
Expected values of parameters associated with the minimum rank

of a graph∗

Tracy Hall† Leslie Hogben‡ Ryan Martin§ Bryan Shader¶

January 18, 2010

Abstract

We investigate the expected value of various graph parameters associated with the minimum
rank of a graph, including minimum rank/maximum nullity and related Colin de Verdière-type
parameters. Let G(v, p) denote the usual Erdős-Rényi random graph on v vertices with edge
probability p. We obtain bounds for the expected value of the random variables mr(G(v, p)),
M(G(v, p)), ν(G(v, p)) and ξ(G(v, p)), which yield bounds on the average values of these param-
eters over all labeled graphs of order v.
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1 Introduction

The set of v × v real symmetric matrices will be denoted by R(v). For A ∈ R(v), the graph of A,
denoted G(A), is the graph with vertices {1, . . . , v} and edges {{i, j} : aij 6= 0, 1 ≤ i < j ≤ v}.
Note that the diagonal of A is ignored in determining G(A). The minimum rank of a graph G on
v vertices is

mr(G) = min{rankA : A ∈ R(v),G(A) = G}.

The maximum nullity or maximum corank of a graph G is

M(G) = max{nullA : A ∈ R(v),G(A) = G}.

Note that
mr(G) + M(G) = v.

Here a graph is a pair G = (V (G), E(G)), where V is the (finite, nonempty) set of vertices and E
is the set of edges (an edge is a two-element subset of vertices); what we call a graph is sometimes
called a simple undirected graph. We use the notation v(G) = |V (G)| and e(G) = |E(G)|.
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The minimum rank problem (of a graph, over the real numbers) is to determine mr(G) for any
graph G. See [12] for a survey of known results and discussion of the motivation for the minimum
rank problem; an extensive bibliography is also provided there. The minimum rank problem was a
focus of the 2006 workshop “Spectra of families of matrices described by graphs, digraphs, and sign
patterns” held at the American Institute of Mathematics [2]. One of the questions raised during
the workshop was:

Question 1.1. What is the average minimum rank of a graph on v vertices?

Formally, we define the average minimum rank of graphs of order v to be the sum over all
labeled graphs of order v of the minimum ranks of the graphs, divided by the number of (labeled)
graphs of order v. That is,

amr(v) =

∑
v(G)=v mr(G)

2(v
2)

.

Let G(v, p) denote the Erdős-Rényi random graph on v vertices with edge probability p. That
is, every pair of vertices is adjacent, independently, with probability p. Note that for G(v, 1/2),
every labeled v-vertex graph is equally likely (each labeled graph is chosen with probability 2−(v

2)),
so

amr(v) = E [mr(G(v, 1/2))] .

Our goal in this paper is to determine statistics about the random variable mr(G(v, p)) and
other related parameters. We highlight the two main results of this paper by focusing on the
p = 1/2 case:

Theorem 1.2. Given amr(v) = E [mr(G(v, 1/2))], then for v sufficiently large,

1. |mr(G(v, 1/2))− amr(v)| <
√
v ln ln v with probability approaching 1 as v →∞, and

2. 0.146907v < amr(v) < 0.5v +
√

7v ln v.

In general, we show that the random variable mr(G(v, p)) is tightly concentrated around its
mean (Section 2), and establish lower and upper bounds for its expected value in Sections 4 and 5.
We also establish an upper bound on the Colin de Verdière type parameter ξ(G), which is related
to M(G), in Section 6 (the definition of ξ is given in that section). This bound is used in Section
7 to establish bounds on the expected value of the random variable ξ(G(v, p)). The upper bound
on ξ(G(v, p)) may lead to a better upper bound on the expected value of M(G(v, p)) and hence a
better lower bound on the expected value of mr(G(v, p)).

2 Tight concentration of expected minimum rank

Although we are unable to determine precisely the mean of mr(G(v, p)), in this section we show
that this random variable is tightly concentrated around its mean, and thus mr(G(v, 1/2)) is tightly
concentrated around the average minimum rank.

A martingale is a sequence of random variables X0, . . . , Xv−1 such that

E[Xi+1|Xi, Xi−1, . . . , X1] = Xi.

The martingale we use is the vertex exposure martingale (as described on pages 94-95 of [1]) for the
graph parameter f(G) = 1

2 mr(G) (the factor 1
2 is needed because deletion of a vertex may change

the minimum rank by 2; see Corollary 2.3 below). G(v, p) is sampled to obtain a specific graph H,
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and Xi is the expected value of the graph parameter f(G) = 1
2 mr(G) when the neighbors of vertices

v1, . . . , vi are known. Since nothing is known for X0, X0 = E[f(G(v, p))] = 1
2E[mr(G(v, p))]. Since

the entire graph H is revealed at stage v − 1, Xv−1 = 1
2 mr(H).

The method for showing tight concentration uses Azuma’s inequality for martingales (see Section
7.2 of [1]) and was pioneered by Shamir and Spencer [19]. The following corollary of Azuma’s
inequality is used.

Theorem 2.1. [1, Corollary 7.2.2] Let b = X0, . . . , Xv be a martingale with

|Xi+1 −Xi| ≤ 1

for all 0 ≤ i ≤ v. Then
Pr[|Xv − b| > β

√
v] < 2e−β

2/2.

