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Abstract 

Today's manufacturers need accelerated test (AT) methods that can usefully predict service 

life in a timely manner. For example, automobile manufacturers would like to develop a 

three-month test to predict 10-year field reliability of a coating system (an acceleration 

factor of 40). Developing a methodology to simulate outdoor weathering is a particularly 

challenging task and most previous attempts to establish an adequate correlation between 

laboratory tests and field experience has met with failure. Difficulties arise, for example, 

because the intensity and the frequency spectrum of ultraviolet (UV) radiation from the 

Sun are highly variable, both temporally and spatially and because there is often little 

understanding of how environmental variables affect chemical degradation processes. 

This paper describes the statistical aspects of a cooperative project being conducted at the 

U.S. National Institute of Standards and Technology (NIST) to generate necessary 

experimental data and the development of a model relating cumulative damage to 

environmental variables like UV spectrum and intensity, as well as temperature and 

relative humidity. The parameters of the cumulative damage are estimated from the 

laboratory data. The adequacy of the model predictions are assessed by comparing with 

specimens tested in an outdoor environment for which the environmental variables were 

carefully measured. 

Key words: Cumulative damage, Nonlinear regression, Photodegradation, Prediction, 

Reliability, Weathering 
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1. Introduction 

1.1  Background  

Photodegradation, caused by UV radiation, is a primary cause of failure for paints and 

coatings (as well as all other products made from organic materials) exposed to sunlight. 

Other variables that affect degradation rates include temperature and humidity. 

Manufacturers of such paints and coatings have had difficulty in using laboratory tests to 

predict field experience for their products. Historically, most of the laboratory tests attempt 

to accelerate time by “speeding up the clock.” This is done by increasing the average levels 

of experimental factors like UV radiation, temperature, and humidity and cycling these 

experimental factors more rapidly than what is seen in actual use, in an attempt to simulate 

and accelerate outdoor aging. Such experiments violate the basic rules of good 

experimental design. For example, varying important factors together tends to confound the 

effects of the factors. Also, levels of the accelerating variables that are too high may induce 

new failure modes. For these reasons, such accelerated tests provide little fundamental 

understanding of the underlying degradation mechanisms and conclusions from them can 

be seriously incorrect. Because experience has shown that the results of these tests are 

unreliable, standard product evaluation for paints and coatings still requires outdoor testing 

in places like Florida (where it is hot and humid) and Arizona (where it is hot and dry). 

Outdoor testing, however, is costly and takes too much time. 

Martin, Saunders, Floyd, and Wineburg (1996) and Martin (1999) provide a detailed 

description of issues relating to prediction of service life (SL) for paints and coatings. In 

general the accelerated test methodology for photodegradation is much more complicated 

than those typically used for electronic and mechanical devices (e.g., as described in 

Nelson 1990 and Chapters 18-21 Meeker and Escobar 1998). This is because of the 

complicated chemical/physical failure mechanisms involved and the highly-variable use 

environment.  

1.2  Motivation 

Accelerated test (AT) methods have proven to be useful for predicting the SL of materials 

in certain applications. These range from jet engine turbine disk materials to highly 
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sophisticated microelectronics [these successful applications are described, for example, in 

Gillen and Mead (1980), Joyce et al. (1985), Starke et al. (1996), and the many examples 

cited in Nelson (1990)]. In other areas of application, however, AT methods often yield 

predictions that do not correlate well with field data. This is particularly true for products 

exposed to outdoor weathering, such as organic paints and coatings used on automobiles, 

bridges, buildings and other outdoor structures [e.g., Martin et al. (1996) and Wernstål and 

Carlsson (1997)]. For this reason, conventional laboratory AT methods are not trusted for 

outdoor-use products and potential users of such tests have been forced to rely on 

expensive, time-consuming outdoor testing.  

Traditional applications in reliability and service life prediction based on accelerated test 

results, involve chemical degradation that is accelerated by increasing variables like 

temperature, humidity, and current density or voltage stress, using statistical models that 

are motivated by knowledge from physical chemistry. The research described in this paper 

is a natural extension of previous work in this area to the more complicated area of 

photodegradation. 

