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Abstract
Oxygen (O2) limitation contributes to persistence of large carbon (C) stocks in satu-
rated soils. However, many soils experience spatiotemporal O2 fluctuations impacted 
by climate and land-use change, and O2-mediated climate feedbacks from soil green-
house gas emissions remain poorly constrained. Current theory and models posit that 
anoxia uniformly suppresses carbon (C) decomposition. Here we show that periodic 
anoxia may sustain or even stimulate decomposition over weeks to months in two 
disparate soils by increasing turnover and/or size of fast-cycling C pools relative to 
static oxic conditions, and by sustaining decomposition of reduced organic molecules. 
Cumulative C losses did not decrease consistently as cumulative O2 exposure de-
creased. After >1 year, soils anoxic for 75% of the time had similar C losses as the oxic 
control but nearly threefold greater climate impact on a CO2-equivalent basis (20-year 
timescale) due to high methane (CH4) emission. A mechanistic model incorporating 
current theory closely reproduced oxic control results but systematically underesti-
mated C losses under O2 fluctuations. Using a model-experiment integration (ModEx) 
approach, we found that models were improved by varying microbial maintenance 
respiration and the fraction of CH4 production in total C mineralization as a function 
of O2 availability. Consistent with thermodynamic expectations, the calibrated models 
predicted lower microbial C-use efficiency with increasing anoxic duration in one soil; 
in the other soil, dynamic organo-mineral interactions implied by our empirical data 
but not represented in the model may have obscured this relationship. In both soils, 
the updated model was better able to capture transient spikes in C mineralization that 
occurred following anoxic–oxic transitions, where decomposition from the fluctuat-
ing-O2 treatments greatly exceeded the control. Overall, our data-model comparison 
indicates that incorporating emergent biogeochemical properties of soil O2 variability 
will be critical for effectively modeling C-climate feedbacks in humid ecosystems.
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1  |  INTRODUC TION

The decomposition of organic C in soils and sediments to CO2 
(and to a lesser extent, CH4) ranks among the largest global C 
fluxes. It is mediated by microbially catalyzed redox reactions, 
of which aerobic (O2 dependent) respiration is most favorable 
from a thermodynamic perspective (Conrad, 1996). The impor-
tance of O2 deprivation as a mechanism of soil C persistence has 
been well studied in wetlands and sediments (Arndt et al., 2013; 
Freeman et al., 2001), and is also increasingly recognized in well-
drained upland soils, which contain anoxic microsites (Keiluweit 
et al., 2016). However, soil O2 availability may also be tempo-
rally dynamic (O’Connell et al., 2018). In contrast with current 
theory and models, C decomposition under temporal O2 fluctu-
ations may differ from rates observed under constant oxic or 
anoxic conditions (DeAngelis et al., 2010; Lin et al., 2021; Pett-
Ridge & Firestone, 2005; Reddy & Patrick, 1975). Furthermore, 
the intensification of hydrological cycles as a consequence of 
climate change (IPCC, 2014) and land use change (Piao et al., 
2007) will likely alter temporal patterns of soil O2 availability. 
Anoxic events over timescales of days to weeks may increasingly 
occur in a warmer and wetter world due to increased biological 
O2 demand, lower O2  solubility, and larger precipitation events 
(Calabrese & Porporato, 2019; Griffis et al., 2017; Hall et al., 
2013; Liptzin et al., 2011; Figure 1a). Oxygen fluctuations are 
especially important in hydric soils (Jarecke et al., 2016), which 
experience periodic saturation and are globally widespread: in 
the United States, soil map units with at least a partial hydric 
component conservatively account for >31% of total land area 
(Figure 1b). Thus, it is critical to better understand how soil 
O2  fluctuations associated with hydrologic variability affect C 
losses as CO2 and CH4.

Traditional theory and mechanistic models postulate a mono-
tonic decrease in C decomposition rate as O2 availability de-
creases (e.g., Figure 1c), irrespective of temporal scale. Sustained 
O2  limitation has been long known to decrease soil C decompo-
sition (Greenwood, 1961) by inhibiting oxidative enzymes and 
decreasing microbial growth and metabolism relative to oxic 
conditions (Freeman et al., 2001; McLatchey & Reddy, 1998). The 
decomposition rates of both faster- and slower-cycling C pools 
are thought to decrease under O2  limitation (Sierra et al., 2017; 
Figure 1c), commonly represented in ecosystem models using a 
constant scalar factor or Michaelis–Menten kinetics (Davidson 
et al., 2012; Koven et al., 2013; Oleson et al., 2013; Riley et al., 
2011; Rubol et al., 2013). Anoxia also promotes methane (CH4) 
production, which has 84 times the global warming potential of 
CO2 over a 20-year timescale (Myhre et al., 2013). However, net 
CH4 production from soils experiencing episodic anoxia over days 
to weeks is generally expected to be small, as methanogenesis is 
traditionally assumed to occur only after prolonged anoxic peri-
ods, when alternative electron acceptors such as iron (Fe) or sul-
fate have been consumed (Conrad, 1996; Reddy & Patrick, 1975; 
Riley et al., 2011).

These assumptions imply that periodic O2 deprivation should 
decrease both total C losses and climate impact on a CO2-
equivalent basis (Figure 1c). However, recent experimental stud-
ies in soils subjected to sequential anoxic and oxic conditions 
challenge these ideas (Bhattacharyya et al., 2018; DeAngelis 
et al., 2010; Longhi et al., 2016). Thermodynamic constraints on 
C decomposition could be compensated by other biogeochem-
ical processes that increase C availability under fluctuating O2, 
such as Fe redox cycling and release of mineral-protected C (Chen 
et al., 2018, 2020; Huang & Hall, 2017b; Huang et al., 2020). 
Furthermore, even the intermittent presence of O2 may sustain 
metabolism of reduced substrates (e.g., lipids) accumulated under 
anoxia (Burdige, 2007). Sustained and significant CH4 produc-
tion may occur even when O2 is periodically present (Angle et al., 
2017; Huang & Hall, 2018; Silver et al., 1999), challenging model 
assumptions (Riley et al., 2011). Rigorous model-data synthesis 
is needed to evaluate the possibility that periodic anoxia (i.e., 
O2  fluctuations) characteristic of many hydric and even upland 
soil environments could lead to equal or greater CO2-equivalent 
greenhouse gas emissions relative to static oxic conditions, 
counter to current prevailing theory (Figure 1c).

Current mechanistic models that incorporate microbial pro-
cesses (known as “microbial models”) are capable of closely rep-
resenting laboratory- and field-scale decomposition data from 
terrestrial ecosystems in some cases (Bradford et al., 2016; Meile 
& Scheibe, 2018; Wang et al., 2015, 2019). Models increasingly in-
corporate O2 availability as a control on biogeochemical process 
rates (Davidson et al., 2012; Koven et al., 2013; Oleson et al., 2013; 
Riley et al., 2011; Rubol et al., 2013), with parameters that were 
defined from short-term experiments comparing oxic and anoxic 
conditions (Sierra et al., 2017). Yet, we are unaware of explicit tests 
and validation of their underlying assumptions in environments 
where O2 availability varies over time. In particular, parameters 
derived from short-term incubations (i.e., hours to several weeks) 
could bias model parameterization and predictions (Jian et al., 
2020). Integration of long-term (months–years) incubation data-
sets with microbial models remains quite limited (Jian et al., 2020). 
Here we used a high-resolution experiment-model comparison 
with 2–4-day measurement timesteps and hourly model timesteps 
over a 384-day experiment to test theory and model assumptions 
about biogeochemical responses to frequent temporal changes in 
O2 availability.

