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ABSTRACT

In this work, we study the problem of recursively recovering a time sequence of sparse
vectors, S;, from measurements M, := S; + L; that are corrupted by structured noise L; which
is dense and can have large magnitude. The structure that we require is that L, should lie in a
low dimensional subspace that is either fixed or changes “slowly enough”; and the eigenvalues of
its covariance matrix are “clustered”. We do not assume anything about the sequence of sparse
vectors, except a bound on their support size. Their support sets and their nonzero element
values may be either independent or correlated over time (usually in many applications they
are correlated). A key application where this problem occurs is in video surveillance where
the goal is to separate a slowly changing background (L;) from moving foreground objects
(S;) on-the-fly. To solve the above problem, we introduce a novel solution called Recursive
Projected Compressive Sensing (ReProCS). Under mild assumption, we show that ReProCS
can exactly recover the support set of S; at all times; and the reconstruction errors of both
S; and L; are upper bounded by a time-invariant and small value at all times. ReProCS is
designed under the assumption that the subspace in which the most recent several L;’s lie can
only grow over time. Therefore, it needs to assume a bound on the total number of subspace
changes, J. To address this limitation, we introduce a novel subspace estimation scheme called
cluster-PCA and we refer to the resulting algorithm as ReProCS with cluster-PCA (ReProCS-
cPCA). ReProCS-cPCA does not need a bound on J as long as the delay between subspace
change times increases in proportion to log.J. An extra assumption that is needed though is
that the eigenvalues of the covariance matrix of L; are sufficiently clustered. As a by-product,
at certain times, the basis vectors for the subspace in which the most recent several L;’s lies

is also recovered.



CHAPTER 1. Introduction

In this work, we study the problem of recovering a time sequence of sparse vectors, Sz, from
measurements M; := S; + L; that are corrupted by large magnitude but dense and structured
noise, L;. The structure that we require is that L; should lie in a low dimensional subspace
that is either fixed or changes “slowly enough”; and the eigenvalues of its covariance matrix
are “clustered”. As a by-product, at certain times, we are also able to recover a basis matrix
for the subspace in which the recent several L;’s lies. Thus, at these times, we also solve the
recursive robust principal components’ analysis (PCA) problem. For recursive robust PCA,
L, is the signal of interest while Sy can be interpreted as the outlier (sparse noise).

A key application where the above problem occurs is in video analysis where the goal is
to separate a slowly changing background from moving foreground objects [1,2]. If we stack
each frame as a column vector, the background is well modeled as lying in a low dimensional
subspace that may gradually change over time, while the moving foreground objects constitute
the sparse vectors [2,3] which change in a correlated fashion over time. Another key application
is online detection of brain activation patterns from functional MRI (fMRI) sequences. In this
case, the “active” region of the brain is the the correlated sparse vector.

Many of the older works on sparse recovery with structured noise study the case of sparse
recovery from large but sparse noise (outliers), e.g., [3-5]. However, here we are interested in
sparse recovery in large but low dimensional noise. On the other hand, most older works on
robust PCA cannot recover the outlier (S;) when its nonzero entries have magnitude much
smaller than that of the low dimensional part (L) [1,6,7]. The main goal of this work is to
study sparse recovery and hence we do not discuss these older works here. Some recent works

on robust PCA such as [8,9] assume that an entire measurement vector M; is either an inlier



(St is a zero vector) or an outlier (all entries of S; can be nonzero), and a certain number of
M,’s are inliers. These works also cannot be used when all S;’s are nonzero but sparse.

In a series of recent works [2,10], a new and elegant solution, which is referred to as
Principal Components’ Pursuit (PCP) in [2], has been proposed. It redefines batch robust
PCA as a problem of separating a low rank matrix, £; := [Lq,..., L], from a sparse matrix,
S; :=[51,..., 5, using the measurement matrix, My := [My,..., M;] = £, + S;. Thus these
works can be interpreted as batch solutions to sparse recovery in large but low dimensional
noise. Other recent works that also study batch algorithms for recovering a sparse S; and a
low rank £; from M, := £; + &, or from undersampled measurements include [11-20].

It was shown in [2] that, with high probability (w.h.p.), one can recover £; and S; exactly
by solving

1%11;1||£||* + Al|S||1,vec subject to L4 S = M, (1.1)

provided that (a) £; is dense (its left and right singular vectors satisfy certain conditions); (b)
any element of the matrix &; is nonzero w.p. g, and zero w.p. 1 — g, independent of all others
(in particular, this means that the support sets of the different S;’s are independent over time);
and (c) the rank of £; and the support size of S; are small enough. Here ||B]|, is the nuclear
norm of B (sum of singular values of B) while || B||1 vec is the ¢; norm of B seen as a long vector.
In most applications, it is fair to assume that the low dimensional part, L; (background in case
of video) is dense. However, the assumption that the support of the sparse part (foreground in
case of video) is independent over time is often not valid. Foreground objects typically move in
a correlated fashion, and may even not move for a few frames. This results in S; being sparse
and low rank.

The question then is, what can we do if £; is low rank and dense, but S; is sparse and may
also be low rank? In this case, without any extra information, in general, it is not possible to
separate S; and L;. Suppose that an initial short sequence of L;’s is available. For example,
in the video application, it is often realistic to assume that an initial background-only training
sequence is available. Can we use this to do anything better?

One possible solution is as follows. We can compute the matrix containing the left singular



vectors of the initial short training sequence, Py. This can be used to modify PCP as follows.

We solve
min [[S[}1, subject to [|(1 — PP (M = S)||r <, (1.2)

where ||.||F is the Frobenius norm. This then becomes the standard ¢; minimization solution
for a batch sparse recovery problem in noise. As we show later in Lemma 3.3.2, denseness of
P, ensures that the restricted isometry constant of (I — Popé) is small and hence S; can be
recovered accurately by solving (1.2) as long as the “noise” it sees is small. Here the “noise”
is (I — 150150’)£t. This is small only if span(]So) approximately contains span(L;), i.e. the
subspace spanned by the future background frames is an approximate subset of that of the
initial training dataset. This is unreasonable to expect in a long sequence. Even though the
change of subspace from one time instant to the next is usually “slow”, the net change over a
long sequence can be significant.

We introduced the Recursive Projected Compressive Sensing (ReProCS) algorithm that
provided one possible solution to this problem by using the extra piece of information that an
initial short sequence of L;’s, or L;’s in small noise, is available (which can be used to get an
accurate estimate of the subspace in which the initial L;’s lie) and assuming slow subspace
change (as explained in Sec. 3.2). The key idea of ReProCS is as follows. At time ¢, assume that
a m X r matrix with orthonormal columns, P(t_l), is available with span(ﬁ(t_l)) ~ span(Li_1).
We project M; perpendicular to span(ﬁ(t_l)). Because of slow subspace change, this cancels out
most of the contribution of L;. Recovering Sy from the projected measurements then becomes
a classical sparse recovery / compressive sensing (CS) problem in small noise [21]. Under a
denseness assumption on span(£;_1), one can show that S; can be accurately recovered via {1
minimization. Thus, L; = My — S can also be recovered accurately. We use the estimates of
L; in a projection-PCA based subspace estimation algorithm to update P(t).

ReProCS assumes that the subspace in which the most recent several L,’s lie can only
grow over time. It assumes a model in which at every subspace change time, t;, some new
directions get added to this subspace. After every subspace change, it uses projection-PCA to

estimate the newly added subspace. As a result the rank of P(t) keeps increasing with every



subspace change. Therefore, the number of effective measurements available for the CS step,
(n— rank(ﬁ(t_l))), keeps reducing. To keep this number large enough at all times, ReProCS
needs to assume a bound on the total number of subspace changes, J.

In practice, usually, the dimension of the subspace in which the most recent several L;’s
lie typically remains roughly constant. A simple way to model this is to assume that at every
change time, t;, some new directions can get added and some existing directions can get deleted
from this subspace and to assume an upper bound on the difference between the total number
of added and deleted directions (the earlier model is a special case of this). We introduce
a novel approach called cluster-PCA that re-estimates the current subspace after the newly
added directions have been accurately estimated. This re-estimation step ensures that the
deleted directions have been “removed” from the new P(t). We refer to the resulting algorithm
as ReProCS-cPCA. We will see that ReProCS-cPCA does not need a bound on J as long as the
delay between subspace change times increases in proportion to log J. An extra assumption
that is needed though is that the eigenvalues of the covariance matrix of L; are sufficiently
clustered at certain times as explained in Sec 5.1.

Under the clustering assumption and some other mild assumptions, we show that, w.h.p,
at all times, ReProCS-cPCA can exactly recover the support of S;, and the reconstruction
errors of both S; and L; are upper bounded by a time invariant and small value. Moreover,
we show that the subspace recovery error decays roughly exponentially with every projection-
PCA step. The proof techniques developed in this work are very different from those used to
obtain performance guarantees in recent batch robust PCA works such as [2,8-12,16-20, 22].
Our proof utilizes sparse recovery results [21]; results from matrix perturbation theory (sin 6
theorem [23] and Weyl’s theorem [24]) and the matrix Hoeffding inequality [25].

Our result for ReProCS and ReProCS-cPCA do not assume any model on the sparse
vectors, S¢’s. In particular, it allows the support sets of the Si’s to be either independent,
e.g. generated via the model of [2] (resulting in S; being full rank w.h.p.), or correlated over
time (can result in Sy being low rank). The only thing that is required is that there be some

support changes every so often. We should point out that some of the other works that study



the batch problem, e.g. [16], also allow S; to be low rank.

A key difference of our work compared with most existing work analyzing finite sample
PCA, e.g. [26], and references therein, is that in these works, the noise/error in the observed
data is independent of the true (noise-free) data. However, in our case, because of how Ly is
computed, the error e, = L; — L, is correlated with L;. As a result the tools developed in these
earlier works cannot be used for our problem. This is the main reason we need to develop and
analyze projection-PCA based approaches for both subspace addition and deletion.

ReProCS and ReProCS-cPCA approaches are related to that of [27-29] in that all of these
first try to nullify the low dimensional signal by projecting the measurement vector into a
subspace perpendicular to that of the low dimensional signal, and then solve for the sparse
“error” vector. However, the big difference is that in all of these works the basis for the subspace
of the low dimensional signal is perfectly known. We study the case where the subspace is not

known and can change over time.

1.1 Notation

For aset T C {1,2,...n}, we use |T| to denote its cardinality, i.e., the number of elements in
T. We use T° to denote its complement w.r.t. {1,2,...n},ie. T¢:={ic{1,2,...n} i ¢ T}.
The notations T} C Ty and 15 O T} both mean that T} is a subset of T5.

We use the notation [tq,ts] to denote the interval that contains ¢; and to, as well as all
integers between them, i.e. [t1,ta] := {t1,¢1 + 1, - ,t2}. The notation [Ls;t € [t1,t2]] is used
to denote the matrix [L¢,, Ly 41, 5 Liy)-

For a vector v, v; denotes the ith entry of v and v denotes a vector consisting of the entries
of v indexed by T'. We use ||v]|, to denote the £, norm of v. The support of v, supp(v), is
the set of indices at which v is nonzero, supp(v) := {i : v; # 0}. We say that v is s-sparse if
|supp(v)| < s.

For a tall matrix P, span(P) denotes the subspace spanned by the column vectors of P.

For a matrix B, B’ denotes its transpose, and B denotes its pseudo-inverse. For a matrix

with linearly independent columns, BT = (B'B)"1B’. We use ||B||2 := max,.z || Bz||2/|z|2



to denote the induced 2-norm of the matrix. Also, ||B||« is the nuclear norm and ||B||max
denotes the maximum over the absolute values of all its entries. We let o;(B) denote the ith
largest singular value of B. For a Hermitian matrix, B, we use the notation B EYP AU to
denote the eigenvalue decomposition (EVD) of B. Here U is an orthonormal matrix and A is
a diagonal matrix with entries arranged in non-increasing order. Also, we use \;(B) to denote
the i¢th largest eigenvalue of a Hermitian matrix B and we use Apax(B) and Apin(B) denote
its maximum and minimum eigenvalues. If B is Hermitian positive semi-definite (p.s.d.), then
Ai(B) = 04(B). For Hermitian matrices By and Bs, the notation B; < By means that By — B

is p.s.d. Similarly, By = Bs means that By — By is p.s.d.

For a Hermitian matrix B, we have || Bl = \/max(/\?nax(B), A2, (B)). Thus, for a b >0,

|| B|l2 < b implies that —b < Apin(B) < Apax(B) < b. If B is a Hermitian p.s.d. matrix, then
1Bll2 = Amax(B).

The notation [.| denotes an empty matrix. We use I to denote an identity matrix. For
an m X n matrix B and an index set T' C {1,2,...n}, By is the sub-matrix of B containing
columns with indices in the set 7. Notice that By = BIp. We use B \ Br to denote Bre
(here T¢ := {i € {1,2,--- ,n} : i ¢ T}). Given another matrix By of size m X nga, [B Bs]
constructs a new matrix by concatenating matrices B and Bs in horizontal direction. Thus,
[(B\ Br) Bs] = [Bre Bs). For any matrix B and sets 11, T, (B)r, 1, denotes the sub-matrix

containing the rows with indices in 77 and columns with indices in T5.
Definition 1.1.1 We refer to a tall matriz P as a basis matrix if it satisfies P'P = I.

Definition 1.1.2 The s-restricted isometry constant (RIC) [27], 05, for an n X m matric

U is the smallest real number satisfying (1 — &)||z|3 < [|Wrz|3 < (1 + 8)||z||3 for all sets

T C{1,2,...n} with |T| < s and all real vectors x of length |T|.
It is easy to see that maxy. i< [[(¥7' ¥r) |z < #S(\I/) [27].

Definition 1.1.3 Let X and Z be two random wvariables (r.v.) and let B be a set of values

that Z can take.

1. We use B¢ to denote the event Z € B, i.e. B¢ :={Z € B}.



2. The probability of event B¢ can be expressed as [30],

P(B°) := E[Iz(Z2)].

where

I5(2) = 1 ifZekB

0 otherwise

is an indicator function of Z on the set B and E[lg(Z)] is the expectation of Ig(Z).

3. Define P(B¢|X) := E[lp(Z)|X] where E[lg(Z)|X] is the conditional expectation of Ip(Z)

given X.

Finally, RHS refers to the right hand side of an equation or inequality; w.p. means “with

probability”; and w.h.p. means “with high probability”.

1.2 Dissertation Organization

The dissertation is organized as follows. In Chapter 2, we give the mathematical pre-
liminaries. In Chapter 3, we give the problem definition followed by the model and key as-
sumptions. We discuss the ReProCS algorithm and its performance guarantees in Chapter 4.
ReProCS with cluster-PCA and its performance grantees are presented in Chapter 5. Finally,
conclusions are summarized in Chapter 6. Many parts of these chapters are taken verbatim

from [31] [32] [33] [34].



CHAPTER 2. Mathematical Preliminaries

In this section, we state certain results from the literature, or certain lemmas which follow
easily using these results, that will be used later. Parts of this chapter are taken verbatim

from [31] [32] [33] [34].

2.1 Compressive Sensing result

Compressed sensing is a signal processing technique for efficiently acquiring and recon-
structing a signal, by finding solutions to underdetermined linear systems. This takes advan-
tage of the signal’s sparseness or compressibility in some domain, allowing the entire signal
to be determined from relatively few measurements. The error bound for noisy compressive

sensing (CS) based on the RIC is as follows [21].
Theorem 2.1.1 ( [21]) Suppose we observe
y:=Vr+z
where z is the noise. Let T be the solution to following problem
min |lz||1 subject to ||y — Wxlls <& (2.1)

Assume that x is s-sparse, ||z|l2 < &, and d25(¥) < b(v/2 — 1) with a 0 < b < 1. Then the
solution of (2.1) obeys
& = zfl2 < C1€

with €y — I _4y/1H(VE)
LT 5 (V)62 (9) = 1I-(VZHLb(V2-1)°

Remark 2.1.2 Notice that if b is small enough, C1 is a small constant but C; > 1. For exam-

ple, if d25(¥) < 0.15, then Cy < 7. If C1& > ||z||2, the normalized reconstruction error bound



would be greater than 1, making the result useless. Hence, (2.1) gives a small reconstruction
error bound only for the small noise case, i.e., the case where ||z||s < & < ||z||2. In fact this is
true for most existing literature on CS and sparse recovery, with the exception of [3-5] (focus

on large but sparse noise) and [2,10].

2.2 Results from linear algebra
Davis and Kahan’s sin 6 theorem [23] studies the rotation of eigenvectors by perturbation.
Theorem 2.2.1 (sinf theorem [23]) Given two Hermitian matrices A and H satisfying

A 0 E H B E’

AZ[EEL ,HZ{EEL

0 A | |E B H | |E/
where [E E1] is an orthonormal matriz. Two ways of representing A+ H are

A+H B’ E A O F’

B A +H| EJ_/

FF

AJFH:{EEL 0AL| |F
1 1

where [F' F|] is another orthonormal matriz. Let R := (A+H)E — AE = HE. If Apin(A) >

Amax (A1), then
IR|l2

I = FEOEll < 5y i)

The above result bounds the amount by which the two subspaces span(E) and span(F')
differ as a function of the norm of the perturbation ||R||2 and of the gap between the minimum
eigenvalue of A and the maximum eigenvalue of A .

Next, we state Weyl’s theorem which bounds the eigenvalues of a perturbed Hermitian

matrix, followed by Ostrowski’s theorem.

Theorem 2.2.2 (Weyl [24]) Let A and H be two n X n Hermitian matrices. For each i =

1,2,...,n we have

Ai(A) + Amin(H) < XNi(A+H) < Xi(A) + Anax(H)
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Theorem 2.2.3 (Ostrowski [24]) Let H and W be n x n matrices, with H Hermitian and
W nonsingular. For each ¢ = 1,2...n, there exists a positive real number 0; such that

Amin(WW') < 0; < Apax(WW') and \i(WHW') = 0;\;(H). Therefore,
/\min(WHW,) > /\min(WW/))\min(H)
The following lemma proves some simple linear algebra facts.

Lemma 2.2.4 Suppose that P, P and Q are three basis matrices. Also, P and P are of the

same size, Q'P =0 and ||(I — PP")P||y = (.. Then,
1 (I = PPYPP|y = (1~ PPYPPls = (I - PP)P|s = (I — PP')P| = C.
2. ||PP' = PP'||lz < 2||(I — PP')Pl|2 = 2.
3. IP'Ql2 < ¢
4. VT=Z <oi((I - PPQ) <

The proof is in the Appendix A.

2.3 Simple probability facts and matrix Hoeffding inequalities

The following lemma follows easily using Definition 1.1.3.

Lemma 2.3.1 Suppose that B is the set of values that the r.v.s X,Y can take. Suppose that
C is a set of values that the r.v. X can take. For a 0 <p <1, if P(B¢|X) > p for all X € C,

then P(B€|C¢) > p as long as P(C¢) >0

The proof is in Appendix A.
The following lemma is an easy consequence of the chain rule of probability applied to a

contracting sequence of events.

Lemma 2.3.2 For a sequence of events E§, EY,... Ef, that satisfy E§ O EY O ES--- 2 Ef |

the following holds

m
‘Eo - H Ek’Ek 1
k=1
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proof
m
P(E,|E§) =P (B, En_y, - B§ES) = [ PELIER_1, B, - - EF)
k=1
m
=TI P(ELIE: )
k=1

|
Next, we state the matrix Hoeffding inequality [25, Theorem 1.3] which gives tail bounds

for sums of independent random matrices.

Theorem 2.3.3 (Matrix Hoeffding for a zero mean Hermitian matrix [25]) Consider
a finite sequence {Zy} of independent, random, Hermitian matrices of size n X n, and let { A}
be a sequence of fized Hermitian matrices. Assume that each random matriz satisfies (i)
P(Z? = A?) =1 and (i) E(Z;) = 0. Then, for all ¢ > 0,

<
802

2
P(/\max(z Z;) <€) >1—nexp(—=—;), where o = || ZA%HQ
¢ ¢

The following two corollaries of Theorem 2.3.3 are easy to prove. The proofs are given in

the Appendix A.