 

2. Experimental Data 

Degradation (or damage) at time t , denoted by Ð(t) , usually depends on environmental 

variables like UV , temperature, and relative humidity  that vary over time. Laboratory tests 

are conducted in well-controlled environments, usually holding these variables constant 

(although in other experiments such variables are purposely changed during an experiment, 

as in step-stress accelerated tests). Interest often centers, however, on life in a variable 

environment.  

2.1  Time Scale for Photodegradation 

It is important to choose an appropriate time scale to describe the behavior of a failure 

mechanism (e.g., number of miles for an automobile engine bearing or number of cycles 

for fatigue caused by cyclic stress). The appropriate time scale for photodegradation is 

photon dosage.  In our data sets, dosage is given in units of KJ/m2/nm and is a number that 

is proportional to the number of photons absorbed into the experimental specimens. 
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2.2  Indoor Data  

In the current phase of the NIST research program, the goal has been to develop a service 

life prediction methodology using as a simple model, a crosslinked epoxy amine coating 

system. The methodology described in this paper is being developed, however, to allow 

easy generalization to service life prediction of other types of materials that will be exposed 

to outdoor weathering.  

Researchers at NIST have conducted weathering experiments in both the indoor laboratory, 

as well as in outdoor exposure facilities. Indoor data are being taken in 

temperature/humidity-controlled chambers illuminated by controlled UV light from the 

NIST Sphere [described in Martin et al. (1999) and Chin et al. (2000)].  

Indoor data received from NIST consist of the variables: 

• Specimen Number (SA) identifying the testing chamber number and a number of a 

particular specimen within the chamber. 

• Damage number (DA) for four peaks in the measured FTIR spectra. The heights of the 

peaks correspond to the amount of particular chemical products and these were 

measured systematically, over time, and have units cm-1.  One of the studied damage 

numbers was the peak at 1510 cm-1, which corresponds to benzene ring mass loss. Other 

peaks being used as potentially useful responses include 1250 cm-1 (aromatic C-O), 

1658 cm-1 (oxidation products), and 2925 cm-1 (CH mass loss). 

• Bandpass Filter (FI) is the center wavelength in nanometers (nm) of the bandpass filter 

used in exposure.  Table 1 Bandpass Filter characteristics also gives the range of the 

bandpass filters. 

 

Table 1 Bandpass Filter characteristics 

 
 

 

 

Range Nominal  Filter Midpoint 
303  nm 309  nm 306 nm 
320 nm 332  nm 326 nm 
334 nm 372  nm 353 nm 
372 nm 532  nm 452 nm 
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• Neutral Density (DE) is the nominal transmittance rate of a neutral density filter 

ranging from 0% to 100%. 

• Temperature (temp)  in Celsius.   

• Relative Humidity (RH) which ranges from 0% to 100%. 

• DOSAGETot, as part of the indoor data, is a metric proportional the total number of 

photons absorbed into the degrading material. 

• DAMAGE values are the responses and measure the photolytic part of the chemical 

damage to the test specimens. 

• Wall Clock is the real clock time when the data is recorded, as the number of days since 

January 1, 1900.  

Table 2  Experimental Variables and Levels 

Variable Units Levels 

Damage Number (DA) cm-1 1250,1510, 1658, 2925 

Bandpass Filter (FI) nm 306, 326, 353, 452 

Neutral Density (DE) % 10, 40, 60, 100 

Temperature (temp) oC 25, 35, 45, 55 

Humidity (RH) % 0, 25, 50, 75 

Table 2 shows the levels of the experimental variables in the Indoor data. Not all 

combinations of humidity and temperature levels data were available at the time of the 

analysis provided here.  Table 3 shows the combinations that we used. 
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Table 3  Available data 

                RH
temp 0% 25% 50% 75%

25oC x    
35oC x    
45oC x   x 
55oC x x x  

      Data not available    
   Data used for modeling    
 x   Data not used for modeling 

2.3  Outdoor damage data 

Outdoor exposure data on specimens made of the same material were also collected at 

NIST. For outdoor specimens, damage is typically measured after every few days of 

exposure and this information is recorded in addition to spectral irradiance and weather 

data (temperature and humidity). Although there was no control of experimental variables 

for the outdoor data, temperature, humidity, and solar data were recorded, as described in 

the next subsection. Specimens in the outdoor were grouped by date, with 18 groups and 

four replicates for each group.   Each group was exposed across different months, therefore 

temperature and humidity change from group to group. The outdoor data will allow us to 

check our predictive model. This will be done by generating damage predictions based on 

the model derived from the indoor data.  To do this, the indoor model is driven by the 

outdoor weather data to compute predictions that can be compared with the corresponding 

actual outdoor damage. 

