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Abstract

Alumni giving has become a main source of income for many colleges and universities in

the United States. In this paper, we impose a dynamic linear model to predict the alumni-

giving behavior by capturing the dynamic of the university-alumni interactions and use MCMC

method to do estimation. In the simulation studies, we demonstrate that MCMC method can

provide accurate estimation for model parameters and latent dynamic linear coefficient. We

apply the MCMC method to a real alumni giving data between 2009 and 2016 and show that

our model can have high accuracy of prediction using the data without missing values.
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1 Introduction

Alumni giving has become a main source of income for many colleges and universities in the

United States. It is essential to a university’s operation funding and can be a decisive factor

in the success of colleges and universities. Predictions of alumni-giving behavior is essential

in the discovery of prospective donors and thus enable colleges and universities to share their

fundraising efforts on the alumni who have a high likelihood to donate to schools.

Researchers have developed models to predict alumni-giving behavior, such as the model of

Lindahl [1], the model of Netzer [3] and the model of Sun [2]. However, most of the models are

based on static variables, such as demographic variable. They did not consider the dynamics of

the effects of interactions between university and alumni. A few models consider the dynamics

of the effects of interactions between university and alumni. These models assume an alumni

state variable which represent the inner willingness of the alumni to donate and the alumni

state will determine by the interactions between university and alumni. However, the alumni

states in these models are discrete and limited to some fix values. Specifically, these models

may also ignore the potential time dependence in the model parameters.

In this paper, we suggest a dynamic linear model to predict the alumni-giving behavior by

capturing the dynamic of the university-alumni interactions and time dependence in the model

parameters.

Colleges and universities often engage in activities which have on a short or long period

impact on alumni states. These activities aim to the shift the alumni into a different state

in which the alumni are more likely to donate. In our model, we assume the alumni states

are continuous. The change in alumni states is determined by the proportion of the donor’s

attended activities. A logit function is used to describes the relationship between the likelihood

of the alumni-giving behavior and the alumni states.

In the simulation studies, we examined the accuracy of parameter and latent coefficients

estimates to ensure that our MCMC method can indeed identify model parameters and latent

coefficients using the simulated data. In the empirical study, we show that our model are not

sensitive to the initial values which we chose for the models. We predicted the future alumni-

giving behavior using the simulated data and real data, respectively, and showed our model

can have high accuracy of prediction using the data without missing values.

The rest of this paper is organized as follows. Section 2 we introduce model, the model

parameters, latent coefficients and the prior distribution. Section 3 gives a brief overview to
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the MCMC method and show how the MCMC method will work in our model. Section 4 show

the joint distribution and the posterior distribution of model parameters and latent coefficients.

Section 5 presents simulation evidence of the performance of our MCMC method in estimating

the model parameters and latent coefficients. Section 6 show the estimation result of the model

parameters and latent coefficients using real data. Section 6 discuss the prediction accuracy for

our model. Section 7 we concludes the paper with some final remarks.

2 Model

In our model:

Yit =

1, if the donor i donated at year t

0, otherwise

Yit can be model as:

Yit ∼ Bernoulli(πit),

where πit is the probability the donor i donated at time t. The probability πit is modeled

with a logit function:

logit(πit) = βit,

or equivalently,

πit =
exp(βit)

1 + exp(βit)
.

The alumni state variable βit describes the inner willingness of alumni to donation. In our

model, we assume βit is continuous instead of taking a few discrete values. βit has a positive

relationship with the probability of the alumni i to donate in the year t. A higher βit means

the donor i has a higher probability to donate in the year t while a lower βit means a lower

probability to donate in the year t. βit can be further modeled as:

βit = β0 + γt ∗ Zi(t−1),

where β0 is the intercept, which describes the state when the alumni did not attend any activities

in the university in the year t− 1. We can see that β0 will determine the probability to donate

πit if the the alumni t do not attend any activities in the year t− 1. Below we describe how to

construct covariate Zi(t−1).

Xit is the number of activities the donor i attended in the year t. If we directly use the Xit

in our model, the πit will be close to 1 since βit will be a very large number. In order to avoid
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the problem, we standardize Xit by dividing it by the number of total activities the university

hold in the year t to get Zit which is the proportion of the activities the donor i attended in

the year t.

We use Zi(t−1) rather than Zit in our model for prediction purpose. If we use Zit in our

model, we need to know the value of Zi(t+1) when we predict alumni-giving behavior at t + 1.

However, the alumni-giving behavior in t + 1 would have been known if we know the Zi(t+1).

In this case, our model will lost its role in predicting the future alumni-giving behavior.

