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ABSTRACT 

This thesis is an extension ©f a paper by Weiss and Prager^^ in which 

these authors have applied Tr@«ca*s yield condition and the associated 

flow rule to the determination of the bursting speed of a rotating 

annular disc, having constant initial thiekneas. In this thesis the re

sults of the above paper are extended directly to the problem of the 

axially-systnetric annular disc with an arbitrary initial thickness. It 

is found that Tresca*s yield condition and the associated flow rule do 

not appear to be applicable to the problem of the solid disc. 

Von Mlses* yield condition Is next applied to the problem of the 

axially-synroetrlc disc with an arbitrary Initial thickness. Under the 

assumption that the elastic strains are negligible in comparison with 

the plastic strains, the Von Mlses* stress-strain rate law Is used, 

rather than the ujore complex Prandtl-Reuss stressestrain law. A set of 

simultaneous ecpatlons Is obtained, whose solution I® the set of 

stresses and strains corresponding to the considered angular velocity 

of the disc, airstlng speed of the disc Is assumed to be that value of 

angular speed for which the strains nay Increase Indefinitely without 

further increase in rotational speed. In general, this system of equa

tions must be solved numerically, a process Mrtiich may be carried out 

with the aid of a desk calculator. 

The bursting speed of a solid disc having a constant initial thick

ness Is computed, using Von Mlses' yield condition, and the results com

pared with the bursting speed of an annular disc obtained by the use of 

Tresea's yield condition. This comparison was made by way of some ex

perimental results of Holms and Jenkins^, and the agreement is found to 

be satisfactory. 
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INTROmJCTION 

The problem of determining th© limitations vrf^ich imist be placed 

upon the angular velocity of a rotating disc has attracted coneiderable 

attention in the past, and contemporary progress in gas-turbine and air

craft Jet-engine design is accelerating research in this field. It is 

desirable that accurate data be available, in order that such turbine 

discs may be designed to operate safely. In general, there are two 

distinct factors s^ich limit the angular velocity at which a disc may 

operate* First, in many types of rnachlnery, the inherent tolerances 

HWty place a limit upon the amount of deformation which the disc may 

undergo without regard to the actual bursting speed, nie second applies 

in situations writere deformation of the disc is not in Itself important, 

in *#?ich ease the actual bursting speed of the disc may well be the 

only liroiting factor. It is with the latter type of limitation that 

this paper deals. 

Experimental data have been obtained by several investigatorsi for 

example, Holms and Jenkins , Itec Gregor and Tierney and Skidmore . 

Unfortunately, stress-strain data for the materials used in these ex

periments are not readily obtainable, hence it is not feasible to com

pare theoretical calculations with any of these results. 

Under the assumption that stress and strain are linearly related 

- in other words, the material is elastic - the solution for stresses 

15 
and strains is well-known. Stodola (p. 157-169), for example, has 

jc 
treated discs with a thickness function of the form h = cr . By con

sidering an arbitrary Initial thickness as being formed by a number of 
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annular rings of this type, the solution for the stresses and strains 

in such an arbitrary cross-section may be approximated. By means of such 

solutions the maximum angular velocity for which the material of the disc 

behaves elastically may be found. 

The limitations on this type of solution are reached| however, for 

angular velocities considerably below that at which the disc ruptures. 

For somevrfiat greater angular velocities the material is said to become 

plastlcj that is, the material remains deformwJ after the stresses have 

been removed. From a mathematical standpoint, there are two widely-

used criteria for the transition frcmi the elastic to the plastic state. 

Tresca's yield condition states that plastic yielding will occur virtien 

the aMnximiira shear stress in the material reaches a critical value. This 

critical value is equal to the experimentally determined yield stress in 

pure shear. Von Mlses' yield condition states that plastic yielding will 

occur when a certain invariant of the stress deviation tensor becomes 

equal to the square of the yield stress in simple shear. The exact forms 

of these criteria will be shown later. 

Nadai and Donnell^^ first investigated the distribution of stresses 

and strains in a rotating disc for angular velocities ranging frcm« that 

for which the yield point was first reached at some point in the disc to 

that for wriiich the entire disc had just become plastic. A simple solu

tion using Tresca's yield condition is also given by Hoffman and Sachs^. 

If it is assumed that the yield stress in pure shear remains constant 

as deformation proceeds, the material is said to be perfectly plastic. 

This implies that unrestricted plastic flow may take place without further 

Increase in the stresses. This is usually a satisfactory approach when 
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the plastic strains are fairly small, as, for example, when the angular 

velocity is limited by the amount of deformation to be tolerated rather 

than by the angular velocity at which the disc bursts. 

