
Automatic Choreography Repair

Samik Basu1, Tevfik Bultan2

1 Iowa State University, sbasu@iastate.edu
2 University of California at Santa Barbara, bultan@cs.ucsb.edu

Abstract. Choreography analysis is a crucial problem in concurrent and
distributed system development. A choreography specifies the desired
ordering of message exchanges among the components of a system. The
realizability of a choreography amounts to determining the existence
of components whose communication behavior conforms to the given
choreography. Recently, the choreography realizability problem has been
proved to be decidable. In this paper, we investigate the repairability of un-
realizable choreographies, where the goal is to identify a set of changes to
a given un-realizable choreography that will make it realizable. We present
a technique for automatically repairing un-realizable choreographies and
provide formal guarantees of correctness and termination. We show the
viability of our technique by applying it successfully for several small but
representative unrealizable choregraphies from the domain of Singulary
OS contract and Web services.

1 Introduction

Choreography specifications are used in a variety of domains including coordi-
nation of software in service-oriented computing [15], specification of process
interactions in Singularity OS [11], and specification of communication behavior
among processes in distributed programs [2]. Choreographies describe desired
message exchange sequences among components, programs or processes (we will
refer to them as peers) of a distributed system. Choreography realizability prob-
lem is determining whether one can construct peers whose interaction behavior
conforms to the given choreography. As an example, consider the choreography
over two peers P1 and P2 shown in Figure 1(a) where edges represent messages
sent from one peer to another. This choreography describes a simple file transfer
protocol [9] where P1 is the client asking for the file transfer and the P2 is the file
server. First, the client sends a message to the server to request that the server
starts the transfer. When the transfer is finished, the server sends the “Transfer
Finished” message and the protocol terminates. However, the client may decide
to cancel the transfer before hearing back from the server by sending a “Cancel
Transfer” message in which case the server responds with “Transfer Finished”
message, which, again, terminates the protocol.

Figure 2(a) presents the projection of the choreography onto the participating
peers resulting in the corresponding peer behaviors (send actions are denoted
by “!” and receive actions are denoted by “?”). The distributed system that
consists of the peer specifications shown in Figure 2(a) can generate the message
sequence:

Event Message Name

ms: P1 → P2 Start Transfer
mf: P2 → P1 Transfer Finished
mc: P1 → P2 Cancel Transfer

s0

s1

ms:P1 -> P2

s2

mc:P1 -> P2

s3

mf:P2 -> P1

s4

mf:P2 -> P1

s0

s1

ms:P1 -> P2

s2

mc:P1 -> P2

s3

mf:P2 -> P1

s4

mf:P2 -> P1 mc:P1 -> P2

s0

s1

ms:P1 -> P2

s3

mf:P2 -> P1

ns(0)

m(0):P2 -> P1

s2

s4

mf:P2 -> P1

mc:P1 -> P2

(a) (b) (c)

Fig. 1. (a) Un-realizable choreography [9]; Repair by (b) relaxation, (c) restriction.

msP1→P2 ,mfP2→P1 ,mcP1→P2 (1)

This sequence corresponds to the case where the server sends a “Transfer Finished”
message (mf), but before consuming that message, the client sends the cancel-
lation request message (mc). The sequence moves the server to an undefined
(error) configuration, where server does not know whether the file was transferred
completely to the client before the client sent the cancellation request. In terms
of the choreography specification shown in Figure 1(a), the message sequence
given above is not covered by the choreography, but any implementation of this
choreography that uses asynchronous message passing will generate the message
sequence (1), violating the choreography specification. Hence, the choreography
specification shown in Figure 1(a) is un-realizable.
Problem Statement. This brings up the question: when a choreography is
determined to be un-realizable, is it possible to automatically repair the choreogra-
phy such that the repaired version is realizable? We will refer to this problem as
the choreography repairability problem. Its importance stems from the fact that
automation in repairing choreography will allow faster development of distributed
systems with formal guarantees of correctness.
Our Solution. At its core, our choreography repair technique depends on
examining and analyzing the cause of violation of the condition for deciding
choreography realizability. In [4], we have proved that choreography C is realizable
if its behavior (L(C)) is identical that exhibited by IC1 (L(IC1)), which is the
asynchronous system where each participating peer has at most one pending
message and is obtained from the projection of C. We present two types of
choreography repair mechanisms:
1. Relaxation. The choreography C is changed to C′ such that L(C) ⊆ L(C′), i.e.,

new behavior is added to C, such that L(C′) = L(IC′1).
2. Restriction. The choreography C is changed to C′ such that L(C) = L(C′ ↓C) =
L(IC′1 ↓C) ⊆ L(IC1), where ↓C denotes the behavior projected on the messages
in C. This change implies that some behavior of IC1 is disallowed in IC′1 . This
is achieved by adding extra synchronization messages in C′. When these extra

P2 : s0

P2 : s1

 ?ms

P2 : s2

 ?mc

P2 : s3

 !mf

P2 : s4

 !mf

P1 : s1

P1 : s3

 ?mf

P1 : s2

 !mc

P1 : s4

 ?mf

P1 : s0

 !ms

P2 : s0

P2 : s1

 ?ms

P2 : s2

 ?mc

P2 : s3

 !mf

P2 : s4

 !mf

P1 : s1

P1 : s3

 ?mf

P1 : s2

 !mc

P1 : s4

 ?mf

P1 : s0

 !ms

[P1 : s0 : [],P2 : s0 : []]

