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ABSTRACT

This thesis is an extension of a paper by Weiss and Pragerl6 in which
these authors have applied Tresca's yield condition and the associated
flow rule to the determination of the bursting speed of a rotating
annular disc, having constant initial thickness. In this thesis the re-
sults of the above paper are extended directly to the problem of the
axially-symmetric annular disc with an arbitrary initial thickness. It
is found that Tresca's yield condition and the associated flow rule do
not appear to be applicable to the preblem of the solid disc.

Von Mises! yield condition is next applied to the problem of the
axially-symmetric disc with an arbitrary initial thickness. Under the
assumption that the elastic strains are negligible in comparison with
the plastic strains, the Von Mises' stress-strain rate law is used,
rather than the more complex Prandtl-Reuss stress-strain law. A set of
simultaneous equations is obtained, whose solution is the set of
stresses and strains corresponding to the considered angular velocity
of the disc. Bursting speed of the disc is assumed to be that value of
angular speed for which the strains may increase indefinitely without
further increase in rotational speed. In general, this system of equa-
tions must be solved numerically, a process which may be carried out
with the aid of a desk calculator.

The bursting speed of a solid disc having a constant initial thick-
ness is computed, using Von Mises' yield condition, and the results com-
pared with the bursting speed of an annular disc obtained by the use of
Tresca's yield condition. This comparison was made by way of some ex~
perimental results of Holms and Jankinsé, and the agreement is found to

be satisfactory.



INTRODUCTION

The problem of determining the limitations which must be placed
upon the angular velocity of a rotating disc haé attracted considerable
attention in the past, and contemporary progress in gas-turbine and air-
craft jet-engine design is accelerating research in this field. It is
desirable that accurate data be available, in order that sﬁch turbine
discs may be designed to operate safely. In general, there are two
distinct factors which limit the angular velocity at which a disc may
operate, First, in many types of machinery, the inherent tolerances
may place a limit upon the amount of deformation which the disc may
underge without regard to the actual bursting speed. The second applies
in situations where deformation of the disc is not in itself important,
in which case the actual bursting speed of the disc may well be the
only limiting facter. It is with the latter type of limitation that
this paper deals.

Experimental data have been obtained by several investigatorsj for
example, Holms and Jenkinsé, Mac Gregor and Tierneys and Skldmnrelk.
Unfortunately, stress-strain data for the materials used in these ex-
periments are not readily obtainable, hence it is not feasible to com-
pare theoretical calculations with any of these results.

Under the assumption that stress and strain are linearly related
= in other words, the material is elastic - the solution for stresses
and strains is well~known, Stodolal5 (p. 157-169), for exemple, has
treated discs with a thickness function of the form h = crk. By con~

sidering an arbitrary initial thickness as being formed by a number of



annular rings of this type, the solution for the stresses and strains

in such an arbitrary cross~section may be approximated. By means of such
solutions the maximum angular velocity for which the material of the disc
behaves elastically may be found.

The limitations on this type of solution are reached, however, for
angular velocities considerably below that at which the disc ruptures.
For somewhat greater angular velocities the material is said to become
plasticj that is, the material remains deformed after the stresses have
been removed. From a mathematical standpoint, there are two widely-
used criteria for the transition from the elastic to the plastic state.
Tresca's yleld condition states that plastic yielding will occur when
the maximum shear stress in the material reaches a critical value. This
critical value is equal to the experimentally determined yield stress in
pure shear. Von Mises' yield condition states that plastic ylelding will
occur when a certain invariant of the stress deviation tensor becomes
equal to the square of the yleld stress in simple shear. The exact forms
of these criteria will be shown later.

10 first investigated the distribution of stresses

Nadai and Dennell
and strains in a rotating disc for angular velocities ranging from that
for which the yield point was first reached at some point in the disc to
that for which the entire disc had just become plastic., A simple solu-
tion using Tresca's yield condition is also given by Hoffman and Sachs5.
If it is assumed that the yield stress in pure shear remains constant
as deformation proceeds, the material is said to be perfectly plastic.
This implies that unrestricted plastic flow may take place without further

increase in the stresses. This is usually a satisfactory approach when
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the plastic strains are fairly small, as, for example, when the angular
velocity is limited by the amount of deformation to be tolerated rather
than by the angular velocity at which the disc bursts.