However, the yield stress in pure shear does not remain constant in 

practical materials for large strains. Such materials are said to strain-

harden, and this is the type of materials considered in this paper. For 

such materials it will be shown that the angular velocity at which the 

disc bursts represents a considerable increase over that at which the disc 

first becomes fully plastic. 
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GENIRAi DISCUSSION 

The mathematical theory of plasticity may be based ujK>n the behavior 

of the material In question under a simple tensile test. When longitudinal 

force is applied to a cylindrical test speciinen, the states of stress and 

strain near the ends of the spectaien are quite complex. However, if the 

specimen is rather long, it is assumed that the states of stress and 

strain are hcHaogeneous in the central portion of the specimen. It is 

customary to choose a 'gauge length* in this central portion, and then 

define the * conventional tensile stress* as the ratio of applied 

axial force to the original area of the cross-section, and the * conven

tional tensile strain* as the ratio of elongation of the gauge length 

to its original length* On the other hand, *true* stress and strain are 

defined with relation to the current area and current length of the speci

men. 

LB./IN' S 

cn 

e 
STRAIN 

Figure 1. Stress-strain curve for a material v^ich does not have 
a well-defined yield point. 
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If th® conventional tensile stress is plotted as a function of 

the conventional tensile strain a curve such as that of Figure 1 re

sult® for ffliny nmterlals. For such materials, accurate measurements re

veal the presence ©f small pei«n@nt strains even for very small stresses, 

and the transition to larger perwanent strains is gradual* Such materi

als are said not to have a well-defined *yield point*, and will not be 

considered in this paper* 

On the other hand, some laaterials such as structural steel, exhibit 

a stress-strain curve of the type shown in Figure 2. This stress-strain 

curve is characterized by a linear portion for small values of stress and 

strain# For states of stress and strain corresponding to points on the 

portion ©?, stress and strain are linearly related to within a high degree 

of approximation. Furthermore, over a portion of the curve vrfilch nearly 

LB./IN? 
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o 

u 
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IN./lN. 

STRAIN 

Figure 2» Stress-strain curve of a material having a well-defined 
yield point. 
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eoincides with OP, reroeval of the applied stress causes the strain to 

fill to zero. As long as the state of stress and strain corresponds to a 

point ©f this portion of the stress-strain curve} the material is said to 

be * elastic*. 

If, however, the state of stress and strain is such as to correspond 

to a point on the stress-strain curve which is not on this linear portion, 

for example point Q of Figure 2, then stress and strain are no longer 

linearly related, Furthe^raiore, if the stress be reduced gradually, the 

state of stress and strain no longer corresponds to a point on the original 

stress-strain curve, init to a point on the path CJC, parallel to the linear 

portion The material is then said to have yielded plastically, the 

strain OC being the peiwanent or plastic strain. Upon re-applying the 

stress, the behavior of the aiaterial is very nearly described by the line 

CQ until point Q is reached. Application of further stress will then re

sult in increased plastic yielding, and the state of stress and strain 

will then correspond to a point on the original stress-strain curve such 

as T in Figure 2, 

For wore general stress states, the transition from elastic to 

plastic behavior Is more complicated. The discussion may well begin with 

a nsaterial which has not been strained beyond the elastic range. The 

stresses and strains within the material are unl<|uely related until plas

tic yielding begins. Tlie criterion for incipient plastic yielding may 

then be expressed in texros of the stress components, only. The 'yield 

condition* may therefore be written in the forra 

yCs^P » 0, (1) 
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wh#r@ i« th® collection of nine components characterizing the $tate 

of stress, called the •stress tensor*. Since the material is usually as

sumed to be ifiotropiCf the value of Y must not change when the axes to 

«^ich the stresses are referred are changed. Thus, Y must be an invari

ant ©f the stress tensor. Brldgwin^ has found that hydrostatic pressure 

alone does not produce appreciable plastic deforsiation. Hence it is 

usually assumed that plastic defoit»ation depends only upon the stress 

deviation, defined below. 

If Sjj, 8^2 and are the nonnal stress exponents, the 'mean nor-

«al stress* is defined as 

S a l/3{Sj^j^ $22 + 

The stress deviation then is defined by the tensor having normal compon

ents 

hi ' ®U - ®> * =22 - bl ' ®J3 - ®' 

and the same shear components as the stress tensor. Thus the stress devi

ation is related to the change in shape, v^ereas the mean noruuil stress 

is related to the change in volume. The yield condition may, then, be 

expressed as an Invariant of the stress deviation tensor. 