Corollary 2.3.4 (Matrix Hoeffding for a nonzero mean Hermitian matrix) Given an
a-length sequence {Z;} of random Hermitian matrices of size n X n, a r.v. X, and a set C
of values that X can take. Assume that, for all X € C, (i) Z;’s are conditionally independent

given X; (ii) P(b1I = Z, < boI|X) = 1 and (iii) bs] = 157, E(Z,|X) =< byl. Then for all

e >0,
2
P (Amax ( ZZt <bs+e€X)>1—nexp(— ﬁ) for all X €
ae?
P( m1n ZZt >b3—€|X)>1—neXp( m) fOT all X € C

The proof is in the Appendix A.

Corollary 2.3.5 (Matrix Hoeffding for an arbitrary nonzero mean matrix) Given an

a-length sequence {Zi} of random Hermitian matrices of size n X n, a r.v. X, and a set C
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of values that X can take. Assume that, for all X € C, (i) Z;’s are conditionally independent
given X; (ii) P(|Z¢||l2 < 01| X) =1 and (iii) |2 3, B(Z|X)||l2 < ba. Then, for all e >0,

1 ae?

P(HE ZZtHg <by+e€X)>1—(n1+n2) exp(—w) forall X €C

t 1

The proof is in the Appendix A.



13

CHAPTER 3. Problem Definition and Model Assumptions

In this chapter, we give the problem definition below followed by the model and key as-

sumptions. Parts of this chapter are taken verbatim from [31] [32] [33] [34].

3.1 Problem Definition

The measurement vector at time ¢, My, is an n dimensional vector which can be decomposed

as

Mt = Lt + St (31)

Here S; is a sparse vector with support set size at most s and minimum magnitude of nonzero
values at least Spin. L; is a dense but low dimensional vector, i.e. L; = P(t)at where P(t) is an
n X r(;) basis matrix with r;) < n, that changes every so often. P and a; change according
to the model given below. We are given an accurate estimate of the subspace in which the
initial tgain Le's lie, i.e. we are given a basis matrix PO so that ||(I — POPOI)POHQ is small. Here
Py is a basis matrix for span(Ly, . ), i.e. span(Py) = span(Ly,,,,. ). Also, for the first ¢y, time

instants, S; is either zero or very small. The goal is
1. to estimate both S; and L; at each time ¢ > 450, and

2. to estimate span(P(t)) every-so-often, i.e., update P(t) so that the subspace estimation

error, SE) = [[(I — P(t)p(/t))P(t)H% is small.
Notation for S;. Let T; := {i: (S;); # 0} denote the support of S;. Define

Shnin 1= t;nﬂir]aain 1{161%1 |(S¢)i] and s:= m?x|7}|
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Assumption 3.1.1 (Model on L;) We assume that L; = Pyyar where Pyy and ay satisfy

the following.

1.

3.

Py = Pj forallt; <t <tj1, j=0,1,2---J, where Pj is an n X r; basis matriz with
r; K n andr; < (tjyr —tj). Welet to = 0 and tj41 equal the sequence length. This
can be infinity also. At the change times, t;, P; changes as Pj = [(Pj—1 \ Pj o1a) Pjnew)-
Here, Pjpew 15 an n X Cjpew basis matriz with P]{,neij—l = 0 and Pj 54 contains c; o4

columns of Pj_1. Thus v = 1j_1 + Cjnew — Cj,old- Also, 0 < tigin < t1. This model is

tllustrated in Fig. 3.2.

There exists a constant cmax such that 0 < ¢ pew < Cmax and Zle(cm@w — Ciold) < Cmax

for all j. Thus, r; = ro + Zgzl(ci,new — Ci old)-
ay 1= P(t)’Lt, is a rj length random variable (r.v.) with the following properties.

(a) a;’s are mutually independent over t.

(b) a; is a zero mean bounded r.v., i.e. E(a;) = 0 and there exists a constant s such
that ||at]|co < s for all t.

(¢) Its covariance matriz Ay := Covlas] = E(aa}) is diagonal with A\~ := ming Apin (Ay) >
0 and A1 := max; Amax(A¢) < 0o. Thus, the condition number of any A¢ is bounded

by f =2

Also, P;j and a; satisfy the assumptions discussed in the next two subsections.

Definition 3.1.2 The following notation will be used frequently. Let P; . := Pu;—1) = Pj-1.

Fort € [tj,tjx1 — 1], let ay := Pj /Ly = Pj_1'Ly be the projection of Ly along Pj. of which

atxnz = (Pj—1 \ Pjoid) Lt is the nonzero part. Also, let at new := P}

L; be the projection of

Jynew

L, along the newly added directions. Thus,

At %,z At %,z
Qp s = and a; =

0 at new
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where 0 is a ¢; o1q length zero vector (since Pj g4 Ly = 0). Using the above, fort € [t;,t;41—1],

L; can be rewritten as
Lt = Pjat = (Pj—l \ Pj,old)at,*,nz + Pj,newat,new = P',*at,* + Pj,newat,new

and A; can be split as

(At)*,nz O
0 (At)new

where (Ag)snz = Cov(a v pnz) and (Ag)new = Cov(as pew) are diagonal matrices.

Ay =

3.2 Slow Subspace Change

By slow subspace change we mean all of the following.

1. First, the delay between consecutive subspace change times, t;1 — t;, is large enough.

2. Second, the projection of L; along the newly added directions, a; new, is initially small,
i.e. maxy <i<i;+a |G newlloo < Tnews With Ynew < 7« and Ynew < Smin, but can increase
gradually. We model this as follows. Split the interval [t;,¢;11 — 1] into a length periods.
We assume that

k

max Hat,neWHoo < Tnew,k = min(v _1’YneW7 ’Y*)

' max
i teltj+(k—1)a,t;+ka—1]

for a v > 1 but not too large'.

3. Third, the number of newly added directions is small, i.e. ¢jnew < Cmax < 79. This is

verified in Sec. 3.4.

3.3 Denseness assumption and its relation with RIC

For a tall n x r matrix, B, or for a n x 1 vector, B, we define the the denseness coefficient

as follows [32]:

I7'B
ks(B) := max 17 Bll>

_ 3.2
Ti<s || Bl|2 (32)

Small Ynew and slowly increasing Ymew,x is needed for the noise seen by the sparse recovery step to be small.
However, if Ynew is zero or very small, it will be impossible to estimate the new subspace. This will not happen
in our model because Ynew > A~ > 0.
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Figure 3.1 The subspace change model.

where |[|.||2 is the matrix or vector 2-norm respectively. Clearly, xs(B) < 1. The denseness
coefficient measures the denseness (non-compressibility) of a vector B or of the columns of a
matrix B. For a vector, a small value indicates that its entries are spread out, i.e. it is a
dense vector. A large value indicates that it is compressible (approximately or exactly sparse).
Similarly, for a matrix B, a small value means that most (or all) of its columns are dense

vectors.

Remark 3.3.1 The following facts should be noted about kg/(.).
1. For an n x r matriz B, ks(B) is a non-decreasing function of s.
2. For an n X r basis matriz B, ks(B) is a non-decreasing function of r = rank(B).
3. A loose bound on ks(B) obtained using triangle inequality is ks(B) < ski1(B).

4. For a basis matriz P, ||P|l2 = 1 and hence rs(P) = max|p|<, [[I7P|2 and rs(PP') =
ks(P). Thus, for any other basis matriz Q for which span(Q) = span(P), ks(P) = ks(Q).
Thus, ks(P) is a property of span(P), which is the subspace spanned by the columns of

P, and not of the actual entries of P.

The lemma below relates the denseness coefficient of a basis matrix P to the RIC of I —PP’.

The proof is in the Appendix B.

Lemma 3.3.2 For an n X r basis matriz P (i.e P satisfying P'P =1),

5s(I — PP') = K2(P).
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In other words, if P is dense enough (small k), then the RIC of I — PP’ is small. Thus, using
Theorem 2.1.1, all s-sparse vectors, S; can be accurately recovered from y; := (I — PP')S; + 3

if §; is small noise.

3.4 Model Verification

We now discuss model verification for real data. We experimented with two background
image sequence datasets. The first was a video of lake water motion. The second was a
video of window curtains moving due to the wind. The curtain sequence is available at
http://home.engineering.iastate.edu/~chenlu/ReProCS/Fig2.mp4. For this sequence,
the image size was n = 5120 and the number of images, t .« = 1755. The lake sequence is avail-
able at http://home.engineering.iastate.edu/~chenlu/ReProCS/ReProCS.htm (sequence
3). For this sequence, n = 6480 and the number of images, tn.x = 1500. Any given back-
ground image sequence will never be exactly low rank, but only approximately so. Let the data
matrix with its empirical mean subtracted be Ly,;. Thus Lpyy is a n X tax matrix. We first
“low-rankified” this dataset by computing the EVD of (1/tmax)L fullﬁ}ull? retaining the 90%
eigenvectors’ set (i.e. sorting eigenvalues in non-increasing order and retaining all eigenvectors
until the sum of the corresponding eigenvalues exceeded 90% of the sum of all eigenvalues);
and projecting the dataset into this subspace. To be precise, we computed Py, as the matrix
containing these eigenvectors and we computed the low-rank matrix £ = PfuuPJ’cu”E fut- Thus
L is a n X tyax matrix with rank(£) < min(n, tymax). The curtains dataset is of size 5120 x 1755,
but 90% of the energy is contained in only 34 directions, i.e. rank(L) = 34. The lake dataset is
of size 6480 x 1500 but 90% of the energy is contained in only 14 directions, i.e. rank(L) = 14.
This indicates that both datasets are indeed approximately low rank.

In practical data, the subspace does not just change as simply as in the model given in
Sec. 3.1. There are also rotations of the new and existing eigen-directions at each time which
have not been modeled there. Moreover, with just one training sequence of a given type, it is
not possible to compute Cov(L;) at each time ¢. Thus it is not possible to compute the delay

between subspace change times. The only thing we can do is to assume that there may be


http://home.engineering.iastate.edu/~chenlu/ReProCS/Fig2.mp4
http://home.engineering.iastate.edu/~chenlu/ReProCS/ReProCS.htm
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a change every d frames, and that during these d frames the data is stationary and ergodic,
and then estimate Cov(L;) for this period using a time average. We proceeded as follows.
We took the first set of d frames, L£q.q := [L1, Lo ... Ly|, estimated its covariance matrix as
(1/d)L1.4L)., and computed Py as the 99.99% eigenvectors’ set. Also, we stored the lowest
retained eigenvalue and called it A\™. It is assumed that all directions with eigenvalues below
A~ are due to noise. Next, we picked the next set of d frames, L411.04 := [La+1, Lat2, - - . Lagl;
projected them perpendicular to Py, i.e. computed Ly, = (I — PyPj)Lit+1:24; and computed
P new as the eigenvectors of (1/d)Lq, /l,p with eigenvalues equal to or above A~. Then,
P = [Py, Pi new|. For the third set of d frames, we repeated the above procedure, but with Py
replaced by P; and obtained P,. A similar approach was repeated for each batch.

We used d = 150 for both the datasets. In each case, we computed 7y := rank(F), and
Cmax = max; rank(Pj new). For each batch of d frames, we also computed a; new := P]ﬂncht,
Qg s 1= P]{_lLt and 7y, 1= maxy ||a¢||co. We got ¢, = 3 and rg = 8 for the lake sequence and
¢mz = D and rg = 29 for the curtain sequence. Thus the ratio ¢, /rg is sufficiently small in
both cases. In Fig 3.2, we plot ||asnewl||oo/7+ for one 150-frame period of the curtain sequence
and for three 150-frame change periods of the lake sequence. If we take o = 40, we observe that
Ynew i= MAaX; MAXy; <¢<t;+a l|at new|loo = 0.1257, for the curtain sequence and Ynew = 0.067
for the lake sequence, i.e. the projection along the new directions is small for the initial «

,Uk—l

frames. Also, clearly, it increases slowly. In fact ||a;new|loco < max( Ynew, Vx) for all t € Z; .

also holds with v = 1.5 for the curtain sequence and v = 1.8 for the lake sequence.
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CHAPTER 4. Recursive Projected CS (ReProCS) and its Performance

Guarantees

ReProCS considers the case that c¢joq = 0 for all j. Therefore, P; = [Pj_1 Pjnew] and
7j = 7j—1 + Cjnew- In Sec. 4.1, we first explain the main idea of projection-PCA (proj-PCA).
In Sec 4.2, we explain the ReProCS algorithm and why it works. We summarize the Recursive

Projected CS (ReProCS) algorithm in Algorithm 2. It uses the following definition.

Definition 4.0.1 Define the time interval Z;y, := [t; + (k — 1)a, t; + ka—1] fork=1,... K

and T 41 := [t; + Ko, tj1 — 1]. Here, K is the algorithm parameter in Algorithm 2.

We give the performance guarantees (Theorem 4.3.1) in Sec 4.3. The proof of Theorem 4.3.1
is given in Sec 4.4.4. In Sec 4.6, we show numerical experiments demonstrating Theorem 4.3.1,

as well as the comparisons with PCP. Parts of this chapter are taken verbatim from [31] [32].

4.1 The Projection-PCA algorithm

Algorithm 1 projection-PCA: @ < proj-PCA(D, P,r)

1. Projection: compute Dpyoj < (I — PP')D

EVD
2. PCA: compute %Dprojppmj/ - [ 0A | Q1

matrix and ap is the number of columns in D.

QQL} [A 0 ] lQ/] where Q is an n x r basis

Given a data matrix D, a basis matrix P and an integer r, projection-PCA (proj-PCA)
applies PCA on Dy := (I — PP')D, i.e., it computes the top r eigenvectors (the eigenvectors
with the largest r eigenvalues) of %mejppmj’, Here ap is the number of column vectors in

D. This is summarized in Algorithm 1.
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If P = [], then projection-PCA reduces to standard PCA, i.e. it computes the top r
eigenvectors of %DD’ .
We should mention that the idea of projecting perpendicular to a partly estimated subspace

has been used in different contexts in past work [8,35].

Algorithm 2 Recursive Projected CS (ReProCS)

Parameters: algorithm parameters: {, w, a, K, model parameters: t;, 7o, ¢jnew

(set as in Theorem 4.3.1)

Input: My, Output: 5}, f/t, P(t)

Initialization: Given training sequence [L; : 1 <t < tipain, Py — proj-PCA([Ly : 1 <t <
tirain), [], 70). Let If’(t) — Py. Let j <« 1, k<« 1. For t > tiain, do the following:

1. Estimate T3 and Sy via Projected CS:
(a) Nullify most of L;: compute @ « I — If’(t_l)lﬁ(’t_l), compute y; « @, M,
(b)
(c)
(d) LS Estimate of S;: compute (St)i} = ((@t)Tt)Tyt, (S*t)th =0

Sparse Recovery: compute St,cs as the solution of min, [|z|1 s.t. [ly — Ppyzll2 <§

Support Estimate: compute Ty = {i : |(St.es)i| > w}

2. Estimate Lti .Z/t = Mt - St.
3. Update P(t) by Projection PCA
(a) Ift:tj-l-k()é—l,
1. Pj,new,k — prOj-PCA([IAJt cte Ij,k]y pj—l,Cj,now)
ii. set P(t) — []Sj_l Pj,nowk]; increment k « k + 1.
Else
1. set p(t) — p(t—l)-
(b) If t = t; + Ko — 1, then set ]5] — []Sj_l Pj,neva]. Increment j < 7 + 1. Reset
k1.

4. Increment ¢t < t 4+ 1 and go to step 1.

4.2 The Recursive Projected CS (ReProCS) Algorithm

The key idea of ReProCS is as follows. Assume that the current basis matrix ;) has been
accurately predicted using past estimates of Ly, i.e. we have P(t_l) with ||(1 —P(t_l)f?(’ t—1))P(t) Il2

small. We project the measurement vector, My, into the space perpendicular to P(t_l) to get
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the projected measurement vector y; := ® ;) My where @) = I — P(t_l)lf’(’t_l) (step la). Since
the n xn projection matrix, @ has rank n—r, where r, = rank(ﬁ(t_l)), therefore y; has only
n —ry “effective” measurements’, even though its length is n. Notice that y; can be rewritten
as yp = PS¢ + By where By := @) L. Since ||(1 — Jf’(t_l)P(’t_l))P(t)Hg is small, the projection
nullifies most of the contribution of L; and so the projected noise j; is small. Recovering the n
dimensional sparse vector Sy from 1; now becomes a traditional sparse recovery or CS problem
in small noise [36-38]. We use ¢; minimization to recover it (step 1b). If the current basis
matrix P, and hence its estimate, P(t_l), is dense enough, then, by Lemma 3.3.2, the RIC of
® ;) is small enough. Using Theorem 2.1.1, this ensures that S; can be accurately recovered
from y;.

By thresholding on the recovered S;, one gets an estimate of its support (step 1c). By
computing a least squares (LS) estimate of S; on the estimated support and setting it to zero
everywhere else (step 1d), we can get a more accurate final estimate, Sy, as first suggested
in [39]. This S, is used to estimate L; as Ly = M; — S;. As we explain in the proof of Lemma
4.4.11, if the support estimation threshold, w, is chosen appropriately, we can get exact support
recovery, i.e. Tt = T;. In this case, the error e; := S't -8, =L; — i}t has the following simple

expression:

er = Ir, ()1, B = I, [(® 1)), (Do) m )~ 1/ @y Ly (4.1)

The second equality follows because (<I>(t))T/<I>(t) = (<I>(t)IT)/<I>(t) = I7'® ) for any set T.
Consider a t € Z;;. At this time, L; satisfies Ly = Pj_1arx + PjnewQtnew, Py = Pj =
[Pj—1, Pjnew]s Py—1) = Pj—1 and so &y = ;0 :=T— Pj_1P|_,. Let &), :=1— P, Pl_| —
P nevi P g (With Pinewo = [1), Gk = 1@k Prnewllzs Ko = max ws(®; 1 Pjnew), ok =
max; max|r|<s H[(<I>j,k)ép(<1>jvk)7ﬂ]_l\|2, T« =10+ (j — 1)emax, and ¢ := cpax. We assume that
the delay between change times is large enough so that by t = ¢;, P(t_l) = Pj_l is an accurate
enough estimate of Pj_q, i.e. ||®;0Pj_1]l2 < r«( for a ¢ small enough. Using ||I1,'®; 0 Pj_1]l2 <
1@5.0Pj—1ll2 < 74C, |11, @0 Paewll2 < #5.0/1,0Pjnewll2 and Cjo = [[@5,0Paewll2 < 1, we get that

lletllz < dorsC\/Tevs + Pokis,0v/Cnew. The denseness assumption on Pj_y; [|®;0Pj—1]l2 < 7

'i.e. some r, entries of y: are linear combinations of the other n — r. entries
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and ¢g < 1/(1 — 05(®;0)) ensure that ¢g is only slightly more than one (see Lemma 4.4.10).
If /¢ < 1/, the first term in the bound on ||e||2 is of the order of /¢ and hence negligible.
The denseness assumption on ®;P; new, Whose columns span the currently unestimated part
of span(Pjnew), ensures that kg is significantly less than one. As a result, ¢ors0 < 1 and so
the error ||es]|2 is of the order of \/cypew. Since Ynew < Smin and c is assumed to be small,
thus, [les]]2 = [|S; — S¢l2 is small compared with ||Sy||2, i.e. S; is recovered accurately. With
each projection PCA step, as we explain below, the error ¢; becomes even smaller.

Since ﬁt = M; — S't (step 2), e; also satisfies e, = Ly — i}t. Thus, a small e; means that
L, is also recovered accurately. The estimated i}t’s are used to obtain new estimates of Pj new
every « frames for a total of Ka frames via projection PCA (step 3). We illustrate theK
times projection PCA algorithm in Fig 4.2. In the first projection PCA step, we get the first
estimate of Pj new, ijw,l. For the next « frame interval, P(t_l) = [Pj_l,ISj,now,l] and so
®(y) = ;1. Using this in the projected CS step reduces the projection noise, f;, and hence the
reconstruction error, e;, for this interval, as long as Yyew, r increases slowly enough. Smaller e;
makes the perturbation seen by the second projection PCA step even smaller, thus resulting
in an improved second estimate ]5j7new,2. Within K updates (K chosen as given in Theorem
4.3.1), under mild assumptions, it can be shown that both ||e;||o and the subspace error drop
down to a constant times /(. At this time, we update ]5] as ]5] = [Pj_l, ]E’j,neva].

