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In studies of scattering by an inclusion it is generally assumed that the inclusion is perfectly bonded to the surrounding matrix material. The actual bond between two materials is, however, 
generally effected by a thin layer, which may be called an interphase, rather than an interface. It is well known that the mechanical behavior of such an interphase may significantly influence the overall mechanical behavior of a solid containing inclusions. 

In this paper it is investigated to what extent an interphase affects the scattered field generated by an incident ultrasonic wave. Both a completely intact but compliant interphase, and an interphase which does not transmit tractions over part of the area between the inclusion and the matrix, have been considered. 

The interphase is generally very thin. In this paper, it is assumed that the radial and the tangential tractions are continuous across the interphase, but the displacements may be discontinuous from inclusion to matrix. The tractions are assumed to be proportional to the corresponding displacement discontinuities. The proportionality constants characterize the stiffness and strength of the interphase. 
On the basis of this interphase model, which corresponds to a 
distribution of springs between the inclusion and the matrix, a 
rigorous analysis has been carried out of the backscattered field generated by an incident longitudinal wave. Within the context of the present model the case of a partially defective interphase, i.e . , the case of a crack over part of the surface between the inclusion and the matrix, is easily included by setting the spring constants identically zero over the cracked surface. 

The analysis has been carried out by deriving a set of singular integral equations for the tractions and displacements across the 
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interphase. These equations have been solved by the boundary element 
method, and the scattered field has subsequently been obtained by the 
use of the elastodynamic integral representation. 

An analysis for a similar configuration, but by the use of the 
null field approach, and for a completely intact interphase, has been 
presented by Datta, Olsson and Bostrom [1]. 

FORMULATION 

Let A and~ be Lame's elastic constants, and p the mass density 
of the inclusion, and let A,~.p be the corresponding quantities of £he 
surro~nding matrix material, as shown in Fig. 1. In this figure, u 
and u are the incident and the scat£ered5wave, respectively. The
total wave field is defined as u - u + u . In the following, the 
time-harmonic factor exp(-iwt) has been suppressed, and the upper bar 
notation is used for quantities related to the inclusion. 

Boundary Integral Equations for the Matrix and the Inclusion 

The boundary integral equation for the matrix material takes the 
form 

Cij(~)uj(~) = { Uij(~·l)tj(l)dSY- { Tij(~·l)uj(l)dSY + ui(~), x £ S, 
(1) 

where Sis the interphase boundary at the matrix side and U .. (x,v) is 
1J - "-

the fundamental solution for 3D time-harmonic elastodynamics: 

u (x ) - _L [ei~r 6 + L _g_ _Q_ rei~r- eikLr l] 
ij _,y 4~~ r ij kf axi axj t r r J ' (2) 

while T.j(~·l) is the corresponding traction. The boundary integral 
equatioft for the inclusion is of the form 

cijc~>ujc~> = £ uijc~.y>tjcy>dsY 
s 

f Ti.(x,v)u.(v)dS , x £ s , (3) 
- J-"- J"- y 
s 

Fig. 1 Scattering by an inclusion with a compliant interphase . 
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where S is the interphase boundary at the inclusion side. In matrix 
form Eq.(l) becomes after the discretization: 

H u - G t + ui (4) 
::::::::- :::::::- -

Next we operate with AG-l on both sides of Eq.(4), to obtain 
:::::::::::::::: 

where K and F are defined as 
"" 

K - A G-l H, F - A t 
::::::: ::::::: ::::::: ::::::: - ::::::: - (6a,b) 

-1 Here it has been assumed that in taking Q , the frequency does not 
coincide with an eigenfrequency of the inclusion. The matrix ~ has 
the following diagonal form 

A- (7a) 
"" 

Here the subscript M denotes the total number 
and the a-th sub-matrix A has the form 

of boundary elements, 

za 

A _ [~a 
za 0 

where A is the area of the a-th element. a 

(7b) 

In the same way, Eq.(3) for the inclusion may be reduced to 

K u- F 
:::::: ::::::: (8) 

where 

- - --1-
lS - ~ ~ ~· F - A t - :::::::::-

(9a,b) 

Spring Equations to represent the Interphase 

The interphase between the inclusion and the surrounding matrix 
is now modelled by a continuous distribution of springs, see, Fig. 1. 
The springs are assumed to be linear and they have three components. 
The system of equations defining the spring connections can be written 
down in the following form 

[ g _ g l { ~SP } { ~SP } 
-S S uSP FSP 

::::::: ::::::: - -
(10) 

where g is the spring constant matrix, which is defined as 

[~1 ~~ •• R ~ l 
~ =a .• . ~ 

s 
"" 

(lla) 

-SP -SP SP SP • In Eq.(lO), u and F (u and F ) are the d~splacements and forces 
on the springs at the inclusion (matrix) side. The superscript SP 
designates quantities in the springs. In Eq.(lla), the a-th sub-
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matrix ~ is the spring constant matrix of the a-th element; it has 
the form 

"': .. l (llb) 

where Rla' R2a' and R3a are spring constants per unit area in the 

x1 ,x2 ,_and x3 directions, respectively. The under-bar for the 
subscr1pt a means that no summation is implied. 

In Eqs.(lO) and (11) the spring layer is assumed to be of zero 

thickness, and hence A is equal to A . This means that R - R and S 
a a "'0 "'0 "' 

- ~- The zero thickness assumption also implies that the effect of 
inertia of the interphase is neglected. 