We examined the response of CO2 and CH4 production (C 
mineralization) to cyclic, time-varying O2 fluctuations in two soils 
known to experience periodic anoxia: an Oxisol from a humid 
tropical forest and a Mollisol from a temperate agroecosystem. 
Litter from a C4  grass (Andropogon gerardii) was added to both 
soils, and carbon isotope ratios (δ13C) of CO2 and CH4 were mea-
sured to partition decomposition between litter and soil sources. 
Soils were incubated under a static oxic control and four fluctu-
ating-O2 treatments for 384 days. The fluctuating-O2 treatments 
consisted of either 2, 4, 8, or 12  days of anoxic conditions fol-
lowed by 4 days of oxic conditions, cycles which were repeated 
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for the duration of the experiment. These treatments are hereaf-
ter denoted by the length of their anoxic phases (2-, 4-, 8-, and 
12-day treatments; Figure S1). The periodicity of O2 fluctuations 
employed here mimicked patterns observed in the field, where 
recurring anoxic events may occur over days–weeks in response 
to precipitation dynamics (Liptzin et al., 2011; Logsdon, 2015). 
The incubation experiment was used to test the conventional un-
derstanding of how O2 limitation impacts C decomposition under 
current model assumptions, whereby decomposition decreases 
monotonically with increasing anoxic duration. The Microbial-
ENzyme Decomposition (MEND) model (Wang et al., 2019) with a 
new CH4 module was used to simulate C mineralization responses 
to fluctuating O2 (Figure S2). We first parameterized the MEND 
model using data from the control only and employed it under the 
current assumptions of the model to test the consensus under-
standing of how O2 limitation impacts C decomposition. We then 
parameterized the MEND model using data from all treatments to 
estimate key model parameters representing biogeochemical pro-
cesses that may compensate for O2 limitation on decomposition.

2  |  MATERIAL S AND METHODS

2.1  |  Soil sampling

An Oxisol and Mollisol, which are both characterized by redox 
fluctuations under field conditions, were sampled in March 2017 
in a perhumid tropical forest near the El Verde field station of the 
Luquillo Experimental Forest (18°17′N, 65°47′W), Puerto Rico 
and an agricultural field in north-central Iowa (41°75′N, 93°41′W), 
USA, respectively. The Oxisol was from an upland valley in the 
Bisley watershed, with mean annual precipitation and tempera-
ture of 3800  mm and 24°C, respectively. Soil was formed from 
volcaniclastic sediment (Buss et al., 2017). The Oxisol experi-
ences O2  fluctuations on scales of hours to weeks due to vari-
ations in rainfall and biological O2 demand (Liptzin et al., 2011). 
Soil was randomly sampled from the A horizon (0–10 cm) by com-
positing six replicate soil cores without disturbing microaggre-
gate structure (no sieving), and then shipped overnight to Iowa 
State University. The Mollisol was sampled from a topographic 

F I G U R E  1  Conceptual frameworks for soil C decomposition response to soil O2 fluctuations associated with hydrological cycles under 
climate change. (a) A typical relationship between soil pore O2 concentration and moisture (Calabrese & Porporato, 2019; Hall et al., 
2013). (b) Distribution of hydric soils in the contiguous United States (Soil Survey Staff, Natural Resources Conservation Service, United 
States Department of Agriculture, 2019). (c) Conceptual views for the responses of soil C decomposition to static oxic and periodically 
anoxic conditions, with relative pool sizes and fluxes indicated by boxes and arrow widths. The traditional understanding is that C 
decomposition rate declines as O2 availability decreases and that O2 fluctuations over days–weeks (periodic anoxia) consistently suppress 
the decomposition of fast and slow C pools, with minor CH4 emissions. (d) The new view proposed here is that O2 fluctuations alter the 
pools sizes and/or fluxes of fast and slow C pools decomposed to CO2 and CH4 and increase global warming potential due to sustained CH4 
emission. The gradient colors indicate that the sizes of C pools change as a function of anoxic durations. The arrows with both dotted and 
solid lines indicate that the decomposition rates of C pools change as a function of anoxic durations
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depression that experiences periodic flooding (Logsdon, 2015) 
in the Walnut Creek watershed, with mean annual precipitation 
of 820 mm and mean monthly temperature ranging from −13.4°C 
(January) to 29.4°C (July; Hatfield et al., 1999). This very poorly 
drained soil was formed from till following the Wisconsin glacia-
tion and developed under tallgrass prairie and wetland vegeta-
tion, and is described as mucky silt loam (fine, montmorillonitic, 
mesic Cumulic Haplaquoll). This site was cultivated with corn (Zea 
mays) and soybean (Glycine max) rotated on an annual basis. We 
collected soils from the plow layer A horizon (0–20 cm) following 
corn cultivation. Six soil cores (10.2 cm diameter) were randomly 
sampled in a 50 × 50-m region and then composited.

2.2  |  Laboratory incubations

We amended soils with finely ground leaf tissue of Andropogon gerardii 
(big bluestem, a C4 grass), which ameliorated short-term C limitation 
of microbial metabolism (Chacon et al., 2006) and provided an isotopic 
contrast with extant C. Soils were gently mixed after coarse roots, or-
ganic debris and macrofauna (worms) were manually removed. Field 
moisture capacity was determined by saturating soils and then measur-
ing gravimetric water content following 48 h of drainage (1.01 g H2O 
g−1 soil for the Oxisol and 0.46 g H2O g−1 soil for the Mollisol). Aliquots 
of litter (500 mg) were gently homogenized with fresh soil subsamples 
(5 g dry mass equivalent), and deionized water was added to achieve 
field moisture capacity. Each replicate was incubated in an open 50 ml 
centrifuge tube placed in a glass jar (946 ml) and sealed with a gas-tight 
aluminum lid with butyl septa for headspace gas purging and sampling.

Replicates from each soil were incubated under five headspace 
treatments in the dark at 23°C for 384 days, including a static oxic 
control and four fluctuating-O2 treatments. Carbon mineralization 
data from the static oxic controls were previously published in a 
companion experiment that compared the impacts of long-term 
oxic versus anoxic conditions on soil C cycling (Huang et al., 2020). 
The fluctuating-O2 treatments consisted of either 2, 4, 8, or 12 days 
of anoxic conditions followed by 4  days of oxic conditions, cycles 
which were repeated for the duration of the experiment. The fluctu-
ating-O2 treatments are denoted by the length of the anoxic phase 
(2-, 4-, 8-, and 12-day treatments, respectively). There were five 
replicates for each headspace treatment (total n = 50). To achieve 
anoxic and oxic phases according to the above treatments, each 
jar was flushed with humidified N2 or CO2-free air, respectively, at 
500 ml min−1 for 15 min immediately following headspace sampling 
for CO2 and CH4 measurements. Sample masses were recorded and 
additional water was added as necessary at approximately 8-day in-
tervals to replace moisture loss during headspace flushing.