The reason standard PCA cannot be used and we need proj-PCA is because ¢; = L, — Ly
is correlated with L;. The discussion here also applies to recursive or online PCA which is
just a fast algorithm for computing standard PCA. In most existing works that analyze finite
sample PCA, e.g. see [26] and references therein, the noise or error in the “data” used for PCA
(here Ly’s) is uncorrelated with the true values of the data (here L,’s) and is zero mean. Thus,
when computing the eigenvectors of (1/a) 3", itﬁ;, the dominant term of the perturbation,
(1/a) Y, Ll — (1/0) X2, LI}, is (1/a) 32, esé) (the terms (1/a) Y, Lie) and its transpose are
close to zero w.h.p. due to law of large numbers). By assuming that the error/noise e; is small
enough, the perturbation can be made small enough.

However, for our problem, because e; and L; are correlated, the dominant terms in the
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Figure 4.1 The K times projection PCA algorithm

perturbation seen by standard PCA will be (1/a) >, Lie;’ and its transpose. Since L; can have
large magnitude, the bound on the perturbation will be large and this will create problems when
applying the sin # theorem (Theorem 2.2.1) to bound the subspace error. On the other hand,
when using proj-PCA, L; gets replaced by (I — I:’j_lpj_l)Lt and this results in significantly

smaller perturbation.

4.3 Performance Guarantees

We state the performance guarantees of ReProCS in Theorem 4.3.1. The proof outline is

given in Sec. 4.4.3 and the actual proof is given in Sec. 4.4.4 the subsequent sections.

Theorem 4.3.1 Consider Algorithm 2. Let ¢ := cpax and r =19 + (J — 1)c. Assume that
L; obeys the model given in Sec. 3.1 with cj qq = 0 and there are a total of J change times.
Assume also that the initial subspace estimate is accurate enough, i.e. ||(I — PoB})Po|| < roC,
for a € that satisfies

107* 1.5x107% 1 AT
a where f 1= —

< .

If the following conditions hold:

1. the algorithm parameters are set as & = £y(C), Tp€ < w < Spin — 7€, K = K((), a >

add(C), where £(C), p, K(C), aqqa(C) are defined in Definition 4.4.1.
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2. Pj—l; Pj,new; Dj,new,k = (I - Pj—lpj{_l - Pj,new,kpj,new,k)Pj,new and Qj,new,k = (I -
]3j7neij,new’)]5j7new7k have dense enough columns, i.e.
kos(Py—1) < 0.3, mjaxmgs(ijw) < 0.15,

max max kog(D; < 0.15, max max K ; <0.15
S 0ShE I 28( j,new,k)_ ) 5 0<k< K QS(Qj,new,k)_

with ijew,o =[] (empty matriz).
3. for a given value of Smin, the subspace change is slow enough, i.e.

max(tj;1 —tj) > Ko,
J

ma ma a < := min(1.2%71 V), forallk=1,2,... K,
thj+(k—1)a§)§<tj+ko¢ ” t,new”oo > Vnew,k ( Ynews Y ) f

14p§0(<) < Smim

4. the condition number of the covariance matrix of as pew averaged overt € I; ., is bounded,
i.e.

gjk < V2

where g; 1 1s defined in Definition 4.4.1.
then, with probability at least (1 —n=10), at all times, t, all of the following hold:

1. at all times, t,

Tt =T and
leella = || L — Lell2 = 1S — Stll2 < 0.18v/Enew + 1.24/C(V/7 + 0.061/¢).
2. the subspace error SE = ||(I — P(t)ls('t))P(t)Hz satisfies

ro+ (j — 1)e)¢ +0.4c¢ + 0.6 if teZip, k=1,2... K
SEy < ( ( )e) j

(1o + je)¢ if te€ljk

107 2/C+0681 if teZiy k=1,2... K

10_2\/Z ’if t e Ij7K+1

IN
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3. the error e, = Sy — Sy = Ly — Ly satisfies the following at various times

0.18\/50.72k_1'7new + 1.2(\/F + 0.06\/5)(7’0 + (] —1)e)Cv. ift € I]}k? k=1---K

1.2(ro + §¢)C\/T s if te€ljra

lledll2 <

0.184/c0.725 1,0y + 1.2(\/7 4+ 0.063/0)/C ift €Tjp, k=1,--- K
1.2y/rV/C if teljrn

This result says the following. Consider Algorithm 2. Assume that the initial subspace
error is small enough. If (a) the algorithm parameters are set appropriately; (b) the matrices
defining the previous subspace, the newly added subspace, and the currently unestimated part
of the newly added subspace are dense enough; (c) the subspace change is slow enough; and (d)
the condition number of the average covariance matrix of a; new is small enough, then, w.h.p.,
we will get exact support recovery at all times. Moreover, the sparse recovery error will always
be bounded by 0.18/¢Ynew plus a constant times 1/C. Since € is very small, Ynew < Smin, and
¢ is also small, the normalized reconstruction error for recovering .S; will be small at all times.

In the second conclusion, we bound the subspace estimation error, SE(;). When a subspace
change occurs, this error is initially bounded by one. The above result shows that, w.h.p.,
with each projection PCA step, this error decays exponentially and falls below 0.011/¢ within
K projection PCA steps. The third conclusion shows that, with each projection PCA step,
w.h.p., the sparse recovery error as well as the error in recovering L; also decay in a similar
fashion.

We discuss the assumptions used by our result. First consider the choices of o and of K.
Notice that K = K (() is larger if ¢ is smaller. Also, a,qq is inversely proportional to ¢. Thus,
if we want to achieve a smaller lowest error level, (, we need to compute projection PCA over
larger durations o and we need more number of projection PCA steps K.

Now consider the assumptions made on the model. We assume slow subspace change, i.e.
the delay between change times is large enough, ||at new||oo is initially below vyew and increases
gradually, and 14p&y < Spin which holds if ¢pax and ey are small enough. Small ¢ppay, small
initial a¢pew (i-e. small ey ) and its gradual increase are verified for real video data in Sec.

3.4. As explained there, one cannot estimate the delay between change times with just one
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video sequence of a particular type (need an ensemble) and hence the first assumption cannot
be verified.

We also assume that condition number of the average covariance matrix of a; pew, is not
too large. This is an assumption made for simplicity. It can be removed if the newly added
eigenvalues can be separated into clusters so that the condition number of each cluster is
small (even though the overall condition number is large). This latter assumption is usually
true for real data. Under this assumption, we can use the cluster projection PCA approach
described in [34] for ReProCS with deletion. The idea is to use projection PCA to first only
recover the eigenvectors corresponding to the cluster with the largest eigenvalues; then project
perpendicular to these and Pj_l to recover the eigenvectors for the next cluster and so on.

Other than these, we assume the independence of a;’s over time. This is done so that we
can use the matrix Hoeffding inequality [25, Theorem 1.3] to obtain high probability bounds
on the terms in the subspace error bound. In simulations, and in experiments with real data,
we are able to also deal with correlated a;’s. In future work, it should be possible to replace
independence by a milder assumption, e.g. a random walk model on the a;’s. In that case, at
tj+ka—1, one would compute the eigenvectors of (1/a) Y7, @ o(Ly—Li1)(Li— ﬁt_l)’tI);’O.
Moreover, one may need to use the matrix Azuma inequality [25, Theorem 7.1] instead of
Hoeffding to bound the terms in the subspace error bound.

Finally, we assume denseness of Pj_1 and Pjnew as well as of Djnewr and Qjpew,r in
condition 2. The denseness assumption of Pj_1 and P} ey is a subset of the assumptions made
in earlier works [2]. It is valid for the video application because typically the changes of the
background sequence are global, e.g. due to illumination variation affecting the entire image or
due to textural changes such as water motion or tree leaves’ motion etc. Thus, most columns
of the matrix £; are dense and consequently the same is true for any basis matrix for span(L;).
Now consider denseness of Dj ew r Whose columns span the currently unestimated part of the
newly added subspace. Our proof actually only needs | I7,'D; new.kll2/ || Djnew.k |2 to be small
at every projection PCA time, t = t; + ko — 1. We attempted to verify this in simulations

done with a dense P; and P} cw. Except for the case of exactly constant support of Sy, in all
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other cases (including the case of very gradual support change, e.g. the models considered in
Sec 4.6), this ratio was small for most projection PCA times. We also saw that even if at a
few projection PCA times, this ratio was close to one, that just meant that, at those times,
the subspace error remained roughly equal to that at the previous time. As a result, a larger
K was required for the subspace error to become small enough. It did not mean that the
algorithm became unstable. It should be possible to use a similar idea to modify our result
as well. An analogous discussion applies also to @ new k- In fact denseness of @ new,r is not
essential, it is possible to prove a slightly more complicated version of Theorem 4.3.1 without

assuming denseness of Q; new,k-

4.4 Proof of Theorem 4.3.1

We first define the various quantities that will be used in the lemmas leading to the proof

of Theorem 4.3.1.

Definition 4.4.1 We define here the parameters used in Theorem 4.3.1.

1. Define K(C) := Polgo(gng)]

2. Define f(]({) = \/E'Ynew + \/Z(\/? + \/E)
3. Define p := maxt{m(gmcs — Sy)}. Notice that p < 1.

4. Let K = K(C). We define aqqa(¢) as the smallest value of a so that (p(c, ()57 >
1—n"10 where pr (o, ) is defined in Lemma 4.4.16. We can compute an explicit value
for agqq by using the fact that for any x <1 and r > 1, (1 —xz)" > 1 —rxz. This gives us

2

8-2
add=[(log 6KJ + 11log n)m
+0.0034Ynew + 2.3)%)]

16
max(min(1.24542  ~1), = 4(0.186~2

new

In words, «uqq 18 the smallest value of the number of data points, «, needed for one

projection PCA step to ensure that Theorem 4.3.1 holds w.p. at least (1 — n~1'0).
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5. Define the condition number of Cov(as new) averaged over t € I as

by +
k —ka_ where
93,
)\j,newk
1 _ 1
)\] newk )‘ ( Z (At)new)a /\j,new,k = Amin(_ Z (At)new),
@ L€ « teZ; k.

Notice that A= < Njpewk < Njnewr < AT and thus gjp < f = AXT/A\". Recall that
Ay = Covlay] = E(arar’), (At)new = E(atnewlt new)s A~ = ming Apin(A¢) and A\~ =

maxg )\max(At) .
Definition 4.4.2 We define the noise seen by the sparse recovery step at time t as
B = (I = Py—1yP{_1)) Lt l2-

Also the reconstruction error of Sy is

Here S, is the final estimate of Sy after the LS step. Notice that e; also satisfies e, = Ly — Ly.

Definition 4.4.3 We define the subspace estimation errors as follows. Recall that ijemo =[]

(empty matriz).

Cj,k = ”(I - ]5]-_11—:’]{_1 - pj,new,kp{,new,k)Pj,new”2
Remark 4.4.4 Recall from the model given in Sec 3.1 and from Algorithm 2 that
Pi1=0

1. Pjpewk 18 orthogonal to P;_1, i.e. P]{7new,k

2. Pj—l = [p07 pl,new,Ka <. pj—l,new,K] and Pj—l = [P07 Pl,new: cee Pj—l,new]
3. fO’/“ t e Ij,k—i—l; P(t) == [pj—lapj,new,k] and P(t) = P] = [Pj—lapj,new]-

4 @ =1 = Py By
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From Definition 4.4.3 and the above, it is easy to see that

1 Gu < e+ 207 G

2. SEq) < Gjw+ Gk < Ciw + Zj@ﬂ Gk + Gk for t € Ljpya.
Definition 4.4.5 Define the following

1. @, @0 and ¢y

(a) @ = I—Pj_lﬂ_l—ﬁ’j,nemkf:’( k 18 the CS matriz fort € Tj 11, i.e. D) = Py

J,new,

for this duration.
(b) ®jo:= I—Pj_lpjf_l is the CS matriz fort € Zj1, i.e. @y = ;o for this duration.
;¢ is also the matriz used for projection PCA fort € [tj, tj41 — 1].

1

(¢) o1, = max; maxy, i< || (D)%) 7 (Rj6)7) 2. Itis easy to see that ¢p, < Tomas, 0200, 1)

2. Dj,new,k; Dj,new and Dj,*
(¢) Djpewr = PjrPjnew- span(Djnewk) s the unestimated part of the newly added
subspace for any t € Z; j11.
() Djnew = Djnewo = PjoPjnew span(Djnew) is interpreted similarly for any t €
Ij71.
(¢) Djyi:=P;pPj_1. span(D; 1) is the unestimated part of the existing subspace for
any t € L
(d) Djy = Dj.o=Pj0Pj—1. span(Dj 1) is interpreted similarly for anyt € T;,
(e) Notice that Cjo = ||Djnewl2; Gk = Djnewkll2: G = |Djxll2- Also, clearly,
HD'7*,k||2 < Cj,*
Definition 4.4.6
R , . . . .
1. Let Dj pew @ Ej newRjnew denote its QR decomposition. Here Ej ey is a basis matriz

while Rj new 18 upper triangular.
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To be precise, Ej pew, 1 5 a N X (N — Cjpew) basis matric that satisfies E;',new,J_E'ﬂ@w =0.

3. Using Ej new and Ej pew, 1, define Ajr, Ajr1, Hjg, Hjp 1 and Bjy as

1
Ajpi=—= > Ejneu/ @5 0LiLi' @0 Ejnew

tGijk

1 / /
Aj,k,J_ = E Z E',new,J_ cI)j,OLtLt (I)j,OE',new,J_

tGijk

1
Hj,k = Z E',new,q)j,O(etet, - Ltet, - etLt,)cI)j,OE',new

tGijk

1 / / / /
Hj,k,J_ = E Z E',new,J_ (I)j,O(etet — Liey —eiLy )CI)j,OEj,new,J_

tGijk

1 A A
Bj,k = Z E',new,J_/(I)j,OLtL:f(I)j@Ejv”@w

tGijk

1
= Z E',new,J_/cI)j,O(Lt - et)(Lt/ - et,)q)j,OE',new

4. Define

= Ej,new Ej,new,J_

tGijk

Ej,new Ej,new,J_

5. From the above, it is easy to see that

6. Recall from Algorithm 2 that A; 1.+H; i

1
Ajr+ Hjw = =

EVD [

_Ach 0 Ejmew’
L 0 AjJﬁJ. Ej,new,J_/
_Hj,k B;y' Ej new
| Bik Hjp 1| | Ejnewt’

T/
Y. PjoliLi®jo.
teL; i

) Ay 0
Pj,new,k P',new,k,J_
0 AkJ_

is the EVD of Aj 1+ Hjk. Here Pjpewi 15 @ X Cjpew basis matri.

A

/
jynewk

/
Pj,new,k,i
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7. Using the above, A+ H; can be decomposed in two ways as follows.

D/
AL O P

~ ~ ,new,k
-Aj,k + vak = Pj,new,k P',new,k,i -
) 0 Ak,J— Pj,new,k,J_
- / /
_ Ajr+ Hip Bjy, Ejmew
- Ej,new Ej,new,J_

/
- Bjk  Ajki+Hjg| | Ejnewt

Remark 4.4.7 Thus, from the above definition, H; = L[®g >, (—Lie, — e, L)+ ese}) o + F +
F,] where F' = Enew,J_E;LeU)’J_(I)O Et LtL;q>0EnewE;mw = Enew,J_E/ (D*,k—lat,*)(D*,k—lat,* +

new, L

Diew k—10t new) EnewEey- Since E[at,*a£7new] =0, HéFHg <2020 w.hp.
Definition 4.4.8 In the sequel, we let
1. =10+ (J — 1)tmax and ¢ := Cmax = MAX; Cj new,

2. Koy = max; Ks(Pj_1), Ksnew = Maxj Ks(Pjnew), Ksk = Maxj Ks(Djnewk), Rek =

~

max; /{s((I - Pj,neij,new/)Pj,new,k); gk ‘= Mmax; g; k,

8. Ky = 0.3, K3y ey i= 0.15, kT :=0.15, i3, := 0.15 and g* := /2 are the upper bounds
assumed in Theorem 4.8.1 on max; kos(P;), max; kos(Pjnew), Mmax; maxy fs(Dj newk)s

max; Kos(Qj newk) and max; maxy g;p respectively,

4. ¢T = 1.1735 is the upper bound on ¢y that follows using the above bounds (see Fact
C.2.1),

5. Chi= 1o + (j — 1)eC,
0. Ynew,k = min(1-2k_1’7new7’7*))
7. Pjy:=P;_1 and I:’j,* = Aj_l (the point of doing this becomes clear in the next remark).

Remark 4.4.9 Notice that the subscript j always appears as the first subscript, while k is the

last one. At many places in this paper, we remove the subscript j for simplicity. Whenever

there is only one subscript, it refers to the value of k, e.g., ®g refers to ®;0, Ppewr refers to

I:’j,new,k. Also, P, := P;_1 and P, = I:’j_l.
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4.4.1 Key Lemmas — 1: Bounding the RIC, sparse recovery and LS error and

subspace estimation error

At most places in this and the next section, we remove the subscript j for simplicity.
Whenever this is done, the convention stated in Remark 4.4.9 applies. Also recall that Py :=
P;_1 and P, = Aj_l.

We first bound the RIC of ®;, in terms of the denseness coefficients of P, and P, and
their estimation errors. Next, we use these to bound the sparse recovery and LS error. Finally,
we obtain a bound on the subspace estimation error at the k* projection PCA step in terms

of the various matrices used in the decomposition of the A and Hj given in Definition 4.4.6.

4.4.1.1 Bounding the RIC of ¢,

Lemma 4.4.10 (Bounding the RIC of ®,) Recall that (. := ||(I— P.P.)P.||2. The follow-

wng hold.

1. Suppose that a basis matriz P can be split as P = [Py, Py| where Py and Py are also basis

matrices. Then r2(P) = maxp, i<, [|[Ip P53 < £2(P1) + £2(Pa).
2. K2(P) < K2, + 26

3. Hs(Pnew,k) < Rs,new + '%s,ka + C*

~

d. 53((I)k) = Kg([p* pnew k]) < Kg(p*) + /{g(Pnew,k) < 537* + QC* + (’{s,new + "%s,kgk + C*)z fOT

The proof is in Appendix C.1.

4.4.1.2 Bounding the Sparse Recovery and LS Error

Lemma 4.4.11 (Sparse Recovery and LS Error) Pick ( as given in Theorem 4.3.1 and
let ¢ := (ro+ (j — 1)c)C. Let &, p be as defined in Theorem 4.3.1. If

1. the first three conditions of Theorem 4.3.1 hold,
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2. G <G = (ro+ (= D)e)¢ and
8. o1 <G <0.6571 +0.4c¢
then for allt € I;y, for any 1 <k < K +1,
1. the projection noise B satisfies ||Bt]|a < /€0.725 1y, 00 + V/C(V7 + 0.44/C) < &.
2. the CS error satisfies ||5’t763 — Sille < 7&p.
3. T, =T,
4. ey satisfies
e = I, (Ph—1)1 (P—1)1 ) I1 [(®r—1 Po)ar s + Diew k-1t new) (4.2)

and [leg]]2 < 0.18/c0.725 1,00 + 1.2/C(/7 4 0.06/2).
The proof is given in Appendix C.

4.4.1.3 Bounding the subspace estimation error

The following lemma is a consequence of Weyl’s theorem (Theorem 2.2.2) and the sin 6

theorem (Theorem 2.2.1)

Lemma 4.4.12 If A\pin(Ag) — [[Ak 1|2 — [|[Hkll2 > 0, then

Rk |2 - | H |2
min(Axk) = [[Ag,Lll2 = Hellz = Amin(Ax) — Ak, Lll2 — [[Hell2

where Ry, := HypEpew and Ay, Ay 1, Hy, are defined in Definition 4.4.6.

<
Ck_)\

The proof is given in Appendix C.4.
4.4.2 Key Lemmas — 2: Showing high probability exponential decay of the sub-
space error

At most places in this section, we remove the subscript j for ease of notation. We retain

it where needed, e.g. in defining the r.v. X, ; and in defining and using the set I'; ;. or for the

>

time interval Z; ;. Also, recall that P, := P;_; and P, = 1.

