
Quantified, Typed Events for Improved Separation of Concerns
Hridesh Rajan and Gary T. Leavens

TR #07-14d
Initial Submission: July 16, 2007.

Revised: Oct 4, 5, 12 2007, May 4, 2008.

Keywords: implicit-invocation languages, aspect-oriented programming languages, quantification, pointcut, join point, context exposure,
type checking, event types, event expressions.
CR Categories:

D.3.3 [Programming Languages] Language Constructs and Features - Control structures

Copyright (c) 2008, Hridesh Rajan and Gary T. Leavens.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA

Quantified, Typed Events for Improved Separation of Concerns

Hridesh Rajan
Iowa State University

hridesh@cs.iastate.edu

Gary T. Leavens
University of Central Florida ∗

leavens@eecs.ucf.edu

Abstract
Implicit invocation and aspect-oriented languages provide related
but distinct mechanisms for separation of concerns. Implicit in-
vocation languages have explicitly announced events, which runs
registered observer methods. Aspect-oriented languages have im-
plicitly announced events, called “join points,” which run method-
like but more powerful advice. A limitation of implicit invocation
languages is their inability to refer to a large set of events suc-
cinctly. They also lack the expressive power of aspect-oriented ad-
vice, and require code to manage event registration and announce-
ment. Aspect-oriented languages also have several limitations, in-
cluding the potential for fragile dependence on syntactic structure
that may hurt maintainability, limits in the set of join points and the
reflective contextual information that they make available.

Quantified, typed events solve all these problems. They ex-
tend implicit invocation languages with a key idea from aspect-
oriented languages: the ability to quantify over events (join points).
Programmers declare named event types that contain information
about the names and types of event arguments (exposed context).
An event type declaratively identifies an expression as an event.
This event type can then be used to quantify over all such events.
Event types reduce the coupling between the observers and the set
of events, and similarly between the advising and advised code.

1. Introduction
The objective of both implicit invocation (II) [13, 34] and aspect-
oriented (AO) [11] languages is to improve a software engineer’s
ability to separate conceptual concerns. The problem that they ad-
dress is that all dimensions of design decisions, or concerns, are not
amenable to modularization by a single dimension of decomposi-
tion. Instead, some concerns cut across the dominant dimension of
decomposition. These approaches aim to improve the separation of
these types of concerns thereby enhancing modularity.

The key idea in II languages is that modules declare, announce,
and register with events. Announcing an event means running all
observer methods registered for that event, without explicitly nam-
ing them. On the other hand, AO languages such as AspectJ [12]
use predicates, called pointcuts, to select events in the program’s
execution. These events are called join points. A language’s fea-
tures for pointcuts and its set of join points form its join point

∗Much of Leavens’s work was done while he was still at Iowa State.

[Copyright notice will appear here once ’preprint’ option is removed.]

model. Using pointcuts to select join points to be advised, called
quantification [9], is one of the main ideas in AO languages. Quan-
tification crucially depends on the language’s join point model.

II Languages have three limitations. First, they require com-
plex event declaration, announcement and registration code scat-
tered across the system [26]. Second, the ability to use around ad-
vice, which replaces the code for an event, is not available in II
languages, without unnecessarily complex emulation code (to con-
struct closures in languages such as Java and C#). Third, quantifi-
cation of events is not easy. That is, using an abstraction similar to
pointcuts in AOP to refer to a collection of related events is difficult.
Instead, a non-trivial strategy such as a subscription registry [20] is
needed.

AO languages also have some limitations. These limitations
arise because most current join point models use lexical pointcuts.
Such pointcuts refer to join points, such as method calls, by named
patterns, such as set*, which would name all methods with a
name starting with “set”. Except for a few approaches such as
SetPoint [2], functional queries [8], etc, the prominent means of
quantification are lexical. Lexical pointcuts are fragile [32, 35],
exhibit quantification failures [33], and make it unnecessarily hard
to uniformly access relevant context at the join point [33] (see
Section 2.1-2.4).

This work’s contribution is Ptolemy, a language with quanti-
fied, typed events. When an event type is declared, it is given a
name, which can be used in quantification. An event type t also
declares the types of information communicated between events
and observer methods for events of type t. Events are declaratively
identified using event expressions that name the event’s type.

Key differences between Ptolemy and II languages are: (i) the
ability to treat an expression’s execution as an event, (ii) the ability
to override that execution, (iii) abstraction of event registration, an-
nouncement code, and (iv) quantification. Key differences between
Ptolemy and AO languages like AspectJ [12] are: (i) join points are
declaratively identified, (ii) an arbitrary expression can be identified
as join point, (iii) they can expose an arbitrary set of reflective infor-
mation, and (iv) they can be selected using event types. Since one
can tell when advice will be run, Ptolemy is not purely oblivious,
and hence by some definitions [9] Ptolemy is not aspect-oriented.

The benefit of Ptolemy’s new features over II languages is that
observer methods are decoupled from the code that announces
events, instead they only name event types. The benefit over AO
languages is that advice can uniformly access reflective information
about the join point without breaking its encapsulation, thus it is
decoupled from the base code structure and the names used.

We describe this model in what follows. Sections 2 and 3 moti-
vate and present our approach and language design. Section 4 illus-
trates key properties of our language design. Section 5 compare our
proposed approach with other similar approaches. We offer some
discussion in Section 7. Section 6 compares our approach with re-
lated work and Section 8 concludes.

2 2008/5/5

class Point implements FElement { /*...*/
int x, y;
public List<Observer> setXObservers;
public List<Observer> setYObservers;
public void setX(int x) {
this.x = x;
for (Observer o : setXObservers)

o.notify(this);
}
public void setY(int y) {

this.y = y;
for (Observer o : setYObservers)

o.notify(this);
}

}
class Line implements FElement { /*...*/
Point p1, p2;
public List<Observer> setP1Observers;
public List<Observer> setP2Observers;
public void setP1(int x, int y) {
p1.x = x; p1.y = y;
for (Observer o : setP1Observers)

o.notify(this);
}
public void setP2(int x, int y) {

p1.x = x; p1.y = y;
for (Observer o : setP2Observers)

o.notify(this);
}

}
interface Observer {
void notify(FElement changedFE);
}
class Update implements Observer{
void registerWithPoint(Point p){

p.setXObservers.List.add(this);
p.setYObservers.List.add(this);
}

void registerWithLine(Line l){
l.setP1Observers.List.add(this);
l.setP2Observers.List.add(this);
}
void notify(FElement changedFE){Display.update();}

}

Figure 1. Drawing editor’s II implementation: event code in gray

2. Motivation
In this section, we illustrate the limitations of implicit invocation
and aspect-orientation using a simple editor for drawings compris-
ing points, lines, and other such figure elements [12, 19] shown
in Figure 1 (ignoring the gray code for now). The listings show a
Point and a Line class. The Point class uses two integers to
store Cartesian coordinates, and provides methods to set these coor-
dinates. The Line class stores two points and provides a method to
set the co-ordinates of the two end points of this line. This method
in turn sets the Cartesian co-ordinates by accessing the fields in-
side the class Point. Point and Line implement the interface
FElement (not listed).

The class Display (not listed) manages the display and pro-
vides a method update to keep the state of the figure ele-
ments consistent. The greyed part of this figure implements the
policy that the display must be updated whenever the abstract
state of a FElement changes. This is done by declaring the
observer interface, by extending the Point and Line
class to keep a list of observers for each event exposed, by extend-
ing the setter methods to run the notify method on all observers

class Point implements FElement { /*...*/
int x, y;
public void setX(int x) { this.x = x; }
public void setY(int y) { this.y = y; }

}
class Line implements FElement { /*...*/

Point p1, p2;
public void setP1(int x, int y) {

p1.x = x; p1.y = y;
}
public void setP2(int x, int y) {

p1.x = x; p1.y = y;
}

}

aspect Update {
void around(FElement fe) :

target(fe) && (call(FElement.set*(..))
{ proceed(fe); Display.update(); }

}

Figure 2. Drawing editor’s AO implementation: aspect in gray

in the relevant list, and having the class Update add (register) it-
self to the lists for events of interest.

Two limitations of implicit invocation are evident in this
example. The event declaration, announcement and registra-
tion code (shown in gray) is complex and scattered across the
Point and Line classes. Quantification of events requires the
registration code to explicitly enumerate events of interest in
registerWithPoint and registerWithLine methods.

The listings in Figure 2 shows an alternative AspectJ imple-
mentation for the drawing editor discussed before. Notice now that
in AO implementation, Point and Line classes are free of any
event related code. The third part of the figure accomplishes the
modularization of display update policy using the aspect Update.
An aspect can select all points that change the abstract state of
all figure elements by writing pointcut descriptions (PCDs) such
as target(fe) && (call(FElement.set*(..)). This
PCD selects all join points that change the state of a FElement
and binds fe to the changed FElement. This pointcut expression
will select appropriate join points only if all such join points in the
program are systematically exposed [36]. At all these join points
the around advice is run, which updates the display, then runs the
original call, using proceed.

AO languages fix the limitations of II languages, but they suffer
from four problems, which we explain in the rest of this section.

2.1 Fragile Pointcuts
The first problem is due to use of syntactic predicates as a quantifi-
cation mechanism [32, 35]. Such predicates are likely to change in
the face of base code modifications.

To illustrate, consider a simple refactoring of the class Point
in Figure 2 to hide the implementation details by making the fields
x and y private. This change requires Line’s developer to use the
methods setX and setY as shown below.

class Point implements FElement { /*...*/
private int x, y; //Fields are now private
... }

class Line implements FElement { /*...*/
Point p1, p2;
public void setP1(int x, int y) {

p1.setX(x); //Field access changed to calls
... }
/* setP2 is refactored similarly. */... }

3 2008/5/5

This seemingly innocuous change breaks the aspect Update.
This aspect will now update the screen three times for every change
in the end points of an instance of the class Line. It updates once
when the call to setP1 occurs, a second time when the call to
setX occurs, and a third time when the call to setY occurs. This
change should have been encapsulated in the classes Point and
Line, but it is propagating to the advising code. This is an obvious
maintenance problem, which would be magnified in a real example.

2.2 Quantification Failure
The second problem is what Sullivan et al.[33] have called quan-
tification failure. In the context of the AO design of the Hypercast
system, they observed that many join points that have to be advised
cannot be captured by a quantified pointcut descriptor (PCD), in-
stead a separate PCD is required for each join point [33, pp. 170].
They also observe that many join points of interest are not avail-
able as interface elements, but are instead deeply embedded into
methods. 1

These join points occur in places such as inside iteration and
conditional statements. Exposing such join points as additional lan-
guage constructs [14, 27] seems to be a solution to the quantifica-
tion failure. However, these constructs further couple the aspects
with the base code and expose the implementation details of the
base code, violating encapsulation.

The root of quantification failure lies in existing techniques
for join point classification and quantification. These techniques
work by classifying events in the program’s execution as different
kinds of join points, such as execution, call, field access, etc. We
can understand these techniques better by drawing an analogy to
untyped set theory. Let J be the set of all potential join points
in a program. The join point classification can be thought of as
partitioning J into disjoint subsets Jkind, for each kind in some set
KIND of different kinds of join points. Some of these subsets may
not be available in a given join point model. For example, iteration,
conditional, and most expressions are not available in AspectJ’s
model.