γt is the coefficient of Zi(t−1), which represents the effect of the proportion of the donor i’s

attended activities in year t− 1. We assume the γt is only specific to year t and depend on the

γt−1:

γt = γt−1 + εr,

where the εr follows a normal distribution. The reason we propose a random walk to model γt

is because the effect of donors’ activity participation should be time-varying but change slowly

over time.

εr ∼ Normal(0, σ2
r),

We consider the following prior distribution :

β0 ∼ Uniform(−1, 1),

σ2
r ∼ IG(2, 1),

where IG is the Inverse Gamma Distribution.

3 Introduction to MCMC method

In the section, we give a brief introduction to the MCMC method and show how the MCMC

method will be use in our model.

A Markov chain is a stochastic model which experiences transitions from one state to another

according to transition probability. The states in Markov chain is either discrete or continuous.

The current state in a Markov chain only depend on the recent previous state:

P (Xt|Xt−1, ...X0) = P (Xt|Xt−1).

(MCMC) Markov chain Monte Carlo method is a set of of algorithms which sample from a

probability distribution through constructing a Markov Chain. In our model, let {β0, σ2
r , γ1, ...γT}
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be the vector of all unknown parameters and latent coefficients. Y = {yit}t=1,...T
i=1,...N and Z =

{zit}t=1,...T
i=1,...N are the observed information. T is the total number of years we considered in the

model and is 8 in this case since we considered data from year 2009 to year 2016 when fit-

ting the model, while N is the total number of alumni in the real data, which is 3699. The

purpose of the MCMC method is to estimate the model parameters and latent coefficients for

the observed information. In other word, we need to estimate the joint posterior distributions

P (β0, σ
2
r , γ1, ...γT |Y ).

MCMC provides us a conditional simulation approach which can generate random samples

from the target distribution. By MCMC, we can sample from the distribution of {β0, σ2
r , γ1, ...γT}

given on the observed data Y = {yit}t=1,...T
i=1,...N by generating a Markov Chain which has desire

distribution over {β0, σ2
r , γ1, ...γT}.

Based on Cliford-Hammersley Theorem, most of the MCMC method share the idea that

the complete conditional distributions can characterize the joint distribution. In our model, it

means that the completed conditional distribution P (σ2
r |β0, γ1, ...γT , Y ), P (β0|γ1, ...γT , σ2

r , Y ),

P (γ1|β0, σ2
r , γ2, ...γT , Y ), ..., P (γt|β0, σ2

r , γ1, ...γT−1, Y ) completely characterize the joint distribu-

tion P (β0, σ
2
r , , γ1, ...γT |Y ). In other words, the key point of MCMC method is that it usually

easier to sample from the complete conditional distributions P (σ2
r |β0, γ1, ...γT , Y ), P (β0|γ1, ...γT , σ2

r , Y ),

P (γ1|β0, σ2
r , γ2, ...γT , Y ), ..., P (γt|β0, σ2

r , γ1, ...γT−1, Y ) than directly sampling from the joint dis-

tribution P (β0, γ1, ...γT , σ
2
r |Y ).

In MCMC, we need to get a close form for the complete conditional distributions and then

sample from it. However, if the close form is not available for the complete conditional dis-

tributions, Metropolis-Hastings Algorithm will be used. In the Metropolis-Hasting Algorithm,

we will draw a candidate from the proposed density and accept or reject the candidate on the

acceptance criteria.

Metropolis-Hastings Algorithm begin with initializing the sample values. These value are

usually sampled from the prior distribution. In the loop of the algorithm, the first step is to

generate a candidate sample Xcand from the proposed distribution q(Xk|Xk−1). The second

step is to compute the acceptance probability via the acceptance function α(Xk|Xk−1) which

base on the proposal distribution and the full joint density π(.). In the end, we accept the

candidate sample with probability α, the acceptance probability, or reject it with probability

1− α.

In the iteration k=1,2,3....
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• Propose: XCand ∼ q(Xk|Xk−1)

• Acceptance Probability: α(XCand|Xk−1) = min
(

1, q(X
k−1|XCand)·π(XCand)

q(XCand|Xk−1)·π(Xk−1)

)
• We draw µ ∼ Uniform(0, 1)

• If µ < α, then we accept the proposal: Xk = XCand

• If µ > α, then we reject the proposal: Xk = Xk−1

Specifically, if the proposals distribution is symmetric, such as normal distribution, the

acceptance function can be simplified as:

α(XCand|Xk−1) = min

(
1,
π(XCand)

π(Xk−1)

)
The sample {β(k)

0 , σ
2(k)
r , γ

(k)
1 , ...γ

(k)
t }Tt can be used to estimate the model parameters via

Monte Carlo methods. The estimate of the {β(k)
0 , σ

2(k)
r , γ

(k)
1 , ...γ

(k)
t } is the posterior mean of

P (β
(k)
0 , σ

2(k)
r , γ

(k)
1 , ...γ

(k)
t |Y ).