<
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In this section, in Lemmas 4.4.14 and 4.4.15, under the assumption that C,;"_l < 0.6F 1 +
0.4¢¢ and the four conditions of Theorem 4.3.1 hold, we obtain high probability bounds on
each of the terms of (4.3), conditioned on 'S —1- Under the same assumptions, Lemma 4.4.16
combines the result of these two lemmas with (4.3) to obtain a high probability upper bound
on (; conditioned on I'5—1- We use this upper bound to define Q;" in Definition 4.4.17. In
Lemma 4.4.18, we show that, under the assumptions of Theorem 4.3.1 this C,j indeed satisfies
C,j < 0.6F 4+ 0.4¢(. Lemma 4.4.21 then combines the results of Lemmas 4.4.16 and 4.4.18 to
finally conclude that just under the assumptions of Theorem 4.3.1, ¢, < 0.6 + 0.4¢¢ w.h.p.
This, along with ¢, < ¢, implies that the subspace error decays exponentially towards a

constant times ¢ w.h.p.

4.4.2.1 Obtaining high probability bounds on (j;

Recall that /{3’57* := 0.3 and /{;'Smew = 0.15, &3, = 0.15, kI = 0.15 and g* = /2 and

¢t =1.1735 < 1.2.

Definition 4.4.13 Define the following functions (we will see their utility in the lemmas that

follow):
Clzyu):=(1+ 721{: Yed ot + (1 + 7K: )(/<a+)2(<;5+)2x2
e Vi VIi—u
L w +, 20 e, 4 ¢TA+6T)
O(u,v).—f(l—Hb +m+(¢) + K, Vi )

Gine(w;u, v,w) :=C(z;u)g" + O(u,v) f + 0.125w

Gaee(T;u,v,w) =1 — u? — uv — 0.125W — gine(T; 1, v, W)

fine(z;u,v,w) = w
gdec(ZE7 U, U, ?,U)

As we will see in the lemmas below, )\Eew’kgmc(C;_l;Qj,g'*f, cC) is a high probability upper
bound on ||[Hy||2, )‘;ew,kgdec(clj—l; ¢, ;f*f, C) is a high probability lower bound for Amin(Ag) —

Amax (Ag, 1) — [[Hill2 and fmc(C,j_l; ¢, (j:*f, cC) 1is a high probability upper bound for (.

Lemma 4.4.14 Consider t € ;. Pick ¢ as given in Theorem 4.3.1 and let ¢ := (ro + (j —

1)e)¢. Assume that the four conditions of Theorem 4.3.1 hold. Also, assume that we are given
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a series of constants C,j, with ¢ =1 and C,;"_l < 0.6571 +0.4¢cC. Define the random variable
Xk = [a1,02,. .. 0t 1ra-1]
Define the set I'; 1, as follows.
Ui ={Xjr: Cnx<roC; G <(h, forallj =1,2,...5—1,K =0,1,... K;

G <Gy forall k' =0,1,...k }

X : Tt = Ty and e, satisfies (4.2) for all t < t; +ka — 1}

Recall that I' ;. denotes the event X € I'j k. Assume that P(I'S ;1) > 0 forall1 <k < K+1.

Then,

1. for all 1 <k < K, P(Amin(Ar) > Apyn(1— (¢H)? = S0, 1) > 1 — pak(e, Q).

new,k J

2. for all 1 <k < K, P(Amax(Ar,1) < Ay 1 (G2 + 55T 41) > 1= pu(e,C) where

<2 A 2 2(2 A~ 2
Pai(@; €)= cexp(= g5 Ijin((l.24)k’yﬁew,’yf)) * cexp(_%) and
2 A~ 2
pi(e,Q) 1= (n — ) exp(~ 2SO (4.4

Lemma 4.4.15 Under the same settings as Lemma 4.4.14, for all k > 1,
1. P{T; =T, and e; satisfies (4.2) for allt € iS5 p—y) = 1.

2. P(I[Hll2 < Ao ine (G136 G Fr Q) 05 421) = 1 = pe(ev, ¢) where

2 A~ 2
pe(a, () :==nexp(— a”(\) )
’ 8- 242(0.032472,,, + 0.00727pen + 0.0004)2
0\ )
e B (0,069, + 0000670y + 0.4)2)
20\ )22
+nexp(— G (A7) )

32 242(0.18672,,, + 0.000347 0y + 2.3)2

The proofs of Lemma 4.4.14 and Lemma 4.4.15 are in Appendix C.

Lemma 4.4.16 Under the same settings as in Lemma 4.4.14, for all k > 1,
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LI GaeelGE i G GEFieC) > 0, then P(Ge < finel G 13 G GHFeOITE 1) > pr(as€)

where

Pk (Oé, <) =1- pa,k(a> <) - pb(a> <) - pc(av C) (45)

This lemma is an easy consequence of Lemmas 4.4.12, 4.4.14 and 4.4.15.
Definition 4.4.17 Define the series {(;" }k=012... as follows

((—)i_ = 17 (]:_ = finc(Ck—l+;C:_7C>j_fv CC)) fOT k > 1. (46)

Using Definition 4.4.13, an explicit expression for C,j 18

b+ 0.125¢¢

TGP (G)Pf - 03Bel —p e b= O G + CY TG O

C o= 26d ot +t), O = ((¢F)? + 20+ A riot | mi(e0)? ), C =

V1-(¢H)? V1-(h VI-EH?2 o Vi1-(Gh)?
((¢+)2 + M)
V12"

4.4.2.2 Exponential decay of the bounds on (.

Lemma 4.4.18 (Exponential decay of C,j) Pick ¢ as given in Theorem 4.3.1. Assume that

the four conditions of Theorem 4.3.1 hold. Define the series (, as in Definition 4.4.17. Then,
1 ¢f =1, <¢h, <0.5985 for all k > 1.
2. (i <0.6F +0.4¢¢ for allk >0
3. Gaec(G3 G G Fy ) > 9aec(0.596; 1074, 1.5 x 1074,1074) > 0 for all k > 1.

The proof is in Sec. C.8.

4.4.2.3 High probability exponential decay of (;
Definition 4.4.19 Define the event fjk fork=1,2...K+1 as

. {Gr < C,;F,Tt =T, and e; satisfies (4.2) for allt € T;;} if 1 <k <K
kT
{Ty =T, and e; satisfies (4.2) for all t € L;;} ifk=K+1
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Remark 4.4.20 Recall that the event F?,k is defined in Lemma 4.4.14 as follows.

L5 ={Cx <10 Graw < C,:}, forallj’=1,2,...57 -1,k =0,1,... K;
Gk < (,;'7, for all k' =0,1,...k}N
{T, = T; and e, satisfies (4.2) for all t < tj +ka—1}
It is easy to see that F;,k = Fj’k_l N fjk foralll <k <K and F§+170 = F?,K N fiKH. Thus,
L, =ToNTS, - NI and 5, o =T, N (M'T,) =T o Ny (NE'TS ).
Lemma 4.4.21 Pick ¢ as given in Theorem 4.5.1. Let ;r* = (ro+(j —1)e)¢ and let ¢ be as
defined in Definition 4.4.17. Also, let pi(c, () be as defined in Lemma 4.4.16 and let the events
fjk and IS be as defined above in Definition 4.4.19 and Remark 4.4.20. Assume that the four
conditions of Theorem 4.3.1 hold. Also, assume that P(I';;_;) > 0 for all 1 < k < K + 1.
Then,
1. GF < 0.6 +0.4cC for all0 <k < K,
2. P(f‘§7k|F§7k_1) > pr(a, Q) foralll1 <k < K and

The proof is in Appendix C.

4.4.3 Proof Outline for Theorem 4.3.1
The proof of the theorem is an easy consequence of the following lemmas.

1. In Lemma 4.4.10, we use Lemma 3.3.2 to bound the RIC for the CS measurement matri-
ces, i.e. we bound d5(®;0) and 5(P; ), in terms of the denseness coefficients rs(Pj—1)

and ks (Pjnew) and the subspace errors (j . and (j .
2. Let the bound on (. be (;:* = (ro + (j — 1))¢ and that on (jx—1 be ¢ for all j.

3. In Lemma 4.4.11, assuming that (;. < C;f*, Gir—1 < C;j_l, C,j_l < 0.6*1 4 0.4c¢ and
the first three conditions of the theorem hold, we show the following for all ¢t € Zj,

k=1,... (K+1).
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(a) We bound |32 in terms of (j;—1 and (..

(b) Next, we show that ||5¢]|2 < & (with £ chosen as given in the theorem). We use this,

Lemma 4.4.10 and Theorem 2.1.1 (CS result) to bound the CS error || es — Si|2.

(¢) Next, we show that if the support estimation threshold w is chosen as given in the

theorem, then T, =T,

(d) With T, = T;, we are able to give an exact expression for the LS step error, ¢; :=

S’t — S; and also bound it. Recall that e; is also equal to L; — ﬁt.

4. In Lemma 4.4.12, we use the sinf theorem and Weyl’s theorem (Theorems 2.2.1 and
2.2.2) to bound the subspace error (jj for projection PCA done at t = t; + ko — 1 in
terms of the perturbation matrix, H; x, and the various components of the decomposition

of A, given in Definition 4.4.6.

5. Let I'; , denote the event that (i) (1« < 70o¢, Cjrar < Ghforall 1<j/ <j—1, 0<k <
K, and (j < (G, for all 0 < k' < k, and (ii) T, = T, and e, satisfies (4.2) for all ¢ < ti+
ka — 1. Under the assumption that C,j < 0.6% +0.4¢¢, with K defined as in the theorem,
it is clear that (; x < (jr < (. Thus, I’ . implies that ;. < C;,r* = (ro+ (j —1)e)¢ (this

is easy to see using Remark 4.4.4).

6. In Lemmas 4.4.14 and 4.4.15, under the assumption that (;’_1 < 0.6""! +0.4¢¢ and the
conditions of the theorem hold, we obtain high probability bounds on the various terms

in the bound on (j from Lemma 4.4.12, conditioned on ISy

(a) These lemmas first use Lemma 4.4.11 to show that Tt = T; and thus ¢; has an exact
expression given by (4.2) and then apply the matrix Hoeffding inequality (Corollary
2.3.4 or Corollary 2.3.5). Lemma 2.2.4 and Fact C.2.1 are used to obtain the final

expressions for the bounds and the probabilities with which they hold.

(b) A by-product is the following conclusion. Conditioned on T' S E—1s the event that

T, =T, and e, satisfies (4.2) for all t € Z;, holds with probability one.
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7. In Lemma 4.4.16, under the assumption that C,;"_l < 0.6°714-0.4¢¢ and the four conditions
of the theorem hold, we combine the bound of Lemma 4.4.12 with the bounds on its

individual terms from Lemmas 4.4.14 and 4.4.15 to obtain a high probability upper

bound on (j, conditioned on Fik_l. The obtained bound is a function of C,j_l, ]+*
and of the bounds on fi5(Dj newx) and on g; . We use this upper bound to define ¢;" in

Definition 4.4.17.

8. In Lemma 4.4.18, assuming that the four conditions of the theorem hold, we show that
C,j as defined in Definition 4.4.17 decreases with k and that it indeed satisfies C,j

0.6F + 0.4¢¢ for all k < K.

9. Lemma 4.4.21 combines the results of Lemma 4.4.16 and Lemma 4.4.18. It shows that
just under the assumptions of the theorem, given IS k15 the event that (j;; < (,;" <
0.6F + 0.4¢¢ and that T, = T, and e, satisfies (4.2) for all t € T; holds with a certain

probability that depends on « and (.

The proof of the theorem follows easily by applying Lemma 4.4.21 for each j and k and finally
using Lemma 4.4.18 and the definition of K. In the end, we use the definition of a,qq and
@ > (ruqq to show that the the result holds w.p. at least 1 — n =10, Thus, for large enough n,

the result holds w.h.p.

4.4.4 Proof of Theorem 4.3.1

1. By the assumption that ||(I — PoP}) Pyl < ro¢, P({C1» < (f:*}) = 1. By Lemma 4.4.11,

G < Cff* implies that 7} = T} for all tyam < t < t; — 1. Thus, P(Ify) = 1.

2. Recall that ¢, = T'S, _; NI¢, forall k > 1 and I'Y,, , = 'Yy N (NGZ'TS,). Thus,
P(IS,10) = P(T50) IS PO ITS 0, - T my) = P 0) TR P0G [T, y). Thus,

P(F§+1,0) (Fl 0) H?’—l Hi(—l—ll P( 3! k:|F i’ — 1)

3. Since P(I'f;) = 1 > 0 and pr(a, () > 0 for all k, we can apply Lemma 4.4.21 for
every k and j’ starting with & = 1,j° = 1. Thus, by Lemma 4.4.21 P(T'9, ) >

(T pr(a, ©) > (pre (@, €))7, The last inequality follows because py, > px.
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4. Now,

(a) 'y, o implies that (i) T, = T} and e, satisfies (4.2) for all ¢ < ty,q; (ii) Gk <G

forall k< K, j < J.

(b) By Lemma 4.4.18, ;" < 0.6 + 0.4¢¢. Thus, 5110 implies that (i, < 79¢ and
Cik < 0.6% +0.4c¢ for all j < .J, k < K. Using the definition of K, this means that
Gk < cC for all j. By Remark 4.4.4, all this implies that for ¢t € Z;, SE; < ¢« +

Cik—1 < (ro+(j—1)c)¢+0.4¢C+0.6"71, and for t € I k1, SEy < SEj g < (ro+jc)C.

(c) Combining the previous two conclusions and using Fact C.2.1, 'Y +1,0 implies that

the bounds on ||e;]|2 hold.

5. Since P(I'744 o) = (pr(a, )57 all of the above hold w.p. at least (px(a,())*”. Using
the definition of aaqq, (Pr(, ()XY > 1 — n71% whenever a > a,qq9. Thus the above

conclusions hold w.p. at least 1 —n =10,

4.5 ReProCS with practical parameters setting

The ReProCS algorithm given in Algorithm 2 uses knowledge of ¢, 7, ¢j new from the model
and it has four parameters &, w, o, K that can be set in terms of the model parameters as given
in Theorem 4.3.1. However, it is unreasonable to expect that, in practice, the model parameters
are known. We provide here reasonable heuristics for setting both the model and the algorithm
parameters automatically.

For a vector v, we define the 99%-energy set of v as Tpgg(v) := {i : |v;] > vp.99} where
the threshold vg g9 is the largest value of |v;| so that ||vz, 4|3 > 0.99]v]|3. Tt is computed by
sorting |v;| in non-increasing order of magnitude. One keeps adding elements to T g9 until
[ 07000 13 = 0.99]|]3.

We pick @ = 100 arbitrarily. We let £ = & and w = w; vary with time. Recall that &
is the upper bound on ||3||2. We do not know ;. All we have is an estimate of 3; from
t—1, Bt—l = (- P(t_l)]S(’t_l))ﬁt_l. We used a value a little larger than ||Bt—1||2 for &: we

let & = 2 ﬁt_lﬂg. The parameter w; is the support estimation threshold. One reasonable
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way to pick this is to use a percentage energy threshold of S't,cs [40]. In this work, we used

Wy = 0.5(»§t7cs)0.99'

Let ;\1, ;\2, e ,/A\tmm denote the eigenvalues of ﬁ Zit:raf“ L;L;. We estimate ry and A\~
as
A= N1y < 3
ro = —), AT =\ 4.7
IS LS W " 1)

This heuristic relies on the fact that the maximum normalized difference between consecutive
eigenvalues is from A~ to zero.

We split projection PCA into two phases: “detect” and “estimate”. In the “detect” phase,
we estimate the change time ¢; and the number of new added directions ¢; new as follows. We
keep doing projection PCA every « frames and looking for eigenvalues above A~. If there
are any eigenvalues above 5\_, we let t}- =t—a+1 and we let ¢ new be the number of these
eigenvalues. Also, we increment j and we reset k to one. At this time, the algorithm enters
the “estimate” phase. In this phase, we keep doing projection PCA every « frames until the
stopping criterion given in step 3(a)iiB of Algorithm 3 is satisfied (this estimates K). The idea
is to stop when k exceeds Ky, and ‘pj{7new,kPj7HeW is approximately equal to P}mew’k_le,new
three times in a row; or when k = Kyax. We pick Ky = 5, Kinax = 20 arbitrarily. When
the stopping criterion is satisfied, we let K; = k and Pj = [Pj_l, Pj,now, k;), and the algorithm

enters the “detect” phase.

4.6 Experimental Results

The simulated data is generated as follows.
The measurement matrix My := [My, Ma, --- , My] is of size 2048 x 5200. It can be decom-
posed as a sparse matrix S; := [S1, S2, -+, S| plus a low rank matrix £; := [L1, Lo, - -+ , Ly].

The sparse matrix S; := [S1, 52, - ,St] is generated as follows.
1. For 1 <t < tiraim = 200, Sy = 0.

2. For tipain < t < 5200, S; has s nonzero elements. The initial support Ty = {1,2,... s}.

Every A time instants we increment the support indices by 1. For example, for ¢t €
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[ttrain + 17 ttrain + A — 1]7 ,Tt - T07 fort € [ttrain + Aa ttrain + 2A — 1] ,Tt - {27 37 .85+ 1}
and so on. Thus, the support set changes in a highly correlated fashion over time and
this results in the matrix &; being low rank. The larger the value of A, the smaller will

be the rank of S; (for ¢ > tirain + A).

3. The signs of the nonzero elements of S; are P{_,1 with equal probability and the mag-

nitudes are uniformly distributed between 2 and 3. Thus, Sy, = 2.
The low rank matrix L; := [L1, L, -, Ly] where L; := P;ja; is generated as follows:

1. There are a total of J = 2 subspace change times, t; = 301 and to = 2501. Let U be an

2048 X (70 + €1 new + C2new) orthonormalized random Gaussian matrix.

(a) For 1 <t <t; —1, Py = P has rank rg with Py = Upjg... -
(b) For t; <t <ty —1, Pyy = Pi = [Py Pinew| has rank 71 = 79 + ¢1 new with
Prnew = Ulpgt1, rotetnew]
(¢) For t > to, Py = P = [P Ponew) has rank 79 = 71 + o pew With Popew =
Ulrotetmew+1, 1041 new+2,new]
2. ay is independent over ¢t. The various (a;);’s are also mutually independent for different
i.

(a) For 1 <t < ty, we let (a;); be uniformly distributed between —~;; and ~; ;, where

400 if1=1,2,--- ,19/4,Vt,

30 ifi:r0/4—|—1,r0/4—|—2,--- ,7"0/2,\V/t.

Vit = (4.8)
2 ifi:T0/2+1,7’0/2+2,"' ,37’0/4,Vt.

1 ifi=3rg/4+1,3r0/4+2,-- 70, Vt.

(b) For t; <t < tg, arx is an rp length vector, asnew iS @ €1 new length vector and

Ly := Pyyay = Pray = Poatx + Pinewt new- (@t )i is uniformly distributed between
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—%it and ;4 and @y pew is uniformly distributed between —~,, ; and v, ;, where

1.1kt ift; +(k—1Da<t<t;+ka—1k=1,234,
Yrit = (4-9)
11471 =1.331 if t > ¢ + 4o
(c) For t > tg, a4 is an r1 = 1o + €1 new length vector, a; new is a €2 pew length vector
and Ly := Pya = Pay = [Po P new)atsx + Panew@tnew. Also, (at); is uniformly
distributed between —~;; and 7;; for ¢ = 1,2,--- 7 and is uniformly distributed
between —v,, ; and 7y, ¢ for ¢ = ro+1,...71. Gz new is uniformly distributed between
—Yro,t and Yy, ¢, Where
1.1kt ifto+(k—Da<t<to+ka—-1,k=12---,7,

Vrot =
11771 = 17716 ift >ty + Tau.

(4.10)

Thus for the above model, v, = 400, Ynew = 1, AT = 53333, A= = 0.3333 and f := f\‘—f =
1.6 x 10°. Also, Smin = 2.

We used Ly,,,.. +MNi,.., as the training sequence to estimate Py. Here Mo =
[Ny, No, -+, Ny, ]isiid. random noise with each (N;); uniformly distributed between —1073
and 1073, This is done to ensure that span(Py) # span(Fp) but only approximates it.

For Fig. 4.2 and Fig. 4.3, we used s = 20, 79 = 36 and ¢jpew = Conew = 1. We let
A =10 for Fig. 4.2 and A = 50 for Fig. 4.3. Because of the correlated support change, the
2048 x t sparse matrix S; = [S1, So,- - ,S;] is rank deficient in either case, e.g. for Fig. 4.2,
S has rank 29,39,49,259 at t = 300, 400, 500, 2600; for Fig. 4.3, S; has rank 21, 23,25,67

at ¢ = 300,400, 500,2600. We plot the subspace error SE(;) and the normalized error for S,

[1S:—Sl2
Sl

IIITtl[)j,new,k:”2

at
1D new,k |2

averaged over 100 Monte Carlo simulations. We also plot the ratio
the projection PCA times. This serves as a proxy for ks(D;newr) (which has exponential
computational complexity). In fact, in our proofs, we only need this ratio to be small at every
t=t; +ka—1.