[P1 : s1 : [],P2 : s0 : [ms]]

ms:P1 -> P2

[P1 : s1 : [],P2 : s1 : []]

 epsilon

[P1 : s2 : [],P2 : s1 : [mc]]

mc:P1 -> P2

[P1 : s1 : [mf],P2 : s3 : []]

mf:P2 -> P1

[P1 : s2 : [mf],P2 : s3 : [mc]]

mf:P2 -> P1

[P1 : s2 : [],P2 : s2 : []]

 epsilon mc:P1 -> P2

[P1 : s3 : [],P2 : s3 : []]

 epsilon

[P1 : s4 : [],P2 : s3 : [mc]]

 epsilon

[P1 : s2 : [mf],P2 : s4 : []]

mf:P2 -> P1

[P1 : s4 : [],P2 : s4 : []]

 epsilon

(a) (b)
Fig. 2. (a) Projected Peers P1 and P2 for Figure 1(a); (b) System Behavior

messages are projected away, the repaired choreography C′ specifies exactly
the same sequences of messages specified by the un-realizable choreography C.

The choreography in Figure 1(a) is changed to the one in Figure 1(b) via relaxation,
by adding new behavior (blue bold-edge), which makes the latter realizable. This
is because the sequence that made C un-realizable (see sequence (1) above) is now
included in the repaired version C′. On the other hand, Figure 1(c) presents repair
via restriction, by adding synchronization messages from state s1 to ns(0) (red
dotted-edges); the restriction also makes the resultant choreography realizable.
In this case, the sequence in (1) is not possible in IC′1 .

Contribution. We present a formal characterization of choreography repairabil-
ity. To the best of our knowledge, this is the first time such a characterization
has been presented. We present a sound and complete algorithm for choreogra-
phy repair based on this characterization. Additionally, we develop a prototype
implementation of our technique and discuss its application in repairing several
unrealizable choreographies.

2 Choreography Realizability

We proceed by presenting an overview of our earlier results [4] on choreography
realizability, which forms the basis for formalizing its automatic repair strategy.

Peers. The behavior B of a peer P is a finite state machine (M,T, t0, δ) where
M is the union of input (M in) and output (Mout) message sets, T is the finite set
of states, t0 ∈ T is the initial state, and δ ⊆ T × (M ∪ {ε})× T is the transition
relation. A transition τ ∈ δ can be one of the following three types: (1) a send-
transition of the form (t1, !m1, t2) which sends out a message m1 ∈Mout, (2) a
receive-transition of the form (t1, ?m2, t2) which consumes a message m2 ∈M in

from peer’s input queue, and (3) an ε-transition of the form (t1, ε, t2). We write

t
a−→ t′ to denote that (t, a, t′) ∈ δ. Figure 2(a) illustrates the behavior of peers

P1 and P2; states in Pi are denoted by a tuple (Pi:“state-name”).

System. Given a set of peers P = {P1, . . . , Pn} with Bi = (Mi, Ti, t0i, δi)
denoting the behavior of Pi and Mi = M in

i ∪Mout
i such that ∀i : M in

i ∩Mout
i = ∅,

and ∀i, j : i 6= j ⇒ M in
i ∩ M in

j = Mout
i ∩ Mout

j = ∅. A system behavior or
simply a system over P is denoted by a (possibly infinite state) state machine
I = (P, S, s0, M,∆) where P is the set of Peers, S is the set of states in the
system and each state is described by the local states of the peers in P and the
cotents of their queues. s0 ∈ S is the start state, where none of the peers have
any pending messages in their queue to consume. The set M contains the set of
all messages that are being exchanged by the participating peers. Finally, the
transition relation ∆ is described as follows. For s = (Q1, t1, Q2, t2, . . . Qn, tn) ∈ S
and s′ = (Q′1, t

′
1, Q

′
2, t
′
2, . . . Q

′
n, t
′
n) ∈ S, where ti and Qi are the local state and

the queue-content of the i-th peer,

1. s
mPi→Pj

−−−−−→ s′ ∈ ∆ if ∃i, j ∈ [1..n] : m ∈ Mout
i ∩M in

j , (i) ti
!m−−→ t′i ∈ δi, (ii)

Q′j = Qjm, (iii) ∀k ∈ [1..n] : k 6= j ⇒ Qk = Q′k and (iv) ∀k ∈ [1..n] : k 6= i⇒
t′k = tk [send action]

2. s
ε−→ s′ ∈ ∆ if ∃i ∈ [1..n] : m ∈ M in

i (i) ti
?m−−→ t′i ∈ δi, (ii) Qi = mQ′i, (iii)

∀k ∈ [1..n] : k 6= i⇒ Qk = Q′k and (iv) ∀k ∈ [1..n] : k 6= i⇒ t′k = tk
[receive action]

3. s
ε−→ s′ ∈ ∆ if (i) ∃i ∈ [1..n] : ti

ε−→ t′i ∈ δi, (ii) ∀k ∈ [1..n] : Qk = Q′k and (iii)
∀k ∈ [1..n] : k 6= i⇒ t′k = tk [internal action]

