ERRATUM: SINGULARITY FORMATION IN CHEMOTAXIS—A CONJECTURE OF NAGAI*

MATTHEW A. HALVERSON ${ }^{\dagger}$, HOWARD A. LEVINE ${ }^{\dagger}$, AND JOANNA RENCŁAWOWICZ ${ }^{\ddagger}$

Abstract

In [H. A. Levine and J. Rencławowicz, SIAM J. Appl. Math., 65 (2004), pp. 336-360] we considered the problem $u_{t}=u_{x x}-\left(u v_{x}\right)_{x}, v_{t}=u-a v$ on the interval $I=[0,1]$, where $u_{x}, v_{x}=0$ at the end points, $u(x, 0), v(x, 0)$ are prescribed, and $a>0$. (It was claimed in that article that there were solutions that blow up in finite time in every neighborhood of the spatially homogeneous steady state $(u, v)=(\mu, \mu / a)$ if $\mu>a$.) Here we correct an estimate and reduce Nagai's conjecture to the following statement. Let $\sigma=a /(\mu-a), \rho_{1}=1$. If $\lim _{n \rightarrow+\infty} \rho_{n}$ exists, where for $n \geq 2$, $\rho_{n}^{n} \equiv 1 /(n-1) \sum_{j=1}^{n-1}(1+\sigma / j) \rho_{j}^{j} \rho_{n-j}^{n-j}$, then the blow up assertion holds.

Key words. chemotaxis, finite time singularity formation, Keller-Segel model
AMS subject classifications. 35K55, 92C17
DOI. 10.1137/050631550

1. Introduction. In [1] we studied the system $u_{t}=u_{x x}-\left(u v_{x}\right)_{x}, v_{t}=u-a v$ on the interval $I=[0,1]$, where $u_{x}, v_{x}=0$ at the end points, $u(x, 0), v(x, 0)$, are prescribed, and $a>0$. Nagai and Nakaki [2] showed that there are solutions that are unbounded in finite or in infinite time. ${ }^{1}$ We claimed that there were initial conditions for which solutions failed to exist for all time. In our proof we used a differential inequality, the derivation of which was unfortunately flawed. We correct this and make more precise the statement proved in [1].
2. Approximate solution. The notation of [1] is in force here. Because system $u_{t}=u_{x x}-\left(u v_{x}\right)_{x}, v_{t}=u-a v$ is autonomous, we can assume the initial values are prescribed at $t=0$ and that the blow up time, when it exists, is positive. As in [1], define, for any sequence $z(t)=\left\{z_{n}(t)\right\}_{n=1}^{\infty}, \mathcal{G}_{n}\left(z, z^{\prime}\right)=(1 / 2) C^{2} n\left\{\left(\mathcal{M} z * z^{\prime}\right)_{n}+\right.$ $\left.n \frac{a}{2}(z * z)_{n}\right\}$ and $\mathcal{H}_{n}\left(z, z^{\prime}\right)=(1 / 2) C^{2} n\left\{\left[\left(T_{n} \mathcal{M} z, z^{\prime}\right)-\left(\mathcal{M} z, T_{n} z^{\prime}\right)\right]+a n\left(z, T_{n} z\right)\right\}$, where $\mathcal{M} z(t)=\left\{n z_{n}(t)\right\}_{n=1}^{\infty}$ and $T_{k} z(t)=\left\{z_{n+k}(t)\right\}_{n=1}^{\infty}$. Here $|z|=\left\{\left|z_{n}\right|\right\}_{n=1}^{\infty}$ and $(z * w)_{n}=$ $\sum_{k=1}^{n-1} z_{k} w_{n-k}$. (The sum is zero if $n=1$.)

The infinite system of ordinary differential equations for the cosine coefficients $h(t)=\left\{h_{n}(t)\right\}_{n=1}^{\infty}$ is 2

$$
\mathfrak{L}_{n} h_{n} \equiv h_{n}^{\prime \prime}+\left(C^{2} n^{2}+a\right) h_{n}^{\prime}-(\mu-a) C^{2} n^{2} h_{n}=\mathcal{G}_{n}\left(h, h^{\prime}\right)+\mathcal{H}_{n}\left(h, h^{\prime}\right) .
$$

The infinite system of ordinary differential equations satisfied by the cosine coefficients for the approximate problem, $g(t)=\left\{g_{n}(t)\right\}_{n=1}^{\infty}$, satisfies $\mathfrak{L}_{n} g_{n}=\mathcal{G}_{n}\left(g, g^{\prime}\right)$. The