In our model, the joint distribution density P (β0, γ1, ...γT , σ
2
r) can be written in the form

which is proportional to the likelihood function, joint distribution of γ1, ...γT , and the prior

distribution of model parameters.

P (β0, σ
2
r , γ1, ...γT |Y ) ∝ P (Y |β0, σ2

r , γ1, ...γT ) · P (γ1, ...γT |β0, σ2
r) · π(β0) · π(σ2

r).

We can see that the latent coefficients γ1, ...γT do not depend on parameter β0, so the joint

distribution can be further written as:

P (β0, σ
2
r , γ1, ...γT |Y ) ∝ P (Y |β0, σ2

r , γ1, ...γT ) · P (γ1, ...γT |σ2
r) · π(β0) · π(σ2

r).

{β0, σ2
r , γ1, ...γT} is the vector of all parameters of our model. Y = {yit}t=1,...T

i=1,...N is a vector

of the observed data, respectively. Below we give an iterative procedure to draw posterior

samples:

• Set the initial values for β
(0)
0 , σ

2(0)
r , γ

(0)
1 , ...γ

(0)
T and Y = {yit}t=1,...T

i=1,...N

• we can draw σ
2(1)
r ∼ P (σ2

r |β
(0)
0 , γ

(0)
1 , ...γ

(0)
T , Y )

• then β
(1)
0 ∼ P (β0|σ2(1)

r , γ
(0)
1 , ...γ

(0)
T , Y )
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• γ
(1)
1 ∼ P (γ1|β(1)

0 , σ
2(1)
r , γ

(0)
2 , ...γ

(0)
T , Y )

• ...

• γ
(1)
T ∼ P (γT |β(1)

0 , σ
2(1)
r , γ

(1)
1 , ...γ

(1)
T−1, Y )

We can continue in this fashion. In the kth iteration, the algorithm will generate a sequence

of random variables{β(k)
0 , σ

2(k)
r , γ

(k)
1 , ...γ

(k)
T }Mk=1. This sequence forms a Markov Chain whose

distribution converges to the target joint distribution P (β0, σ
2
r , γ1, ...γT |Y ). Then we can obtain

the model parameter estimate by averaging the posterior draw after burn-in.

4 Posterior Distribution

In this section, we show the joint distribution for {β0, σ2
r , γ1, ...γT} and the posterior distri-

bution for each model parameters and latent coefficients. We also show the Metropolis-Hasting

algorithm will work when the close form are not available.

4.1 The joint distribution for {β0, σ
2
r , γ1, ...γT}

With the specified priors, the joint distribution for {β0, σ2
r , γ1, ...γT} can be written as

P (β0, σ
2
r , γ1, ...γT |Y ) ∝ P (Y |β0, σ2

r , γ1, ...γT ) · P (γ1, ...γT |β0, σ2
r) · π(β0) · π(σ2

r))

∝ P (Y |β0, σ2
r , γ) · P (γ1, ...γT |σ2

r) · π(β0) · π(σ2
r)

∝
N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)
· π(β0) · π(σ2

r)

∝
N∏
i

T∏
t

πyitit (1− πit)1−yit
T∏
t=2

1√
2πσ2

r

exp

(
−(γt − γt−1)2

2σ2
r

)
(σ2

r)
−3 exp

(
− 1

σ2
r

)
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4.2 The posterior distribution for σ2
r

The posterior distribution of σ2
r conditioned on β0, σ

2
r , γ1, ...γT and Y is

P (σ2
r |β0, γ1, ...γT , Y ) ∝

N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)
· π(β0) · π(σ2

r)

∝
N∏
i

T∏
t

πyitit (1− πit)1−yit
T∏
t=2

1√
2πσ2

r

exp

(
−(γt − γt−1)2

2σ2
r

)
(σ2

r)
−3 exp

(
− 1

σ2
r

)

∝
T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)
· (σ2

r)
−3 exp

(
− 1

σ2
r

)

∝
(
σ2
r

)−( 1
2
(T−1)+2)−1 · exp

(
−

1
2

∑T
t=2 (γt − γt−1)2 + 1

σ2
r

)