However, the yield stress in pure shear does not remain constant in
practical materials for large strains. Such materials are said to strain-
harden, and this is the type of materials considered in this paper. For
such materials it will be shown that the angular velocity at which the
disc bursts represents a considerable increase over that at which the disc

first becomes fully plastic.



GENERAL DISCUSSION

The mathematical theory of plasticity may be based upon the behavior
of the material in question under & simple tensile test. When longitudinal
force is applied to a cylindrical test specimen, the states of stress and
strain near the ends of the specimen are quite complex., However, if the
specimen is rather long, it is assumed that the states of stress and
strain are homogeneous in the central portion of the specimen., It is
customary to choose a 'gauge length' in this central portion, and then
define the 'conventional tensile stress! Sl1 as the ratio of applied
axial force to the original area of the cross-section, and the 'conven~
tional tensile strain? €y 28 the ratio of elongation of the gauge length
to its original length. On the other hand, 'true' stress and strain are
defined‘with relation to the current area and current length of the speci-

men.

2
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Figure 1. Stress-strain curve for a materiél which does not have
a well~defined yield point.



If the conventional tensile stress S11 is plotted as a function of
the conventional tensile strain €y)9 @ curve such as that of Figure 1 re-
sults for many materials. For such materials, accurate measurements re-
veal the presence of small permanent strains even for very small stresses,
and the transition to larger permanent strains is gradual., Such materi-
als are said not to have a well~defined 'yield point', and will net be
considered in this paper.

On the other hand, some materials such as structural steel, exhibit
a stress-strain curve of the type shown in Figure 2. This stress-strain
curve is characterized by a2 linear portion for small values of stress and
strain, For states of stress and strain corresponding to points on the
portianlﬁs, stress and strain are linearly related to within a high degree

of approximation. Furthermore, over a portion of the curve which nearly
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Figure 2. Stress-strain curve of a material having a well-defined
yield point.



coincides with EE, removal of the applied stress causes the strain te
fall to zero. As long as the state of stress and strain corresponds to a
point of this portion of the stress-strain curve, the material is said to
be 'elastic’.

I1f, however, the state of stress and strain is such as to correspond
to a point on the stress«strain curve which is not on this linear portion,
for example point Q of Figure 2, then stress and strain are no longer
linearly related., Furthermore, if the stress be reduced gradually, the
state of stress and strain no longer corresponds to a point on the original
stress-strain curve, but to a point on the pcth'aa, parallel to the linear
portion OP, The material is then said to have yielded plastically, the
strainlge being the permanent or plastic strain, Upon re-applying the
stress, the behavior of the material is very nearly described by the line
35 until point Q is reached. Application of further stress will then ree
sult in increased plastic yielding, and the state of stress and strain
will then correspond to a point on the original stress-strain curve such
as T in Figure 2.

For more general stress states, the transition from elastic to
plastic behavior is more complicated. The discussion may well begin with
a2 material which has not been strained beyond the elastic range. The
stresses and strains within the material are uniquely related until plas-
tic vielding begins. The criterion for inciplient plastic yielding may
then be expressed in terms of the stress components, only. The 'yield

condition' may therefore be written in the form

¥(s;;) = o, | (1)



where S,. is the collection of nine components characterizing the state

i3
of stress, called the 'stress tensor'. Since the material is usually as~-
sumed to be isotropic, the value of Y must not change when the axes to
which the stresses are referred are changed. Thus, Y must be an invari-
ant of the stress tensor. Bridgm;n1 has found that hydrostatic pressure
alone d@es not produce appreciable plastic deformation. Hence it is
usually assumed that plastic deformation depends only upon the stress
deviation, defined below.

: s
If 311, S,, and 333 are the normal stress components, the 'mean nor-

mal stress' is defined as
= 1/3(s)) + S5, + S35)s (2)

The stress deviation then is defined by the tenser having normal compon=-

ents

511 811 = Sy 85 = 8yp = 8y 535 = 845 - 5, (3)

and the same shear components as the stress tensor. Thus the stress devi=
ation is related to the change in shape, whereas the mean normal stress
is related to the change in volume. The yield condition may, then, be
expressed as an invariant of the stress deviation tensor.