[^0]particular sequence $g(t) \equiv\left\{g_{n}(t)=a_{n} e^{n \lambda t}\right\}_{n=1}^{\infty}$ satisfies this system for $a_{1}>0$, and for $n \geq 2$ and any integer $M>0$ with $C=2 \pi M, \mu>a$ if
\[

$$
\begin{equation*}
2 \lambda\left[n-a /\left(4 \pi^{2} M^{2}\right)\right] a_{n}=\frac{1}{n-1} \sum_{k=1}^{n-1}[\lambda(n-k) k+a k] a_{k} a_{n-k} \tag{2.1}
\end{equation*}
$$

\]

where λ is the positive root of $\lambda^{2}+\left(4 \pi^{2} M^{2}+a\right) \lambda-(\mu-a) 4 \pi^{2} M^{2}=0$. There are positive constants a, b, ϵ, δ with $a \epsilon^{n} \leq n a_{n} \leq b \delta^{n}$ for all positive integers [1]. From this, it follows that $\liminf _{n \rightarrow+\infty}\left[\left(-\ln n a_{n}\right) /(n \lambda)\right] \equiv \underline{T_{b}}$ and $\lim \sup _{n \rightarrow+\infty}\left[\left(-\ln n a_{n}\right) /(n \lambda)\right] \equiv$ $\overline{T_{b}}$ are finite. Hence there is a subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ such that $\lim _{k \rightarrow+\infty}\left[\left(-\ln n_{k} a_{n_{k}}\right) /\right.$ $\left.\left(n_{k} \lambda\right)\right] \equiv \underline{T_{b}}$. For this sequence, $\lim _{k \rightarrow+\infty} n_{k} a_{n_{k}} \exp \left(n_{k} \lambda \underline{T_{b}}\right)=1$. Set $a_{n}=\left(A_{n} / n\right)$ $\exp \left(-n \lambda \underline{T_{b}}\right)$. On the subsequence, $A_{n_{k}} \rightarrow 1$ and

$$
\begin{equation*}
\lim _{t \uparrow \underline{T_{b}}} \sum_{k=1}^{\infty} A_{n_{k}} e^{-n_{k} \lambda\left(\underline{T_{b}}-t\right)}=+\infty \text { and } \lim _{t \uparrow \underline{T_{b}}} \sum_{k=1}^{\infty} \frac{A_{n_{k}} e^{-n_{k} \lambda\left(\underline{T_{b}}-t\right)}}{n_{k}^{1+\delta}}<+\infty \tag{2.2}
\end{equation*}
$$

(for any $\delta>0$).
Now $\underline{T_{b}}$ must be the blow up time for the approximate solution $g(t)$ in the space $\ell_{1}^{1}\left(0, \underline{T_{b}}\right) \times \ell^{1}\left(0, \underline{T_{b}}\right)$. (A sequence $\left\{a_{n}\right\}$ is in ℓ_{1}^{1} if $\left\{n a_{n}\right\}$ is in ℓ^{1}.) To see this, note that as long as t is in the existence interval,

$$
\begin{align*}
\|\mathcal{M} g(t)\|_{\ell^{1}}+\left\|g^{\prime}(t)\right\|_{\ell^{1}} & =\sum_{n=1}^{\infty} n a_{n}(1+\lambda) e^{n \lambda t} \geq(1+\lambda) \sum_{k=1}^{\infty} n_{k} a_{n_{k}} e^{n_{k} \lambda t} \\
& =(1+\lambda) \sum_{k=1}^{\infty} A_{k} e^{-n_{k} \lambda\left(T_{b}-t\right)} \tag{2.3}
\end{align*}
$$

Consequently, from the first equation in $(2.2), g(\cdot)$ must blow up at some time, possibly earlier than $\underline{T_{b}}$. If $t<\underline{T_{b}}$, then $\liminf { }_{n \rightarrow+\infty}\left[\left(-\ln n a_{n}\right) /(n \lambda)\right] \equiv \underline{T_{b}}>$ $\underline{T_{b}}-\delta>t$ for some positive δ. Therefore, for sufficiently large $N, \sum_{n=N}^{\infty} n a_{n} e^{\overline{n \lambda t}} \leq$ $\sum_{n=N}^{\infty} n e^{-n \lambda\left(\underline{T_{b}}-\delta-t\right)}<\infty$.

Set $\sigma=a / \lambda$. Let $\left\{\ln \left[n a_{n} /\left(2 a_{1}^{n}\right)\right] / n\right\}_{n=1}^{\infty}=\left\{\ln A_{n} / n\right\}_{n=1}^{\infty} \equiv\left\{p_{n} / n\right\}_{n=1}^{\infty}$. The p_{n} satisfy $p_{1}=-\ln 2$, and for $n \geq 2$, $\left[1-a /\left(4 \pi^{2} M^{2} n\right)\right] e^{p_{n}}=\frac{1}{n-1} \sum_{j=1}^{n-1}(1+$ $\sigma / j) e^{\left(p_{j}+p_{n-j}\right)}$. Then we have the following theorem.

