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INTRODUCTION 

Iu recent years, x-ray Computed Tomography (CT) imaging has become much more 
widely used in industrial applications. In many such applications, however, only incomplete 
data sets [1] are available, and image quality is degraded by the absence of complete data. 
Iu this paper, a model-based CT reconstruction technique for enhancing incomplete data CT 
image quality is presented. A two-dimensional registration method which will ensure proper 
utilization of a priori information from CAD model is introduced. Images are shown to 
demonstrate manipulator position variability as weil as blade to blade variability. Variability 
is quantified by the translation and rotation factors used in geometric transformation. Iu 
addition, incomplete data CT image simulation results are presented which show the effects 
of manufacturing variability on flaw detectability in these images. 

MODEL-BASED CT RECONSTRUCTION 

The use of a priori information from solid models is a powerful technique for enhancing the 
quality of incomplete data CT images . Several techniques have been developed to incorporate 
CAD model information into limited angle CT reconstruction to improve image quality. In 
the projection data approach [2,3], projection data acquired over the available angular range 
aud projectiou data calculated from the model image over the missiug angular range are used 
for reconstruction. In the iterative recoustruction approach [2,4], projection data is agaiu 
acquired over the available angular range, and a limited angle image is reconstructed from 
this data. Three types of a priori information are then applied to the limited angle image: 1) 
pixels are non-negative, 2) pixels are less than some maximum value, and 3) pixels outside 
the object are zero. The corrected limited angle image is then used to calculate the projection 
data in the missing angular range. This procedure is iterated as often as necessary to achieve 
a high quality image. In the image processing and analysis approach [2], the limited angle 
reconstruction error is added to the limited angle image, reconstructed from projection data 
acquired over the available angular range, to arrive at the best part image. The limited angle 
reconstruction error is constructed by subtraction and normalization of the complete CT 
image, reconstructed from the projection data calculated from the model over the full angular 
range, and the lim.ited angle CT image, reconstruction from the projection data calculated 
from the model over the available angular range. 
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Figure 1. FllO Exhaust Nozzle Actuation Ring (ENAR) 

Figure 2. Projection Data Approach aud Image Processing and Analysis Approach 

The part chosen for model based CT inspection and analysis is the Exhaust Nozzle 
Actuation Ring (ENAR) from the GE FllO aircraft engine shown in Fig. la. A simplified 
CAD modelwas created, in which the most complex cross-section was simply rotated into a 
cylinder of revolution. The cross-sectional model is shown in Fig. 1b, and the full model is 
shown in Fig. lc. A two dimensional CT image of this cross-section (6.9" high and 1.9" wide) 
derived from the model is shown in Fig. ld. The model provides the basic part geometry 
information, and the image derived from this geometry is referred to as the Model Image. 
An image with three fiaws incorporated into the exact part geometry was also created, and 
this image is referred to as the Simulated Part Image. The first fiaw is a localized elliptical 
void roughly 5 pixels long and 3 pixels high ( actually 17 total pixels ) , the second fiaw is an 
88% dense m.icroshrink regiou covering a 131 pixel ellipse (roughly 9 pixels high and 17 pixels 
wide), and the third fiaw is a crack 7 pixels long and 2 pixels wide (14 total pixels). The 
results using the projection data approach and the image processing and analysis approach 
on a limited angle image based on 140 degrees of available data are shown in Fig. 2. The 
improvement in image quality is substantial and all flaws are clearly reconstructed. 
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Figure 3. Registration Basedon Moments 