2.3  |  Analysis of CO2 and CH4 production

Gas samples (5  ml) were collected immediately prior to head-
space flushing for measurements of CO2 concentration and δ13C 

values using a tunable diode laser absorption spectrometer (TDLAS, 
TGA200A, Campbell Scientific; Hall et al., 2017). Measurements 
were conducted daily for the first month and every 2 days there-
after in the control and fluctuating-O2 treatments. Additional gas 
samples (20 ml) were collected at 4-day intervals to measure CH4 
concentration by gas chromatography (GC) with a flame ionization 
detector (GC-2014, Shimadzu). CH4 production over 2-day inter-
vals was estimated from the average of consecutive 4-day meas-
urements (for the 2-day treatment, 4-day averages were calculated 
between adjacent measurements with the same sequence of an-
oxic/oxic phase transition). We also measured δ13C values of CH4 
by TDLAS every 4 days in order to achieve C isotope mass balance 
and account for the effects of CH4 production on the δ13C values 
of CO2 due to methanogenesis and methane oxidation (Huang & 
Hall, 2018; Whiticar, 1999). We chemically removed CO2 from each 
gas sample and then combusted CH4 to CO2 (Huang & Hall, 2018). 
For the 4-, 8- and 12-day treatments, the δ13C values of CH4 were 
measured at 2-day intervals prior to 84 days and subsequently at 
4-day intervals. The δ13C values of CH4 were interpolated over 2-
day intervals using the same method for CH4 production estimates. 
The CO2-equivalent greenhouse gas emission was calculated over 
a 20-year timescale by multiplying CH4 mass by 84 (1 g CH4 = 84 g 
of CO2 equivalent) and adding to the CO2 mass (Myhre et al., 2013). 
Net N2O production was negligible in our experiment, determined 
by periodic measurements of N2O by gas chromatography concomi-
tant with CH4 measurements.

Total C mineralization from litter and soil in the Oxisol and 
Mollisol at the end of experiment was calculated by multiplying cu-
mulative mineralized C by its respective fractional contributions, 
which were determined by two-source mixing models described in 
the Supplementary Methods. The fractions of total C mass remain-
ing in the Oxisol and Mollisol over time were calculated by subtract-
ing cumulative total C mineralization from initial C (415 and 386 mg 
C for the Oxisol and Mollisol, respectively).

2.4  |  Soil chemical analyses

We measured net Fe reduction and dissolved organic carbon (DOC) 
released by water extractions in additional replicate samples from 
each soil and headspace treatment during the initial 48 days. Three 
replicates per treatment were destructively sampled every 4 days 
for the control and at the end of each anoxic/oxic phase for the 
fluctuating-O2 treatments. Soil subsamples were extracted in 0.5 M 
hydrochloric acid (HCl) for net Fe reduction and nanopure water for 
DOC in a 1:60 dry soil-to-solution ratio. Iron concentrations in 0.5 M 
HCl extractions (denoted Fe(II)HCl and Fe(III)HCl) were determined 
colorimetrically by ferrozine (Huang & Hall, 2017a). The DOC con-
centrations were measured on a Shimadzu TOC-L analyzer.

At the end of this experiment (384 days), soil subsamples were 
analyzed for dissolved organic C (DOC) concentrations in water 
(DOCH2O

) and several sequential extractions. The first extraction 
was sodium sulfate (DOCNa2SO4

), which releases C from weak 
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polyvalent cation bridges (Ye et al., 2018), followed by sodium di-
thionite (DOCNa2S2O4

), which releases C sorbed or co-precipitated 
with reducible Fe phases (Wagai & Mayer, 2007), and finally sodium 
pyrophosphate (DOCNa4P2O7

), which releases C in organo-metal/
mineral complexes (Coward et al., 2017). The DOCNa2SO4

 values 
were corrected for DOCH2O

 measured on separate soil subsamples 
(n = 5) extracted by nanopure water in a 1:60 dry soil-to-solution 
ratio. For the additional sequential extractions, subsamples were 
first extracted by 0.5 M Na2SO4 at a soil-to-solution ratio (g ml−1) 
of 0.0056 for 1 h, followed by 0.266 g Na2S2O4 (0.05 M) and 30 ml 
deionized water for 16  h. Then, to dissolve any sulfide-associated 
elements, soils were extracted in 0.05 M HCl for 1 h, prior to ex-
traction with 0.1 M Na4P2O7 for 16 h (Huang et al., 2019). Following 
each extraction, slurries were centrifuged at 20,000 g for 10 min and 
supernatant solutions were stored at 4°C prior to analysis. The DOC 
concentrations and their δ13C values were analyzed by measuring 
CO2 and δ13C produced from sample oxidation by boiling with per-
sulfate in serum vials followed by injection of the headspace gas on 
TDLAS (Huang & Hall, 2017b). The soluble litter- and soil-derived C 
in each extraction was estimated as the product of DOC concentra-
tion and the respective fractional contributions from litter and soil 
calculated using the isotope mixing models described above.

Two replicate soil subsamples from each treatment after the 
384-day incubation were analyzed by 13C nuclear magnetic res-
onance (NMR) spectroscopy to assess organic C molecular com-
position. More details on the 13C NMR analysis are provided in 
Supplementary Methods.

2.5  |  Data analysis

A mixed-effects model was used to test differences among treat-
ments (fixed effects) in each soil for instantaneous CO2 and CH4 pro-
duction, using the “lmer” function in R (Bates et al., 2015). Samples 
were treated as random effects to account for repeated sampling. 
Dunnett's test was used to compare the variables in the fluctuating-
O2 treatments with the static oxic control for each soil. Relationships 
between soil properties and anoxic phase duration were analyzed 
by linear regression models using the “lm” function in R. We also 
performed linear regression to analyze the response of cumulative 
C decomposition to relative O2 concentration and variance. The O2 
availability was treated as a discrete random variable in our study. 
Thus, the O2 variance was determined by summing the product of 
the probability of anoxic or oxic phases occurring in one cycle of 
each fluctuating-O2 treatment, and the square of the difference be-
tween relative O2 concentrations (0 for anoxic and 1 or oxic phases) 
and the weighted relative O2 concentrations by their probability. The 
O2 variance was then normalized by the sum of O2 variances in all 
fluctuating-O2 treatments to calculate the relative O2 variance. We 
modeled trends in the fractions of C mass remaining over time using 
two-pool first-order exponential decay models using the “nls” func-
tion in R. Likelihood ratio tests comparing nested models were used 
to assess whether decomposition rate constants differed among 

treatments. The parameters from the two-pool first order exponen-
tial decay models were also used to simulate instantaneous total C 
decomposition rate (CO2 + CH4, defined hereafter as C mineraliza-
tion) and to evaluate model performance by calculating the Akaike 
information criterion (AIC) (see below) to compare with the MEND 
model performance.