It is always possible to choose the coordinate axes in such a man

ner that the shear components of the stress tensor *^en referred to this 

set of axes vanish. For the remainder of this discussion it shall be 

assumed that axes have been so chosen, unless specifically stated other

wise. The yield condition then, is a function of three variables, the 

three noiwil stress components. Hence the yield condition may be discussed 
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readily from a georoetrical point of view. 

The yield condition, of the foxm Y(S^j) = 0, defines a surface in 

stress-space. Drucker^'^ has shown that this yield surface is both closed 

and convex. Fox stresi® states corresponding to points interior to the 

yield «urfac@| V 0, and elastic defoimation only is possible. For 

stress states corresponding to points on the yield surface the material 

Is assumed to be in a state of incipient plastic flow, since Y » 0. 

For a disc in which the thickness is small comji^red to the outer 

radius a coimon assumption is that the axial stress is negligible. The 

following discussion will be limited to such cases of plane stress in 

order to take advantage of the simpler geometry associated with the yield 

surface. Generalization to the tri-axial stress problem offers no diffi

culty insofar as the basic theory goes, but the application of the theory 

may be extremely difficult. 

Consider the trace of the yield surface - hereinafter referred to 

as the yield curve - in the plane, as shown in Figure 3. For the 

sake of definiteness Von Mises* yield curve is shown, as given by Hoffman 

and Sachs (Figure 4.j3 p.42), i^jit the argument applies to any arbitrary 

yield curve. 

Figure 3. Yield carve with arbitrary stress path. 
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Assuffi© an existing stress state corresponding to point A on the yield 

cwrv®, and allow the stresses to change along the Indicated path to point 

1, For such a strets ehangei^ the yield curve may change in either of 

three *»ays, ©r some combination thereof. The yield curve may distort 

locally, a® in Figure 4? it may translate a® a whole as in Figure 5} or 

Figure 4* Local distortion of yield curve 

Figure 5m- Translation of yield curve 

it Biay dilate as in Figure 6. 

It sewis likely that soiae combination of these three effects would 

be found in a practical raaterial. However| it is desirable t© effect 

some simplification of the problem® with the understanding that only ex

perimental evidence can determine how well the sifflplified approach 

approxiwit## actual conditions, Due to the complications presented by 

anisotropy, it i® desirable to assume that the naterial remains isotropic 

under any prograra of stressing. This assumption re<|uires that the yield 
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curve change by dilatation only. Th© reminlng problem in connection with 

the yield curve is the manner in v^ich the dilatation i$ related to the 

strain program applied to the material* This will be covered later, in 

connection with the application of the different yield criteria. 

There are two widely used theories of the behavior of strain-hardening 

mterials. The defoxtsation theory assumes a uniqpje relation between 

stress and strain, providing the prior history of the material does not 

include removal of stresses after plastic deformation has taken placef 

i.e., unloading has not occurred. On the other hand, the flow theory 

assumes that the rate at «^ich the strains are changing is uniquely deter-

17 18 9 mined by the stresses. Zaid * and Manson , aisong others, have obtained 

solutions for the rotating disc problem making use of the deformation 

theory as a means of simplifying the problem, although it was known to 

these authors that there are theoretical objections to the deformation 

11 theory. These objections have been pointed out by Prager , who showed 

that the deformation theory does not yield unique results for certain 

change® in stress state, as does the flow theory. 

Weiss and Prager^^ have obtained a solution for the bursting speed 

of B rotating annular disc with unlfonn Initial thickness, using Tresca^s 

S e 

r 

Figure 6. Dilatation of yield curve. 
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yield condition and the associated flow rule. An extension of this work 

to the solid disc with an arbitrary initial thickness is desired. 

Th@r® are several basic assumptions which are made in this paper. 

As noted above, it is coimonly assumed in working with this problem that 

the axial stress is zeroj and that the remaining stresses do not vary in 

the axial direction. This assumption is justified by the agreement of 

theoretical calculations with experimental evidence, wdiere such is avail

able, and will bs adopted in this paper. The paroblem is further simpli

fied by the assumption that the material is incompressible while under

going plastic deformation. Bapirical evidence in favor of this assumption 

presented by ^idgMin^, found that the compressibility of most 

metals is negligible under conditions of plastic deformation. 