Each state in the system is described by the local states of the peers along
with the status of their queues. The send actions are non-blocking, i.e., when a
peer Pi sends a message m to a peer Pj (denoted by mPi→Pj), the message gets
appended to the tail of the queue associated to Pj (see item 1(ii)). We refer to
the queue as the receive queue of Pj . The receive actions are blocking, i.e., a peer
can only consume a message if it is present at the head of its receive queue (see
item 2(ii)). Only the send actions are observable in the system as these actions
involve two entities: the sender sending the message and the receive queue of the
receiver. All other actions (receive and internal actions) are local to one peer
and, therefore, unobservable (ε-transitions). We will use the functions lSt(., .)
and lQu(., .) to obtain local state and queue of a peer from a state in the system,
i.e., for s = (Q1, t1, Q2, t2, . . . Qn, tn) ∈ S, lSt(s, P1) = t1 and lQu(s, P1) = Q1.

K-bounded System. A k-bounded system (denoted by Ik) is a system where
the length of message queue for any peer is at most k. The description of k-
bounded system behavior is, therefore, realized by augmenting condition 4(a) in

the system behavior (see above) to include the condition |Qj | < k, where |Qj |
denotes the length of the queue for peer j. In any k-bounded system, the send
actions can block if the receive queue of the receiver peer is full. Any k-bounded
system is finite state as long as the behaviors of the participating peers are finite
state. Figure 2(b) illustrates the system I1 obtained from the communicating
peers P1 and P2 of Figure 2(a). Note that initially P1 is at the local state P1 :s1

with an empty receive queue denoted by [].

Choreography as Conversation Protocol. A choreography describes the
conversation between peers and is represented by C = (P, SC , sC0 , L,∆c) where
P is a finite set of peers, SC is a finite set of states, sC0 ∈ C is the initial state, L
is a finite set of message labels and, finally, ∆c ⊆ SC × P × L× P × SC is the
transition relation. A transition of the form (sCi , P,m, P

′, sCj) ∈ ∆c represents
the sending of message m from P to P ′ (P, P ′ ∈ P).

In [4], we have proved that realizability can be verified by generating behavior
of peers obtained by projecting the conversation onto the respective peers and
then analyzing their communication pattern.

Peer Projection. The projection of a conversation protocol C on one of the
peers P , participating in the conversation, is obtained from C by performing the
following updates to the state machine describing C. (a) If a transition label is
mP→P ′ then replace it with !m; (b) if a transition label is mP ′→P then replace it
with ?m; (c) otherwise, replace transition label with ε. The system obtained from
the asynchronous communication of the projected peers of C is denoted by IC ;
IC1 being the corresponding 1-bounded system. The language of a choreography
conversation or a system is described in terms of set of sequence of send actions
of the form mP→P ′ ; in case of system, the concatenation of ε to any sequence
results in the sequence itself. The language is denoted by L(.).

Theorem 1 (Realizability [4]). C is language realizable ⇔ [L(C) = L(IC1)]

The above theorem states that a choreography is realizable if and only if the set of
sequences of send actions of a choreography is identical to the set of sequences of
send actions of the 1-bounded system where the participating peers are generated
from the projection of the choreography under consideration. Figure 2(b) presents
the behavior of the system IC1 for the choreography specification C shown in
Figure 1(a), where epsilon-labeled transitions denote consumption of messages
and other transitions denote sending of messages. The choreography C is un-
realizable because it does not include certain send sequence that is possible in
IC1 (Figure 2(b)) (Sequence (1) discussed in Section 1).

3 Choreography Repair

It directly follows from Theorem 1 that a choreography C is un-realizable if and
only if L(C) 6= L(Deter(IC1)). In the rest of the paper, we will only consider
the peer behaviors that are determinized and omit the usage of the function
Deter(.). In [4], we have also proved that L(C) ⊆ L(IC1), therefore, L(C) 6=
L(IC1) ⇒ L(C) ⊂ L(IC1).

Types of Repair. In this paper, we present two alternative techniques for
repairing un-realizable choreographies. One is based on adding new behaviors

(in terms of sends) to C, which we call relaxation. The other is based on adding
constraints that do not alter allowed sequences of sends in C but restrict the
behavior in IC1 . We call this approach restriction.

State Relationships between IC1 and C. Before we describe the relaxation
and restriction based repair techniques, we first discuss the structure of the IC1 ,
which is crucial for understanding our approach. If a state in C is represented
as sC, then the corresponding state in the peer P is a tuple denoted by P : sC.
Proceeding further, if s is a state in IC1 , then s = (Q1, t1, . . . , Qn, tn), where n is
the number of peers and ti is of the form Pi :s

C
i . Note that, the local states of

each peer in s may have been obtained from different states sCi in C. Also note
that different states in the choreography result in different local states in the
peer; however due to determinization these local states may be merged to form
one state in the peer. In our technique, we keep track of all the local states (in
turn, all the choreography states from which they are generated) of a peer that
are merged as a result of determinization.

Consider for example, the second state of the system in Figure 2–P1 is at
a state P1 : s1 obtained from the state s1 in C and P2 is at a state P2 : s0

obtained from the state s0 in C. Using the notations introduced in Section 2,
lSt((P1 :s1 : [], P2 :s0 : [ms]), P1) = P1 :s1.