The proof that derives the tight concentration of the chromatic number of the random graph
[1, Theorem 7.2.4] from [1, Corollary 7.2.2] via the vertex exposure martingale remains valid for
any graph parameter f(G) such that when G and H differ only in the exposure of a single vertex,
then |f(G)− f(H)| ≤ 1.

Theorem 2.2. Let p ∈ (0, 1). Let f be a graph invariant such that for any graphs G and H, if
x ∈ V (G) = V (H) and G− x = H − x, then |f(G)− f(H)| ≤ 1. Let µ = E [f(G(v, p))]. Then, for
any β > 0,

Pr
[
|f(G(v, p))− µ| > β

√
v − 1

]
< 2e−β

2/2.

Corollary 2.3. Let p ∈ (0, 1) be fixed and let µ = E [mr(G(v, p))]. For any β > 0,

Pr
[
|mr(G(v, p))− µ| > 2β

√
v − 1

]
< 2e−β

2/2.

In particular,
|mr(G(v, p))− µ| <

√
v ln ln v

with probability approaching 1 as v →∞.

Proof. It is well-known that for any graph G and any vertex x ∈ V (G), 0 ≤ mr(G)−mr(G−x) ≤ 2.
Thus if V (H) = V (G) and G − x = H − x, then |mr(G) −mr(H)| ≤ 2. For the first statement,
apply Theorem 2.2 with f(G) = 1

2 mr(G). For the second statement, let β = 1
2

√
ln ln v and conclude

Pr
[
|mr(G(v, p))− µ| >

√
v ln ln v

]
< 2

(
1

ln v

)1/8

.

Note that Corollary 2.3 gives the result in Theorem 1.2(1).

3 Observations on parameters of random graphs

Large deviation bounds easily show that the degree sequence of the random graph is tightly con-
centrated. In this section, we provide some well-known results that will be used later. The version
of the Chernoff-Hoeffding bound that we use is given in [1].
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Theorem 3.1. [1, Theorem A.1.16] Let Xi, 1 ≤ i ≤ n, be mutually independent random variables
with all E[Xi] = 0 and all |Xi| ≤ 1. Set S = X1 + · · ·+Xn. Then for any a > 0,

Pr[S > a] < exp{−a2/(2n)}.

It is well-known that Theorem 3.1 can be applied to the number of edges in a random graph:

Theorem 3.2. Let p be fixed and let G be distributed according to G(v, p). Then,

e(G) ≤ p
(
v

2

)
+ v
√

2 ln v,

with probability at least 1−v−2. In addition, e(G) ≥ p
(
v
2

)
−v
√

2 ln v with probability at least 1−v−2.

Proof. Let G be distributed according to the random variable G(v, p). We may regard
{{x, y} ∈ E(G) : x 6= y} to be

(
v
2

)
mutually independent indicator random variables. Subtract p

from each and they become random variables with mean 0 and magnitude at most 1. Using
Theorem 3.1, we see that Pr

[
e(G)− p

(
v
2

)
> a

]
< exp

{
−a2/

(
2
(
v
2

))}
.

Choose a = v
√

2 ln v; we see that

e(G)− p
(
v

2

)
≤ v
√

2 ln v,

with probability at least 1− v−2. By multiplying the random variables above by −1, we obtain

e(G)− p
(
v

2

)
≥ −v

√
2 ln v,

with probability at least 1− v−2.

Let δ(G) (respectively, ∆(G)) denote the minimum (maximum) degree of a vertex of G. The-
orem 3.1 can also be applied to the neighborhood of each vertex to give bounds on δ(G) and
∆(G).

Theorem 3.3. Let p be fixed and let G be distributed according to G(v, p). Then,

pv −
√

6v ln v ≤ δ(G) ≤ ∆(G) ≤ pv +
√

6v ln v

with probability at least 1− 2v−2.

Proof. Let G be distributed according to the random variable G(v, p). For each x ∈ V (G), we
may regard {{x, y} ∈ E(G) : y 6= x} to be v − 1 mutually independent indicator random variables.
Using Theorem 3.1, we see that Pr [|deg(x)− p(v − 1)| > a] < 2 exp{−a2/(2(v − 1))}.

Thus, the probability that there exists a vertex with degree that deviates by more than a from
p(v − 1) is at most

v × 2 exp{−a2/(2(v − 1))}.

Choose a =
√

6v ln v and we see that, simultaneously for all x ∈ V (G),

|deg(x)− pv| ≤
√

6v ln v,

with probability at least 1− 2v−2.
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4 A lower bound for expected minimum rank

In this section we show that if v is sufficiently large, then the expected value of mr(G(v, p)) is at least
c(p)v+o(v), where c(p) is the solution to equation (1) below. In the case p = 1/2, c(p) ≈ 0.1469077,
so the average minimum rank is greater than 0.146907v for v sufficiently large.

The zero-pattern ζ(x) of the real vector x = (x1, . . . , x`) is the (0, ∗)-vector obtained from x
by replacing its nonzero entries by ∗. The support of the zero pattern z = (z1, . . . , z`) is the set
S(z) = {i : zi 6= 0}. We modify the proof of Theorem 4.1 from [18] to obtain the following result.

Theorem 4.1. If f(x) = (f1(x), f2(x), . . . , fm(x)) is an m-tuple of polynomials in n variables over
a field F with m ≥ n, each fi of degree at most d, then the number of zero-patterns z = ζ(f(x))
with |S(z)| ≤ s is at most (

n+ sd

n

)
.

