958 1 .0002  .9919 
3.0 3.0) 1 .0000  .9984 1 .0000  .9969 
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few values for p=l given here In Table 2.4 are only computed 

as a partial check of the general results obtained In this 

paper. The values agree with the results of Han (1973a). 

For p=2, the values of e are given in Table 2.5 for some 

choices of 2^2» and a. Since e is a symmetric function 

of a-rid values are computed for only positive values of 

Z^2 when the components are identical. 

Prom Table 2.5 and (2.26) we note the following properties 

of e for p=2. 

1. The relative efficiency is maximum when li^ £ for 

fixed n, a and This corresponds to the case when the null 

hypothesis is true. 

2. The maximum value of e Increases with for any 

given a but decreases as a increases for a given 2^2" 

3. For fixed n, a and the relative efficiency 

is generally larger when the components of Z^g have different 

signs than when the signs are identical. 

4. The relative efficiency remains the same for values 

of Z^2 which differ only in sign. 

5. For fixed a, n, Z^2 &rid some component of the 

relative efficiency decreases to a minimum and then increases 

as the other component Increases. 

We also observe that since Z is positive definite, its 

determinant is greater than zero. Consequently for identical 

components of z^2* say Z^g ~ a), then 
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S = 

2 I =  1  -

— X — 2a ^ 0 

< h or lai <~ i .70 
2 /2 

Thus the relative efficiency and Bias of y do not exist for 

values such as = (.9, .9), (.8, •8). Similarly for non-

identical components of say ~ (s., b), then 

2 = 

^ iTl = 1 _ «2 ^2 2 | — 1 — a  —  b  > 0  

a^ + b^ < 1 

~7-

Hence the relative efficiency and bias of (y) do not exist for 

such values of 2^^ as (.9» .7), etc. 

Following Han (1973a), it is possible to extend the compu

tation of and e^^ to any value of p so that an investi

gator can select an estimator or a such that e^^^^ occurs when 

]i^ = 0^ and e is at least as large as e^^ when Uy. Table 

2,6 gives the values of e and e_.„ for some choices of a, max mm 
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^12 ~ ("5, .5) and p=2. It also gives ji* which is the value 

of about which e^^ occurs for a search at .05 intervals. 

Table 2.6. Values of e^^^^ and e^^^ for p=2. 

.05 .10 .20 .30 .40 .50 

e„^. • 1.6673 1.5032 1.3l4l 1.2040 1.1322 1.0831 

(.5,.5) e^^ .4976 .5904 .7098 .7941 . 8587  .9085 

Ë*' (1 .65 ,  (1 .60 ,  (1 .40 ,  (1 .35 ,  (1.35, (1.35, 
^ 1.65) 1 .60 )  1. 40 )  1 .35 )  1.35) 1.35) 

Thus for a relative efficiency of at least .75, with the 

above selection procedure, the investigator would use a = .30 

for the preliminary test when ~ («5,.5). This choice 

guarantees a relative efficiency of at least .79. The relative 

efficiency in this case can be as large as 1.2040. Also from 

Table 2.6, we observe as before that for fixed 2^^, 

1. ®niax ^ decreasing function of a, 

2. ®jnin increasing function of a, and 

3 .  jj* has identical components and is a decreasing 

function of a. We note that the negative values of 

U* also give the same minimum values. 

E. Bias of y when 2 is Unknown 

When S is unknown and assume that ̂  - jO, the preliminary 

test estimator is defined as 

12 
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y - 3^2^22 ̂  nrnd'Sggl) 1 TQ 
U =< (2.27) 

T if nmCX'Sggl) > Tg 

2 
where m = n-1, Tg is the 100(l-a)th percentile of a central 

2 
Hotelling's T distribution with m degrees of freedom, and 

Spp = Z (X, - X)(x, - X)' 
1=1 1 1 

( 2 . 2 8 )  
n . 

^ i=l 
>12 ~ z (yi ~ y)(Xi ~ E.) ' 

Sii = z (y. - y)^ 
1=1 1 

In this section, we shall obtain the bias of u. If we 

denote the acceptance region for the preliminary test 

{nmd'S'gX) :mn(X'S2^) < T^} by G, then 

E(w) = E{(y - 81282^%) |G} P(0) + E{y|G} P(G) 

= E(y) - £{3^2^22^!^^ PCS) (2.29) 

Since E(y) = y, the second term is the bias and we write 

b = - £{3^2822^1 P(G) (2.30a) 
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Let f(X) be the multivariate normal density of X and 

g(S22»S^2»®ii^ the density of Sgg* 8^^ and which have 

a Wlshart distribution. Then 

E{8. p8:pX|a} P(G) 
(2.30b) 

= /'q'-/" S-]^2^22^ f(l)g(S22»S]_2'^ll)^1^222^^12'^^ll 

Following Han (1973a) and Rao (1965), we make the following 

transformations. Since S22 Is positive definite, there exists 

a nonsingular matrix B ̂  B'B = 822" Also 3 a nonsingular 

matrix T 9 T'T = ^22' 

= TB'BT' 

_1 

Wg = [S12 - Zi2T'TB'B]Zii.2B-l . 

But since ^2.1-2 ^ constant scalar, we let 

Z11.2 = K" (2.51) 

Therefore 

"2 - - ZigT'TB'] 

W3 = K^(Sii- Si2B"^B'-ls2i) 

From (2.31), 
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1 1, 
B'B = = T"̂ Ŵ Ŵ  T'"̂  

S^2 = [KWg •*• ^12^'™'^ B 

Therefore, 
1 

^12^22 " ̂12®"^®'"^ = KWgW^T + 

Substituting in (2.30b), we have 

E{(SI2S22X)/G} P(G) 
( 2 . 3 2 )  

1 

= (KWgW^T + Zi2T'T)%f(X)s(Wi,W2'W3)dWgdW2dWidX 

We claim 

~ W(I,n-l) 

WG ~ N(0,I) 

W, - W(l,n-p-l) 

and the three are mutually independent. To prove the above 

claim, we note 

(a) 822 = B'B ~ W(T"^T'"^,n-l) 

= TB'BT' - W(TT"^T'"^T', n-1) 

= W(I,n-l) . 
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(b) Given the the conditional distribution of is 

normal since W^jX^^'s is a linear combination of the y^'s which 

are normally distributed. If we denote this conditional dis

tribution by g(W^|X), and write 

= I - B'BT'TZgi) 

then we only need find the mean and variance of |X. 

n n 
S. 
'21 

= E (X. - X)(Y, - Y) = Z (X. - X)Y. 
1=1 ^ ^ 1=1 ^ ^ 

Now there exists an n-th order Helmert matrix C = (c^^) such 

that Uj = i-th element of CXj, = i-th 

element of CY so that making an orthogonal transformation, 

m 
= Z Uj w. where m = n-1. 

21 1=1 1 

. ITT ~ M / r m f mrT r ^ 
i1 "^^12^ 1 ' "11*2' 

Therefore 

= NCnlT'TZgi , Zii.g) 

m 
ECSg^lO) = 

= B'BT'TZgi • 
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Hence 

ECWglU) = I B'"1(B'BT'TZ21 " B'BT'TZgi) 

= 0 . 

Var(WjlU) = ̂  B'"^ VfSgilnJB"! 
K 

m 
= Zii.2 

2 where recall K = ^ scalar. 

= ̂  Z.. _ B'-^B'BB"^ = I' 
^2 11.2 

Therefore (Wg | X) ~ N(0.,I) and this does not depend on X. 

Hence Wg ~ N(^,I). 

(c) Wg = and from Anderson (1958), 

Theorems 4.3.2 and 4.3.3, we know ~ 

W(îii^2 J n-p-1) and hence ~ W(l, n-p-1). Finally, to 

establish the mutual independence of Wg and we note 

that by fixing the X^'s, we also fix and since the 

conditional distribution of either Wg or with X^^ fixed does 

not depend on X, then either conditional distribution is equiv

alent to the actual unconditional distribution and each is 

independent of W^. Thus is independent of Wg and W^. To 

show Wg and Wg independent we employ Cochran's theorem as 

follows : 
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Let 

= ?! - W - "• NIDCO.Zii.g) 

and 

V = X - HX ~ nco^T-^T'"^) 

be fixed. Then 

Û = y - U - Z^2T'T(X^-]i^) ~ 

„-2 _ n[y - M - Zi2T'T(Xi-%x)]2 _ 
- x'd) 

^11.2 ^11-2 

n 
"idl - 2>' = S^2-=i2T'TB'B - NCO.Zii.gB'B) 

=> Wg = ^il.2 (Sj^2-SJ^2'^"^T'"^B'B)B"^ - N(0,I) 

.—3. .-=—1.-= 
^ ^11.2^^uV^W^Vu'' ^2^2 " X'kP; 

where 

(Y^-V) (Vj^-V) ' = B'B, 

Similarly defining 

n 2 
Suu ~ ^ (u^-u) s 

i=l 1 

then finally 
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^11•2^^uu " ̂uV^VV^Vu^ 

= Wg = ~X^(n-p-l) . 

But 

n 

^uu ^uV^VV^Vu '*' (^uu'^uV^VV^Vu^ 

and hence 

%11'2 ̂ =^*1 ••• ^ll-2^^uV^W^Vu^ 

%11'2 ^^uu"^uV^W^Vu^ 

or 

^u.2 (yi-")' - 2(yr^'):i2''"'(4-%) 

+ (Xl-Wx^)'T'TZ2lZl2T'T(3l-y*i) 

= Zli.2n[y-U-Zl2T'T(%l-Mx)]^ + ^2^2 + *3 

or 

X^(n) = X^(l) + X^(P) + X^(n-P-l) • 

Thus Wg and Wg are independent. 

Therefore W^, Wg and have a joint distribution given 

by 

~tr(W'W„+W,+WT) ^(n-2p-2) %{n-p-2) 
gCWi.Wg.Wg) = Cge 2 2 2 3 1 Iw^l^ 

(2.33) 
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The region of integration is given by 

G = {nm(X'T'W^^TX) : nm(X'T*W~^TX) < T^} 

The integral in (2.32) becomes 

CO CO -1 _ ltr(W'W5+¥-+WT ) 1, _ 
/.-/// (KW2W^^T+S^2^'T)^(X)CQe ^ 2 2 3 1 

-|(n-p-2) 
|W^| dWgdWgdW^dX . 

®o 0° -%tr(WlWg+W_+W_ ) •i(n-2p-2) 
= S'"f f f KC-W^^Te ^ |W_|^ 

G _» 0 0 1 3 

^(n-p-2) 
WglW^I^ Xf(X)dW^dW2dW^dX 

00 00 -Jtr(W»W,+W-+W, ) %<n-2p-2) 
+ /•••/ / / C-Z^.T'Te ^ d 5 I |W_|^ 

G -00 0 ^ J 

^(n-p-2) _ 
\̂ l\ Xf(X)dW^dW2dW]^dX 

But from independence and the fact EfWg) = 0_» we know the first 

term is zero. The second integral is equivalent to 

^12^'^ f... rg-itrW |(n-p-2) 

|p(n-i) ̂ p(p-i)f , G >ii 
II r[kn-l)J 

1=1 
n 

Now X " N(jj^, ̂ ~^T'"^). Let = TX. Therefore 
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Z -  N(TE^, ^ I)  

= N(Vj^, ̂  I) say. 

Now X = t"^Z and X'T'W^^TX = Z'T'"^T'W^^TT"^Z = Z'W^^Z, we have 

G = {nm(Z'W~^^) : nin(Z'W~^^) < Tq}. Hence we wish to evaluate 

2,„T'TT"^ -itrW, J(n-p-2) 
—/•••/e ^ |W^r Zg(Z)dZdW]^ 

1=1 ^ (2.34) 

where nm(^'W^^^) = has the Hotelllng's distribution with 

n-1 degrees of freedom and ^p(n-l') ~ has the noncentral 

P-dlstrlbutlon with p and n-p degrees of freedom and non-

centrallty parameter X = nv^^^. 

Following Alam and Rlsvl (1967)s we define a random 

variable G given by 

pp* _ T2 
n-p n-1 * 

G has the density function 

" 1 ^  " 1 1 1  ( 2 . 3 5 )  

^ ^ g>0,A>0 

where 
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(1+g) ^ ^ r(|+j) 

Therefore 

P( Q) = P(T^ < Tq) 

= P(T2 <E^Pp^^_p(o.)) 

.2 _ (2.36) 
- - i^p Fp,n-p(*)) 

= P(G < c) 

where G has the density function given in (2.35) and c = 

^-jr „ n(a) where „ ̂ (a) is the lOO(l-a) percent point of n-p p, n-p p 5 n-p 

the central P-distribution with p and n-p degrees of freedom. 

Therefore 

-|x 

Differentiating (2.37) w.r.t. we have 

o "1^ " , , , , 2nv(l) 

2nv^^^ -^A (2.38a) 

- I %(4) J=0 ̂  
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For the first term if we let j-1 = j', then j = J'+l and 

consequently we may write 

IÇTT = i j,!o 2'' J'! (2)' °(E^j,,n_E(s)ag 

o 2nv'^' -ix •= X . 

so that 

= nv^i' Op+2,n-p<"=5'') " "4^' f(G) (2.38b) 

where G*+2 jj_p(c>^) Is the cumulative distribution of the non-

central G random variable with p+2, n-p degrees of freedom and 

ncncsntrality parameter X. Also making use of the separate 

distributions of ̂ and and noting that these are independent, 

we may write 

P J-
R = P(G) = /••./ ~n~ e 2 X (2.39) 

G j=l 

• i...-.; i. -.I*'-"--»"'""'-. 
2^ TT^ [I r[kn-i)] 

1=1 ^ 
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Differentiating (2.39) w.r.t. we obtain 

9v 

3R 
TÏT G j=l /2? 2 

I (n-p-.2)^-2trW^ 

2^ II r[i(n-l)] 
1=1 2 

Hence 

3R - n r . 

dv3^ p(n-l) TTPCP-I) & - G 

1=1 2'" "'J (2.40) 

.Z^^^g(Z)dZdW^ - nv(l)p(G) 

Equating (2.38b) and (2.40) we have 

-1 -&trW. 4(n-p-2) 

|(n-l)^(p-l) P , "'a"' '"1' 
'  - Tr[|(n-1)] (2.41) 

z'^'g(z)azdw^ = vii)G*+2,n_p(c:i) 

Finally we let 
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-^trW, 4(n-p-2) 

S(n-l) '"l' 

^^^^g(Z)dZdW^ = I(z(l)) 

G 
^ D?(n-1)] 

1=1 

and note (2.3^) is where I(^) Is a pxl vector 

with i-th component I(Z^^^). From (2.41), I(^) = 

-X Gp+2 HGHoe (2.34) becomes 

Sl^T'TT-ly^ 

^12^22 lix °p+2,n-p'°'^' 

Where 

GS+2.n-p(°:%) = i «) 

and G has p+2 and n-p degrees of freedom and noncentrallty 

parameter À. Therèiorê 

° f(F2+2.n-p - Fp.n-p(*)) 

= f(^^2,n-p i "2' 

Where 
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Therefore Bias = -212=22 !ix^p+2,n-p^ = 2»*'' F2+2,n-p(°2'^) 

is the cumulative distribution function of the noncentral P 

distribution with p+2 and n-p degrees of freedom and non-

centrality parameter X. 

As a partial check, when Cg^O, the estimator reduces to 

the usual estimator y which is the case when we always reject 

the null hypothesis. In this case Bias = 0. When the 

null hypothesis is always accepted and the regression estimator 

y - 8^2^22— always used. The bias in this case is the usual 

bias for the regression estimator since P*.o _ ^(c«;X) = 1 and pT^ 3 n—p c. 

Bias = -Z12Z22 

Now for the purpose of comparison with the results of 

Han (1973a), we let p = 1 and 

2 = F Z12T' 

Zi2T*T = a£T 

- ̂  • (2.42) 

For p = 1 we have 

"J' 
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Wlog we set = I and =1. Therefore for p = 1, 

^12 " ^.nd. we study the bias for positive values of p and 

since Bias changes sign with either parameter. Table 2.7 

gives the values of -Bias for p =1, n = 9 and some choices 

of p and a. 

Table 2.7. Values of -Bias for p = 1 and n = 9. 

a = .05 

o
 

H
 

II es 

.1 

P 

.5 .9 .1 

P 

.5 .9 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

0 

.020 

.028 

.020 

.008 

. 002 

0 0 

.102 .184 

.139 .251 

.101 .180 

.042 .076 

.011 .019 

0 

.015 

.018 

.010 

.003 

. 001 

0 

.077 

.090 

.050 

.015 

• 0 0 3 

0 

.139 

.161 

.090 

.027 

.005 

The above values are essentially the same as those ob

tained by Han (1973a) although differences are observed. The 

differences occur because the expression for the bias given 

here is in terms of noncentral P distribution, while that of 

Han is given in terms of moments of normal distributions. 

Therefore there may be rounding off errors in the computation. 

We can observe that Bias = 0 when = 0 or when the null ' 
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hypothesis of the preliminary test is true. Also it can be 

seen that -Bias is an increasing function of p for fixed n, a 

and but a decreasing function of a for fixed n, p and 

However, -Bias increases and then decreases to zero as 

increases whenever a, n and p are fixed. 

For p = 2 and n = 9, the values of -Bias are given in 

Table 2.8 for some values of and a. 

Table 2.8. Values of -Bias for p = 2 and n = 9. 

