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Abstract

A primary goal of quantitative structure-activity relationships (QSARs)

and quantitative structure-property relationships (QSPRs) is to predict

chemical activities from chemical structure. Chemical structure can be

quantified in many ways resulting in hundreds, if not thousands, of mea-

surements for every chemical. Chemical activities measures how the chem-

ical interacts with other chemicals, e.g. toxicity, biodegradability, boiling

point, and vapor pressure. Typically there are more chemical structure

measurements than chemicals being measured, the so-called large-p, small-

n problem. Here we review some of the statistical procedures that have

been commonly used to explore these problems in the past and provide

several examples of their use. Finally, we peek into the future to discuss

two areas that we believe will see dramatically increased attention in the

near future: model averaging and Bayesian techniques.
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1 Introduction

The science of quantitative structure-activity relationships (QSAR) has a varied

but relatively recent history [1]. The central tenet of structure-activity relation-

ships (SAR) is that form follows function and this idea has probably been in

existence for ages. Yet, the quantitative aspect of QSAR from a computer-age

perspective is relatively young; perhaps only in existence for about 30 to 40

years. Hence, this is a very young area of science and ripe for opportunities and

advancement. The age of computers and our ability to compile, quantify, and

analyze information is unprecedented.

The basic theory of QSAR is that the structure of a chemical determines its

activity [2, 3, 4]. The mystery of chemicals and of chemistry is how structure

or substructures are related with activity. Any change in chemical structure

(e.g., the addition of a methyl group or element) results in different chemical

behavior. It is of great societal interest to predict how chemical activity changes

with chemical structure. If we could do so, then more effective drugs can be

developed as well as the development of more effective, but safer chemicals for

societal use.

The emergence of computers has dramatically increased the use statistics

to problems in chemistry. Before the modern computing age, the calculations

for many of the statistical procedures were too time-consuming to perform by

hand especially for large datasets. In addition, hand calculations are subject to

considerable error.

Large datasets in QSAR and in the field of computational chemistry have

emerged for both chemical structure and activity. For instance, many software

programs are now available such as Molconn-Z [5], Polly [6], DRAGON[7], and

CODESSA [8] that calculate measurements of chemical structure. A past lim-

itation existed when chemical activity data were available, but there were few
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structure measurements available to allow predictions of those activities. Sim-

ilarly, in the past the exploration of activity-to-activity correlation approaches

used in predictive pharmacology and toxicology failed because experimental ac-

tivity data were unavailable. As the computer and information age has emerged,

there are many additional databases available that are based on standardized

endpoints such as toxicology [9, 10], mutagenicity[11], and chemical activities

[12].

Today, statistical applications are common in chemistry and they have a va-

riety of names such as chemometrics and pattern recognition. Here our primary

goal is to 1) summarize several statistical techniques that have been used exten-

sively in the past 30 years, 2) explore the recent use and potential for Bayesian

statistical analysis in QSARs, and 3) provide examples of these statistical tech-

niques in past QSAR studies. This chapter is not intended to be an exhaustive

review of all statistical procedures used in QSARs, QSPRs, or other associated

analyses on the relationships between chemical structure and their properties

or activities.

2 A statistical goal

The databases that house chemical structure and property measurements are

ever increasing; a fundamental issue is that there are typically more structure

measurements than chemicals being measured. Even as more chemicals are

added to the database, scientists will increase the number of ways we can mea-

sure them and the issue will remain. If we use p to refer to the number of

different measurements taken and n to refer to the number of different chem-

icals in the database, then this situation is referred to as the large-p, small-n

problem.

The QSAR goal discussed here is to use the structure and activities measure-
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ments on a set of chemicals to predict the unknown activities of a different set

of chemicals for which structure measurements are available. We concentrate

on a single chemical activity at a time, although the methods below could be

used individually for each activity that requires prediction. Further, we restrict

our attention to predicting activities that are continuous, e.g. boiling point, as

opposed to properties that are categorical, e.g. mutagenicity. The latter may

be analyzed by methods such as logistic regression and discriminant analysis.