In the case of uniaxial tension the plastic strain obtaining when the 

material is near th@ breaking point is many times the elastic strain 

present in the naterial. In comparison with the plastic strains, the 

elastic strains are therefore negligible, and are usually ignored. The 

theory of plasticity arising from this assmiption is known as the rigid-

plastic theory, and is the theory proposed by Von Mises. It should be 

fitted that this theory would not be tenable if the deformation were 

limited to values not greatly different from the mximm elastic deforma

tion. Since this paper deals with large plastic strains, the rigid-

plastic theory is adopted. 

Finally, the assumption is made that the material remains isotropic 

under plastic deformation, llii® is p3N>bdbly not strictly true of practical 

Mterlals, but is justified in previous work by the agreement with experi

mental evidence. 
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Given a number of assumptions such as those v^ich are made in this 

paper, it is then the task of mathefflatic® to determine the logical conse

quences thereof. Prom a strictly math^natical point of view, any set of 

assumptions is admissible wrtiich leads to a consistent system of results. 

From an engineering standpoint, however, it is necessary that the 

assumptions represent the behavior of the material in question to a suf

ficient degree so that the theory yields usable results. It would appear 

that test® of rotating discs should furnish additional information as to 

the Justification of certain of these assumptions. 
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INVESTIGATION 

A* Notation 

Throughout this paper the followln§ notttion will be employed; 

r * radial distance to a generic point on the disC| before deforma

tion# 

© ss angular position ©f a generic point ©n the disc, with relation 

to any convenient reference line, 

z » axial distance to a generic point of the disc, measured fran 

the central plane of the disc. 

H s x-adial distance to a generic point on the disc, after deforma

tion. 

h « thickness of the disc at a generic point, before deformation. 

H 3s thickness of the disc at a generic point, after deformation. 

t,b ss initial inner and outer radii, respectively, of the disc. 

S^.Sg.S, » conventional nonwil stresses in the radial, tangential and axial 

directions, respectively. 

* true normal stresses in the radial, tangential and axial 

directions, respectively. 

=s normal stress deviation components in the radial, tangential 

and axial directions, respectively. 

S * 1/3 (S^ • Sg + S^), mean normal stress. 

M w radial displacement of a generic point on the disc. 

a « fc/a. 

'*) » u/a. 

V = r/a. 
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* density of the material. 

®r'®9'®z « true rates of nomal strain in the radial, tangential and axial 

directions respectively'. 

^r*^©'^z « conventional normal ttraina in the radial, tangential and axial 

directions, respectively. 

0 a twice the value ©f the true critical shearing stress. 

c,k ss constants In the thickness fomula. 

m » angular velocity of the rotating disc# 

g * function apjpearlng In the Von Mlses* yield condition, 

f w functional relation between stress and strain, as given by a 

uniaxial tensile test. 

X,X* * f^raraeters appearing in Von Mises* stress-atraln relations, 

y » yield function. 

B. Basic Assumptions 

For convenience, the basic assumptions discussed under the heading 

General Discussion are collected below. These assumptions are to hold 

throughout the paper, unless stated otherwise. 

(a) The disc Is composed of an isotropic, hc^nogeneous material, 

wAilch renaiins isotropic during plastic defoiroatlon. 

(b) "Hie thickness of the disk is sniall compared to Its radius. 

Cc) Elastic strains are neglected, as being negligible compared with 

the plastic strains* 

(d) The material is incompressible* 
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C. Treses*s Yield Condition and Flow Rule. 

0ue to axial synreetry, the principal stresses are the tangential 

stress cTqi the radial stress 0^ and the axial stress 0^, as shown in Figure 

7. The principal shearing stresses are, therefore, 2 k© " '2 1*^0 * *^rl 

and ̂  - 0J • Tresca*s yield condition states that plastic flow can 

occur if at least one of these principal shearing stresses is equal to a 

critical value, which depends «pon the considered state of strain-hardening. 

FurtheMKsre, none of the principal shearing stresses may exceed this 

critical value* 

12 
As shoum by Prager , if only one of the principal shearing stresses 

has the critical value, the flow rule associated with Tresca*s yield con-

/ 

Figure 7» Hotating disc, and elementary portion showing stresses 
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diti©n states that th© instantaneous strain rate corresponds to pure shear 

in the plane of maxiwufn shearing stress. The sense of this strain rate 

must, of agree with that @f the maxiRium shearing stress. 