Proof. We follow the proof in [18]. Assume that the m-tuple f = (f1, . . . , fm) of polynomials over
field F has the M zero-patterns z1, . . . , zM . Choose u1, . . . ,uM ∈ Fn such that ζ(f(ui)) = zi.

Set
gi =

∏
k∈S(zi)

fk.

Note that
gi(uj) 6= 0 if and only if S(zi) ⊆ S(zj).

We show that polynomials g1, . . . , gM are linearly independent. Assume on the contrary that
there is a nontrivial linear combination

∑M
i=1 βigi = 0, where each βi ∈ F . Let j be a subscript

such that |S(zj)| is minimal among the S(zi) with βi 6= 0, so for every i such that i 6= j and βi 6= 0,
S(zi) 6⊆ S(zj). So substituting uj into the linear combination gives βjgj(uj) = 0, a contradiction.

Thus, g1, . . . , gM are linearly independent over F . Each gi has degree at most sd and the
dimension of the space of polynomials of degree ≤ D is exactly

(
n+D
n

)
.

By Sylvester’s Law of Inertia, every real symmetric v × v matrix of rank at most r can be
expressed in the form XTDiX for some i such that 0 ≤ i ≤ r, where Di = diag(1, . . . , 1,−1, . . . ,−1)
is an r × r diagonal matrix with i diagonal entries equal to 1 and r − i equal to −1 and X is an
r × v real matrix. There are r + 1 diagonal matrices Di. Let each entry of X be a variable; the
total number of variables is rv and each entry of the matrix XTDiX is a polynomial of degree at
most 2.

Let c(p) be the solution to

(c+ p)2c+2p

(c)2c(p)2p
pp(1− p)(1−p) = 1 (1)

for a fixed value of p(0 < p < 1). This equation has a unique solution, because it is equivalent to
(c+p)2c+2p

c2c = pp

(1−p)(1−p) , and for a fixed p and c ≥ 0, (c+p)2c+2p

c2c is a strictly increasing function of c

and p2p < pp

(1−p)(1−p) . The values of c(p), 0 < p < 1 are graphed in Figure 1.

Theorem 4.2. Let G be distributed according to G(v, p) for a fixed p, 0 < p < 1. For any c < c(p),
the expectation E [mr(G)] satisfies

E [mr(G)] > cv

for v sufficiently large.
Furthermore, for any such c, Pr [mr(G(v, p)) ≤ cv]→ 0 as v →∞.
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Figure 1: The graph of c(p)

Proof. Let G be distributed according to G(v, p). Let E be the event that
∣∣e(G)− p

(
v
2

)∣∣ ≤ v√2 ln v.
By the law of total expectation,

E[mr(G)] = E[mr(G) | E ] Pr[E ] + E[mr(G) | Ec] Pr[Ec]
≥ E[mr(G) | E ] Pr [E ]
≥ (r + 1) Pr[mr(G) > r | E ] Pr[E ]
= (r + 1) (1− Pr[mr(G) ≤ r | E ]) (1− Pr[Ec])
≥ (r + 1)− (r + 1) Pr[mr(G) ≤ r | E ]− (r + 1) Pr[Ec]
≥ (r + 1)− vPr[mr(G) ≤ r | E ]− vPr[Ec]

Theorem 3.2 shows that vPr[Ec] ≤ v−1. It remains to bound Pr[mr(G) ≤ r | E ].

Pr [mr(G) ≤ r | E ] =
∑

G : v(G) = v,mr(G) ≤ r˛̨
e(G)− p

`v
2

´˛̨
≤ v
√

2 ln v

Pr[G ∈ G(v, p)]

=
∑

G : v(G) = v,mr(G) ≤ r˛̨
e(G)− p

`v
2

´˛̨
≤ v
√

2 ln v

pe(G)(1− p)(
v
2)−e(G)

=
∑

G : v(G) = v,mr(G) ≤ r˛̨
e(G)− p

`v
2

´˛̨
≤ v
√

2 ln v

(
p

1− p

)e(G)

(1− p)(
v
2)

If p < 1/2, then we use a lower bound for e(G), given E ; if p > 1/2, an upper bound. So, we
can bound the term inside the summation as(

p

1− p

)e(G)

(1− p)(
v
2) ≤

(
max{p, 1− p}
min{p, 1− p}

)v√2 ln v (
pp(1− p)(1−p)

)(v
2)
.

Hence,

Pr [mr(G) ≤ r | E ]

≤
(

max{p, 1− p}
min{p, 1− p}

)v√2 ln v (
pp(1− p)(1−p)

)(v
2)
∣∣∣∣{G : v(G) = v,

∣∣∣∣e(G)− p
(
v

2

)∣∣∣∣ ≤ v√2 ln v,mr(G) ≤ r
}∣∣∣∣ .
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The number of v vertex graphs with between p
(
v
2

)
− v
√

2 ln v and p
(
v
2

)
+ v
√

2 ln v edges and
minimum rank at most r is at most the number of v × v symmetric pattern matrices obtained
as XTDiX, i = 0, . . . , r with X an r × v matrix for which the cardinality of the support of the
superdiagonal entries is at most p

(
v
2

)
+ v
√

2 ln v. We can apply Theorem 4.1 with n = rv, d = 2
and s ≤ p

(
v
2

)
+ v
√

2 ln v. Therefore, because there are r + 1 diagonal matrices,

Pr [mr(G) ≤ r | E ]

≤
(

max{p, 1− p}
min{p, 1− p}

)v√2 ln v (
pp(1− p)(1−p)

)(v
2) (r + 1)

(
rv + 2p

(
v
2

)
+ 2v

√
2 ln v

rv

)
.