It is always possible to choose the coordinate axes in such a man-

ner that the shear components of the stress tensor when referred to this

set of axes vanish, For the remainder of this discussion it shall be
assumed that axes have been s0 chosen, unless specifically stated other~
wise. The yield condition then, is a function of three variables, the

three normal stress components. Hence the yleld condition may be discussed



readily from a geometrical point of view.

The yield condition, of the form Y(Sij) = 0, defines a surface in
stress~space. Druckerj’4 has shown that this yield surface is both closed
and convex, For stresg,states corresponding to points interior to the
yield surface, Y ( 0, ﬁnd elastic deformation only is possible. For
stress states corresponding to points on the yield surface the material
is assumed to be in a state of incipient plastic flow, since Y = 0.

For a disc in which the thickness is small compared to the outer
radius a common assumption is that the axial stress is negligible. The
following discussion will be limited to such cases of plane stress in
order to take advantage of the simpler geometry associated with the yleld
surface. Generalization to the tri~axial stress problem offers no diffi-
culty insofar as the basic theory goes, but the application of the theory
may be extremely difficult.

Consider the trace of the yield surface -~ hereinafter referred to
as the yleld curve -« in the ste plane, as shown in Figure 3. For the
sake of definiteness Von Mises' yleld curve is shown, as given by Hoffman
and 3achs5 (Figure 4,3 p.42), but the argument applies to any arbitrary

yield curve.

Lo
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Figure 3. Yield curve with arbitrary stress path,
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Assume an existing stress state corresponding to point A on the yleld
curve, and allow the stresses to change along the indicated path to point
B, For such a stress change, the yield curve may change in either of
three ways, or soﬁe combination thereof. The yield curve may distort

locally, as in Figure 43 it may translate as a whole as in Figure 5§ or

Sg
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N

Figure 4. Local distortion of yield curve.
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Figure 5. Translation of yield curve.

it may dilate as in Figure 6.

It seems likely that some combination of these three effects would
be found in a practical material. However, it is desirable to effect
some simplification of the problem, with the understanding that only ex~
perimental evidence can determine how well the simplified approach
approximates actual cenditions. Due to the complications presented by
anisotropy, it is desirable to assume that the material remains isotropic

under any program of stressing. This assumption requires that the yield
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curve change by dilatation only. The remaining problem in connection with
the yleld curve is the manner in which the dilatation is related te the
strain program applied to the material. This will be covered later, in

connection with the application of the different yield criteria.

Figure 6, Dilatation of yield curve.

There are two widely used theories of the behavior of strain-hardening
materials. The deformation theory assumes a unique relation between
stress and strain, providing the prior history of the material does not
include removal of stresses after plastic deformation has taken placej
is.8¢y unloading has not occurred. On the other hand, the flow theory
assumes that the rate at which the strains are changing is uniquely deter-

17,18 and Nhnseng, among others, have obtained

mined by the stresses., Zaid
solutions for the rotating dis¢ problem making use of thé deformation
theory as a means of simplifying the problem, although it was known to
these authors that there are theoretical eobjections to the deformation

theery. These objections have been pointed out by Pragerll

y who showed
that the deformation theory does not yield unique results for certain
changes in stress state, as does the flow theory.

Welss and Pragerl6 have obtained a solution for the bursting speed

of & rotating annular disc with uniform initial thickness, using Tresca's
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yield condition and the associated flow rule. An extension of this work
to the solid disc with an arbitrary initial thickness is desired.

There are several basic assumptions which are made in this paper.

As noted above, it is commonly assumed in working with this problem that
the axial stress is zero, and that the remaining stresses do net vary in
the axial direction. This assumption is justified by the agreement of
theoretical calculations with experimental evidence, where such is avail-
able, and will be adopted in this paper. The problem is further simpli-
fied by the assumption that the material is incompressible while under~
going plastic deformation. Empirical evidence in favor of this assumption
was presented by Bridgmunl, who found that the compressibility of most
metals is negligible under conditions of plastic deformation.

In the case of uniaxial tension the plastic strain obtaining when the
material is near the breaking peoint is many times the elastic strain
present in the material. In comparison with the plastic strains, the
elastic strains are therefore negligible, and are usually ignered. The
theory of plasticity arising from this assumption is known as the rigid=
plastic theory, and is the theory proposed by Von Mises. It should be
noted that this theory would net be tenable if the deformation were
limited to values not greatly different from the maximum elastic deforma-
tion. Since this paper deals with large plastic strains, the rigid-
plastic theory is adopted.