We compared against PCP [2]. At every t = t;+4ka, we solved (1.1) with A = 1//max(n, t)

to recover S; and £;. We used the estimates of S; for the last 4« frames as the final estimates
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of S;. So, the S; for t = tj+1,...t; + 4o is obtained from PCP done at ¢t = t; +4a, the S, for
t=t; +4a+1,...t; + 8a is obtained from PCP done at t = t; 4+ 8« and so on. In Fig. 4.2,
Fig. 4.3 and Fig. 4.4, the times at which PCP is done are marked by red triangles.

As can be seen from Fig. 4.2, the subspace error SE(;) of ReProCS decreased exponentially
and stabilized after about 4 projection PCA update steps. The averaged normalized error for
Sy followed a similar trend. ReProCS(practical) performed similar to ReProCS but stabilized
in about 6 projection PCA update steps. In Fig. 4.3 where A = 50, the subspace error SE

also decreased but the decrease was a bit slower as compared to Fig. 4.2 where A = 10. Also,

”-[Tt/[)j,new,k”2

D ow lls Was now larger. Because of the correlated support change, the error of
j,new,

the ratio
PCP was larger in both cases. The difference in performance between ReProCS and PCP is
larger when A = 50.

For Fig. 4.4, we increased s to 100 and we used A = 10. A larger s results in a larger

”-[Tt/[)j,new,k”2
IIDj,new,k:”2

(and larger Ks(Dj new,k)). Thus, the rate of decrease of SE(;) is smaller than that

for the previous two figures. The error of S; followed a similar trend.

||ITt,Dj,ncw,k ”2

Do lla . Was 1 always. As a result, the subspace
Jj,new,

Finally, if we set A = oo, the ratio

error and hence the reconstruction error of ReProCS did not decrease from its initial value at

the subspace change time. For ReProCS, the average error ﬁ o200, ”S”t;ﬁ;”? =8.4x 1073,

The error of PCP was also very high: ﬁ S % = 0.43.

We also did one experiment in which we generated T} of size s = 100 uniformly at random
from all possible s-size subsets of {1,2,...n}. T; at different times ¢ was also generated

_ _ : o 1 55200 [|1Se=Seflz _
independently. In this case, the reconstruction error of ReProCS is g555 > ¢=201 Silla . —

2.8472 x 10~%. The error for PCP was 3.5 x 102 which is also quite small.
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Algorithm 3 ReProCS(practical)
Input: M,, Output: S, Ly, P(t).
Initialization: Given training sequence [Li,Lo,---,Ly,,,. ], compute the EVD of

tmm Zt“a‘“ L.L/ EVP BAE’ and then estimate fo and A~ using (4.7). Let Py retain the
eigenvectors with the 7 largest eigenvalues.

At t = tirain, let P( f) < Py. Let g0, k1, tj = tyrain + 1 and flag < detect. For t > tipain,
do the following:

1. Do step 1) of Algorithm 2 but with £ and w replaced by & and w; computed as explained
in Sec. 4.5.

2. Do step 2) of Algorithm 2.

3. Projection PCA: Update P(t) as follows.
(a) Ift = ;+ka—1, compute EVD of Zi J;kf(kl Da (I—Pj_llaf_l)i}tﬁé(l—]%_lﬁf_l)
i. If flag = detect,

A. If no eigenvalues are above A~, then P(t) — P(t_l). Increment k «— k + 1.

B. If there are eigenvalues above ;\_, then fj —t—a+1,j«—j+1, k1,
flag < estimate.
ii. Else if flag = estimate,
A. Let pjnewk retain the eigenvectors with eigenvalues above 5\_, P(t) —
[P Pnewk]andk:<—k:+1
B. I if k > Ko and 12otzanBrmeniotPooy s =Prnewi Bl dtlz ¢ 7 g,
I thod»l Pj,nerv,iflpj’ncwfflLtHQ
i:k—2,/<;—1,k:;ork:KmaX,thenKij,PjH[P P

Jj,new, KJ

] and
reset flag < detect.

Else (t # fj + ka — 1) set Js(t) — P(t_l).

4. Increment t «+ t 4+ 1 and go to step 1.
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CHAPTER 5. ReProCS with cluster-PCA (ReProCS-cPCA) an its

performance Guarantee

ReProCS-cPCA needs an extra assumption that the eigenvalues of the covariance matrix
of L; are sufficiently clustered as explained in Sec. 5.1. We develop the ReProCS-cPCA
algorithm in Sec 5.2. We summarize the ReProCS-cPCA algorithm in Algorithm 4. We give
the performance guarantees (Theorem 5.3.1) in Sec 5.3. Here we also provide a discussion of
the result and the assumptions it makes. The proof of Theorem 5.3.1 is given in Sec 5.4. The
key lemmas needed for it are given and proved in Appendix D.2. In Sec 5.5, we show numerical
experiments demonstrating Theorem 5.3.1, as well as comparisons with ReProCS and PCP.

Parts of this chapter are taken verbatim from [33] [34].

5.1 Clustering assumption

For positive integers K and «, let fj :=tj + Ka. Recall from the model on L; and the slow
subspace change assumption that new directions, P new, get added at ¢ = ¢; and initially, for
the first o frames, the projection of L; along these directions is small (and thus their variances
are small), but can increase gradually. It is fair to assume that by t = fj, the variances along
these new directions have stabilized and do not change much for t € [£;,t;4+1 — 1]. It is also
fair to assume that the same is true for the variances along the existing directions, P;_;. In
other words, we assume that the matrix A; is either constant or does not change much during
this period. Under this assumption, we assume that we can cluster its eigenvalues (diagonal
entries) into a few clusters such that the distance between consecutive clusters is large and
the distance between the smallest and largest element of each cluster is small. We make this

precise below.
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Assumption 5.1.1 Assume the following.

1. Either Ay = Agj for all t € [Ej,t]‘_ﬁrl — 1] or Ay changes very little during this period so

that for each i=1,2,--- ,rj, minp , . _qAi(Ay) 2 maxyep 1 i1 (Ar).

j+1—1
2. Let Gj1),Gj,2), " »Gj(0,) be a partition of the index set {1,2,...7;} so that

min;eg,

) minteﬁj Ai(Ay) > MAXieq, 1) MAXye[f 1 1] Xi(Ay), i.e. the first clus-

ti+1—1] i

ter contains the largest set of eigenvalues, the second one the next smallest set and so on

(see Fig 5). Let

(a) Gji = (Pj)g, ., be the corresponding cluster of eigenvectors, then
P =[Gj1,Gj2, -+, Gjgl;

(b) Cjx = 1G; k)| be the number of elements in Gj 1y, then Zzil Cik =Tj;

(c) Nji = minieg; minte[fj,tj+1—l} Ni(Ag), Ajt = Maxieg; ) MAXye[f ¢ 1] Ai(Ay)
and )\j719j+1+ =0

(d) Gjx:=Nx"/Njx (notice that gj > 1);

(¢) hjr = Nigr1t/Njx~ (notice that hyy < 1);

(f) Gmax = max; maxg—12 ... 9, Jj,ks Mmax = MaX; MaAXp=12,... 9, Njk,

Cmin = MiN; MiNg—1 2 ... 9, Cjk
(9) Vmax 1= max; v,

We assume that gmax is small enough (the distance between the smallest and largest
eigenvalues of a cluster is small) and hmax is small enough (distance between consecutive

clusters is large). We quantify this in Theorem 5.5.1.

Remark 5.1.2 The assumption above can, in fact, be relaxed to only require the following.
The matrices Ay are such that there exists a partition, Gj (1),Gj 2), " +Gj ;). of the index
set {1,2,...7;} so that minjeg, miny e oo —q AilAe) > maxieg, ) maXye o] Ai(Ay).

Define all quantities as above. We assume that Gmax and fzmax are small enough.
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5.2 The ReProCS-cPCA algorithm

ReProCS-cPCA is summarized in Algorithm 4. It uses the following definition.
Definition 5.2.1 Let t; :=t; + Ka. Define the following time intervals

1. T =t; + (k= VDot +ka—1] fork=1,2,--- | K.

2. Ijp=[t;+ (k—1)a,t; + ka — 1] for k=1,2,--- ;.

3. Ty, 11 = [tj + V&, tje1 — 1]

Notice that [t;,tj+1— 1] = (UK T, 1) U (Uzjzljj,k) Ufjﬂgﬁl. Also, K, o and & are parameters

given in Algorithm 4.

ReProCS-cPCA proceeds as follows. The algorithms begins with the knowledge of Py and
initializes P(tmm) «— Py. Py can be computed as the top 7o left singular vectors of M, (since,
by assumption, S, .. is either zero or very small). For t > tiin, the following is done. Step 1
projects M, perpendicular to P(t_l), solves the 1 minimization problem, followed by support
recovery and finally computes a least squares (LS) estimate of Sy on its estimated support.
This final estimate S’t is used to estimate L; as ﬁt = M; — S't in step 2. The sparse recovery
error, e; 1= St —S;. Since I:t = M, —St, e; also satisfies e; = Lt—j)t. Thus, a small e; (accurate
recovery of S;) means that L; is also recovered accurately. Step 3a is used at times when no
subspace update is done. In step 3b, the estimated Ly’s are used to obtain improved estimates
of span(Pjnew) every a frames for a total of K« frames using the proj-PCA procedure given
in Algorithm 1. Within K proj-PCA updates (K chosen as given in Theorem 5.3.1), it can be
shown that both [|e;[|2 and the subspace error, SEq := ||({ — P(t)P(’t))P(t)Hg, drop down to a
constant times (. In particular, if at ¢ = ¢; — 1, SE;) < r(, then at ¢ = fj =1t; + Ko, we can
show that SE(;) < (7 + cmax)¢. Here 7 := rmax = 70 + Cmax-

To bring SE(;) down to r( before ¢j11, we need a step so that by ¢ = ¢;11 — 1 we have
an estimate of only span(P;), i.e. we have “deleted” span(P;,1q). One simple way to do this
is by standard PCA: at t = {; + & — 1, compute Pj — proj-PCA([ﬁt;t € fjJ], [.],r;) and let

Jf’(t) — ]5] Using the sin# theorem and the Hoeffding corollaries, it can be shown that, as
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long as f is small enough, doing this is guaranteed to give an accurate estimate of span(F;).
However f being small is not compatible with the slow subspace change assumption. Notice
from Sec 3 that A\~ < qnew and E[||L;]|3] < rAT. Slow subspace change implies that Ypey is
small. Thus, A~ is small. However, to allow L; to have large magnitude, AT needs to be large.
Thus, f = AT /A~ cannot be small unless we require that L; has small magnitude for all times
t.

In step 3c, we introduce a generalization of the above strategy called cluster-PCA, that
removes the bound on f, but instead only requires that the eigenvalues of Cov(L;) be sufficiently
clustered as explained in Sec 5.1. The main idea is to recover one cluster of entries of P; at a
time. In the k" iteration, we apply proj-PCA on [ﬁt; te Ivak] with P «— [Gj,l, C?jg, . éj,k—l])
to estimate span(Gjy). The first iteration uses P « [], i.e. it computes standard PCA to
estimate span(Gj1). By modifying the approach used for ReProCS for analyzing the addition
step, we can show that since g, and ﬁj,k are small enough (by Assumption 5.1.1), span(G} 1)
will be accurately recovered, i.e. ||(I — Yk, G]ZG;Z)G]k\|2 < ¢ k¢. We do this ¢, times and
finally we set Pj — [G’M, @j,g . Gj’ﬂj] and P(t) — ]5]-. All of this is done at t = fj +v;a - 1.
Thus, at this time, SEq) = (1= PP Pills < SyLy (1 - Sy GiaG) )Giulla < iy & =
r;j¢ < r¢. Under the assumption that ;41 —t; > Ko+ Uax@, this means that before the next
subspace change time, t;11, SE() is below r(.

We illustrate the ideas of subspace estimation by addition proj-PCA and cluster-PCA in
Fig. 5.2.

The ReProCS-cPCA algorithm has parameters &, w, a, &, K and it uses knowledge of
model parameters t;, 19, ¢jnew, ¥; and ¢;;. If the model is known the algorithm parameters
can be set as in Theorem 5.3.1. In practice, typically the model is unknown. In this case,
the parameters t;, rg, ¢jnew, &, w, K can be set as explained for the ReProCS algorithm.
The parameters ¥; and ¢;; for i = 1,2...9;, can be set by computing the eigenvalues of
ézte i ﬁtﬁ; and clustering them using any standard clustering algorithm, e.g. k-means

clustering or split-and-merge!. We pick o and & somewhat arbitrarily. A thumb rule is that o

1One simple split-and-merge approach is as follows. Start with a single cluster. Split into two clusters: select
the split so that gmax is minimized. Split each of these clusters into two parts again while ensuring gmax i
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Froy = B = [Boi\VPia Fanel for G S <l

/

Addition is done Deletion is done

Subspace First Second
change proj-PCA proj-PCA
time ‘l’

t; I+ Grza  GHE-la Gefeda Few 42 i+ (B-1)8 B+ @ Bt
| I I I IS I -

e — AN v J

Fin = Fua — Ao = [Pijet) Pramogs | By = Pyesy s | | P =F

il [ LY - |
L J Estimata £} by custer-SCA
v

[sgsy Grgmy = By 1 B
Entirnate P by K times arcjesticr-FOA

Figure 5.2 A diagram illustrating subspace estimation by ReProCS-cPCA

and & need to be at least five to ten times cmax and max; max;—y 2.y, ¢;; respectively. From
simulation experiments, the algorithm is not very sensitive to the specific choice.

As explained in Sec. 4.2, the reason we use proj-PCA instead of standard PCA is because

e = i}t — L; is correlated with L.

5.3 Performance Guarantees

We state the main result first and then discuss it. We give its corollary for the case where

f is small in Corollary 5.3.2. The proof is given in Sec 5.4.

Theorem 5.3.1 Consider Algorithm 4. Let ¢ := cpax and r := rog + ¢. Assume that L;

obeys the model given in Assumption 3.1.1. Also, assume that the initial subspace estimate is
accurate enough, i.e. ||(I — Popé)POH < roC, for a ¢ that satisfies

1074 15x107* 1 AT

¢< min((T+C)2, CEREr (r—i—c)?”yf) where f := =

minimized. Keep doing this for d; steps. Notice that, with every splitting, gmax will either remain the same or

reduce, however Bmax will either remain same or increase. Then, do a set of merge steps: in each step find the
pair of consecutive clusters to merge that will minimize Amax.
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Let £0(€), p, K(C), @qad(C); 2aer(€), gj i be as defined in Definition 5.4.2. If the following con-

ditions hold:

1. (algorithm parameters) € = £(C), 7p€ < w < Sin — T, K = K(Q), @ > aaaa((), &>

agel(€),

2. (denseness)

mjax kos(Pj—1) < /@:7* =0.3, mjax K25 (Pjnew) < /{;smew =0.15,

max max Kog(D; < kT =0.15, max max k ; < kI =0.15
5Ok K 25( j,new,k)_ s ) S 0Sk<K 28(Q3,new,k)_ 2s )

m]ax HS((I - p]'—lpj{—l - pj,new,Kp]{mew’K)Pj) < H:,e

where Dj newr = (I — Pi—1P!_y — Pj newi P

i j,new,k)PjynﬂW and

Qj,new,k = (I - Pj,neij,new/) Aj,new,k and Pj,new,o = H;
3. (slow subspace change)

maX(tj_H — tj) > Ko + Ynax@,
J

mjaxtrélzax lat,newlloo < Ynewk = min(l.Qk_lynew, V), for allk=1,2,... K,
3,k

14p&0(¢) < Smin,

4. (small average condition number of Cov(asnew)) gik < 97 == V2,

5. (clustered eigenvalues) Assumption 5.1.1 holds with Gmax, Pmax, Cmin Satisfying

— Lnellmelines) > 0 where faee(Gmas Prmax) @1 fine(Gmax, Panax) are de-

Cmin

fdec (f]max ; Bmax)

fined in Definition 5.4.3 (also see Remark D.2.5 which weakens this requirement),
then, with probability at least 1 — 2n=19, at all times, t,

1. T, =T and lletll2 = || Lt — I:t||2 = ||St — Stll2 < 0.18\/cypew + 1.244/C.
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2. the subspace error, SE) satisfies

0.6t +r(+04cCift €Tjp, k=1, K
SE@# <{ (r+¢)¢ ift € Uzi1jj,k

¢ ift €Ly,

0.6"1 +1072/C ift €Lk, k=1,2,--- K

_ . -~ d
1072,/ ift € (Upl1Zjn) ULj,41

IN

3. the error e, = Sy — S; = Ly — Ly satisfies the following at various times

1.17[0.15 - 0.72F 1\ /evynen + 0.15 - 0.4cCy/cye + ¢/ ift €Tjg, k=1, | K

lledll2 <9 1.17(r + €)¢/rs if teu) I,
1.17r¢ /4 if te jjﬁj_;,_l
_ 0.18 - 0.725 1\ /eypen + 117 - 1.063/C if t € Ljp, k=1,2,--- K
IR ERLNG if te (Ul Zin) UL 0,41

The above result says the following. Assume that the initial subspace error is small enough.
If the assumptions given in the theorem hold, then, w.h.p., we will get exact support recovery
at all times. Moreover, the sparse recovery error (and the error in recovering L;) will always be
bounded by 0.18y/¢new plus a constant times v/C. Since ¢ is very small, Vpew < Smin, and ¢
is also small, the normalized reconstruction error for .S; will be small at all times, thus making
this a meaningful result. In the second conclusion, we bound the subspace estimation error,
SE(;). When a subspace change occurs, this error is initially bounded by one. The above result
shows that, w.h.p., with each adddition proj-PCA step, this error decays roughly exponentially
and falls below (r + ¢)¢ within K steps. After the cluster-PCA step, this error falls below (.
By assumption, this occurs before the next subspace change time. Because of the choice of (,
both (r + ¢)¢ and r¢ are below 0.014/C. The third conclusion shows that the sparse recovery
error as well as the error in recovering L; decay in a similar fashion.

Notice from Definition 5.4.2 that K = K () is larger if ¢ is smaller. Also, both a,g4(¢) and
age1(€) are inversely proportional to ¢. Thus, if we want to achieve a smaller lowest error level,

¢, we need to compute both addition proj-PCA and cluster-PCA’s over larger durations, «
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and & respectively, and we will need more number of addition proj-PCA steps K. Because of
slow subspace change, this means that we also require a larger delay between subspace change
times, i.e. larger tj1q —t;.

The ReProCS algorithm is Algorithm 4 with step 3¢ removed and replaced by ]5] —
[Pj_l,Pj,now, k]. Let us compare the above result with that for ReProCS for the subspace
change model of Assumption 3.1.1. First, ReProCS requires ka5([Po, Pinews - - - Pinew]) < 0.3

whereas ReProCS-cPCA only requires max; kos(P;) < 0.3. Moreover, ReProCS requires ¢ to

-4 1.5x10~4

satisfy ¢ < min((m+1(?]_1)c)2, ot U-D%T (7“0+(JE1)C)3“/2) whereas in case of ReProCS-cPCA

the denominators in the bound on ¢ only contain r + ¢ = r¢ + 2¢ (instead of ro + (J — 1)c).

Because of the above, in Theorem 5.3.1 for ReProCS-cPCA, the only place where J (the
number of subspace change times) appears is in the definitions of a,qq and age. Notice that
Qadd and agel govern the delay between subspace change times, ¢j1 —t;. Thus, with ReProCS-
cPCA, J can keep increasing, as long as tj11 —t; also increases accordingly. Moreover, notice
that the dependence of a,qq and agel on J is only logarithmic and thus ¢;1 —t; needs to only
increase in proportion to log J. On the other hand, for ReProCS, J appears in the denseness
assumption, in the bound on ¢ and in the definition of a,qq. Thus, ReProCS needs a bound
on J that is indirectly imposed by the denseness assumption.