This is kernel of IG
(

1
2

(T − 1) + 2, 1
2

∑T
t=2 (γt − γt−1)2 + 1

)
. So, The posterior of σ2

r follows a

Inverse Gamma distribution;

σ2
r ∼ IG

(
1

2
(T − 1) + 2,

1

2

T∑
t=2

(γt − γt−1)2 + 1

)

4.3 The posterior distribution for β0

The posterior distribution of β0 conditioned on σ2
r , γ1, ...γT and Y is

P (β0|σ2
r , γ1, ...γT , Y ) ∝

N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)
· π(β0) · π(σ2

r)

∝
N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)

∝
N∏
i

T∏
t

πyitit · (1− πit)
1−yit

As it is shown, there isn’t any closed form for the conditional distribution P (β0|σ2
r , γ1, ...γT , Y ),

So the Metropolis-Hasting algorithm has to be used.

In the iteration k = 1, 2, 3...

• Propose: βCand0 ∼ Normal(βk−10 , 0.5)

• Acceptance Probability: α(βCand0 |βk−10 ) = min
(

1,
π(βCand

0 )

π(βk−1
0 )

)
• We draw µ ∼ Uniform(0, 1)
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• If µ < α, then we accept the proposal: β
(k)
0 = βCand0

• If µ > α, then we reject the proposal: β
(k)
0 = β

(k−1)
0

4.4 The posterior distribution for γt

The posterior distribution of γ1 conditioned on β0, σ
2
r , γ2, ...γT and Y is

P (γ1|σ2
r , β0, γ2, ...γT , Y ) ∝

N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)
· π(β0) · π(σ2

r)

∝
N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)

∝
N∏
i

πyiti1 · (1− πi1)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)

∝
N∏
i

πyi1i1 · (1− πit)
1−yi1 · exp

(
−(γ2 − γ1)2

2 · σ2
r

)

∝
N∏
i

πyi1i1 · (1− πi1)
1−yi1 · exp

(
−(γ2 − γ1)2

2 · σ2
r

)

The posterior distribution of γT conditioned on β0, σ
2
r , γ2, ...γT−1 and Y is

P (γT |σ2
r , β0, γ2, ...γT−1, Y ) ∝

N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)
· π(β0) · π(σ2

r)

∝
N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)

∝
N∏
i

πyiTiT · (1− πiT )1−yiT ·
T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)

∝
N∏
i

πyiTiT · (1− πiT )1−yiT · exp

(
−(γT − γT−1)2

2 · σ2
r

)

∝
N∏
i

πyiTiT · (1− πiT )1−yiT · exp

(
−(γT − γT−1)2

2 · σ2
r

)

The posterior distribution for γ1 and γT are proportional to the similar form. However, the

posterior distribution for γt will be proportional to different form if 1 < t < T .
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The posterior distribution of γt conditioned on β0, σ
2
r , γ1, ...γT and Y is

P (γt|σ2
r , β0, γ1, ...γT , Y ) ∝

N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)
· π(β0) · π(σ2

r)

∝
N∏
i

T∏
t

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)

∝
N∏
i

πyitit · (1− πit)
1−yit ·

T∏
t=2

· 1√
2πσ2

r

· exp

(
−(γt − γt−1)2

2 · σ2
r

)

∝
N∏
i

πyitit · (1− πit)
1−yit · exp

(
−(γt+1 − γt)2

2 · σ2
r

)
· exp

(
−(γt − γt−1)2

2 · σ2
r

)

∝
N∏
i

πyitit · (1− πit)
1−yit · exp

(
−

2γ2t+1 − 2 · γt · γt+1 − 2 · γt · γt−1
2 · σ2

r

)

As it is shown, there isn’t also any closed form for the conditional distribution P (γt|β0, σ2
r , γ1, ...γt, Y ),

So the Metropolis-Hasting algorithm has to be used.

In the iteration k = 1, 2, 3...

In the iteration t = 1, 2, 3, ...T

• Propose: γCandt ∼ Normal(γk−1t , 0.5)

• Acceptance Probability: α(γkt |γk−1t ) = min
(

1,
π(γkt )

π(γk−1
t )

)
• We draw µ ∼ Uniform(0, 1)

• If µ < α, then we accept the proposal: γ
(k)
t = γCandt

• If µ > α, then we reject the proposal:γ
(k)
t = γ

(k−1)
t

5 Simulation

In this section, simulation studies are shown using the MCMC method. We examined the

accuracy of parameters and latent coefficients estimates to ensure that our methods can indeed

identify model parameters and latent coefficients using the simulated data. For our simulations

we used the software R.
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5.1 Generating simulated data

We set the true value to the parameters and latent coefficients:

• β
(true)
0 = 0.5

• σ
2(true)
r = 20

• γ
(true)
0 = 4

With β
(true)
0 , σ

2(true)
r , and γ

(true)
0 , we can generate the γ

(true)
1 to γ

(true)
8 by the below iterative

procedure:

In the iteration t = 1, 2, 3, ...T

• We draw εr(t) ∼ Normal(0, σ
2(true)
r )

• γ
(true)
t = γ

(true)
t−1 + εr(t)

Then, we got the true value for γ
(true)
1 to γ

(true)
8 :

• γ
(true)
1 = 7.228863

• γ
(true)
2 = 4.572165

• γ
(true)
3 = 12.776484

• γ
(true)
4 = 13.807305

• γ
(true)
5 = 19.500778

• γ
(true)
6 = 22.124091

• γ
(true)
7 = 32.073988

• γ
(true)
8 = 30.614541

With the true value specified, we can generate the simulated data βsimit , πsimit and Y sim
it by the

below iterative procedure and we use the Zi(t−1) from the real data in this iterative procedure:

• In the iteration i = 1, 2, 3, ...N

– In the iteration t = 1, 2, 3, ...T

∗ βsimit = βtrue0 + γ
(true)
t · Zi(t−1)
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∗ πsimit =
exp(πsim

it )

1+exp(πsim
it )

∗ We draw Y sim
it ∼ Bernoulli(πsimit )

We generate the simulated data from 2009 to 2017. The simulated data from 2009 to 2016

will be used to estimate the model parameters and latent coefficients. The data in 2017 will be

used for testing.

5.2 Parameters Estimation

The estimates are computed for the model parameters β0, σ
2
r and latent coefficients γ1,...γ8

using the simulated data from 2009 to 2016. In our estimation, we choose the following initial

values of model parameters to be far from the corresponding true values:

• β
(0)
0 = 0.3

• σ
2(0)
r = 5

• γ
(0)
0 = 1

With β
(0)
0 , σ

2(0)
r , and γ

(0)
0 , we can generate the γ

(0)
1 to γ

(0)
8 by the below iterative procedure:

In the iteration t = 1, 2, 3, ...T

– We draw εr(t) ∼ Normal(0, σ
2(0)
r )

– γ
(0)
t = γ

(0)
t−1 + εr(t)

Then, we got the initial values for γ
(0)
1 to γ

(0)
8 :

• γ
(0)
1 = 5.873067

• γ
(0)
2 = 5.135799

• γ
(0)
3 = 12.016019

• γ
(0)
4 = 14.115418

• γ
(0)
5 = 16.631101

• γ
(0)
6 = 21.505064

• γ
(0)
7 = 34.072877
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• γ
(0)
8 = 29.090717

We run three Markov chains for each model parameters and latent coefficients to get the

posterior distribution. Each chain has 10000 iterations and first 5000 iterations were burn-in.

Table 1 reports the posterior mean, the initial parameters, and the true values of the cor-

responding parameters and latent coefficients using simulated data. We can see in Table 1,

that our MCMC method can accurately estimate the model parameters and latent coefficients.

Even though we started our initial values at some values far away from the true values, the

mean of parameters and latent coefficients estimates are very close to the true values we set in

the simulation.

Figure 1 presents trace-plots of three chains for parameters β0, σ
2
r and latent coefficients

γ1, ...γ8, respectively. Each trace-plot shows 5000 iterations after the burn-in period, and the

red cross on the y-axis indicates the true value of the corresponding parameters and latent

coefficients. We can see that the chains are converging stably and each of the model parameters

and latent coefficients estimates are within a respective permissible range of the true values.

Figure 2 show the density plot of MCMC samples of parameter σ2
r . The 95% credible

interval is marked by the two blue vertical lines, which indicate the 2.5% and 97.5% quantiles,

respectively. The true value of σ2
r is marked by the red vertical line and and true value of σ2

r is

20. As we can see, in the figure 2, the red line is in the 95% credible interval.

Figure 3 show the density plot of MCMC samples of parameter β0. The 95% credible

interval is marked by the two blue vertical lines, which indicate the 2.5% and 97.5% quantiles,

respectively. The true value of β0 is marked by the red vertical line and true value of β0 is 0.5.

As we can see, in the figure 3, the red line is in the 95% credible interval.