Throughout the following we will use the following notation:

• Y : a n× 1 vector of chemical activity measurements and

• X: a n× p matrix of chemical structure measurements

where, typically, the first column of X is a vector of ones. The ith chemical has

property measurement Yi and structure measurements Xi, the ith row of X. We

are then typically interested in predicting the chemical property measurements

of a new chemical, Y ∗, based on its chemical structure measurements, X∗.

3 Modeling

To predict continuous chemical activities from measurements of chemical struc-

ture, we focus on the linear regression model. Although other methods such

as generalized additive models and recursive partitioning allow more flexibility,

they require a larger sample size, n, which is often not available.

3.1 Multiple linear regression

Multiple linear regression defines a model that has the form Y = Xβ+ε, where β

is a set of unknown regression parameters and the random deviation has E(ε) =

0 and V ar(ε) = σ2I where I is an identity matrix of order n. The model says that

the activity for chemical i is a linear combination of the structure measurements
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and a random error, i.e. Yi = β1Xi1 + β2Xi2 + . . . + βpXip + εi where, again,

Xi1 is often set equal to 1 to provide a model intercept. From this relationship,

it should be clear that if βj = 0, then Xij does not affect the activity and

therefore the jth structure measurement is not important for determining the

activity in this model. The ordinary least squares (OLS) estimate for the vector

parameter β is β̂OLS = (X ′X)−1X ′Y which is found by minimizing the quantity

||Y − Xβ||2 = (Y − Xβ)′(Y − Xβ). To then predict the property for a new

chemical, we use Ŷ ∗ = X∗β̂OLS .

Niemi et al. [13] used multiple regression to develop a prediction model

for octanol/water partition coefficient. The independent variables used were 70

variables algorithmically-derived from information content and from molecular

connectivity indices [3]. The analysis used a best-subsets (see Section 4.2) re-

gression model for a dataset of over 4,000 chemicals with measured values of

octanol/water partition coefficients. Explained variation ranged from 63 to 90%

among 14 different groups of chemicals; the groups were formed on the basis

of the degree of hydrogen bonding. Both information content and molecular

connectivity indices were equally as effective in the prediction equations.

This example of regression uses a combination of simple grouping of a large

dataset of over 4,000 chemicals using a theoretical basis that degree of hydro-

gen bonding is related to octanol/water partitioning. There are a multitude of

variations that have been applied to regression analysis in QSAR studies [14]

and variations of multivariate techniques combined with regression for making

predictions about chemical properties such as partial least squares regression

[15, 16]. All of these approaches likely have merit because the chemical universe

is diverse and simple changes in chemical structure can have profound changes

in chemical properties. Most of these statistical approaches, however, should be

viewed as exploratory techniques subject to extensive scrutiny, further exper-
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imental testing, and ultimately the development of mechanistic understanding

for the relationship between structure and activity.

One area of prediction using regression in QSAR that has received some

scrutiny is the statistics of validation. Several authors [17, 18, 19] suggest that

many publications present a naive q2 and provide an improved means to present

validation for a predictive relationship. Furthermore, in a comparative study

of principal components regression, partial least squares, and ridge regression,

ridge regression out-performed the other two [20].

Two important assumptions exist for multiple linear regression that typically

make its direct use in QSAR studies dubious. The first is that the number of

observations must be larger than the number of structure measurements (small-

p, large-n). The second is that the structure measurements are uncorrelated

which is questionable when many structure measurements are made. We now

introduce two other statistical approaches: principal component regression and

ridge regression that are useful for regression analysis when there exists a large-

p, small-n problem and when the structure measurements are correlated.