By Corollary A.2 in Appendix A, for fixed c and p with r = cv,(
rv + 2p

(
v
2

)
+ 2v

√
2 ln v

rv

)
≤
(

(1 + o(1))
(

(c+ p)c+p

ccpp

))v2
.

Thus

Pr[mr(G) ≤ cv | E ] ≤
(

(1 + o(1))
(c+ p)2c+2p

(c)2c(p)2p
pp(1− p)(1−p)

)v2/2
.

As long c < c(p) and v is sufficiently large, the quantity vPr [mr(G) ≤ r | E ] is less than 1,
giving

E[mr(G)] ≥ (r + 1)− vPr[mr(G) ≤ r | E ]− vPr[Ec] > r + 1− o(1) ≥ r.

Furthermore, as long as c < c(p), Pr [mr(G) ≤ cv | E ] → 0 as v → ∞, and by Theorem 4.1,
Pr[Ec]→ 0 as v →∞. Since

Pr[mr(G) ≤ cv] ≤ Pr[mr(G) ≤ cv | E ] + Pr[Ec],

Pr[mr(G) ≤ cv]→ 0 as v →∞.

Corollary 4.3. For v sufficiently large, the average minimum rank over all labeled graphs of order
v satisfies

amr(v) > 0.146907v.

Furthermore, if G is chosen at random from all labeled graphs of order v, Pr[mr(G) ≤ 0.146907v]→
0 as v →∞.

Proof. For p = 1/2, E[mr(G)] = amr(v) and 0.146907 < c(p).

Note that Corollary 2.3 gives the lower bound in Theorem 1.2(2). We note further the lack of
symmetry with respect to p. The value c(p) approaches zero as p approaches zero, which is not the
case with the upper bound that we describe in the next section.

5 An upper bound for expected minimum rank

In this section we show that if v is sufficiently large, then the expected value of mr(G(v, p)) is
at most (1 − p)v +

√
7v ln v. Thus the average minimum rank for graphs of order v is at most

0.5v +
√

7v ln v.
Let κ(G) denote the vertex connectivity of G. That is, if G is not complete, it is the smallest

number k such that there is a set of vertices S, with |S| = k, for which G− S is disconnected. By
convention, κ(Kv) = v − 1.
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Following the terminology of [15], for a graph G an orthogonal representation of G of dimension
d is a set of vectors in Rd, one corresponding to each vertex, such that if two vertices are nonadjacent,
then their corresponding vectors are orthogonal. Every graph has an orthogonal representation in
any dimension by associating the zero vector with every vertex. A faithful orthogonal representation
of G of dimension d is a set of vectors in Rd, one corresponding to each vertex, such that two
(distinct) vertices are nonadjacent if and only if their corresponding vectors are orthogonal. Note
that in the minimum rank literature, the term “orthogonal representation” is customarily used for
what is here called a faithful orthogonal representation.

The following result of Lovász, Saks and Schrijver [15] (see also the note on errata, [16] Theorem
1.1) is the basis for an upper bound for minimum rank.

Theorem 5.1. [15, Corollary 1.4] Every graph G on v vertices has a faithful orthogonal represen-
tation of dimension v − κ(G).

Let mr+(G) denote the minimum rank among all symmetric positive semidefinite matrices A
such that G(A) = G, and let M+(G) denote the maximum nullity among all such matrices. It is
well known (and easy to see) that every faithful orthogonal representation of dimension d gives rise
to a positive semidefinite matrix of rank d and vice versa.

Corollary 5.2. For any graph G on v vertices,

mr(G) ≤ mr+(G) ≤ v − κ(G), (2)

or equivalently,
κ(G) ≤ M+(G) ≤ M(G). (3)

Our proof of the upper bound on the expected value of mr(G(v, p)) uses the bound (2) and
the relationship (on average) between the connectivity κ(G) and the minimum degree δ(G). At
the AIM workshop [2] it was conjectured that for any graph G, δ(G) ≤ M(G), or equivalently
mr(G) ≤ v(G) − δ(G) [9]. The conjecture was proved for bipartite graphs in [4] but remains
open in general. In [15] it is reported that in 1987, Maehara made a conjecture equivalent to
mr+(G) ≤ v(G)− δ(G), which would imply mr(G) ≤ v(G)− δ(G).

Theorem 5.3. Let G be distributed according to G(v, p). For v sufficiently large, the expected value
of minimum rank satisfies E[mr(G)] ≤ (1− p)v +

√
7v ln v.

For v sufficiently large, the average minimum rank over all labeled graphs of order v satisfies

amr(v) ≤ 0.5v +
√

7v ln v.

Proof. In [8] (see also section 7.2 of [7]), Bollobás and Thomason prove that if G is distributed
according toG(v, p), then Pr[κ(G) = δ(G)]→ 1 as v →∞, without any restriction on p. Lemma B.1
in Appendix B shows that for p fixed and v large enough, Pr[κ(G) < δ(G)] ≤ 3v−2. Let E be the
event that κ(G) = δ(G) and δ(G) ≥ pv−

√
6v ln v. For G distributed according to G(v, p), the law

of total expectation gives

E[κ(G)] = E[κ(G) | E ] Pr[E ] + E[κ(G) | Ec] Pr[Ec]

≥
(
pv −

√
6v ln v

)
(1− Pr[Ec])

≥ pv −
√

6v ln v − v
(

Pr[δ(G) < pv −
√

6v ln v] + Pr[κ(G) < δ(G)]
)
.