Figure 4 plot the 95% credible interval for the latent coefficients γ1, ...γ8. The year 2009

to 2016 on the x-axis are corresponding to γ1 to γ8. The two blue lines represent the 2.5%

and 97.5% quantile line. The intervals between the 2.5% and 97.5% quantiles are the 95%

credible intervals. The red line shows the true value for γ1, ...γ8, respectively and the true

values are γ1 = 7.228863, γ2 = 4.572165, γ3 = 12.776484, γ4 = 13.807305, γ5 = 19.500778,

γ6 = 22.124091, γ7 = 32.073988 and γ8 = 30.614541. The black line shows the posterior mean

of the latent coefficients γ1, ...γ8. As we can see, the red line is not only in the 95% credible

interval but also closely match the blue line.

Collectively, this simulation study demonstrates that our MCMC method can do an accurate

job in estimating model parameters and latent coefficients.
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6 Empirical Study

We use a real data set provided by a public university in the United States in empirical

study. The data set record the donation behavior of 3699 alumni in a time period from 2009

to 2017. In this project, the data set from 2009 to 2016 is used for estimating the model

parameters and latent coefficients. The data in 2017 is used for testing.

The posterior draws for the model parameters β0, σ
2
r and latent coefficients γ1, ...γ8 are

drawn in the same fashion as before. For the initial values, we firstly chose the same initial

values as we use in the simulation studies and generated the γ
(0)
1 to γ

(0)
8 in the same iterative

procedure as we did in simulation study :

• β
(0)
0 = 0.3

• σ
2(0)
r = 5

• γ
(0)
0 = 1

• γ
(0)
1 = 1.864795

• γ
(0)
2 = 4.157879

• γ
(0)
3 = 5.238034

• γ
(0)
4 = 7.018678

• γ
(0)
5 = 6.933848

• γ
(0)
6 = 8.592888

• γ
(0)
7 = 9.280738

• γ
(0)
8 = 8.421772

Table 2 shows the estimates of the parameters and the latent coefficients and their standard

deviations for the first group of initial values. We chose the burn-in period to be 5000 iterations.

So, we reported the means and standard deviations of the posterior samples as parameters and

latent coefficients estimates for the last 5000 iterations.

To see whether our estimates are sensitive to the initial value we chose, we set the second

group of initial values which are far from the first group and generated the γ
(0)
1 to γ

(0)
8 in the

same iterative procedure as we did in simulation study:

13



• β
(0)
0 = 1

• σ
2(0)
r = 10

• γ
(0)
0 = 2

• γ
(0)
1 = 3.827892

• γ
(0)
2 = 2.342971

• γ
(0)
3 = 8.610150

• γ
(0)
4 = 9.149567

• γ
(0)
5 = 10.888210

• γ
(0)
6 = 18.649199

• γ
(0)
7 = 22.649378

• γ
(0)
8 = 22.935937

Table 3 shows the estimates of the parameters and the latent coefficients and their standard

deviations for the second group of initial values. We chose the burn-in period to be 5000

iterations. So, we reported the means and standard deviations of the posterior samples as

parameters and latent coefficients estimates for the last 5000 iterations.

We can see from the table 2 and table 3, the estimates of model parameters and latent

coefficients and their standard deviations are matched for different sets of initial values. It

shows that the model parameters and latent coefficients will converge to the same values no

matter what initial values we chose for the models.

The figure 5 plot the 95% credible interval for the latent coefficients γ1, ...γ8 using real data.

The year 2009 to 2016 on the x-axis are corresponding to γ1 to γ8. The two blue lines represent

the 2.5% and 97.5% quantile line. The intervals between the 2.5% and 97.5% quantiles are the

95% credible intervals. The black line shows the posterior mean for γ1, ...γ8.

We can see that the posterior mean of the latent coefficients γ1, ...γ8 are all positive. It

indicates a positive relationship between the Zi(t−1) and βit. That is, if alumni attend higher

proportion of the activities held, the alumni will be more likely to donate in the next year.

Additionally, the trend from γ1 to γ4 is monotonically decreasing, while the trend from γ6 to

γ8 is monotonically increasing.
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The figure 6 show the density plots for model parameters β0, σ
2
r and latent coefficients

γ1, ...γ8, respectively. We chose the burn-in period to be 5000 iterations. So, the density plots

shows 5000 iterations after the burn-in period.

7 Prediction

In this section, we predict the future alumni-giving behavior using simulated data and real

date, respectively. We evaluate the prediction accuracy of our models by ROC Curve and

discuss how the missing value will impact the prediction accuracy of our model.

ROC curve is a probability curve which shows the diagnostic ability of a binary classifier

system when its discrimination threshold is varied. In our case, we plotted the ROC curve as

a diagnostic tool for the estimated πit. AUC measures the area under the ROC curve. AUC

represents the degree of separability and shows how much the model is capable of distinguishing

between classes. In our model, it is donate or not donate. In general, A high value of AUC

means a model have high prediction accuracy.