The limitation of this view of join point classification is that it
is fixed by the programming language designer. This contributes
to quantification failure, because new kinds of join points cannot
be defined by developers. Quantification failure arises mainly be-
cause in existing join point models developers cannot specify their
own decomposition of the base program. As long as the developer
uses an object-oriented decomposition based on classes and meth-
ods, current quantification mechanisms work remarkably well and
a large set of join points can be selected using succinct pointcut
descriptions. However, if a different decomposition is needed to
modularize a concern, then language models need explicit enumer-
ations, and pointcut descriptions become verbose and more fragile.

2.3 Limited Access to Context Information
The third problem is the difficulty of retrieving context informa-
tion from a join point. Current aspect languages provide an inter-
face for accessing contextual (or reflective) information about a join
point. A fundamental problem is that, in current languages, this in-
terface between the join point and advice is fixed by the language
designer. For example, in AspectJ, advice can access contextual
information at the join point using pointcuts such as this to ac-
cess the executing object, target to access the receiver object of

1 Some may view that as a problem of the underlying language rather
than the approach to aspects: e.g., in a language where all computation
takes place in methods, this, target and args are always defined. We argue
that it may not be necessary to continue to support such differentiation
between means of computation, instead a unified view of all such means
of computation can be provided to the aspects.

a call, args to access the arguments at a join point, etc. Alterna-
tively, one can explicitly marshall this information from a reflection
object, thisJoinPoint. Unfortunately, this rather limited inter-
face does not satisfy all usage scenarios.

Even the canonical concerns such as logging exhibit these prob-
lems. For modularizing the logging functionality in a program, as-
pect developers need access to the context of the join points that
are to be logged. This information is often stored in local variables
in the source code surrounding the join point. However, access to
local variables is not available in existing join point models.

There are rational reasons for limiting the interface between the
advised and the advising code. This interface couples the design
of the advised and advising code. The thinner this interface is
the lower the coupling will be, resulting in perhaps easier and
independent evolution of these two designs [30]. Extending the set
of language constructs to include access to more primitives also
takes away regularity from the language design [21], because not
all such primitives will be valid for all kinds of join points. As it is,
current language constructs for retrieving contextual information
are not completely regular; e.g., this, target, and args are
not available at all join points in AspectJ.

2.4 Uniform Access to Irregular Context Information
The fourth problem with the current join point models is their
inability to retrieve the same contextual information from different
join points selected in one pointcut description. Advice attached to
such a pointcut description needs to access equivalent contextual
information at each join point.

To illustrate this problem, consider the listing in Figure 3
extracted from the class Point. This listing shows two mu-

public class Point implements FElement { /* ... */
public void setX(int x) { this.x = x; }
public void makeEqual(Point other) {

other.x = this.x; other.y = this.y;
}

}

Figure 3. Two methods in Point affect different context.

tator methods: setX and makeEqual. As before, the method
setX changes the x co-ordinate of the point, and the method
makeEqual makes another point other equal to the current
point. Both these join points change the state of an instance of a
FElement. Therefore, they both logically belong to the abstract
event “changing a figure element” that the pointcut Change de-
scribed above is trying to model. However, they have different no-
tions of the changed instance of a FElement. The FElement
instance that is being changed by the method makeEqual is not
the target of the call, but is instead the one in the call’s first argu-
ment. In this simple case, it is possible to work around this issue by
rewriting the PCD as follows.

(target(fe) && (call(FElement.set*(..)))
|| (args(fe) && call(FElement.makeEqual(..)))

However, such rewriting is undesirable for two reasons. First
and most importantly, each such specialization that we apply to the
pointcut couples it with the details of the base code. Second, for
advice that applies to a large number of such irregular join points,
the pointcut expression may become significantly large and thus
hard to maintain. We will see a solution to these problems in the
next section.

3. Ptolemy’s Design
In this section, we describe Ptolemy, a language with quantified,
typed events that extends implicit invocation (II) languages with

4 2008/5/5

1 class FElement extends Object{}
2 class Point extends FElement { /* ... */
3 Number x; Number y;
4 FElement setX(Number x) {
5 Point changedFE = this;
6 event FEChange {
7 this.x = x; this
8 }
9 }

10 FElement makeEqual(Point other) {
11 Point changedFE = other;
12 event FEChange {
13 other.x = this.x; other.y = this.y;
14 other
15 }
16 }
17 }
18 FElement evtype FEChange {FElement changedFE;}
19 class Update extends Object {
20 FElement last;
21 Update init() { register(this) }
22 FElement update(thunk FElement next,
23 FElement changedFE) {
24 this.last = changedFE;
25 Display.update();
26 invoke(next)
27 }
28 when FEChange do update;
29 }

Figure 4. Drawing Editor in Ptolemy

ideas from aspect-oriented (AO) languages. Ptolemy features new
mechanisms for declaring event types and events. Our description
includes syntax, examples, semantics, and type checking rules. An
example is given in Figure 4.

3.1 Overview
Ptolemy is inspired by II languages such as Rapide [20] and AO
languages such as AspectJ [12]. It also incorporates some ideas
from Eos [25] and Caesar [22]. As a small, core language, its tech-
nical presentation shares much in common with Clifton and Leav-
ens’s MiniMAO1 [3, 5], which itself builds on Classic Java [10]
and Featherweight Java [16]. The object-oriented part of Ptolemy
follows MiniMAO0. While it has classes, objects, inheritance, and
subtyping, it does not have super, interfaces, exception handling,
built-in value types, privacy modifiers, or abstract methods. The
novel features of Ptolemy are found in its event model and type
system. In the syntax these novel features are: an event type decla-
ration (evtype), and an event expression (event).

Like Eos [25], Ptolemy does not have special syntax for aspects
and advice. Instead it has the capability to replace all events in a
specified set (a pointcut) with a call to a method. Following II ter-
minology, we call such methods event handlers or simply handlers.
Each handler takes an event closure as its first argument. An event
closure [25] (or delegate, or delegate chain) contains code needed
to run the applicable handlers and the original event expression. An
event closure can be run using a invoke expression.

Like II languages a Ptolemy module can register to receive event
notifications. This capability is the same as “deployment” in the
AO languages Eos and Caesar [22]. However, like II languages,
registration makes explicit the receiver instance that will run the
handler, and allows instance-level advising features to be easily
programmed [26]. Singleton “aspects” that are created at the start
of the program and automatically registered can also be easily
programmed or added as a syntactic sugar.

3.2 Syntax
Ptolemy’s syntax is shown in Figure 5 and explained below. A pro-
gram consists of a sequence of declarations followed by an expres-
sion. The expression can be thought of as the body of a (static, or
receiverless) “main” method. We next explain declarations, point-
cut descriptions, and expressions.

prog ::= decl* e
decl ::= class c extends d { field* meth* binding* }
| c evtype p { form* }

field ::= c f;
meth ::= t m (form*) { e }
t ::= c | thunk c
binding ::= when pcd do m ;
form ::= t var, where var 6=this
pcd ::= p | cflow(pcd) | pcd && pcd | pcd ‘||’ pcd
e ::= new c() | var | null | e.m(e*) | e.f | e.f = e
| cast c e | form = e; e | e; e
| register(e) | event p { e } | invoke(e)

c, d ∈ C, the set of class names
p ∈ P, the set of evtype names
f ∈ F , the set of field names
m ∈ M, the set of method names

var ∈ {this} ∪ V, V is the set of variable names

Figure 5. Ptolemy’s Abstract syntax, based on [3, Figure 3.1, 3.7].

3.2.1 Declarations
There are only two declaration forms that may appear at the top
level of a Ptolemy program: classes and event type declarations.
These may not be nested. A class has exactly one superclass,
named in its extends clause. It may declare several fields (field*),
methods (meth*), and bindings (binding*). Field declarations are
written with a class name, giving the field’s type, followed by a
field name. Methods also have a C++ or Java-like syntax, although
their body is an expression. As in Eos, bindings associate a set of
events, described by a pointcut description (PCD), to a method. An
example is shown in Figure 4, which contains a binding on line 28.
The binding tells Ptolemy to run the method update whenever
events of type FEChange are executed.

An event type (evtype) declaration has a return type (c), a
name (p), and zero or more context variable declarations (form*).
These context declarations specify the types and names of reflective
information exposed by conforming events. An example is given in
Figure 4 on line 18. In writing examples of event types, as in Fig-
ure 4, we show each formal parameter declaration (form) as termi-
nated by a semicolon (;). In examples showing the declarations of
methods and bindings, we use commas to separate each form.

The intention of this event type declaration is to provide a
named abstraction for a set of events, with result type FElement,
that contribute to an abstract state change in a figure element, such
as moving a point, line, etc. This example event type declares only
one context variable, changedFE, which denotes the FElement
instance that is being changed. An event can only be of this type
if: (a) it has the stated result type and (b) it binds the context
variable changedFE to some value in its lexical scope, as shown
in Figure 4 (lines 5–8).

3.2.2 Quantification: Pointcut Descriptions
The syntax for pointcut descriptions (or PCDs, sometimes called
pointcut designators) has one basic form and three recursive forms,
corresponding to basic and complex events in II languages. The
basic PCD is the named PCD, which denotes the set of events
that are identified by the programmer using event expressions
with that name. The context exposed by such a named event is

5 2008/5/5

the context available at the event identified by the programmer. An
example appears in lines 28-29 of Figure 4, which denotes events
identified with the type FEChange.

The cflow, or control flow, PCD is similar to AspectJ’s cflow
PCD. It names all programmer-identified events that occur during
the execution of the PCD it contains, including those named by that
PCD. The context exposed by such a cflow PCD is the context ex-
posed by the underlying PCD. For example cflow(FEChange)
includes all events in FEChange, as well as all those that occur
during their execution, and it exposes all the context that FEChange
exposes. However, unlike AspectJ, in Ptolemy only explicitly iden-
tified events that occur in the control flow of FEChange are con-
sidered to be events, not all possible events of AspectJ’s predefined
event kinds. This change makes clear where advice can run.

As in AspectJ, disjunction (||) of two PCDs gives the union of
the sets of events denoted by the two PCDs. The context exposed
by the disjunction is the intersection of the context exposed by the
two PCDs. However, if an identifier I is bound in both contexts,
then I’s value in the exposed context is I’s value from the right
hand PCD’s context.

Similarly, the conjunction of two PCDs intersects the set of
events denoted by the two PCDs. A conjunction event exposes
context that is the union of the context exposed by the two PCDs.
Again, if an identifier I is bound in both contexts, then I’s value in
the exposed context is I’s value from the right hand PCD’s context.

3.2.3 Expressions
Ptolemy is an expression language. Thus the syntax for expressions
includes several standard object-oriented (OO) expressions and
also some expressions that are specific to aspects.

The standard OO expressions include object construction (new
c()), variable dereference (var, including this), field dereference
(e.f), null, cast (cast t e), assignment to a field (e1.f = e2), a
definition block (t var = e1; e2), and sequencing (e1; e2), Their
semantics and typing is fairly standard [3, 5].

There are also three new expressions: register, event, and
invoke.

The expression register(e) evaluates e to an object o, reg-
isters o by putting it into the list of active objects, and returns o.
The list of active objects is used in the semantics to track registered
objects. Only objects in this list are capable of advising events. For
example line 21 of Figure 4 is a method that, when called, will
register the method’s receiver (this).

The expression event p {e} declares the expression e as an
event of type p and runs any handler methods of registered objects
(i.e., those in the list of active objects) that are applicable to p. That
is, it marks e as the shadow [15] of an event of type p. Note that
only (well-formed) expressions can produce events, one may not,
describe an an event that contains only part of an expression. The
type named, p, must be an event type. This type name: (i) identifies
the event for purposes of quantification, much like an annotation
would in AspectJ 5, and (ii) is used in type checking.