We use Theorem 3.3 and the result that vPr[κ(G) < δ(G)] ≤ 3v−1 to see that

E [κ(G)] ≥ pv −
√

6v ln v − 2v−1 − 3v−1 ≥ pv −
√

7v ln v,

for v sufficiently large. By (2), E[mr(G)] ≤ (1− p)v +
√

7v ln v.
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Theorem 5.3 gives the upper bound in Theorem 1.2(2). Note that Theorem 5.3 actually estab-
lishes E[mr+(G)] ≤ (1− p)v +

√
7v ln v. Since mr(G) ≤ mr+(G) for any graph G, the lower bound

in Theorem 4.2 in Section 4 certainly bounds E[mr+(G)] from below.

6 Bounds for ν(G) and ξ(G)

In this section we discuss the the Colin de Verdière type parameters ν(G) and ξ(G), and establish
an upper bound on ξ(G) in terms of the number of edges of the graph. This upper bound, and a
known lower bound for ν(G), have implications for the average value of ν and ξ (see Section 7).

In 1990 Colin de Verdière ([10] in English) introduced the graph parameter µ that is equal to
the maximum multiplicity of eigenvalue 0 among all matrices satisfying several conditions including
the Strong Arnold Hypothesis (defined below). The parameter µ, which is used to characterize
planarity, is the first of several parameters that require the Strong Arnold Hypothesis and bound
the maximum nullity from below (called Colin de Verdière type parameters). All the Colin de
Verdière type parameters we discuss have been shown to be minor monotone.

A contraction of G is obtained by identifying two adjacent vertices of G, deleting any loops that
arise in this process, and replacing any multiple edges by a single edge. A minor of G arises by
performing a sequence of deletions of edges, deletions of isolated vertices, and/or contractions of
edges. A graph parameter β is minor monotone if for any minor G′ of G, β(G′) ≤ β(G).

A symmetric real matrix M is said to satisfy the Strong Arnold Hypothesis (SAH) provided
there does not exist a nonzero real symmetric matrix X satisfying AX = 0, A ◦ X = 0, and
I ◦X = 0, where ◦ denotes the Hadamard (entrywise) product and I is the identity matrix.

The SAH is equivalent to the requirement that certain manifolds intersect transversally. Specif-
ically, for A = [aij ] ∈ R(v) let

RA = {B ∈ R(v) : rankB = rankA},

and
SA = {B ∈ R(v) : G(B) = G(A)}.

Then RA and SA intersect transversally at A if and only if A satisfies the SAH (see [14]).
Another minor monotone parameter, introduced by Colin de Verdière in [11], is denoted by

ν(G) and defined to be the maximum nullity among matrices A that satisfy:

1. G(A) = G;

2. A is positive semidefinite;

3. A satisfies the Strong Arnold Hypothesis.

Clearly ν(G) ≤ M+(G).
The parameter ξ(G) was introduced in [3] as a Colin de Verdière type parameter intended for use

in computing maximum nullity and minimum rank, by removing any unnecessary restrictions while
preserving minor monotonicity. Define ξ(G) to be the maximum multiplicity of 0 as an eigenvalue
among matrices A ∈ R(v) that satisfy:

• G(A) = G.

• A satisfies the Strong Arnold Hypothesis.

Clearly, ν(G) ≤ ξ(G) ≤ M(G). The following lower bound on ν(G) has been established by van
der Holst using the results of Lovász, Saks and Schrijver.
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Theorem 6.1. [13, Theorem 4] For every graph G,

κ(G) ≤ ν(G) ≤ ξ(G).

The following bound on the Colin de Verdière number µ in terms of the number of edges e(G)
is given in [17] for any connected graph G 6= K3,3 :

e(G) ≥ µ(G)(µ(G) + 1)
2

.

We will show that for any connected graph G,

e(G) + b ≥ ξ(G)(ξ(G) + 1)
2

where b = 1 if G is bipartite and b = 0 otherwise.
For a manifold M and matrix A ∈ M, let TMA

be the tangent space in R(v) to M at A and
let NMA

be the normal (orthogonal complement) to TMA
.

Observation 6.2. [14, p. 9]

1. TSA
= {B : ∀i 6= j, aij = 0⇒ bij = 0}.

2. NSA
= {X : ∀i, xii = 0 and ∀i 6= j, aij 6= 0⇒ xij = 0}.

3. TRA
= {WA+AW T : W ∈ Rn×n} = {B ∈ R(v) : vTBv = 0 ∀v ∈ kerA}.

4. NRA
= span({vvT : v ∈ kerA}) = {X ∈ R(v) : AX = 0}.

Clearly dim TSA
= e(G)+v. These observations can also be used to provide the exact dimension

of NRA
and thus of TRA

.

Proposition 6.3. Let A ∈ R(v) and let u1, . . . ,uq be an orthonormal basis for kerA. Then U =
{uiuTi : 1 ≤ i ≤ q} ∪ {uiuTj + ujuTi : 1 ≤ i < j ≤ q} is a basis for span({vvT : v ∈ kerA}). Thus

dimNRA
= q(q+1)

2 .