If two principal shearing stresses have the critical value, then the 

resulting strain rate may be that resulting from the superposition of two 

states of pure shear in the tm planes of BaxiBmai shearing stress. 
ry 

Assumption (fo) leads to the assumption that 0 « 0. Lee has in-

v®®tl§at@d discs having an initial thickness function given as an expon

ential function of rf i.e., h » c ®xp(kr). For such discs he has shown 

that th® stress©# are always tensile, and that cy^. Since an arbitrary 

thickness function may be approxlBMited to as great a degree of accuracy as 

desired by means of a number of annular rings of this form, it may 

reasonably be assumed that ^ ^ 

l6 
leis® and Prai#r have shown that, under these conditions, the 

plastic flow satisfies the equations.! 

» cr>0j,>O, efg « 0, U) 

« 0, = - ©35 

In addition, the relation between conventional tangential stress and 

conventional tangential strain Eg may be taken as 

Sq = f(eg) (6) 

where relation between stress and strain as obtained 

from a slisple tensile test of the niaterlal. 

I4ich of the following discussion parallels that of Weiss and Prager • 
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It is deslrablei howeveri to consider this material in the light of an 

arbitrary initial thickness, and to examine the possibility of extension 

of the method to the problem of the solid disc. 

Consider a rotating disc of initial thickness h * h(r) and initial 

radius b» From the faffliliar elastic stress analysis, it is knowi that, 

as the angular velocity co of the disc Is gradually increased, the yield 

limit is first reached at the center of the disc* As co is further in

creased, there will be a plastic region at the center of the disc sur

rounded by an elastic region# If plastic flow occurs within the plastic 

region, Eqs. (5) tmst be satisfied. Letting the distribution of radial 

velocity be v » v(r), it follows that e^ » dv/9r. This najst vanish 
' T 

according to iqs. (5), hence the radial velocity is Independent of r. 

Furthermore, since in accordance with assumption (c) the elastic strains 

are neglected, the radial displacement u at the elastic-plastic interface 

is zero. Thus v and also the tangential strain rate e^ « v/r, must vanish 

throughout the plastic region. Hence this region remains rigid until the 

elastic-plastic interface reaches the exterior of the disc. The angular 

velocity for #iich this occurs is given by Hoffman and Sachs (Eq. 9.38, 

p. 101). 

For larger values of to, plastic flow will take place* However, in 

order that e^ » v/r may be finite at the center of the disc. It Is necessary 

that V = 0 for r » 0. &t, according to Eqs. (5), v is independent of r. 

Thus V * 0 and no flow can occur. Therefore, the use of Tresca*s yield 

condition and the associated flow rule must apparently be restricted to 

annular discs. The remainder of this section deals with such an annular 

disc, having Inner radius a and outer radius b. 
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A particle, Initially at radius r, will be found at radius R when the 

angular velocity is to» The relation between initial and instantaneous 

radii is, th<OT} 

R « r • u, (7) 

2 
Her©, R and u are function® of the independent variables r and oo • 

Since 5v/9r w 0, all particles have the same radial velocity at any 

particular inJitant, Thus the radial displacement I® independent of r. The 

materiil initially bounded between surfaces r and r • dr undergoes radial 

displaceaent « and is then bounded by the surfaces R « r + u and R dR = 

r dr •<' u. Also, the thickness decrease® from h to H» In accordance with 

assumption (d), w^ich states that the laaterial is incompressible, hr dr = 

HR dR. Mt dr » dR, from absve, and therefore 

H X hr/R. (8) 

The true radial stress or is transmitted across an area el^ent ŵ ich 
* 

is proportional to HR, »irtille the conventional radial stress S is trans-
r 

mitted across an area element tAich is proportional to hr. It follows 

that 0 » S , since hr » HR by Eq. (8). The tarue tangential stress o- is JT * " 

transmitted across an area elenitnt which is proportional to H dR, while the 

conventional tangential stress is transmitted across an area element 

which is proportional to h dr = h dR. Thus the conventional tangential 

stress is given by 

Sg « H 0/h. (9) 

The equation of equilibrium in the deforaed state is 
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d(RH<?y)/dR « Hffg - pH o?R^. (lO) 

In this equation, a total derivative is used, since the quantities involved 

ar@ assumed to be independent of the axial coordinate, and are independent 

of the tangential coordinate from synsaetry. When Eqs. (6), (8) and (9) 

are substituted into Eq. (10), the latter may be written in tenas of the 

undefonsaed state as followst 

d(rhS^)/dr » hS^ •* hpoE?r(r • u) * hf(M/r) - hpco^r(r • u). (11) 

Integration of this equation yields 

>b rb 
/dl ^d(rhS^)/dr dr « Jh f i xx / r }  dr - Jhpc^xiT • u) dr» (l2) 

The left hand integral imist vanish, since S » 0 at both r * a and r » b. 
T 

Upon setting a « l/a, 1= i/a and v = r/a, this reduces to 

J3t J h{.v)f<J) dv 
2 2 1 (13) pa CO as ^ ̂  ' . 