2.6  |  Process-based model simulation

The MEND model (Wang et al., 2013, 2015, 2019) explicitly repre-
sents: (i) density-based partitioning and physicochemical protection 
of soil organic matter (SOM); (ii) distinct microbial and enzyme func-
tional groups regulating SOM decomposition; and (iii) microbial physi-
ology such as growth and maintenance, dormancy, resuscitation, and 
mortality in response to changes in soil pH, temperature, moisture, 
and oxygen availability. In this study, we incorporated a CH4 module 
(Zhu et al., 2014) to simulate CH4 production and oxidation (Figure 
S2). Governing equations of soil C pools (Figure S2; Table S2) in the 
MEND model are shown in Table S3. Component fluxes and param-
eters in the MEND model are described in Tables S4 and S5.

The modified MEND model used O2 scalars to represent the im-
pacts of O2 availability on multiple aspects of soil C processes (Tables 
S3 and S4). Values of these scalars were determined by comparing 
data from the static oxic control and the static anoxic treatment in 
a companion experiment with these same soils described in Huang 
et al. (2020). The MEND model simulated reversible dynamic trans-
formations between two microbial functional groups (i.e., active and 
dormant microbes), where only the active microbes could take up 
C and nutrients and reproduce. In addition to the dependence of 
microbial dormancy on substrate and soil moisture availability, we 
assumed that more microorganisms were active under oxic than 
anoxic conditions (Eq. S38). In addition, CH4 production flux was a 
fraction of total C mineralization flux (Eq. S28), where the fraction 
(rCH4

) is modified by soil pH, temperature, and O2 availability. The 
actual CH4 production fraction (i.e., rCH4

  modified by environmen-
tal factors) represented the methanogenic activity compared to the 
total microbial activity mediating C mineralization. The CH4 oxida-
tion flux was simulated as a fraction of CH4 production flux (Eq. S29), 
where the fraction (i.e., the CH4 oxidation coefficient fCH4

) followed 
Michaelis–Menten kinetics and was modified by soil temperature 
and O2 availability. With increasing O2 availability, CH4 production 
rate decreased and oxidation rate increased (Eq. S39). Initial C pool 
values are provided in the Supplementary Methods. The MEND 
model runs at an hourly timestep.

We applied the multi-objective calibration method to deter-
mine selected MEND model parameters (Duan et al., 1992; Wang 
et al., 2015). Six calibrated parameters included CH4 production as 
a fraction (rCH4

) of total active microbial respiration, two parameters 
controlling microbial growth and maintenance (Vg and Vm), and three 
parameters regulating enzyme production and turnover (pEP, fpEM, and 
rE; see Table S5 for further description). Here, microbial maintenance 
(Vm, mg C mg−1 active-biomass-C h−1) refers to additional consumption 
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of energy and C for purposes other than biomass production (Wang & 
Post, 2012). The other model parameters were fixed based on previ-
ous studies (Wang et al., 2013, 2015, 2019). Each objective evaluated 
goodness-of-fit of a specific observed variable, for example, daily CO2 
and CH4 fluxes. Parameter optimization minimized the total objective 
function (J) computed as the weighted average of multiple objectives. 
The individual objective function Ji (i.e., for CO2 and CH4 fluxes) was 
calculated as (1 − R2), where R2 denoted the coefficient of determina-
tion and a higher R2 indicates better model fitness (Wang et al., 2019). 
We used the shuffled complex evolution (SCE) algorithm (Duan et al., 
1992; Wang et al., 2015) to search the optimal model parameters that 
minimize J. In addition, we used the AIC, corrected AIC (AICc), and 
Bayesian information criterion (BIC) to evaluate effects of different 
parameters (Johnson & Omland, 2004), that is, all six parameters, 
three parameters (rCH4

, � , and fpEM), and two parameters (rCH4
 and �

). These criteria (AIC, AICc, and BIC) consider both model fit (i.e., the 
mean squared error) and complexity (i.e., the number of free parame-
ters and the number of observations). The smaller the criterion value, 
the better the simulation (Johnson & Omland, 2004).

In our study, mean CO2 flux was one order of magnitude higher 
than mean CH4 flux under the control treatment. To make selection 
criteria comparable between different variables, we normalized the 
sum of squares of residuals (SSR) by the total sum of squares (SST) 
in the calculation of the likelihood (Johnson & Omland, 2004). Given 
that SSR∕SST = 1 − R2 (R2 denotes the coefficient of determination; 
Wang et al., 2015), we modified the three criteria as follows:

where AIC, AICc, and BIC are defined above; ln( ⋅ ) denotes the natural 
logarithm; R2 is coefficient of determination between simulated values 
(ysim(i)) and observed values (yobs(i)); n denotes the number of observa-
tions (i.e., sample size); and p denotes the number of free parameters.

3  |  RESULTS

3.1  |  Observed C mineralization

We found that the overall impact of fluctuating O2 availability on C 
mineralization was generally similar in both the Oxisol and Mollisol 
and challenged prevailing assumptions of how O2  limitation impacts 
decomposition. The treatments with increasingly longer anoxic phases 
depressed CO2 production to a greater degree during periods of anoxia. 
However, CO2 production in the subsequent oxic phases rebounded to 
a greater degree in treatments with longer anoxic duration (Figure 2a,b), 

and largely (if not completely) compensated for decreased anoxic decom-
position over most of the experiment. Total C mineralization from the 
fluctuating-O2 treatments varied over time due to the changing magni-
tude of the decomposition pulse following each anoxic–oxic transition. 
Over the first few days–weeks of the experiment, treatments with longer 
anoxic duration tended to suppress total C loss, but this was invariably 
followed by a period of stimulated decomposition. This is demonstrated 
by expressing C mineralization from the fluctuating-O2 treatments as 
a ratio relative to the control: ratios >1 were observed from the first 
week up to 9 months, depending on the particular soil and treatment 
(Figure 2e–h). In general, relative C mineralization ratios >1 occurred 
later in treatments with longer anoxic duration (Figure 2g,h). Eventually, 
C mineralization from all of the fluctuating-O2 treatments decreased 
relative to the control. However, by the end of experiment, cumulative 
C mineralization from the Oxisol was statistically equivalent among the 
control (274  ±  23  mg  g−1  C) and the 12-day (254  ±  6  mg  g−1  C), 8-
day (237 ± 9 mg g−1 C), and 4-day (234 ± 4 mg g−1 C) treatments, and 
was only significantly lower in the 2-day treatment (227 ± 9 mg g−1 C; 
p  <  .05). Cumulative C mineralization from the Mollisol was similar 
between the control (258  ±  9  mg  g−1  C) and the 12-day treatment 
(238 ± 2 mg g−1 C), whereas the 8-day (234 ± 6 mg g−1 C; p < .05), 4-day 
(233 ± 3 mg g−1 C; p < .05), and 2-day (222 ± 5 mg g−1 C; p < .01) treat-
ments were slightly but significantly lower than the control.