REGISTRATION BASED ON MOMENTS 

In order to properly utilize a priori information from a CAD model for limited-angle CT 
reconstruction, accurate registration between the model image and the CT image is required. 
A two-dimensional registration method based an the first and second moments is used . Figure 
3 shows a CT image reconstructed from projection data and a 2-D cross section image ex
tracted from solid model with different position and orientation . A geometric transformation 
is applied to the CT image such that the resultant image is geometrically correlated to the 
2-D cross section image. The translation factor is estimated from the offset of the object 
central gravity point, which can be computed as the fi.rst moment about the x and y axes. 
The rotation is computed from the variations of the orientation angle. The axis of elongation, 
defined as the line for which the integral of the square of the distance to points in the object 
is a minimum, is used to represent the object orientation. The orientation angle is the angle 
between the axis of elongation and the x axis. This angle can be computed as function of the 
second moments about the central gravity point . A transformati011 matrix contains both the 
translation and rotation factors are indicated as follows ; 

T = Rotate(z,B) Trans(x 0 ,y0 ,0) 

cos 0 - sinO 0 xo 
sin 0 cos 0 0 Yo (1) 0 0 1 0 

0 0 0 1 

The translation vector (x0 ,yo,O) is estimated based on the offset of the object central 
gravity points. The center of mass is defined as the point where all the mass of the object 
could be concentrated without changing the first moment of the object about any axis. In the 
two-dimensional case, the central gravity point is computed as the first moment about the x 
and y axes. The characteristic function b(x,y) associated with each pixel p(x,y) has a value 1 
for a pixelbelanging to the object and a value 0 otherwise. The central gravity point of the 
object can be calculated as ; 

_1_ 
area 

Y = -ar1-ea 

f f1 x b( ;r:, y) dx dy 

J f1 y b(x,y) dx dy 

1 
area L. x 

(:r,y)EobJec! 

1 
area L. y 

(:r,y)EobJect 
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where 

area = J fi b( :r, y) d:r dy 1 (2) 
(:r,y)Eobject 

The rotation factor can be estimated from the variation of the object orientation angle. 
The orientation angle 0 is defined as the angle between the x axis and the elongation axis and 
is measured counterclockwise. For an elongated object, as shown in Fig. 3, the axis of the 
elongation is defined as the line for which the integral of the square of the distance to points 
in the object is a minimum: Suppose the line which indicates the elongation axis is stated as 

:r sin 0 - y cos e + p = 0 (3) 

For any pixel p(x,y) belang to the object, there exists a pixel p(x',y') belang to the axis of 
elongationsuchthat the line between p(x,y) and p(x',y') is perpendicular to the elongation 
axis . The position of the pixel p(x',y') can be computed by solving the following simultaneaus 
linear equations and yields : 

{ :r' == - p sin e + s cos e 
y' == p cos e + s sin e (4) 

Forapixel p(x,y) belanging to the object, r(x,y) is used to denote the perpendicular distance 
from the pixel p(x,y) to the elongation axis and is equivalent to the distance between the pixel 
p(x,y) and the pixel p(x',y'). The orientation angle 0 can be estimated by minimizing the 
integral of the square of the distance r(x,y) which is denoted as Ein Eq. (5). 

E == j 1 r(:r , y)2 b(:r,y) d;x dy 

J 1 {(:r- :r')2 + (y - y')2} b(:r,y) d:r dy 

J 1 ( :r sin e - y cos e + p )2 b( :r, y) d;x dy (5) 

Since the axis of elongation also passes through the central gravity point (x,Y), the variable 
p = y cos 0 - x sin 0 results. Equation ( 5) can then be simplified as 

E j 1 ((:r - x) sin 0- (y - y) cos 0] 2 b(;x, y) d:r dy 

A sin20 - B sin 0 cos 0 + C cos20 

where A, B, and C are the second moments given by 

A 

B 

c 

J i :r2 b(:r,y) dx dy- x 2 

2 {j h :ry b(:r,y) dx dy -x y} 

j i y 2 b( :r, y) dx dy - y2 

(6) 

( 7) 

Finally, we can now address the minimization of Eq. (6). Differentiating with respect to 0 
and setting the result to zero Ieads to 

1 1 B e = -tan- {--} 
2 A - C (8) 

2254 



Table 1. Manipulator Position Variation 

Slice # :1: y () 