The main extra assumptions that ReProCS-cPCA needs are (i) the clustering assump-
tion (Assumption 5.1.1 with Pmax, Gmax being small enough to satisfying fdec(gmax,fzmax) —

inc ~maX7hmax . ~ 2~ A A~
fine(Gmax:hmax) . 4 (il) max; ks((I — Pj—1Pj_y — Pjnew,k P}

Cmin

new i) Pj) < K&, The second
assumption is similar to the denseness assumption on D; ey, Which is required by both Re-
ProCS and ReProCS-cPCA. The clustering assumption is a practically valid one. We verified
it for a video of moving lake waters (see Sec. 3.4) as follows. We first “low-rankified” it to 90%
energy as explained in Sec. 3.4. Note that, with one sequence, it is not possible to estimate
Ay (this would require an ensemble of sequences) and thus it is not possible to check if all
Ay’s in [fj, tj+1 — 1] are similar enough. However, by assuming that A; is the same for a long

enough sequence, one can estimate it using a time average and then verify if its eigenvalues are

sufficiently clustered. When this was done, we observed that the clustering assumption holds
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With Gumax = 7.2 and Apayx = 0.34.

We provide a qualitative comparison with the PCP result of [2]. A direct comparison is not
possible since the proof techniques used are very different and since we solve a recursive version
of the problem where as PCP solves a batch one. Moreover, PCP provides guarantees for exact
recovery of &; and £;. In our result, we obtain guarantees for exact support recovery of the
Sy’s (and hence of S;) and bounded error recovery of its nonzero values and of £;. Also, the
PCP algorithm assumes no model knowledge, whereas our algorithm does assume knowledge
of model parameters.

Consider the denseness assumptions. Let £; = UXV' be its SVD. Then, for t € [t;,¢;41—1],
U = [P, Pinews Ponews - - - Pjnew) and V = [a1,az. ..a)’Y71. The result for PCP [2] assumes
denseness of U and of V: it requires r1(U) < /ur/n and k1(V) < /ur/n for a constant
p > 1. Moreover, it also requires |[UV’|max < (/fr/n. On the other hand, ReProCS-cPCA
only requires ros(Pj) < 0.3 and kas(Pjnew) < 0.15. It does not need denseness of the entire U;
it does not assume anything about denseness of V'; and it does not need a bound on ||[UV||max-

Another difference is that the result for PCP assumes that any element of the n xt matrix S,
is nonzero w.p. g, and zero w.p. 1 — p, independent of all others (in particular, this means that
the support sets of the different S;’s are independent over time). Our result for ReProCS-cPCA
does not put any such assumption. However it does require denseness of the matrix D; new.k
whose columns span the unestimated part of span(Pjnew) for t € Z; 1. As demonstrated in
Sec. 5.5, this reduces (kg(Djnew,k) increases) if the support sets of Sy’s change very little over
time. However, as long as, for most k, £s(Dj new,r) is anything smaller than one, which happens
as long as there is at least one support change during 7; s, the subspace error does decay down
to a small enough value within a finite number of steps. The number of steps required for
this increases as ks(D;jnew,k) increases. Since kg(D;j new k) cannot be computed in polynomial
time, for the above discussion, we computed ||I7,"Dj new,kl|2/||Djnew k|2 at t = t; + ko — 1 for
k=0,1,... K. In fact, our proof also only needs a bound on this latter quantity.

Also, some additional assumptions that ReProCS-cPCA needs are (a) accurate knowledge

of the initial subspace and slow subspace change; (b) denseness of Q; new.k; (¢) the independence
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of a;’s over time; (d) condition number of the average covariance matrix of a;pew is n0t too
large; and (e) the clustering assumption. Assumptions (a), (b), (c¢) are discussed in detail
in Sec. 4.2 and (a) is also verified for real data. As explained in Sec. 4.3, (¢) can possibly
be replaced by a weaker random walk model assumption on a;’s if we use the matrix Azuma
inequality [25] instead of matrix Hoeffding. Assumption (e) is discussed above. (d) is also
an assumption made for simplicity. It can be removed if a clustering assumption similar to
Assumption 5.1.1 holds for (A¢)new = Cov(asnew) during t € [t;, th —1] and we use an approach
similar to cluster-PCA. If there are ¥pew,; clusters, we will need ¥yew,; proj-PCA steps to
estimate Pncw’k (instead of the current one step). At the [ step, we use proj-PCA with P
being Pj_l concatenated with the basis matrix estimates for the last [ — 1 clusters to recover
the I*" cluster.

If in a problem, L; has small magnitude for all times ¢, then f, which is the maximum
condition number of Cov(L;) for any ¢, can be small. If this is the case, then the clustering
assumption trivially holds with ¥; = 1, ¢;1 = 7}, Gmax = gj,1 = f and Bmax = hj1 = 0. Thus,

Ymax = 1. In this case, the following corollary holds.

Corollary 5.3.2 Assume that the initial subspace estimate is accurate enough as given in
Theorem 5.3.1 with ¢ as chosen there. Also assume that the first four conditions of Theorem
5.3.1 hold. Then, if f is small enough so that fine(f,0) < fiec(f,0)éminC, then, all conclusions
of Theorem 5.3.1 hold.

Notice that the above corollary does not need Assumption 5.1.1 to hold.

5.4 Proof of Theorem 5.3.1

We first define all the quantities that are needed for the proof. The proof outline is given
in Sec 5.4.1.
Certain quantities are defined earlier in Assumptions 3.1.1 and 5.1.1, in Definitions 3.1.2

and 5.2.1, in Algorithm 4 and in Theorem 5.3.1.

Definition 5.4.1 In the sequel, we let
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._ ._ _ _ J
€= Cmax ONd T = Tmax =10+ ¢ and so rj =10+ 351 (i new — cmld) <r,

¢t :=1.1735

Definition 5.4.2 We define here the parameters used in Theorem 5.5.1.

1.

2.

Defie K(Q) = M|

Define SO(C) = \/E’Ynew + 1'06\/Z

Define p := maxt{ﬂl(ﬁms — S)}. Notice that p < 1.

. Define the condition number of the average of Cov(ainew) overt € I as

A +
Gjk = 7)\]’”ew’k_ where
J,new,k
1 _ 1
)\j,new,k+ = )\max(_ Z (At)new)a )\j,new,k = )\min(_ Z (At)new)y
@ tGijk tezj,k

Let K = K(C). We define agqq(¢) as in Definition 5.4.2 the smallest value of « so that
(prc (o, OB > 1 — =10 where pr (o, ¢) is defined in Lemma D.1.3. An explicit value
for it is

8 - 242
@add(C) = [(log 6K J + 111og ")W max(min(1.2*5 47, 74),

4(0.18672,,, + 0.00347 0 + 2.3)2)]

16
2’

In words, auqq is the smallest value of the number of data points, o, needed for an addition

proj-PCA step to ensure that Theorem 5.8.1 holds w.p. at least (1 — 2n=10),

We define agei(C) as the smallest value of a so that p(c, )"/ > 1—n=10 where p(a, ¢)
is defined in Lemma D.2.8. We can compute an explicit value for it by using the fact
that for any x <1 and r > 1, (1 —x)" > 1 —rx and that 3°_, e_fig < Ge_m.
We get

8-10?
agel(€) == [(log 6UmaxJ + 111log H)W max(4.22, 4b2)]

where by := (/7% +¢TV/C)? and ¢ = 1.1732. In words, age; is the smallest value of the
number of data points, &, needed for a deletion proj-PCA step to ensure that Theorem

5.3.1 holds w.p. at least (1 —2n~19).



62

Definition 5.4.3 Define the following.
1. ¢ =1¢

2. define the series {(p " }u—0.12..k as follows

)Ly

b+ 0.125¢¢
1— (G2 = (G7)2f —0.25¢¢ —b

G =1, ¢ = L fork>1, (5.1)

where b := Crtgt( +C (k)29 (G )24+C F(¢CH)?2, kT =015, C == 20Tt ,
g Ck;l (k)79 (Ck—l)+ i f(¢ )+(¢+)2 (@)2¢ )
C' = ((¢T)2 2¢ 1 + ks ¢ Ks L C = ((¢T)2 ks )
@+ e Y kaE T v @+ e

3. define the series {f:}k:1,27...719j as follows

<~+ — finc(gka }:lk)
" Laee(@ns )

where fine(@.h) = (r + (BRI GG + [kEedt + mi(1+ 207) Sk + [ +

Vi-r2e
4rCrt ot +2(r + C(L+ k6T + 0.2, ], and faee(d,h) == 1—h—0.20 — r2C2f —

r2C% — fine(d, l~z) Notice that finc(3, fz) is an increasing function of g, h and faec(3, fz) 18

a decreasing function of g, h.

As we will see, ¢, ¢, (T are the high probability upper bounds on Cj«, Cjx, Cjx (defined in

Definition 5.4.8) under the assumptions of Theorem 5.3.1.

Definition 5.4.4 For the addition step, define

A

1. q)j,k =1 — pj—lpj{—l - Pj,new,kp{ k and q>j,0 =1 - pj—lp]{_l-

J,new,

2. ¢ = max; maxrp;|7|<s ”((q)j,k)T,((I)j,k)T)_l”2' It is easy to see that ¢p < m
3. Dj,new,k = (I)j,k‘Pj,new and Dj,new = Dj,new,O = (pj,OP',new-
For the cluster-PCA step (for deletion), define

2. Gj et = [Gj1--,Gjr-1] and éj,det,k = [éjl ,éj,k_l]. Notice that V;;, = I —

A A1
Gj,det,k-+1G5 det 1+
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3. Gjundet = [Gjrs1-,Gjo,]-
4. D =Y. 1Gjk, Djder = Vjr-1Gj detk and Dj under e = Vi k—1G undet k-

Here, Gj get ) contains the directions that are already detected before the Kt step of cluster-
PCA; G contains the directions that are being detected in the current step; G undet k. contains

the as yet undetected directions.

Definition 5.4.5 Let Ky, 1= max; ks(Pj_1), ks new := Maxj Ks(Pj pew), Ksk := Max; Ks(Dj newk),

o = 0 £a(I = Py newPyonend ) Pynei). isie := mag ig(@5c ).
Definition 5.4.6

R . . . . . .
1. Let Djy @ E; i R; ) denote its QR decomposition. Here, Ej} is a basis matriz while

R; . is upper triangular. 2

2. Let Ej 1 be a basis matriz for the orthogonal complement of span(Ejy) = span(Dj ).

To be precise, Ejj | is an x (n— ¢; ;) basis matriz that satisfies Ej . \'Ejj = 0.

3. Using Ej, and Ejp, 1, define Ajy, Ajp 1, Hijy, Hjp 1 and Bjj, as

Z 5,k ‘If] k— 1LtLt U k—1E; k

tEIJ k
/ /
Z ik L Vi1 Ly L'V 1 Ej g 1
tEIJ k
Z 5,k ‘If] k—1 etet - Ltet - etLt )‘I’j,k—lEj,k
tEIJ k
/ / / /
Z ikl Vip_1(erer — Liet’ — et Ly )V i1 Ejp 1
tEIJ k
B_] Z Eij_ \I’]k lLtLt\I/jk lE_]k
tEIJ k
= — Z Eik 1"V k—1(Le —er) (L — €)W k1B
tEIJ k

2 Notice that 0 < /1 —r2¢2 < 0;(R; 1) by Lemma D.2.3, therefore, R,y is invertible.
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4. Define

Ajk = | E; x Ej .1

Hjk = |EjxEjko|| . . )
- " Bk Hjg,o | | Ejk,L

5. From the above, it is easy to see that

.Aj,k + ij = Z \I/j,k_lﬁti/;\lfj,k_l.

tEj—j,k

Q| =

6. Recall from Algorithm 4 that

X Aj O Gk

- ~ 1 PRy EVD .
.Ang + Hng = E Z \I’j,k—lLtLt‘Ijj,k—l = Gj,k G]"k,J_
teij,k

0 Ajvk,L G;'Jc,J_
is the EVD of .[lj,k + ﬂ]k Here Ay, is a ¢ 1, X ¢j ) diagonal matriz.

Definition 5.4.7 Let Pj,* = Aj_l = P(tj_l). Recall that Pj . := Py, 1) = Pj—1. In the sequel,

we use the subscript * to denote the quantity at t =t; — 1.

Definition 5.4.8 (Subspace estimation errors)

1. Recall that the subspace error at time t is SEqyy = ||[(I — p(t)P(/t))P(t)”2-

2. Define
G = (I = PjuP] ) Piallo-

This is the subspace error att =t; — 1, i.e. (jy = SE(tj_l).
3. For k=0,1,2,--- , K, define

e =T = Pi1P)_1 — P newi P new ) Pinewll2-

This is the error in estimating span(Pj new) after the Eth iteration of the addition step.
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4. Fork=1,2,---,9;, define

k

G = (I Z )G kl2-

This is the error in estimating span(Gj ) after the Kt iteration of the cluster-PCA step.

Remark 5.4.9 (Notational issue) Notice that ( is a given scalar satisfying the bound given
in Theorem 5.3.1, while (j ., Cj« and CNM are as defined above. Since the basis matrix estimates
are functions of the Ly ’s, which in turn are depend on the Ly’s and L; = Pyyag, thus, Cjk, Cjx

and Cj . are functions of the a;’s. Thus, (j,Cj« and (. are, in fact, random variables.

Remark 5.4.10

1. Notice that Cj,O = HD',newH2; Cj,k = HDj,new,k||2 and gj,k = ||(I - ékéz)D],k||2 =

19 kG kll2-

2. Notice from the algorithm that (i) P-ﬂew,k 1s perpendicular to Pj,* = Pj_l; and (1) C%k

is perpendicular to [Gj,l, Gj72= . Gj,k_l].
3. Forte I] ks P(t) P - [(Pj—l \P',old)a Pj,new]; p(t) = [pj—l pj,new,k] and

SEw = I(I = Pj—1P}_y — Pjnewi Pl newi) Pjll2
< = Pioa Py = Pjnewi P news) [Pi-1 Pjnewl |12
<(j + Gk
fork=1,2... K. The last inequality uses the first item of this remark.
4. Forte fj7k, Py = Py, P(t) = [Pj_l I:’j,nemK] and
SE(t) = SE(tj-i-Ka—l) < G+ Gk

5. Fort e :Z-j,ﬁj+17 P(t) = Pj = [G%l, te ,Gj’ﬂj], p(t) = p] = [G] 1, ,Gjﬂgj], and

SE@) = Gj+1, < ik

The last inequality uses the first item of this remark.
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Remark 5.4.11 Recall that e; := S; — S;. Notice from Algorithm 4 that
1. €t — Lt - I:t.

2. If Ty = Ty, then e; = ITt[(<I>(t))Tt/(<I>(t))Tt]_lth/CD(t)P(t)at. This follows using the defini-
tion of Sy given in step 1d of the algorithm and the fact that ()T Pw) = (PuyIr) P =

I7:® ) for any set T. Thus, fort € [tj,tj1 — 1],
e =1I1,[(®)1, (@)1 I, @1y Py
= IL[(®))1 (@) 1) I, @) [Pj st x + Pjmewts neu (5.3)
with

Qi1 te€lip, k=1,2...K
@(t): (I)j,K tefjk, k:1,219]

Pir10 tE€ETjw+1

Definition 5.4.12 Define the random variable

Xj7k‘17k‘2 = {a17 ag, - .- 7atj+k10c+k‘2&—l}'

Recall that a;’s are mutually independent over t.
Definition 5.4.13 Define the set I'jx, x, as follows.

Tiko = {Xjko: Gr < ¢ and Ty = Ty and e; satisfies (5.9)
forallteZ;i}, k=1,2,... K, j=1,2,3,...J
lv“j,KJC ={ XKk éj,k < ¢ rC, and T, =T, and e; satisfies (5.3)
forallt € T}, k=1,2,...9;, j=1,2,3,...J
f‘j,Kﬂng = {Xj41,00: T, =Ty and e; satisfies (5.9)

forallt €Ty 1}, j=1,2,3,...J
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Define the set I'; i, k, as follows.

Tio0:={X1,00:Cx<r( and T, =T, and e; satisfies (5.3) for all t € [tyain, t1 — 1]},
Diko:=Tk10NTjk0 k=1,2,... K, j=1,2,3,...J
Uik =Tijkr1Nljxe k=1,2,...9;, j=1,2,3,...J

Li100:=Liko, NDjko,+1, 5=1,2.3,...J
Recall from the notation section that the event I'S ;1 := {Xj k1 ky € Tjer ko }-

Remark 5.4.14 Notice that the subscript j always appears as the first subscript, while k is
the last one. At many places in this paper, we remove the subscript j for simplicity. Whenever

~

there is only one subscript, it refers to the value of k, e.g., ®q refers to ®;9, Ppewr refers to

P} newr and so on.

5.4.1 Proof Outline of Theorem 5.3.1

The first part of the proof that analyzes the projected CS step and the addition step is
essentially the same as that for ReProCS. The only difference is that, now, ;- = r( instead of
T =(ro+ (j —1)¢)¢. In Lemma 5.4.15, the final conclusions for this part are summarized:
it shows that, for all £k = 1,2,... K, C}j decays roughly exponentially with k£ and it bounds
the probability of T,  given I'S . _; 5. The second part of the proof analyzes the projected
CS step and the cluster-PCA step. The final conclusion for this part is summarized in Lemma
5.4.16: it bounds the probability of IS gpgiven I'S gy g Theorem 5.3.1 follows essentially by
applying Lemmas 5.4.16 and 5.4.15 for each j and k£ and using Lemma 2.3.2.

Lemma 5.4.16, in turn, follows by combining the results of Lemma D.2.2 (which shows exact
support recovery and bounds the sparse recovery error for ¢ € IZNC conditioned on Fi K7k_1),
and Lemma D.2.8 (which bounds the subspace recovery error at the k' step of cluster-PCA
conditioned on Fi K7k_1).

Lemma D.2.2 uses the result of Lemma D.2.1 which bounds the RIC of @ in terms of (,, (i

and the denseness coefficients of P, and P,ew. Lemma D.2.8 is obtained as follows. In Lemma

D.2.4, we show that, under the theorem’s assumptions, f,j < ¢jxC. In Lemma D.2.6, we bound
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Table 5.1 Comparing and contrasting the addition proj-PCA step and pro-
j-PCA used in the deletion step (cluster-PCA)

Eth iteration of addition proj-PCA

done at t =t; + ka —1

goal: keep improving estimates of span(P;new)

compute Pjpnewr by proj-PCA on [L; : t € Z; ;] with P = Pj_

start with [|(/ — Pj_1P]_|)Pj_1lla < r{ and {p1 < ¢y < 0.6M1 4+ 0.4¢C

need small g; ; which is the average of the condition number of Cov(P} .., Lt) over t € Tj

no undetected subspace

(j ks is the subspace error in estimating span(Pjncw) after the kth step

end with ¢ x < ¢ < 0.6F +0.4¢¢ w.h.p.

stop when k£ = K with K chosen so that (j x < ¢

after K" iteration: Py < [Pj—1 Pjnew,x] and SEy < (r+c)¢

kP jteration of cluster-PCA in the deletion step

done at t =t; + Ka+vja —1

goal: re-estimate span(P;) and thus “delete” span(P;1q)

compute G, by proj-PCA on [L; : t € Z}k] with P = Gjgetk =[Gy, s Gjp—1]

start with [|(1 — Gj7det,kG;7det 2)Gidet k|2 < r¢ and (G x < cC

need small g;  which is the maximum of the condition number of Cov(G’; L;) over t € Z;,

extra issue: ensure perturbation due to span(G undet,x) is small; need small hjj to ensure it

.1 is the subspace error in estimating span(G, 1) after the k™ step
Js g Js

end with (jx < ¢ xC w.h.p.

stop when k£ =1; and (5 < ¢jpC forall k =1,2,--- 9,

after 197’ iteration: Py < [Gj1, -+ ,Gjo,;] and SEy) <1

G in terms of Amin(Ax); Amax(Ax, 1) and ||Hy|j2 using Lemma 2.2.1. Next, in Lemma D.2.7,
(i) we use Lemma D.2.2 and the Hoeffding corollaries (Corollaries 2.3.4 and 2.3.5) to bound
each of these terms and (ii) then we use Lemma D.2.6 and these bounds to bound G by f,j
with a certain probability conditioned on IS k-1 Finally, Lemma D.2.8 follows by combining
Lemma D.2.4 and Lemma D.2.7.

Our strategy for analyzing cluster-PCA and hence for proving Theorem 5.3.1 is a general-
ization of that used to analyze the k** addition proj-PCA step for ReProCS. We discuss this

in Table 5.1.
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5.4.2 Key Lemmas

The theorem is a direct consequence of Lemmas 5.4.15 and 5.4.16 given below.
Lemma 5.4.15 is a slight modification of Lemma 4.4.21. It summarizes the final conclusions

of the addition step.