12 

( 0, 0) 0.0 0.0 0.0 0.0 
( .3, 0 )  -0,1193 -0.1193 0 . 1 1 9 3  0 . 1 6 7 0  
( .3, .3) -0.1112 0.0 0 . 2 2 2 5  0.3114 

( .6, 0) -0.1911 -0.1911 0 . 1 9 1 1  0.2675 
( .6, .3) -0.1761 -0.0880 0.2641 0 . 3 6 9 8  
C .6, .6) -0-1352 0.0 0.2704 0.3786 

( .9, 0) -0.1847 -0.1847 0.1847 0 . 2 5 8 5  
( .9, .3) -0.1677 -0.1118 0.2236 0.3131 
( .9, .6) -0.1240 -0.0413 0 . 2 0 6 6  0 . 2 8 9 3  

( .9, .9) -0.0721 0.0 0.1443 0.2020 
(1.2, 0) -0.1201 , -0.1201 0.1201 0.1681 
(1.2, .3) -0.1075 - 0 . 0 8 0 7  0.1344 0 . 1 8 8 2  

(1.2, .6) -0.0766 - 0 . 0 3 8 3  0.1149 0 . 1 6 0 9  
(1.2, .9) -0.0424 - 0 . 0 1 0 6  0.0742 0.1039 
(1.2,1 .2) -0.0177 0.0 0.0354 0 . 0 4 9 6  
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Table 2.8. (continued) 

12 

0, 0) 0.0 0.0 0.0 0.0 
• 3, 0) -0.0691 -0.0691 0.0691 0.0968 
.3, .3) -0.0585 0.0 0.1171 0.1639 

.6, 0) -0.0831 -0.0831 0.0831 0.1163 

.6, .3) -0.0696 -0.0348 0.1044 0.1462 

.6, .6) -0.0403 0.0 0.0807 0.1130 

.9, 0) -0.0502 0.0502 0.0502 0.0703 

.9, .3) -0.0416 -0.0277 0.0554 0.0776 

.9, .6) -0.0233 -0.0078 0.0389 0.0544 

• 9, .9) -0.0086 0.0 0.0173 0.0242 
1.2, 0) -0.0172 -0.0172 0.0172 0.0241 
1.2, .3) -0.0141 -0.0106 0.0176 0.0246 

1.2, .6) -0.0077 -0.0038 0.0115 0.0161 
1.2, .9) -0.0027 -0.0007 0.0047 0.0066 
1.2,1 .2) -0.0006 0.0 0.0012 0.0017 
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Table 2.8. (continued) 

a = .5 

Mi 

XÎ2 

i i  t-l 
( 0, 0) 0.0 0.0 0.0 0.0 
( .3, 0) -0.0211 -0.0211 0.0211 0.0295 
( .3, .3) -0.0159 0.0 0.0319 0.0446 

( .6, 0) -0.0181 -0.0181 0.0181 0.0254 
( .6, .3) -0.0137 -0.0068 0.0205 0.0287 
( .6, .6) -0.0058 0.0 0.0116 0.0162 

( .9, 0) -0.0065 -0.0065 0.0065 0.0091 
( .9, .3) -0.0049 -0.0033 0.0065 0.0091 
( .9, .6) -0.0020 -0.0007 0.0034 0.0048 

( .9, .9) -0.0005 0.0 0.0009 0.0013 
(1.2, 0) -0.0011 -0.0011 0.0011 0.0016 
(1.2, .3) -0.0008 -0.0006 0.0011 0.0015 

(1.2, .6) -0.0003 -0.0002 0.0005 0.0007 
(1.2, • 9) -0.0001 0.0 0.0001 0.0002 
(1.2, 1.2) 0.0 0.0 0.0 0.0 

From Table 2.8, the following pr 'cpsrties of the Bias of 

U are apparent. 

1. The bias is zero when the null hypothesis of the 

preliminary test of significance is true, that is, when = 0.. 

2. For fixed n, a and the value of the bias generally 

increases with ^^2' 

3. For fixed n, a and the bias generally decreases 

as a increases. 
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4. The bias is zero when either or 2^^ has identical 

components and the other has components which differ only in 

sign. 

5. For fixed n, ^ and some component of u.^, the 

value of the bias first increases, then decreases to zero as 

the other component increases. 

P. The M.S.E. of y when 2 is Unknown 

The M.S.E. of % is 

M.S.E.(y) = V(w) + (2.43) 

where 

B = Bias(w) , 

and 

V(y) = E(u^) - [E(p)]^ . 

When Z is unknown, the preliminary test estimator is given in 

(2.27). Hence, making use of the notations of Section E, 

E(î^) = E{(y - S^2'322^)^|G}P(G) 

+ E(y2|G)P(G) 

= E(y2) _ 2E[8i2S22yX|G]P(G) 

(2.44) 

+ E[(8i2S22%Z'822S2i)|G]P(0) 
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Thus we need to evaluate 

E[Si2S22yl|G]P( G) and G]P(0) 

Since 22^^22*^21 ^ scalar, 

ECfSigSggl&'SggSgiilOnPCGO 

= E{tr(82l82i8i2822â%')|G}P(G) 

= tr E{ (822821812822%%; )|G}P(G) 

Now using the transformation of (2.31), we have 

-!• 4 
tr/—•/{(KT'W^'^ + T'TZ2i)(KW2Wi T + 

g ( , W2, Wg ) dW^dW2dW]^dX 

0000 _i» -i —^tr (W^W.+WoW, ) ^(n-p-3) 
= K^tr/.../ //T'W^ W'W^W^ TXX'f(X)c.e ^ ^ J |W,r 

a «>0 ^ 

|(n-p~2) 
•IW^p dW-dWgdW^dX 

-3 -^tr(¥'W«+W,+WT ) 
+Ktr/.--/ //T'T Tn'f(X)c-e ^ ^ J 1  

Q —0 ^ ^ 

|-(n-p-3) i(n-p-2) 
1^31 i^il dW2dW2dWidX 
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&(n-p-3) &(n-p-2) 
|Wg|^ |W^r dWgdWgdW^dl 

-%tr(W'W3+W_+W, ) kn-p-3) 
fYY» f ̂ Y"^ n • <a ^ 2 2 3 1 | | 

^(n-p-2) 

+trf"'f //T'T25,2T^T'T}ÇX'f(X)c-e 
G _ooO •̂'- -Lf: 

rw^l^ ' dW^dWgdW^dX 

Now from independence and the fact 

00 -^trW'W, 
c* / W^WgG ^dWg = I , 

the first term equals 

y2 -3 -&trW, 
-Ï Y p — //T'W^ TXXf(X)e ^ 
•pP(n- l )  T-p(p- l )  T T -  - ,  G 

r r=3-.m.TT-lm=5^r^N "2^^^1 

•^(p(n-l) TP(p-1) IT i ^ 
r II r[i(ri-i)] 

p //X'T'W3_-^TXf(X)e 

i(n-p-2) 
|W^p dW^dX 

(where we recall G = {nmX'T'¥~^TX:nmX'T'W^^TX < T^} and 

T'W^^T = S22) 
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= ECX'SggX I nmX'SggX < Tq] 

' ECîfeïïT I ""^feFT •'o^ 

'népr^ctit <2^. 

= 5T^E[t|t <Pp_^_p(.)] 

= &T ̂  ^ (2.45) 

where d = P^ ^_p(a) and t has the noncentral P distribution 

with p and n-p degrees of freedom and noncentrality parameter 

X = nkxZggEx" 

Also from independence and the fact ECWg) = 0.» the second 

and third terms are zero and the fourth term is equivalent to 

-1 -1 —itrW-| i(n—p—2) 
tr//T'TE2i2^2^*^^~^*T'~ dZdW^ 

trT'^lT'TZsiZigT'TT"! -^trW. |(n-p-2) 
= ék̂  /m'g(2)e |Wt r dZdW. 

G ^ %p(n-l) ip(p-l) -ir . 
2^ / I r[|(n-i)] 

i=l ^ (2.46) 

We evaluate the diagonal elements of the above integral by 

differentiating each of the two representations of P(G) twice 

w.r.t. and equating the results. The off-diagonal 

elements can similarly be evaluated by differentiating the two 
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representations first w.r.t. and then w.r.t. and 

equating the results. 

Differentiating (2.38a) w.r.t. we have 

• i ̂  i. ̂ 

• I * "i'"' 

u f:HV g ~'ô'̂  -I T, -î 

" 0 j=0 ̂  '2' "(E+j.eiE)'®'"® 

o 2nv'^' -ix - , , , , 2n\/i) 
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Therefore 

+ nO;+2,^_p(c;A) 

- n^(V.x^^)^ °p+2.n-p(=:^) - nf(0) + )^P(a) 

- n2(v<l))2 a|^2^„_p(o;X) (2.H7) 

Similarly differentiating (2.40) w.r.t. we obtain 

= ;...fi _A (|.2)2(2(1).,(1),2 
S„(1)^ a J-I ̂  2 " 

X 

i(n-p-2) -^trW, 
|WJ^ e ^ ^ 

i-(n-l) ip(p-l) 2 
2^ ir^ 11 r[$(n-

i=l 

n / 4 ̂ 4 ̂  o i±/ #7 \ U / \ O / \ — 

G J-1 /2Tr 

kn-p-3) -&trW^ 
e 2 1 

— dZ^J^dW^ 
§(n-l) ̂ p(p-l) -r , 
2 TT II r[|(n-P\" 1)] 

j=l ^ 
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Therefore 

3^R 2 -?trW, _ .i(n-p-2) 
= n\ jT z(l)"g(z)e 

av(i)^ G 
X 

- 2n^c^v^^^^ Z^^^g(Z)e ^ ^ ^dZ^^^dW^ 

+ n P(G) - nP(Q) 

But from equating (2.38b) and (2.40), we know the middle term 

° Hence 

3v(i) Q 

( 2 . 1 1 8 )  

- 2n^v5^'^QÎ •x -p+2,n-p<<'î'') + P(0) - nP(G) 

Equating (2.47) and (2.48) yields 

^p(n-l) 4p(p-l) -. G 
r ^ II r[i(n-i)] 

g(Z)e ^ ^|w. 
n J-

i=l ^ 

az"'aw^ = (vi^'>'s|+4,n.p(c;X) + (2.49) 
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Next we differentiate (2.38a) w.r.t. to get 

c n -ix " . 2nv̂ ^̂  

C 1 /4 \ "2̂  °° 1  ̂ X 1 — 1 

^ ' tk̂  j!. ^ 

ix " 

0J+2.n-p'°î^> + F(G) (2.50) 
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Similarly from (2.4 0), 

__iR = //"jT _!iS. 
(K)_,(l) Q j=l /2ÏÏ 2 

^.|(z(JUU))2 |^^^^(n-P-2)e-^trW^ 

^|(n-l)^|p(p-l) j-
g(Z)dZ^'^^dW^ 

P\"-1)] 
i=l 

Jl! , ,(H,(K).-i"'"-<">' 

1=1 

n-p-2) -itrW, /,\ 
e ^g(Z)dZ^^ ̂dW^ 

X —jy ^ 

%(n-l) ip(p-l) -r n G 
2^ II r[f(n-i)] 

1=1 

%(n-p-2) -itrW, 
jW^l^ e ^ lg(zjdz(j)^^l 

 ̂ P // z(̂ )e 2 
p(n-l) ̂ p(p-l) 77- -1 Q 
2^ TT^ 11 r[i(n-i)] 

1=1 

rWl|2^* ' ^^^^^gZdZ^^'^dW3_ + n^v(l)v(K) P(G) 
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Again we know each of the two middle terms equals 

« (c;X) from (2.38) and (2.40). Therefore 
X "X p+2,n-p 

3R _ nf (i)„(K) 

|(n-l) |p(p-l) -f- 1 G 
^ * 2^ TT^ II r[i(n-l)] 

1=1 

- ^(0) (2.51) 

Equating (2.50) and (2.51) we have 

1=1 ^ (2.52) 1 = 1 

pCn-p-2) -4trW, ^ J\ \ fKi 
|Wll e 2 lg(z)dZ^MWj^ = V 

We may now let 

-itrW. |(n-p-2) 

2^ TT^ II rckn-1)] (2.53) 
1=1 
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= M where M is a pxp matrix with i-th diagonal element 

= ^he (l,k)th off-

diagonal element = n-p^°'^^* ^ence 

ECfSigSg^ZÏ'SggSgiilO] P(G) 

= Q + trT'^^T'TZgiZ^gT'TT'^M 

= Q + trT'"lz22Z2l%12%22T"^M (2.54) 

= Q + trS^2^22'^~^^^'"^^22^21 

= Q + 

since the second term is a scalar. 

Next we note that 

E[8i2822y3^G] P(G) 

= E{E(Si2S2̂ ^̂ |S,0)|G} P(G) 

= E{E(Si282^3y|8,I,a)|a} P(G) 

= B{Si2S2Z% E[y|%J|G} P(G) 

= E{8 i2822'3fw+Z i2Z22(%-Ex)]|G} P(0)  

= ;E[8i2822%|G] P(0) + E[(S^2^22-^12^22^^' 
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But since ^12^22^ and ^12^22—x scalars, they are equal to 

^*^22^21 ^x^22^21' respectively. Hence 

E[Si2S22yX|G] P(G) 

= yE[S^2^2^|G] P(G) 

+ E[(8i2S2^2X'Z22^2l|G] P(G) 

- ECS^sS-lxEil-lZjilO] m) 

To evaluate the middle term, 

EÇSIGSG^XX'Z^GZGILG] P(G) 

= E{tr(Z22Z2lSl2S22%2^)|G} 

= tr ^22^21 E{8]^2^2W' 1°^ P(G) 

and with the transformation of (2.31) 

_1 

= trT'T22i ffff KW2W^ + Z]^2T'T)^'f(x) 

^ g(W^,W2,W^)dW^dW2dW^dX 

-3 -%tr(W'W_+W_+Wi) 
= trT'TZgi/-/" KW2Ŵ '̂ TXX'f(X)cQe'̂  d d i ± 

a 
&(n-p-3) &(n-p-2) 

-4W3 p |W]^| dW^dWgdW^dX 
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+ trT'TZ.iZ.pT'T /// / H'^CDCQ® 
G 0 

^trfW^Wg+Wg+W^) 

&(n-p-3) 4(n-p-2) _ 
IW^r |¥^r dWgdWgdW^dX 

But from Independence and the fact E(Wg) = 0, the first term 

= 2 2ind using (2.46) and (2.53) 

E[Si2S22|X'S2222ii^3 P(G) 

= trT'"^T'TZ2i%i2^'^^^^M 

Therefore 

E(Si2S22yllû) P(G) 

^%12%22y%Gg+2,n-p(°'^) 

11 11 (2.55: 
Xd C.C. dJL 

- Zi2%22^xy%^22%2lGp+2,n-p(°'^) 

Finally E(y^) = + y^. Substituting into (2.44), we have 

E(Î2) = ̂ 2 + p2 . 2vEi2Îi^li^G*^2,„.p(0!X) 

+ 2Zi2Z22y%y%E22^2lGp+2,n-p(°'^^ 

+ Q 
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Therefore 

CE(0>]2 = [y -

= v' - 2K::i2:;y\=g+2.n-p(=:") 

••• ^12^22® -x-x^' ^^22^2l'-®*p+2,n-p'°'^'^ 

v(u) = E(u^) - [E(ii)]^ 

= y - Zl2Z;2T"^MT'-lz;lz2i + « 
+ 2Zi2^22y%^x^22^2lGp+2,n-p(°'^) 

(2.56) 

- ^12^i2'r'^W^=i2^2ll^°P+2.n-p(=;^>^' 

To be able to make any partial checks, we need to compute 

the variance of u for the cases when c = 0 and when c = «>. 

When c = 0, we always reject the null hypothesis and so the 

estimator reduces to u = y with variance 

VCu) = V(y) = (2.57) 

For c = <», we always accept and so use the estimator 

H = y - ̂ 22^2^ ' 
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Now 

V(y - S^gSg^X) 

= E V(y - S^gSgzâlXi's) + V E(y - S^gS'^XlXj^'s) 

= E [̂ Sĵ ĵ .2 - 20ov(y, ? (yĵ -y)(Xĵ -X)S2̂ X|X̂ 's) 

+ Zll.2X's;%%] 

+ V[u + îi22i|(X-ll^> - Zis^^X] 

= H=11.2 + =11.2 G(2'S;ïâ) 

But nm(X'S~^) = ~ noncentral distribution with n-1 

degree of freedom where recall m = n-1 and " noncentral 

F distribution with p and n-p degrees of freedom and non-

centrality parameter nyJ^S22ii-x * Hence 

v(y - s,os;ix ) 

= 5=11.2 + :ii.2G((:'822:)aS 5TSÏT 

= 5=11.2 + =11.2 

where t ~ P„ „ ̂ (X). But p-n-p 

E(t) = [1 + 
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Hence 

V(5 - + ^11:1 nr#?) 
n 

( 2 . 5 8 )  

So now for partial checks, when c = 0, (2.56) is V(u) = 

1 2 which is the variance of the estimator when we always 

reject. For c = <», we note that 

= ^11.2 

- z p YI + 
" ̂ 11-2 n(n-p-2) + p J 

and (2.56) reduces to 

12 _ — ̂  1 . ̂""Iw In W ̂  1 n 
n^ - ^i2^22y%^x^22^21 " 5^12^22^21 

+ =11.2 n(nV2) 

+ 22^2^22^X^X^22^21 

^12^22^x^x^22^21 

= K1.2 + =11.2 n(n.p-2) [1 + 
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which by (2.58) is the variance of the regression estimator 

when we always accept Hq. 

Now we obtain the M.S.E. of (ï. 

M.8.E.(C) = - 2^2^22^~^^'^'"^^22^21 ^ 

^^12^22^x^x^22^21®p+2,n-p^°'^^ 

- ^12^22^ -x-x"^' ^%22^2l[Gp+2,n-p(°'^)] 

+ 2^2^22^ -x-i^' %22^2l[Gp+2,n-p(°'^)] 

or 

M.S.E. (u) = 212^22^""^^^*"^^22^21 

+ 2Zi2Z22yx%x^22%2lGp+2,n-p(°'^) 

n^ " ̂ 12^22i!-xi^x^22^21®*p+4,n-p^°'^^ 

- E^12^;2^2lGg+2.n-p(";^) + Q 

+ 2Ei2Z;^ExE;;z;lz2^G*+2^^_p(o;A) (2.59) 

G. Relative Efficiency (e') 

To evaluate the gain and loss of precision of the prelim

inary test estimator, we consider the relative efficiency of 

U to the usual estimator y. This is defined as 

Z e • = 
M. S.E.(u)/ M.S.E. (y) 
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so that using (2.59)» 

e' = tr-T-TT (2.60) 1 + h 

where 

h = ̂  {2Zi2%22^%y%%22^2lGp+2,n-p(°'^) 

" ̂12^22i!-x^x^22^21®p+il,n-p^°'^^ 

~ nFl2%22^2lGp+2,n-p(°'^) 

2 
Wlog we let ^22 ~ ^ = 1. Therefore 

h - 2nZi2%%MxS2lFp+2.n-p(°2'^) " 

- ̂ 12̂ 2l''J+2,n-p('=2!" + (1-̂ 12̂ 21 >î F ̂  tf(t)dt 

If we let Z^g^x " *^1» ^12^21 " ®1' 

h = 2n«h«,„-p<°25" -

- eiFg+2.n-p(=2:^)+ (1-Si)î^p ? «(t)dt 

We note that e' is a function of n, ̂ i2' —x for 

any given p. For the computation of e' for certain choices of 

n, 2]_2* -M-x ot* we use the incomplete Beta approximation to 

the noncentral F distribution. We denote the cumulative 
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distribution function of the noncentral F random variable with 

and Vg degrees of freedom by P*^ ^^(d;X) where X is the non-

centrality parameter. That is, we let 

/ f(tIV,,Vp,A)dt = F* (d,X) . 
0 ^ ^l'^2 

Therefore 

P* (d.X) = / ! (2-61) 
^l'^2 0 j=0 ^ * ^2 

-|(v,+vp+2j) 
. — (1+^t) 2 12 at 

BC^Vi+J 

and since 1-I^(a,b) = I^_^(b,a) where I^(asb) is the incomplete 

3 function given in Karl Pearson (1934), then from Tiku (I967), 

_X 

<» e Vt v^d 
-IT- (2-62) 

To obtain an analogue of (2.62) for 

d 
/ tf(t1v^,V29X)dt , 

we use (2.61) and note 
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where 

v d 

• 

For the purpose of comparison with the results of Han 

(1973a)s we compute the values of e' for p = 1 and certain 

values of n, = P, and a. These values are shown in 

Table 2.9 and reveal no significant difference from the values 

obtained by Han. Han's results were in terms of moments of 

normal densities while the present results are expressed as a 

function of the cumulative distribution and the expected 

values of the truncated noncentral P distribution. Subroutines 

using an incomplete Beta distribution to approximate the non-

central P distribution were used in the computation and the 

slight differences for small values of a are due to these 

approximations and rounding off errors. 