Finally, the assumption is made that the material remains isotropic
under plastic deformation. This is probably not strictly true of practical
materialsy but is justified in previous work by the agreement with experi-

mental evidence.
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Given a number of assumptions such as those which are made in this
paper, it is then the task of mathematice to determine the logical conse-
guences thereof. From a strictly mathematical point of view, any set of
assumptions is admissible which leads to a consistent system of results.
From an engineering standpoint, however, it is necessary that the
assumptions represent the behavior of the material in question to a suf-
ficient degree so that the theory yields usable results, It would appear
that tests of rotating discs should furnish additional information as teo

the justification of certain of these assumptions.
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INVESTIGATION

A. Notation

Throughout this paper the following notation will be employed:

a’b

Sp15¢1%,

9r1%99,

Sp99g95,

nl

<

=

"

#

=

=

k-

=

=%

-

radial distance to a generic point on the disc, before deforma-
tion,

angular pesition of a generic point on the disc, with relation
to any convenient reference line.

axial distance to a generic point of the disc, measured from
the central plane of the disc.

radial distance to a generic peint on the disc, after deforma-
tion,

thickness of the disc at a generic point, before deformation.
thickness of the disc at a generic peint, after deformation,
initial inner and outer radii, respectively, of the disc.
conventlional normal stresses in the radial, tangential and axial
directions, respectively.

true normal stresses in the radial, tangential and axial
directions, respectively.

normal stress deviation components in the radial, tangential
and axial directions, respectively.

1/3 (s, + Sy + S ), mean normal stress.

radial displacement of a generic point on the disc.

b/a.

vwa.

r/a,
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p = density of the material,

@,.98538, = true rates of normal strain in the radial, tangential and axial
directions respectively.

€ 9€geE, & conventional normal strains in the radial, tangential and axial

directions, respectively.

44 = twice the value of the true critical shearing stress.

Cyk = constants in the thickness formula.

@ = angular velocity of the rotating disc,

g = function appearing in the Von Mises' yield condition.

f = functional relation between stress and strain, as given by a

" uniaxial tensile test.
Ayt = parameters appearing in Von Mises' stress-strain relations,

Y = yleld function,
B. Basic Assumptions

For convenience, the basic assumptions discussed under the heading
General Discussion are collected below, These assumptions are to hold
throughout the paper, unless stated otherwise.

(a) The disc is composed of an isetropic, homogeneous material,

which remains isotropic during plastic deformation.

(b) The thickness of the disk is small compared to its radius.

(e¢) Elastic strains are neglected, as being negligible compared with

the plastic strains.

(d) The material is incompressible.
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C. Tresca's Yield Condition and Flew Rule.

Due to axial symmetry, the principal stresses are the tangential
stress ggy the radial stress . and the axial siress o,y as shown in Figure
7. The principal shearing stresses are, tberefere,'%166 - azl ’ % lce - cr\
and'% |ar - Gz‘. Tresca's yleld condition states that plastic flow can
occur if at least one of these principal shearing stresses is equal to a
critical valuey which depends upon the considered state of strain-hardening.
Furthermore, none of the principal shearing stresses may exceed this
critical value.

As shown by Pragerlz, if only one of the principal shearing stresses

has the critical value, the flow rule associated with Tresca'’s yield con-

a5

Figure 7. Rotating discy and elementary portion showing stresses.,
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dition states that the instantaneous strain rate corresponds to pure shear
in the plane of maximum shearing stress. The sense of this strain rate
must, of course, agree with that of the maximum shearing stress.

If two principal shearing stresses have the critical value, then the
resulting strain rate may be that resulting from the superposition of tweo
states of pure shear in the two planes of maximum shearing stress.

Assumption (b) leads to the assumption that o, =0, Lee7 has in=-
vestigated discs having an initial thickness functien given as an expone-
ential function of rj i.e.y h=¢ exp(kr). For such discs he has shown
that the stresses are always tensile, and that 69;; dr. Since an arbitrary
thickness function may be approximated to as great a degree of accuracy as
desired by means of a number of annular rings of this form, it may
reasonably be assumed that oy > o, > 0.