THEOREM 1 (Nagai's conjecture). Let $\lim _{n \rightarrow+\infty} \frac{p_{n}}{n}$ exist. The corresponding solution of the Nagai problem for which $h_{n}(0)=g_{n}(0)$ and $h_{n}^{\prime}(0)=g_{n}^{\prime}(0)$ for all n cannot both exist and be ℓ^{1} regular on $[0, \infty)$. (A solution of the Nagai-Nakaki problem is ℓ^{1} regular on an interval $I=\left[0, T_{b}\right)$ if it exists there and if $\left(\|\mathcal{M} h(s)\|_{\ell^{1}}+\left\|h^{\prime}(s)\right\|_{\ell^{1}}\right)$ is uniformly bounded on compact subsets I.)
3. Estimate. Inequality (7.5) of [1] is incorrect. The correct form of the upper bound for the norm of $g-h \equiv w,\|\mathcal{M} w(t)\|_{\ell^{1}}+\left\|w^{\prime}(t)\right\|_{\ell^{1}}$, is based on the following (infinite) system of ordinary differential equations:
$\mathfrak{L}_{n} w_{n}=\mathcal{G}_{n}\left(h-g, h^{\prime}\right)+\mathcal{G}_{n}\left(g, h^{\prime}-g^{\prime}\right)+\mathcal{H}_{n}\left(h, h^{\prime}\right)=\mathcal{G}_{n}\left(w, h^{\prime}\right)+\mathcal{G}_{n}\left(g, w^{\prime}\right)+\mathcal{H}_{n}\left(h, h^{\prime}\right)$
and, for some $B>0$ depending perhaps on τ but not on $w, w^{\prime}, h, h^{\prime}, g, g^{\prime}$, is given by

$$
\begin{align*}
\|\mathcal{M} w(t)\|_{\ell^{1}}+\left\|w^{\prime}(t)\right\|_{\ell^{1}} & \leq I(t)+J(t)+B \int_{0}^{t} \frac{\left(\|\mathcal{M} h(s)\|_{\ell^{1}}+\left\|h^{\prime}(s)\right\|_{\ell^{1}}\right)^{2}}{\sqrt{t-s}} d s \tag{3.2}\\
& +B \int_{0}^{t} \frac{\left(\|\mathcal{M} w(s)\|_{\ell^{1}}+\left\|w^{\prime}(s)\right\|_{\ell^{1}}\left(\|\mathcal{M} h(s)\|_{\ell^{1}}+\left\|h^{\prime}(s)\right\|_{\left.\ell^{1}\right)}\right)\right.}{\sqrt{t-s}} d s,
\end{align*}
$$

where
$I(t)+J(t) \equiv \int_{0}^{t} \sum_{n=1}^{\infty} \mathcal{M}\left(\left|g^{\prime}\right| * \mathcal{M}|w|\right)_{n} e^{-d n^{2}(t-s)} d s+\int_{0}^{t} \sum_{n=1}^{\infty} \mathcal{M}^{2}(|g| *|w|)_{n} e^{-d n^{2}(t-s)} d s$,
and where $d>0$ is the positive constant in [1, Lemma 1]. We have

$$
\begin{aligned}
I(t) & =\int_{0}^{t} \sum_{n=1}^{\infty} \sum_{k=1}^{n-1} n(n-k)\left|g_{k}^{\prime} \| w_{n-k}\right| e^{-d n^{2}(t-s)} d s \\
& =\int_{0}^{t} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} n(n+k)\left|g_{k}^{\prime} \| w_{n}\right| e^{-d(n+k)^{2}(t-s)} d s \\
& \leq \int_{0}^{t} \sum_{k=1}^{\infty}\left|g_{k}^{\prime}\right| e^{-(d / 2) k^{2}(t-s)}\left[\sum_{n=1}^{\infty}(n+k) e^{-(d / 2)(n+k)^{2}(t-s)} n\left|w_{n}\right|\right] d s \\
& \leq c \int_{0}^{t} \frac{\sum_{k=1}^{\infty}\left|g_{k}^{\prime}\right| e^{-(d / 2) k^{2}(t-s)}}{\sqrt{t-s}}\|\mathcal{M} w(s)\|_{\ell_{1}} d s \\
& \leq c \int_{0}^{t} \sum_{k=1}^{\infty} A_{k} e^{-(d / 2) k^{2}(t-s)-\lambda k\left(T_{b}-s\right)} \frac{\|\mathcal{M} w(s)\|_{\ell_{1}}}{\sqrt{t-s}} d s \\
& \leq c \int_{0}^{t}\left\{\sum_{k=1}^{\infty} A_{k} e^{-\left[(d / 2) k^{2}+k \lambda\right](t-s)}\right\} \frac{\|\mathcal{M} w(s)\|_{\ell_{1}}}{\sqrt{t-s}} d s \equiv c \int_{0}^{t} \mathcal{W}(t-s) \frac{\|\mathcal{M} w(s)\| \ell_{1}}{\sqrt{t-s}} d s .
\end{aligned}
$$