Table 2.9 shows e' assumes its maximum value when = 0. 

It then decreases to some minimum before increasing to 1.0 

as increases. The value of 1.0 for large values of 

corresponds to the fact that when gets very large, then the 

difference from zero is significant and we always reject the 

null hypothesis, thus making the two estimators the same. For 

fixed n, u and a, e' increases with p.while for fixed n, u 
X X 

and p, e' is a decreasing function of a. 
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The values of e' for p = 2 are given in Table 2.10 for 

some values of ^ and a. From the table, we note the 

following properties. 

1. The relative efficiency e' is maximum when = 2 

for fixed n, a and This corresponds to the case when the 

null hypothesis is true. 

2. For a fixed sample size, the maximum value of e' 

increases with for any given a but decreases as a increases 

for a given 

3. e' remains the same for values of Z^^ which differ 

only in sign. 

4. For fixed a, n, Z^^ and some component of the 

relative efficiency decreases to a minimum and then increases 

as the other component increases. 

5. The value of e' equals 1.0 for large values of n or 

This is because the two estimators tend to be the same 

as n sets large: while for large values of we would always 

reject the null hypothesis and use u = y. 

6. For a fixed a and small values of ji^, the value of 

e' increases with Z^g, but e* is a decreasing function of Z^g 

for moderately large values of u^. For large values of 

e' equals 1.0 as explained in 5 above. 
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Table 2.9. Values of e' for p = 1. 

n = 9 CL — .05 n = 9 

.3 .5 .7 .9 

. 0 .9924 1.1512 1.5046 2.5468 

. 2 .9530 1.0290 1.1688 1.4275 

. 4 .8657 .8166 .7525 .6812 

. 6 .7979 .6753 .5488 .4391 

. 8 .7800 .6282 .4863 .3737 
1 . 0 .8166 .6598 .5153 .3988 
1 . 2 .8732 .7487 .6169 .4996 
1 . 5 .9577 .9038 .8335 .7551 

a = .10 

. 0 .9945 1.1205 1.3644 1.9434 

. 2 .9661 1.0201 1.1135 1.2685 

. 4 .9016 .8508 .7845 .7107 

. 6 .8611 .7520 .6318 .5208 

. 8 .8659 .7434 .6132 .4972 
1 . 0 .9044 .8021 .6857 .5745 
1 . 2 .9498 .8870 .8069 .7203 
1 . 5 .9893 .9738 .9515 .9232 

a = .20 

. 0 1.0018 1.0766 1.2122 1.4569 

. 2 .9803 1.0099 . 1.0578 1.1292 

. 4 .9423 0.9009 0.8452 0.7808 

. 6 .9266 0.8510 0.7582 0.6620 

. 8 .9406 0.8700 0.7819 0.6888 
1 . 0 .9670 0.9226 0.8633 0.7951 
1 . 2 .9871 0.9683 0.9413 0.9077 
1 . 5 .9983 0.9958 0.9919 0.9868 
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Table 2.9. (continued) 

n = 9 a - U
)
 

p
 

P 
.3 .5 .7 .9 

.0 1.0020 1.0477 1.1247 1.2470 

.2 .9883 1.0049 1.0309 1.0677 

.4 .9657 0.9363 0.8953 0.8460 

.6 .9597 0.9116 0.8479 0.7756 

.8 .9714 0.9326 0.8800 0.8184 
1.0 .9865 0.9667 0.9383 0.9031 
1.2 .9957 0.9889 0.9790 0.9661 
1.5 .9996 0.9989 0.9980 0.-967 

a = .40 

.0 1.0015 1.0284 1.0715 1.1340 

.2 .9932 1.0023 1.0163 1.0355 

.4 .9803 .9613 .9342 .9003 

.6 .9782 .9498 .9101 .8621 

.8 .9860 .9656 .9366 .9005 
1.0 .9942 .9852 .9720 .9549 
1.2 .9984 .9958 .9919 .9867 
1.5 .9999 .9997 .9994 .9990 

a = .50 

.0 1.0010 1.0157 1.0388 1.0711 

.2 .9963 1.0010 1.0082 1.0179 

.4 .9893 .9783 .9621 .9414 

.6 .9888 .9753 .9609 .9327 

.8 .9933 .9832 .9684 .9493 
1.0 .9975 .9935 .9875 .9796 
1.2 .9994 .9983 .9968 .9947 
1.5 1.0000 .9999 .9998 .9997 
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Table 2.9. (continued) 

n = 11 a = .05 

P 
.3 .5 .7 .9 

.0 1.0078 1.1632 1.5131 2.5263 

.2 .9578 1.0169 1.1206 1.2968 
.4 .8632 .7889 .6986 .6062 
.6 .8045 .6654 .5284 .4145 

.8 .8102 .6562 .5106 .3940 
1.0 . 8660 .7341 .5976 .4789 
1.2 .9328 .8519 .7538 .6534 
1.5 .9880 .9707 .9458 .9145 

a = .10 

.0 1.0083 1.1273 1.3699 1.9212 

.2 .9689 1.0083 1.0739 1.1759 

.4 .9002 .8304 .7438 .6530 

.6 .8703 .7532 .6267 .5120 

.8 .8930 .7806 . 6566 .5418 
1.0 .9404 .8665 .7751 .6796 
1.2 .9778 .9464 .9030 .8510 
1.5 .9976 .9939 .9883 .9810 

a = = 20 

.0 1.0067 1.0792 1.2097 1.4424 

.2 .9813 1.0012 1.0324 1.0772 

.4 .9420 .8896 .8211 .7446 

. 6 .9344 .8591 .7664 .6700 

.8 .9567 .8998 .8262 .7449 
1.0 .9820 .9557 .9188 .8738 
1.2 .9952 .9877 .9767 .9623 
1.5 .9997 .9992 .9985 .9975 



Table 2.9. (continued) 

n = 11 . a =. .30 

P 
.3 .5 .7 .9 

.0 1.0048 1.0490 1.1231 1.2399 

.2 .9886 .9990 1.0151 1.0374 

.4 .9656 .9298 .8807 .8229 
.6 .9648 .9190 .8579 .7880 

.8 .9800 .9511 .9108 .8621 
1.0 .9931 .9824 .9668 .9468 
1.2 .9985 .9961 .9925 .9877 
1.5 .9999 .9998 .9997 .9994 

a = .40 

.0 1.0031 1.0290 1.0705 1.1313 

.2 .9933 .9987 1.0069 1.0181 

.4 .9803 .9578 .9259 .8866 

.6 .9814 .9552 .9184 .8736 

.8 .9906 .9762 .9553 .9289 
1.0 .9972 .9926 .9859 .9770 
1.2 .9995 .9986 .9973 .9956 
1.5 1.0000 1.0000 .9999 .9998 

a = .50 

.0 1.0018 1.0160 1.0381 1.0691 

.2 .9963 .9990 1.0030 1.0084 

.4 .9894 .9765 .9578 .9340 
.6 .9906 .9767 .9565 .9309 

.8 .9956 .9887 .9786 .9653 
1.0 .9988 .9969 .9940 .9902 
1.2 .9998 .9995 .9990 .9983 
1.5 1.0000 1.0000 1.0000 1.0000 
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Table 2.9. (continued) 

n = 19 a = .05 

P 
.3 .5 .7 .9 

.0 1.0330 1.1867 1.5276 2.4760 

.2 .9560 .9595 .9647 .9718 

.4 .8524 .7222 .5876 .4706 

.6 .8487 .6987 .5522 .4316 

.8 .9210 .8227 .7093 .5991 
1.0 .9796 .9493 .9071 .8564 
1.2 .9974 .9933 .9872 .9791 
1.5 1.0000 1.0000 1.0000 1.0000 

a = .10 

.0 1.0264 1.1417 1.3730 1.8812 

.2 .9653 .9600 .9520 .9417 

.4 .8965 .7885 .6678 .5547 

.6 .9132 .8085 .6899 .5770 

.8 .9665 .9183 .8544 .7818 
1.0 .9939 .9843 .9702 .9520 
1.2 .9995 .9986 .9973 .9956 
1.5 1.0000 1.0000 1.0000 1.0000 

OL = .20 

.0 1.0170 1.0855 1.2076 1.4206 

.2 .9119 .9689 .9558 .9388 

.4 .9433 .8726 .7844 .6912 

. 6 .9633 .9110 .8424 .7655 

.8 .9900 .9742 .9515 .9227 
1.0 .9988 .9967 .9937 .9897 
1.2 .9999 .9998 .9996 .9994 
1.5 1.0000 1.0000 1.0000 1.0000 
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Table 2.9. (continued) 

n = 19 a =. . 30 

.3 .5 .7 .9 

. 0  

. 2  
.4 
. 6  

. 8  
1.0 
1.2 
1.5 

1.0107 
.9861 
.9677 
.9825 

.9962 

.9996 
1.0000 
1.0000 

1.0520 
.9784 
.9234 
.9555 

.9899 

.9990 
1.0000 
1.0000 

1.1207 
.9671 
.8640 
.9178 

.9806 
.9981 
.9999 
1.0000 

1.2275 
.9524 
.7957 
.8719 

.9685 

.9968 

.9998 
1.0000 

a = .40 

. 0  

. 2  
.4 
. 6  

. 8  
1.0 
1.2 
1.5 

1.0065 
.9916 
.9821 
.9915 

.9984 

.9999 
1.0000 
1.0000 

1.0305 
.9862 
.9559 
.9778 

.9958 

.9991 
1.0000 
1.0000 

1.0688 
.9781 
.9191 
.9579 

.9918 

.9993 
1.0000 
1.0000 

1.1245 
.9676 
.8742 
.9327 

.9866 
.9989 
1.0000 
1.0000 

50 

. 0  

. 2  
.4 
. 6  

. 8  
1.0 
1.2 
1.5 

1.0036 
.9953 
.9906 
.9959 

.9993 
1.0000 
1.0000 
1.0000 

1.0167 
.9920 
.9763 
.9893 

.9982 

.9999 
1.0000 
1.0000 

1.0371 
.9870 
.9555 
.9794 

.9965 

.9998 
1.0000 
1.0000 

1.0655 
.9804 
.9292 
.9666 

.9943 
.9996 

1.0000 
1.0000 
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Table 2.10. Values of e' for p = 2. 

n = 5 a = .05 

( 0, 0) 
( 0, .5) 
( 0,1.5) 
( 0,3.0) 
( .5, .5) 

( .5,1.5) 
( .5,3.0) 
(1.5,1.5) 
(1.5,3.0) 
(3.0,3.0) 

0.9853 
0.9107 
0.7600 
1.0 
0.6977 

0.6735 
1.0 
0.4660 
1.0 
1.0 

1.3988 
0.9348 
0.3752 
1.0 
0.5192 

0.2655 
1.0 
0.2144 
1.0 
1.0 

7.2021 
1.3479 
0.2709 
1.0 
0.4252 

0.1706 
1.0 
0.1286 
1.0 
1.0 

2.3427 
0.9592 
0.2525 
1.0 
1.7289 

0.3955 
1.0 
0.9600 
1.0 
1.0 

a = .20 

(  0 ,  0 )  
( 0, .5) 
( 0,1.5) 
( 0,3.0) 
( .5, .5) 

( .5,1.5) 
( .5,3.0) 
(1.5,1.5) 
(1.5,3.0) 
(3.0,3.0) 

(  0 ,  0 )  
( 0, .5) 
( 0,1.5) 
( 0,3.0) 
( .5, .5) 

( .5,1.5) 
( .5,3.0) 
(1.5,1.5) 
(1.5,3.0) 
(3.0,3.0) 

1.0408 
1.0106 
0.9791 
1.0 
0.8486 

0.9441 
1.0 
0.9230 
1.0 
1.0 

1.0266 
1.0158 
1.0001 
1.0 
0.9578 

0.9973 
1.0 
0.9987 
1.0 
1.0 

1.2939 
0.9745 
0.7090 
1.0 
0 .6466 

0.6164 
1.0 
0.7649 
1.0 
1.0 

a = .50 

1.1007 
0.9857 
0.9673 
1.0 
0.8538 

0.9588 
1.0 
0.9951 
1.0 
1.0 

2.4263 
1.1088 
0.5750 
1.0 
0.5195 

0.4621 
1.0 
0.6296 
1.0 
1.0 

1.2776 
1.0013 
0.9400 
1.0 
0.7617 

0.9238 
1.0 
0.9905 
1.0 
1.0 

1.6877 
0.9423 
0.5605 
1.0 
1.3323 

0.7389 
1.0 
0.9993 
1.0 
1.0 

1.1826 
0.9584 
0.9377 
1.0 
1.0696 

0.9756 
1.0 
1.0 
1.0 
1.0 



86 

Table 2.10. (continued) 

n = 7 a .= .05 

U 

( 0, 0) 
( 0, .5) 
( 0,1.5) 
( 0,3.0) 
( .5, .5) 

( .5,1.5) 
( .5,3.0) 
(1.5,1.5) 
(1.5,3.0) 
(3.0,3.0) 

(  0 ,  0 )  
(  0 ,  . 5 )  
( 0,1.5) 
( 0,3.0) 
( .5, .5) 

( .5,1.5) 
( .5,3.0) 
(1.5,1.5) 
(1.5,3.0) 
(3.0,3.0) 

( 0, 0) 
( 0, .5) 
( 0,1.5) 
( 0,3.0) 
( .5, .5) 

( .5,1.5) 
( .5,3.0) 
(1.5,1.5) 
(1.5,3.0) 
(3.0,3.0) 

1.0176 
0.9277 
0.8848 
1.0 
0.6766 

0 . 8 2 6 2  
1.0 
0.8545 
1.0 
1.0 

1.0376 
1.0008 
0.9941 
1.0 
0.8379 

0.9858 
1.0 
1.0 
1.0 
1.0 

1.0195 
1.0080 
0.9999 
1.0 
0.9592 

0.9996 
1.0 
1.0 
1.0 
1.0 

1. 4274  
0.8481 
0.4879 
1.0 
0.4481 

0.3918 
1.0 
0.5884 
1.0 
1.0 

a = .20 

1.2685 
0.9023 
0.8856 
1.0 
0.6148 

0.8626 
1.0 
1.0 
1.0 
1.0 

a = .50 

1.0853 
0.9631 
0.9938 
1.0 
0.8627 

0.9939 
1.0 
1.0 
1.0 
1.0 

6.2926 
0.9950 
0.3545 
1.0 
0.3308 

0.2606 
1.0 
0.4217 
1.0 
1.0 

2.2148 
0.9243 
0.8077 
1.0 
0.4729 

0.7683 
1.0 
1.0 
1.0 
1.0 

1.2386 
0.9527 
0.9883 
1.0 
0.7717 

0.9882 
1.0 
1.0 
1.0 
1.0 

2.3269 
0.7835 
0.3410 
1.0 
1.5161 

0.5250 
1.0 
0.9985 
1.0 
1.0 

1.6131 
0.8243 
0.8015 
1.0 
1.1899 

0.9136 
1.0 
1.0 
1.0 
1.0 

1.1569 
0.9236 
0.9880 
1.0 
1.0359 

0.9963 
1.0 
1.0 
1.0 
1.0 
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Table 2.10. (continued) 

n = 9 a = .05 

( 0, 0) 
( 0, .5) 
( 0,1.5) 
( 0,3.0) 
( .5, .5) 

( .5,1.5) 
( .5,3.0) 
(1.5,1.5) 
(1.5,3.0) 
(3.0,3.0) 

( 0, 0) 
( 0, .5) 
( 0,1.5) 
( 0,3.0) 
( .5, .5) 

( .5,1.5) 
( .5,3.0) 
(1.5,1.5) 
(1.5,3.0) 
(3.0,3.0) 

0, 0) 
0, .5) 
0,1.5) 
0,3.0) 
.5, .5) 

.5,1.5) 

.5,3.0) 
1.5,1.5) 
1.5,3.0) 
3.0,3.0) 

1.0633 
0.9662 
0.9664 
1.0 
0.6838 

0.9407 
1.0 
1.0 
1.0 
1.0 

1.0545 
1.0099 
0.9990 
1.0 
0.8506 

0.9972 
1.0 
1.0 
1.0 
1.0. 

1.0219 
1.0074 
1.0 
1.0 
0.9663 

0 . 9 9 9 9  

1.0 
1.0 
1.0 
1.0 

1.4760 
0.7956 
0.6829 
1.0 
0.4179 

0.6284 
1.0 
1.0 
1.0 
1.0 

a = . 20 

1.2741 
0.8673 
0.9672 
1.0 
0.6189 

0.9670 
1.0 
1.0 
1.0 
1.0 

a = .50 

1.0824 
0.9541 
0.9989 
1.0 
0.8814 

0.9991 
1.0 
1.0 
1.0 
1.0 

5.7927 
0.8099 
0.5426 
1.0 
0.2901 

0.4740 
1.0 
1.0 
1.0 
1.0 

2.1230 
0.8312 
0.9401 
1.0 
0.4688 

0.9388 
1.0 
1.0 
1.0 
1.0 

1.2214 
0.9291 
0.9979 
1.0 
0.7973 

0.9983 
1.0 
1.0 
1.0 
1.0 

2.3526 
0.6803 
0.5328 
1.0 
0.3828 

0.7384 
1.0 
1.0 
1.0 
1.0 

1.5924 
0.7637 
0.9385 
1.0 
1.1214 

0.9798 
1.0 
1.0 
1.0 
1.0 

1.1477 
0.9081 
0.9978 
1.0 
1.0207 

0.9995 
1.0 
1.0 
1.0 
1.0 
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III. DOUBLE SAMPLING WITH PARTIAL INFORMATION 

ON AUXILIARY VARIABLES 

A. Introduction 

Consider a p+1 varlate normal population 

N(M,Z) 

where Y is a univariate random variable and X is a pxl random 

vector with p j> 1, 

Suppose we are interested in estimating the population mean u 

of Y. It is well known that the precision of the estimator 

can be increased if auxiliary information is available. For 

example, if the relationship is linear, a linear regression 

estimator may be constructed. We shall consider here the 

regression estimator. In the given multivariate normal dis

tribution, the vector X is correlated with Y and so can be 

used as an ancillary variable to increase precision in esti

mating y. To use the regression estimator we need to know 

the population mean of X. When is unknown, we may take 

a preliminary sample to estimate it. This sampling procedure 

is the double sampling technique. In certain situations, an 

(3.1) 
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investigator may have partial information about In order 

to make use of this partial information, the investigator can 

perform a preliminary test about the hypothesis ; y^ 

versus H^: H.q where Uq is some constant vector that he 

believes" that the population mean should be based on the 

partial information. 