2.4  Outdoor weather data 

SOLARNET, a solar UV data network, stores spectral irradiance data with a 12-minute 

resolution as well as climatological data (temperature, relative humidity, etc) as 1 minute 

averages [described in Kaetzel, (2001)].  

3. Analysis and Initial Modeling 

Initially, extensive graphical analyses of damage versus dosage paths plots were conducted 

to get a good understanding of the data and possible relations among variables in the data 
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set.  Plots of empirically estimated acceleration factors provided insight on the effects that 

experimental explanatory variables have on the response. 

Acceleration factors are commonly used to describe the effect that accelerating variables or 

other experimental variables have on lifetime or degradation rates.  Acceleration factors 

can be expressed as the ratio of life at “fixed test conditions” to life at “higher test 

conditions".  Acceleration factor plots were examined for temperature, humidity, and the 

different UV radiation band pass filters. 

3.1  Data Cleaning 

An important phase of modeling is looking at the raw data to identify strange patterns, 

outliers or other data anomalies that could affect the modeling efforts and possibly result in 

unreliable estimates.  Even though data were collected under a controlled environment 

using sophisticated analytical devices to assure the accuracy of the data, exhaustive use of 

graphical assessment procedures helped to identify some potential problems.  The root 

cause for all such problems was determined and appropriate adjustments were made to the 

data.  For example, we detected a sharp drop in the damage rate for samples at 45oC and 

75%RH.  The root cause for this problem was the failure of an integrated circuit chip in the 

environmental controllers that caused the samples in one of the chambers to be overheated 

for a period of time.  Similar problems were identified at 55oC and 25%RH as well as at 

55oC and 50%RH.  Those specimens that were subjected to this overheating were not used 

in the modeling process. Also, data from the bandpass filter with nominal midpoint of 353 

nm did not agree with the data from the other bandpass filters when fitting a model to 

estimate the effect of wavelength on damage rates. For this reason, these data were also 

ignored in the modeling. 
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Figure 1   Illustration of data cleaning for the FTIR peak at 1658cm-1 for units exposed with 326 nm 
nominal bandpass filter midpoint and 75%RH. a) Original data paths.  b)  Data paths after deleting 
outliers and increasing tails. 

Another potential data complication is   a change of direction of the degradation path.  For 

example, Figure 1a shows that the FTIR peak at 1658cm-1 increases until dosage reaches 

approximately 4x103 KJ/m2/nm, after which the degradation paths begin to decrease. This 

behavior is thought to be caused by physical and chemical changes in the specimens.  

Because the turning point is far beyond the definition of failure, modeling beyond the 

turning point is not needed.  Thus we cut increasing/decreasing tails after the turning point 

for those cases where degradation paths changed direction.  In addition specimens at 

0%RH were used only in the preliminary stages to understand data behavior. Because 

0%RH is outside of the region of interest and because there was no apparent simple model 

to connect these “dry” results with the units run with humidity, the 0%RH data were not 

used in our modeling. 
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3.2 Initial Modeling 

The data that have been analyzed to date seem to be consistent with both first-order and 

second-order kinetic models. Over the dosage range of interest, (that is up to the point 

where ( )tÐ  has reached a failure state) we have found, empirically, that the simple 

parsimonious functional form  

 
exp(z)Ð(t) = [Ð( )-Ð(0)]

1+exp(z)
⎡ ⎤

∞ ⎢ ⎥
⎣ ⎦

                                                          (1) 

 

[ ]log ( )d t
z

μ
σ

−
=                                                                                       (2) 

fits the data well for all FTIR peaks of interest and at all combinations of the experimental 

factors for which we have received data. Here ( )td  is the effective total dosage.  Also, 