1 248.714643 229.665078 -57.128429 

2 240.210802 229.690102 -57.099445 

3 248.594358 236.643681 -56.715534 

4 237.821198 234.945839 -57.343159 

5 238.824240 238.907766 -57.258156 

6 248.699804 239.618062 -57.411354 

7 246.756320 234.321143 -57.451622 

8 241.171940 227.696537 -56.728306 

9 249.386362 241.143081 -57.459347 

Average 244.464432 234.736816 -57.177261 

Standard 
Deviation 4.563325 4.556722 0.272214 

MANUFACTURING VARIABILITY EVALUATION 

Application of model-based CT reconstruction techniques to real parts requires that 

manufacturing variability be taken into consideration. It is important to know just how much 

nominally identical objects differ from each other due to the manufacturing process as well as 

the manipulator position variability. CT images have been created of several different turbine 

blades of the same type at identical vertical positions to demonstrate manipulator position 

variability as well as blade to blade variability. These images have been processed to extract 

exterior boundaries of the blades as well as boundaries of internal cavities in the blades . The 

image which results from superimposing the boundaries of the CT images on top of each other, 

shown in Fig. 4a, illustrates the manipulator position variations. By comparing the boundary 

images, measurements can be made to quantify variability both of blade position and of blade 

construction. Registration techniques, based on the first and second moments, are used to 

remove the effects of blade positional variation. Applying the registration method mentioned 

early, the first moment about the x and y axes as well as the orientation angle are extracted 

from each CT image. The translation and rotation f<J;ctors are used to evaluate the effects of 

manufacturing variability and used for geometric transformation. Table 1 lists those values 

calculated from nine CT images. The average and standard deviation of the first and second 

momentsarealso presented. Geometrie transformation, using the calculated (x,y) and 0, is 

applied to each CT image. Fig. 4b shows the results of superimposing nine CT images after 

registration. It is shown that the effects of manipulator variati011 are removed. The resultant 

image indicates the blade to blade variation due to manufacture processing. 

EFFECTS OF MANUFACTURING VARIABILITY ON FLAW DETECTABILITY 

The results in Fig. 2 were obtained for the case in which the Model Image and the 

Simulated Part Image are identical except for the presence of flaws in the Simulated Part 

Image. In any real inspection situation, manufacturing tolerances will cause actual parts to 

vary somewhat from the blueprints . These Variations must be taken into account in any 

realistic inspection scheme. The initial approach which was chosen to take these Variations 

into account was to vary the size of the Model Image relative to the size of the Simulated 

Part Image before using the Model Image as a mask in the Projection Data Approach and 

the Iterative Reconstruction Approach described above. 
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Figure 4. Manipulator Positioning Variation and Blade to Blade Variation 

Figure 5. Iterative Reconstruction Approach for Various Masks 

Several masks were used at various stages in the analysis. These masks were derived from 
the Model Image by thresholding, erosion, and dilation . Thresholding creates a binary image, 
which can then be expanded by one ( or more) pixels at the boundary ( dilation), or shrunk by 
one ( or more) pixels at the boundary ( erosion ). The pixel values in the Model Imagerange from 
0. to 100., with only boundary pixels varying from the two va.lues sta.ted. MASK1 was created 
by thresholding the Model Image a.t a pixel va.lue of 1. and setting a.ll pixels above the threshold 
equal to 1 and all pixels below the threshold equal to 0. MASK1DL1 AND MASK1DL2 
were created from MASK1 by dilating once and twice respectively, and MASKlERl and 
MASK1ER2 were created from MASKl by eroding once and twice respectively. The masks 
therefore all maintain the same general shape as the Model Image, but the size varies . 

Image quality as judged by the operator is essentia.lly independent of variations in the 
mask size, as in shown in Fig. 5, which shows a comparison of images after 7 itera.tions of 
the iterative reconstruction technique using the exact mask and the once dilated and eroded 
masks. In all cases, image quality is substantially improved compared to the case where no a 
priori information is used (compare Fig. 5a. to pa.rts b, c, a.nd d) . Quantitativeperformance 
comparisons are required to evalua.te the effects of these changes. 