We estimated our model parameters β0, σ
2
r and latent coefficients γ1, ...γT from the training

data. The model parameters and latent coefficients estimated can fit our model which can

predict γ̂T+1. With the γ̂T+1, we can predict β̂i(T+1) and π̂i(T+1).

In the iteration i = 1, 2, 3, ...N

• β̂i(T+1) = β̂0 + γ̂T+1 · ZiT

• π̂i(T+1) =
exp(β̂i(T+1))

1+exp(β̂i(T+1))

7.1 Prediction using simulated data

The Figure 7 plot the ROC Curve using simulated data. The AUC is the shaded area under

curve and the value of AUC is 0.6223774.

In the real data, we found a large number of observation whose Zi(t−1) is 0. Since missing

values in the real data were recorded as 0, most Zi(t−1) with value 0 are actually missing values.

In order to exclude the effect of missing values, we are also interested in the prediction accuracy

for the data without observations whose Zi(t−1) is 0.

The Figure 8 plot the ROC Curve using simulated data without observations whose Zi2016 is

0. As we can see, the ROC curve is more closed to the upper left corner in the figure, compared

with the ROC curve in the figure 6. The AUC of the ROC curve is 0.7379325.
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7.2 Prediction using real data

The Figure 9 plot the ROC Curve for real data. The AUC of the ROC curve is 0.5944497.

At the first glance, the value of AUC is not good as we expected. However, as we explore further

into the data set, we found that the data set for 2016 has serious missing value problem. There

are 2705 observations whose Zi2016 are 0 and these observations share 73% of all observations

in 2016. Although few alumni did not attend any activities on 2016, most of the 0 are due to

the missing value.

In order to exclude the effect of missing values, we plot another ROC curve using the real

data without observations whose Zi2016 are 0. The figure 10 show the ROC curve using the

real data without missing value. As we can see, the ROC curve is more closed to the upper

left corner, compared with the ROC curve in the figure 9. The AUC value of the ROC curve

in the figure 10 is 0.7734138 which indicate a good prediction accuracy for our model.

7.3 Discussion for the prediction

As we can see, the AUC value is much larger when our model predict on the data without

the observations whose Zi2016 are 0 than on the full data, no matter using simulated data or

real data. This is simply because when the Zi(t−1) is 0, the parameter γt will lose its role in

prediction and the parameter β0 became the only model parameter which determine the πit,

thus lowering the prediction accuracy of our model.
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8 Conclusion

Alumni-giving has already became an important funding source for universities and colleges

in the United States. This paper helps to build a new model to prediction the future Alumni-

giving behavior. In the simulation studies, We examined the accuracy of parameter estimates

to ensure that our MCMC method can indeed identify model parameters and latent coefficients

using the simulated data. In the empirical study, we show that our model are not sensitive

to the initial value which we chose for the models. We predicted the future alumni-giving

behavior using the simulated data and real data, respectively, and showed our model can have

high accuracy of prediction using the data without missing values.

In order to raise more funding from donation, universities and colleges should share more

fundraising efforts to the alumni who attend high proportion of the activities in that year. This

is simply because there is a positive relationship between the Zi(t−1) and βit. As we can see,

the value of γt is changing year by year. In some year , even the alumni attend high proportion

of activities held, the alumni may not donate in the next year due to a small value of γt for the

years. In the end, the universities and colleges should exclude the missing value as possible as

they can if they use our model for prediction. As we discussed in the prediction, the missing

value will significantly lower the prediction accuracy of our model.
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A Appendix

Mean Initial Values True Values

sigr2 35.99 5 20

b0 0.49 0.3 0.5

r1 8.16 5.873067 7.228863

r2 5.28 5.135799 4.572165

r3 12.75 12.016019 12.776484

r4 13.72 14.115418 13.807305

r5 20.29 16.631101 19.500778

r6 21.64 21.505064 22.124091

r7 34.14 34.072877 32.073988

r8 31.48 29.090717 30.614541

Table 1: This table reports simulation results on the accuracy of MCMC estimators of pa-

rameters σ2
r , β0 and latent coefficients γ1, ...γ8. In the table above, we report the mean of the

estimated parameters and latent coefficients, the initial values of the parameters and latent co-

efficients, the true values of model parameters and latent coefficients used in the simulation. We

discard the first 5000 iterations, and we use the next 5000 iterations in our MCMC estimation.
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Mean SD Initial Values