The expression invoke(e) evaluates e, which must denote an
event closure, and runs that event closure. This results in running
the first handler method in the chain of applicable handlers in the
event closure. If there are no such handler methods, it runs the
original expression from the event.

When called from an event, or from invoke, each handler
method is called with a registered object as its receiver. The call
passes an event closure as the first actual argument to the handler
method.

An example demonstrating these features is shown in Figure 4.
The event declared on lines 6–8 has a body consisting of the
sequence expression on line 7. Notice that the body of the setX
method contains a block expression, where the definition on line 5

binds this to changedFE, and then evaluates its body, the event
expression. This definition makes the value of this available in
the context variable changedFE, which is needed by the event
type FEChange. In this figure, the event declared on lines 12–15
encloses the sequence expression on lines 13–14. As required by
the event type, the definition on line 11 of Figure 4 makes the value
of other available in the context variable changedFE.

Thus the first and the second event expressions are given differ-
ent bindings for the context variable changedFE, however, code
that advises this event type will be able to access this context vari-
able uniformly using the name changedFE.

The evaluation of an event expression first looks for any appli-
cable bindings for objects in the active (registered) list. The handler
methods from such applicable bindings are formed into a list, or-
dered in reverse of the order of object activation, with the most re-
cently registered object’s handlers first. The list is put into an event
closure, which also remembers the event expression’s body. Then
the first handler, if any, is run; if it invokes, it will run the next
handler, or the body expression if there are no more handlers.

This ordering of handlers in the event closure is designed to al-
low more recently registered objects to control whether previously
registered objects have their handlers run, by using invoke (or
not). Similarly, within an object’s handlers, subclass and textually
later bindings are allowed the same control over superclass and tex-
tually earlier bindings. That is, when handler methods from appli-
cable bindings for an object are formed into a list, handlers from
that subclasses of that object’s type appear before handlers declared
in its superclasses. Furthermore, for bindings declared in the same
class, handlers for textually earlier bindings appear after handlers
for later bindings.

Consider a Ptolemy program that combines Figure 4 followed
by the main expression

Update u = new Update().init();
Point p = new Point();
p.setX(new Zero());
u.last

This main expression creates and registers an Update object,
which it names u. It then creates a Point object, and binds it to
p. The call to setX binds the formal x to the object representing
the number 0, and then runs the body of setX. Since the body con-
tains an event expression, and since there is an active object (u) that
contains a binding for that event, that binding’s handler method is
run. This method, update, is called with receiver u, an event clo-
sure as the first argument, and the value of changedFE as the
second argument. The body of update assigns to u’s field last,
and runs the event closure (the expression invoke(next), which
executes the body of the event expression (starting at line 7 of Fig-
ure 4) in its original environment. The body of the event expression
returns the value of this, which, since the environment of the call
to setX has been restored, is the value of p. This value is returned
as the value of the handler chain, and hence as the result of the
method update. In turn, this result, p, is used as the value of the
event expression, and hence as the value of the call to setX. Thus
the expression in the last line of the main program’s expression,
u.last denotes the same object as p.

The grammar only allows one event type to be named in an
event expression. However, it is convenient to allow a list of event
types as a syntactic sugar. The desugaring to a nest of event expres-
sion is as follows.

event p1, . . . , pn {e}
⇒ event p1{ . . .event pn {e} . . .}

Note, however, that this sugar does not make the events listed occur
simultaneously; they instead occur in a definite order.

6 2008/5/5

3.3 Operational Semantics
This section defines a small step operational semantics for Ptolemy.
This semantics has been implemented in the logic programming
language λProlog, using the Teyjus system [23]. This semantics
and its description in this section is adapted from Clifton’s work
[3, 5, 6], which builds on Classic Java [10]. Following these works,
a program’s declarations are simply formed into a fixed list, which
is used in the semantics of expressions. The small steps of the
operational semantics thus gives a semantics of programs by giving
a semantics of expressions.

The expression semantics relies on four expressions that are
not part of Ptolemy’s surface syntax. These expressions allow the
semantics to record final or intermediate states of the computation,
and are shown in Figure 6. The loc expression represents locations
in the store. The under expression is used as a way to mark when
the evaluation stack needs popping. The two exceptions record
various problems orthogonal to the type system.

e ::= loc | under e | NullPointerException | ClassCastException

loc ∈ L, the set of locations

Figure 6. Added syntax for Ptolemy’s operational semantics.

The small steps taken in the semantics transition from one con-
figuration to another. These configurations are described in Fig-
ure 7. A configuration contains an expression (e), a stack (J), a
store (S), and an ordered list of active objects (A). Stacks are an
ordered list of frames, each frame recording the static environment
(ρ) and some other information. (The type environments Π are only
used in the type soundness proof.) There are two types of stack
frame. Lexical frames (lexframe) record an envrionment ρ that
maps identifiers to values. Event frames (evframe) are similar,
but also record the name of the event type being run. A value is a
location or null. Stores are maps from locations to storable val-
ues. Storable values are either objects or event closures. Objects
have a class and also a map from field names to values. Event clo-
sures (eClosure) contain an ordered list of handler records (H),
a PCD type (θ), an expression (e), an environment (ρ), and a type
environment (Π). The type θ and the type environment Π (see Fig-
ure 12) are not used by the operational semantics, but only in the
type soundness proof. Each handler record (h) contains the infor-
mation necessary to call a handler method: a value that will be the
receiver object of the method call (loc), a method name (m), and
an environment (ρh). The environment ρh is used to assemble the
method call arguments when the handler method is called. The en-
vironment ρ recorded at the top level of the event closure is used to
run the expression e when an event closure with no handler records
is used in an invoke expression.

As is usual [37] the semantics is presented as a set of evaluation
contexts E and a one-step reduction relation that acts on the posi-
tion in the overall expression identified by the evaluation context.
This two-part presentation avoids the need for writing out standard
recursive rules and has the advantage of more clearly presenting the
order of evaluation.

Figure 8 defines evaluation contexts, and hence the order of
evaluation for Ptolemy. The language uses a strict leftmost, in-
nermost evaluation policy, which thus uses call-by-value. The
initial configuration for a program with main expression e is
〈under e, (lexframe {} {}) + •, {}, •〉, which starts evalua-
tion of e in a frame with an empty environment, and with an empty
store and empty list of active objects.

Figure 9 presents the operational semantics of Ptolemy. In these
rules all of the hypotheses are really side conditions and side defi-
nitions for use in the rule.

Domains:

Γ ::= 〈e, J, S,A〉 “Configurations”
J ::= ν + J | • “Stacks”
ν ::= “Frames”

lexframe ρΠ “Lexical”
| evframe p ρΠ “Event execution”

ρ ::= {j : vk}k∈K , “Environments”
whereK is finite,K ⊆ I

v ::= loc | null “Values”
S ::= {lock 7→ svk}k∈K , “Stores”

whereK is finite
sv ::= o | pc “Storable Values”
o ::= [c.F] “Object Records”
F ::= {fk 7→ vk}k∈K , “Field Maps”

whereK is finite
pc ::= eClosure(H, θ) (e, ρ,Π) “Event Closures”
H ::= h+H | • “Handler Record Lists”
h ::= 〈loc,m, ρ〉 “Handler Records”
A ::= loc + A | • “Active (Registered) List”

Figure 7. Domains used in the semantics, based on [3].

Evaluation contexts:

E ::= − | E .m(e . . .) | v.m(v . . .E e . . .) | cast t E
| E .f | E ;e | E .f=e | v.f=E | t var=E; e | E; e
| register(E) | under E | invoke(E)

Figure 8. Evaluation contexts for Ptolemy, based on [3].

The rules all make implicit use of a fixed (global) list, CT , of
the program’s declarations. This list is often implicitly used by aux-
iliary functions. Several of the rules manipulate type information;
this information is not used by the semantics, but is kept for the
type soundness proof.

The (NEW) rule says that the store is updated to map a fresh lo-
cation to an object of the given class that has each of its fields set to
null. This rule (and others) uses ⊕ as an overriding operator for fi-
nite functions. That is, if S′ = S⊕(loc 7→ v), then S′(loc′) = v if
loc′ = loc and otherwise S′(loc′) = S(loc′). The fieldsOf func-
tion uses the class table to determine the list of field declarations
for a given class (and its superclasses), considered as a mapping
from field names to their types.

In the (VAR) rule, envOf (ν) returns the environment from the
current frame ν, ignoring any other information in ν.

envOf (lexframe ρΠ) = ρ
envOf (evframe p ρΠ) = ρ

Thus the (VAR) rule says that the value of a variable, including
this, is simply looked up in the environment of the current frame.
The (CALL) rule implements dynamic dispatch by looking up the
method m starting from the dynamic class (c) of the receiver ob-
ject (loc), looking in superclasses if necessary, using the auxiliary
function methodBody (not shown here). The body is executed in
a lexframe with an environment that binds the methods formals,
including this, to the actual parameters. Since methods do not
nest, and since expressions access object fields by starting from an
explicit object there is no other context available to a method.

Note that under e is used in the resulting configuration for
the (CALL) rule. This expression is used whenever a new frame
is pushed on the stack, to record that the stack should be popped
when the evaluation of e is finished. The (UNDER) rule pops the
stack when evaluation of its subexpression is finished. The (GET)
and (SET) rules are standard. The value of a field assignment is the
value being assigned.

The (CAST) rule simply checks that the dynamic class of the
object is a subtype of the type given in the expression. The (NCAST)
rule allows null to be cast to any type.

7 2008/5/5

Evaluation relation: ↪→: Γ→ Γ

(NEW)
loc 6∈ dom(S)

S
′

= S ⊕ (loc 7→ [c.{f 7→ null | f ∈ dom(fieldsOf (c))}])
〈E[new c()], J, S,A〉 ↪→

˙
E[loc], J, S

′
, A

¸
(VAR)

ρ = envOf (ν) v = ρ(var)

〈E[var], ν + J, S,A〉 ↪→ 〈E[v], ν + J, S,A〉

(GET)
[c.F] = S(loc)
v = F (f)

〈E[loc.f], J, S,A〉
↪→ 〈E[v], J, S,A〉

(SET)
[c.F] = S(loc) S

′
= S ⊕ (loc 7→ [c.F ⊕ (f 7→ v)])

〈E[loc.f = v], J, S,A〉 ↪→
˙
E[v], J, S

′
, A

¸
(DEF)
ρ = envOf (ν) ρ

′
= ρ⊕ (var 7→ v) Π = tenvOf (ν)

Π
′

= Π∪−{var : var t} ν
′

= lexframe ρ′ Π
′

〈E[t var = v;e], ν + J, S,A〉 ↪→
˙
E[under e], ν′ + ν + J, S,A

¸
(CALL)

[c.F] = S(loc)
(c2, t m(t1var1, . . . , tnvarn){e}) = methodBody(c,m)

ρ = {vari 7→ vi | 1 ≤ i ≤ n} ⊕ (this 7→ loc)
Π = {vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2}