In the same manner,

$$
\begin{aligned}
J(t) & =\int_{0}^{t} \sum_{n=1}^{\infty} \sum_{k=1}^{n-1} n^{2}\left|g_{k}\right|\left|w_{n-k}\right| e^{-d n^{2}(t-s)} d s \\
& \leq \int_{0}^{t} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty}(n+k)^{2}\left|g_{k}\right|\left|w_{n}\right| e^{-d(n+k)^{2}(t-s)} d s \\
& \leq \int_{0}^{t} \sum_{k=1}^{\infty}\left|k g_{k}\right| e^{-(d / 2) k^{2}(t-s)}\left[\sum_{n=1}^{\infty} \frac{(n+k)^{2}}{k n} e^{-(d / 2)(n+k)^{2}(t-s)} n\left|w_{n}\right|\right] d s .
\end{aligned}
$$

From the inequality $(k+l) / k l \leq 2$,
$J(t) \leq c^{\prime} \int_{0}^{t}\left\{\sum_{k=1}^{\infty} A_{k} e^{-\left[(d / 2) k^{2}+k \lambda\right](t-s)}\right\} \frac{\|\mathcal{M} w(s)\|_{\ell_{1}}}{\sqrt{t-s}} d s \equiv c^{\prime} \int_{0}^{t} \mathcal{W}(t-s) \frac{\|\mathcal{M} w(s)\| \ell_{1}}{\sqrt{t-s}} d s$.
In view of (2.2), $\lim _{t \uparrow T_{b}} \sum_{k=1}^{\infty} A_{k} k^{-2} e^{-k \lambda\left(T_{b}-t\right)}<+\infty$. Thus $\mathcal{W}(t)$ is in every $L^{p}\left[0, T_{b}\right]$ space for $1 \leq p<\infty$. With $f(t)=\|\mathcal{M} w(t)\|_{\ell^{1}}+\left\|w^{\prime}(t)\right\|_{\ell^{1}}$, we see $f(t) \leq$ $\int_{0}^{t} \mathcal{W}(t-s) f(s) / \sqrt{t-s} d s+\Phi(h(t))$. From Hölder's inequality with $1 / p+1 / r+1 / q=1$
and $1<r<2$, there is a constant $K>0$ such that $f(t) \leq K\left[\int_{0}^{t} f(s)^{q} d s\right]^{1 / q}+\Phi(h(t))$ on $\left[0, T_{b}\right)$. From Gronwall's inequality, if h is global, $f(t)$ is bounded on $\left[0, T_{b}\right)$. From the first sum in (2.2) and the triangle inequality, this is impossible.

Other minor errors in [1]. Page 345, equation (5.1): Replace $k\left(w_{k} g_{n+k}+h_{k} w_{n+k}\right)$ by $n\left(w_{k} g_{n+k}+h_{k} w_{n+k}\right)$. Page 349, equation in line 13: $c \sqrt{t}$ should be replaced by $c \sup _{[0, T]} \sqrt{t}$.

REFERENCES

[1] H. A. Levine and J. Renceawowicz, Singularity formation in chemotaxis-a conjecture of Nagai, SIAM J. Appl. Math., 65 (2004), pp. 336-360.
[2] T. Nagai and T. Nakaki, Stability of constant steady states and existence of unbounded solutions in time to a reaction-diffusion equation modelling chemotaxis, Nonlinear Anal., 58 (2004), pp. 657-681.

[^0]: *Received by the editors May 13, 2005; accepted for publication May 24, 2005; published electronically November 15, 2005.
 http://www.siam.org/journals/siap/66-1/63155.html
 ${ }^{\dagger}$ Department of Mathematics, Iowa State University, Ames, IA 50011 (mhalver@iastate.edu, halevine@iastate.edu).
 ${ }^{\ddagger}$ Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956, Warsaw, Poland (jr@impan.gov.pl).
 ${ }^{1}$ The Nagai conjecture states that if $\mu>a$, there are spatially nonhomogeneous solutions beginning in every small neighborhood of $(\mu, \mu / a)$ which cannot exist for all time.
 ${ }^{2}$ The spatially homogeneous solution is given by $V(t)=\mu / a+\left(v_{0}-\mu / a\right) \exp (-a t), \quad U(t)=\mu$. One sets $\psi(x, t)=v(x, t)-V(t), \quad u(x, t)=\mu+\psi_{t}+a \psi$. Then $h(t)$ is the sequence of cosine coefficients for $\psi(x, t)$.