Lemma 5.4.15 (Final lemma for addition step) Assume that all the conditions in The-

orem 5.3.1 holds. Also assume that P(Fj’k_w) > 0. Then
1. (=1, ¢GF <068 +0.4cC for allk=1,2,...K;
2. P(F;kp |F§'7k—l,0) > pk(O% () > pK(av C) fOT all k = 17 27 LK

where Q;" is defined in Definition 5.4.3 and pi(c, () is defined in Lemma 4.4.16.

The proof of the above lemma follows using the exact same approach as in the proof of
Lemma 4.4.21 but with ;7 = r( instead of (ro + (j — 1)cmax)C everywhere. We give the proof
outline in Appendix D.

Lemma 5.4.16 summarizes the final conclusions for the cluster-PCA step. It is proved using

lemmas given in Sec D.2.

Lemma 5.4.16 (Final lemma for cluster-PCA) Assume that all the conditions in Theo-

rem 5.3.1 hold. Also assume that P(I'S ;- 1) > 0. Then,

1. for all k =1,2,...9;, P(FE,K,k | FiK’k_l) > p(@, ) where p(a, ) is defined in Lemma

D.2.8;

2. P(C5y100 | Di ko) = 1-

proof Notice that P(I'§ ;o [ TS g 1) = P(C, < &.C and Ty = T}, and ¢; satisfies (5.3) for all t €
Ly | IS rep—1) and P(I5q o0 | IS ko) = P(T; = T; and e; satisfies (5.3) for all t € Tj0,41)-
The first claim of the lemma follows by combining Lemma D.2.8 and the last claim of Lemma

D.2.2, both given below in Sec D.2. The second claim follows using the last claim of Lemma

D.2.2. -
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Remark 5.4.17 Under the assumptions of Theorem 5.3.1, it is easy to see that the following
holds.

1. For any k=1,2... K, 'S o implies that (i) (j. < ¢F :==r( and (i) (i < 0.65 4 0.4cC

forall k' =1,2,... k

o (i) follows from the definition of I'S; 5 and (j. < ZZ’; éj_l,k/ < ZZS G pC =
rji—1¢ < r¢ = (; and (i) follows from the definition of IS ko and the first claim of

Lemma 5.4.15.

2. For any k = 1,2...9; + 1, T i, implies (i) (. < G (i) G < 0.6F" + 0.4¢¢ for
al ¥ = 1,2,... K, (iii) i < ¢, (i) |®jPilz < (r+ ) (v) Gur < & for

K =1,2,...k and (vi) ¥ _, fj,k/ <rj¢ <r¢.

e (i) and (i) follow because I'S i o C IS ¢ 1., (1i0) follows from (ii) using the definition

of K, (iv) follows from (i) and (iii) using || ®; xPjll2 < [|®;.k[Pj+s Pjnewll2 <

G + Gk, and (v) follows from the definition of ISP

3. T'9. 100 implies (i) (jx < G5 for all j, (ii) (i < 0.6F +0.4¢C for allk =1,--- K and

all §, (i) Cjx < cC for all j.

5.4.3 Proof of Theorem 5.3.1

The theorem is a direct consequence of Lemmas 5.4.15 and 5.4.16 and Lemma 2.3.2.

NOtice that Fio’o 2 P§7170 A 2 P;,K,O 2 P;,K,l D P;,K,2 A 2 F‘?,K,’ﬂ 2 P§+1’070 ThuS, by

Lemma 2.3.2,
[V, K
P(T511.001T500) = P@C541,00/T5.k0) TT POkl T5 k1) TT P50 L5 k-1,0)
k=1 k=1

and P(T'y4100/T1,00) = H;le P(F§+17070\F§’070). Using Lemmas 5.4.15 and 5.4.16, and the
fact that pk(a7C) > pK(Oé, C)? we get P(FEJ+1,O,O|F1,0,0) > pK(Oé, C)Kjﬁ(d7<)19maw]' AISO,

P(T'¢ o) = 1. This follows by the assumption on Py and Lemma D.2.2. Thus, P9, 100) 2

pi (a, KT p(&, ¢)max.
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Using the definitions of a,qq(¢) and age(¢) and a > augqq and & > agel, P(F§+1’070) >
pic(, OKTp(a, ¢)Pmax > (1 — n~10)2 > 1 — 25710,

The event T'9,, ,, implies that T, = T, and e, satisfies (5.3) for all t < tjy1. Using
Remark 5.4.10 and the third claim of Remark 5.4.17, Fej+17070 implies that all the bounds on
the subspace error hold. Using these, Remark 5.4.11, ||a new||2 < v/CYnew,k and [Jacl|2 < /77,
I'9.41.0,0 implies that all the bounds on ||e¢[|2 hold (the bounds are obtained in in Lemmas D.2.2
and D.1.2).

Thus, all conclusions of the the result hold w.p. at least 1 — 2n~10.

5.5 Experimental Results

The simulated data is generated as follows.

The measurement matrix My := [My, Ma, --- , My] is of size 2048 x 5200. It can be decom-
posed as a sparse matrix S; := [S1, S2, -+, S| plus a low rank matrix £; := [L1, Lo, - -+ , Ly].

The sparse matrix S; := [S1, 52, -+ ,S;] is generated as follows. For 1 < t < tipain = 200,
Sy = 0. For tipain < t < 5200, S; has s nonzero elements. The initial support Ty = {1,2,... s}.
Every A time instants we increment the support indices by 1. For example, for ¢t € [tiain +
1, tirain + A — 1], Ty = Tp, for t € [tirain + A, tirain + 2A — 1], Ty = {2,3,...5+ 1} and so on.
Thus, the support set changes in a highly correlated fashion over time and this results in the
matrix S; being low rank. The larger the value of A, the smaller will be the rank of &; (for
t > tirain + A). The signs of the nonzero elements of S; are P{_ 51 with equal probability and
the magnitudes are uniformly distributed between 2 and 3. Thus, Spin = 2.

The low rank matrix £; := [Ly, Lo, - - - , L] where L; := Pyyat is generated as follows: There
are a total of J = 2 subspace change times, ¢t; = 301 and ty = 2501. ry = 36, C1 new = C2,new = 1
and ¢jold = €204 = 3. Let U be an 2048 x (19 + €1 new + C2.new) orthonormalized random
Gaussian matrix. For 1 < ¢ < &) — 1, Py = [ has rank 7o with Py = U 3. 36 For
t1 <t <ty—1, Py = P = [Ry\ Prold P1new| has rank r1 = 79 + ¢1new — €104 = 34 with
Piyew = Upgy) and Pyoq = Ujggse. For t > ta, Py = P2 = [P1\ Paold P2new| has rank

Ty =71+ C2new — C2,0ld = 32 With P yew = Upsg) and Pioig = Ujg 17,35- ar is independent over
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t. The various (ay);’s are also mutually independent for different i. For 1 <t < 1, we let (a¢);

be uniformly distributed between —~;; and ; ¢, where

400 ifi=1,2,---,9,Vt,

30 ifi=10,11,---,18,Vt.

Yit = (5-4)
2 if i =19,20,---,27,Vt.

1 ifi=28,29---,36,Vt

For t1 <t < t2, as« is an 1o — c101q length vector, a; new is a ¢1 new length vector and L; :=
Pyay = Piay = (Po \ Pioid)atsnz + Pinew@inew. NOw, (Gixnz); is uniformly distributed
between —v;; and v;; for i = 1,2,--- 35 and a new is uniformly distributed between —vynew,:
and Ypew,¢, where

400 ifi=1,2,---,8,Vt,

30 ifi=29,10,---,16V¢.

Yit =
2 if 4 =17,18,--- ,24,Vt.
1 if i = 25,26,---,33,Vt.
1.1k ifty+(k—Da<t<ti+ha—1k=1234
Tnew,t = (55)

11471 =1.331 ift >t + 4a.

For t > tg, at+ is an 11 — co o1q length vector, a; pew is a ¢ new length vector and L; := Pyar =
Pra; = [Po\ P1old Pinewlat s« + P2 new@tnew- Also, (aty); is uniformly distributed between —~; ;
and v;; for 7 = 1,2,--- ;71 — 2014 and a4 pew is uniformly distributed between —vpew,s and

Ynew,t Where

400 ifi=1,2,---,7,V1,

30 ifi=8,9,---,14,V¢

Vit =12 if i =15,16,--- ,21,Vt. (5.6)

1.331 if i = 22,Vt.

1 if i = 23,24, ,31, VL.
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1.1kt ifto+(k—1Da<t<ty+ka—1,k=1,2,---,7,
Tnew,t = (57)
11771 =1.7716 if t >ty + 7o
Thus for the above model, Spin = 2, 7 = 400, Ynew = 1, AT = 53333, A~ = 0.3333 and

f= ﬁ—t = 1.6 x 10°. One way to get the clusters of {1,2,--- ,7;} is as follows.

1. For t; <t < to with j = 1, let 917(1) = {1,2,"' ,8}, 917(2) = {9, 10, - -- ,16} and
Gi3) = {17,18,--- ,34}. Thus, é11 = ¢é12 = 8, 13 = 18, gju1 = Gj2 = 1, Gj3 = 4,

hj1 = 0.0056, hja = 0.0044.

2. For t > 12 with j = 2, let gL(l) = {1,2,"' ,7}, g17(2) = {8, 10, ,14} and g17(3) =
{17, 18, ce ,32}. Thus, 5171 = 6172 = 7, 6173 = 16, §j71 = §j72 = 1, §j73 = 4, }N‘Lj71 = 0.0056,

hjo = 0.0044.
3. Therefore, gmax = 4, hmax = 0.0056 and émin = 7.

We used Ly, + Ni,... as the training sequence to estimate Py. Here Aj, . =
[N1,Na, -+, Ny,.... ] isiid. random noise with each (N;); uniformly distributed between —10~3
and 1073. This is done to ensure that span(ﬁo) # span(Fp) but only approximates it.

For Fig. 5.3 and Fig. 5.4, we used s = 20. We used A = 10 for Fig. 5.3 and A = 50
for Fig. 5.4. Because of the correlated support change, the 2048 x t sparse matrix S; =
[S1, 82, ,S¢ is rank deficient in either case, e.g. for Fig. 5.3, S; has rank 29,39, 49,259 at
t = 300,400, 500, 2600; for Fig. 5.4, S; has rank 21,23,25,67 at ¢t = 300,400, 500, 2600. We
plot the subspace error SE(;) and the normalized error for S, % averaged over 100 Monte
Carlo simulations.

As can be seen from Fig. 5.3 and Fig. 5.4, the subspace error SE(;) of ReProCS and
ReProCS-cPCA decreased exponentially and stabilized. Furthermore, ReProCS-cPCA out-
performs over ReProCS greatly when deletion steps are done (i.e., at t = 2400 and 4600). The
averaged normalized error for S; followed a similar trend.

We also compared against PCP [2]. At every ¢t = t; 4+ 4ka, we solved (1.1) with A\ =
1/y/max(n,t) as suggested in [2] to recover S; and £;. We used the estimates of S; for the last
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4o frames as the final estimates of S;. So, the S, for t = tj +1,...t; + 4o is obtained from
PCP done at t = t; + 4a, the S, for t = tj +4a+1,...t; + 8a is obtained from PCP done at
t = t; + 8 and so on. Because of the correlated support change, the error of PCP was larger

in both cases.

”ITt,Dj,ncw,kHQ

[I—iE at the projection PCA times. This serves as a proxy
Jj,new,

We also plot the ratio
for ks(Djnew,k) (which has exponential computational complexity). As can be seen from Fig.
5.3 and Fig. 5.4, this ratio is less than 1 and it becomes larger when A increases (7} becomes
more correlated over t).

We implemented ReProCS-cPCA using Algorithm 4 with @ = 100, & = 200 and K = 15.
The algorithm is not very sensitive to these choices. Also, we let £ = & and w = wy vary
with time. Recall that & is the upper bound on ||G]|2. We do not know ;. All we have
is an estimate of 3; from ¢ — 1, Bt_l = (I - Pt_lpt’_l)j)t_l. We used a value a little larger
than [|Bi—1||2; we let & = 2||Bi—1]l2. The parameter w; is the support estimation threshold.
One reasonable way to pick this is to use a percentage energy threshold of S’ms [40]. For a
vector v, define the 99%-energy set of v as Tpgo(v) := {i : |v;| > v*%} where the 99% energy
threshold, v%%9, is the largest value of |v;| so that ||z, 4 [3 > 0.99||v||3. It is computed by

sorting |v;| in non-increasing order of magnitude. One keeps adding elements to T g9 until

HUTO‘%H% > 0.99||v]|3. We used w; = 0.5(5‘,5,05)0'99.
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Algorithm 4 Recursive Projected CS with cluster-PCA (ReProCS-cPCA)
Parameters: algorithm parameters: &, w, o, &, K, model parameters: t;, ro, ¢jnew, ¥; and

Cji
Input: n x 1 vector, My, and n x rg basis matrix Py. Output: n x 1 vectors Sy and Ly,
and n X r(;) basis matrix P.

Initialization: Let p(ttrain) — Py. Let j « 1, k « 1. For t > tirain, do the following:

1. Estimate 7T; and S; via Projected CS:

(
(

a) Nullify most of L;: compute @) « I — If’(t_l)P(’t_l), yr — Py My

Support Estimate: compute T = {i : |(St.es)i| > w}

(c

)
b) Sparse Recovery: compute St,cs as the solution of min, [|z|1 s.t. [ly — Ppyzl2 <§
)
(d) LS Estimate of S;: compute (St)Tt = ((q)t)Tt)Tytv (St)th =0

2. Estimate Lt. i/t = Mt — St.
3. Update P(t):

(a) Ift#tj+qga—1forany ¢=1,2,... K and t #t; + Ka + 90 — 1,
i. set P(t) — P(t—l)
(b) Addition: Estimate span(P;jnew) iteratively using proj-PCA: Ift =t; +
ka—1
L. Pj,new,k — proj'PCA([ﬁt;t € Ij,k)]) Pj—l) Cj,now)
ii. set P(t) — [Pj_l Pj,now,k]-
iii. If & = K, reset k < 1; else increment k «— k + 1.
(c) Deletion: Estimate span(P;) by cluster-PCA: If t =t; + Ka+ 9;& — 1,
i. Fori=1,2,---,9;,
o Gji — proj-PCA([Ly;t € Ijy], [Gja, Gjas- .- Gjil. 64)
End for
. set Pj — [CA?]-J, e ,éjﬂgj] and set P(t) — Pj.

iii. increment j «— j + 1.




78

CHAPTER 6. Conclusions and Future Work

We studied the problem of recursive sparse recovery in the presence of large but structured
noise (noise lying in a “slowly changing” low dimensional subspace). We introduced ReProCS
and ReProCS with cluster-PCA (ReProCS-cPCA) algorithm that addresses some of the limi-
tations of PCP [2]. ReProCS assumes that the subspace in which the most recent several L;’s
lie can only grow over time and hence it needs to assume a bound on the total number of
subspace changes, J. Unlike ReProCS, ReProCS-cPCA does not bound the number of allowed
subspace changes, J, as long as the delay between change times is increased in proportion to
log J. Under mild assumptions, we showed that, w.h.p., ReProCS and ReProCS-cPCA can
exactly recover the support set of .S; at all times; and the reconstruction errors of both S; and
L, are upper bounded by a time-invariant and small value at all times.

In ongoing work, we are studying the undersampled measurements case. On the other
hand, open questions also include (i) how to analyze a practical version of ReProCS-cPCA
(which does not assume knowledge of signal model parameters), and (ii) how to study the
correlated ay’s case (e.g. the case where a;’s satisfy a linear random walk model). The starting

point for (i) would be to try to use the matrix Azuma inequality [25] instead of Hoeffdding.
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APPENDIX A. Proof of the Lemmas and Corollaries in Chapter 2

A.1 Proof of Lemma 2.2.4
proof: Because P, Q and P are basis matrix, P’P = I, Q'Q = I and P'P = I.

1. Using P'P = I and |M|} = ||[MM'|2, ||(I — PP")PP'||s = ||(I — PP")P||5. Similarly,

|(I—PPPP'||y = ||(I—PP")P|s. Let Dy = (I— PP')PP" and let Dy = (I— PP')PP'.

Notice that [|Difls = /Amax(DiD1) = \/IIDiD1l2 and [Dalla = \/Amax(DsD2) =
|D4Ds||2. So, in order to show |[D|l2 = ||Dzl|2, it suffices to show that ||D]Di|2 =

D4 Ds|l2. Let P'P °LP USV'. Then, D} Dy = P(I—P'PP'P)P' = PU(I—X2)U’'P' and

DyDy = P(I—P'PP'P)P' = PV(I-%?)V'P" are the compact SVD’s of D} D; and Dy Ds
respectively. Therefore, | D} D;| = ||DyDs|l2 = ||[I —%2||s and hence ||(I — PP')PP'|; =

I(1 = PP)PP||s.

2. |PP' — PP'||y = |PP — PP'PP' + PP'PP' — PP'||s < ||(I — PP)PP|y + ||(I —
PP)PP'|y = 2(,.

3. Since Q'P = 0, then [|Q'Pllz = |Q'(I — PP')Plly < ||(I = PP))Plls = ..

4. Let M = (I — PP))Q). Then M'M = Q'(I — PP")Q and so o;(I — PP)Q) =

\/)\i(Q’(I — PP)Q). Clearly, Aax(Q'(I—PP")Q) < 1. By Weyl’s Theorem, Amin (Q'(I—
PPNQ) > 1 = Auax(Q'PP'Q) = 1 - [|Q'P|3 > 1 — (7. Therefore, /T = < ai((I —
PPHQ) < 1.
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A.2 Proof of Lemma 2.3.1

proof: It is easy to see that P(B¢,C¢) = E[Ig(X,Y)I¢(X)]. If E[Ig(X,Y)|X] > p for all

X € C, this means that E[Ig(X,Y)|X]Ic(X) > ple(X). This, in turn, implies that
P(B%,C%) = E[l5(X, Y)le(X)] = E[E[l5(X,Y)|X]lc(X)] > pE[le(X)].