3.2 Principal component regression

Principal component regression (PCR) is a two-step procedure that initially

utilizes principal component analysis (PCA) to select principal components and

then performs multiple regression using the selected principal components. Prin-

cipal component analysis (PCA) is a multivariate statistical technique that uses

correlations between and among variables to identify new components that are

linear combinations of the original variables [21, 22]. PCA is part of a family

of statistical procedures (e.g., factor analysis) that are used when there are a

large number of variables, many of which are highly correlated. This is often the

case with the algorithmically-derived variables used in QSAR such as regression
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when collinearity among independent variables violates statistical assumptions.

Furthermore, in datasets where the number of independent variables is large

relative to the number of chemicals (n) available in the dataset, then spurious

correlations can be a problem. A relevant solution is to use a dimension re-

duction procedure like PCA to reduce the number of independent variables by

eliminating pairs of variables that are highly correlated or using the principal

components as new uncorrelated, independent variables in the analysis. If the

principal components are used, it is often difficult to interpret the results so

calculations of the correlations between the original variables and the principal

components are useful.

For instance, Basak et al. [23] used PCA for 151 topological indices for a

training set of 220 compounds. About 60% of the variation in the 151 indices

could be explained by the first principal component and more than 95% of

the variation could be explained by the first 12 principal components. This

indicated substantial redundancy among the topological indices. PCA allowed

the number of independent variables to be reduced to 60 and subsequently

used in further analysis of the dataset. In these cases where there are a large

number of potential explanatory variables there is no option except to reduce

the complexity of the problem by using a dimension reduction procedure like

PCA or in combination with regression approaches [24].

Numerous additional examples of this type of procedure exist in the QSAR

literature [25, 13, 1]. There are a wide variety of additional dimension reduction

procedures available. As the name implies, their purpose is to reduce the di-

mensionality of the data to the essential and important dimensions. PCA is one

of the most common forms and seeks to identify orthogonal factors that are very

useful in analysis such as multiple regression that assumes orthogonality among

the independent variables. More complex dimension reduction procedures use
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various mathematical variations of factoring the independent variables or rota-

tions of the factor axes to increase the interpretation of the resulting variables,

e.g., varimax rotation.

This approach to principal components regression where PCA is run first

on the independent variables alone followed by regression using top principal

components is typically driven by a desire to eliminate multicolinearity in the

independent variables. Since the PCA is run without regard to the dependent

variable this leads to shortcomings of the PCR methodology. First, there is

no reason to believe the top principal components are related to the dependent

variable and thus elimination of lower components may eliminate the important

relationships. Second, use of principal components as independent variables

leads to an analysis that is hard to interpret. Third, PCA is useless in de-

signed experiments since the principal components are determined entirely by

the experimental design. To alleviate some of these shortcomings, [26] provides

an approach to dimension reduction of the independent variables that gener-

ates a sufficient reduction of the these variables which depends on the observed

dependent variable values.

3.3 Penalized Regression

3.3.1 Ridge regression

Ridge regression (RR) is an alternative option to PCR that does not require

eliminating highly collinear structure measurements. The basic idea behind RR

is to shrink the OLS regression coefficient estimates toward zero by adding a

penalty for large coefficients. Rather than minimizing the quantity ||Y −Xβ||2

which results in the OLS estimates, ridge regression minimizes the quantity

||Y −Xβ||2 + k||β||2 for a chosen k ≥ 0. If k = 0, the OLS estimate is the RR

estimate and no shrinkage is observed. In contrast, for k > 0 the RR estimate
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is β̂RR = (X ′X + kI)−1X ′Y and as k increases the estimates for β get closer

and closer to zero [24]. For predicting the activity of a new chemical, the OLS

estimate is replaced with the RR estimate, i.e. Ŷ ∗ = X∗β̂RR. The choice of k

is left to Section 4.

Many articles have utilized ridge regression for dealing with the large-p,

small-n problem in the QSAR literature [24, 27, 17, 28, 29]. In particular, [30]

used ridge regression to determine whether biodescriptors provide additional

information over chemodescriptors in predicting eight toxicity measures in 14

halocarbons. The biodescriptors, which were obtained by exposing the halocar-

bons to hepatocytes and producing a two-dimensional electrophoresis gel, were

found to provide additional information over the use of chemodescriptors alone.