As an example, consider estimating the average growth of 

some rats. It is known that the growth is highly correlated 

with the amount of a certain vitamin in the feed. Hence the 

vitamin content of the feed can be used as an auxiliary 

variable. The investigator usually does not know the popula

tion mean value of the vitamin content but from the growth of 

Neurospora mycelium (or some other fungus) on agae plates and 

the comparison of this with the growth on some control plates 

with known concentration of the vitamin, the experimenter may 

believe that the population mean should be y^. Once a prelim

inary sample is available, the investigator- may test = 

against Hg' He then will use y^ in the regression 

estimator if is accepted, otherwise he uses the sample mean 

based on the preliminary sample. This estimator is usually 

known as the preliminary test estimator. If the investigator's 

prior information or experience is reliable, then the true 

mean of X will be expected to be very close to yq. In this 

situation, the efficiency of the preliminary test estimation 

is very high. Thus in practice, it is desirable to use the 
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preliminary test estimator when some partial information is 

available to the investigator. 

B. The Preliminary Test Estimator and its Bias 

when 2 is Known 

Y Let (^) have a multivariate normal distribution as given 

in section A. We assume X is cheaply observed while the pair 

(YjX) is more expensive to observe. We wish to estimate u, the 

population mean of Y. Let i = Ij.-.jn^ 

be a random sample from N(y^Z). This is supplemented by m 

more independent observations on X' = (X^,...,Xp)'. In 

practice, the sample of n^ observations is usually a subsample 

from the sample of n^ = ng+m observations. From all the 

observations, we define 

1 ""l 1 

J, 

and from the subsample in which X and Y are observed, we 

define 

1 "^2 T ^2 1 ^2 

If the vector and 2 are known, then the regression estima

tor of y is 

y y + ^12^22 (-^x'"^2^ ' 
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The regression estimator Is unbiased with variance 

- ^12^22^21^* 

If 

n2^^12^22^21^ 

Is considerably large, we have an appreciable gain In 

precision. If Is unknown and It happens that from certain 

sources, the experimenter is pretty sure but not certain that 

= jiQ, then he may perform a preliminary test of = JJq . 

In this case he can make the regression estimator depend on 

the result of the preliminary test. The new estimator is. then 

the preliminary test estimator. Without loss of generality, 

we let )jg = ID. Thus the preliminary test estimator is defined 

as 

1 y - %12^22^2 "l^-i^22^l'^ - %p,a (3-^) 
^Ar = \ , 

ly + CizZgzfXi-Xg) If 

where the subscript Iv denotes linear regression and xf is p ,ot 

the 100(1-a) percent point of the Chi-squared distribution 

with p degrees of freedom, a is the level of significance of 

the preliminary test. 

The joint distribution of (X^jXgsy)' is normal with mean 

CO variance matrix 
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^22 

Vn^ ^12 

1 y 
ÏÏ7 ^22 

1 y 
îq ^22 

A. V 
ng 12 

 ̂̂ 12  ̂

;r ̂ 12 
2 

4"^ 7 
Denote the acceptance region for the preliminary test by 

A and its complement by S and let „ = c. The expected 
p J ot 

value of is 

E(y^p) = E{(y - Zi2Z2222)|A}P(A) 

+ E{[y + Zi2Z2^(3l-32)]|Â}P(Â) 

E(y - ^12^22^2^ 

+ ^12^22 E{X^1Â}P(Â) 

= U - E{XjÂ}P(Â) (3.3) 

Hence the bias of is given as 

Bi = ^2^2^22 E{X]^|Â}P(Â) - ^^2^22^^; •X 
(3.4) 

In order to evaluate the bias, we need to find the first term. 

Now ~ N(ji^,^ ̂ 22) and since ^22 positive definite. 

-1 a nonsingular matrix D 3 D'D = Z22' ^^t 
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Z = DX,, then 
— —1 

say, 

Hence {n^(^'^) :n^(^'^) > o} 5 Â. 

Bi = 2^2^22°"^ E[ZjÂ]P(Â) - 2^2^22iix (3.5) 

It is known that n^(Z/Z^ has a noncentral Chi-squared distri

bution with p degrees of freedom and noncentrality parameter 

6 = n.Cu 'D'Du ) =  n - C x 'Y )• Y  is a pxl vector and we denote 
1 •'^x -^x 1 -^x-^x -"-x 

the i-th component by Hence 

T = P(Â) = / e 2^ ^(|)Jhp_j.2j(t)dt (3.6) 

where h .p.(*) is the probability density function of xf+oi" 
c —V P ' 

Differentiating (3.6) with respect to we obtain 

^ e ̂  ̂  J=0 

and by. the Lebesgue Dominated Convergence Theorem (LDCT) as 

Justified in the Appendix, we can take the differentiation 

inside the integral and have 
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^ = i ^ <3.7) 

X 

- / I ^ 3T^I^^'^p+2j 

= ni[l-Hp+2(c;a) - P(Â)]Y^^^ 

= n^CPCA) - Hp+2(o;6)]Y(l) 

where 

C  < »  1 ^ 1  
P(A) = / e S Tr(&) h_.pXt)dt 

0 j=0 ^ ^ P 2J 

and Is the cumulative distribution function of the 

noncentral Chi-squared distribution with p+2 degrees of freedom 

and noncentrality parameter 6. 

Alternatively, we can evaluate P(A) by the use of the 

f 1 (J) T = P(A) = /•••/ 11 — ® dZ^J/ (3.8) 
Â j=l /2Tr "^"l 

If we now differentiate (3.8) w.r.t. by the LDCT as 

shown in the Appendix, we have 

3^(1) Â j=l 2 ^ 

= E[z(l)|Â] P(Â) - nj^Y^^'p(Â) (3.9) 
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Hence we may obtain E(Z^^Mâ)P(Â) by equating (3.7) and (3.9). 

That is 

- P(A)]Y(1) = ni[E(Z^l)|Â)P(Â) - Y^^^P(Â)] 

E(z(l)|Â)P(Â) = [l-Hp+2(c;a)]Y(l) (3.10) 

Substituting (3.10) in (3.5), then 

®1 " ̂ 12^22° [l"Hp+2(o;G)]%x - ^12^22^X 

"^12^22^ ~ "^12^22-x^p+2^°'^^ (3.11) 

As a partial check, when c = 0, the estimator reduces to y + 

—1 — 
^12^22^—l~-2^ with zero bias which is the case when we always 

reject the null hypothesis. In this case Hp+gCcz^) = 0 and 

= 0. When c = ~, the null hypothesis is always accepted 

and the estimator reduces to = y - ^12^22^2* Here 

H ,_(c:6) = 1 and B, = -Z,„sZiu.. which is the bias for the p + tfi J. JLC C d—A 

regression estimator, y - Z12^22—2' 

Wlog we let ^22 " ̂  and = 1. Again for p = 1, we 

observe that B^ changes sign with = P or so we need 

only study the bias for > 0 and p > 0. The values of -B^ 

for p = 1 and n^ = 30 and certain values of p, and a are 

given in Table 3.1 and are independent of ng. 
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Table 3.1. Values of for = .30 and p = 1. 

^x 

a = .05 a = .10 a = .25 

^x 
• 7 .9 

P 
7 .9 .7 .9 

0.0 0. 0 0 .0  0. 0 0 .0  0 .0 0 .0  
0.1 0. 0474 0.0610 0. 0362 0.0465 0 .0173 0.0222 
0.2 0. 0781 0^.1005 0. 0561 0.0722 0 .0245 0.0315 

0.3 0. 0827 0.1063 0. 0543 0.0698 0 .0207 0.0266 
0.4 0. 0648 0.0833 0. 0380 0.0489 0 .0121 0.0156 
0.5 0. 0387 0.0497 0. 0199 0.0256 0 .0052 0.0067 

0.6 0. 0176 0.0227 0. 0079 0.0102 0 .0017 0.0021 
0.7 0. 0061 0.0079 0. 0024 0.0030 0 .0004 0.0005 
0.8 0. 0016 0.0021 0. 0005 0.0007 0 .0001 0.0001 

0.9 0. 0003 0.0004 0. 0001 0.0001 0 .0000 0.0000 
1.0 0. 0000 0.0001 0. 0000 0.0000 0 .0000 0.0000 

From Table 3.1 the following properties of the bias are 

obvious. 

1. The bias is zero when = 0 which is when the null 

hypothesis is true. 

2. The bias is an increasing function of p, but a 

decreasing function of a. 

3. For fixed n, a and p, the bias first increases from 

zero and then decreases to zero as \x^ increases from zero to 

one. 

We observe that the values obtained here correspond with those 

of Han (1973b) which are used as a further check of the expres

sion for the bias. 
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For p = 2, the values of for = .30 and certain 

values of ct are given in Table 3.2. 

Table 3.2. Values of for p = 2 and n^ = 30. 

a  =  . 0 5  

lii 

\H2 (!) 
V 7 

(  0 ,  0 )  
( .5, 0) 
( .5, .5) 

(1.0, 0) 
(1.0, .5) 
(1.0,1.0) 

0 . 0  
0.0659 

. 0622  

. 0 0 0 2  

. 0 0 0 2  

. 0 0 0 2  

0 . 0  
0.0471 
0 . 0 8 8 8  

0.0001 
0 . 0 0 0 2  
0 . 0 0 0 2  

0 . 0  
0.0659 
0.1244 

0 . 0 0 0 2  
0.0003 
0.0003 

0 . 0  
-0.0471 
0.0178 

0.0001 
0 . 0 0 0 0  
0 . 0 0 0 0  

a = .10 

(  0 ,  0 )  
( .5, 0) 
( .5, .5) 

(1.0, 0) 
(1.0, .5) 
(1=0=1,0) 

0 . 0  
0.0383 
0.0358 

0.0001 
0.0001 
0  .0000  

0 . 0  
0.0274 
0.0511 

0 .0000  
0.0001 
0.0001 

0 . 0  
0.0383 
0.0715 

0.0001 
0.0001 
0.0001 

0 . 0  
-0.0274 
0.0102 

0 .0000  
0 . 0 0 0 0  
0 . 0 0 0 0  

a  =  . 2 5  

(  0 ,  0 )  
( .5, 0) 
( .5, .5) 

(1.0, 0) 
(1.0, .5) 
(1.0,1.0) 

0 . 0  
0.0126 
0.0116 

0 . 0  
0 . 0  
0 . 0  

0 . 0  
0.0090 
0.0165 

0 . 0  
0 . 0  
0 . 0  

0 . 0  
0.0126 
0.0232 

0 . 0  
0 . 0  
0 . 0  

0 . 0  
•0.0090 
0.0033 

0 . 0  
0 . 0  
0 . 0  
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Prom Table 3.2 we note that for p = .2 and n^ = 30 

1. The bias is zero when = 0^. This once more 

corresponds to the case when the null hypothesis is true. 

2. The bias is generally an Increasing function of 

but a decreasing function of a. 

3. For fixed n, a and the bias first increases from 

zero and then decreases to zero as increases from (0,0) to 

(1.0,1.0). 

C. The M.S.E. of when S is Known 

By definition, the M.S.E. of is given by M.S.E.(u^^) 

= V(%^p) + (Bias)^. Therefore to find M.S.E.(u^^), we may 

first find 

v(5jj.) = - CE(Cjj.)]2 (3.12) 

From (3.2), we have 

E(M%p) - E[(y -

+ E[(y - k:\Pik) + E[(Zi2Z22p"^2^^|Â]P(Â) 

+ 223^2^22°"^EC(yz) 1S]P(Â) - 2S 2̂̂ 22®t(x^x^) 1Â]P(Â)I:"^E2I 

Therefore 

E(y^^) = E(y - 23^2^22^2^^ +22^2^22°"^®^^^^^'^^^^^^ (3-13) 

- 2Zi2%Z^E[(X%%^)|%]P(A)Z22Z21 

+ Zi2%22D"^E[ZZ/|Â]P(Â)D'^1Z22%21 
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Therefore to evaluate we need to find E[ZZ' |Â]P(Â), 

E[(yZ^|Â]P(Â) and EQX^X^ |Â]P(Â). As before, we denote the 
f 1 ) 

1-th component of ̂  by Z and note that It Is sufficient to 

consider only E[ ^ |Â]P(Â) and E[Z^^^ Z^^MÂ]P(Â) for 1 ̂  K. 

To evaluate these, we use the second derivatives of T where T 

is given in (3.6). Thus differentiating (3.7) w.r.t. 

we have 

. 7 (t)dt 
o j=0 J- 2 2 P+2J 

X  

<*> 0° 1 2n, * 1 n 
X ̂ -2 hp+2j(t)at 

- 11 jg fr 

-•56 «> T Sn.yfl) 

1 -35 » 1^1 
- / 2 s jytj' hp+2j(t)dt 

- I  i jg f r  :4)''"\+2j(t)dt 
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Therefore 

. 2  
)^[l-Hp+4(c:S)] + n^Cl-Hp 2̂(o;6)] 

- ni2(Y(l))2[l_H +2(o;6)] - n^P(S) + ) ̂P(Â) 

Hence 

_l2 

3Y<" 

+ ni[n^(Y(l))2 - 1]P(Â) (3.11) 

Similarly, differentiating T twice w.r.t. where T is 

given in (3.8), we obtain 

9^(1)^ "Â '3=1 /2Î' 2 - •-

Â j=l ^ 

Â j=l /2Û ^ ^ ^ 
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Therefore 

—= n-^E[z'^'^|5]P(Â) - n.27(1)5(2(1) |Â)P(Â) (3.15) 

ayd)' ^ 
X  

- n^P(3) - ni/^x^)E(z(l)|Â)P(Â) + ^)^P(Â) 

Hence from (3.10), 

—= n^^E[Z^^^^|Â3P(5) - 20^2(7(1) )2[i_Hp^2(c.6)] 

+ n^^(Yx^^)^P(Â) - n^P(Â) (3.16) 

Equating (3.16) and (3.14), we have 

2 
n^^ECZ^) |%]P(Â) - 20^2(7(1) )2[i_Hp+2(c;6)] + nj^^(Yx^^ )^P(Â) 

- n^P(Â) = n^2(Y^l))2[i_Hp+^(c;ô)] 

+ ni{l-2ni(Y(l))2}[l-Hp+2(c;6)] + n^[ni(Yi^^)^ - 1]P(Â) 

or 

2 
E(z(i) lÂ)P(Â) = (Yx^))^[i-Hp+4(c;6)] + ;^[i-Hp+2(c;6)] 

Next we find E[Z^^^Z^^^jÂ]P(Â). Differentiating T w.r.t. 

Y^^) and then w.r.t. Y^^^ where T is given in (3.6), we have 
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'x 'x 

- I I 2niYx*)e ̂  ^ j(&)^'^hp+2j(t)at 

-1  j, è  ̂  J 

^ ̂  j!o3T(&)^bp+2j(t)at 

3T 
3y(K)9Y(l) 

'  X  '  X  

= Cl-Hp+H(°:«) >2niM^'T'x"' Cl-Hp+2( = :«)] 

ni^Y^^\^^^P(Â) (3.17) 

Similarly using (3.8) we have 

3T 

'  X  '  X  

r.../f S (!^)2(z(i).,(i)){zW m, 
A j=l / 2 w  ^  X  X  

.;i(2(j).,u))2 
dZ ( J )  

Therefore 
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= n^^E(Z^^^Z^^^lÂ)P(Â) - n^^Yx^^E(Z^^^lÂ)P(Â) 
BY: 9Yx 

- |Â)P(Â) + (3.18) 

Therefore using (3.10) 

• fK)'3u) = "i^E[z'i)z«>|Â]P(5) - n^M^^Il-Hp+2(c;6)]4K> 

- ni2Y(K)[l_Hp+2(c;6)]Y(i) + 

Equating (3.17) and (3.19), we have 

E[z(i)z(K)|Â]P(Â) = [l-Hp+i^(c;ô)]Y^^\^^^ (3.20) 

and so we have evaluated E(^'!|Â)P(Â) completely. For conve

nience, we let E[^' |Â]P(%) = W where W is a pxp matrix with 

the i-th diagonal element 

and the (i,K)th off diagonal element [1-Hp_|_|^(c;6 ) . 

Next we evaluate other terms in (3.13). 

E(y - = E{y^) -

= - 2Z]̂ 2Ï2|(Cov(yX2) + ECy^ECXg)} 

+ + tE(X2)][E(X2)]'}S-|ï2l 
—d 
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or 

E(yZlÂ)P(Â) = u[l-Hp+2(o;6)]%x + 

Cl-Hp^2 ( c ; 6 ) (3.21) 

Finally, 

E[X^X^|Â]P(Â) = E{E(Xj^X^|X^,5)}P(Â) 

= E{X]^E[X^ X^] |Â}P(Â) 

= E{X^[iLi + (X^-up]lÂ}P(Â) 

= E[(X^Xp |Â]P(Â) . 

Therefore 

E[Xj_X^|A]P(A) = D"^WD'"^ (3.22) 

and substituting these into (3.13) and then into (3.12), we 

have 

^ " r^^l2^22^21 " ̂ ^12^22^-x ^12^22i!-xi!-x^22^21 

+ 2Zi2%22^%%[^"Hp+2(°'G)] - 2S^2^22^X^X^22^2I'-^"^P+2^°''^ 

+ Zi2:52»"^WD'"^:;2:21 + 2VExZi2Z22Hp+2(c;a) 

^12^22^x^x^22^2l'-^p+2^°''^ ̂ ̂  
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Noting that 

^12^22'' ^22^21 ~ ̂ 12^22iix^x^22^2l'-^"%+l'°'®'^ 

+ ^ Zl2Ïi^D-ÎD'-4-|ï2^[l-Hp^2(o;S)] 
and that D~^D'""^ = 2229 then 

- ̂ ^12^22^21 "*• ^12^22^x-l^x^22^21 

-1,. 