3.1 Differences between C and IC
1

In order to apply relaxation or restriction, it is important to identify at least
one difference between C and IC1 in terms of sequences of send actions. We know
that for un-realizable C, L(C) ⊂ L(IC1). Therefore, there exists at least one send
sequence in IC1 which is absent in C.

Consider that there exists a path in IC1 in the form

s1
m

P1→P ′1
1−−−−−→ s2

m
P2→P ′2
2−−−−−→ s3 −→ . . . si

m
Pi→P ′i
i−−−−−→ si+1 (2)

which generates the following sequence of send actions m
P1→P ′1
1 ,m

P2→P ′2
2 , . . . ,

m
Pi→P ′i
i . Assume that, none of the paths in C allow the above send sequence. How-

ever, there exists a path in C which replicates the above sequence till m
Pi−1→P ′i−1

i−1 .
Let such a path be denoted by

t1
m

P1→P ′1
1−−−−−→ t2

m
P2→P ′2
2−−−−−→ t3 −→ . . . ti−1

m
Pi−1→P ′i−1
i−1−−−−−−−−→ ti (3)

where ti does not have any outgoing transition labeled by m
Pi→P ′i
i . In summary,

one of the differences between the send sequences present in C and IC1 is due to the

presence of send action m
Pi→P ′i
i at si and absence of the same at ti. For instance,

going back to the example in Figure 2, the difference between C and IC1 is due to
msP1→P2 ,mfP2→P1 ,mcP1→P2 , in which case si is equal to (P1 :s1 : [mf], P2 :s3 : [])
in IC1 and ti is equal to s3 in C.

The cause of the difference between the behaviors can be explained in one of
the two ways:
Independent Branches. The choreography specification includes a branching
behavior involving sends from at least two peers in two different branches. The
sender peers follow different paths in the branches. This is the case in Figure 1(a).

Independent Sequences. The choreography specification includes a path
where there are two messages sent by two different peers and the sender of
the second message does not (directly/indirectly) depend on the first message.
This situation can be illustrated using the following choreography specification:

t0
mP1→P2

−−−−−→ t1
mP3→P4

−−−−−→ t2.
The first and second transitions correspond to send actions of P1 and P3,

which can occur in any order in the corresponding system and the choreography
specification (as it stands), therefore, cannot be realized. We will refer to the
path as independent sequences and the transitions as independent transitions.

The objective of repair via relaxation or restriction is to alter the behavior of
C proceeding from ti such that the above causes of differences can be eliminated.

3.2 Repair by Relaxation

As noted before, relaxing C corresponds to adding new behaviors to C. Specifically,
adding a new behavior from state ti (in path (3) above) implies adding a transition

from ti to some t′i with transition label m
Pi→P ′i
i . The addition of such a new

transition obviously results in a new choreography specification, say C′. We
will denote relaxation of C to C′ as C ↗ C′. Note that, the following holds:
C ↗ C′ ⇒ L(C) ⊆ L(C′).

While adding a new transition from ti eliminates the difference due to the

send action m
Pi→P ′i
i , the important next step is to identify a suitable t′i. There

are two possibilities: we can either assign t′i to some existing state in C or generate
a new state. Careful selection of one of the two choices is important because it
impacts the termination of the repair mechanism (see Section 3.4). Using the
form of the system path shown in (2), let lSt(si, Pi) = Pi : ci; lSt(si+1, Pi) =
Pi :ci+1; lQu(si, Pi) = Qi; lQu(si+1, Pi) = Qi+1.

In the above, Qi = Qi+1 because the peer Pi does not consume any messages
at this transition.

Case 1. Consider that the receive queue Qi of the peer Pi is non-empty,
implying that there is one pending message to be consumed (recall that the IC1
is 1-bounded system with each receive queue capacity being 1). In other words,
some peer (say, R) has sent the message (say m) to Pi and Pi has not encountered
any receive action along the choreography path it has taken resulting in system
path shown in (2).

This case corresponds to the situation described as independent branching
(see above), when peer Pi is moving along a choreography specification path π
and the other peer R is moving along a different path π′ of the choreography
specification, resulting in the path shown in (2). Furthermore, R has sent m to
Pi which resides un-consumed in the receive queue of Pi.
Case 1a. Let there be a transition in the behavior of peer Pi at state Pi :ci+1,

where it can consume the message in its queue: Pi :ci+1
?m−−→ Pi :c

′
i. That is, the

choreography specification includes ci+1
mR→Pi

−−−−−→ c′i along the path π. Therefore,
both of the paths under consideration, π and π′, have the send action mR→Pi .

In π m
Pi→P ′i
i is followed by mR→Pi . In π′ mR→Pi is not followed by m

Pi→P ′i
i .

In this case, the relaxation adds ti
m

Pi→P ′i
i−−−−−→ t′i in the choreography specification

and sets t′i to c′i.

Case 1b. On the other hand, if there exists no transition in the behavior of peer
Pi starting from state Pi :ci+1 where it can consume the message in its queue,
then the following repair is done.