( )0Ð  is the standardized level of damage at time 0 and )Ð(∞  is the long-term asymptote; 

while μ , and σ  are parameters that describe the location and steepness of the damage 

curve, respectively. In the overall model, time-scaling factor )exp(μ  will be a function of 

the environment and additional unknown parameters. When fitting data to a single path, if 

the asymptote cannot be estimated from the data (because the path has not begun to level 

off sufficiently), a good fit to the data can be obtained, without loss of generality, by setting 

)Ð(∞  to a safe lower bound (upper bound) on the asymptote when the damage variable is 

decreasing (increasing). When we fit data to the overall model, we will be able to “borrow 

strength” from paths at other conditions where the asymptote can be identified. For the 

NIST data on the epoxy material under study suggest that there is, approximately, a 

common asymptote for each FTIR peak, independent of the experimental conditions and 

we assume this in the overall model. 

As an aid in model identification, a plot of an acceleration factor versus a particular 

experimental variable can be generated by fitting the model in equations (1) and (2) with a 

common value of σ and a different value of μ  for each level of experimental variable. The 

acceleration factor at a given test level of the variable, relative to a specified reference 

level, is 
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( )
( )

test

reference

exp
(test,reference)

exp
AF

μ
μ

=  

The acceleration factors for the different levels of the experimental variables can be plotted 

in a manner such that the points should fall roughly along a straight line if the hypothesized 

model is adequate. 

4. Model for the Effect of UV Radiation on Photodegradation 

Many of the ideas in this section are based on early research into the effects of light on 

photographic emulsions (e.g., James 1977) and the effect that UV exposure has on causing 

skin cancer (e.g., Blum 1959). 

4.1  Model for Total Effective UV dosage 

As described in Martin et al. (1996), the appropriate time scale for photodegradation is 

TotD , the total effective UV dosage. Intuitively, this total effective dosage can be thought of 

as the number of photons absorbed into the degrading material and that cause chemical 

change. The total effective UV dosage at real time t  can be computed from  

Tot Inst0
D ( ) D ( )  

t
t dτ τ= ∫                                                (3) 

where the instantaneous effective UV dosage InstD  is  

 ( ){ }2 2

1 1
Inst Inst 0D ( ) D ( , ) ( , ) 1 exp ( ) . d E A d

λ λ

λ λ
τ τ λ λ τ λ λ φ λ λ= = − −⎡ ⎤⎣ ⎦∫ ∫  (4) 

 

Here 0E  is the spectral irradiance of the light source (both artificial and natural light 

sources have mixtures of light at different wavelengths, denoted by λ ), [1 exp( ( ))]A λ− −  is 

the spectral absorbance of the material being exposed (damage is caused only by photons 

that are absorbed into the material), and φ(λ) is a quasi quantum efficiency (QQE) of the 

absorbed radiation (allowing for the fact that photons at shorter wavelengths have higher 

energy and thus a higher probability of causing damage). The functions in the integrand of 

equation (4) can either be measured directly ( 0E  andA ) or estimated from experimental 

data (φ(λ)).   The definition of dosage in (4) differs from the dosage in our data (as 
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described in section 2.2) because the QQE function is unknown and needs to be identified 

from the experimental data. 

4.2  Intensity effects  and reciprocity 

The intuitive idea behind reciprocity in photodegradation is that the time to reach a certain 

level of degradation is inversely proportional to rate at which photons reach the material 

being degraded. Reciprocity failure occurs when the coefficient of proportionality changes 

with light intensity.  

Although reciprocity provides an adequate model for some degradation processes 

(particularly when the dynamic range of intensities used in experimentation and actual 

applications is not too large) numerous examples have been reported in which there is 

reciprocity failure (e.g., Blum 1959 and James 1977). Light intensity can be affected by 

filters. Sunlight is filtered by the earth’s atmosphere. In laboratory experiments, neutral 

density filters are used to reduce the amount of light passing to specimens (without having 

an important effect on the wavelength spectra), providing an assessment of the degree of 

reciprocity failure.  