For voids and microshrink, the key issue is to determine whether the fia.w is detectable 
based on its contrast with ba.ckground material. In order to assess this detecta.bility, evaluation 
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Figure 6. RMS Error and Flaw Detectability 

of mean signallevel, standard deviation, and Root Mean Square (RMS) Error compared to 
an ideal image in key regions of the image are required. For the analysis which follows, four 

regions have been chosen. The first region (VOID) covers the 17 pixel void in the FllO ENAR 
image. A companion region (VOIDNH) includes the nearest 131 pixels surrounding the void. 

Similarly, for the microshrink fl.aw, the first region (SHRINK) covers the 131 pixel defect 

and companion regions includes the nearest 131 pixels surrounding the microshrink region 
(SHRINKNH). The mean, standard deviation, and RMS Error were calculated in each region. 

In addition, a detectability parameter(5] 

(9) 

was evaluated for each fl.aw and used to compare the various approaches. In Eq. 9, P and 

up are the mean and standard deviation in the region of the fl.aw, and Q a.nd UQ are similar 

values in the neighborhood of the fl.aw. 

Consider first the detection of voids and microshrink using the projection data approach. 
The RMS Error in the regions VOIDNH and SHRINKNH are plotted in Fig. 6a. The point 
labeled NONE corresponds to the 140 degree limited angle image with no a priori information, 

while the other four points correspond to eroded and dilated images as indicated. Note the 
dramatic reduction in RMS Error as soon as any a priori information is used, and the relatively 
slight variation with mask size. The detectability parameter defined in Eq. 9 is plotted in 
Fig. 6b for these same images. Note that the detectability of the microshrink region is 
substantially enhanced with inclusion of a priori information, but the void region is not. 

Microshrink detectability is enhanced due to reduction of artifact in the image, while void 

detectability is essentially unaffected since the void is a high cantrast fl.aw and incomplete 

data artifact is small compared to the fl.aw signal. Indeed, void cantrast is not improved by 

the Projection Data Approach, since missing angle data is taken from tbe Model Image which 

contains no fl.aw . In general, void detectability is good and relatively independent of mask 
size. Shrink detectability is generally fair , and somewhat better for smaller masks than for 

larger ones. 

Similar plots of RMS Error and Flaw Detectability are presented in Fig. 6c and d for the 

Iterative Reconstruction Approach using 7 iterations. Results are similar, with a few excep

tions . Again, significant improvement is achieved after use of a priori information, and the 

amount of improvement is relatively independent of mask size. Note that using this method, 
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the detectability of voids is improved with iterations, but microshrink detectability remains 
poor. In this case, void contrast is improved with processing, since information about the 
void is indeed present in the images at each step of the processing, and the iterations improve 
the quality of information at each step. Microshrink detectability, however, is relatively poor, 
even after iterations, which reflects the relative inability of this method to remove the steaking 
artifacts characteristic of limited angle CT images. 

In conclusion, both the projection data approach and the iterative reconstruction ap
proacll provide significant improvements (factors of 3 to 10 or more) in incomplete data image 
quality. The Projection Data Approach provides greater improvement for microshrink de
tection while the Iterative Reconstruction Approach provides greater improvement for void 
detection. 

SUMMARY 

Model-based approaches have been proved as a powerful technique for enhancing the 
incomplete data CT image quality. A registration method, based on the first and second 
moments, has been developed and used to remove the effects of positional variation. This 
technique will ensure proper utilization of CAD model information. The effects of manufac
turing variabilities have been evaluated based on the translation and rotation factors used 
to do geometric registration. In addition, incomplete data CT image simulation results show 
that typical effects of manufacture variability occurring in practice ( at least in turbine blades) 
do not degrade fl.aw detectability using model based CT reconstruction techniques. It is con
cluded that the model-based approaches provide significant improvement in incomplete data 
image quality. 
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