•*• n^^l2%22^2l[l"Hp+2(c;6)] 

-  " l 2 : ; 2 i l x l i x ^ ; 2 ^ 2 l [ H p + 2 ( " ( 3 . 2 3 )  

As a partial check, when c = 0 and we always reject the 

null hypothesis, then reduces to y + ^22^22^—l"—2^ * 

V[y + Zi2%22(%^-3:2)] = V(y) + 7(2^2^22^1^ + ̂ ^^12^22^2^ 

+ 22^2^22^^^^^1 ̂ ~ ^^12^22^^^(~1*—2^^22^21 

~ 2Zi2%22Cov(y,X2) " Ï^^12^22^21 ^^12^22^21 

"'• r̂ l̂2̂ 22̂ 21 " ̂ 1̂2̂ 22̂ 21 " ÏÏ̂ 1̂2̂ 22̂ 21 
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Therefore 

V(y + ^ "*" r^^l2^22^21 " 17^^12^22^ 21 ̂ ̂  ^ 

Therefore putting c = 0 In (3.23), I.e. Hp+gCcsô) = 

Hp+ijCcjô) = 0 

^^*Ar) ̂  " ^^12^22^21 "*" n[^12%22^21 

which is the same as (3.24). 

When c = 00, we always accept HQ and the preliminary test 

estimator reduces to y -^^2^22—2' 

V(y - ^^2^22^2^ = V(y) + V(Ei2%22%2) " 22^2^22^°^^^»^2^ 

(3.25) 

" n^^ •'• r^^l2^22^21 ~ n^^l2%22%21 ̂  " H^^12^22^21 

putting c = ~ in (3.23), then H^j_^(c;ô) = H .2i(c;6) = 1 and 
 ̂ j/ ' ' 

Vf^Ar) n^^ " n^^l2^22^21 

which is the same as (3.25). We now give the M.S.E. of 

M.S.E. (Sap) = V(Mar) + BlasZ = + ̂ ^^12^22^21V2^°'6 ) ] 

" n^^l2^22^21 ^12^22i!-x^x^22^21 " ̂^12^22i^x^x^22^21^^"^p+,2^°'"^ ̂ ̂  

^12^22-x^X^22^2I'-^"^P+4^°'*^^^ 
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or 

( 3 . 2 6 )  

where 

and 

h ^  -  M . S . E . -  g ^  .  

We note that g. Is the variance of y + Z.%-Xg) which is 

the linear regression estimator ignoring the information of 

In practice, we would want to select an estimator for u 

with the smallest bias and M.S.E. . Again we consider only the 

M.S.E. of the preliminary test estimator since bias is a part 

of M.S.E. Using (3.26), we compare the performance of the 

preliminary test estimator with the usual linear regres

sion estimator, y +2^2^22^—1~—2^' when the information of 

is ignored. The relative efficiency of to y + 22.2^22 

(Xg) is defined as 

D. Relative Efficiency (e^) 

M.S.E. ""—2 ̂ 
(3.27) 
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and since y + unbiased, its M.S.E. is equal to 

its variance. Therefore, using (3.24) and (3.26), we have 

S-i 
®1 = 

'1 "** 1̂ 
( 3 . 2 8 )  

Wlog we let 1^22 ~ ^ cr = 1. Hence for p = 1, 

p. Table 3.3 gives the values of e^ for n^ = 30, ng = 10, 

p = 1 and certain values of p, and a. 

Table 3.3. Values of e^ for p = 1, n^ = 30, - 10. 

^x 

a = .05 a = .10 a = .25 

^x .7 .9 

P 

.7 .9 .7 .9 

0.0 1.2119 1 .7336 1.1574 1.4907 1.0719 1.1936 
0.1 1.1044 1 .2964 1.0717 1.1932 1.0291 1.0735 
0.2 .9096 .8061 .9207 .8275 .9547 .8970 

0.3 .7769 .5901 .8279 .6653 .9171 .8205 
0.4 .7380 .5379 .8168 .6482 .9261 .8385 
0.5 .7762 .5891 .8636 .7235 .9569 .9017 

0.6 .8574 .7130 .9273 .8405 .9826 .9588 
0.7 .9347 .8553 .9726 .9361 .9950 .9880 
0.8 .9788 .9503 .9926 .9823 .9990 .9975 

0.9 .9951 .9882 .9986 .9965 .9998 .9996 
1.0 .9992 .9980 .9998 .9995 1.0000 1.0000 

Prom Table 3.3 we can easily observe the following properties. 

1. The relative efficiency of assumes its maximum 

value when = 0. 
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2. For ^ .1 and fixed a, n^ and n^, e^ is larger for 

p = .9 than for p = .7 and is a decreasing function of a with

in this range. 

3. For .2 £ £ .7, e^ is larger for p = .7 than for 

p = .9 and is an increasing function of a within this range. 

4. For 11^ ^ .8, there is no appreciable difference in 

the values of e^ for either values of p or different values of 

a. 

5. For fixed n^, n^, p and a, e^ first decreases from a 

value above unity to some minimum and then increases again to 

unity as increases. 

Table 3.4 gives the values of e^ for p = 2, n^ = 30, ng = 10 

and certain values of, ^ and From the table, the 

following properties of e^ are apparent. 

1. e^ has its maximum when = 0^. 

2. The maximum at = 0_ is an increasing function of p 

for fixed a, n^ and n^. 

3. For fixed a, n^, and e^ decreases from the 

maximum value to a minimum and then increases to unity as 

increases from (0,0) to (1.0,1.0). 

E. The Optimal Sample Design and Comparisons 

The problem here is to find the optimum allocation of the 

sample sizes n^ and n^ for some given cost function. Usually 

the cost function is of the form 
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Table 3.4. Values of e^ for p =2, = 30 and n^ = 10. 

a = .05 

"i 
(î) 

(  0 ,  0 )  
( .5. 0) 
( .5, .5) 

(1.0, .0) 
(1.0, .5) 
(1.0,1.0) 

1.2410 
.6869 
.6987 

.9965 

.9968 

.9975 

1.2502 
.8255 
.5172 

.9982 

.9963 

.9948 

4.0695 
.5566 
.2213 

.9934 
.9861 
.9805 

1.6385 
.8010 

1.0363 

.9977 

.9999 

.9998 

a = .10 

0 ,  
.5, 
.5, 

0 )  
0 )  
.5) 

(1.0, 0) 
(1.0, .5) 
(1.0,1.0) 

1.1939 
.7803 
.7915 

.9990 

.9991 

.9993 

1.2010 
.8839 
.6375 

.9995 

.9989 

.9985 

2.7094 
. 6688  
.3182 

.9981 

.9959 

.9944 

1.4836 
.8654 

1.0188 

.9993 
1.0000 
.9999 

^ 3 

.5, 

0 )  
0) 
.5) 

(1.0, 0) 
(1.0, .5) 
(1.0,1.0) 

1.1085 
.9079 
.9147 

.9999 

.9999 

.9999 

a = . 25 

1.1122 
.9544 
.8329 

.9999 

.9999 

.9998 

1.6131 
.8474 
.5695 

.9998 

.9996 

.9994 

1.2444 
.9459 

1.0051 

.9999 
1.0000 
1.0000 

Hi, 
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cost = C = = n^c^ + (3.29) 

where c^ is the cost of observing the vector X and c^ is the 

cost of observing Y. The optimum values of n^ and n^ are 

obtained by minimizing the m.s.e.(y^^) given in (3.26) subject 

to the constraint (3.29). We recall that in practice, under 

the supposition of a conditional specification, the experi

menter has only partial information based on which he believes 

that is close to The relative efficiency of is 

largest at = £ and so it would be best to consider the 

problem of optimum allocation under the optimum situation by 

letting Ujj. = 0_ in m.s.e.(y^^). 

When = 0., from (3.26) 

where 

and 

m.s.e.CÛjj.) = ̂  ̂  (3.30) 

^1 ^12^22^2lLl"*p+2Î°'û)J 

^2 " ̂ 12^22^21 

Thus we wish to minimize (3.30) subject to (3.29). From 

(3.29), 
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Thus 

K Kg 
m.s.e. = c-n^Cg 

and 

3m.8.e.(u^p) ̂  _ ^2 ^ ̂  

^^2 (C-ngOg)^ ng^ 

or 

ng 
C/Kg 

/K^c^cg + Og/E^ 

Substituting in (3.29 we have 

c/iT 
n^ = 
^ /KgC^Cg + 

Substituting for n^ and ng in (3.30), the optimum value of 

m.8.e.(u^p) is 

K, {v^CcTcT+c. /KT} K_{•ZTcTST+c^/kT} 

^1°1 2/%^KgC^0g+CgKg 

C 

2 (/KTET + /C^) 
LJL_ (3.31) 
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The regression estimator under double sampling without using 

the preliminary test is y + ^12^22^%""—2^ with variance 

^12^22^21 ^ " ̂ 12^22^21 

"1 ^2 

= !i + 5 
ni ng 

where 

and 

^12^22^21 

^2 " ̂ 12^22^21 

Next we note that since y + ^12^22^—1~—2^ Is unbiased, its 

variance equals its m.s.e. and so denoting this m.s.e. by M 

and following the above method of minimizing m.s.e.(u^p) we 

f" V> c* +-

(/nÏÏT + 
Vt ^ — (3.32) 

Now to compare (3.31) and (3.32) we note from (3.31) that 

(l-Hp^gfoiO) is a decreasing function of c with a maximum equal 

to unity at c = 0. Hence the numerator of m.s.e.(u^^) is at 

most as large as that of and so we are led to conclude 

that m.8.e.(&^p)Qp^ <, "^opt ^^^h equality holding for c = 0 

which is the point at which the two estimators coincide. 
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We shall now compare with the preliminary test esti

mator, vi, of Chapter II for a fixed total budget. For the 

double sampling scheme, the cost function in (3.29) remains 

unchanged and when = £, we are led to the optimum value of 

m.s.e. in (3.31). Under the optimum situation, we shall 

find the optimum value of m.s.e. ({!) which we denote by 

m. 8.e.(p^Qp^,. When = Oi, from (2.24), the m.s.e. of the 

preliminary test estimator is ̂  where 

V = - Z^2^22^21^P+2^°»°^ " 

If the total budget is devoted to a single sample, this sample 

has size 

and 

m-s.e.(w)opt = — • 

Hence under the optimum situation, i.e. = 0^, double sampling 

gives a smaller m.s.e. if 

CgV > (y/K^Cj^ + 

When Ji r 0_s from (3.26) 

K? Kg 
m.s.e.(y^^) = _ + _ + 8^ 
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where is as defined in (3.30) and 

= :i2:;2:2i[i-Hp+2(°;*): 

~ ^12^22i^x^x^22^21^p+4^°''^ ̂ 

Similarly, when 7^ 0_» from (2.24), m.s.e.(vi) = ̂  + 8g 

where 

V* = - 2^2^22^21^p+2^°' 

®2 ' ̂̂12^22^X^X^22^21^P+2^°' 

^12^22iixi^x^22^21^p+4^°' 

We may now compare the two mean square errors by substituting 

for n^, n^ and n in the expression. 

K* K, V •• m.s.e.(û) - m.8.e.(û^y) = (-^ + 8^) - (^ + + 8^) . 

Double sampling gives a smaller m.s.e. if the expression is 

positive. 

The detailed expression is complicated and would not be 

given here. 
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F. Bias of when Z is Unknown 

When 2 is unknown, the linear regression preliminary test 

estimator becomes 

y -
^12^22^2 

'Ir 
= < 

if m^n^(Xj^S22li) 1 Tg 

(3.33) 

L y + if m^n^(X|S-^X^) > 

where = n^-1, TQ is the 100(l-a)th percentile of the 

2 Hotelling's T distribution with degrees of freedom and we 

de fine 

'S. 

S = 
'11 '12 

'21 '22 

where 

1 "2 
' ° Jl 

1 

n. 
^ - 1 
22 

n. 

'11 ° (yi-y)^ 
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^2 
Si2 " (yi-y)(xi-x2)' 

"i 
S22 = ,=1 (Xi-Xi)(Xi-Xi)' 

i —JL 

In this section, we shall obtain the bias of when Z 

is unknown. If we denote the rejection region for the prelim

inary test 

> Tq} by G , 

then 

E(WAR) = E{y-S^2S"^X2|G}P(G) + 

= ECy-SigSg^Xg) + E{ 83^2^22^^ I (3.34) 

Now (X^j y) has a normal distribution as in section B and 

is independent of (S22J "^12^ which has a Wishart 

distribution. 

E(y) = u and so if we write E(p^p) = u + Bg, we see that 

the bias is 

®2 " E{S^2Si2^ilô>P(G) - 2^812822X2) • 

Since and Xg are independent, we know 

^^^12^22^2) " 8(812822)'ECXg) 
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where 

E(SI2S22) = È{E(S^2^22^^^ 

= È{E[Si2|X]S-l} 

^2 . 
= E{E[^z^ (yi-yjfxi-xgi'lxjs-g} 

ECy^lX) = u + 2^2^22^^!-iix^ 

^ ECS^jS-l) = 22̂ 11) = ZigZ;: 

and 

^^^12^22^2^ " ̂ 12^22%% ' 

Hence 

®2 ~ E{S^2^22^1~  ̂12^22-x (3.35) 

It remains to evaluate the first term. 

Let f(X^) be the multivariate normal density of X^ and 

0(822,8^2,811) the joint density of S22, ̂ 2.2 ^11' then 

E{SI2S~^XI[G}P(G) 

= /•••/ Si28]^lif(Xi)g(822,8i2,8ii)dXid822d8i2d8ii (3.36) 
G 

We make the following transformations as we did in (2.31). 
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= TB'BT' 

Wg = [8^2 - (3.37) 

^3 ^^11 "^12® ^21^^11-2 

Substituting In (3.36) we have 

E{SI2S22XI1G}P(G) (3.38) 

_1 

c 

where as before ~ W(I,n^-l), ̂ 2 ~ N(0_,I), ~ W(l,n^-K) 

and they are Independent. The joint density Is 

-%tr(WlW_+W_+W.) ^(n,-p-3 ,^(n,-p-2) 
gCWi/Wg/Wg) = c^e 2 2 2 3 1 |^^|2 1 jw^l^ 1 

(3.39) 

•The region of integration is given by 

G = {n^in^(X]_'T*W^"^TX^) :(X3_'T'W^"^TX3_)n^m^ > TQ} 

Hence (3.38) becomes 
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0 0  0 0  _  - % t r ( W ' W _ + W  f W ^ )  

/...// /(KW2W^'^T+E3_2T'T)lif(Xi)Co® 
G -= 0 

^ ( n , - p - 3 )  4 ( n ^ - p - 2 )  

iWgjZ 1 IW^I ^ dW^dWgdW^dX^ 

00 00 -& -4tr(WiW^+W-H-W, ) ^(n--p-3) ^(n^-p-2) 
= /...// /KCqZ22 ® 1^3! ^ 1*11 ^2 

G -"0 
_1 

 ̂X]̂ f ( ) dWgdWgdWĵ dX]̂  

- ^ t r ( W ' W „ + W , + W , )  i ( n T - p - 3 )  

+ /OoZigZggZe 2 2 % % ^ [W^lZ ^ 
G -"0 

- p - 2 ) _  

1^2 I (% )dWgdWgdW^dX]^ 

B u t  E f W g )  =  0 _  s o  t h a t  f r o m  t h e  I n d e p e n d e n c e  o f  t h e  W ^ ' s ,  t h e  

f i r s t  t e r m  i s  z e r o .  H e n c e  ( 3 . 3 8 )  i s  e q u a l  t o  

Z.gT'T -krW^ ^(nT-p-2) 
12 /.../e 2 l|w |2 1 

G 
. i)] 

" X^f(^)dW^dX^ 
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We let Z = TX, and v = Ty . Therefore Z ~ N(v 
*"• A X rx 2̂  

Therefore G = {n-j_ni^(^'W~^) :n^m^(^'¥~^^) > T^}. Hence we wish 

to evaluate 

Z.gT'T T"^ -^trW^ %<nu-p-2) 
12 .f, .  . / e  2 l|w |2 1 

!_/_ !_/_ i\ P ô ' 1 

Zg(Z)dZdW 

G ^ (3.40) 
2^-

i=l ^ 

and 

__ (n -p) 
>TAI -^7.^ ± F' = n^ (Z'W -^Z) 

1 — — p 

has the noncentral P distribution with p and n^-p degrees of 

freedom and noncentrality parameter X = « Therefore 

P(Ô) = P(P' > Pp,n-p(*)) 

Where 

s = 

Let 

then 
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00 ——X °° 
n = P(Q) = / e 2 z 1 .(|)jG ^ (g)dg (3.41) 

J=0. ^ • 2 

Where 

is as defined in (2.35). Differentiating (3.41) w.r.t. 

we have 

4ÎT 

or 

%T = =  ( 3 . 42 )  

Where 

G* 

is the cumulative distribution of the noncentral G distribu

tion with p+2, n^-p degrees of freedom and noncentrality 

parameter X. 
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Next we make use of the distributions of Z and W^. From 

the independence, we may write 

R = P(a ) = /.. ./ II —- e 
G J=l/2? 

(3.43) 

i^(ni-p-2) -^trW^ 

J— —"1 
l^ll e " (j) 
—^ dZ^J^dW 

i=l -L 

Differentiating (3.43) w.r.t. we obtain 

G J=i 

^(n^-p-2) -^trW^ 

f ,[1, „] 
i=l 

r? '1 
s (3.M) 

Z^^^g(Z)dZdW^ - n^v^^^P(G) 
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Therefore equating (3.42) and (3.44), we have 

' - ^ Z^^)g(Z)dZdW^ 1=1 2 

= v(l)[l-G*+2,n _p(o;X)] = I(z(l)) say. (3.45) 

This gives (3.40) to be where I(^) Is a 

pxl vector with 1-th component = I(Z^^^). Prom (3.45) 

I(Z) = 

Hence (3.40) Is 

,-lm-l Z 12^22^ y%[l"G*+2 n̂̂ _p(c;X)] 

We now obtain the bias of to be 

®2 %12%22yx[l"G*+2,ni-p(G;A)] " ̂ 12^22^x 

= -Zi2%22y%Gg+2,ni-p(°'^) 

= -Zi2%22y%Fp+2,n^-p(°2'^) 

where 

°2 ' 5^ 
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As a partial check, when c = 0, we always reject Hq and 

the estimator reduces to y + which has zero 

bias. In this case, Pp+2 ~ Bg = 0. 