Reciprocity also implies that the effective time of exposure is  

 
2

1
Tot Inst

0
( ) CF D ( ) CF D ( , )

t
d t t d d

λ

λ
τ λ λ τ⎡ ⎤= × = × ⎢ ⎥

⎣ ⎦∫ ∫           (5) 

 

where CF  is an acceleration or deceleration factor for UV intensity. For example, 

commercial outdoor test exposure sites use mirrors to achieve, say “5 Suns” acceleration or 

CF  = 5. A 50% neutral density filter in a laboratory experiment will provide deceleration 

corresponding toCF  = 0.50. 

When there is evidence of reciprocity failure, the effective time of exposure is often 

modeled by  

2

1
Tot Inst

0
( ) (CF) D ( ) (CF) D ( , )

t
p pd t t d d

λ

λ
τ λ λ τ⎡ ⎤= × = × .⎢ ⎥

⎣ ⎦∫ ∫                             (6) 

where p is known as the Schwarzschild coefficient. This model has been shown to fit data 

well and experimental work in the photographic literature (e.g., James, 1966) suggests that 
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when there is reciprocity failure, the value of p  does not depend on wavelength λ . A 

statistical test of 1p =  can be used to assess the reciprocity assumption.  

For the NIST data on the epoxy material under study, there is no evidence of reciprocity 

failure. Thus, for this material, we expect to be able to use 1p = . Our model is, however, 

general enough to allow for reciprocity failure.  Therefore, for modeling purposes, averages 

of damage values for specimens exposed at same conditions but different neutral density 

filters were used instead of individual paths. 

Following other work in the area of photodegradation (e.g., Miller at al. 2002), we will 

assume a simple log-linear model for QQE. That is, 

0 1( ) exp( ).φ λ β β λ= +  

The integral in equation (5) and subsequent integrals over wavelength are typically taken 

over the UV-B band (280—315 nm), as this is the range of wavelengths over which both 

( )φ λ  and 0( )E tλ,  are importantly different from 0. Longer wavelengths (in the UV-A band) 

are not terribly harmful so that ( ) 0≈λφ . Shorter wavelengths (in the UV-C band) have 

more energy, but are absorbed by ozone in the atmosphere so that 0( ) 0E tλ, ≈ . 

An example of an acceleration factor versus wavelength plot, is shown in upper plot of 

Figure 2.  The horizontal lines indicate the band pass filter width. These lines exhibit a log-

linear relation for QQE except for observations corresponding to BP filter 353. Because 

observations from BP filter 353 were not consistent (in terms of our estimated QQY 

function) with the observations from the other BP filters, the 353 BP data were not used in 

the estimation of the parameters of the model. 

The lower plot in Figure 2 shows degradation paths of observed damage averaged over all 

specimens under experimental 35oC, 25%RH, 1250 cm-1 FTIR peak and a particular 

nominal bandpass filter midpoint. Different symbols were used to identify the bandpass 

filters.  Filled marks and continuous lines identified data that were used in the modeling 

while dashed lines and open marks were used to represent data that were available, but not 

used in the modeling as explained in Section 3.1.  Figure 2 shows that, all other things 

being equal, wavelength has an effect on damage that tends to be stronger at shorter 

wavelengths. 
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Figure 2  Quantum Yield Model Check for the 1250 cm-1 FTIR peak for specimens exposed at 35oC and 
25% RH 

 

Implicit in the model in equation (4)  is the assumption of additivity. Additivity implies, in 

this setting, that the photoeffectiveness of a source is equal to the sum of the effectiveness 

of its spectral components. Experimental results obtained by NIST researchers support 

additivity in photodegradation of organic materials that have been studied to date. 