Case 1b-i. If Pi :ci+1 belongs to a cycle then in the newly added transition

ti
m

Pi→P ′i
i−−−−−→ t′i, t

′
i is set to a new state, which replicates the choreography

specification starting from ci+1. Note that, the repair does not assign t′i
to ci+1. This is because such assignment will result in unnecessary over-
relaxation of choreography specification due to the presence in mR→Pi in
path π′ and its possible absence in the cycle which is part of the path π. We
will discuss below this scenario using the example in Figure 3.
Case 1b-ii. If Pi at Pi : ci+1 cannot consume the pending message and
Pi :ci+1 does not belong to any cycle, then t′i is set to a newly generated state.
The addition of new transition removes the identified difference between the
choreography and the system.

Example. Consider the example in Figure 2. The path in IC1 (Figure 2) that is
absent in C (Figure 1(a)):

(P1:s0:[], P2:s0:[])
msP1→P2

−−−−−−→(P1:s1:[], P2:s0:[ms])
mfP2→P1

−−−−−−→ (P1:s1:[mf], P2:s3:[])
mcP1→P2

−−−−−−→(P1:s2:[mf], P2:s3:[mc])

Note that, we have considered only the send actions and the transitions are
considered with zero or more occurrences of ε followed by a send action. The

path in C that replicates most of this sequence is s0
msP1→P2

−−−−−−→ s1
mfP2→P1

−−−−−−→ s3.
Therefore, for repair by relaxation, our objective is to add a transition with send
action mcP1→P2 from the choreography state s3. From the system, we know that
the peer P1 at the state P1 :s2 can consume the message mf in its receive queue
and move to a state in P1 : s4 (see Figure 2). Therefore, the transition added
from s3 has the destination state s4. The result of this repair by relaxation is the
choreography specification presented in Figure 1(b). This illustrates the Case
1a of repair by relaxation.

Figure 3 illustrates the applications of Case 1b-i and 1a. The local states
of the peers participating in the system transitions are presented in bold-font.
In the first step, the difference between the system transition sequence and the
choreography sequence is repaired following the Case 1b-i. P1 :s2 does not have
a transition where it consumes the pending message n1, and P1 :s2 belongs to
a cycle. Therefore, a new state ns(0) replicating s2 is generated as part of the
repair strategy instead of adding the transition mP1→P2

1 from s3 to s2. This is
because the latter will result in unnecessary over-relaxation of the choreography.
Assume that the mP1→P2

1 is directly connected to s2 after the first step of the
repair. Then in the following step, application of Case 1a will result in addition of

s1

s2

m1:P1 -> P2

s3

n1:P2 -> P1

m1:P1 -> P2

(a)

s1

s2

m1:P1 -> P2

s3

n1:P2 -> P1

m1:P1 -> P2

ns(0)

n1:P2 -> P1 m1:P1 -> P2

m1:P1 -> P2

(b)

System: (
P1 :s1 : []
P2 :s1 : []

)
n
P2→P1
1−−−−−−→ (

P1 :s1 : [n1]
P2 :s3 : []

)
m

P2→P1
1−−−−−−−→ (

P1 :s2 : [n1]
P2 :s3 : [m1]

)

Choreography: s1
n
P2→P1
1−−−−−−→ s3

Case 1b-i: s3
m

P1→P2
1−−−−−−−→ ns(0)

m
P1→P2
1−−−−−−−→ ns(0)

System: (
P1 :s1 : []
P2 :s1 : []

)
m

P1→P2
1−−−−−−−→ (

P1 :s2 : []
P2 :s1 : [m1]

)
n
P2→P1
1−−−−−−→ (

P1 :s2 : [n1]
P2 :s3 : [m1]

)

Choreography: s1
m

P1→P2
1−−−−−−−→ s2

Case 1a: s2
n
P2→P1
1−−−−−−→ ns(0)

Fig. 3. Example illustrating application of Case 1b-ii and 1a of relaxation

nP2→P1
1 from s2 to s2, which will allow arbitrary number of m1 and n1 messages

at state s2. While this will make the choreography realizable, it also relaxes the
behavior more than necessary for realizability. As shown in Figure 3(b), a valid
repair does not require arbitrary number of n1 messages at state s2. �

Case 2. Now consider that the receive queue Qi of the peer Pi is empty,
implying that there is no pending message to be consumed. Unlike the previous
case, in this situation, the difference between IC1 and C (represented by paths (2)
and (3) in Section 3.1) is not necessarily due to independent branches, when two
peers move along two different paths of the choreography specification.

Instead the peers may be moving along the same path of the choreography
specification, and the latter has imposed an “un-realizable” ordering of send

actions involving m
Pi→P ′i
i . In other words, it is not possible to “stop” Pi from

sending the message mi from its projected behavior when the choreography

specification reaches ti, however ti does not have m
Pi→P ′i
i . This corresponds to

the case of independent sequences (see above).

Recall that, the choreography specification state is ti from where there is no

matching m
Pi→P ′i
i event. We check whether there exists a path from Pi : ti (i.e.,

local state of Pi obtained from projection at ti) to Pi : ti in the peer Pi via a
sequence of transitions such that after a sequence of ε-transitions, there is a !mi

transition followed by some other sequence of transitions.

Case 2a. If the check is successful, then we can infer that ti is part of a loop
and it contains independent transitions, which cause un-realizability.