Although ridge regression is gaining popularity much is still unknown about

its theoretical properties in the p >> n situation. For example, are the ridge

regression estimators consistent, i.e. do they recover the truth as the number

of observations increases? The difficulty here is that to ensure p >> n when

the number of observations increases, the number of independent variables must

also increase.

3.3.2 LASSO

Ridge regression is one specific type of regularized regression which also includes

LASSO (least absolute shrinkage and selection operator) [31, 32] and the elastic

net [33]. LASSO minimizes the quantity ||Y − Xβ||2 + k||β||1 where ||β||1 =∑p
j=1 |βj |. So whereas ridge regression penalizes the square of the deviation of β

from zero, LASSO penalizes the absolute value of the deviation from zero. The

adaptive LASSO improves on the original by allowing adaptively determined

weights for penalizing individual coefficients [34]. Group LASSO is an extension

to LASSO for predefined groups of independent variables that are included or

removed as a whole [35].
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3.3.3 Elastic net

Unlike ridge regression, LASSO cannot select more structure measurements than

observations and therefore [18] suggest it may not be appropriate for use in

QSAR studies. The elastic net penalizes both the square and the absolute

deviation from zero and therefore is somewhere between ridge regression and

LASSO. The elastic net is a promising approach for selecting important struc-

ture measurements while still retaining predictive ability [18].

3.3.4 Additional penalized regression approaches

Other statistical techniques are available for dealing with the large-p, small-n

problem, particularly PLS (partial least squares/projection to latent spaces)

[36, 37]. The QSAR literature appears to be favoring the use of RR [24, 38], al-

though at least one has suggested that using PCR and RR together is preferable

[39]. More recent work has generalized LASSO for use in the p >> n situation

by combining a Bayesian regression approach with a loss function to set some

coefficients to zero [40]. Another option that is closely related to LASSO and

RR, is the horseshoe [41].

3.4 Clustering Techniques

In the modeling discussed above, we have implicitly assumed that all chemicals

being analyzed are equally described by the one model that is chosen. Given the

heterogeneity in chemical structures and activities, it is intuitive that certain

chemical groups would follow one model while another would follow a quite

different model. Therefore it seems reasonable to cluster chemicals into groups

with similar structures. Statistical cluster analysis encompasses many different

algorithms and methods for grouping objects, e.g., chemicals, of similar type

into respective groups. In QSAR applications there are situations where the
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chemical database may be relatively large and contain compounds of many

different types, e.g., halogens, phenols, alkanes, etc. It may be difficult to find a

statistical model that will produce satisfactory results when a database contains

chemicals of many different types [25] or different modes of action [23]. Cluster

analysis can be useful to a priori group chemicals into similar groups based on

chemical structures or activities. Individual prediction models within a cluster

can then subsequently be developed.

A common clustering technique is k-means clustering in which the user can

determine a priori the number of clusters or one can iterate the analysis to

determine an optimal number of clusters in an exploration of a dataset (see

Section 4). Niemi et al. [42] used k-means clustering to explore the persistence

or degradation of 287 chemicals tested with the standard biochemical oxygen

demand (BOD) procedure. The 287 chemicals were derived from an exten-

sive literature search of available BOD values, plus scrutiny of the quality of the

BOD procedure used. The dataset was diverse and consisted of a wide variety of

chemical groups, e.g., halogens, aldehydes, hydrocarbons, acids, and sulfonates.

Fifty-four molecular connectivity indices were calculated and five chemical prop-

erties were either available or estimated. To reduce the dimensionality, PCA

was used and resulted in eight principal components that explained more than

94% of the variation in the original data. The eight principal components were

calculated in a k-means clustering algorithm that was iterated many times to

identify an optimum number of clusters that provided the best discrimination

of biodegradable and persistent chemicals. Once the analyses were completed,

a series of structural features were identified that were associated with degrad-

able and persistent chemicals. The overall model correctly classified 85% of the

degradable chemicals and 94% of the persistent chemicals. In addition, several

chemicals that were misclassified as degradable or persistent were retested. In
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many cases, retesting of the chemicals indicated that the biodegradability model

was correct and the original biodegradability test values were erroneous.