16

Weiss and Prager” have shown that, under these conditions, the

plastic flow satisfies the equations:
Og = 06>0.>0, o, =0, (4)
e, =0, eg=-~e 0 (5)

In addition, the relation between conventional tangential stress Sg and

conventional tangential strain €g may be taken as
Sg = fleg) (6)

where §,, = f(all) is the relation between stress and strain as obtained

from a simple tensile test of the material.

Much of the following discussion parallels that of Weiss and Pragerlé.
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It is desirable, however, to consider this material in the light of an
arbitrary initial thickness,'and t0 examine the possibility of extension
of the methed to the problem of the solid disc.

Consider a rotating disc of initial thickness h = h(r) and initial
radius b, From the familliar elastic stress analysis, it is known that,
as the angular velocity o of the disc is gradually increased, the yield
limit is first reached at the center of the disc. As ® is further in-
creased, there will be a plastic region at the center of the disc sur-
rounded by an elastlic reglon. If plastic flow occurs within the plastic
region, Egs. (5) must be satisfied. Letting the distribution of radial
velocity be v = v(r), it follows that e, = 8v/dr, This must vanish
according to Egs. (5), hence the radial velocity is independent of r.
Furthermore, since in accordance with assumption (c) the elastic strains
are neglected, the radial displacement u at the elastic-plastic interface
is zero. Thus v and also the tangential strain rate eg = v/r, must vanish
throughout the plastic region. Hence this region remains rigid until the
elastic-plastic interface reaches the exterior of the disc. The angular
velocity for which this eccurs is given by Hoffmen and Sachs5 (Eq. 9.38,
p. 101).

For larger values of o, plastic flow will take place. However, in
order that e, = v/r may be finite at the center of the disc, it is necessary
that v = O for r = O, But, according to Egs. (5), v is independent of r.
Thus v = O and no flow can occur. Therefore, the use of Tresca's yleld
condition and the associated flow rule must apparently be restricted to
annular discs. The remainder of this section deals with such an annular

disc, having inner radius a and outer radius b.
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A particle, initially at radius r, will be found at radius R when the
angular velocity is we. The relation between initial and instantaneous

radii is, theny
R= r + u, (7)

Herey, R and u are functions of the independent variables r and a?.

Since 8v/dr = 0, all particles have the same radial velocity at any
particular instant, Thus the radial displacement is independent of r. The
material initially bounded between surfaces r and r + dr undergoes radial
displacement u and is then bounded by the surfaces R=r + uand R + dR =
r + dr + us Also, the thickness decreases from h to H. In accordance with
assumption (d), which states that the material is incompressible, hr dr =

HR dR. But dr = dRy from above, and therefore
H = hr/R. (8)

The true radial stress . is transmitted across an area element which
is proportional to HR, while the conventional radial stress Sr is trans~
mitted across an area element which is proportional to hr. It follows
that o= 5, since hr = HR by Eq. (8). The true tangential stress g i
transmitted across an area element which is proportional to H dR, while the
coenventional tangential stress Sg is transmitted across an area element
which is proportional to h dr = h dR. Thus the conventional tangential

stress is glven by

Sg = H og/h. (9)

The equation of equilibrium in the deformed state is
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2.2
d(RHdr)/dR = Hog - pH SR, (10)

In this equation, a total derivative is used, since the quantities invelved
are assumed to be independent of the axial coordinate, and are independent
of the tangential coordinate from symmetry, When Eqs. (6), (8) and (9)
are substituted into Eq. (10), the latter may be written in terms of the

undeformed state as followst
d(rhsr)/dr = hSy - hpmzr(r + u) = hf(u/r) = hpmzr(r + u), (11)
Integration of this equation yields

b b
ﬁ(rhsr)/dr dr = ﬁf(u/r) dr —fxpwzr(r + u) dr. (12)
a a

The left hand integral must vanish, since sr = 0 at bothr=a and r = b.

Upon setting a = b/a, "= u/a and v = r/a, this reduces to

a
f h(av)£() av
?a'?'«:nz = 3 " . (13)
'fh(w)[w2 +"Iv] dv
1

For a given strain~hardening function f and thickness function h, this
equation may be evaluated, analytically er numerically, for a set of values
of M, A plot may then be made of cuz vé. 7. Bursting speed would corres~
pond to the maximum of this curve, since this indicates that 7, and con-

sequently u, can increase indefinitely without further increase in mz.