Proof. Let N = span({vvT : v ∈ kerA}). Since uiuTj +ujuTi = (ui+uj)(ui+uj)T −uiuTi −ujuTj ,
U ⊂ N .

Show U spans N :(
q∑
i=1

siui

) q∑
j=1

sjui

T

=
q∑
i=1

q∑
j=1

sisjuiuTj =
q∑
i=1

s2iuiu
T
i +

∑
1≤i<j≤q

sisj(uiuTj + ujuTi )

Show U is linearly independent: Let Y =
∑q

i=1 siuiu
T
i +

∑
1≤i<j≤q sij(uiu

T
j + ujuTi ) and

suppose Y = 0. For any k, 0 = uTk Y uk = sk and for ` < k, 0 = u`Y uk = s`k, and U is linearly
independent.

Corollary 6.4. dim TRA
= v rankA− rankA(rankA−1)

2 .

Proof. Let rankA = r. By Observation 6.2 and Proposition 6.3,

dim TRA
= dim R(v) − dimNRA

=
v(v + 1)

2
− (v − r)(v − r + 1)

2
.
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An optimal matrix for ξ(G) is a matrix A such that G(A) = G,nullA = ξ(A), and A has the
Strong Arnold Hypothesis.

Theorem 6.5. Let G be a connected graph.

e(G) + b ≥ ξ(G)(ξ(G) + 1)
2

(4)

where b = 1 if G is bipartite and every optimal matrix for ξ(G) has zero diagonal, and b = 0
otherwise.

Proof. Let A be an optimal matrix for ξ(G), chosen to have at least one nonzero diagonal entry if
there is such an optimal matrix. Let rankA = r.

The Strong Arnold Hypothesis for A is NRA
∩ NSA

= {0}, which is equivalent by taking
orthogonal complements to

TRA
+ TSA

= R(v)

Therefore

dim TRA
+ dim TSA

− dim(TRA
∩ TSA

) = dim R(v)

vr − r(r − 1)
2

+ e(G) + v − dim(TRA
∩ TSA

) =
v(v + 1)

2

e(G) =
v(v + 1)

2
− vr +

r(r − 1)
2

− v + dim(TRA
∩ TSA

)

=
1
2

((v − r)2 + (v − r))− v + dim(TRA
∩ TSA

)

=
ξ(G)(ξ(G) + 1)

2
− v + dim(TRA

∩ TSA
)

Thus
ξ(G)(ξ(G) + 1)

2
= e(G) + v − dim(TRA

∩ TSA
).

Let D = diag(d1, . . . , dn) be a diagonal matrix. Then by Observation 6.2.3, DA + AD ∈ TRA
.

Clearly, DA + AD ∈ TSA
, so DA + AD ∈ TRA

∩ TSA
. Let ek be the kth standard basis vector of

Rv. Define Dk = diag(ek) and Bk = DkA+ ADk. Note that (Bk)ij = (δki + δkj)aij , where δii = 1
and δij = 0 for i 6= j.

We show first that if
v∑
k=1

ckBk = 0 and ct = 0 for some t such that 1 ≤ t ≤ v, then ck = 0 for

all 1 ≤ k ≤ v. For every neighbor y of t,

0 =

(
v∑
k=1

ckBk

)
ty

=
v∑
k=1

ck(δkt + δky)aty = cyaty.

Since {t, y} is an edge of G, aty 6= 0, and so cy = 0. Since G is connected, every vertex can be
reached by a path from t, and so c1 = · · · = cv = 0.

Since
v−1∑
k=1

ckBk =
v∑
k=1

ckBk with cv = 0,
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it follows that for every graph G and ξ(G)-optimal matrix A (without any assumption about the
diagonal), the matrices Bk, k = 1, . . . , v − 1, are linearly independent, and thus

dim(TRA
∩ TSA

) ≥ v − 1 and
ξ(G)(ξ(G) + 1)

2
≤ e(G) + 1,

Now suppose that A has a nonzero diagonal entry or G is not bipartite. We show that the
matrices Bk, k = 1, . . . , v are linearly independent, so

dim(TRA
∩ TSA

) ≥ v and
ξ(G)(ξ(G) + 1)

2
≤ e(G)

Let
v∑
k=1

ckBk = 0.

If A has a nonzero diagonal entry att, then 0 = (
∑v

k=1 ckBk)tt = 2ctatt, and so ct = 0. If G is not
bipartite, there is an odd cycle; without loss of generality let this odd cycle be (1, . . . , t). Then for
i = 1, . . . , t− 1,

0 =

(
v∑
k=1

ckBk

)
i,i+1

= (ci + ci+1)ai,i+1;

similarly 0 = (ct + c1)at,1. Since {t, 1} and {i, i+ 1}, i = 1, . . . , t− 1 are edges of G,

ci + ci+1 = 0, i = 1, . . . , t− 1, and ct + c1 = 0.

By adding equations (−1)i(ci + ci+1 = 0), i = 1, . . . , t− 1 to ct + c1 = 0, we obtain 2ct = 0.

IfG is the disjoint union of its connected componentsG1, . . . , Gh, then ξ(G) = maxi=1,...,h{ξ(Gi)}
[3].

Corollary 6.6. For every graph G,

ξ(G)(ξ(G) + 1)
2

≤ e(G) + 1.