4 Model selection

It is often the goal of an analysis to choose one final model based on the data

at hand. The choices to arrive at this final model are extensive including which

structure measurements to include in the model, how many principal compo-

nents to include, what the ridge regression penalty should be, and how to cluster

chemicals. Here we discuss a number of statistical tools used to compare models

for the ultimate goal of selecting one model for prediction purposes.

4.1 F -test

In some cases, the models under consideration are nested. Model A is nested in

model B if the parameters in model B can be set to particular values to recover

model A. Consider the two regression models:

A: Yi = Xi1β1 + εi and

B: Yi = Xi1β1 +Xi2β2 + εi.

Model A is nested in model B since setting β2 = 0 recovers model A. Often

we are interested in determining whether model A or model B is preferable.

Model B will always fit the data better than model A since it has an additional

parameter. Unfortunately adding this additional parameter may simply fit noise

and therefore harm our predictions. Therefore we need a way to distinguish

when the model is fitting noise and when it is fitting signal.

A formal approach to compare two nested models is an F -test. This test

determines whether the larger model is a statistically significant improvement
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over the smaller model. If it is, this suggests the additional parameters involved

in creating the larger model are likely modeling signal rather than noise.

This is the approach used in [24] where the structures are grouped into

categories: topostructural (TSI) , topochemical (TCI), geometrical (3D), and

semiempirical quantum chemical (QC) variables. Models were tested in hierar-

chical lists where TSI was added first followed by TCI, then 3D, and finally QC.

The analysis showed that in most of the datasets incorporating all four cate-

gories provided the best model, each category provided a statistically significant

improvement over the smaller model.

4.2 Akaike/Bayesian information criterion

Often we are not interested simply in nested models. Consider a simple example

where there are two predictor variables and we consider the four models consist-

ing of every combination of variable inclusions. Then the model that has only

the first variable is not nested in the model that has only the second variable

rendering the F -test ineffective. The most common approach to determining

which variables to include is to use either Akaike Information Criterion (AIC)

[43] or Bayesian Information Criterion (BIC) [44].

Both of these criteria put penalties on the number of parameters in a model

and thereby encourage model parsimony. If the number of models is small

enough, then the criterion can be computed for all models and the model with

the best criterion, called the best subsets model, can be chosen [13]. Typically p

is too large to enumerate all models in a reasonable amount of time and then the

criterion is combined with a stepwise selection procedure to find a reasonable

model [45, 46], but no guarantee is made that this procedure finds the best

subset.
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4.3 Cross-validation

The F -test, AIC, and BIC are useful tools when we are interested in which

structure measurements to include, but these tools are not useful in determining

the number of principal components to use, the ridge regression parameter, or

how many clusters to use. A good approach for these choices is cross-validation

[17].

Although many variants of cross-validation exists, we only describe leave-

one-out cross-validation. This approach calculates the prediction sum of squares

(PRESS) for each candidate model, e.g. each number of principal components.

PRESS is calculated according to the following procedure:

1. For i = 1, . . . , n

(a) Fit the model while leaving out chemical i

(b) Predict the property of chemical i, Ŷi

(c) Calculate the squared prediction error for chemical i, (Yi − Ŷi)2

2. Sum all the squared prediction errors (PRESS)

The candidate model with lowest PRESS is chosen.

An alternative to this cross-validation approach is to separate the dataset

into two groups: the training and hold-out testing data. All candidate models

are fit using the training data and then a model is chosen based on performance

among the testing data. Although computationally faster than cross-validation,

this hold-out testing approach is only reliable when both the training and testing

data are numerous [47]. Due to the small sample sizes typically available in

QSAR studies, the cross-validation approach described here will be more reliable

and less wasteful than a hold-out approach [17, 47].
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5 Model averaging

The previous section outlined methodology for selecting one best model and

assuming it is the true model to make predictions. But, as George Box once

wrote [48]:

All models are wrong, but some are useful.