Despite the general similarities in CO2 production among treat-
ments, the CO2-equivalent greenhouse gas emissions over a 20-year 
timescale significantly increased with anoxic phase duration in both 
soils due to CH4 production (p  <  .01; Figure 3), which increased 
with anoxic phase duration and continued during the oxic treatment 
phases (Figure 2c,d). Overall, the contribution of CH4 emission to 
total mineralized C increased with anoxic duration (from 3.3 ± 0.9% 
in the 2-day treatment to 12.4 ± 1.7% in the 12-day treatment for the 
Oxisol and from 1.5 ± 0.6% to 7.8 ± 0.9% for the Mollisol), and was 
negligible in the control (0.3 ± 0.1% for the Oxisol and 0.5 ± 0.2% for 
the Mollisol). Correspondingly, the CO2-equivalent greenhouse gas 
emissions in the 12-day treatment rose to 437% of the control in the 
Oxisol and 292% of the control in the Mollisol.

3.2  |  Sources of decomposed C

Differences in δ13C values of total mineralized C (CO2 + CH4) among 
treatments (Figure S3) showed that soil- and litter-derived C re-
sponded differently to the fluctuating-O2 treatments. The δ13C values 
of total mineralized C tended to decrease during oxic phases relative 
to anoxic phases, indicating that soil-derived C drove the increased 
C mineralization that typically occurred at the beginning of each oxic 
phase (Figure 2a,b). The difference in cumulative δ13C values of total 
mineralized C at the end of experiment showed that the fluctuating-
O2 treatments generally suppressed losses of litter-derived C, but not 
soil-derived C, relative to the control (Figures S3 and S4). We also 
found that DOCH2O

 increased under the anoxic versus oxic phases and 
increased with anoxic phase duration during the first 48 days (Figure 
S5a,b). At the end of experiment, the fluctuating-O2 treatments had 

AIC = n ⋅ ln

(

1 − R2

n

)

+ 2p,

AICc = n ⋅ ln

(

1 − R2

n

)

+ 2p ⋅

(

n

n − p − 1

)

,

BIC = n ⋅ ln

(

1 − R2

n

)

+ p ⋅ ln(n),



6172  |    HUANG et al.

greater net losses of mineral-associated soil C relative to the control 
in the Oxisol, measured by sequential chemical extractions (Figure S6). 
For the Mollisol, there were some greater net losses of litter-derived 
DOCH2O

 and mineral-associated litter C (DOCNa2SO4
  + DOCNa4P2O7

) 
under the fluctuating-O2 treatments relative to the control (Figure S6). 
However, we did not observe any differences in C chemical composi-
tion or oxidation state among treatments, as indicated by solid-state 
13C NMR (Table S1).

Next, to examine the time-integrated responses of faster- and 
slower-cycling C pools to the fluctuating-O2 treatments, we fit sim-
ple statistical models (two-pool, first-order decay) to the cumulative 
C mass remaining over time (Figure S7). We emphasize that the pool 
sizes and decomposition rate constants estimated by this approach 
are strictly empirical, represent long-term mean treatment responses, 
and cannot simulate instantaneous changes in decomposition fol-
lowing oxic/anoxic transitions. The models fit the data very well, 

F I G U R E  2  Measured (solid lines) and modeled (dotted lines) C decomposition from the Oxisol and Mollisol incubated under the static 
oxic control and fluctuating-O2 treatments. The 2-, 4-, 8-, and 12-day treatments indicate the fluctuating-O2 treatments, which consisted 
of repeated cycles of 2, 4, 8, or 12 days of anoxia followed by 4 days of oxic conditions, respectively. Insets are expanded views of CO2 
and CH4 production over the first 48 days. Measured CO2 production in the Oxisol (a) and Mollisol (b); measured CH4 production in the 
Oxisol (c) and Mollisol (d); measured and modeled cumulative total C decomposition in the Oxisol (e) and Mollisol (f); measured and modeled 
total C decomposition normalized by the value in the control in the Oxisol (g) and Mollisol (h). The solid lines represent the observations, 
and the dotted lines represent simulations by MEND model calibrated with the full dataset. The error bars plotted every 16 days for the 
observations indicate SEM (n = 5) [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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with R2 values of .9973–.9999; rate constants indicated mean turn-
over times of months and years for fast and slow pools, respectively 
(Table 1; Figure S7). In both soils, decreasing cumulative O2 availabil-
ity increased mean turnover times of total C, calculated as the mass-
weighted average of both pools. However, in the Oxisol, the 2- and 
4-day treatments significantly increased the decomposition rate of 
the fast C pool relative to the control (p <  .01 for all), whereas the 
8- and 12-day treatments significantly increased the proportion of C 
in the fast pool. In the Mollisol, the proportion of C in the fast pool 
significantly increased in the fluctuating-O2 treatments (p <  .01 for 
all), although its decomposition rate decreased. Next, we asked what 
mechanism(s) contributed to the observed changes in C mineraliza-
tion under the fluctuating-O2 treatments.

3.3  |  Integrating experimental data with a 
mechanistic model (MEND)

To test our existing understanding of how O2 limitation alters decompo-
sition, we first simulated the impacts of fluctuating O2 availability under 
the current assumptions of our mechanistic model (MEND), which are 
shared by other models. That is, we used data from the oxic control for 
model parameterization and applied a scalar to suppress decomposition 
under anoxic conditions, where the scalar was calibrated by the data 
from a static anoxic incubation in a companion study (Huang et al., 2020). 
In the control, the model closely reproduced observed trends in C miner-
alization over time (Figures S8a,b and S9a,b). However, in the fluctuating-
O2 treatments, the model generally failed to capture the temporal pulses 

F I G U R E  3  CO2-equivalent greenhouse 
gas emissions (20-year timescale) under 
the static oxic control and fluctuating-O2 
treatments. The value was expressed 
relative to the initial dry mass of the 
soil + litter. The 2-, 4-, 8-, and 12-day 
treatments indicate the fluctuating-O2 
treatments, which consisted of repeated 
cycles of 2, 4, 8, or 12 days of anoxia 
followed by 4 days of oxic conditions, 
respectively. The * and ** indicate 
significant differences between a 
treatment and the control at p < .05 and 
.01, respectively. The error bars indicate 
SEM (n = 5) [Colour figure can be viewed 
at wileyonlinelibrary.com]

TA B L E  1  Parameters for two-pool first-order decay models fit to the fractions of total C mass remaining in the Oxisol and Mollisol 
incubated under the static oxic control and fluctuating-O2 treatments. The 2-, 4-, 8-, and 12-day treatments indicate the fluctuating-O2 
treatments, which consisted of repeated cycles of 2, 4, 8, or 12 days of anoxia followed by 4 days of oxic conditions, respectively

Treatment ff kf (year−1) Tf (year) fs ks (year−1) Ts (year) R2 T (year)