Interaction Conditions and the System of Integral Equations 
For the eight vector quantities, ~and E in Eq.(S), ~and fin 

SP SP -SP -SP Eq.(8), and u , F , u and F in Eq.(lO), the following 
interaction conditions-hold -

- SP u -u 

FSP + F- 0 

SP 
u u 

FSP + F - 0 

(12a ,b) 

(12c,d) 

From Eqs . (S), (8), (10), and (12), we obtain the following system 
of integral equations 

(13) 

For the given incident field, u1 , this system can be solved for u at 
the inclusion side and u at the matrix side. We can subsequently 

obtain F and F from Eqs.(8) and (5) . The scattered field can then be 
calculated from the original integral representation . 

PARTIAL DEBONDING OF THE INTERPHASE 

It should be noted that the spring constants per unit area in 

spring 

Fig . 2 Inclusion with a crack over part of the interphase. 
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Eq.(llb), Ria (i- 1,2,3; a- 1,2, •••M), may change for each 

direction i( - 1,2,3) and they may also change in each element 
a(-1,2,•••M). As a special case, we can put Ria= 0 (i- 1,2,3; 

a- k+l, ••• k+N), where N is less than M. This is a model for 
partial debonding of the interphase. Part of the boundary (N 
elements) is a crack-type surface, while in the remaining part (M-N 
elements) contact between inclusion and matrix is maintained by the 
spring connection, as shown in Fig. 2. 

Numerical Examples 

We restrict our attention to scattering by a sphere of radius d. 
The incident wave is chosen to ~e a plane longitudinal wave which 
travels in the x3-direction: ~ (~) - exp(ikLx3 )~3 . In the following 

calculation, the non-dimensional wave number kLd was fixed as 

kLd 1.0, and the material properties were taken as cL/cL - lj}2, 

II - II 1/4, PIP - 1. 

To display general trends for the present spring model, the 
absolute values of the total displacement on the both sides of the 
interphase are shown in Fig. 3, for the case of spring contact over 
the whole boundary. The spring constants per unit area are 
R /R - R8/R - R~/R - 0.1 for all elements, where R - pcL2 /d r o o "~' o o 

Fig. 3 

2. 5 

lu I, 1-;; I r r 
2.5 

Total displacements at the inclusion and matrix sides of the 
interphase, Rr/R0 - R8/R0 - R,p/R0 - 0.1. 
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(for simplicity, we writeR instead of R ). The left hand side 
shows polar plots of the raaial displacem~gts lurl on the matrix side 

(half black circle) and luI on the inclusion side (open circle). The 
r 

right hand side shows the tangential components lu91 and lu9 1. For 
this case of complete spring contact, we can obtain the exact solution 
by a slight extension of Pao and Mow's expressions [2] . The solid 
lines of Fig . 3 show these exact solutions . 

Figure 4 shows the components of the scattered field for the 

boundary displacements, where lusl and lusl are plotted on the left-
S S r r 

hand side, and lu8 1 and lu9 1 on the right-hand side. The scattered 

S I 
field is defined as u u - u . For this calculation, the spring 
constants Rr/R0 , R8/R0 and R¢/R0 were set equal to zero in the lower 

half (x3 ~ 0) of the interphase. This corresponds to the case that 
the lower half of the interphase is crack surface. Over the upper 
half of the spherical interphase, Rr/R0 - R8/R0 - R¢/R0 - 100 for all 
elements. 

Fig. 4 
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Scattered displacements at the inclusion and matrix sides of 
the interphase, at the insonified side of t he inclusion; 
spring constants over the shadow side: 
Rr/R0 = R9/R0 = R¢/R0 - 100 . 
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Fig. 5 
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Real and imaginary parts of the backscattered displacement 
field for the case of a crack at the insonified side of the 
inclusion; spring constants over shadow side: 
Rr/R0 - R8/R0 - R~/R0 - 100. 

Figures 5 and 6 show the real and imaginary parts of the back 

scattered field, u~ - u3 - u~, along the x3-axis. Figure 5 is for the 

case of a crack over the lower half of the interphase (x3 ~ 0), and 
Fig. 6 is for the case of a crack over the upper half (x ~ 0). Over 
the half of the spherical interphase which remains intac~, the spring 
constants are Rr/R0 - R8/R0 - R~/R0 - 100 for both figures. Because 

of the symmetry with respec§ to the x1 - axis, §he b~ckscattered field 
on the x3-axis has only a u 3 component, since u2 - u1 = 0 along the 

x3-axis . The backscattered displacement u~ has been plotted at a 

distance of 30d from the front face of the inclusion. It is noted 
that a comparison of the real and imaginary parts of the scattered 
wave forms of Fig. 5 and Fig. 6, shows a phase shift in the amount of 
about one half wave length. 

53 



0.8 

0.6 

r 0.4 
s 

u 3 

lu1
1 

() Real 
0.2 0 Imaginary 

0.0 

- JO - 15 - 20 - 25 - 30 x 3/d 
- 0.2 

- 0.8 

Fig. 6 Real and imaginary parts of the backscattered displacement 
fields for the case of a crack at the shadow side; spring 
constants at the insonified side: 
Rr/Ro - R8/R0 - R¢/R0 - 100. 
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