It is often useful to interpret the best model to suggest a mechanism that de-

scribes the property being analyzed, but we should not pretend that this model

is the truth. For the purposes of making a prediction, we should instead ac-

knowledge our uncertainty about model truth and account for that uncertainty.

This is exactly what model averaging does.

Suppose we consider a total of J models, e.g. if we have 10 structure mea-

surements then we could consider the set of J = 210 = 1024 models that includes

all combinations of those measurements. Now suppose that our prediction for

Y ∗ based on X∗ from each model j is Ŷ ∗j , then the model averaged prediction

is
∑J

j=1 wj Ŷ
∗
j where wj are model weights such that

∑J
j=1 wj = 1.

One approach to determining these weights is to use the AIC values for each

model [49]. Let AICj be the AIC value for model j, AICmin be the minimum

AIC among the J models, and ∆AICj = AICj − AICmin. Then the Akaike

weight for each model is

wj =
e−∆AICj/2∑J
i=1 e

−∆AICj/2
.

A difficulty with the use of model averaging in practice is the number of

possible models. If p is in the hundreds and we consider the models consisting of

all combinations of predictors being in the model, then we have as many models

as atoms in the universe, 1080 ≈ 2266. It is infeasible to estimate the parameters,

predict new values, and calculate the weight for all models. Fortunately, we can
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approximate the model averaged prediction if we can find the models with large

weight, wj . Methods, such as shotgun stochastic search [50], are currently being

developed to efficiently find these large weight models.

In [51], AIC model averaging was used in conjunction with PLS, PCR, and

cross-validation to determine the key biological predictors responsible for gener-

ating a specific cytokine response. A specific difficulty for their study was the use

of time-course measurements which provide a profile of ligand-induced changes

in protein phosphorylation state and cytokine output response in macrophage-

like RAW 264.7 cells. These time-course measurements are highly correlated and

therefore when used as predictors can severely violate independence assump-

tions. Through the use of model averaging and variable selection techniques,

the authors were able to relax this assumption and provide both a predictive

and, possibly, mechanistic understanding of the cytokine reponse.

6 Bayesian statistics

The use of Bayesian statistics is increasing all fields of science including QSAR

studies. An appealing aspect of Bayesian statistics is the coherence of all

methodologies through the use of conditional probability and Bayes’ rule [52]

as in equation (1)

P (A|B) =
P (B|A)P (A)

P (B)
. (1)

In all Bayesian analyses, A represents anything we don’t know whereas B rep-

resents everything we know or assume. For example, B includes the data, e.g.

measured chemical activities. In contrast, A represents model parameters, e.g.

regression coefficients, or predictions, e.g. unmeasured chemical activities. The

goal of a Bayesian analysis is to obtained the posterior, P (A|B), based on the

information provided in the prior, P (A), the statistical model, P (B|A), and
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the marginal likelihood, P (B). In this way, we can view the Bayesian approach

as a formal mathematical tool to move from the information we have before

an experiment is observed, i.e. the prior, to the information we have after an

experiment is concluded, i.e. the posterior.

The interpretation of a Bayesian analysis is much different from the inter-

pretation of a frequentist analysis. For example, in the model selection context

a frequentist produces a p-value where a Bayesian produces a posterior model

probability. The interpretation of the p-value is the probability of observing a

test statistic as or more extreme than that observed, if the null hypothesis is

true while a posterior model probability (for the null hypothesis) has the in-

terpretation as the probability that the null hypothesis is true given the data

we observed. Similarly for parameter uncertainty a frequentist produces a confi-

dence interval where a Bayesian produces a credible interval. The interpretation

of a 100(1−α)% confidence interval is over repeated realizations of the data, the

constructed confidence intervals will contain the true parameter 100(1− α)% of

time time while a 100(1−α)% credible interval has the interpretation the prob-

ability the true parameter value is in the interval is 100(1−α)%. In both cases,

the latter is a more natural interpretation (at least to us), but comes at the cost

of requiring a prior distribution for parameters and, for model probabilities, a

prior probability for models.