 

5. Model for Other Experimental Variables 

5.1  Temperature Effects 

As described, for example, by Meeker and Escobar (1998, Chapter 18), the Arrhenius 

equation for the reaction rate R  can be written as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−
=

K temp
exp)temp( 0 R

EaγR  
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where K temp  is temperature Kelvin, R  is the gas constant (  -- .R 11 molK J314478 ××= ), 

aE  is a quasi activation energy and 0γ  is a constant specific to a product or material. 
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Figure 3  Arrhenius Model check for the 1250 cm-1 FTIR peak, specimens exposed to 306 nm nominal 
bandpass filter midpoint and 25%RH 

The Arrhenius rate reaction model can be used to scale time (or dosage) in the usual 

manner and the upper plot in Figure 3 shows the acceleration factor versus temperature, 

plotted relative to 35oC and accelerated temperatures from 35oC to 55oC.  Because 25oC 

data were not available for all humidity levels, for sake of consistency 35oC was used as a 

basis level for calculating acceleration factors. Temperature was plotted on an Arrhenius 

scale while acceleration factor was plotted on a logarithmic scale. The acceleration factor 

for a temperature of 45oC is approximately 1.2. This means that the life at the use level of 

35oC is approximately 1.2 times longer than the life at 45oC.    The bottom plot in Figure 3 

shows degradation paths for specimens at the 1250 cm-1 FTIR peak, 306 nm nominal 

bandpass filter midpoint, 25% RH and at 3 different temperatures.  Figure 3 shows the 
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effect of temperature on degradation.  As expected, specimens exposed to higher 

temperatures tend to degrade faster than those at same conditions and lower temperatures. 

5.2  Humidity Effects 

Relationships between degradation rate and humidity are more complicated.  Different 

chemical reactions respond differently to humidity and therefore damage degradation paths 

for each FTIR peak will relate in an individual manner to humidity.  In our initial efforts to 

find an appropriate model for the humidity effect presented here, our approach is more 

empirical than scientifically based.  NIST researches do, however, have initial hypotheses 

on the reasons for the observed behaviors and we expect that these will be used in 

subsequent modeling efforts. 

Figure 4 has linear axes for humidity and logarithmic axes for the acceleration factor, 

plotted relative to 0%RH.  As seen in Figure 4 (for the 1250 cm-1 FTIR peak), the NIST 

data suggest that the degradation rate decreases linearly as a function of relative humidity. 

Similar relationships are apparent in the all of the other FTIR peaks.   
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Figure 4  Indication of linear decreasing humidity effect for the 1250 cm-1 FTIR peak for specimens at 
45oC 
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5.3 Overall Model and Bandpass Filter Approximation 

Combining all of the model terms in equations (2) and (6), with 

0 2temp K
a

B

E RH
k

μ β β= + − ×
×

 

we have 

( ) [ ]Totlog ( ),CF, log D ( ) log(CF)d t p t p= + ×               (7) 

 

where       

( )Tot Tot
 in the range on the BP filter

D ( ) DOSAGE .t
λ

λ

φ λ= ×∑  

For the indoor data we have dosage over a range of a bandpass filters. For simplicity we 

assume a BP filter with rectangular shape over the given range for the filter.  Therefore, 

TotDOSAGE
λ

 corresponds to the value of the reported dosage divided by the range of the 

filter, giving the approximate dosage for the 2nm intervals that correspond to the outdoor 

data. 

The parameters 0β , 1β , for the QQY relationship, aE  and 2β  are characteristic of the 

material and the degradation process and in our modeling we used 1p =  because there was 

no evidence against reciprocity.   As a typical example, Figure 5 shows fitted lines for the 

proposed overall model for one response and experimental condition: the 1250 cm-1 FTIR 

peak, for specimens exposed under the 306 nm BP filter and 25%RH. The fit between the 

data points and the fitted model is good, considering the broadness of the response surface 

model. Deviations from the model are on the same order as the unit-to-unit experimental 

error when units were exposed at different times. We had similar results for other 

combinations of damage number, bandpass filter, and humidity. 
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Figure 5 Indoor Data versus the Fitted Model for the 1250cm-1 FTIR peak, for specimens exposed 
under the 306 nm BP filter and 25%RH 

 

6. Predictive Form of the Cumulative Damage Model 

6.1 Cumulative Damage in a Time-Varying Environment 

This section outlines the model that we used to predict total cumulative damage ( )tÐ as a 

function of a given environmental time series realization )(τξ . The main difference in the 

predictive model is that the environmental variables can be allowed to vary with time. For a 

given environmental profile )(τξ , the cumulative damage at time t  for a particular unit  

can be expressed as  

( ) [ ]
0

Ð , ( )
Ð  

t d
t d

τ ξ τ
τ

τ
= ∫             (8) 