As an exampley; the thickness function was taken as

k

h= er (14)
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with ¢ and k constant. This substitution reduces Eq. (13) to

&

f \rkf(g) dv

22 1
_ 1 . (15)
T Ve 0@ R %)

In order to compare results directly with those of Weiss and Pragerlé,
the stress-strain function was taken as that of AL 24S-T4 aluminum, as
shown in Weiss and Pragar16 (Figure 3, p. 199), and reproduced in Figure
8. This curve is extrapolated backwards, neglecting the elastic range of

behavior., Furthermore, o was taken as 2.

2
S11 LB./IN.
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60000 l/////,,,,,,,,,f
50000
o d
m 40000
=
v 30000
20000
10000
0 | | l | _
000 0.0h 0.8 0.1z 0.6 0.20> 11 IN/TN.

STRAIN
Figure 8, Stress-strain curve for AL 24S-T4 aluminum.

To show the dependence of bursting speed upon the thickness function,

calculations were made for values of k ranging from -2 to 2§ the results

of these calculations are given in Table 1 and plotted in Figure 9. The

tabulated value for k = 0 is, of course, that obtained by Weiss and Prager16.
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f’
Table 1, Calculated values of (paam“/t':)Max for selected values of k.

k "2.00 "1»75 "'1050 ““1025 “‘1-00 "0075 "0.50
(pa°c/6) 4956 4853 4759 4659 4563 4T3 4386
k. "0.25 0-00 9025 0.50 0.75 1000 1.25
(paei/6) Max 4302 4222 4146 4072 4003 3936 3875
k 1,50 1.75 2,00
2 2 |
(pa “3/6)Mnx 3814 3758 3705

As was to be expected, remeving material from the outer portion of the
disc resulted in an increase in bursting speed. It is noteworthy that
changing from the condition in which the outer rim is 1/4 the thickness of
the inner rim to that in which the outer rim is 4 times the thickness of
the inner rim resulted in a bursting speed reduction of only about 31 per
cent. Hence the bursting speed appears to be not too sensitive to changes
in the thickness function, within the limits for which the disc could be
considered thin.
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D. Von Mises' Yield Condition

Inasmuch as Tresca's yleld condition and the associated flow rule do
not appear to be applicable to the problem of the selid disc, Von Mises'
vield condition and the associated stress~strain-rate relationship will
be applied to this case. The stress~strain-rate relations of Von Mises
are chosen in preference to the more general Prandtl-Reuss relations in
accordance with assumption (c)y i.e.y that the elastic strains are negli-
gible in comparison with the plastic strains. This point is discussed in
Prager and Hadgel3 (p«27-32). As was pointed out in the General Discussion,
the assumption is made that the yield curve is subject only to dilatation
and not to translation or distortion,

When the state of stress is referred to a set of principal axes, Von
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Mises! yleld condition is

2 =R =2
%(5?1 * S+ S33) = aleyy, £y £33), (16)

-

where $11, §é2 and §33 are the principal stress deviation components and
811’ €59 and 833 are the principal strains, and where the function g ex-
presses the considered state of strain-hardening. In the case of plane

stress, referred to cylindrical coordinates, S, = O and §= L/B(sr + 89).

It follows that the stress deviation components aret
S, = 1/3(25_ - Sg)y S, = 1/3(255 - 5) and S_ = - 1/3(s_ + Sg). (17)
When Eqgs.(17) are substituted in Eq. (16) the follewing equation results:

2 .
§. - 5,55 * sg = g(esEg9E, ). (18)

From a purely mathemstical viewpoint, any arbitrary function g might
be selected, provided only that it would lead to a consistent theory of
strain hardening. For the solution of engineering problems, however, it
would be necessary to choose a function which would describe the behavier
of the particular material under consideration. At present, to the
author's knowledge, sufficient experimental evidence for the determinatien

of such a function does net exist. Drucker2 has suggested:

36, + 5, + 55 = of oy ydeyy), (19)

where 311, 522 and $33 are the principle stress deviations, deij the plas~
tic strain increments and the integration is carried out over the strain

path followed in arriving at the considered state.
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For uniaxial tension

s (20)