When c = 00, we always accept and the estimator is 

y - «Ith Bias = -Ïi2^i2ïx- h®""® ^p+2,ni-p'°25^> = 1 

and Bg = 

In order to evaluate Bg, we let = I and = 1 wlog. 

The values of -Bg for p = 2 and n^ = 15 are given in Table 3.5 

for a few values of a, and Prom Table 3.5, the 

following properties of the bias can easily be observed. 

1. The bias is zero when the null hypothesis Hq : = Oi 

is true. 

2. For fixed n^, and the bias generally decreases 

as a increases. 

3. The bias is zero when either or has identical 

components and the other has components which differ only in 

sign. 

4. For fixed n, Z^g a and some component of the 

value of Bg first increases and then decreases to zero as the 

other component of increases from 0.0 to 1.0. 

5. For fixed n, a and the value of the bias is an 

increasing function of 
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Table 3.5. Values of for p = ,2 and = .15. 

0, 0) 0.0 0.0 0.0 0.0 
0, .2) 0.0 0.0780 0.0780 0.1092 
0, .4) 0.0 0.1264 0.1264 0.1769 

0, .6) 0.0 0.1253 0.1253 0.1754 
0, .8) 0.0 0.0847 0.0847 0.1185 
0,1.0) 0.0 0.0392 0.0392 0.0548 

.2, .2) -0.0730 0.0 0.1459 0.2043 

.2, .4) -0.0585 0.0585 0.1755 0.2457 

.2, .6) -0.0381 0.0763 0.9525 0.2135 

.2, .8) -0.0191 0.0572 0.0953 0.1334 

.2,1.0) —0.0070 0.0279 0.0418 0.0585 

.4, .4) -0.0912 0.0 0.1824 0.2554 

.4, .6) -0.0573 0.0287 0.1433 0.2006 

.4, .8) -0.0276 0.0276 0.0828 0.1159 

.4,1.0) -0.0097 0.0146 0.0341 0.0477 

.6, .6) -0.0514 0.0 0.1029 0.1440 

.6, .8) -0.0235 0.0078 0.0548 0.0767 

.6,1.0) -0.0079 0.0053 0.0210 0.0295 

.8, .8) -0.0135 0.0 0.0270 0.0378 

.8,1.0) -0.0043 0.0011 0.0096 0.0135 
1.0,1.0) -0.0000 0.0 0.0000 0.0000 
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Table 3.5. (continued) 

—X 

0, 0) 0.0 0.0 0.0 0.0 
0, .2) 0.0 0.0448 0.0448 0.0627 
0, .4) 0.0 0.582 0.0582 0.0815 

0, .6) 0.0 0.0407 0.0407 0.0570 
0, .8) 0.0 0.0174 0.0174 0.0243 
0,1.0) 0.0 0.0046 0.0046 0.0064 

.2, .2) -0.0389 0.0 0.0778 0.1090 

.2, .4) -0.0251 0.0251 0.0753 0.1054 
.2, .6) -0.0116 0.0232 0.0463 0.0648 

.2, .8) -0.0037 0.0110 0.0183 0.2570 

.2,1.0) -0.0008 0.0031 0.0046 0.0065 

.4, .4) -0,0317 0.0 0.0635 0.0888 

.4, .6) -0.0143 0.0071 0.0357 0.0499 

.4, .8) -0.0044 0.0044 0.0132 0.0185 

.4,1.0) -0.0009 0.0014 0.0032 0.0044 

.6, .6) -0.0093 0.0 0.0186 0.0260 

.6, .8) -0.0028 0.0009 0.0064 0.0090 
.6,1.0) -0.0005 0.0004 0.0015 0.0020 

.8, .8) -0.0010 0.0 0.0021 0.0029 

.8,1.0) -0.0002 0.0000 0.0004 0.0006 
1.0,1.0) -.0000 0.0 0.0000 0.0000 
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Table 3.5. (continued) 

0, 0) 0.0 0.0 0.0 0.0 
0, .2) 0.0 0.0137 0.0137 0.0192 
0, .4) 0.0 0.0142 0.0142 0.0198 

0, .6) 0.0 0.0069 0.0069 0.0097 
0, .8) 0.0 0.0019 0.0019 0.0026 
0,1.0) 0.0 0.0003 0.0003 0.0004 

.2, .2) -0.0110 0.0 0.0221 0.0309 

.2, .4) -0.0057 0.0057 0.0170 0.0238 

.2, .6) -0.0018 0.0037 0.0074 0.0103 

.2, .8) -0.0004 0.0011 0.0019 0.0026 

.2,1.0) -0.0000 0.0002 0.0003 0.0004 

.4, .4) -0.0058 0.0 0.0116 0.0162 

.4, .6) -0.0019 0.0009 0.0047 0.0065 

.4, .8) -0.0004 0.0004 0.0011 0.0016 

.4,1.0) -0.0000 0.0001 0.0002 0.0002 

.6, .6) -0.0009 0.0 0.0018 0.0025 

.6, .8) -0.0002 0.0001 0.0004 0.0006 

.6,1.0) 0.0000 0.0000 0.0001 0.0001 

.8, .8) 0.0000 0.0 0.0001 0.0001 

.8,1.0) 0.0000 0.0000 0.0000 0.0000 
1.0,1.0) 0.0000 0.0 0.0000 0.0000 
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G. The M.S.E. of when Z is Unknown 

In this section, we find the mean squared error of 

M.S.E.= V(w^^) + (Bias 

For Z unknown, is given in (3.33) and hence 

E(Uj^r^) = E[(y - + E[(y -

+ E[(S^2S22^i)^|G]P(G ) + 2E(Si2822yXilG)P(ô) 

- EECSigSg^IiIgS-lSgilGlPfG) = E[S^2Si2^iliS22S2ilG]P(G) 

+ 2E(S3_2S22yIil G)P(G) - 2E[83^2^22^x12'^22^21 ' ) 

+ E(y - 812822X2)^ • (3.46) 

Recall that 

G = {n.m, (x,'s:;ix, ) rn^m^ (X4S;iXn ) > T?} 
_L J- A. £,C.—JL U. J- ~J. C. U 

= {n^^ra^d'W^^Z) ;n3_m^(Z'W^^Z) > TQ} 

Then following arguments similar to those used to obtain 

(2.54), we obtain the first term of (3.46). 

E[SI2S;^3LXIS-L82I|G]P(5) = Q* + 2^2^22^'^^*"^'"^^22^21 
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where 

= ^11.2 S[T%=pT i ' 

fc has a noncentral P distribution with p and n^-p degrees of 

freedom and noncentrality parameter M* is a pxp 

matrix with i-th diagonal element 

= (v<i))2 Cl-Q«+^,„^.p(o;X)] +5^ [l-G5,2,„^-p(oiX>] 

and the (i,K)th off-diagonal element 

Similarly, by arguments analogous to those used to obtain 

(2.55), the second term equals 

-E(-12-22^'—1' - 2yS^2-22—x^~~"p+2,n^-p^'^ ' 

+ 22l2^i2T-^M*T'-lz-lE21 

-  2 1 .  12^22i^x^x^22^2l'-^"'^p+2,n^-p^°'^^^ 

For the third term, 

E 22® 21 |Ô]f(G) 

= trE(S22S2iSi2822XiX%|â)PCÔ) 



132 

= trËtES-lSgiSigSgg-lXiX^IS.Xi.QlPpi) 

= trÈ{S2^S2^S^2S2^X^E(Xj|X^)15)P(Q) 

= trÈCs-^Sj^s^gS^ix^Clii + (X'-Jii)]|ô}p(5) 

= trECS^lSgiSigS^lx^XilÔJPCG) 

= a* + 

and hence third term of (3.46) 

= -2Q* - 22^2^22'^~^^*'^'"^^22^21 

Finally the fourth term of (3.46) is 

E(y - S^gSg^Xg)^ = V(y - S^gSggXg) + [E(y - SigSggXg)]^ 

= A. T +2 ^ P r+ 2*2%%%22%% 
ng ^11-2 ^11-2 n^Tn^p^'- • p 

+ (w - Zi2:]^%x)^ 

by using (2.58). Substituting into (3.46) we have 

= Ï^22-^T-VT'-^Z-|Z21 - 2:i2Z;2W%xCg+2,n^_p(c:A) 

- 2:i2:22%xm;f;2:2i[i-G3+2.ni-p(°:A)] - Q» 

-1 
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As a partial check, when c =0, (3.47) becomes 

= 4 ̂11.2 + ̂ 11.2 n,(n^p-2)[^ 

- ^11.2 n,(n;-p-2)^^ + ̂ ^22^x3 

which is identical with (3.48), the variance of when we 

always reject HQ. When c = <», (3.47) reduces to 

è ̂11-2 + ^11-2 n,(g-P-2)[^ + 

Which is identical with (3.49), the variance of the prelim

inary test estimator when we always accept H^. 

H. Relative Efficiency (e^) 

As in section D, we compare the performance of the pre

liminary test estimator with the usual linear regression 

estimator, y + 3^2^22^—l"—2^* when the information of is 

ignored. We denote the relative efficiency of to 

y + S^2^22^-1'"-2^ by e^ and define 

M.S.E.(y + 8. ̂8':^(X,-X^)) 
e = 12_22—1—2— (3.50) 

M.S.E.Cu^^) 
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Since y + S^2'^22^—1~—2^ unbiased, its M.S.E. equals its 

variance which is given in (3.48), we denote it by g^. Using 

(3.47), we obtain 

M.S.E. (uj^^) = Zi2Z22T"^M*T'"lz22%21 

^^12^221^x^x^22^21 ^^"^*p+2,n^_p^°2'^^ ̂ 

- Q* + %^11'2 + hl-2 + —:=2L_22&] 

+ Zi2^22%^x^22^21 

 ̂ 1̂1-2  ̂ %12%22Z2l[l"F*p+2,ni-p(°2i^)] 

" ̂ 12^22lix^x^22^21^*p+4,n^-p^°4'^^ 

+ 22^2% 2 2%^x^ 2 2^ 2 l^*p+2, n^-p ̂ ° 2 ' ̂ ̂ 

00 

vm ID 
- ̂ 11-2 n^(n^-p) ̂  

+ Zll.2 ng(ng-p-2)[^ + = hg say. 

Therefore 

gp 
«2 ' 4 <3.51) 
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Wlog we let ^22 ~ ~ .1 and write. 

where 

2"2liX 
g  2  =  ̂  ( 1 - S )  +  +  ( 1 - g )  C I  +  - ^ ]  

- (1-B) n,(n;-p-2) [1 + 

^ 2  '  ( 1 - g )  +  ̂  s [ l - F * p + 2 ^ n ^ _ p ( 0 g ; X ) ]  

- 4 ̂ %+4.n^-p(=4;^) + ^4 ^%+2.n^-p(=2'^) 
-  ( 1 - 8 )  n ^ ; n ^ - p )  [  t f ( t ) d t  

+ (1-s) n^(l^-p-2) [1 + 

and 

g  =  2 ^ 2 ^ 2 1  '  ' ' l  -  ̂ 1 2 ^ x  '  ° 2  °  p + 2  ® ' p , n ^ - p ' " '  

"4 ' 5+T Fp.ni-p(«) : = Fp.Hi-pf*) ; '' = "l4lix • 

In the computation of the values of eg, we again use the 

incomplete Beta distribution to approximate the noncentral P 
00 

distribution. For / tf(t)dt, we use the fact that 
d 



138 

! t f(t)dt - / t f(t) = / t f(t)dt (3.52) 
0 0 d 

since / t f(t)dt exists and 
0 

n -p 2n u ' y 
/ t f(t)dt = E(t) = [1 + p ] 

Using (3.52), we write 

= ~ (1-g) + g[l-P* . _ „ „(c^;X)] 

- K? F* 

2 ^2 n^ ®'- p+2,n^-p^ 2-

-(^-S)n,(E,-P-2 + (1-s) I t f(t)dt 

For the purpose of comparison with the results of Han 

(1973b), we compute the values of for p = 1 and certain 

values of n^, n^, p, and a. These values are shown in 

Table 3.6 and again reveal no significant difference from the 

values obtained by Han. Any differences are due to the 

approximations and rounding off errors in the computations. 

From Table 3.6 we observe that e^ assumes its maximum 

value when = 0. It then decreases to a minimum and then 

increases to 1.0 as increases. This is because for large 
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values of we would always reject HQ and use the usual 

linear regression estimator. For fixed n^, a and small 

values of increases with p while for moderately large 

values of it decreases as p increases. The values of e^ 

is a decreasing function of a for fixed n^, n^, p and small 

values of while for moderately large values of it is 

an increasing function of a. 

The values of e^ for p = 2 are given in Table 3-7 for 

some values of ^^2* ^x* ^1' ̂ 2 this table we 

observe the following. 

1. For fixed values of n^, n^, and a, the relative 

efficiency e^ is maximum when the null hypothesis is true, i.e. 

when u = 0. 

2. For fixed n^ and n^, the maximum value of e^ is an 

increasing function of but a decreasing function of a. 

3. For fixed a, n^, and some component of ]Ĵ , 

the relative efficiency decreases tc a minimum and then 

increases to i.O as the other component increases. • 

4. For moderately large values of ji^, e^ is a decreasing 

function of and increasing function of a. 
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Table 3.6. Values of e^ for p = 1 

^ 1  
3 0 ,  h g  . =  15 a  = ,0.05 a  =  0 . 1 0  

. 5  . 7  . 5  .7 

0 . 0  :  1 . 0 9 8 5  1 . 2 8 3 3  1 . 0 7 5 5  1.2088 
0 . 1  1 . 0 4 5 8  1.1326 1.0320 1.0907 
0 . 2  0 . 9 3 9 8  0 . 8 8 5 3  0 . 9 4 8 9  0.8988 

0 . 3  0 . 8 5 9 9  0 . 7 3 3 8  0.8953 0.7916 
0 . 4  0 . 8 3 8 0  0.6928 0.8924 0 . 7 8 2 1  
0 . 5  0 . 8 6 7 2  0 . 7 3 5 8  0.9243 0.8381 

0 . 6  0 . 9 1 9 5  0.8270 0.9619 0 . 9 1 3 2  
0 . 7  0 . 9 6 4 3  0 . 9 1 7 4  0.9862 0 . 9 6 7 0  
0 . 8  0 . 9 8 8 4  0.9718 0 . 9 9 6 4  0 . 9 9 1 0  

0 . 9  0 . 9 9 7 2  0 . 9 9 3 0  0 . 9 9 9 3  0 . 9 9 8 2  
1 . 0  1 . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  

a  =  0.25 a = 0 . 5 0  

0 . 0  1.0365 1 . 0 9 4 6  1.0093 1 . 0 2 3 1  
0 . 1  1.0132 1.0366 1.0029 1 , 0 0 8 1  
0 . 2  0 . 9 7 1 8  0 . 9 4 1 0  0 . 9 9 2 2  0 . 9 8 3 0  

0 . 3  0 . 9 5 2 0  0.8969 0.9885 0 . 9 7 4 0  
0 . 4  0 . 9 5 9 7  0.9109 0 . 9 9 1 9  0.9813 
0 . 5  0 . 9 7 8 0  0 . 9 4 9 3  0.9964 0 . 9 9 1 5  

0.6 0 . 9 9 1 7  0.9801 0 . 9 9 8 9  0 . 9 9 7 4  
0 . 7  0 . 9 9 7 8  0 . 9 9 4 5  0 . 9 9 9 8  0 . 9 9 9 4  
0 . 8  0 . 9 9 9 6  0.9989 1 . 0 0 0 0  0 . 9 9 9 9  

0 . 9  0 . 9 9 9 9  0 . 9 9 9 8  1 . 0 0 0 0  1 . 0 0 0 0  
1 . 0  1 . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  
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Table 3. 6 .  (continued) 

n^ = 50.,. n^ = 10 . a =. 0.05 (X, — 0
 

H
 
0
 

.5 .7 .5 .7 

0.0 1.0395 1.1151 1.0305 1.0876 
0.1 1.0081 1.0264 1.0044 1.0149 
0.2 0.9528 0.8889 0 0636 0.9122 

0.3 0.9308 0.8382 0.9547 0.8899 
0.4 0.9498 0.8779 0.9730 0.9317 
0.5 0.9789 0.9458 0.9909 0.9761 

0.6 0.9947 0.9860 0.9982 0.9952 
0.7 0.9992 0.9978 0.9998 0.9994 
0.8 1.0000 1.0000 1.0000 1.0000 

0.9 1.0000 1.0000 1.0000 1.0000 
1.0 1.0000 1.0000 1.0000 1.0000 

a = 0.25 a = 0.50 

0.0 1.0149 1.0417 1.0038 1.0105 
0.1 1.0008 1,0035 1,0000 1,0002 
0.2 0.9825 0.9563 0.9956 0.9888 

0.3 0.9832 0.9571 0.9966 0.9911 
0.4 0.9926 0.9807 0.9988 0.9969 
0.5 0.9982 0.9953 0.9998 0.9994 

0.6 0.9998 • 0.9993 1.0000 0.9999 
0.7 1.0000 0.9999 1.0000 1.0000 
0.8 1.0000 1.0000 1.0000 1.0000 

0.9 1.0000 1.0000 1.0000 1.0000 
1.0 1.0000 1.0000 1.0000 1.0000 
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Table 3-7. Values of e^ for p = 2. 