Example 6.7. The complete bipartite graph K3,3 demonstrates that b = 1 is sometimes necessary
in the bound (4), because ξ(K3,3) = 4, so ξ(G)(ξ(G)+1)

2 = 10, and e(K3,3) = 9.

7 Bounds for the expected value of ξ

In this section we show that if v is sufficiently large, then the expected value of ξ(G(v, p)) is asymp-
totically at most

√
pv. It follows that the average value of ξ for graphs of order v is asymptotically

at most 1√
2
v.

We will make the notion of asymptotic expected value more precise, both for minimum rank
and for ξ.

Define
mr(p) = lim sup

v→∞

E [mr(G(v, p))]
v

.

(This is a careful definition, as the lim sup is almost certainly a limit.) In previous sections we
have shown that for 0 < p < 1,

c(p) ≤ mr(p) ≤ 1− p.
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Now define
ξ̄(p) = lim inf

v→∞

E [ξ(G(v, p))]
v

.

The quantity ξ̄(p) should be compared to 1−mr(p) rather than mr(p), since ξ(G) measures a nullity
rather than a rank.

Our starting point is an immediate consequence of Corollary 6.6.

Corollary 7.1. For every graph G,

ξ(G) ≤ 1
2

(−1 +
√

9 + 8e(G)). (5)

Corollary 7.2. For 0 < p < 1,
p ≤ ξ̄(p) ≤ √p.

Proof. The proof that p ≤ ξ̄(p) follows from Theorem 6.1 by exactly the same reasoning that
showed that mr(p) ≤ 1− p.

From inequality (5), if e(G) ≥ 2,
ξ(G) ≤

√
2e(G).

For a fixed ε > 0, as v →∞, almost all graphs sampled from G(v, p) satisfy

e(G) ≤ (1 + ε)
p

2
v(v − 1),

so almost all graphs satisfy

ξ(G) ≤
√

2e(G) ≤
√

2(1 + ε)
p

2
v(v − 1) ≤

√
1 + ε

√
pv.

This completes the proof of the second inequality ξ̄(p) ≤ √p.

Since for every graph G, ξ(G) ≤ M(G) and for every v > 1 there exists a graph H such that
ξ(H) < M(H), E [ξ(G(v, p))] is strictly less than E [M(G(v, p))] for v > 1 and 0 < p < 1. However
it is quite possible that taking the limit gives ξ̄(p) + mr(p) = 1, in which case Corollary 7.2 would
provide a better asymptotic lower bound for expected minimum rank than that given in Corollary
4.3. The graphs of these bounds are shown in Figure 2.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 2: The graphs of 1− c(p) > √p > p for 0 < p < 1
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A Appendix: Estimation of the binomial coefficient

Lemma A.1. Let N be a positive integer and α, β, γ be real numbers with α, β ∈ (0, 1) and γ ∈ [0, 1].
Then, (

(α+ β + γ)N
αN

)
≤ E(α, β, γ,N)

(
(α+ β)α+β

ααββ

)N
,

where

E(α, β, γ,N) =

√
α+ β

2παβN
exp

{
1

12(α+ β)N
+ γ

(
1 +

α

β

)
N

}
.

Proof. We use Stirling’s formula as given in [6, page 216]:

√
2πn

(n
e

)n
≤ n! ≤ e1/(12n)

√
2πn

(n
e

)n
.

From this formula,(
(α+ β + γ)N

αN

)
≤ e1/(12(α+β+γ)N)

√
2π(α+ β + γ)N√

2παN
√

2π(β + γ)N

(
(α+ β + γ)N

e

)(α+β+γ)N ( e

αN

)αN ( e

(β + γ)N

)(β+γ)N

≤ e1/(12(α+β)N)

√
α+ β + γ

2πα(β + γ)N
(α+ β + γ)(α+β+γ)N

ααN (β + γ)(β+γ)N

Since α+β+γ
α(β+γ) ≤

α+β
αβ ,(

(α+ β + γ)N
αN

)

≤ e1/(12(α+β)N)

√
α+ β

2παβN

(
(α+ β + γ)(α+β+γ)

αα (β + γ)(β+γ)

)N

≤ e1/(12(α+β)N)

√
α+ β

2παβN

(
(α+ β)α+β

ααββ

)N ((
α+ β + γ

α+ β

)α+β ( β

β + γ

)β (α+ β + γ

β + γ

)γ)N

≤

(
(α+ β)α+β

ααββ

)N√
α+ β

2παβN
e1/(12(α+β)N)

((
1 +

γ

α+ β

)α+β (
1 +

α

β

)γ)N

Because 1 + x ≤ ex,(
(α+ β + γ)N

αN

)
≤

(
(α+ β)α+β

ααββ

)N√
α+ β

2παβN
e1/(12(α+β)N) exp

{
γN + γ

α

β
N

}
Corollary A.2. Let p, c be fixed and let r = cv, with v →∞.(

rv + 2p
(
v
2

)
+ 2v

√
2 ln v

rv

)
≤
(

(1 + o(1))
(

(c+ p)c+p

ccpp

))v2
.
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Proof. (
rv + 2p

(
v
2

)
+ 2v

√
2 ln v

rv

)
=
(
cv2 + pv2 − pv + 2v

√
2 ln v

cv2

)
.

Let N = v2, α = c, β = p, and γ = 1
v2

(−pv + 2v
√

2 ln v). With p and c fixed, by Lemma A.1 we
see that (

rv + 2p
(
v
2

)
+ 2v

√
2 ln v

rv

)
≤
(

(1 + o(1))
(

(c+ p)c+p

ccpp

))v2
.