Oxisol

Control 0.10 ± 0.00 3.86 ± 0.15 0.26 0.90 0.21 ± 0.00 4.8 0.9992 4.3

2 days 0.08 ± 0.00** 7.77 ± 0.10** 0.13 0.92 0.17 ± 0.00** 5.9 0.9997 5.4

4 days 0.10 ± 0.00 6.67 ± 0.03** 0.15 0.90 0.16 ± 0.00** 6.4 0.9999 5.8

8 days 0.16 ± 0.00** 3.71 ± 0.04 0.27 0.84 0.10 ± 0.00** 10.0 0.9998 8.5

12 days 0.32 ± 0.04** 1.59 ± 0.14** 0.63 0.68 0.00 ± 0.03** 0.9981

Mollisol

Control 0.09 ± 0.00 8.71 ± 0.11 0.11 0.91 0.20 ± 0.00 5.0 0.9996 4.6

2 days 0.13 ± 0.00** 5.94 ± 0.05** 0.17 0.87 0.11 ± 0.00** 8.9 0.9998 7.8

4 days 0.15 ± 0.00** 5.08 ± 0.04** 0.20 0.85 0.10 ± 0.00** 9.9 0.9998 8.4

8 days 0.17 ± 0.00** 4.36 ± 0.07** 0.23 0.83 0.08 ± 0.00** 13.2 0.9991 11.0

12 days 0.22 ± 0.01** 3.35 ± 0.11** 0.30 0.78 0.03 ± 0.01** 37.0 0.9973 28.9

Note: Values are means and SEM; ff and fs, fractions of C in the fast and slow pools; kf and ks, decomposition rates of the fast and slow C pools; Tf, Ts, 
and T, turnover rates of the fast, slow, and total C pools.
**Denotes p < .01.

https://onlinelibrary.wiley.com/
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of C mineralization during anoxic/oxic transitions—mostly underestimat-
ing, but occasionally overestimating these pulses (R2 = .18–.24 and  .32–
.40 in the Oxisol and Mollisol; Figures S8 and S9). Overall, the default 
MEND model underestimated cumulative C mineralization to a greater 
extent as anoxic duration increased (Figure 4).

We then employed another parameterization strategy whereby we 
calibrated the model individually for each treatment to test whether we 
could discern the key parameters that controlled the decomposition re-
sponse to O2 availability. We calibrated two, three, or six parameters 
that regulate C mineralization processes (see a description of these pa-
rameters in Figure S10). We found that the new model could achieve 
good performance (i.e., lower or comparable AIC, AICc, and/or BIC) 
with only two free parameters, although the model with six free param-
eters performed better in CO2  flux simulations for the Oxisol (Figure 
S10a–d). Thus, we present the new MEND results from the simulations 
with two free parameters: the fraction of CH4 production in total C 
mineralization (rCH4

, dimensionless) and microbial specific maintenance 
rate (Vm, mg C mg−1 active-biomass-C h−1) that denotes the microbial 
maintenance rate per unit active microbial biomass. Overall, model per-
formance in simulating C mineralization data from the fluctuating-O2 
treatments was significantly improved over the previous calibration 
based on the control treatment only (R2 =  .46–.73 and .60–.73 in the 
Oxisol and the Mollisol, respectively; Figures S8e,f, S9 and S10). The AIC 
values indicated that the new calibrated MEND model outperformed 
the empirical two-pool first-order statistical model at simulating instan-
taneous C mineralization rates in the 8- and 12-day treatments, but not 
in the other treatments (Figures S11 and S12).

In the new calibrated MEND model, we found that rCH4
 in-

creased with longer anoxic durations for both soils, although the 
response was nonlinear for the Oxisol and linear for the Mollisol 
(Figure S13a,b). The Vm value also linearly (R2 = .99) increased with 
anoxic duration for the Mollisol (Figure S13d), indicating higher mi-
crobial maintenance cost under anoxic than under oxic conditions. 
However, we did not find any trend in Vm under the fluctuating-O2 
treatments in the Oxisol (Figure S13c).

To synthesize our results from the observations and model sim-
ulations, we expressed cumulative C mineralization normalized to 
the static oxic control as a function of cumulative O2 availability and 
the temporal variance in O2 availability at three representative dates 
throughout the experiment (days 48, 144, and 384; Figure 4). We found 
that cumulative C mineralization did not consistently decrease as cu-
mulative O2 availability declined (Figure 4a,b). In contrast, the MEND 
model based on traditional assumptions simulated decreasing decom-
position with lower O2 availability due to suppressed microbial activity. 
For the new calibrated MEND model, the simulations for the Mollisol 
showed generally similar patterns as the observations, while modeled 
C mineralization from the Oxisol was still underestimated relative to 
the observations, although better than under the “old” MEND model.

Temporal O2 variance (p < .01), rather than cumulative O2 avail-
ability (p < .05), was a better predictor of cumulative C mineraliza-
tion at 384 days across both soils. Increased temporal O2 variance 
appeared to dampen the effects of increased O2 availability, result-
ing in lowest C mineralization in the 2-day treatment, which had the 

highest O2 variance relative to the other fluctuating-O2 treatments 
(Figure 4c,d). The MEND model based on traditional assumptions 
showed a significant influence of O2 concentration (p  <  .01), but 
not O2 variance, on cumulative C mineralization. However, the new 
calibrated MEND model showed significantly negative effects of in-
creasing O2 variance on cumulative C mineralization in the Mollisol 
(p < .05), consistent with the observations.

4  |  DISCUSSION

In light of our results, we propose a new conceptual view of decomposi-
tion responses to temporal variation in O2 availability to inform theory 
and mechanistic model development (Figure 1c). We showed that the 
decomposition rates of slow-cycling C pools decreased as cumulative 
O2 availability declined, supporting traditional theory (Freeman et al., 
2001; Greenwood, 1961; LaRowe & Van Cappellen, 2011; Lin et al., 
2021). However, during our year-long experiment, the fluctuating-O2 
treatments increased either the decomposition rate or size of empiri-
cally defined fast-cycling C pools, in contrast to model assumptions 
(Davidson et al., 2012; Koven et al., 2013; Oleson et al., 2013; Riley 
et al., 2011; Rubol et al., 2013) and short-term (hours to days) experi-
ments (Bhattacharyya et al., 2018; Sierra et al., 2017). Even in the 12-
day treatment, where O2 was only present 25% of the time, cumulative 
C decomposition did not differ from the control after weeks–months 
(Figure 2) because of increased decomposition during oxic periods. The 
increase in decomposition rates following the anoxic to oxic transition 
was poorly represented by the initial mechanistic model parameteriza-
tions, leading to underestimation of total C loss. Underestimation of 
CH4 production in the fluctuating-O2 treatments with longer anoxic 
durations also contributed to the model-observation discrepancy. 
Fluctuating-O2 treatments with longer anoxic durations lost a greater 
proportion of C as CH4, thereby increasing CO2-equivalent green-
house gas emissions by as much as threefold (Figure 3). Together, these 
findings demonstrated that oxic/anoxic fluctuations largely sustained, 
or even transiently stimulated, C decomposition and substantially in-
creased its climate impact on a CO2-equivalent basis relative to static 
oxic conditions over periods of weeks to months.