= 30,, rig =. 20 a = 0.05 

0̂.̂  /o.5\ /o.A {-0.5 

Mi ^7 V°-V V°-y Vi 

(0.0,0.0) 
(0.0,0.2) 
(0.0,0.3) 

1.0534 
1.0377 
1.0241 

1.1822 
1.0190 
0.9180 

4.0500 
1.1762 
0.7166 

1.5020 
0.9871 
0.7713 

(0.0,0.4) 
(0.0,0.5) 
(0.2,0.2) 

1.0126 
1.0052 
0.'.9642 

0.8662 
0 .8665 
0.8076 

0.5544 
0.5261 
0.4662 

0.6796 
0.6814 
1.2459 

(0.2,0.3) 
(0.2,0.4) 
(0.2,0.5) 

0.9704 
0.9788 
0.9873 

0.7555 
0.7553 
0.7997 

0.3729 
0.3530 
0.3911 

1.0521 
0.9139 
0.8646 

(0.3,0.3) 
(0.3,0.4) 
(0.3,0.5) 

0.9373 
0.9586 
0.9770 

0.7315 
0.7526 
0.8101 

0.3294 
0.3369 
0.3950 

1.1010 
0.9980 
0.9453 

(0.4,0.4) 
(0.4,0.5) 
(0.5,0.5) 

0.9524 
0.9746 
0.9797 

0.7872 
0.8475 
0.8987 

0.3656 
0.4443 
0.5429 

1.0271 
0.9899 
1.0038 

(0.0,0.0) 
(0.0,0.2) 
(0.0,0.3) 

1.0448 
1.0303 
1.0184 

a = 

1.1495 
1.0085 
0.9307 

0.10 

2.7384 
1.0934 
0.7462 

1.3924 
0.9719 
0.8037 

(0.0,0.4) 
(0.0,0.5) 
(0.2,0.2) 

1.0090 
1.0035 
0.9706 

0.9005 
0.9129 
0.8367 

0.6321 
0.6402 
0.5136 

0.7478 
0.7752 
1.1704 

(0.2,0.3) 
(0.2,0.4) 
(0.2,0.5) 

0.9781 
0.9862 
0.9929 

0.8057 
0.8227 
0.8726 

0.4424 
0.4494 
0.5233 

1.0297 
0.9379 
0.9152 

(0.3,0.3) 
(0.3,0.4) 
(0.3,0.5) 

0.9566 
0.9744 
0.9876 

0.7988 
0.8314 
0.8870 

0.4161 
0.4506 
0.5449 

1.0614 
0.9964 
0.9686 

(0.4,0.4) 
(0.4,0.5) 
(0.5,0.5) 

0.9731 
0.9874 
0.9910 

0.8688 
0.9182 
0.9526 

0.5069 
0.6168 
0.7284 

1.0137 
0.9945 
1.0015 
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Table 3.7. (continued) 

n ̂ = 30., n^ = 10 a  =  0 . 2 5  

0.0,0.0) 
0.0,0.2) 
0.0,0.3) 

1.0271 
1.0169 
1.0093 

1.0866 • 
0.9986 
0.9589 

1.6345 
1.0152 
0.8310 

1.2084 
0.9676 
0.8783 

0.0,0.4) 
0.0,0.5) 
0.2,0.2) 

1.0040 
1.0014 
0.9831 

0.9526 
0.9672 
0.9003 

0.7895 
0.8320 
0.6477 

0 .8680 
0.9063 
1.0756 

0.2,0.3) 
0.2,0.3) 
0.2,0.5) 

0.9894 
0.9894 
0.9978 

0.8954 
0.8954 
0.9551 

0.6190 
0.6693 
0.7722 

1.0087 
0.9723 
0.9704 

0.3,0.3) 
0.3,0.4) 
0.3,0.5) 

0.9815 
0.9910 
0.9965 

0.9040 
0.9331 
0.9646 

0.6269 
0.6976 
0.8057 

1.0219 
0.9975 
0.9904 

0.4,0.4) 
0.4,0.5) 
0.5,0.5) 

0.9919 
0.9969 
0.9982 

0.9566 
0.9784 
0.9899 

0.7730 
0.8664 
0.9285 

1.0036 
0.9985 
1.0002 

0.0,0.0) 
0.0,0.2) 
0.0,0.3) 

1.0104 
1.0059 
1.0030 

a = 

1.0318 
0.9975 
0.9851 

0.50 
1.1763 
0.9944 
0.9315 

1.0714 
0.9827 
0.9539 

0.0,0.4) 
0.0,0.5) 
0.2,0.2) 

1.0011 
1.0003 
0.9940 

0.9862 
0.9925 
0.9625 

0.9295 
0.9566 
0.8384 

0.9590 
0.9774 
1.0219 

0.2,0.1) 
0.2,0.4) 
0.2,0.5) 

0.9968 
0.9987 
0.9996 

0.9659 
0.9788 
0.9906 

0.8425 
0.8892 
0.9435 

1.0013 
0.9925 
0.9938 

0.3,0.3) 
0.3,0.4) 
0.3,0.5) 

0.9951 
0.9980 
0.9994 

0.9727 
0.9843 
0.9934 

0.8637 
0.9919 
0.9581 

1.0050 
0.9992 
0.9982 

0.4,0.4) 
0.4,0.5) 
0.5,0.5) 

0.9985 
0.9995 
0.9998 

0.9915 
0.9966 
0.9987 

0.9473 
0.9765 
0.9901 

1.0006 
0.9997 
1.0000 
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Table 3.7. (continued) 

n^ =. 30 S ng = 15 a = 0.05 

0 . 0 , 0 . 0  
0 . 0 , 0 . 2  
0.0,0.3 

0.0,0.4 
0.0,0.5 
0 . 2 , 0 . 2  

0.2,0.3 
0.2,0.4 
0.2,0.5 

0.3,0.3 
0.3,0.4 
0.3,0.5 

0.4,0.4 
0.4,0.5 
0.5,0.5 

0 . 0 , 0 . 0  
0 : 0 , 0 . 2  
0.0,0.3 

0.0,0.4 
0.0,0.5 
0.2,0.2 

0.2,0.3 
0.2,0.4 
0.2,0.5 

0.3,0.3 
0.3,0.4 
0.3,0.5 

0.4,0.4 
0.4,0.5 
0.5,0.5 

1.0897 
1.0643 
1.0418 

1.0223 
1.0094 
0.9408 

0.9497 
0.9629 
0.9770 

0.8942 
0.9273 
0.9580 

0.9152 
0.9530 
0.9615 

1.0749 
1,0513 
1.0317 

1.0159 
1.0064 
0.9511 

0.9625 
0.9756 
0.9870 

0,9257 
0.9545 
0.9772 

0.9513 
0.9764 
0.9828 

1.3-01 
1.0294 
0.8768 

0.7995 
0.7943 
0.7283 

0.6585 
0.6517 
0.7010 

0.6246 
0.6442 
0.7115 

0.6827 
0.7590 
0.8310 

1.2419 
1,0131 
0.8952 

0.8479 
0.8619 
0.7659 

0.7213 
0.7377 
0.8009 

0,7081 
0.7458 
0.8193 

0.7938 
0.8641 
0.9176 

4.4866 
1.1836 
0.7086 

0.5434 
0.5132 
0.4568 

0.3631 
0.3421 
0.3781 

0.3192 
0.3254 
0.3810 

0.3524 
0.4284 
0.5252 

a = 0.10 
2.8992 
1.0Q70 
0.7387 

0.6217 
0.6281 
0.5041 

0.4320 
0.4375 
0.5096 

0.4050 
0.4378 
0.5302 

0.4926 
0.6015 
0.7140 

1.7881 
0.9827 
0.7100 

0.5991 
0.5930 
1.3712 

1.0746 
0.8804 
0.8109 

1.1511 
0.9971 
0.9195 

1.0413 
0.9845 
1.0060 

1.5916 
0.q626 
0.7482 

0.6763 
0.7013 
1.2494 

1.0422 
0.9128 
0.8788 

1.0903 
0.9947 
0.9533 

1,0208 
0.9916 
1.0023 
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Table 3.7. (continued) 

ni 30, = 15 a = 0.25 . 

/0.5\ 
\o.oJ V V (S:î) 0

 0
 

0.0,0.0) 
0.0,0.2) 
0.0,0.3) 

1.0448 
1.0283 
1.0160 

1.1355 
0.9979 
0.9368 

1.6682 
1.0157 
0.8255 

1.2944 
0.9568 
0.8397 

0.0,0.4) 
0.0,0.5) 
0.2,0.2) 

1.0071 
1.0025 
0.9717 

0.9252 
0.9461 
0.8522 

0.7819 
0.8246 
0.6390 

0.8225 
0.8682 
1.1066 

0.2,0.3) 
0.2,0.4) 
0.2,0.5) 

0.9817 
0.9904 
0.9960 

0.8424 
0.8753 
0.9258 

0.6090 
0.6586 
0.7624 

1.0122 
0.9605 
0.9566 

0.3,0.3) 
0.3,0.4) 
0.3,0.5) 

0.9677 
0.9837 
0.9935 

0.8519 
0.8924 
0.9404 

O.6I6O 
0.6866 
0.7963 

1.0316 
0.9964 
0.9855 

0.4,0.4) 
0.4,0.5) 
0.5,0.5) 

0.9850 
0.9942 
0.9964 

0.9276 
0.9626 
0.9818 

0.7628 
0.8588 
0.9236 

1.0054 
0.9976 
1.0004 

0.0,0.0) 
0.0,0,2) 
0.0,0.3) 

1.0170 
1.0099 
1.0050 

a = 

1.0484 
0.9961 
0.9767 

0.50 
1.1829 
0.9942 
0.9290 

1.0963 
0.9769 
0.937:3 

0.0,0.4) 
0.0,0.5) 
0.2,0.2) 

1.0020 
1.0006 
0.9899 

0.9778 
0.9875 
0.9426 

0.9265 
0.9544 
0.8332 

0.9428 
0.9672 
1.0303 

0.2,0.3) 
0.2,0.4) 
0.2,0.5) 

0.9945 
0.9976 
0.9992 

0.9465 
0.9655 
0.9841 

0.8368 
0.8844 
0.9405 

1.0018 
0.9892 
0.9907 

0.3,0.3) 
0.3,0.4) 
0.3,0.5) 

0.9914 
0.9964 
0.9988 

0.9561 
0.9739 
0.9887 

0.8582 
0.9077 
0.9556 

1.0072 
0.9989 
0.9973 

0.4,0.4) 
0.4,0.5) 
0.5,0.5) 

0.9972 
0.9991 
0.9995 

0.9855 
0.9940 
0.9976 

0.9443 
0.9749 
0.9893 

1.0009 
0.9996 
1.0000 
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Table 3-7• (continued) 

= 50,. ng .=. 10 , a .= 0.05 

^^^12 /o.5\ /o.t\ 1̂ 0.5 

Hi v-7 V°-y ^ Y'/ 

(0.0,0.0) 
(0.0,0.2) 
(0.0,0.3) 

1.0352 
1.0219 
1.0116 

1.1133 
0.9725 
0.9122 

3.4684 
0.8563 
0.5854 

1.3150 
0.8837 
0.7548 

(0.0,0.4) 
(0.0,0.5) 
(0.2,0.2) 

1.0044 
1.0012 
0.9659 

0.9134 
0.9505 
0.8176 

0.5627 
0.6778 
0.3762 

0.7628 
0.8539 
1.1049 

(0.2,0.3) 
(0.2,0.4) 
(0.2,0.5) 

0.9789 
0.9903 
0.9968 

0.8185 
0.8731 
0.9407 

0.3609 
0.4412 
0.6229 

0.9875 
0.9396 
0.9544 

(0.3,0.3) 
(0.3,0.4) 
(0.3,0.5) 

0.9689 
0.9867 
0.9960 

0.8436 
0.9033 
0.9597 

0.3878 
0.5033 
0.7024 

1.0227 
0.9888 
0.9861 

(0.4,0.4) 
(0.4,0.5) 
(0.5,0.5) 

0.9904 
0.9973 
0.9989 

0.9475 
0.9806 
0.9935 

0.6458 
0.8246 
0.9302 

1.0017' 
0.9977 
0.9999 

(0.0,0.0) 
(0.0,0.2) 
(0.0,0.3) 

1.0295 
1.0167 
1.0079 

a = 

1.0935 
0.9738 
0.9346 

0.10 
2.4876 
0.8560 
0.6582 

1.2520 
0.8953 
0.8095 

(0.0,0.4) 
(0.0,0.5) 
(0.2,0.2) 

1.0.027 
1.0006 
0.9746 

0.9457 
0.9748 
0.8586 

0.6792 
0.8087 
0.4489 

0.8417 
0.9217 
1.0684 

(0.2,0.3) 
(0.2,0.4) 
(0.2,0.5) 

0.9862 
0.9947 
0.9986 

0.8745 
0.9259 
0.9720 

0.4653 
0.5887 
0.7829 

0.9896 
0.9652 
0.9785 

(0.3,0.3) 
(0.3,0.4) 
(0.3,0.5) 

0.9819 
0.9934 
0.9983 

0.9036 
0,9497 
0.9828 

0.5235 
0.6714 
0.8502 

1.0119 
0.9941 
0.9941 

(0.4,0.4) 
(0.4,0.5) 
(0.5,0.5) 

0.9958 
0.9990 
0.9996 

0.9766 
0.9928 
0.9980 

0.8085 
0.9277 
0.9770 

1.0006 
0.9991 
1.0000 
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Table 3.7. (continued) 

II 1—
1 c
 5 0  y  ng .  = 10 . . a  =  0.25 

/o.^ 
V • V 

( o . ^  

V V 
/o.n 
V y 

/-o.^ 
\ ' y  

0 . 0 , 0 . 0 )  
0 . 0 , 0 . 2 )  
0 . 0 , 0 . 2 )  

1 . 0 1 7 8  
1 . 0 0 8 6  
1 . 0 0 3 4  

1.0550 
0.9820 
0 . 9 6 8 4  

1.5722 
0.8923 
0.8035 

1 . 1 3 9 7  
0 . 9 3 0 9  
0.9016 

0 . 0 , 0 . 4 )  
0 . 0 , 0 . 5 )  
0 . 2 , 0 . 2 )  

1 . 0 0 0 9  
1 . 0 0 0 2  
0 . 9 8 7 6  

0.9806 
0 . 9 9 3 6  
0.9269 

0.8589 
0.9437 
0.6285 

0 . 9 3 8 9  
0 . 9 7 9 1  
1 . 0 2 7 4  

0 . 2 , 0 . 3 )  
0 . 2 , 0 . 4 )  
0 . 2 , 0 . 5 )  

0 . 9 9 4 7  
0 . 9 9 8 4  
0 . 9 9 9 7  

0 . 9 4 7 4  
0.9768 
0 . 9 9 3 7  

0.6918 
0.8277 
0.9423 

0 . 9 9 4 7  
0.9891 
0 . 9 9 5 1  

0 . 3 , 0 . 3 )  
0 . 3 , 0 . 4 )  
0 . 3 , 0 . 5 )  

0 . 9 9 4 2  
0 . 9 9 8 4  
0 . 9 9 9 7  

0.9671 
0.9869 
0 . 9 9 6 7  

0.7744 
0.8905 
0.9676 

1 . 0 0 3 3  
0 . 9 9 8 4  
0.9989 

0 . 4 , 0 . 4 )  
0 . 4 , 0 . 5 )  
0 . 5 , 0 . 5 )  

0 . 9 9 9 2  
0 . 9 9 9 8  
1 . 0 0 0 0  

0 . 9 9 5 2  
0 . 9 9 8 9  
0 . 9 9 9 7  

0.9545 
0.9881 
0.9967 

1 . 0 0 0 1  
0 . 9 9 9 9  
1 . 0 0 0 0  

0 . 0 , 0 . 0 )  
0 . 0 , 0 . 2 )  
0 . 0 , 0 . 3 )  

1 . 0 0 6 7  
1 . 0 0 2 8  
1 . 0 0 0 9  

a  =  

1 . 0 2 0 3  
0.9927 
0.9906 

0.50 
1.1617 
0.9528 
0.9333 

1 . 0 4 9 2  
0 . 9 7 2 4  
0 .9695 
o

 o
 o

 
o

 o
 cv 

o
 o

 o
 

1 . 0 0 0 2  
1 . 0 0 0 0  
0 . 9 9 6 3  

0 . 9 9 5 7  
0 . 9 9 9 0  
0 . 9 7 7 0  

0.9654 
0.9906 
0 . 8 4 9 5  

0.9861 
0.9966 
1.0071 

0 . 2 , 0 . 3 )  
0 . 2 , 0 . 4 )  
0 . 2 , 0 . 5 )  

0 . 9 9 8 7  
0 . 9 9 9 7  
1 . 0 0 0 0  

0.9867 
0 . 9 9 5 6  
0 . 9 9 9 1  

0 . 9 0 2 4  
0.9624 
0 . 9 9 1 5  

0.9985 
0.9979 
0.9993 

0 . 3 , 0 . 3 )  
0 . 3 , 0 . 4 )  
0 . 3 , 0 . 5 )  

0.9988 
0 . 9 9 9 7  
1 . 0 0 0 0  

0 . 9 9 3 2  
0 . 9 9 7 9  
0 . 9 9 9 6  

0 . 9 4 4 7  
0.9809 
0 . 9 9 6 0  

1 . 0 0 0 6  
0.9997 
0.9999 

0 . 4 , 0 . 4 )  
0 . 4 , 0 . 5 )  
0 . 5 , 0 . 5 )  

0 . 9 9 9 9  
1 . 0 0 0 0  
1 . 0 0 0 0  

0 . 9 9 9 4  
0 . 9 9 9 9  
1 . 0 0 0 0  

0 . 9 9 4 0  
0.9988 
1 . 0 0 0 0  

1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
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IV. THE REGRESSION ESTIMATOR WITH 

A CERTAIN SHRUNKEN ESTIMATOR FOR THE MEAN 

OP THE AUXILIARY VARIABLE 

A. Introduction 

Let u be the mean of Y and be the mean of the pxl 

vector of auxiliary variables X. We consider In this chapter 

a regression estimator of u by using a shrunken estimator of 

the form cX:0 < c £ 1 for when prior Information about 

Is available, i.e. Is close to UQ, Instead of the usual 

minimum variance unbiased linear estimator X. We first con

sider the case p = 1 and following Thompson (1968a), we find 

the optimal value of c which minimizes the m.s.e. of p*, the 

regression estimator of u which Is defined below. The m.s.e. 

of u* will be derived and the efficiency of the preliminary 

test estimator of Chapter II relative to ii* will be discussed. 

Since Uq is known, without loss of generality, we let = 0. 

Let u = cX and assume erf , p known, then IJ* is defined 
X X y 

as y* = y-gcX where 

m.s.e.(U*) = E(y-6cX-U)^ (4.1) 

In order to find c to minimize (4.1), we differentiate w.r.t. 

c and equate to zero. Thus 
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E(y—3cX—y)^ — 0 

and since integrand is absolutely integrable, 

E ̂  (y-ecX-u)^ = 0 

E 2Cy-3cX-u)(-3X) = 0 

E yX - 3cEX^ - yEX = 0 

Therefore 

0 = " (4.2) 

M: + ^ 

Since is unknown, we may estimate it by X as in Thompson 

(1968a). Therefore 

— 0% 
c = -ZL_%__ (4.3) 

''-'4 
Hence the regression estimator of u using a shrunken estimator 

for is 
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or 

nX + a 2 
X 

(4.4) 

The case p = 2 can be treated similarly even though the 

derivations are more difficult. This case will not be treated 

here. The case p ^ 3 will be treated in section C of the 

present chapter. 