  

where ( ) ( ) ( )[ ]ττττξ RH,temp,D)( Inst= . 
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6.2 Evaluation Total Damage in a Time-Varying Environment 

The integral in (8) is reasonably easy to compute after appropriate discretization of the time 

axis. The environmental data that we will use is reported at 12-minute intervals. Thus 

equation (8) will be computed with a summation in which the environmental conditions 

will be constant over each 12-minute period of time. Missing environmental data can be 

replaced by using a simple interpolation scheme. 

For the cumulative damage model given in equation (1), the derivative of the cumulative 

damage with respect to dosage )(td is 

[ ] [ ]
( )2

Ð , ( ) 1 exp( )'( ) Ð ( ) Ð (0)  
( ) ( ) 1 exp( )

d zg t
d t d t z
τ ξ τ

σ

⎡ ⎤
= =  ∞ −  ⎢ ⎥

× +⎢ ⎥⎣ ⎦
                         (9)  

where z  is as defined in equation (2) and )(td is defined in equation (7), with estimates 

used to replace the unknown parameters. Then the prediction equation for the cumulative 

amount of damage at time t, based on the incremental values of dosage is: 

( )∑

∑

=

=

Δ=

Δ=

t

i
CUM

t

i
CUM

itDamage

idtDosage

0

0

Ð)(

)()(
                                                                        (10) 

 

where )1()()( −−=Δ tdtdtd and )(*)(')(Ð tdtgt Δ=Δ  

To test the predictive model, first we apply it to predict cumulative damage observed in the 

indoor data (constant environmental conditions).  As expected and as shown in Figure 6, 

the predictions from the incremental model correspond almost exactly with the fitted model 

and agree well with the indoor data that were obtained under a controlled environment. 

Although this is a useful check, it is not proof of model adequacy because we are 

comparing the predictions against the same data that where used to build the model.   
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Figure 6 Comparison of the overall fitted model and the predictions for the 1250cm-1 FTIR peak, for 
specimens exposed at 306 nm nominal bandpass filter midpoint, 35oC, and 25%RH 

 

6.3  Prediction in a Time-Varying Environment 

In this section we use our predictive model in (10) to predict the damage observed in the 

outdoor exposure chambers to check our ability to use a model estimated from indoor data 

to predict outdoor damage. We computed such predictions corresponding to all of the units 

that were tested in outdoor chambers at NIST. Here we show a few typical examples. 

Our predictive model uses indoor data to estimate parameters of the model, as well as 

outdoor information about spectral dosage (every 2nm), humidity and temperature.  Figure 

7 uses lines to depict predictions for damage for different FTIR peaks for outdoor exposure 

group 18. The solid symbols represent the actual outdoor observations for the same group. 

For all four FTIR peaks, the different specimens agree well in terms of accumulated 

damage, as a function of dosage. 
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Figure 7 Comparison of the predictions for the outdoor specimens “G18-8”, “G18-9”,”G18-10”,”G18-
11” that were exposed at same time 

 

Each plot in Figure 8 shows damage versus dosage for four specimens from outdoor 

exposure groups G1, G2, G3, and G4. Each of these groups began exposure at different 

points in time during     2002. Variability between observations of different groups is more 

apparent in this plot than what we see in Figure 7 because specimens began outdoors 

exposure at different points in time.  That is, variability among these specimens is larger 

than what we see in Figure 7, due to different weather conditions during the different 

periods of exposure. 
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Figure 8 Comparison of predictions for the outdoor specimens “G1-10”, “G2-10”,”G3-10”,”G4-10” 
that started exposure at different times 

 

7. Concluding Remarks 

This paper describes the methodology that we have developed to use indoor accelerated 

test data to find a model to describe the effect that environmental variables have on 

degradation rates. We have used this model to predict degradation rates and cumulative 

degradation in a time-varying environment, using outdoor weather data to drive the model. 

The variation between the predictions and the actual outdoor data is similar to the 

variability that we see in actual outdoor data.  
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