4.1  |  Experiments reveal discrepancies among 
data, theory, and model assumptions

Our results challenged conventional theory and model assumptions 
by showing that C decomposition did not monotonically decrease 
with the cumulative duration of anoxic conditions (Figure 4). Carbon 
mineralization rate was depressed under the anoxic phases relative 
to the oxic phases, consistent with traditional theory (Greenwood, 
1961). However, intermittent anoxic conditions did not consistently 
suppress C loss, especially for soil C (Figure S4). The maintenance 
of high decomposition despite periodic anoxia likely arose from dif-
ferent responses of C availability and molecular C composition to 
fluctuating-O2 conditions.
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First of all, discrepancies between our observations and the 
theory/model could be partly ascribed to greater sizes and/or 
fluxes of the fast-cycling C pool under O2  fluctuations (Figure 1), 
linked to changes in C protection mechanisms and bioavailability. 
Concentrations of DOC increased during anoxic phases (Figure 
S5), likely due to a combination of kinetic and thermodynamic con-
straints on anaerobic decomposition (Keiluweit et al., 2017) and the 
release of mineral-associated C (Buettner et al., 2014; Thompson 
et al., 2006). In contrast, during the oxic phases DOC declined by as 
much as 10 mg C g−1 C (Figure S5), indicating rapid decomposition 
corresponding with observed pulses of CO2 production (Figure 2a,b). 
The δ13C measurements of sequential extractions and mineralized 
C indicated that previously protected soil C released under the an-
oxic phases provided additional C for microbial decomposition in 
the presence of O2 and thus sustained soil C decomposition under 

the fluctuating-O2 treatments (Figures S4 and S6). Replacement of 
older soil C with litter C in organo-mineral associations (Leinemann 
et al., 2018) might also have increased the availability and decom-
position of soil C under the fluctuating-O2 treatments (Figure S4). 
Indeed, significant litter-derived C (~12% of initial litter C on average) 
ultimately became incorporated in all measured mineral-associated 
pools (Figure S6). In the Mollisol, the litter was the dominant C source 
in both the sodium sulfate and sodium pyrophosphate extractions. 
Release and decomposition of extant mineral-associated C due to 
disruption of cation bridges by acidification (Ye et al., 2018), as evi-
denced by carbonate loss in the Mollisol, or following Fe reduction, 
as observed in both soils (Figure S5), therefore likely contributed to 
increases in the size of fast C pools in the fluctuating-O2 treatments 
with longer anoxic durations in both soils (Table 1). Overall, increased 
C availability compensated for any depression in C mineralization 

F I G U R E  4  Relationships of cumulative C decomposition, normalized to the static oxic controls, with relative O2 availability (a, b) 
and temporal variance (c, d) for the Oxisol and Mollisol, respectively. The 2-, 4-, 8-, and 12-day treatments indicate the fluctuating-O2 
treatments, which consisted of repeated cycles of 2, 4, 8, or 12 days of anoxia followed by 4 days of oxic conditions, respectively. The solid 
lines with closed symbols represent the observations, and the blue and red dotted lines with open symbols represent the simulations by 
MEND model calibrated with the control only and full dataset, respectively. The error bars indicate SEM (n = 5) [Colour figure can be viewed 
at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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due to anoxia after approximately 1 week to 2 months, depending on 
the particular fluctuating-O2 treatments and soils (Figure 2).

Moreover, the absence of changes in C chemical composition 
indicated by 13C NMR (Table S1) further indicated the resilience of 
long-term decomposition processes to O2 variability. This contrasts 
with previous findings of selective protection for reduced C com-
pounds (e.g., lipids and/or lignin) under anoxia (Keiluweit et al., 2017; 
LaRowe & Van Cappellen, 2011) and the observation of preferential 
persistence of lignin C under a year-long static anoxic incubation 
of these same soils (Huang et al., 2020). This latter observation in-
dicates that 13C NMR was sensitive enough to detect meaningful 
changes in soil C molecular composition if they had occurred. Rather, 
the absence of change in C composition suggests that microbial taxa 
able to tolerate periods of anoxia and increase activity during oxic 
periods (DeAngelis et al., 2010; Pett-Ridge & Firestone, 2005) may 
have maintained the overall decomposition of molecules with low 
nominal oxidation state (lipids) and hydrolysis-resistant bonds (lig-
nin). In addition, production of reactive oxygen species during the 
anoxic/oxic transition, when Fe(II) co-occurred with O2, provides an-
other plausible mechanism contributing to decomposition of lignin 
and lipids despite O2 deprivation (Chen et al., 2020; Hall et al., 2015; 
Huang et al., 2019).

4.2  |  Modeling C decomposition under 
fluctuating-O2 conditions

Calibrating the MEND model with data from all treatments versus 
the control only showed that results were improved by chang-
ing the assumptions of microbial physiology under fluctuating-O2 
conditions. Most ecosystem models that include a mechanistic 
representation of soil O2 dynamics assume a consistent decline in 
decomposition as O2 decreases, although the precise shape of the 
response varies among models (Davidson et al., 2012; Koven et al., 
2013; Oleson et al., 2013; Riley et al., 2011; Rubol et al., 2013). 
For this reason, C losses are predicted to be smaller under longer 
anoxic periods versus shorter ones (Knapp et al., 2008; Waring & 
Powers, 2016), as simulated by our initial calibration of the MEND 
model—a result that would also be obtained by other cutting-edge 
models employing similar assumptions. However, simulations from 
the MEND model after separate calibration for each treatment sug-
gested that periodic O2 deprivation did not consistently suppress 
the decomposition of all C pools (i.e., POM1, POM2, and MAOM; 
Figure S14).

We used two different modeling approaches, each with differ-
ent strengths and weaknesses, to understand impacts of O2 vari-
ation on soil C cycling. The two-pool, first-order statistical model 
fit the data well and demonstrated clear, cumulative impacts of O2 
variation on mathematically defined fast- and slow-cycling C pools 
over multiple experimental redox cycles (Figure S7). However, such 
models by definition are incapable of reproducing the observed 
high-frequency oscillations in C mineralization following anoxic–
oxic transitions (Figure S12), and the fitted parameters could not 

necessarily be easily extrapolated to other ecosystem contexts. In 
contrast, the process-based MEND model reproduced the tempo-
ral oscillations in C mineralization (Figure S12) but required a more 
complex structure. Process-based models like MEND inevitably 
contain many parameters, but as commonly practiced in environ-
mental modeling, most of these are specified a priori based on liter-
ature values, and only a limited number of parameters remain to be 
calibrated in a given study (Luo & Schuur, 2020; Wang et al., 2019; 
Zhang et al., 2020). In this regard, the information criteria (e.g., AIC) 
calculated here accounted for the number of free (i.e., calibrated) 
parameters, not all the parameters (Johnson & Omland, 2004; 
Zhang et al., 2020). Comparison of AIC values showed that the new 
calibrated MEND model had better performance (lower AIC, Figure 
S11) in simulating instantaneous total C mineralization than the 
first-order two-pool model only under the treatments with longer 
anoxic durations (i.e., the 8- and 12-day treatments). Better per-
formance of the first-order model than the new calibrated MEND 
model under the 2- and 4-day treatments may be explained by 
the small temporal fluctuation in the total C mineralization (Figure 
S12c–f). The poorer fitting of the flux rates by the MEND model 
in these treatments was likely due to overestimation of temporal 
oscillation in C fluxes. This points to the potential issue that the cur-
rent MEND model may overreact to high temporal variability in O2 
concentrations. However, due to its simple structure, the first-order 
model by definition could not reproduce the highly fluctuating C 
mineralization rates observed under longer anoxic durations (Figure 
S12g–j). Such models cannot inform field-scale modeling with ir-
regular fluctuations in environmental factors such as temperature, 
moisture, and O2.