ν = lexframe ρΠ

〈E[loc.m(v1, . . . , vn)], J, S,A〉 ↪→ 〈E[under e], ν + J, S,A〉

(CAST)
[c
′.F] = S(loc) c

′ 4 c

〈E[cast c loc], J, S,A〉
↪→ 〈E[loc], J, S,A〉

(SKIP)
〈E[v;e], J, S,A〉
↪→ 〈E[e], J, S,A〉

(UNDER)
〈E[under v], ν + J, S,A〉

↪→ 〈E[v], J, S,A〉

(REGISTER)
〈E[register(loc)], J, S,A〉
↪→ 〈E[loc], J, S, loc + A〉

(EVENT)
ρ = envOf (ν)

Π = tenvOf (ν) (c evtype p{t1 var1, . . . , tn varn}) ∈ CT
ρ
′

= {vari 7→ vi | ρ(vari) = vi} π = {vari : var ti | 1 ≤ i ≤ n}
loc 6∈ dom(S) π

′
= π∪−{loc : var (thunk c)}

ν
′

= evframe p ρ′ π′ H = hbind(ν
′
+ ν + J, S,A)

θ = pcd c, π S
′

= S ⊕ (loc 7→ eClosure(H, θ) (e, ρ,Π))

〈E[event p {e}], ν + J, S,A〉
↪→

˙
E[under (invoke(loc))], ν

′
+ ν + J, S

′
, A

¸
(INVOKE-DONE)
eClosure(•, θ) (e, ρ,Π) = S(loc) ν = lexframe ρΠ

〈E[invoke(loc)], J, S,A〉 ↪→ 〈E[under e], ν + J, S,A〉

(INVOKE)
eClosure((〈loc

′
,m, ρ〉+H), θ) (e, ρ

′
,Π) = S(loc)

[c.F] = S(loc
′
)

(c2, t m(t1var1, . . . , tnvarn){e′}) = methodBody(c,m)
n ≥ 1 ρ

′′
= {vari 7→ vi | 2 ≤ i ≤ n, vi = ρ(vari)}

loc1 6∈ dom(S) S
′

= S ⊕ (loc1 7→ eClosure(H, θ) (e, ρ
′
,Π))

ρ
′′′

= ρ
′′ ⊕ {var1 7→ loc1} ⊕ {this 7→ loc

′}
Π
′

= {vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2}
ν = lexframe ρ′′′ Π

′

〈E[invoke(loc)], J, S,A〉 ↪→
˙
E[under e′], ν + J, S

′
, A

¸
Figure 9. Operational semantics of Ptolemy, based on [3].

The (DEF) rule allows for local definitions. It is similar to let
in other languages, but with a more C++ and Java-like syntax.
It simply binds the variable given to the value in an extended
environment. Since a new frame is pushed on the stack, the body,
e, is evaluated inside an “under” expression, which pops the stack
when e is finished. The (SKIP) rule for sequence expressions is
similar, but no new frame is needed.

hbind(J, S, •) = •
hbind(J, S, loc + A)
= concat(hmatch(CT, J, S, loc), hbind(J, S,A))
where CT is the program’s list of declarations
and concat(•, H′) = H′

concat(h+H,H′) = h+ concat(H,H′)

hmatch(CT, J, S, loc) = match(H, J, S, loc)
where S(loc) = [c.F] and bindings(CT, c) = H

bindings(CT, c) = binds(CT,CT, c)
binds(CT, •, c) = •
binds(CT, ((t evtype p{ . . . }) + CT ′), c) = binds(CT,CT ′, c)
binds(CT, ((class c extends c′ . . . binding1 . . . bindingn)+CT ′), c)

= concat((bindingn + . . .+ binding1 + •), binds(CT,CT, c′))

match(•, J, S, loc) = •
match(binding +H, J, S, loc)

= if mpcd(pcd, J, S) 6= ⊥
then let ρ = mpcd(pcd, J, S)

in let ρ′ = {vari 7→ ρ(vari) | 1 ≤ i ≤ n}
in(〈loc,m, ρ′〉+ match(H, J, S, loc))

else match(H, J, S, loc)
where binding = when pcd dom

mpcd(p, (evframe p′ ρΠ) + J, S) = if p ≡ p′ then ρ else⊥
mpcd(cflow pcd, •, S) = ⊥
mpcd(cflow pcd, ν + J, S)

= if mpcd(pcd, ν + J, S) 6= ⊥ then mpcd(pcd, ν + J, S)
else mpcd(pcd, J, S)

mpcd(pcd1&& pcd2, J, S)
= if mpcd(pcd1, J, S) 6= ⊥ ∧mpcd(pcd2, J, S) 6= ⊥

then mpcd(pcd1, J, S) ∪−mpcd(pcd2, J, S)
else⊥

mpcd(pcd1|| pcd2, J, S)
= if mpcd(pcd1, J, S) 6= ⊥ ∧mpcd(pcd2, J, S) 6= ⊥

then mpcd(pcd1, J, S) ∩−mpcd(pcd2, J, S)
else if mpcd(pcd1, J, S) 6= ⊥ then mpcd(pcd1, J, S)
else mpcd(pcd2, J, S)

ρ∪−ρ′ = {var 7→ ρ(var) | var ∈ dom(ρ) ∧ var 6∈ dom(ρ′)} ∪ ρ′
ρ∩−ρ′ = {var 7→ ρ′(var) | var ∈ dom(ρ) ∧ var ∈ dom(ρ′)}

Figure 10. Auxiliary functions for matching bindings.

The (REGISTER) rule simply puts the object being activated at
the front of the list of active objects. The bindings in this object are
thus given control before others already in the list. Notice that an
object can appear in this list multiple times.

The (EVENT) rule is central to Ptolemy’s semantics, as it starts
the running of handler methods. In essence, the rule forms a new
frame for running the event, and then looks up bindings appli-
cable to the new stack, store, and list of active objects. The re-
sulting list of handler records (H) is put into an event closure
(eClosure(H, θ) (e, ρ′,Π))), which is placed in the store at a
fresh location. This event closure will execute the handler meth-
ods, if any, before the body of the event expression (e) is evaluated.
Since a new (event) frame is pushed on the stack, invoke ex-
pression that starts running this closure is placed inside an under
expression, so that the stack will be popped when the invoke ex-
pression is finished.

The auxiliary function hbind , defined in Figure 10 uses the
program’s declarations, the stack, store, and the list of active objects
to produce a list of handler records that are applicable for the event
in the current state. When called by the (EVENT) rule, the stack
passed to it has a new frame on top that represents the current event.

The hmatch function determines, for a particular object loc,
what bindings declared in the class of the object referred to by loc
are applicable. It looks up the location loc in the store, extracts the
class of the object loc refers to, and uses that class to obtain a list
of potential bindings. This list is filtered using match , which relies
on mpcd to match a PCD against a particular event on the stack.

8 2008/5/5

(NCALL)
〈E[null.m(v1, . . . , vn)], J, S,A〉 ↪→ 〈NullPointerException, •, S, A〉

(NGET)
〈E[null.f], J, S,A〉 ↪→ 〈NullPointerException, •, S, A〉

(NSET)
〈E[null.f = v], J, S,A〉
↪→ 〈NullPointerException, •, S, A〉

(NCAST)
〈E[cast t null], J, S,A〉
↪→ 〈E[null], J, S,A〉

(XCAST)
[c.F] = S(loc) c 64 t

〈E[cast t loc], J, S,A〉 ↪→ 〈ClassCastException, •, S, A〉

(NREGISTER)
〈E[register null], J, S,A〉 ↪→ 〈NullPointerException, •, S, A〉

Figure 11. Operational semantics of expressions that produce ex-
ceptions, based on [3].

Each matching binding generates a handler record, recording the
active object (which will act as a receiver when the handler method
is called), the handler method’s name, and an environment. The
environment is obtained by mpcd , ultimately from the environment
in frames of type evframe. This environment is also restricted
to contain just those mappings that are for names in the declared
formals of the binding.

When a PCD matches the given stack and store, mpcd returns an
environment, otherwise it returns ⊥. For named events that match,
it returns the environment from the top frame on the stack. For a
cflow PCD, it searches the stack and returns the first environment
that matches the enclosed PCD. The disjunction and conjunction
PCDs produce an environment that favors their right argument’s
mappings. For disjunction the result is a kind of intersection, and
for conjunction the result is a kind of union.

The evaluation of invoke expressions is done by the two
invoke rules. The (INVOKE-DONE) rule handles the case where there
are no (more) handler records. It simply runs the event’s body
expression (e) in the environment (ρ) that was being remembered
for it by the event closure.

The environment is made active by using a lexframe contain-
ing it as the top frame on the stack. The expression is put inside an
under expression, so that this new frame will be popped when its
evaluation is over.

The (INVOKE) rule handles the case where there are handler
records still to be run in the event closure. It makes a call to the
active object (referred to by loc) in the first handler record, using
the method name and environment stored in that handler record.
The active object is the receiver of the method call. The first formal
parameter is bound to a newly allocated event closure that would
run the rest of the handler records (and the original event’s body) if
it used in a event expression.

The operational semantics rules that result in exceptions are
given in Figure 11. These treat some uses of null values and bad
casts as exceptions, following Java. Encountering one of these
exceptions does not make the semantics be “stuck” and hence the
situations that lead to these exceptions are not considered to be type
errors. However, all of the resulting configurations are terminal.

3.4 Type Checking
Type checking uses the type attributes defined in Figure 12. (These
use some of the notation and ideas from Schmidt’s book [28].)

The type checking rule themselves are shown in Figure 13 and
14. See Clifton’s thesis [3] for details on these straightforward rules
for standard OO expressions. Some rules we use the overriding
union notation ∪−, defined in Figure 10 [28].

θ ::= “type attributes”
OK “program/top-level decl.”
OK in c “method, binding”
| var t “var/formal/field”
| exp t “expression”
| pcd τ, π “pcd/handler chain”

τ ::= c | > | ⊥ “class type exps”
π,Π ::= {I : θI}I∈K , “type environments”

whereK is finite,K ⊆ (L ∪ {this} ∪ V)

Figure 12. Type attributes.

(NEW EXP TYPE)
isClass(c)

Π ` new c() : exp c

(CAST EXP TYPE)
isClass(c)

Π ` cast c e : exp c

(NULL EXP TYPE)
isClass(c)

Π ` null : exp c

(GET EXP TYPE)
Π ` e : exp c fieldsOf (c)(f) = t

Π ` e.f : exp t

(SET EXP TYPE)
Π ` e : exp c fieldsOf (c)(f) = t Π ` e′ : exp t′ t

′ 4 t

Π ` e.f=e′ : exp t′

(DEF EXP TYPE)
isType(t) Π ` e1 : exp t1

t1 4 t Π
′

= Π∪−{var : var t} Π
′ ` e2 : exp t2

Π ` t var= e1;e2 : exp t2

(SEQ EXP TYPE)
Π ` e1 : exp t1 Π ` e2 : exp t2

Π ` e1;e2 : exp t2

(NP EXCEPTION EXP TYPE)
Π ` NullPointerException : exp⊥

(CC EXCEPTION EXP TYPE)
Π ` ClassCastException : exp⊥

Figure 13. Type-checking rules for OO features.

As in Clifton’s work [3, 5], the type checking rules are stated
using a fixed class table (list of declarations) CT , which can be
thought of as an implicit (hidden) inherited attribute. This class
table is used implicitly by many of the auxiliary functions. For
ease of presentation, we also follow Clifton in assuming that the
names declared at the top level of a program are distinct and that
the extends relation on classes is acyclic.

The type checking of PCDs involves their return type and the
typing context (a map from variable names to types) that they
make available [3]. The return type and typing context of a named
PCD are declared where the event type named is declared. For
example, the FEChange PCD has FElement as its return type
and the typing context that associates changedFE to the type
FElement.