I h(av) [v^ + dv 

1 

For a given strain-hardening function f and thickness function h, this 

equation may be evaluated, analytically or numerically, for a set of values 

2 
of 'n • A plot may then be niade of co vs. • Bursting speed tvould corres

pond to the maxiwRMB of this curve, since this indicates that "1 , and con-

2 
sequently u, can increase Indefinitely without further increase in co • 

As an example, the thickness function was taken as 

h » cr^ (l^) 
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with e and k constant* This subatitytion reduces Eq. (13) to 

2 2 
ps (a  

j dv 

1/(3 • k) [ * - 1 ] • V(2»lt) [a -l] 
(15) 

16 
In ©rdtr to compare result® directly with those of Weiss and Prager , 

th© ®tre®®-strain function wa® taken as that of AL 24S-T4. aluminum, as 

16 
sh&m in WeUs and Prager (Figure 3, p. 199), and reproduced in Figure 

8. This curve i® extrapolated backwai^s, neglecting the elastic range of 

behavior. FurthersMare, a m$ taken as 2, 

CO 
CO UJ 

CO 

LB./lN.' 
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Figure Stress-strain curve for AL 24S-T4. alurainum. 

0.20^ 

To show the dependence of bursting speed upon the thickness function, 

calculations were made for values ©f k ranging from -2 to 2j the results 

of these calculations are given in fable 1 and plotted in Figure 9. The 

1 
tafcAilated value for k « 0 is, of course, that obtained by Weiss and Prager • 
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Table I, Calculated values ©f (pa fo^- selected values of k. 

k -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 

4956 4353 4759 4659 4563 4473 4386 

k -0.25 0.00 0.25 0.50 0.75 1.00 1.25 

4302 4222 4U6 4072 4003 3936 3875 

k 1.50 1.75 2.00 

(pa^a?/6)^^ 3814 3758 3705 

A® vuas to k@ expected) reiaoving material from the outer portion of the 

disc resulted in an increase in bursting speed. It is noteworthy that 

changinf frora the condition in which the outer rira is l/4 the thickness of 

the inner rin to that in vdiieh the outer riia is 4 times the thickness of 

the inner rim resulted in a bursting speed reduction of only about 31 per 

cent. Hence the bursting speed appears to be not too sensitive to changes 

in the thickness function, within the limits for w^iich the disc could be 

considered thin. 
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THICKNESS FUNCTION EXPONENT 

Flfwre 9* Relatl®fi between bursting speed and thickness function 
@xp©nent. 

D, Von Mises* Yield Cendltion 

Inasawch as Tresca*® yield condition and the associated flow itile do 

not appear to be applicable to the probleni ©f the solid disc, Von Mises* 

yield condition and the associated stress-strain-rat® relationship will 

be applied to this case* The stress-strain-rate relations of Von Mises 

are chosen in preference to the wjore general Prandtl-Reuss relations in 

accordance with assuroption (c)| i.e., that the elastic strains are negli

gible in comparison with the plastic strains. This point is discussed in 

13 
Prager and Hodge {p.27-32). As wias pointed out in the General Discussion, 

the assumption is made that the yield curve is subject only to dilatation 

and not to translation or distortion. 

Wien the state of stress is referred to a set of principal axes, Von 
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Mlses* yield eondltlen io 

2^^1 * ®22 * ̂33^ * ̂^^11* ^22» ®33^» 

^(^©re S|j^, Sgg and S^j ar© the principal stress deviation components and 

e22> ^33 principal strains, and where the function g ex

presses the considered state of strain-hardening. In the case of plane 

stre®s| referred t© cylindrical coordinates, S = 0 and S * 1/3(S S_). Z  jT " 

It follows that the stress deviation components arei 

\ » l/3(2S^ - S^), « 1/3(2S^ - S^) and » - l/3(S^ + S^). (17) 

When Eq««(l7) are substituted in Eq. (16) the following equation results: 

Froffl a purely mathematical viewpoint, any arbitrary function g might 

be selected, provided only that it would lead to a consistent theory of 

strain hardening. For the solution of engineering problems, however, it 

would be necessary to choose a function *^ich would deacribe the behavior 

of the particular laaterial under consideration. At present, to the 

author*® knowledge, sufficient experimental evidence for the determination 

2 
of such a function does not exist. Drucker has suggested* 

where »ftd are the principle stress deviations, de^^j the plas

tic strain increments and the integration is carried out over the strain 

path followed in arriving at the considered state. 