• Case 2a-i. Then we identify the first intermediate state Pi : t in this loop,
which has an outgoing transition over some other output action. In this

case, a new transition ti
m

Pi→P ′i
i−−−−−→ t′i with t′i set to t is added to replicate the

behavior in IC1 .

• Case 2a-ii. If no such intermediate state exists, then ti
m

Pi→P ′i
i−−−−−→ t′i with t′i

set to ti (self-loop) is added.

In either case, the permutations of pairs of independent transitions that were
identified as the difference between C and IC1 are added and nothing else.

Case 2b. On the other hand, if the check is unsuccessful, then we can infer that
ti is not part of a loop.

• Case 2b-i. We find out whether P :ci+1 (local state of the sender at si+1)
has a path to P : ti (ti being the choreography state that cannot replicate
the behavior of the system from si). If such path exists in the behavior of Pi,
we infer that Pi moves along a path different from t1, t2, . . . , ti (see path 3)
in choreography but the path has the ability to join at ti. In this case, we

add a new transition labeled with ti
m

Pi→P ′i
i−−−−−→ ci+1 to remove the difference

between the choreography and corresponding the system.

• Case 2b-ii. If the condition in Case 2b-i fails, then we find out the chore-
ography state reachable from ci+1 (the choreography state corresponding

the senders local state at si+1) via the action m
Pi−1→P ′i−1

i−1 . If such a state is
t, then this implies that the choreography path extending from ci+1 allows

m
Pi−1→P ′i−1

i−1 after m
Pi→P ′i
i , while the choreography path along t1, t2, . . . , ti

(see path 3) does not allow m
Pi→P ′i
i after m

Pi−1→P ′i−1

i−1 . The repair in this case

is similar to Case 1a and amounts to adding ti
m

Pi→P ′i
i−−−−−→ t.

On the other hand, if no such choreography state t exists, then a new state

is generated and a transition over m
Pi→P ′i
i is added from ti to this newly

generated state.

Figure 4 illustrates the application of Case 2 of relaxation.

3.3 Repair by Restriction

The objective of restriction, unlike relaxation, is to constraint the behavior of
the system IC1 . In other words, going back to paths (3) and (2) in Section 3.1,

restriction implies disallowing the transition si
m

Pi→P ′i
i−−−−−→ si+1 in IC1 i.e., introduc-

ing restriction to disallow the transition ci
m

Pi→P ′i
i−−−−−→ c′i in C from happening at

the system state si, where lSt(si, Pi) = Pi :ci and lSt(si+1, Pi) = Pi :ci+1. The

restriction of transition ci
m

Pi→P ′i
i−−−−−→ c′i is achieved by adding a new intermediate

state between ci and c′i.

Case 1. Let ti has a transition to t where some peer P sends a message m to P ′

and P is different from Pi, the sender peer of the message mi. We verify whether

the transition ci
m

Pi→P ′i
i−−−−−→ ci+1 is reachable from t.

If the verification is successful, this corresponds to the case of unrealizability
due to independent transitions. The repair, in this case, results from the addition

s1

s2

a:P1 -> P2

s3

b:P3 -> P4

c:P1 -> P2

(a)

s1

s2

a:P1 -> P2

b:P3 -> P4

s3

b:P3 -> P4

c:P1 -> P2

c:P1 -> P2

b:P3 -> P4

(b)

System: (

P1 :s1 : []
P2 :s1 : []
P3 :s1 : []
P4 :s1 : []

)
bP3→P4−−−−−−→ (

P1 :s1 : []
P2 :s1 : []
P3 :s3 : []
P4 :s1 : [b]

)

Choreography: s1

Case 2a-ii: s1
bP3→P4−−−−−−→ s1

System: (

P1 :s1 : []
P2 :s1 : []
P3 :s1 : []
P4 :s1 : []

)
aP1→P2−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : []

)
cP1→P2−−−−−−→ (

P1 :s1 : []
P2 :s1 : [ac]
P3 :s1 : []
P4 :s1 : []

)

Choreography: s1
aP1→P2−−−−−−→ s2

Case 2a-i: s2
cP1→P2−−−−−−→ s1

System: (

P1 :s1 : []
P2 :s1 : []
P3 :s1 : []
P4 :s1 : []

)
aP1→P2−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : []

)
bP3→P4−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : [b]

)

bP3→P4−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : [bb]

)

Choreography: s1
aP1→P2−−−−−−→ s2

bP3→P4−−−−−−→ s3

Case 2a-ii: s3
bP3→P4−−−−−−→ s3

Fig. 4. Example illustrating application of Case 2a of Relaxation

of an intermediate state between ti and t such that ti
mP→P ′

−−−−−→ ns
nmP ′→Pi

−−−−−−→ t,
where nm is a new message and ns is a new state. Addition of such transitions

will disallow the m
Pi→P ′i
i at the system state si.

Case 2. However, if there is no transition from the state ti or the transition is
labeled with a send action performed by the same peer Pi, then it corresponds
to the case of unrealizability due to independent branches. In this case, we
identify the sender peer Pi−1 for the transition from ti−1 to ti. The restriction
is achieved by introducing an intermediate state between ci and ci+1 as follows:

ci
nmPi−1→Pi

−−−−−−−−→ ns
m

Pi→P ′i
i−−−−−→ ci+1, where nm and ns are newly added message and

newly added state, respectively.