In the rest of this section, we will show the natural connection between

previously mentioned techniques, e.g. regression, ridge regression, and model

averaging, and Bayesian methods. For a more thorough review of Bayesian

background and approaches please see [53, 54].
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6.1 Bayesian regression

In the regression problem described in Section 3.1, we are typically interested

in estimating the unknown parameters β and σ2 based on the available data.

Equation (2) provides a rewriting of Bayes’ rule to utilize the notation previ-

ously introduced where lower case ps are now used since we are talking about

continuous distributions.

p(β, σ2|y) =
p(y|β, σ2)p(β, σ2)

p(y)
(2)

In this statement, p(y|β, σ2) represents the regression model y = Xβ+ε, p(β, σ2)

represents prior information available concerning the model parameters, and

p(β, σ2|y) represents the information available after analyzing the new data.

It is common, albeit confusing, to eliminate X and the model itself from the

conditional probability statements in equation (2) since neither of these are

included in A and B of equation (1).

A convenient computational choice for the prior, p(β, σ2), is to choose a

normal-inverse gamma prior for β and σ2, specifically p(β, σ2) = p(β|σ2)p(σ2) =

N(β;β0, σ
2Σ0)Ga(σ−1;α0, β0) where N(a; b, c) represents a normal distribution

for a with mean b and variance matrix c and Ga(d; e, f) represents a gamma

distribution with shape e and rate f . If we simultaneously let b, c, and Σ−1
0 ap-

proach zero, then we obtain the prior p(β, σ2) ∝ σ−2 where the proportionality

symbol is used to indicate that this is not a proper distribution since it does not

integrate to one. Nonetheless, the posterior is a proper distribution and is

p(β, σ2|y) = N(β; β̂OLS , σ
2(X ′X)−1)Ga(σ−2;n/2, bn) (3)

where bn = (y−Xβ̂OLS)′y−Xβ̂OLS)/2. Therefore the posterior expectation of

β, E[β|y], is exactly the same as the ordinary least squares estimate.
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6.1.1 Informative priors

For simplicity, assume now that σ2 is known and we are interested in providing

an informative prior for β. A computationally convenient choice will be a normal

distribution with mean 0 and variance Σ0. If we further assume that Σ0 = τ2I,

then the posterior expectation for β is β̂RR, the ridge regression estimate where

k = σ2/τ2 [55].

A computationally less convenient choice is the Laplace [56], also called the

double exponential, prior distribution. If this prior, centered at zero, is used,

then the posterior expectation for β is a LASSO estimate. If the prior is a

mixture of a normal and Laplace prior both centered at zero, then the resulting

posterior expectation for β is an elastic net estimate [57].

Rather than strictly providing better parameter estimates, informative priors

can also be used to formally incorporate scientific knowledge. This was used in

[58] to combine information across multiple experiments to build a predictive

model of ligand-receptor binding affinities. It has been suggested that Bayesian

regression be further explored for its benefit in decision making [59].

6.2 Bayesian prediction

To predict a new chemical activity from its structure, we use Y ∗ as unknown

while Y is known. Utilizing the rules of probability, we arrive at the following

prediction equation:

p(Y ∗|Y ) =

∫
p(Y ∗|β, σ2)p(β, σ2|Y )dβdσ2.

This equation describes the entire distribution for our prediction for Y ∗ which

can be helpful in understanding how much uncertainty we have in the predicted

point estimate. The point estimate is found by taking the expectation and using
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the law of iterated expectations:

E[Y ∗|Y ] = E[E[Y ∗|β, σ2, Y ]] = E[X∗β|Y ] = X∗β̂

where β̂ will be the point estimate for β for the model under consideration,

e.g. for ridge regression, it is β̂RR. Therefore, to obtain a point estimate under

the Bayesian approach we have exactly the same two-step process: 1) estimate

the parameters in the model and 2) predict the new data point based on those

estimates.