(18) 

(19) 
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For uniaxial tension 

®22 • ®33 * hi = <=^0' 

wrtiere f i® the experimental stress-strain curve, and vAx&re S22 snd 

are th@ principle stresses. In accordance with assumption (d), the 

material is considered as being incompressiblej hence PoissonH ratio is 

eipal to 1/2, 

^ " '33 * - 2^11 'n * ®22 * ̂33 ° 

ThuSj 

'J . ( W2)eii (22) 

for uniaKial stress. Bat on the tensile stress-strain curve, = f(ejj^) 

•nd + ̂ 2 • ̂3) » S^/3 for uniaxial stress. Hence, 

is a yield condition which reduces to uniaxial 

stress,• 

In the application of Eq. (18) to general stress states, the as

sumption must be laade that the functional form of g remains the same for 

the different stress states# The extent to v»hich this assumption is 

justified can only be determined by experiment* 

Associated »dth Von Mises* yield condition is the set of stress-

strain-rate relationsJ 

•r = % ' X' SgJ = X' S^, (24) 
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where S ̂  S. and S ar© the stress deviations In the radial) tangential 
3!* 2 

and axial directions, respectively. If angular velocity is considered as 

a monotone Increasing function of time, we may write these relations as: 

X S^5 ©Eg/6^0« X Sq5 Qe^dco = X S^. (25) 

From these relations, X may be eliminated to obtain: 

® S^9eg/5© and S^de^d© = S^de^/dco. (26) 

Wien Iqs, (17) are substituted in Iqs. (26) and means 

of the condition of ineorapressibility, the following results 

(2Sg - spae/a©« (2s^ - SQ)8e^ato, (27) 

and 

(2Sg - S^)8eyaffl = (2S^ - SQ)8e^aco. (28) 

But Eq. (27) and Eq. (2S) are identical. Hence the stress-strain rate re

lations of Von Mises are not independent for plane stress and an incom

pressible material. 

The equilibrium equation, in terms of true stress and the deformed 

state is 

d(HRcr^)/dR * H0q - pR^Mco^, (29) 

as given in part C above. 

The trwe radial stress 0 is transmitted across an area which is 
r 

proportional to H8, and the conventional radial stress Is transmitted 

across an area which 1® proportional to hr. Thus, 
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«  h tS ,  (30) 
r r 

The true tangential stress cr^ is transmitted across an area vsrtiich is pro

portional to H dR and the conventional tangential stress Sq IS transmitted 

across an area w^ich Is proportional to h dr. Hence, 

H0g dR « hSg dr. (31) 

From the condition of Incoropresslbllity, 

HR dR a hr dr. (32) 

When iqs. (30), (3l) and (32) are substituted into Eq. (29), the 

equilibrium equation in terms of the undeforraed state may be written as 

follows! 

d(hrS^)/dr « hS^ - phrto^R « hS^ - phx?/il + e^). (33) 

A coiJipatlbility equation may also be obtained, since « i/r and 

a d^/dr. When these relations are combined, the following equation 

results: 

= rd e^/dr • « d(r eQ)/dr. (34.) 

Eqs. (23), (27), (33) and (34) provide four equations for the four 

unknowns* S^, S^, and e^. In addition, l»undary conditions are speci

fied, depending upon the particular problem. For convenience, these 

equations are now collected, readings 

a d(r eQ)/dr, (35) 
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(2S^ - spde/a»= (2S^ - 5^)560/303, (36) 

(37) 

d(hrS^)/dr « hS^ - phco^r^(l + e^) • (38) 

In general, it is not possible to obtain an analytic solution for this 

system of equations. In dealing with any engineering problem, the stress-

strain relation = f(Ej|) knowj only as an empirical curve farora ex

perimental data* Even if an analytic expression were prescribed as an 

approximation to a stress-strain relation, the integrand appearing in Eq. 