sigr2 14.41 10.62 5

b0 0.19 0.01 0.3

r1 24.64 2.14 1.864795

r2 21.69 1.61 4.157879

r3 19.70 1.66 5.238034

r4 13.59 1.61 7.018678

r5 15.96 1.40 6.933848

r6 13.55 1.22 8.592888

r7 19.00 1.57 9.280738

r8 21.72 1.70 8.421772

Table 2: This table provides MCMC estimates of the model parameters and latent coefficients

using real data from 2009 to 2016 and the first set of initial values. Parameter and latent coef-

ficients estimates and standard errors shown are the mean and standard deviation of posterior

distributions of model parameters σ2
r , β0 and latent coefficients γ1, ...γ8. In the MCMC simu-

lation, we discard the first 5000 iterations, and we use the next 5000 iterations in our MCMC

estimation.
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Mean SD Initial Values

sigr2 14.53 10.67 10

b0 0.19 0.01 1

r1 24.50 2.14 3.827892

r2 21.74 1.65 2.342971

r3 19.70 1.70 8.610150

r4 13.56 1.58 9.149567

r5 16.03 1.53 10.888210

r6 13.64 1.27 18.649199

r7 19.27 1.63 22.649378

r8 21.70 1.79 22.935937

Table 3: This table provides MCMC estimates of the model parameters and latent coefficients

using real data from 2009 to 2016 and the second set of initial values. Parameter and latent

coefficients estimates and standard errors shown are the mean and standard deviation of pos-

terior distributions of model parameters σ2
r , β0 and latent coefficients γ1, ...γ8. In the MCMC

simulation, we discard the first 5000 iterations, and we use the next 5000 iterations in our

MCMC estimation.
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Figure 1: Trace-plots of σ2r , β0, γ1, ...γ8 using simulated data. The red crosses indicate the true values

of the parameters and latent coefficients. The true values are σ2r = 20, β0 = 0.5, γ1 = 7.228863,

γ2 = 4.572165, γ3 = 12.776484, γ4 = 13.807305, γ5 = 19.500778, γ6 = 22.124091, γ7 = 32.073988 and

γ8 = 30.614541
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Figure 2: Density plot of MCMC samples of parameter σ2r using simulated data. The 95% credi-

ble interval is marked by the two blue vertical lines, which indicate the 2.5% and 97.5% quantiles,

respectively. The true value of σ2r marked by the red vertical line and true value of σ2r is 20.
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Figure 3: Density plot of MCMC samples of parameter β0 using simulated data. The 95% credi-

ble interval is marked by the two blue vertical lines, which indicate the 2.5% and 97.5% quantiles,

respectively. The true value of β0 marked by the red vertical line and true value of β0 is 0.5.
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Figure 4: This figure plot the 95% credible interval for the γ1, ...γ8 using simulated data. The year 2009

to 2016 on the x-axis are corresponding to γ1 to γ8. The two blue lines represent the 2.5% and 97.5%

quantile line. The intervals between the 2.5% and 97.5% quantiles are the 95% credible intervals.

The red line shows the true value for γ1, ...γ8, respectively and the true values are γ1 = 7.228863,

γ2 = 4.572165, γ3 = 12.776484, γ4 = 13.807305, γ5 = 19.500778, γ6 = 22.124091, γ7 = 32.073988 and

γ8 = 30.614541. The black line shows the posterior mean for γ1, ...γ8.

24



Figure 5: This figure plots the 95% credible interval for the γ1, ...γ8 using real data and the first set of

initial values. The year 2009 to 2016 on the x-axis are corresponding to γ1 to γ8. The two blue lines

represent the 2.5% and 97.5% quantile line. The intervals between the 2.5% and 97.5% quantiles are

the 95% credible intervals. The black line shows the posterior mean for γ1, ...γ8.
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Figure 6: The figure shows the density plots for model parameters β0, σ
2
r and latent coefficients γ1, ...γ8

using real data and the first set of initial values, respectively. We chose the burn-in period to be 5000

iterations. So, the density plots shows 5000 iterations after the burn-in period.
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Figure 7: This figure plots the ROC Curve using simulated data. The AUC is the shaded area under

curve and the value of AUC is 0.6223774.
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Figure 8: This figure plots the ROC Curve using simulated data without observations whose Zi2016

are 0. The AUC is the shaded area under curve and the value of AUC is 0.7379325.
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Figure 9: This figure plos the ROC Curve using real data. The AUC is the shaded area under curve

and the value of AUC is 0.5944497.
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Figure 10: This figure plots the ROC Curve using real data without observations whose Zi2016 are 0.

The AUC is the shaded area under curve and the value of AUC is 0.7734138.
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