These newly added messages and transitions in the choreography can be
viewed as an extra step which forces the peer Pi to come in sync with some other
peer (P ′ in Case 1a above and P in Case 1b and 2 above) before sending the
message mi. We refer to such extra step as the synchronization step.

We will denote restriction of C to generate C′ as C ↘ C′. It is immediate that

C ↘ C′ ⇒ L(C′ ↓C) = L(C′) ∧ L(IC
′

1 ↓C) ⊆ L(IC1) (4)

The operation ′.′ ↓C extracts the behavior with respect to actions present in C.
The restriction does not alter the behavior of the choreography in terms of the
actions in C but restricts the behavior of the corresponding system in terms of
the actions in C.
Example. Figure 1(c) presents the result of applying restriction based repair
of the choreography in Figure 1(a). There exists a path in the system where it

Algorithm 1
1: procedure Repair(C, inputRepairMechanism)

2: Compute IC1
3: if L(C) = L(IC1) then . No Need to Repair
4: return C . C is realizable
5: end if
6: Find a difference between C and IC1 . Sec.3.1
7: Apply C inputRepairMechanism C′ . Sec.3.2, 3.3
8: C := C′
9: GOTO Line 2 . Iterate

10: end procedure

reaches the state P1 :s1 : [mf], P2 :s3 : [] via the send sequence msP1→P2 , mfP2→P1 ;
from this state, the system is capable of producing mcP1→P2 (see Figure 2). The
choreography via the same sequence of sends reaches the state s3. Therefore,
the restriction is achieved by following the Case 2 above resulting in a repaired
choreography in Figure 1(c). �

3.4 Iterative Algorithm

It is necessary to apply the relaxation or the restriction iteratively till a realizable
choreography is obtained and all differences between the choreography and the
corresponding 1-bounded system behavior have been resolved. Algorithm 1 is an
iterative algorithm for choreography repair, where the input parameter “inpu-
tRepairMechanism” is either set to ↗ (relaxation) or ↘ (restriction). Figures 3
and 4 illustrate the application of Algorithm 1.

Theorem 2 (Correctness). The algorithm Repair is guaranteed to terminate
and produce a repaired (i.e., realizable) choreography.

Proof Sketch. The algorithm terminates only when the condition at Line 3 is
satisfied. Termination depends on the number of new states that get generated as
part of the repair, which, in turn, depends directly on the number of independent
branches and independent transitions. The number of independencies are bounded
by the number of branches and the maximum length of a path (with one unfolding)
in the choreography, which ensures the boundedness in the introduction of new
states, and thefore, termination. �

4 Prototype Implementation

We have implemented Algorithm 1. The tool and the examples are available
at http://fmg.cs.iastate.edu/project-pages/async/#rc. All results and
diagrams used in this paper are automatically generated by our implementation
of Algorithm 1 and a prototype output generation module. Note that the repairing
mechanism only considers the transitions and their labels; therefore, some repairs
may not capture the semantics of the choreographies being repaired. For instance,
Figure 5(a) presents a client-server contract from Singularity OS. It presents
the desired conversation patterns between a client requesting a communication
with the server. This contract is un-realizable. A possible repaired version is
presented in Figure 5(b). The added bold blue edges resulting from relaxation do

start

decide

request:C -> S

success

succeed:S -> C

sink

failed:S -> C

decide0

cancel:C -> S

end

cancel:C -> S confirm:C -> S cancel:C -> S cancelled:S -> C

start

decide

request:C -> S

success

succeed:S -> C

sink

failed:S -> C

decide0

cancel:C -> S

end

cancel:C -> S confirm:C -> S cancel:C -> S cancelled:S -> C failed:S -> C succeed:S -> C

start

decide

request:C -> S

sink

failed:S -> C

ns(1)

m(1):S -> C

ns(2)

m(2):S -> C

end

cancel:C -> S

success

cancel:C -> S confirm:C -> S

decide0

cancelled:S -> C failed:S -> C

ns(0)

succeed:S -> C

m(0):C -> S

cancel:C -> S

Fig. 5. (a) ReservationSession Contract, (b) repaired, (c) repaired with semantics

not follow the semantics of the messages being exchanged. Consider the new path

in the conversation: start
requestC→S

−−−−−−−−→ decide
cancelC→S

−−−−−−−→ decide0
succeedS→C

−−−−−−−−→ end,
where the server sends a “succeed” message even after the client sends a “cancel”
message. This is present in the repair in order to allow any order of “succeed” and
“cancel” messages (as “succeed” followed by “cancel” is allowed in the original
contract). However, the ordering introduced by repair may not align with the
requirements of the designer of the contract. One can, therefore, incorporate
certain application-domain specific information from the user such that relaxations
can be guided appropriately.

For instance, if the user had provided additional information that “cancel” can
never be followed by “succeed”, then relaxation would have been impossible and
the only choice for removing difference between the un-realizable choreography
and the corresponding 1-bounded system will be restriction. We have incorporated
such domain knowledge in our implementation. Figure 5(c) presents an alternate
solution for repairing the contract in Figure 5(a). Observe that in this solution, a
combination of relaxation and restriction has been applied.