B. The M.S.E. of u* and Relative Efficiency (e^) 

m.s.e.(ii*) — E[y — —=—— — p ] ̂ ( 4 . 5 )  

= E(y-u)^ 23E + 26 ̂E — 
nA • +. cr^ 

The second term can be evaluated as 

-2Bg'EE[ IX] 
nX + 0^ 
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= -23a^(u-3u^)E—5^ 
* ^ nX^ + aj * nX^ + aj 

(4.6) 

Therefore 

•- —. 2 
m.s.e.CÎ*) = E(y-u)^ + - 23^cr^E-^ 

nX" + gj " nX" + 

* (nX^ + a:)2 

= ^0^ + 23O ^ E—^ 23^ff5E ^ 
n XX ̂ ^2 + g2 X ̂ ^2 ̂  g2 

+ 3^a\ 2 (4.7) 
^ (nr + o:)2 

We may now use the Gauss-Herralte quadrature to evaluate the 

above expected values. The relevant approximation given in 

equation 25.4.46 and Table 25.10 of Davis and Polonsky (1964) 

is 

00 2 k 
/ e~ f(x)dx = £ W.f(x. ) + R. (4.8) 
-co i=l 1 ^ ^ 

where x^^ are the i-th zeros of Hermite polynomials H^(x), 

which are the related orthogonal polynomials. The weights 
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The remainder 

^ 2^(2k) 

To use (4.8) we make the following transformation. 

X = y ~ N(u^,-^) . 

Therefore 

E-f 7-f  ̂ dy 
nx + -»ny + aj 

Let 

=/|(: 

rô 

y =/ -(xa^) + 

^ dx . dy = X n 

Therefore 

X_ = " "x _ïS g-x^/1 

'*' ®x "°°n[/^(xo^) + /2iroJ 
n *x4x 
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Therefore 

E " + "x ^ (^.9) 

+ "x -"nC/|(x<j,) + K,]2+c! 
n X X '  

Similarly 

E_fl_ . 7 i e-^x 

and 

E_^ . . 1 i e-'dx (4.11) 
(nx +aj)2 -»:n(/|(xa^) + ^ 

Efficiency of the preliminary test estimator (y) relative to 

M* is 

^ /— 
M.S.E.(U)/ M.S.E.Cu*) 

= M.S.E.(y*) (4.12) 
M.S.E.(y) 

= 3 

Therefore, using (2.24) and noting that 3 = %i2^22* have 
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" Vî-A; -

- >i2Hp+2( = :^) + 2B2^2H^^^(o;X) 

and wlog we let = 1. Hence 

e = i + 2p2u E-l- - ap^E-^ + 
^ ^^ nX^+1 nX^+1 (nX^+1)^ 

H - P^M®Hp^,(o;X) - ̂ p\+2{c.;A) + 2p2w2Hp+2(o;A) 
( 4 . 1 3 )  

The values of e^ for n = 9, and k = 20 are given in Table 

4.1 for certain choices of y^, p and a. Prom the table we 

observe that 

1. e^ has a maximum greater than unity at = 0. Again 

this corresponds to the case when the null hypothesis of the 

preliminary test is true. 

2. For fixed n, and a, e^ is in general a decreasing 

function of p. 

3. For fixed n, \x^ and p, e^ is also generally a 

decreasing function of a. 

4. For fixed n, p and a, e^ first decreases to a minimum, 

then increases to above unity and then finally drops back to 

unity as increases. 
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Table 4.1. Values, of for n = ,9 and k = 20. 

. a = . .05 . a = .10 a = .25 .10 a = .25 

.7 .9 

P 

.7 .9 .7 .9 

0.0 
0.1 
0 .2  

1.1430 
1.0836 
0.9568 

1.3674 
1.1930 
0.9184 

1.0193 
0.9821 
0.9023 

1.0424 
0.9632 
0.8243 

0.8550 
0.8491 
0.8398 

0.7330 
0.7286 
0.7270 

0.3 
0.4 
0.5 

0.8299 
0.7352 
0.6751 

0.7269 
0.6174 
0.5586 

0.8217 
0.7650 
0.7359 

0.7155 
0.6541 
0.6293 

0.8342 
0.8414 
0.8630 

0.7331 
0.7551 
0.7933 

0.6 
0.7 
0.8 

0.6444 
0.6407 
0.6608 

0.5325 
0.5332 
0.5574 

0.7320 
0.7515 
0.7904 

0.6318 
0.6596 
0.7091 

0.8966 
0.9395 
0.9844 

0.8449 
0.9087 
0.9761 

0.9 
1.0 
1.3 

0.7030 
0.7638 
0.9694 

0.6055 
0.6767 
0.9528 

0.8440 
0.9047 
1.0390 

0.7782 
0.8600 
1.0625 

1.0250 
1.0558 
1.0810 

1.0391 
1.0888 
1.1332 

1.6 
1.9 
2.2 

1.0478 
1.0444 
1.0338 

1.0782 
1.0734 
1.0559 

1.0583 
1.0450 
1.0338 

1.0961 
1.0744 
1.0559 

1.0624 
1.0452 
1.0338 

1.1032 
1.0747 
1.0559 

2.5 
2.8 
3.1 

1.0262 
1.0209 
1.0170 

1.0433 
1.0345 
1.0282 

1.0262 
1.0209 
1.0170 

1.0433 
1.0345 
1.0282 

1.0262 
1.0209 
1.0170 

1.0433 
1.0345 
1.0282 
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C. The Shrunken Regression Estimator for p ^ 3 

In this section we consider the shrunken regression 

estimator for p ̂  3. Suppose 2 is known. Wlog we let ̂ 22 ~ ̂  

and = 1 and consider the regression estimator 

Î, = y - S,,X(1 - 2=2) (11.14) 
1 2̂- X'X 

where following James and Stein (196O), we use 

X(1 - 24) 
X'X 

as an estimator of 

We shall now derive the m.s.e. of and the efficiency 

of the preliminary test estimator, y» relative to We 

shall denote this relative efficiency by e^j. 

m.s.e.(y,) = E[y - 2,pX(l - ̂ ——) - u]^ (4.15) 
-L X ̂  V t V 

= E(y-y)2 - 22 pEyX(l - + gyZ.gEXXl -
xi X»X X'X 

+ z E[(1 - 5^)XX*(1 -
Id X'X X'X 

Now 

EyX = EEyXlJ 

= EX[U + 

= + G(:3')Z21 
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Similarly 

yx X 

X 1c XX' 

Therefore ^ 

X 

X'X 
m . s . e . ( û j _ )  -  i  +  2 Z i 2 Ë x Ë ^ : 2 1  "  

, (XX') 
- Ẑ 2E(M')Î2i + (P-2)":i2Ê p̂  :2i 

Using (2.24) and wlog letting = I, = 1, the efficiency 

of the preliminary test estimator relative to 

& + 2 _ 2(p_2)Z,2 

®4=î 
n " ̂ 12y*y%^2lHp+4(°'^) ~ n^l2^21^p+2^°»^^ 

2 (#' ) 
+ (P-2) ̂ 12 G ^21 - ̂ 12^(2^')"21 

To evaluate e^j, we need to evaluate 

X 
(1) E — . 

X'X 

(4.16) 

1 
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( 2 )  EXX' , and 

(3) 
XX' 

(X'X) 2 

Where X - N(u^, ̂ I). Let X = U so that X^ 

where 

then 

E 
X'X 

u. 
E 

2 U' 
1=1 

U. 

2 
2 U, 

1=1 ^ 

E-A 

V 
2 U' 

1=1 
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We now consider the i-th component of (1) and note that 

U'U = lu® = UzH 2 -. x!(n llkxll 

Where 

i.e. 

Therefore 

Therefore 

P 

Xp+2K 

K~Polsson(| 2) 

2 "^x" ,n I I . .  I I  2;k 
p ( K = k )  =  —  

kl 

E ( — )  = E (  1  )  
Hull X= 

P+2K 

= EE(—-—|K) 

Xp+2K 

'P-2+2K 

P 

(4.17) 

||u|| ̂  b=o fei lull 2^ ^V2+2K> = 
(4.18) 

Alternatively using the independence and marginal density of 

each component, we may also write 
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• j-i P p 
E "2 ^ . . . . 00 2 2 j=l -3 .J 

^^liÛîF ̂  |. dU^---^Up (4.19) 

j—2 j (2?) 

Differentiating (4.18) w.r.t. li^ we have 

A. ziiiA'M 
^"1 Hull 2^ ° fe=o P=^ fel 

-I I «I ? 

= nvi. S 
/" j'l'J (# \ "P'' 

1 feîo P-2+2(k+l) fe! 

- 2 y? ,n Ç ,.2xfe 
1 e 2 j=i j <2 Z 

- rlH, I ^ 
1 k:o k! 

Therefore 



I6l 

Similarly differentiating (4.19) w.r.t. u., we have 

E .§1(0-11,)^ 
3 E( 1 ,.) = /."•/ ^ dU....dU, 

'"i IIUll 2 — P 2 "'"i "1' E ""1 P 
I "l (2^)2 

= n E( ^ ^p) 
Null (4.21) 

Equating (4.20) and (4.21), we obtain 

||yII 2^ ^1 B(p+2K) (4.22) 

Hence we may denote 

X 
E(—-—): 
X'X 

by L where L is a pxl vector whose 1-th component 

^1 B^p+2K) 

= H. 2 
1 fe=0 

2 %2(n z %2)k 
2 0 ^ j~l 1 

ki 
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Now the second term is 

E(XX' ) = ,V( X) 

n I + (4.23) 

The third term, 

XX» 
E-
(X'X)^ 

is a pxp matrix with 1-th diagonal element 

K 
P 2 2 

( S 
j=i ^ 

and i-&th off-diagonal element 

p 2 • 
( S Up' 
j=l ^ 

to evaluate 

P' 
^1 

( E u2)2 
j =1 ^ 

we may twice differentiate alternative expressions for 

E (—— 

I I E I I  ^  
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w.r.t. and then equate the results. Thus using an expres

sion similar to (4.18), we have 

fSf 

- 1 2 e j=l ^ 

"®'p+2K' * ("I'l' ®'P+2+2K' " ^'P+2K'" 

- ^(pkK)'+ 

(4.24) 

Next, using an expression similar to (4.19), we have 

^ ' "4- '7^ - "4 

CU-^ I -L .  )  n p C-Uj""yjt ) 
- nEnU. —-—5- - nE(—-—=0^-n%.nE ^ « 

( Hail ) Hall ( Hall ) 
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^ Hull Hull 2)2 ' Hull 

•'''Trâ  * "'''•'TiïF'' 

Therefore equating (4.24) and (4.25), we have 

• "Vèpf - - -'lip'' • "'"••'TÎF'' 

u2 

 ̂I,..M 2.2 = ^(F2K>' + 
\ ll^ll / 

Similarly to evaluate 

E-A^ 
P 2 2 ' 

( 2 U?)^ 
J=1 ^ 

we differentiate each of the alternative expressions for 
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first w.r.t. and then w.r.t. and equate the results 

Thus using 

•'Tsr'" • 

- . ,a P 
" fe=0 ^9-2+2%) 

we have 

n P 2 t 
-0 

» 1 

_n S „2 

1 .2, ... .e 
CO 

- ^^i (p-2+2k) (-*%&) 
hi 

" z vLlS. ? „2,fe-l 
» , 2 

= "%"! ECjnèîâK)^ - ®'pT2K'^ 
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Next using 

n 5 ,2 

E(—i—)^ = /•••/ —5 dUT..dU , 
00 

we have 

^2 1 p nU.(Uj-U») (Ug-Mo) 
3 E( ^ = nE ^ ^22 " "^1"^ , ,,2 2 

ap^a^i Hull ̂  ( lluir)'' ^ ( Hull ) 

2 UjUg 2 U. 

"^riiuiTV Hull 

Further we note that from (4.22) we can deduce that 

^ Hull 

and 

^rilupy2 " 

Thus (4.28) is equivalent to 

3^ ^,1 \2 _ _.2„ _ 0^2,. n/ 1 \2 
2^ ~ " iittII 2V2 " ^i^&^''p+2K^ Hull ( Hull ) 

(4.29) 
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Therefore equating (4.27) and (4.29), we have 

n WiW&E(p+2+2K) " ^i^&B(p+2K) ||^|| 2^ 

^ ̂( Huji 2)2 ~ ^i^A^^P+2+2K^^ (^.30) 

Denote 

XX' 
E 
(X'X) 

by M, then M is a pxp matrix whose i-th diagonal element 

"l . + V2e(-^)2 

( llsll ') 
2x2 n \p+2K' ^l"\p+2+2K' 

1 : , 1 ,2 e ^ 3=1 ̂  

H fefofïïÎ2Î2E> fe. 
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and the l-&th off-diagonal element 

2 
^ Hull ° "l*&G(p+2+2K 

t,-n ^P+2+2k^ 

"§ Z u?(| Z 
^ j=l J j=l ^ 

k=0 ^ fe! 

Thus substituting 

"à • 
E 
(X'X)^ 

and 

E(XX' ) 

into (4.16), we may write 

«4 = lîf} ("-31) 

Where 

h<a) = i + " 2(P-2)Zi2l4^^21 

+ (p-gj^Z^gMZgi - - ̂12^21 



= H . (Yfoj-'+V^! je'iiStj - 5 . (%)q 

pU-B 

691 
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VII. APPENDIX, 

To justify the result in (3.7) we consider, wlog, the 

differentiation of T w.r.t. 6. 

If = ^ jîo ® ^ 31^2)^hp+2j(t)dt (A.l) 

Let 

g(t,ô) ^2^ e ^ j\(2)^hp+2j(t) (A.2) 

We can differentiate under the integral sign in (A.l) by the 

Lebesgue Dominated Convergence Theorem if^ t. 

R(t,ô+s) - 8(t,ô) < G(t) 

for every jsj ± s_ where G(t) is integrable over (c,»). Using 

triangular inequality, 

|g(t,8) - g(t,6+s)l < lg(t,6) - go(t,6+s)t 

+ |gQ(t,6+s) - g(t,ô+s)1 

where 

-4(6+S ) -1 • 5 A 
gQ(t,6+s) = e JT^l\ 
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then 

e(t,ô) - R(t,6+s) 
s 

-is. 
< E e 
j=0 

2" (e -1) 

(A.3) 

" —('S+s) ((«+s)j_aj} 
+ Z e 
J=0 2^y. 

S 

.2®0 

— s, for |s| < SQ 

so that the integral of the first term of right side of (A.3) 

^s„ „ „ 1, 1 1= 
2"0 « " n r . ^^0 2®0 

< V— / 2 e 2 1 (|)«3h (t)dt = [1-H (c;6)]<® < = 
^0 c j=0 ®0 P Sq 

-|s |l s I |s 
Next e < e < e^ ̂  

AlsOjif we let f(x) = , f ' (x) = Jx^'~^. 

(6+8)3 = f(ô+s) = f(6) + sf'(ô+es) 

by the Mean Value Theorem = + sj(ô+es)^~^ 

(5+S)3 -
s 

< j(6+«|8|)J"l < j(6+6So)J"l 

< JCô+SQO^"" for j ̂ 1; (0 < Ô = e(s) < 1) 
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This implies that the integral of the second term of (A.3) 

" -Ig j(G+8 
< e^ u ; g e ^ h„.„.(t)dt 

c j=l 2^ j I P 

1 |s 00 00 (a+8 )J-1 

e'° / r ^ hp+2j+2(t)dt 
0 J=0 

®n s 
= e [l-Hp+gfciG+Sg)] < e < «> 

Therefore 

- • 1*1 A<t>' V./"" 36 

Let 

gj(t,ô) - e -jl— hp+2j(t) (A.4) 

In order to differentiate under the summation, we must show 

that for every fixed t. 
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where 

I U.(t) < «. . 
j=0 ^ 

hp+2j(t) 
- • 

2 r (^1^) 

r(4^) / e"* X ^ 
^ - 1 

dx 

I P+2j 
> / e": X 2 
0 

- 1 

dx 

-I I E±2i . 1 
^ e / X dx 

0 

E±21 

E±2i 
2 

Therefore 

E±^ _ 1 

h._. (t) < ' ! (2±2i) = i E±?i (A.5) 
'p+2r ̂  - ~~ï P+2.1 ^2 ' X 2 

e'2 (|) 
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By triangular inequality. 

| g j ( t , 5 )  - ,  S j ( t , 6 + s ) I  <  | g j ( t , 6 )  -  g j o ( t , a + 8 ) I  

+  | g j Q ( t , 6 + 8 )  -  g j ( t , 6 + 8 ) |  

where 

GjO^t'G+s) = e 

By similar arguments as above and using (A.5), 

g j(t,6) - g j(t, 6+s) 

< k  Z  ( p + 2 j ) e  ^  f r ( § ) ^  
X j=Q J. ^ 

-2(6+3^) «+S 

4  k p  Z  ( p + 2 j )  ^  
j=0 2" " 

Z U.(t) < «» 
i = o  J  

since each term is some moment of a Poisson distribution and 

kg are fixed constants. 

To justify the result in (3.9)» we let 

( dZ^^' = TdT 
/2TT j=l 

(A.6) 
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Therefore (3.8) 

= /•••/ e * TdZ^^-'dT 
A 

Let 

-^(z(^)-Y^(l))2 
e T = g( T,Y^ ) • 

We must show that for every fixed T 

e(T, Y^^^+h) - g( T, 
1 1 «T).|h| 1 hg (A.7) 

where 

/• • $(T)dz(l)dT < 00 
A 

Now 

--?{z(l)-(Y (i)+h)]2 --^^z(l)-Y (1)) 
e - e ^ 

h 

n 

= e 

^ h(z(l)-y (D) 
0 ^ • A . 0 

h 

. n 

2 1  
(A.8) 



l8o 

If f^(h) = f^'Ch) = Let 

e 

n 

~2 
= f^Ch) = f^CO) + hf^'Ce^h) (A.9) 

. . .  A . < " - , . " . , . ^ " " ' - ' . " ' >  

Let 

n 

e ^ = fgCh) = fgfO) + hfg'CGgh) 

2 2 
_ V2^ 

= 1 - n^Ggh^e ^ (A.10) 

Multiplying (A.9) and (A.10) we have 

-^h(z(l)-Y (1)) -^h^ 
e ̂  ^ e 

n^8nh /,  \  / J  

2 2 

\ n 

" 2  *  

Therefore for |h| £ h^, the expression in (A.8) 
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%(!)__ (1) 
' X 

!:A|,(i).^^(I) 

n?h? 

= e + c. 

+ c^e 

where 

^1^1 2 
°1 = -2^(1 + "ihi ) 

and is some function ol Finally we note 

.,.f 5.4""VV,,„, 
Â j=l /2TT 

+ c, / • • • / I Z 
^ 5 

(1)_Y <i) 

/ITT 

n P 

T ̂  
j=l /2? 
j/1 

n 
i(z") 

dz(i)dz(J) 
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':-;|z 
A 

(1)_T (1) 5  
/2Tr 

n 

/.'./* (T)dz(^^dT < 00 