Since control flow PCDs are dynamic, their return type cannot
be used, so we assign them a return type of >, which is considered
a supertype of Object, but is not legal as a return type itself.
The typing context of a cflow PCD is the typing context of the
underlying PCD. Thus if a cflow PCD is not conjoined with any
other PCD, the PCD will lead to a type error.

For a disjunction PCD, the return type is the least upper bound
of the two PCD’s return types, and the typing context is the inter-
section of the two typing contexts. For each common names I that
is in the domain of both contexts, the type exposed for I is the least
upper bound of the two types assigned to I by the two PCDs. This
makes sense because only one of the two event types may apply.

9 2008/5/5

(CHECK PROGRAM)
(∀i ∈ {1..n} :: ` decli : OK) ` e : exp t

` decl1 . . . decl1 e : prog t

(CHECK CLASS)
isClass(d) (∀j ∈ {1..m} :: ` methjOK in c)

(∀k ∈ {1..o} :: ` bindingkOK in c)
(∀i ∈ {1..n} :: isClass(ti) ∧ fi 6∈ dom(fieldsOf (d)))

` class c extends d {t1 f1; . . . tn fn; meth1 . . . methm

binding1 . . . bindingo} : OK

(CHECK EVTYPE)
isClass(c) (∀i ∈ {1..n} :: isType(ti))

` c evtype p {t1 var1; . . . tn varn;} : OK

(CHECK METHOD)
isType(t) (∀i ∈ {1..n} :: isType(ti))

{var1 : var t1, . . . , varn : var tn, this : var c} ` e : exp t′

t
′ 4 t (class c extends d { . . . }) ∈ CT

override(m, d, t1 × · · · × tn → t)

` t m(t1 var1, . . . , tn varn){e} : OK in c

(CHECK BINDING)
isClass(c′) n ≥ 1

t1 = thunk c′ (∀i ∈ {2..n} :: isType(ti)) ` pcd : pcd c′, π
(c2, c

′
m(t1 var1, . . . , tn varn){e}) = methodBody(c,m)
{var2 : var t2, . . . , varn : var tn} ⊆ π

Π ` (c
′ when pcd dom) : OK in c

(EV ID PCD TYPE)
(c evtype p {t1 var1; . . . tn varn;}) ∈ CT
π = {var1 : var t1, . . . varn : var tn}

` p : pcd c, π

(CFLOW PCD TYPE)
` pcd : pcd τ, π

` cflow(pcd) : pcd>, π

(CONJUNCTION PCD TYPE)
` pcd : pcd τ, π
` pcd′ : pcd τ ′, π′

τ
′′

= τ t τ ′ π
′′

= π∪−π′

` pcd && pcd′ : pcd τ ′′, π′′

(DISJUNCTION PCD TYPE)
` pcd : pcd τ, π
` pcd′ : pcd τ ′, π′

τ
′′

= τ u τ ′ π
′′

= π ∩ π′

` pcd || pcd′ : pcd τ ′′, π′′

(VAR EXP TYPE)
(var : var t) ∈ Π

Π ` var : exp t

(CALL EXP TYPE)
Π ` e : exp c

(c2, t m(t1 var1, . . . , tn varn){e}) = methodBody(c,m)
c 4 c2 Π ` e1 : exp t1 . . . Π ` en : exp tn

Π ` e.m(e1, . . . , en) : exp t

(EVENT EXP TYPE)
(c evtype p {t1 var1; . . . tn varn;}) ∈ CT
{var1 : var t1, . . . , varn : var tn} ⊆ Π

Π ` e : exp c′ c
′ 4 c

Π ` event p {e} : exp c

(LOC EXP TYPE)
(loc : var t) ∈ Π

Π ` loc : exp t

(UNDER EXP TYPE)
Π ` e : exp t

Π ` under e : exp t

(REGISTER EXP TYPE)
Π ` e : exp c

Π ` register(e) : exp c

(INVOKE EXP TYPE)
Π ` e : exp (thunk c)

Π ` invoke(e) : exp c

Figure 14. Type-checking rules for Ptolemy.

For the conjunction PCD, the return type is the greatest lower
bound of the two PCD’s return types, and the typing context is a
right-biased overriding union of the two typing contexts. In such
a union, each common name I mapped to the type assigned to I

isClass(t) = (class t . . .) ∈ CT
isThunkType(t) = (t = thunk c ∧ isClass(c))
isType(t) = isClass(t) ∨ isThunkType(t)

Figure 15. Auxiliary functions not in Clifton’s dissertation.

by the PCD on right hand side of the conjunction. Note that since a
particular PCD must be ultimately based on named event types, and
since Ptolemy does not have subtype relationships among named
event types, it is usually only sensible to use conjunctions in which
one side is not a cflow PCD. When this is done, the return type
will be that of the named PCD, since the return type of the cflow
PCD is >.

In an event expression, the result type of the body expression,
c′, must be a subtype of the result type c declared by the event type,
p. Furthermore, the lexical scope available (at e) must provide the
context demanded by p.

In an expression of the form invoke(e), e must have a type
of the form thunk c, which ensures that the value of e is an event
closure. The type c is the return type of that event closure, and
hence the type returned by invoke(e).

In the type checking rules above we use several auxiliary func-
tions. Most of these are taken from Clifton’s dissertation [3, Figure
3.3]. A few others are given in Figure 15.

The notation τ ′ 4 τ means τ ′ is a subtype of τ . It is the
reflexive-transitive closure of the declared subclass relationships
with the added facts that > is a supertype of all class type expres-
sions, and that⊥ is a subtype of all class type expressions. The type
⊥ is used as the type of exceptions. This is formalized in Figure 16.

(BASIS)
(class c extends d{ . . . }) ∈ CT

c 4 d

(REF)
τ 4 τ

(TRANS)
τ1 4 τ2 τ2 4 τ3

τ1 4 τ3

(TOP)
isClass(c)

c 4 >

(BOTTOM)
isClass(c)

⊥ 4 c

Figure 16. Subtyping rules, adapted from [3, Figure 3.4].

3.5 Type Soundness
The proof of soundness of Ptolemy’s type system uses a standard
preservation and progress argument [37]. The details are adapted
from Clifton’s work [3, 5], which in turn follows Flatt et al.’s
work [10]. Throughout this section we assume a fixed, well-typed
program with a fixed class table.

The key idea in the proof of the subject-reduction theorem is
the preservation of consistency between the type environment and
the stack and store. This notion is built on the following notion of
a (non-null) location having a particular type in the store. This in-
volves fields holding values of their declared types and consistency
of the type information in an event closure.

DEFINITION 3.1 (loc has type t in S). Let loc be a location, t be
a type, and S be a store. Then loc has type t in S if and only if one
of the following holds:

(a) isClass(t) and for some c and F : (i) S(loc) = [c.F], (ii)
c 4 t, (iii) dom(F) = dom(fieldsOf (c)), (iv) rng(F) ⊆
(dom(S) ∪ {null}), and (v) for all f ∈ dom(F), if F (f) =
loc′, fieldsOf (c)(f) = u, and S(loc′) = [c′.F ′], then c′ 4 u

(b) isThunkType(t), t = thunk c, and for some H , π, e,
ρ, Π, and c′ such that all the following hold: (i) S(loc) =
eClosure(H,pcd c, π)(e, ρ,Π), (ii) Π ` e : exp c′, (iii)

10 2008/5/5

c′ 4 c, (iv) for each vari ∈ dom(Π), if (vari : var ti) ∈ Π
then ρ(vari) has type ti in S, (v) for each loci ∈ dom(Π), if
(loci : var ti) ∈ Π then loci has type ti in S, and (vi) for
each handler record h in H , h has type pcd c, π in S.

The last notion used in the above definition is defined as follows.

DEFINITION 3.2 (h has type pcd c, π in S). Let h be the handler
record 〈loc,m, ρ〉, let c be a class name, π a type environ-
ment, and S a store. Then h has type pcd c, π in S if and only
if for some c′, F , c2, t′, n > 1, vari, ti and e: S(loc) =
[c′.F], methodBody(c′,m) = (c2, c m(t1var1, . . . , tnvarn){e}),
dom(ρ) = dom(π) = {var2, . . . , varn}, t1 = thunk c, and for
each i ∈ {2, . . . , n}, (vari : var ti) ∈ π and ρ(vari) has type ti
in S.

The key definition of consistency is thus as follows. In the
definition, tenvOf (ν) is the type environment of a frame ν, and
envOf (ν) returns ν’s environment. Notice that the type environ-
ment (Π) can have some locations in its domain; these are needed
to enable the typing of location expressions. (Location expressions
are used in the semantics of new expressions, for example.)

DEFINITION 3.3 (Environment-Stack-Store Consistent). Let Π be
a type environment, J a stack, and S a store. Then Π is consistent
with (J, S), written Π ≈ (J, S), if and only if either J = • or
J = ν + J ′ and all the following hold:

1. Π = tenvOf (ν),
2. if ρ = envOf (ν), then for all (var : var t) ∈ Π, var ∈

dom(ρ) and ρ(var) has type t in S, and
3. for all (loc : var t) ∈ Π, loc ∈ dom(S) and loc has type t in
S.

The subject-reduction theorem, as usual, says that evaluation
steps preserve both types and consistency. The key idea that makes
preservation of consistency easy to prove is the use of type informa-
tion buried in frames and event closures. This type information is
maintained by the operational semantics, but not used by it. Main-
tenance of this type information occurs each time the stack changes
(since the type environment must match that of the top stack frame),
and each time a chain expression is created.

THEOREM 3.4 (Subject-reduction). Let e be an expression, J a
stack, S a store, and A an active object list. Let Π be a type
environment and t a type. If Π ≈ (J, S), Π ` e : exp t, and
〈e, J, S,A〉 ↪→ 〈e′, J ′, S′, A′〉, then there is some Π′ and t′ such
that Π′ ` e′ : exp t′, t′ 4 t and Π′ ≈ (J ′, S′).

Proof Sketch: The proof is by cases on the definition of ↪→ (see
Figure 9). Assume Π ≈ (J, S), Π ` e : exp t, and 〈e, J, S,A〉 ↪→
〈e′, J ′, S′, A′〉.

The OO cases (rules (NEW), (GET), (SET), (CAST), (NCAST),
and (SKIP)) are all straightforward, and can be proved by simple
adaptions of Clifton’s proofs for MiniMAO0 [3, Section 3.1.4]. The
result for the exception cases (see Figure 11) all follow directly
from the use of exp ⊥ as their type and the fact that the stack in
the resulting configuration is empty.

The (CALL) rule is different from Clifton’s MiniMAO0, and
thus must be handled in detail. This case is also a good il-
lustration of how the type information in the configurations
is preserved. Suppose e = loc.m(v1, . . . , vn). From the hy-
potheses of the (CALL) rule we have that: [c.F] = S(loc),
(c2, t

′′ m(t1var1, . . . , tnvarn){e′′}) = methodBody(c,m), ρ =
{vari 7→ vi | 1 ≤ i ≤ n} ⊕ (this 7→ loc), Π′′ =
{vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2}, and ν =
lexframe ρ Π′′. So in this case, e′ = under e′′, J ′ = ν + J ,
and S′ = S. Since the program is assumed to be well-typed, by the

(CHECK PROGRAM) typing rule, all its declarations type check, and
so by the (CHECK CLASS) rule, the class c2 where m is defined type
checks, and so by the (CHECK METHOD) rule, the method m type
checks in class c2. Thus by the hypotheses of the (CHECK METHOD)
rule we can choose Π′ to be Π′′ and t′ to be t′′. That rule also gives
us that Π′ ` e′′ : exp t′ and t′ 4 t. To prove Π′ ≈ (ν + J, S′) we
use definition 3.3. The first condition holds by construction, since
the type environment of ν is equal to Π′′, which is our Π′. The
second condition holds because for each vari, if ρ(vari) = loci 6=
null, then the loci has type ti in S, because for e to be well-
typed, it must be that Π ` vi : exp ti (due to the hypotheses of the
(CALL EXP TYPE) rule), and by assumption Π ≈ (J, S). The third
condition is vacuous in this case.