B Appendix: Connectivity is minimum degree

Bollobás and Thomason [8] proved that for G ∼ G(v, p), regardless of p, then Pr[κ(G) < δ(G)]→ 0
as v → ∞. Bollobás [5] proved the result for p in a restricted interval, but the statement of his
theorem is much more general. For our result, we need to bound the probability that κ(G) = δ(G)
where G ∼ G(v, p), but need the result only for a fixed p.

Lemma B.1. Let p ∈ (0, 1) be fixed and G be distributed according to G(v, p). If v is sufficiently
large, then

Pr[κ(G) < δ(G)] ≤ 3v−2.

Proof. Let δ = δ(G). By Theorem 3.2 we see that, with probability at least 1− v−2,

δ ≤ 2e(G)
v
≤

2
(
p
(
v
2

)
+ v
√

2 ln v
)

v
= p(v − 1) + 2

√
2 ln v ≤ pv + 2

√
2 ln v. (6)

For the remainder of the proof we assume δ ≤ pv + 2
√

2 ln v.
If κ(G) < δ, then there exists a partition V (G) = V1 ∪ S ∪ V2 such that |S| < δ, 2 ≤ |V1| ≤ |V2|

and there is no edge between V1 and V2. Let the closed neighborhood of vertex x be denoted N [x]
and be equal to {x} ∪N(x).

We will show first that there is an integer t such that the probability that 2 ≤ |V1| ≤ t is at most
v−2 (we will determine the value of t later). By a different calculation, we will then show that the
probability that t < |V1| ≤ (v + δ)/2 is also at most v−2. Note that we don’t attempt to optimize
the probability or to give a range of p over which these conditions hold. A total probability of 2v−2

is sufficient for our purposes and results in an easier proof.
The event {2 ≤ |V1| ≤ t} can occur only if there are two distinct vertices, x1 and x2, such

that the cardinality of the union of their closed neighborhoods is less than t + δ. For vertices
yi ∈ V (G)\{x1, x2}, let Yi be independent indicator variables for yi ∈ N [x1] ∪ N [x2]. Since the
probability yi /∈ N [x1] ∪N [x2] is (1− p)2,

E[|N [x1] ∪N [x2]|] = E[2 + Y1 + · · ·+ Yv−2]] = 2 + (v − 2)(2p− p2).

Hence, assuming (t+ δ)−
(
2 + (2p− p2)(v − 2)

)
< 0, by the negative version of Theorem 3.1,

Pr [2 ≤ |V1| ≤ t] ≤
(
v

2

)
Pr [|N [x1] ∪N [x2]| < t+ δ]

=
(
v

2

)
Pr
[
|N [x1] ∪N [x2]| −

(
2 + (2p− p2)(v − 2)

)
< (t+ δ)−

(
2 + (2p− p2)(v − 2)

)]
≤ exp

{
2 ln v − 1

2(v − 2)
(
(t+ δ)− 2− (2p− p2)(v − 2)

)2}
.
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Thus if t+ δ ≤ (2p− p2)(v − 2) + 2− 3
√
v ln v, then Pr [2 ≤ |V1| ≤ t] < v−2.

Since v ≥ 2 and we have assumed δ ≤ pv + 2
√

2 ln v, we may set

t = (2p− p2)v − 3
√
v ln v − δ ≥ (2p− p2)v − 3

√
v ln v − pv − 2

√
2 ln v ≥ p(1− p)v − 5

√
v ln v.

We will use the bound
(
v
i

)
≤
(
ev
i

)i which is true for all 1 ≤ i ≤ v [6, page 216], and the trivial bound(
v−i
δ

)
≤ vδ, which is true for all v − i, δ ≥ 0. The event {t < |V1| ≤ (v + δ)/2} has a probability

which is bounded as follows:

Pr [t < |V1| ≤ (v + δ)/2] ≤
b(v+δ)/2c∑
i=bt+1c

(
v

i

)(
v − i
δ

)
(1− p)i(v−i−δ)

≤
b(v+δ)/2c∑
i=bt+1c

(ev
i

)i
vδ(1− p)i(v−δ)/2

≤ vδ
b(v+δ)/2c∑
i=bt+1c

[
ev(1− p)(v−δ)/2

]i
If v is large enough, then ev(1 − p)(v−δ)/2 < ev(1 − p)(v−pv−2

√
2 ln v)/2 < 1. Using this in our

calculation, along with the bound 1− p ≤ e−p,

Pr [t < |V1| ≤ (v + δ)/2] ≤ vδ
b(v+δ)/2c∑
i=bt+1c

[
ev(1− p)(v−δ)/2

]i
≤ vδ+1

[
ev(1− p)(v−pv−2

√
2 ln v)/2

]t
≤ vδ+1+tet exp

{
−pvt

2
+
p2vt

2
+ pt
√

2 ln v
}

≤ vvev exp
{
−p(1− p)vt

2
+ pv

√
2 ln v

}
= exp

{
v ln v + v + pv

√
2 ln v − p(1− p)

2
vt

}
(7)

Since t ≥ p(1− p)v − 5
√
v ln v, the expression in (7) is easily bounded above by exp{−2 ln v} for v

large enough.
Summarizing, if v is large enough, then with probability at least 1− 3v−2, there is no set S of

size less than δ such that V (G)− S is disconnected.
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