It is worth mentioning two important aspects of user-centered repairing mech-
anism. Firstly, note that the role of a user is likely to be limited in most scenarios;
typically, users should review the result obtained via automated repairing tech-
nique and then decide whether or not to incorporate additional information in
the repairing technique. Once such information is incorporated, the process of
repair again proceeds automatically. Secondly, information provided by the user
may not allow relaxation in certain cases (due to constraints in the ordering of
messages, see above), as a result of which the automatic method will use repair
by restriction to remove certain causes of unrealizability. This, in turn, implies
the usage of both relaxation and restriction in the Algorithm 1 for repairing an
unrealizable choreography. The termination result follows immediately from the
following two-step view of the iterative algorithm. First, apply relaxations to re-
solve as many differences between choreography and 1-bounded projected system
without violating the user-provided constraints and then apply the restrictions
to resolve the rest of the differences. The process ensures that finite number of
application of relaxation and restriction leads to a repaired choreography.

5 Related Work

Realizability of choreographies has been studied before. The authors in [7, 9] use
state machine base specifications while the authors in [10, 6] use session types;
both present sufficient conditions for realizability. In [4], we have proved the
decidability of choreography realizability in terms of send sequences3 problem by
presenting a necessary and sufficient condition for realizability.

In [14], the realizability of choreography requires the developer to specify
a “dominant” process for each branch and loop construct, which allows the
projection mechanism to synthesize necessary synchronization messages between
the dominant process and others. Similarly, techniques proposed in [13, 16, 8,
3, 12] rely on introducing new processes, monitors and central controllers to
ensure realizability. These may not be viable options if one is using a distributed
computing paradigm and can be conservative in the sense that unncecessary
synchronization messages are added even for realizable choreographies.

The repair or amendment technique developed by authors in [12] focuses on
process algebraic description of choreography; however, the description does not
take into consideration iterations and recursions, which makes the technique not
applicable for general choreography behavior containing cycles.

In contrast, our work does not require introduction of new processes, does not
require a central controller, and does not require use of synchronous communica-
tion between any entities/peers. As our technique is based on finite state machines
and their language equivalence, it is applicable to choreographies and interactions
which are specified at different levels of abstractions, such as session-types [10]
and collaboration diagrams [5], as long as these specifications are translated to
state-machine based representation described in [4] and used in this paper.

3 Note that, the realizability problem for the MSC-graphs, which considers both send
and receive actions for realizability, is undecidable [1].

6 Conclusion

We present techniques for automatically repairing unrealizable choreographies
based on two strategies: 1) relaxation, where new behaviors are added to the
choreography as part of the repair and 2) restriction, where un-desired (not
specified by the choreography) behaviors in the system obtained by projecting the
choreography are removed as part of the repair. We prove that our repair algorithm
always terminates with a realizable choreography. To the best of our knowledge,
our method is the first to consider automatic repairing of choreographies and
provide formal guarantees of correctness.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In Proc. 28th Int. Colloq. on Automata, Languages, and Programming,
pages 797–808, 2001.

2. J. Armstrong. Getting Erlang to talk to the outside world. In Proc. ACM SIGPLAN
Workshop on Erlang, pages 64–72, 2002.

3. M. Autili, D. Ruscio, A. Salle, P. Inverardi, and M. Tivoli. A model-based synthesis
process for choreography realizability enforcement. In Fundamental Approaches to
Software Engineering, pages 37–52, 2013.

4. S. Basu, T. Bultan, and M. Ouederni. Deciding choreography realizability. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2012.

5. T. Bultan and X. Fu. Specification of realizable service conversations using collabo-
ration diagrams. In Service Oriented Computing and Applications, 2008.

6. P.-M. Denielou and N. Yoshida. Multiparty session types meet communicating
automata. In In Proceedings of ESOP, 2012.

7. X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification
and verification of reactive electronic services. In Proc. of the 8th Int. Conf. on
Implementation and Application of Automata (CIAA), 2003.

8. M. Güdemann, G. Salaün, and M. Ouederni. Counterexample guided synthesis of
monitors for realizability enforcement. In Automated Technology for Verification
and Analysis, pages 238–253. Springer, 2012.

9. S. Hallé and T. Bultan. Realizability analysis for message-based interactions using
shared-state projections. In SIGSOFT Foundations of Software Engineering, 2010.

10. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
In Proceedings of Symposium Principles of Programming Languages, 2008.

11. G. C. Hunt and J. R. Larus. Singularity: rethinking the software stack. Operating
Systems Review, 41(2):37–49, 2007.

12. I. Lanese, F. Montesi, and G. Zavattaro. Amending choreographies. In Automated
Specification and Verification of Web Systems, 2013.

13. N. Lohmann and K. Wolf. Realizability is Controllability. In Proc. 1st Central-
European Work. on Services and Their Composition, pages 61–67, 2009.

14. Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theoretical foundation of
choreography. In In Proceedings of Conference on World Wide Web, 2007.

15. Web Service Choreography Description Language (WS-CDL).
http://www.w3.org/TR/ws-cdl-10/, 2005.

16. Y. Yoon, C. Ye, and H.-A. Jacobsen. A distributed framework for reliable and
efficient service choreographies. In Proceedings of the 20th international conference
on World wide web, WWW ’11, pages 785–794. ACM, 2011.