In general, process-based models differ in scope of applica-
tion and philosophy relative to simple statistical models where 
all information to obtain parameters comes from the data alone. 
The parameterization of the MEND model takes a large amount 
of information from the literature through the default parameter-
ization of the model, and then adds extra information from the 
experimental results. To this end, there is an asymmetry in the 
amount of information that comes from the experiment versus 
the information coming from the literature. However, complex 
process-based models offer advantages in terms of mechanistic 
representation of physical–chemical–biological processes and 
their interactions (Luo & Schuur, 2020). In short, although the 
CH4-enabled MEND model did not outperform the simple first-
order model in simulating C mineralization under short anoxic 
duration, its mechanistic detail enabled us to test which bio-
geochemical processes may impact C cycling processes under 
O2  fluctuations, paving the way for real-world application be-
yond the laboratory. Even though the two-pool, first-order model 
clearly indicated that O2  fluctuations changed the sizes and de-
composition rates of statistically defined C pools, it could not 
provide insights into underlying mechanisms.

The relative increase in microbial maintenance rate with an-
oxic duration indicated by the MEND model of the Mollisol (Figure 
S13) provides a potential mechanistic explanation contributing to 
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sustained C mineralization under periodic anoxia. Higher microbial 
maintenance respiration under anoxic conditions is consistent with 
our first principles understanding that anaerobic metabolisms (respi-
ration, fermentation) yield less energy from per C atom oxidized than 
aerobic respiration (Pirt, 1965). Accordingly, as microbes allocate 
more C to sustain their maintenance needs, more C is lost as CO2 
and CH4 and less C is retained in growing biomass. Because micro-
bial biomass and necromass production are key mechanisms of soil 
C persistence (Kallenbach et al., 2016), increased maintenance may 
be an important and largely overlooked mechanism of sustaining C 
losses in spite of the constraints of O2 limitation on decomposition. 
However, we found no consistent relationship between the modeled 
microbial maintenance parameter and anoxic duration in the Oxisol. 
This finding may have resulted from an overall lower performance 
of the model for the Oxisol than the Mollisol, reflecting additional 
missing processes (such as explicit representation of Fe–C interac-
tions that can protect and decompose C; Chen et al., 2020) that may 
have obscured a clear response of maintenance respiration to anoxic 
duration.

Moreover, allowing the ratio of CH4 production to total C min-
eralization (rCH4

) to vary with anoxic duration also greatly improved 
MEND model performance. The default MEND model used a con-
stant baseline rCH4

 (0.2), which significantly underestimated CH4 
production (and consequently, CO2-equivalent greenhouse gas 
emissions) under fluctuating-O2 conditions. The fraction of anaer-
obic C mineralization released as CH4 was as great as 0.35 in soils 
that were exposed to O2 25% of the time (i.e., for four out of every 
16 days; Figure S13), implying the persistence of anaerobic micro-
sites despite periodic O2 incursions (Angle et al., 2017; Huang & Hall, 
2018; Silver et al., 1999). Together, our results point to the impor-
tance of accounting for impacts of anoxic conditions on key metrics 
of microbial physiology to interpret and model impacts of O2 vari-
ability on soil C cycling processes.

Our data-model comparison also indicates a potential role for 
temporal O2 variance, beyond cumulative O2 availability, as a con-
trol on C mineralization (Figure 4). Previous work demonstrated 
that temporal variance in environmental predictors (e.g., tempera-
ture) has a differing impact on mean soil respiration that depends 
on the convex versus concave shape of the response functions: for 
convex functions, greater predictor variance leads to greater mean 
soil respiration, whereas for concave functions, greater predictor 
variance leads to lower mean soil respiration, even when mean 
predictor values are the same (Sierra et al., 2011). Many models 
have represented C mineralization as empirical concave-down 
functions of O2 concentration (Davidson et al., 2012; Rubol et al., 
2013). Although we applied binary anoxic and oxic phases to soils 
by flushing with nitrogen or air, respectively, in reality these soil 
samples experienced more gradual changes in O2 concentrations 
due to lagged diffusion of O2 into soil microsites at the beginning 
of oxic phases (evidenced by persistent CH4 production; Figure 2), 
and possibly delayed consumption of microsite O2 at the beginning 
of anoxic phases. Therefore, the response of microbial respiration 
to these continuous spatial and temporal gradients in O2 availability 

might follow a concave, rather than binary, relationship. In this case, 
we would expect C mineralization to decrease with increasing O2 
variance; this prediction was consistent with our experimental data, 
where cumulative C decomposition decreased with increased O2 
variance from the 12- to 2-day treatments. Intriguingly, the initial 
calibration of the MEND model did not predict any relationship 
between O2 variance and C mineralization, whereas the new cali-
brated MEND model did display such a relationship for the Mollisol 
(Figure 4), despite the fact that it did not explicitly specify a concave 
or convex relationship between O2 and C mineralization (this was 
treated as a binary variable). This suggests that the two key cali-
brated parameters in the MEND model might be mechanistically 
related to the hypothesized concave response function of C miner-
alization to O2 availability.

5  |  CONCLUSION

The occurrence of shifts between anoxic and oxic conditions due 
to hydrological change is likely to become more frequent in many 
ecosystems with significant soil C stocks (e.g., croplands in humid 
biomes (Griffis et al., 2017), ephemeral wetlands (Knapp et al., 
2008), arctic permafrost and boreal peatlands (Avis et al., 2011), 
and wet tropical ecosystems (O’Connell et al., 2018)), where rela-
tively small changes in soil C storage linked to O2 dynamics could 
have substantial impacts on climate change (Knoblauch et al., 2018; 
Schädel et al., 2016). The frequency and magnitude of O2 fluctua-
tions impact the rate and form (CO2 vs. CH4) of C released from 
these soils and thus impact the C-climate feedback. We showed 
that traditional model assumptions may substantially underesti-
mate both C loss and CO2-equivalent greenhouse gas emissions, 
driven by high CO2 and CH4 production that is sustained under fre-
quent anoxic–oxic transitions over timescales of weeks–months. 
The results suggest that impacts of O2  limitation on greenhouse 
gas emissions depend strongly on the length and temporal vari-
ance of the anoxic phase over timescales of days, a factor that is 
highly sensitive to interactions among physical (e.g., precipitation) 
and biological processes (e.g., respiration) and is not mechanisti-
cally incorporated in current C models. These findings underscore 
the need to improve a versatile model framework that accounts for 
the positive and negative impacts of O2  limitation on C availabil-
ity to microbes (e.g., organo-mineral interactions), dynamic micro-
bial physiology under O2 variability (e.g., decomposition resilience 
and sustained CH4 production), and co-occurrence of aerobic and 
anaerobic metabolisms with dynamic microbial physiology that 
responds to the length of anoxic duration (e.g., microbial mainte-
nance). Our model-data synthesis suggests that simple functions 
relating O2 exposure to C mineralization will not necessarily cap-
ture the emergent properties of O2 fluctuations. These attributes 
will be critical for accurate prediction of changes in the relative and 
absolute emissions of CO2 and CH4 in landscapes with heterogene-
ous O2 availability, which have large implications for global green-
house balances and future biosphere-climate feedbacks.
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