6.3 Bayesian model averaging

As discussed in Section 5, there is no reason to presume that the one model

we have selected is actually the true model and predictions can be improved if,

rather than selecting a single model, all models are entertained as possibilities

and our prediction is based on a weighted average over all these models. The

Bayesian approach provides a formal derivation of this approach called Bayesian

model averaging [60, 61] which we outline here.

Using the laws of probability, we have

p(Y ∗|Y ) =

J∑
j=1

p(Y ∗|Mj)P (Mj |Y )

where the upper case P is used since this is an actual probability. To find a

point estimate for Y ∗, we calculate its expectation

E[Y ∗|Y ] =

J∑
j=1

E[Y ∗|Mj ]P (Mj |Y ).

The expectation for each model is calculated according to the previous section,

i.e. estimate the parameters and then predict Y ∗ based on those estimates.
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Therefore this approach is exactly consistent with the model averaging approach

in Section 5 if we set wj = P (Mj |Y ).

To find the posterior model probability P (Mj |Y ), we use Bayes’ rule

P (Mj |Y ) =
p(Y |Mj)P (Mj)

p(Y )
(4)

where P (Mj) is our prior probability for model j, p(Y |Mj) indicates how well

our data is described by that model, and p(Y ) =
∑p

i=1 p(Y |Mj)P (Mj) assures

that the posterior probability over all models sums to unity. Bayesian model

averaging in regression models can be accomplished using the BMA package [62]

in the statistical software R [63].

7 Summary

In this article, we covered the use of linear regression techniques for continuous-

valued activites in QSAR and suggested model averaging and Bayesian ap-

proaches as possible future directions to extend the use of these techniques. We

would be remiss not to mention that there are several other approaches to deal-

ing with the large-p, small-n problem including PLS [36, 37] and Bayesian neural

networks [64, 65, 66]. Bayesian neural networks can provide extremely good pre-

dictive power under cross-validation scrutiny, but we prefer the interpretability

afforded regression models which can lead to mechanistic understanding of how

structure affects activity. A number of authors have tried to compare these

different methods [67, 68, 69, 70]. We also did not cover the vast field of binary-

or categorical-valued activities [71, 72, 73], but even there the idea of Bayesian

model averaging has improved predictive power [72].

Statistical analysis and particularly multivariate statistics provide the math-

ematical chemist with a powerful arsenal of tools to improve our understanding
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of SARs. Here we have provided several examples of their applications to prob-

lems in QSAR. With the recent emergence of the Internet and outstanding

search engines, there is an extensive amount of information describing and il-

lustrating the use of these statistical techniques. However, it is important to

recognize that much of the information has not been peer-reviewed and we urge

the reader to seek standard textbooks and the vast peer-reviewed literature that

has developed and been accepted by the scientific community. In addition to

the Internet, there are many excellent statistical packages that are now available

for most of the standard, classical statistical tests such as regression, PCA, and

clustering techniques as well as their many variations. Many of the manuals

that come with these statistical packages are also well-documented. Exceptions

for available software still apply to many of the Bayesian approaches, but this

is likely to improve in the future.

In this brief review of some older statistical techniques and some new ap-

proaches, we have tried to provide a flavor for how many of the complex prob-

lems in SAR can be simplified with the use of multivariate statistics. However,

statistics is in itself a vast field of science and we certainly cannot do it justice

in a brief review. It is incumbent upon the scientist to clearly articulate the

question(s) he/she seeks to address and fully understand the potential statistical

techniques that could address the question(s). We strongly encourage the scien-

tist to also seek professional advice from a statistician and include a statistician

in team approaches to solving these complex problems in QSAR. Moreover, it

is wise to include or consult a statistician in the start of a project rather than

expecting one to fix a problem or analyze data after it has been gathered.
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