The case for the (DEF) rule is similar, and is also similar to
Clifton’s (SEQ) case.

Preservation is trivial for the (REGISTER) case, since we can
choose t′ = t. Consistency is also trivial in this case, since the
rule makes no changes to the stack or store.

For the (EVENT) rule, suppose e = event p {e′′}. From
the conclusion of this rule it must be that J = ν + J ′′

for some ν and J ′′. From the hypotheses of the (EVENT)
rule we have that: ρ = envOf (ν), Π′′ = tenvOf (ν),
(c evtype p{t1 var1, . . . , tn varn}) ∈ CT , ρ′ = {vari 7→ vi |
ρ(vari) = vi}, π = {vari : var ti | 1 ≤ i ≤ n}, loc 6∈ dom(S),
π′ = π∪−{loc : var (thunk c)}, ν′ = evframe p ρ′ π′,
H = hbind(ν′ + ν + J, S,A), θ = pcd c, π, and S′ =
S ⊕ (loc 7→ eClosure(H, θ) (e, ρ,Π′′)). So in this case e′ =
under (invoke(loc)) and J ′ = ν′ + ν + J ′′. To preserve con-
sistency, we must choose Π′ = π′ since that is the type environ-
ment of frame ν′. Since by hypothesis Π ` e : exp t, by the
(EVENT EXP TYPE) rule, we have that c = t, and so we can choose
t′ = c, and thus t′ 4 t. With these choices Π′ ` e′ : exp t′, us-
ing the type rules (UNDER EXP TYPE) and (INVOKE EXP TYPE), since
Π′ ` loc : exp (thunk c) by construction. To prove Π′ = π′ ≈
(ν′+ν+J ′′, S′) we use definition 3.3. The first condition holds by
construction. The second condition holds because the variables in
the domain of Π′ are a subset of those in the domain of Π, π and ρ′

are constructed with matching domains, and the only change to S′

from S is the addition of loc. The third condition holds because the
only location in the domain of Π′ is loc, which has type thunk c
in S′ by construction.

For the (INVOKE-DONE) rule, suppose e = invoke(loc).
From the hypothesis of this rule eClosure(•, θ) (e′′, ρ′′,Π′′) =
S(loc) and ν = lexframe ρ′′ Π′′. So in this case we have
e′ = under e′′, J ′ = ν + J , and S′ = S. To preserve
consistency, we choose Π′ = Π′′, which is the type environ-
ment originally used to type check e′′. Since by hypothesis, Π `
invoke(loc) : exp t, from the (INVOKE EXP TYPE) rule, we have
that Π ` loc : exp (thunk t). By hypothesis, we know that
Π ≈ (J, S), and hence by definition loc has type thunk t in S.
Thus Π′′ ` e′′ : exp c′′, where c′′ 4 t. So we choose t′ = c′′,
which makes t′ 4 t. It follows directly from the (UNDER EXP TYPE)
that Π′′ ` under e′′ : exp c′′. To prove Π′ = Π′′ ≈ (ν + J, S′)
we again use definition 3.3. The first condition holds by construc-
tion. The second and third conditions hold because of the hypoth-
esis that Π ≈ (J, S), hence loc has type thunk t in S = S′,
and thus these conditions hold by parts (b)(iv) and (b)(v) in defini-
tion 3.1.

For the (INVOKE) rule, suppose e = invoke(loc). From the
hypothesis
of this rule: eClosure((〈loc′,m, ρ〉 + H), θ) (e′′, ρ′′,Π′′) =
S(loc), [c.F] = S(loc′), (c2, t

′′ m(t1var1, . . . , tnvarn){e′′′}) =
methodBody(c,m), n ≥ 1, ρ3 = {vari 7→ vi | 2 ≤ i ≤
n, vi = ρ(vari)}, loc1 6∈ dom(S), S′ = S ⊕ (loc1 7→
eClosure(H, θ) (e′′, ρ′′,Π′′)), ρ4 = ρ3 ⊕ {var1 7→ loc1} ⊕

11 2008/5/5

{this 7→ loc′}, Π3 = {vari : var ti | 1 ≤ i ≤
n}∪−{this : var c2}, and ν = lexframe ρ4 Π3. So in
this case we have e′ = under e′′′ and J ′ = ν + J . To pre-
serve consistency, we choose Π′ = Π3. Since by hypothesis,
Π ` invoke(loc) : exp t, from the (INVOKE EXP TYPE) rule,
we have that Π ` loc : exp (thunk t). By hypothesis, we
know that Π ≈ (J, S), and hence by definition loc has type
thunk t in S. Thus by definition 3.1 (b)(vi), the handler record
〈loc′,m, ρ〉 has type θ = pcd t, π in S. By definition 3.2, t′′ = t,
π = {var2 : var ti, . . . , varn : var tn}, t1 = thunk t, and
for each i ∈ {2, . . . , n}, ρ(vari) has type ti in S. Then since the
program is assumed to be well-typed, by the (CHECK METHOD) rule,
using the hypothesis that the return type of m is t′′, we have that
Π3 ` e′′′ : exp t′′′′ and t′′′′ 4 t′′. So we choose t′ = t′′ = t,
which makes t′ 4 t. It follows directly from the (UNDER EXP TYPE)
that Π3 ` under e′′′ : exp t′. To prove Π′ = Π3 ≈ (ν + J, S′)
we again use definition 3.3. The first condition holds by construc-
tion. The second condition holds because: (1) ρ4(var1) = loc1 and
by construction loc1 has type t1 = thunk t in S′, (2) by construc-
tion for each i ∈ {2, . . . , n}, ρ4(vari) = ρ(vari), and ρ(vari) has
type ti in S, which holds the same values as S′ for these locations,
and (3) ρ4(this) = loc′ which has type c in S and hence in S′,
and so by definition of methodBody , c 4 c2, which is the type of
this in Π3. The third condition is vacuous in this case.

4. Advance over II and AO Languages
In this section, we revisit the problems discussed in Section 2.

4.1 Comparison with II Languages
Like II invocation languages, events are explicitly identified in
Ptolemy programs; however, announcement and registration is au-
tomated, thus hiding their underlying details. Ptolemy’s technique
for identifying events is declarative, unlike the imperative tech-
nique typical of II languages. Moreover, registration in Ptolemy
does not require naming all classes that announce an event of in-
terest. Thus, event handlers in Ptolemy need not be coupled with
the concrete implementation of these classes. For example, naming
the event type FEChangewill have the effect of selecting event ex-
pressions in Point.setX and Point.makeEqual in Figure 4,
these expressions and their containing classes need not be mapped.
The type abstraction hides the details of the event implementation.
Ptolemy’s event types abstract away the registration code.

Ptolemy’s handlers can replace (or override) code for an event.
Although similar functionality can be emulated in II languages,
Ptolemy’s language constructs significantly eases the program-
mer’s task.

Most importantly, quantification of events becomes signifi-
cantly simpler in Ptolemy. Naming the event types in the PCD has
the effect of selecting all event expressions of that type. Ptolemy
programs are able to refer to a large set of related events using suc-
cinct expressions.

Some of the advantages of named event types would also be
found in a language like AspectJ 5, which can advise code tagged
with various Java 5 annotations. If one only advises code that has
certain annotations, then join points become more explicit, and
more like the explicitly identified events in Ptolemy. However, this
does not solve the problems described in the rest of this section.

4.2 Robust Join Point Types
In Section 2.1, we considered the fragility problem with AO lan-
guages. If instead Ptolemy’s event expressions are used to identify
the join points in the Line class as shown in following listing,
refactoring of the Point class will not have an effect on the events
selected by the binding in Update class.

class Line extends FElement { /* ... */
Point p1, p2;
public FElement setP1(Number x, Number y) {

Line changedFE = this;
event FEChange { p1.x = x; p1.y = y; }

}
}

Figure 17. The class Line in Ptolemy.

For further analysis of robustness against base code changes, let
us compare the syntactic version of the pointcuts in the drawing
editor example as shown in Figure 2 with Ptolemy’s version in
Figure 4.

To remind the reader, the purpose is to expose the abstract state
transitions in the FigureElement so that aspects can add be-
haviors at these state transitions [33]. The first pointcut, taken from
[36, pp. 56], is a syntactic pointcut that uses regular expression such
as set*(..), whereas the second pointcut uses the event type
FEChange to aggregate all event expressions in the modules that
are crosscut by this type-hierarchy.

pointcut Change (FElement fe) :
target(fe) && (call(FElement.set*(..))

/* Equivalent binding in Ptolemy */
when FEChange do update;

public pointcut Change(FigureElement fe):
target(fe) && call(@FEChange * *(..);

The syntactic approach to selecting join points provides ease
of use. E.g., by just writing a simple regular expression one can
select join points throughout the code base. However, this selec-
tion is limited to the join points made available by language’s join
point model. A much finer-grained selection is possible using our
approach; however, systematic modifications are needed to declar-
atively identify event expressions.

The ease of selecting join points provided by syntactic ap-
proaches may turn out to be a double-edged sword. For ex-
ample, consider another evolutionary scenario. Each composite
FElement has to be extended to include a reference to the par-
ent FElement for ease of traversing the composite structure, e.g.
Point is to be extended to include a reference to Line. A mutator
setParent and an accessor getParent for this reference are
also added. The syntactic pointcut will also select the join points
call to mutator setParent for advising, which is incorrect. Set-
ting the reference to the parent, just for ease of implementation, is
not an abstract state transition for a FElement. An aspect-oriented
tool such as AJDT may warn the developer against such inadver-
tent selection of join point by showing visual cues at the shadow of
the join point.

In AspectJ one would exclude calls to setParent by conjoin-
ing call(FElement+.setParent(..)) to the PCD; how-
ever, this solution is not desirable due to two reasons. First, this
enumerated list of exceptions can get large in real systems. Second,
each item in this list of exception introduces a dependency between
the base code and the aspect code, increasing the coupling.

In Ptolemy, this change will not affect the selected events. The
calls to method setParent are not automatically selected by the
pointcut. However, in cases where the events exposed by a module
are affected by a change, the developer may choose to restrict or
extend the event expressions in the module. For example, while
changing a FigureElement subclass to include the methods
setParent and getParent, the developer may choose to iden-
tify the calls to setParent as event expressions.

12 2008/5/5

In summary, it is easier to separate a crosscutting concern using
syntactic quantification; however, changes that affect the advised
code have a direct impact on the advising code implementation.
Some of these impacts may potentially break the advising code.
On the other hand, quantified event types require preparation of the
code to be advised to systematically provide event expressions.
However, advising code is shielded from the changes in advised
code by the type-hierarchy. Our approach is thus more robust com-
pared to syntactic quantification against base code changes.