(37) is a function of the particular program of strains which was followed 

in reaching the considered state. Without a priori knowledge of the manner 

in w^ich the considered state of strains is reached, the author does not know 

of any means by vtrtiich this system of equations may be solved analytically* 

For a particular material, an approximate solution may be obtained 

by numerical methods. One such method involves replacing the differential 

equations by finite-difference equations, and the integral in Eq* (37) by 

a finite sum* In order to do this, suppose the radius of the disc to be 

divided into N equal parts, so that r^ = nh/N* Also, consider a finite 

set of values where co^ is the angular velocity at v^ich the disc 

first bec<»ne8 fully plastic* The finite difference equations obtained in 

the case of a disc with constant initial thickness arei 

~ ̂ « 4 ' (" - 1)^0 « •» 4 - « 1 4» (39) r,n,j L ®,n,j 0,n - l,jJ r,n - l,j' 
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= X „ 4 » (40) 
(£ . e ) 4 2( t  - E ) 
^%n,J ^^r,n,5 ^r,n,j-l' 

2 • 
®'r,„,r ®r,n,J=8.„,r ^,",3 = S.n.l-l) 

2 
^®r,n,r S,n,i-l^^%,n,r %n,i-l^ * ̂ ^@,n,r ®^©,n,i-l^ } J» 

nS .- (n - l)S , .- -1(5- .+ S. , .) + 
r»n,j r,n-i,j 2^ e,n,j ©,n-l,j' 

pb^o|/2N^ p(l + * <n " + %n-l,j^ ] 

Thi® system ©f equation® may be treated as follows. Select a value 

of Sg at the center @f th© discj and a tentative value for ooj^. Eq. (34) 

states that e * at the center of th© disc. Eq. (36) then shows that 

at th® center of the disc, and S can then be computed from Eq. 
4; Is T  
UD* Eq» (42) does not apply at the center of th® disc, as the index 

(n - 1) is raeanlngless if n = 0. 

Next an estimate of ^ the value ©f the tangential strain at 

r, » b/N is Hiade, which defines e , , through Eq. (39). Eq. (40) then 
I r,i,i 

furnishes the relation between , . and S , By means of this re-
«,x,i r,i,x 

lation and iq» (41) the values of S« , , and S , , are found. These values 
*#,1,1 r,i,i 

should now satisfy Iq. (42). In case Eq. (42) is not satisfied, the esti

mate of £« , , must be revised, and the process repeated. 
W,l,i 

In this manner, one proceeds from station to station until the outer 

edge of the disc is reached. The value of S „ , which has been obtained 
r,N,i 

should match the boundary condition prescribed. In case the boundary con

dition is not satisfied, the entire process must be repeated with a re

vised value of ojj. 
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By this in@an«| values of co corresponding to discrete value® of q 

iMty be obtained. The value of m for wrtilch plastic instability occurs Is 

2 
that value for wrttleh the curve of as vs. Cg q ha® a maxlnnun* This should 

correspond to the fcwrstinf speed of the disc. 

hs an exanplei the calculations were carried through for a solid 

disc with a constant Initial thickness, making use of the stress-strain 

data of Figure S. In performing these calculations, N was taken as 10, 

and computations were rnad© at increments of Eq q of 0.01, except near the 

Bfflxiauffi of the curve, where snraller increments were taken In order to de

fine the shape of the curve better. The results of these calculations are 

shown in Table 2 and plotted in Figure 10. Although the calculations were 

not carried far enough to show a true maximum, the curve appears to level 

off. It does not appear feasible to perfoiw calculations for laarger values 

of the strain, since the argument of f in Eq* (41) is twice the tangential 

strain, for the station at th© center of the disc. Thus, the use of larger 

values of tangential strain would require the use of a portion of the curve, 

Figure 8, beyond that v^nlch is usually considered valid. The bursting 

2 2 
speed of this disc Is therefore Indicated as pb co /200 a 96-4, approximately. 

It Is interesting to compare this result with that obtained for the annular 

disc of the same material, using Tresca*s yield condition. Holms and 

6 Jenkins have found experimentally that the bursting speed of an annular 

disc has been decreased from that of a solid disc by approximately the per

centage of the material of the disc which has been removed. 

For iAe annular disc treated previously, a « 25 therefore the relation 
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should hold) vrfiere is the bursting speed of th® annular disc, and co^ is 

the iHirsting speed of th© solid disc. For the annular disc, 

p»%^6 a 4222. (44) 

When Eq. (43) i® substituted In Eq. (44-) and the relation b » 2a us«d, it 
^ in 

is found that ^b C0^2OO » 901, Thus it i® seen that the two methods differ 

13 
by mm 7 iper cent. As pointed out in Prager and Hodge (p. 24.) the 

results obtained by use of the two yield conditions may differ by as much 

as 15 per cent. Hence the author feels that these results are in good 

agreeaient. 

2 2 
Table 2. Calculated values of pb co/200 for selected values of q. 

pb^c»^/200 702 781 839 877 905 926 942 955 960 964 964 
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