2 = S

=0, 8.,=f(e

33 il

where f is the experimental stress-strain curve, and where 811, $,, and 333
are the principle stresses. In accordance with assumption (d), the
material is considered as being incompressiblej hence Peissen's ratio is

equal to 1/2,
€pp = €35 = = %Ell and €, * €, * €33 = 0. (21)
Thus,
V/deeijdeij fJ/AV(dall)g *'%(dell)z *'ﬁ(dell)z = VEVZ)sll (22)

for uniaxial stress. But on the tensile stress~strain curve, S11 = f(sll)

and 2(s§1 + 55, ¢+ S§3) = Sil/ﬁ for uniaxial stress. Hence,

%{%{1 + '522 + §§3) = 1/3 £( WBf\J daijdeij) (23)

is a yield condition which reduces to S, = f(sll) in the case of uniaxial
: stre§§. 

in the application of Eq. (18) to general stress states, the as-
-sumption must be made that the functional form of g remains the same for
the different stress states. The extent te which this assumption is
Justified can only be determined by experiment.

Associated with Von Mises' yield condition is the set of stress=~

strain-rate relationss

e =\ §¥; eg = M! gé; e, = k"§z, (24)
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where gr’ gé and §z are the stress deviations in the radial, tangential

and axial directions, respectively. If angular velocity is considered as

a monotone increasing function of time, we may write these relations as:
% /3= NS5 Oefdo= N Sg5 O dw= NS, (25)
From these relations, A\ may be eliminated to obtains
S0t /8w = 8 Be /0w and S8 /0w = S dey /. (26)

When Eqgs. (17) are substituted in Eqs. (26) and €, is eliminated by means

of the condition of incompressibility, the following result:

(2sy - 5,)% t/@m& (25 ~ 85)0eo/0uy (27)
and

(254 - 5,)0 /8w = (25 - Sg)d€ /B (28)

But Eq. (27) and Eq. (28) are identical. Hence the stress-strain rate re-
lations of Von Mises are not independent for plane stress and an incom-
pressible material,

The equilibrium equation, in terms of true stress and the deformed

state is

d(HRu’r)/dR = Hog = psz‘h)z, (29)

as given in part C above,.
The true radial stress o, is transmitted across an area which is
proportional to HR, and the conventional radial stress Sr is transmitted

across an area which is proportional to hr. Thus,



27
HRo = hrS_. (30)

The true tangential stress % is transmitted across an area which is pro~
portional to H dR and the conventional tangential stress 89 is transmitted

across an area which is proportional to h dr. Hence,

Hog dR = hSy dre (31)

From the condition of incompressibility,
HR dR = hr dr. (32)

When Eqs. (30), (31) and (32) are substituted into Eq. (29), the
equilibrium equation in terms of the undeformed state may be written as

follows:

d(hrs_)/dr = hSy - phraR = hS = phar (1 + € (33)

e ") G)'

A compatibility equation may also be obtained, since gg = vw'r and
£ = du/dr. When these relations are combined, the following equation

results:

£, = rd ae/dr te = d(x eg)/dr. (34)

Egs. (23), (27), (33) and (34) provide four equations for the four
unknownss S, Sg, € and € . In addition, boundary conditions are speci-
fiedy depending upon the particular problem. For convenience, these

equations are now collected, readings

e, = dlr e)/ar, (35)
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(285 - 5,.)%e /ow = (25 - S,)3 /o, (36)
si - 5. Sg * Sg: £ ( Vg/Bf\ldeijdeij), (37)

d(hrs )/dr = hs - phef s> (1 + eg)e (38)

%
In general, it is not possible to obtain an analytic solution for this

system of equations. In dealing with any engineering problem, the stress-

strain relation S,, = f(ell) is known only as an empirical curve from ex-

perimental data, Even if an analytic expression were prescribed as an

approximation to a stress-strain relation, the integrand appearing in Eq.

(37) is a function of the particular program of strains which was followed

in reaching the considered state. Without a priori knowledge of the manner

in which the considered state of strains is reached, the author does not know

of any means by which this system of equations may be solved analytically.
For a particular material, an approximate solution may be obtained

by numerical methods. One such method involves replacing the differential

equations by finite-difference equations, and the integral in Eq. (37) by

a finite sum. In order to do this, suppose the radius of the disc to be

divided into N equal parts, so that r_ = ni/N. Also, consider a finite

set of values Wyy where w, is the angular velocity at which the disc

first becomes fully plastic. The finite difference equations obtained in

the case of a disc with constant initial thickness are:

Fronyd © 2 [neesﬁsj - (n- 1)59’n - 133] " frgn - 1,3 (39)
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2 - . + -
< (aa,n,j Eﬁ,ﬂ,J'l) (gr,n,j Er,n,j-l) (40)
=
Ol (e -g ) + 2(e -c ILIEN
G,n,j 9,!‘!,3*1 r,n’j r,n,j“l
2 2 2
- 5 + S 2 - +
Sr’n’j broﬂijsgyﬁaj 893":3 = fz[ \3/3 E§i<ger,n,i er,n,i-l)
| . M2
(er,n,i‘ Sr,n,i«x)(ge,n,i“ ae,n,i-l) * (Ee,n,i' ee,n,i-l) } }, (41)
1
- - - - + +
M8, ngs™ (= VS, 1 5™ 35 0,5 Se,n-1,3)
22 [ 2 2 ] -
prla/a’ [nf(1eeg Ve - 1PQre ) (42)
This system of equations may be treated as follows, Select a value
of €y at the center of the disc, and a tentative value for w. Eq. (34)

states that €.% & at the center of the disc. Eq. (36) then shows that
sr = Sg at the center of the disc, and Sr ¢an then be computed from Eq.
(41). Eqg. (42) does not apply at the center of the disc, as the index
(n = 1) is meaningless if n = 0.

Next an estimate of 59,1,1
ry = b/N is made, which defines € 1,1 through Eq. (39). Eq. (40) then

s the value of the tangential strain at

furnishes the relation between Sa 1.1 and § « By means of this re-
31y rylyl

lation and Eq. (41) the values of § and S are found. These values

9,1,1 ryl,l
should now satisfy Eq. (42). 1In case Eq. (42) is not satisfied, the esti-
mate of €9,1,1 must be revised, and the process repeated,

In this manner, one proceeds from station to station until the outer
edge of the disc is reached. The value of Sr,N,l which has been obtained
should match the boundary condition prescribed. In case the boundary con-

dition is not satisfled, the entire process must be repeated with a re-

viged value of o) «
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By this means, values of « corresponding te discrete values of EG,O
may be obtained. The value of o for which plastic instability occurs is
that value for which the curve of a? V8. 69’0 has a maximum. This should
correspond to the bursting speed of the disc.

As an example, the calculations were carried through for a solid
disc with a constant initial thickness, making use of the stress-strain
data of Figure 8. In performing these calculations, N was taken as 10,
and computations were made at increments of EQ,O of 0.01, except near the
maximum of the curve, where smaller increments were taken in order to de-
fine the shape of the curve better. The results of these calculations are
shown in Table 2 and plotted in Figure 10. Although the calculations were
not carried far enough to show a true maximum, the curve appears to level
off., It does not appear feasible to perform calculations for larger values
of the strain, since the argument of f in Eq. (41) is twice the tangential
straln, for the station at the center of the disc. Thusy the use of larger
values of tangential strain would require the use of a portion of the curve,
Figure 8, beyond that which is usually considered valid. The bursting
speed of thils disc is therefore indicated as pb?a?/zoo = 964, approximately.
It ie interesting to compare this result with that obtained for the annular
disc of the same material, using Tresca's yield condition. Holms and
Jenkinsé have found experimentally that the bursting speed of an annular
disc has been decreased from that of a solid disc by approximately the per-
centage of the material of the disc which has been removed.

For the annular disc treated previously, o = 23 therefore the relation

w, = 3/ dog (43)



31

should hold, where @, is the bursting speed of the annular disc, and w, 1is

the bursting speed of the solid disc., For the annular disc,
pa’el/6 = 4222, (44)

When Eq. (43) is substituted in Eq. (44) and the relation b = 2a used, it
is found that pb?ai/ZOO = 901, Thus it is seen that the two methods differ
by some 7 per cent. As pointed out in Prager and Hodge13 (pe 24) the
results obtained by use of the two ylield conditions may differ by as much
as 15 per cent. Hence the author feels that these results are in good

agreement.

Table 2. Calculated values of pb?a?/zeo for selected values of €6.0°
’

ES,O 0.00 0,01 0.02 0,03 0.04 0.05 0.06 0.07 0,075 0.08 0,085

pboa/200 702 781 839 877 905 926 942 955 960 964 964
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Figure 10. Angular velocity as a function of tangential strain.
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