4.3 Flexible Quantification
The event expression in Ptolemy allows one to label any ex-
pression as an event expression. Significant flexibility comes from
the ability to mark arbitrary expressions, which largely solves the
quantification failure problem [33] pointed out in Section 2.2. The
events that can be made available to handlers are no longer lim-
ited to interface elements. Moreover, the implementations of these
events are not exposed to handlers. Handlers only come to rely
upon the event type declaration.

4.4 Flexible Access to Context Information
Third problem that we considered in Section 2.3 was the difficulty
of retrieving context information from a join point. Event types in
Ptolemy solve this problem. To make the reflective information at
the event available, a programmer need to provide a mapping from
actual context in the lexical scope surrounding the event expression
to the context variables made available by the event types. For ex-
ample, in Figure 4 in the setX method a block expression assigns
this to changedFE. Note that this flexibility does not introduce
additional coupling between events and handlers. Handlers are only
aware of the context variable declaration changedFE made avail-
able by the event type FEChange and not of the concrete mapping
to variables available in the lexical scope of the event expression.

4.5 Uniform Access to Irregular Context Information
Finally, we discussed the inability of the current join point mod-
els to provide uniform access to irregular contextual information.
An alternative implementation of the example in Figure 3 was pre-
sented in Figure 4, where the event expression in setX method
and in makeEqual method are given different bindings for the
context variable changedFE, however, the handler update was
able to access this context information uniformly using the event
type name changedFE.

5. Comparative Analysis
In this section, we compare our approach with other similar mech-
anisms. The mechanisms that we selected for this analysis includes
Aspect-Aware Interfaces (AAIs) [19], Open Modules (OMs) [1],
and Crosscut Programming Interfaces (XPIs) [33] [36]. Next sec-
tion summarizes these ideas.

5.1 Overview of Related Ideas
AAIs [19] show dependencies between code and handlers. The
whole program’s configuration, which contains all classes and
bindings (including PCDs) is first used to compute dependencies
between events and handlers (called the “global step” [19]). The re-
sult of this global step is similar in some ways to code in Ptolemy,
since one can look at an AAI and see where events may occur
that will call handlers, and what handlers may be called for such
events. However, whenever the program’s bindings are changed,
the global step must be repeated and an entirely new set of program
events might be implicitly announced, causing new dependencies.
Ptolemy’s event expressions do not declare what handlers are appli-
cable for the event they explicitly announce, but the use of explicit

announcement ensures that changing a program’s bindings will not
advise other (previously unanticipated) program points. AAIs also
give no help with the problems discussed in Section 2 and Sec-
tion 4.

Aldrich’s proposal on Open Modules [1] is closely related to
this work. Both approaches have two similar advantages. First, like
our work, open modules also allows a class developer to explicitly
expose pointcuts for behavioral modifications by aspects. The im-
plementations of these pointcuts remain hidden from the aspects.
As a result, the impact of base code changes on the aspect is re-
duced. Second, with appropriate language extensions, an explicitly
exposed pointcut may also expose the right contextual information
uniformly across the join points selected by the pointcut. However,
OMs exacerbates the problem of quantification failure. Each ex-
plicitly declared pointcut has to be enumerated by the aspect for
advising. On the other hand, our approach significantly simplifies
quantification. Instead of manually enumerating the join points of
interest, one can use the crosscutting type-hierarchy for implicit
non-syntactic selection of join points.

Similar to OMs, a programmer using Ptolemy’s event types
must systematically modify modules in a system that a given con-
cern crosscuts to expose join points that are to be advised, by us-
ing event expressions. For example, the modules Line, Point, etc.
were modified to expose join points of type FEChange. However,
unlike OMs, once these modules have incorporated such event
expressions, no awkward enumeration of explicitly exposed join
points is necessary for quantification. Instead, one simply uses the
event type FEChange in a PCD.

Sullivan et al. [33] proposed a methodology for aspect-oriented
design based on design rules. The key idea is to establish a design
rule interface that serves to decouple the base design and the aspect
design. These design rules govern exposure of execution phenom-
ena as join points, how they are exposed through the join point
model of the given language, and constraints on behavior across
join points (e.g. provides and requires conditions [36]). These de-
sign rule interfaces were later called crosscut programming inter-
face (XPI) by Griswold et al. [36]. XPIs prescribe rules for join
point exposure, but do not provide a compliance mechanism. Gris-
wold et al. have shown that at least some design rules can be en-
forced automatically. In Ptolemy, enforcing design rules is equiva-
lent to type checking of programs.

5.2 Metrics and Analysis Results
The criteria and the analysis results are summarized in Figure 18.
The rest of this section presents our analysis in detail.

5.2.1 Abstraction, Information Hiding
The first criterion is whether the approach supports abstraction. All
four approaches support abstraction. AAIs abstract the advice that
is being executed at the join point, while providing information
about the advising structures in a specific system deployment sce-
nario. Their automatically computed abstraction is useful for the
developer of the base code in hiding the details of the aspects that
may come to depend on the base code. OMs abstract the join point
implementation by providing an explicitly declared pointcut as part
of the module description. Their abstraction is useful for the aspect
code and hides the details of the base code. XPIs provide an ab-
straction for a set of join points to the aspects, and an abstraction
for the possible cumulative behavior of all advice constructs to the
base program through their requires/provides clauses. Ptolemy pro-
vides an abstraction for a set of events to the handlers. It also pro-
vide a two-way abstraction for all context information exchanged
between an event expression and the handler.

13 2008/5/5

Metrics Description AAIs OMs XPIs Ptolemy
Abstraction Does the mechanisms support abstraction? Yes Yes Yes Yes
Aspect/Base IH Is information hiding supported for aspect / base? Aspect Base Aspect + Base Aspect + Base
Reasoning What is the granularity of reasoning? Join point Module XPIs Scope Join point
Configuration Does it require complete system configuration? Yes No No No
Decoupling Does it decouple aspect from base code? No Yes Yes Yes
Locality Are the interface definitions textually localized? No No Yes Yes
Stable Is it stable against code changes? Low High Medium High
Pattern Does it allow pattern-based quantification? Yes within module within XPIs scope No
Type Does it allow quantification based on type-hierarchy? No No No Yes
Scope What is the scope of the interface? Program Module User defined User defined
Scope control Is fine-grained control over scope available? No No No Yes
Adaptation Does it require base code adaption / refactoring? No Yes Yes Yes
Oblivious Is it pure oblivious? No No No No
Lexical hints Does it provides lexical hints in a module? Yes Yes No Yes

Figure 18. Results of comparative analysis

5.2.2 Modular Reasoning and the Role of the System
Configuration

All four approaches support different mechanisms for modular
reasoning. AAIs are different from OMs, XPIs and Ptolemy in
that they require that dependencies between base code and as-
pects be computed before modular reasoning can begin. This may
preclude reasoning about a module, until all aspects and classes
are known. OMs are geared towards supporting reasoning about
a change inside a module without knowing about all aspects and
classes present in the system. By ensuring that no aspects come to
depend upon the changeable implementation details, the need to
pre-compute all base-aspect dependencies is eliminated. XPIs are
geared towards supporting reasoning about a change inside a scope.
Ptolemy allows reasoning at the expression level; in particular, only
event expressions require any special treatment compared with OO
programs.

5.2.3 Locality
This criterion evaluates whether the AO interface definitions are
textually localized. AAIs are computed once per place in the code
where advice might apply, and thus are not localized. OMs are also
similar in that the interface of each module explicitly specifies the
join points exposed by that module. In XPIs, the AO interface def-
initions are localized as an abstract aspect. In the case of Ptolemy,
the event expressions are not localized but the type definition that
serves as an interface to the handlers is localized.

5.2.4 Pattern-based Quantification, Scope, and Scope
Control Mechanisms

AAIs, OMs and XPIs all support pattern-based quantification. The
difference lies in the scope of application of the pattern-based quan-
tification techniques. The scope in the case of AAIs is generally the
entire program, but can be limited to specific regions using lexi-
cal pointcut expressions such as within and withincode. In
OMs, they are applicable to inside a module only if used to de-
clare explicitly exposed pointcut and to the entire program if used
to select interface elements of modules. XPIs have an explicit scope
component that can serve to limit the effect of pattern-based quan-
tification, which in turn is implemented using the within and
withincode PCDs. In Ptolemy, one can only select program
execution events that are declaratively identified. A much finer-
grained scope control is available in the case of Ptolemy. In other
approaches scope control depends on language’s expressiveness.

5.2.5 Base Code Adaptation and Obliviousness
Obliviousness is a widely accepted tenet for aspect-oriented soft-
ware development [9]. In an oblivious AO process, the designers
and developers of base code need not be aware of, anticipate or

design code to be advised by aspects. This criterion, although at-
tractive, has been questioned by many [1, 4, 7, 36, 19, 30, 33]. To
understand the behavior of a module in the presence of aspects and
for independent evolution of base and aspect code, it is necessary
to understand all applicable aspects. Tools such as AspectJ Devel-
opment Tools alleviate the problem, but not completely.

According to Sullivan et al.[33], there are many variants of
the notion of obliviousness, language-level obliviousness, fea-
ture obliviousness, designer obliviousness, and pure obliviousness.
Language-level obliviousness comes from introducing quantifica-
tion mechanisms in the language. Feature obliviousness is when
the designer of the base code is aware of the presence of aspects
but unaware of the features that the aspect implements. Designer
obliviousness comes when the base code designer can be unaware
of the presence of an aspect. Pure obliviousness is when both base
and aspect code designers are symmetrically unaware of each other.

None of these approaches support pure obliviousness. AAIs
support language-level obliviousness, feature obliviousness, and
designer obliviousness. Designers of base code are aware of the
presence of aspects advising piece of base code but need not be
aware of the exact feature that these aspects implement nor do they
need to prepare base code. OMs support language-level oblivious-
ness and feature obliviousness but not the designer obliviousness.

Ptolemy’s design discards designer obliviousness. The base
code designers have to prepare their code by exposing desired
events. However, similar to XPIs [33, 36] it preserves feature obliv-
iousness. The base code designers can be completely unaware of
“spectators” [4] or “harmless” aspects [7] that advise them.

In our drawing example, Point and Line expose events of
type FEChange without being aware of the actual usage of the
event. In the example, the event was used for modularizing the
display update policy, but it could have been used for modularizing
other concerns as well. For example, a persistence policy that
requires updating a persistent representation of Point and Line
can also be implemented. All such observers may be implemented
simultaneously as different modules without Point and Line
designers being aware of them and without these observers being
dependent on the details of Point and Line.

6. Other Related Ideas
Explicitly identifying join points is not a new idea, e.g. it has ap-
peared previously in SetPoint [2], the notion of type-based quantifi-
cation [24] and the notion of implicit invocation with implicit an-
nouncement [31]; however, the novelty of our approach lies in pro-
viding explicitly declared join points with types with a sound type
system. As in SetPoint, explicitly declared event expressions pro-
vide more robust quantification with respect to base code changes,
and declared event types provide precise interfaces between han-

14 2008/5/5

dler and events, giving programmers more control over encapsula-
tion. Our language model also provides uniform, type safe access
to the context of the event expression.

Similar ideas have also been independently investigated by
Steimann and Pawlitzki [31]. Their language also has event types.
These are similar to Ptolemy’s event types, but are used differ-
ently, in that event announcement leads to the creation of an ob-
ject of the event type, with the declared context realized as fields of
that object. Their language is a modification of AspectJ, and has
both implicit (PCD-based) and expicit announcement of events,
whereas Ptolemy only has explicit announcement. In their lan-
guage explicit announcement passes context positionally, whereas
in Ptolemy context is not positional. Their language is also some-
what similar to Open Modules in that the event types that are ex-
ported by a class must be declared by that class. They have a proto-
type implementation, but do not formally present their language’s
type system.

Delegates in .NET languages such as C# and EventObject class
in Java standard library are also related to our approach. They are
type-safe mechanism for implementing call back functions that can
also be used to abstract event declaration code; however, these
mechanisms do not provide the quantification feature of Ptolemy’s
event types.

Some approaches provide new pointcut expressions to select
statement and expression level join points for advising [14, 27].
Compared to these proposals, our approach provides two benefits.
First, the body of an event expression is hidden from the design of
the handlers by a typed interface.2 The handler and PCD are not
coupled with the encapsulated details of the events, only with the
event type. Second, an event expression provides textual hints to the
developer, in the module code itself that may reduce unintentional
impacts of the base code changes on the handlers.

Another related area is mediator-based design styles [34]. In
this design style, in addition to providing methods that can be
called, modules declare and announce events. Other modules can
register operations to be invoked by events. An invocation relation
is thus created without introducing names dependencies. Our ap-
proach (as well as Open Modules [1]) has the similar rationale that
visible actions of a module should be part of its interface, and in-
terfaces should be explicit. The notion of superimposing a cross-
cutting type-hierarchy that our work introduces is, however, novel.
This type hierarchy provides a method for easy quantification for
behavioral modifications. Similar to Open Modules, in implicit in-
vocation systems, a developer has to resort to explicit and possibly
error-prone enumerations to achieve the same results.

Consider a language with closures and the ability to reflectively
get the run time context of a statement or expression.3 In such
language, one could achieve the same effect as Ptolemy’s quanti-
fied event types by declaring an event class hierarchy, broadcasting
events in the base code and registering with events in the observer
code. Compared to such a language, Ptolemy provides three advan-
tages:

• Static typechecking of the correct use of the context in the
aspect/observer code.
• A considerable amount of automation. Quantified event types

in Ptolemy serve to abstract away the details of such usage
pattern.

2 Ptolemy does not have event statements because it does not have state-
ments, which would be present in a richer language that followed our ap-
proach.
3 For example, some run time context access is available in Common Lisp
[29, Section 8.5] and some research languages [18] allow direct manipula-
tion of environments.

• Improved compiler optimizations. As a simple example, if us-
ing static analysis it can be determined that an observer always
registers with a specified event such registration/announcement
pair can be statically replaced by a method call.

7. Discussion
We designed Ptolemy to be a small core language, in order to more
clearly communicate its novel use of quantified, event types, and in
order to avoid complications in its theory. However, this means that
many practical and useful extensions had to be omitted from the
language. In this section we discuss the most important of these.

7.1 Differences from AspectJ and Similar Languages
A basic difference from AspectJ and many other AO lan-
guages is that context exposure in Ptolemy is fundamentally
based on names, instead of being positional. It is possible to
design a variant of Ptolemy that passes information to ad-
vice using positional parameters. For example, one could write
joinpoint FEChange(this){/*...*/} to pass this as
the first argument to the join point FEChange. Positional context
has some advantages, for example, base code does not need to know
the names used in event type declarations. However, computing pa-
rameter lists for conjunctions and disjunctions of PCDs in a posi-
tional design seems less intuitive than in Ptolemy.

Another change from AspectJ is that Ptolemy’s invoke does
not allow one to change the context available to the next handler
or to the original event expression. In AspectJ, one can change
this context when using invoke. We believe that this feature is
orthogonal to the main points of our work on Ptolemy, and hence
omitted this feature of the semantics. Nevertheless, not allowing
writable context should make it easier to reason about code in
Ptolemy, since Ptolemy’s handlers thus have fewer control effects.

7.2 Possible Extensions
Before and after advice, as in AspectJ, is easily simulated with
around advice. However, their typing is slightly different, as before
and after advice do not have a return type [3, 5, 17].

AspectJ also allows negation in its syntax for PCDs. We could
type check such PCDs by using> as the return type (which we also
do for cflow PCDs), and by using an empty typing context. Thus
negation PCDs could only be used in conjunction with other PCDs.

Event closures in Ptolemy are a second-class feature, since they
cannot be stored in object fields, but can only be passed around as
arguments and temporarily stored in local variables. This makes it
possible to stack allocate event closures, and also makes for fewer
control effects. However, it would be interesting to see what kind
of additional power one gets with first-class event closures.

Ptolemy does not have subtyping of event types. However, it
would be perfectly sensible to allow event types to declare that
they extend other event types that have the same return type, with
inheritance of the context declarations of their supertypes. This
would allow an event expression having more than one type, and
would make it sensible to have a lattice of event types.

7.3 Non-Nested Overlap of Event Expressions?
Consider a sequence expression such as e1; e2; e3. One might think
that it would be possible that one part of a program might need
to advise e1; e2 and that another part of the program might need
to advise e2; e3. However, this is not syntactically possible in
Ptolemy, since an event expression must encompass an entire ex-
pression as its body, and a sequence such as e1; e2; e3 must be ei-
ther e1; (e2; e3) or (e1; e2); e3, but not both.

15 2008/5/5

8. Conclusion and Future Work
The main contribution of this work is the notion of quantified, typed
events. Our event types contain information about the names and
types of exposed context. In our new event model, events can be
identified declaratively by attaching an event type name to an ex-
pression. In particular, we showed that quantified, typed events im-
prove the robustness of the handler code against base code changes,
and makes it easier for handlers to uniformly access reflective in-
formation about the events without breaking encapsulation.

Our proposal offers new directions to investigate. One would
be to combine our type system with an effect system. Effect decla-
rations could be used to limit the potential side effects of handler
methods [3, 6], which would allow more efficient reasoning about
them. One could also imagine combining specifications of handler
methods into code at event expressions, thus allowing verification
of code that uses event types to be more efficient and maintainable
than directly reasoning about the compiled code’s semantics.

Acknowledgments
Rajan was supported in part by the NSF grant CNS-0627354. Leav-
ens was supported in part by NSF grant CCF-0429567. Both were
supported in part by NSF grant CNS-07-09217. The discussions
with participants of the seminar course Com S 610-HR, in partic-
ular, with Juri Memmert were very helpful. Thanks to Friedrich
Steimann for discussions about these ideas. Thanks to Paulo Borba
and several POPL 2008 PC members for helpful comments on ear-
lier versions of this paper.

References
[1] J. Aldrich. Open modules: Modular reasoning about advice. In

ECOOP ’05, pages 144–168.

[2] R. Altman, A. Cyment, and N. Kicillof. On the need for Setpoints. In
European Interactive Workshop on Aspects in Software, 2005.

[3] C. Clifton. A design discipline and language features for modular
reasoning in aspect-oriented programs. Technical Report 05-15, Iowa
State University, Jul 2005.

[4] C. Clifton and G. Leavens. Observers and assistants: A proposal for
modular aspect-oriented reasoning. In FOAL 02, pages 33–44.

[5] C. Clifton and G. T. Leavens. MiniMAO1: Investigating the semantics
of proceed. Sci. Comput. Programming, 63(3):321–374, 2006.

[6] C. Clifton, G. T. Leavens, and J. Noble. Ownership and effects for
more effective reasoning about aspects. In ECOOP ’07, To appear.

[7] D. S. Dantas and D. Walker. Harmless advice. In POPL 06, pages
383–396, 2006.

[8] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as functional
queries. In APLAS 04, pages 366–381.

[9] R. E. Filman and D. P. Friedman. Aspect-oriented programming
is quantification and obliviousness. In Workshop on Advanced
Separation of Concerns (OOPSLA ’00), Oct. 2000.

[10] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s
reduction semantics for classes and mixins. In Formal Syntax and
Semantics of Java, chapter 7, pages 241–269. Springer-Verlag, 1999.

[11] G. Kiczales et al. Aspect-oriented programming. In ECOOP 97,
Finland, Jun 1997.

[12] G. Kiczales et al. An overview of AspectJ. In ECOOP 2001, pages
327–353. Jun 2001.

[13] D. Garlan and D. Notkin. Formalizing design spaces: Implicit
invocation mechanisms. In VDM ’91, pages 31–44, 1991.

[14] B. Harbulot and J. R. Gurd. A join point for loops in AspectJ. In
AOSD 06, pages 63–74, 2006.

[15] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In AOSD
04, pages 26–35, 2004.

[16] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. In OOPSLA ’99, pages 132–146.

[17] R. Jagadeesan, A. Jeffrey, and J. Riely. Typed parametric polymor-
phism for aspects. Sci. Comput. Program, 63(3):267–296, 2006.

[18] S. Jagannathan. Metalevel building blocks for modular systems. ACM
Transactions on Programming Languages and Systems, 16(3):456–
492, May 1994.

[19] G. Kiczales and M. Mezini. Separation of concerns with procedures,
annotations, advice and pointcuts. In ECOOP 2005, pages 195–213.

[20] D. C. Luckham and J. Vera. An event-based architecture definition
language. IEEE Trans. Softw. Eng., 21(9):717–734, 1995.

[21] B. J. MacLennan. Principles of programming languages: design,
evaluation, and implementation (2nd ed.). Holt, Rinehart & Winston,
Austin, TX, USA, 1986.

[22] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In
AOSD 03, pages 90–99.

[23] G. Nadathur and D. J. Mitchell. System description: Teyjus - a
compiler and abstract machine based implementation of lambda-
prolog. In CADE-16: Proceedings of the 16th International
Conference on Automated Deduction, pages 287–291, 1999.

[24] H. Rajan. Type-based quantification of aspect-oriented programs.
Technical Report 06-32, Iowa State University, Department of
Computer Science, September 2006.

[25] H. Rajan and K. J. Sullivan. Classpects: unifying aspect- and object-
oriented language design. In ICSE 2005, pages 59–68.

[26] H. Rajan and K. J. Sullivan. Eos: instance-level aspects for integrated
system design. In ESEC/FSE 2003, pages 297–306, Sep. 2003.

[27] H. Rajan and K. J. Sullivan. Aspect language features for concern
coverage profiling. In AOSD 2005, pages 181–191, 2005.

[28] D. A. Schmidt. The Structure of Typed Programming Languages.
Foundations of Computing Series. MIT Press, MA, 1994.

[29] G. Steele. Common LISP: The Language. Digital Press, 2nd edition,
1990.

[30] F. Steimann. The paradoxical success of aspect-oriented program-
ming. In OOPSLA ’06, pages 481–497, October 2006.

[31] F. Steimann and T. Pawlitzki. Types and modularity for implicit
invocation with implicit announcement. Obtained from the first
author., August 2007.

[32] M. Stoerzer and J. Graf. Using pointcut delta analysis to support
evolution of aspect-oriented software. In ICSM ’05, pages 653–656.

[33] K. J. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari,
and H. Rajan. Information hiding interfaces for aspect-oriented
design. In ESEC/FSE 2005, pages 166–175.

[34] K. J. Sullivan and D. Notkin. Reconciling environment integration
and software evolution. ACM Transactions on Software Engineering
and Methodology, 1(3):229–68, July 1992.

[35] T. Tourwé, J. Brichau, and K. Gybels. On the existence of the AOSD-
evolution paradox. In SPLAT ’03, March 2003.

[36] W. G. Griswold et al. Modular software design with crosscutting
interfaces. IEEE Software, Jan/Feb 2006.

[37] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, Nov 1994.

16 2008/5/5