Recall from Definition 1.1.3 that P(B¢|X) = E[Ig(X,Y)|X] and P(C¢) = E[l¢(X)]. Thus, we
conclude that if P(B¢|X) > p for all X € C, then P(B¢,C¢) > pP(C¢). Using the definition of

P(B¢|C€), the claim follows. |

A.3 Proof of Corollary 2.3.4

proof:

1. Since, for any X € C, conditioned on X, the Z;’s are independent, the same is also true
for Z; — g(X) for any function of X. Let Y; := Z; — E(Z;|X). Thus, for any X € C,
conditioned on X, the Y;’s are independent. Also, clearly E(Y;|X) = 0. Since for all
X €C,P(biI X Z; < boI|X) =1 and since Apax(.) is a convex function, and Apin(.) is
a concave function, of a Hermitian matrix, thus b1 < E(Z;|X) < bol w.p. one for all
X € C. Therefore, P(Y;? < (by — b1)?I|X) = 1 for all X € C. Thus, for Theorem 2.3.3,
02 = || 34 (ba — b1)%I|]2 = by — by)?. For any X € C, applying Theorem 2.3.3 for {Y;}’s
conditioned on X, we get that, for any ¢ > 0,

Oé€2

m)fOI’&HXGC
2 — U1

1
P()\max(a ZY;) < €’X) >1— nexp(—
t

By Weyl’s theorem, Amax(2 32, Y:) = Amax(2 3(Z — B(Z| X)) > Amax(L 3, Z4) +
Amin(5 2 —E(Z|X)).  Since Amin(éZt -E(Z|X)) = _AmaX(éZtE(ZﬂX)) > —bs,

thus )\max(é YY) > )\max(é >t Zt) — by. Therefore,
2

1
P(/\max(a Z Zy) <bs+e€X)>1— nexp(—8 ace
t

m)fOI‘&HXGC
2 — U1

2. Let YV; = E(Z;|X) — Z;. As before, E(Y;|X) = 0 and conditioned on any X € C, the Y;’s

are independent and P(Y;? < (by — b1)2I|X) = 1. As before, applying Theorem 2.3.3, we
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get that for any € > 0,

0462

W)forallXGC
2 — U1

1
P()\max(a ZY;) < €’X) >1— nexp(—
t

By Weyl’s theorem, )‘max(é YY) = maX( SE(Z]X)~2Zy)) > mln( > E(Z] X))+
)\max( Yoo —Z) = )\mm( YL E(ZX)) - mm( >oi Zy) > bg— mm( > Zi) Therefore,
for any € > 0,

0462

1
PAnin(—= ) Zi) > b3 —€X)>1-— ——
Ouin(5 32 20) 2 b3 = e|X) 2 1 = nexp(—gr—ps

t

) for all X € C

A.4 Proof of Corollary 2.3.5

0 M
proof: Define the dilation of an 1y x ng matrix M as dilation(M) := . Notice that
M 0

this is an (n1 + n2) X (n1 + ng) Hermitian matrix [25]. As shown in [25, equation 2.12],
Amax (dilation(M)) = ||dilation(M)|2 = || M]|2 (A1)

Thus, the corollary assumptions imply that P(||dilation(Z;)|2 < b1/X) = 1forall X € C. Thus,
P(—b1I < dilation(Z;) < b1I|X) = 1 for all X € C. Using (A.1), the corollary assumptions
also imply that 1 37, E(dilation(Z,)|X) = dilation(L 3>, E(Z,|X)) < bo! for all X € C. Finally,
Zy’s conditionally independent given X, for any X € C, implies that the same thing also holds
for dilation(Z;)’s. Thus, applying Corollary 2.3.4 for the sequence {dilation(Z;)}, we get that,

1 2
P()\max(a Zdilation(Zt)) <by+€lX)>1—(n1+ng)exp(— ;22) forall X € C

t
Using (A.1), max( Y- dilation(Z;)) = /\max(dilation(é YiZi)) = Hé > Zt||2 and this gives

the final result. [ |
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APPENDIX B. Proof of Lemma 3.3.2

proof Let A = I—PP'. By definition, d5(A) := max{max 7 <(Amax (A7 A1) —1), max p<s(1—
Amin(AA7)))}. Notice that A Ap = I — I PP'Ip. Since I PP'Ip is p.s.d., by Weyl’s theo-

rem, Apax (A7 A7) < 1. Since Apax (A7 A7) —1 < 0 while 1 — Apin (A A7) > 0, thus,

5s(I — PP') = (1= Anin(/ IPP'Iy)) (B.1)

By Definition, k4(P) = max|p<, ”ﬂ%ﬁlb = max|r|<s |[[7 P|l2. Notice that

|15 Pl|3 = Mpax (I PP I7) = 1 — Apin(I — I PP'I7) 1, and so

K2(P) = E}&X(l — Amin(I — ILPP'I)) (B.2)
From (B.1) and (B.2), we get d5(I — PP') = r2(P). [ |

IThis follows because B = I PP'Ir is a Hermitian matrix. Let B = USU’ be its EVD. Since UU’ = I,
)\min(—[ - B) - )\min(U(I - E)U/) - )\min(l - E) =1- )\max(z) =1~ )\max(B)«
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APPENDIX C. Proof of the Lemmas in Chapter 4

C.1 Proof of Lemma 4.4.10

proof:
. Since P is a basis matrix, x3(P) = maxr<, |[I7'P|]3. Also, |I7'P|j3 = || I7'[Py, Py
[Pl,PQ]/[T”Q = ”[T,(Plpll + P2P2/)_[TH2 < HIT,P1P1/ITH2 + ”[T/P2P2/[T”2. ThllS, the in-

equality follows.

. For any set T with |T| < s, |I7'P,||}3 = || I7' P.PIr||s = || I/ (P, P.— P,P,/ + P,P,)Ir||s <
|17 (PP, — P.P)Ip||2 + || I/ P.P It ||2 < 2¢. + K2,,. The last inequality follows using

Lemma 2.2.4 with P = P, and P = ]5*

. By Lemma 2.2.4 with P = P,, P = P, and Q = Paew, || Paew' Ps|l2 < (. By Lemma 2.2.4
with P = Pnew and P = Pnew,ka H([_Pnewprllew)pnow,k‘b = H([_pnow,kpl

new,k

) Poew||2. For
any set T with |T| < s, || 17/ Pacw,kll2 < (2’ (1= Paew Phew) Pacw il 2H | 77" Pacw P Paew e l2
< skl (1= Paew Paew’) Pacw it 2+ | 77 Paewll2 = Fos o (T = Pacw ke Phey 1) Paew |2+ | 77 Pac 12
< skl Duewkll2 + Bs k| PaPl Pacwll2 + [ 17 Paewll2 < s kG + RskCe + Ksmew < RskCr +

G + Ksnew. Taking max over |T'| < s the claim follows.
. This follows using Lemma 3.3.2 and the second claim of this lemma.

. This follows using Lemma 3.3.2 and the first three claims of this lemma.

C.2 Simple facts

Let C,j denote the bound on ¢ for any j. We obtain an expression for C,j later.
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Fact C.2.1 Suppose ks < /@:7* = 0.3, Kos,new < /@:mew = 0.15, Rasp < /%;'S = 0.15, and

ks < ki = 0.15. Pick ¢ as in Theorem 4.5.1 and set ¢ = (ro+ (j — 1)¢)(. Then,

2 2 1
3. Cj'Vneng < CJ'V* < ro+(J—1)0) <1
+ < (tr. < WV
4' (* Tnew,k = C* Ve > /7710_’_((] 1 \/_

1.5x10~% —4
5. jfgmglﬁxlo

6. If G| < 0.6" 1+ 0.4cC, then ¢ newr < (0.6 - 1.2)F Ly, + 0.4cCy, < 0.7287 1,0, +
0VC () 79k 1m0+ 0.44/C

Vrot+(J—1)e
7 If Gy <0687 40.4cC, then G2 < (0.6-1.22)M 192 40.4c¢y2 < 0.8645 12 +

0oy <0.864F 7142

ToF(J-1)9? +0.4

’7716111

8 If G < ¢F, G < ¢ and ¢ < 0.6 +0.4¢¢, then

(a) 65(Po) < b25(Po) < i, +2¢ < 0.1 < 0.1479
(b) ds (cI)k) < 528((I>k) < ’%25 * + 2(* ("i2s new + R Kos, kC]:_ + C:—)z < 0.1479

(c) o1 < #@k) < 1.1735

proof: The first seven items follow directly. The eighth item follows using Lemma 4.4.10. W

C.3 Proof of Lemma 4.4.11

proof:

1. For t € Ij,ka 51& = ([ - p(t—l)p(/t_l))Lt = D*,k—lat,* + Dnow,k—lat,new' Thus: HﬂtH2 <
(*\/?7* + Ck—l\/aynew,k < \/60'72k_17now + \/Z(\/? + 04\/5) < 50- The second last

inequality follows using Fact C.2.1.
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2. By Fact C.2.1 and condition 2 of the theorem, do,(®r_1) < 0.15 < /2 — 1. Given

1T < s, ||Bell2 < & = € and §4(Px_1) < /2 — 1, by Theorem 2.1.1, the CS error satisfies
5 A\/1+025 (Pp_
1Stcs = Sillz < = prrmiet=go < Téo.

1—(vV/2+41)625 (Pr_1

3. Using the above and the definition of p, ngcs — Stlloo < Tp&o. Since ming |(S¢)7,| > Smin
and (St)th = 0, miny |(§t,cs)Tt| > Smin — 7p&o and miny |(§t,CS)th| < Tp&y. I w < Spin —
7p&o, then 7, D T,. On the other hand, if w > 7p&y, then T} C T,. Since Smin >
14p&o(condition 3 of the theorem) and w satisfies 7p&y < w < Spin — 7p&p(condition 1 of

the theorem), then the support of S; is exactly recovered, i.e. T, =T,.

4. Given T, = Ty, the LS estimate of S, satisfies (S’t)Tt = [(Pp—1)7] v = [(Pr_1)7, ] (®Pp_1 S+
®p_1L;) and (S*t)th =0 for t € Zj. Also, (®_1)7,'®r_1 = I7,/®p_1 (this follows since
(Pr—1)1, = Pi—1I7, and ®)_ Py = Pj_1). Using this, the LS error e, := S, — S, satis-
fies (4.2). Thus, using Fact C.2.1 and condition 2 of the theorem, ||e|l2 < & (/s +
s k-1 1V Cmew k < 1.2(v/Tv/C +/c0.15(0.72)F 1 4 {/20.061/C) = 0.18/c0.72F L0y +
1.20/C(V/7 + 0.06,/2).

C.4 Proof of Lemma 4.4.12

proof: Since Amin(Ax) — | Ak, 1ll2 — [Hell2 > 0, 50 Amin(Ax) > || Ak, 1 ||2. Since Ay is of size
Cnew X Cnew and Amin(Ax) > || Ak, 1]l2, Aepew+1(Ak) = || Ak, 1 ||l2. By definition of EVD, and since
Aj 1S a Cpew X Cnew Matrix, Amax(Ak 1) = Acpew+1(Ar + Hi). By Weyl’s theorem (Theorem
2.2.2), Ayt 1 (Ar +Hi) < Apewt1(Ak) + [ Hill2 = [[ Ak, Lll2 + | Hk|l2. Therefore, Apax(Ag, 1) <
| Ak 1|2 + || Hkl|2 and hence Amin(Ak) — Amax(Ak. 1) > Amin(Ar) — | Ak 1 |l2 — | Hkll2 > 0. Apply

the sin @ theorem (Theorem 2.2.1) with Apmin(Ak) — Amax(Ak, 1) > 0, we get

A A Rill2 [ Hk]l2
I— Pnew Prllew Enew < H <
I i #) 2= Amin(Ak) — Amax(Ak, 1) = Amin(Ak) — || Ak, 1ll2 — [|[Hkll2

Since ¢ = [|(I — Pnew,kpr/lew,k)DneW‘b =[I(I - pnew,kpr/lew,k)EneaneW‘b

< ||(I— Pnew,kPAeW,k)Enowllm the result follows. The last inequality follows because || Ryew|l2 =

”EI/ICWDHGWH2 <L [ |
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C.5 Key facts for proving Lemmas 4.4.14 and 4.4.15

In this and the next two subsections, we use éZt to denote éZtEIj,k'

Lemmas 4.4.14 and 4.4.15 can be proved using the following facts and Corollaries 2.3.4 and

2.3.5. Under the assumptions of these lemmas, the following are true.

1. Recall from the model (Sec 3.1) and from condition 3 of Theorem 4.3.1 that (i) as new and
at« are mutually uncorrelated, (ii) ||az«|l2 < v/7ryx, (iii) for t € Z; g, [[atnewl|2 < VEmew i

and ||at7*at,nowH2 < V CT"Vnew, kY-
2. Recall that

(a) f:= AT/A™ where AT := max; Auax(A¢) and A~ := ming Apin(A¢) and so AT <

new,k —
AT, A;ew,k >\~
(b) ®o=1—P.P}, @4y =T~ PP — Pacwp—1Pheq 11> Dnew k-1 = ®h1Pacw, Duew =
Duewo = ®0Pacw &' EnewRuews Di = ®0Ps, & = [|IDsl, Gt = | Dnewiet || with
o = || Dnewll-

(c) Conditions 2 and 4 of Theorem 4.3.1 imply that ras ., < /{3’57* = 0.3 and K2s pew <

gsnew = 0.15, Ras < fgy, = 0.15, kg g < k7 =0.15 and g1, < g+ = V2.

"i2s,now

(d) The r.v. X; ;1 and the set I'j ,_; are defined in Lemma 4.4.14.

3. It is easy to see that [|[®r_1Pll2 < (s Co = [[Dnewll2 < 1, ®0Dnew = P)iDnew =

Dnew; HRHGWH < 17 ”(Rnew)_lu < 1/\/ 1— C37 Enow,J_,Dnew - 07 and ”EneW/(I)Oet” -
_ _ _ +
[(Rhew) ™ Dhew®oetll = [[(Ruew) ™ Dhewetll < [[(Rhew) ™ Dhew I, [[lle2]] < \/':S'_T\Ietll- The

bounds on || Ryeyw || and || ( Ryew ) ! || follows using Lemma 2.2.4 and the fact that o;(Ryey ) =

Ji(Dnow)-

4. Xjp—1 € I'j—1 implies that (1 < C,j_l and ¢, < ¢;F. We prove this below. This, in

turn, implies that

(a) Amin(RuewRuew’) > 1 — (¢H)2. This follows from Lemma 2.2.4 and the fact that

Omin (Rnew) = Omin (Dnew ) .
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() 7, @r-1Pil|2 < [|Px-1Psll2 < & < Gy 111 Dyew p—1ll2 < Bsp-1Ce—1 < K¢

(¢) dp_1:= [(®r_1)7,' (Pr_1)71;] ]2 < ¢ = 1.2. This follows from Fact C.2.1.

. P({T} = T; and ¢, satisfies (4.2) for all t € T, }[Xj 1) = 1 for all X, € T 4_1. We

prove this below. In other words, conditioned on X ;_1, Tt =T, and e; satisfies

er = I, [(Pr_1)7 (@ 1)1, ) Iy [(Pr—1 Pe)at s« + Dnew k—10t new)
w.p. one, for all X;; 1 €151

. The matrices Dyew, Rnew, Enew, Ds, Dnew,k—1, Px—1 are functions of the r.v. X, 4

(defined in Lemma 4.4.14).

(a) Thus, all terms that we bound in the proof of Lemma 4.4.14 are of the form
éztezj,k Z; where Z; can be rewritten as either Z; = f1(Xj7k_1)at,*a;7*f2(Xj7k_1)
or Zy = f1(Xjk—1)tnewt powf2(Xjr—1) ot Zy = f1(X}x—1)0t50f pew fo(Xjx—1) for

some functions fi(.) and fa(.).

(b) Conditioned on X ;_1, all terms that we bound in the proof of Lemma 4.4.15 are
also of the above form, whenever X, ;1 € I'; ,_1. This follows using item 5 (all

terms that we bound in the proof of this lemma contain e;).

. Xj ;-1 is independent of any a;« Or ¢ new for t € Z; . , and hence the same is true for the
matrices Dpew, Rnew, Enews Dx, Dnewk—1, Pr—1 (which are functions of Xj,_1). Also,
as s for different ¢ € 7;, are mutually independent and the same is true for a; new’s for

t e Ij,k’

. Combining the previous two facts, for Lemma 4.4.14, conditioned on Xj;_1, the Z;’s
given in item 6 are mutually independent. For Lemma 4.4.15, conditioned on X ;_1, the

Z’s given in item 6 are mutually independent, whenever X, ;1 € I'; ;_;.

. The assumption that (1 < 0.6571 + 0.4¢¢ is combined with Fact C.2.1 to get simple

expressions for the probabilities with which the bounds hold.
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10. The statement “conditioned on r.v. X, the event £¢ holds w.p. one for all X € I'” is
equivalent to “P(E°|X) =1, for all X € T'”. We often use the former statement in our

proofs since it is often easier to interpret.

Proof of item 4: (1 < Cl;"_l follows from the definition of I'; ,_;. Also, the definition
implies that (1. < ro¢ and (g < ¢ for all j/ < j — 1. Using the definition of K from
Theorem 4.3.1 and using the assumption on C}j , this implies that (j < 0.6% +0.4¢¢ < ¢ for
all j/ < (j —1). Using Remark 4.4.4, this implies that ¢, < ro¢ + (j — 1)c¢ = ¢

Proof of item 5: X;;_ € I';;_ implies that (;_; < Clj_l and ¢ < ¢ =ro+ (j —1)C.
This follows using item 4. By assumption, C,j_l < 0.6""! 4 0.4¢¢ and the four conditions
of Theorem 4.3.1 hold. Thus, conditioned on X ;_q, all conditions of Lemma D.1.2 hold as
long as X; ;1 € I'j ,—1. Applying Lemma D.1.2, (i) T, =T, for all t € Z;k; and (ii) for this

duration, e; satisfies (4.2), i.e. the claim follows.

C.6 Proof of Lemma 4.4.14

proof: In this proof, we frequently refer to items from the previous subsection, i.e. Sec.
C.5.

Consider Ay, := é >t Enew ®oLi Ly’ @ Eyew. Notice that Enew'®oL; = Ryewatnew+ Enew D s
Let Z; = Ruewt new0tnew' Bnew' and let Y = Ruewtnewt ' Dy’ Enew' + Enew' Dia x @t new Rnew',
then

A=ty iz vy, (c.1)
o @

Consider Y, Zy = Y, RuewGt newOt new Ry~ () Using item 8 of Sec. C.5, the Z;’s are
conditionally independent given X, ;. (b) Using item 3, Ostrowoski’s theorem (Theorem
2.2.3), and item 4, for all X5 € I'j 1,

1

1
)\min(E(a Z Zt‘Xj,k—l)) - )\min(Rnewa Z E(at,newat,neW/)Rnewl)
t t

1 _
2 )\min(RneaneW,))\min(a ZE(at,newat,newl)) 2 (1 - (Cj)2))‘new,k
t

(c) Finally, using items 3 and 1, conditioned on Xj ;1,0 < Z; = Cﬁew,kl < emax((1.2)%%42, AT

IVHGW )

holds w.p. one for all X;; 1 €1'j;_1.
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Thus, applying Corollary 2.3.4 with € = 42)4‘1 , we get
cCA‘
mln ZZt 2 1 - (C* ) ) new,k 24 ‘ijk_l)
ag?(A7)?

>1—cexp(—

8242 - min(1.2%A% 41 ))for all Xjp1 €1 (C2)
: new’ /x

Consider Y; = Ryewt newt « Di' Enew + Fnew' Di@t 4t new Ruew'- (a) Using item 8, the Y;’s
are conditionally independent given X;;_1. (b) Using items 3 and 1, E(L 37, Y}| X, 4—1) = 0
for all X;r—1 € I'jr—1. (c) Using items 1, 3, 4 and Fact C.2.1, conditioned on X1, [|Y;]| <
20/ Yamew s < 2¢/er¢y? < 2 holds w.p. one for all X1 € I'jx—1. Thus, under the

same conditioning, —bl < Y; < bl with b = 2 w.p. one. Thus, applying Corollary 2.3.4 with

cC\™

€ = =5, we get
_CGAT
mln ZY; C | )
ac2C2( )2
> 1-— cexp(—m) for all Xij_l S Pj’k_l (C?))

Combining (C.1), (C.2) and (C.3) and using the union bound, P(Amin(Ax) = Aoy (1

(¢hH?) - Ccl){ | Xjk—1) > 1 —pa(a,C) forall Xj, 1 €Tr_1. The first claim of the lemma

follows by using A, > A~ and then applying Lemma 2.3.1 with X = X, _jand C =T ;1.

new, k
Now consider Ay, | := é >t Enew ' ®oLi Ly ®oEpew, 1 - Using item 3,

Enew,1'®0Lt = Enew,1'Dyary. Thus, Ay = 3355, Zy with Zy = Enew,1'Datt,xar' D/ Eyew, 1

which is of size (n —¢) x (n —¢). (a) As before, given X1, the Z;’s are independent. (b)

Using items 4, 1 and Fact C.2.1, conditioned on Xj ;1,0 = Z; = r(¢F)?~21 < ¢I w.p. one for

all Xjy_1 €D, 1. (c) Using items 3, 2, E(1 37, Z|X; 1) = (GF)2AF].

cCA™
24

Thus applying Corollary 2.3.4 with € =
CCA_

we get

ac®P(A7)?

P (Amax(Ag, 1) < (G5)*A 8-242¢

——| X, k—1) > 1—(n—c) exp(— Jforall X 1€l

The second claim follows using A, > A~ and f = AT /A~ in the above expression and then

applying Lemma 2.3.1. |

C.7 Proof of Lemma 4.4.15

proof: In this proof, we frequently refer to items from Sec. C.5.
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The first claim of the lemma follows using item 5 of Sec. C.5 and Lemma 2.3.1.
For the second claim, using the expression for Hy given in Definition 4.4.6, it is easy to see

that

1
Hillz < max{[| Hllz, [y, Lll2} + [|Bellz < [~ > eed|l2 + max([ T2z, [ T4]l2) + || Bellz
t

(C.4)

where T2 := = Zt new @o(Lie) +ei Ly )P FEpeyw and T4 := — Zt Enew,1'®o(Lie/+e)/ L) PoEnew, 1 -
The second inequality follows by using the facts that (i) Hy = T'1 — T2 where

T1:= 13, Evew'®oere)/ ®oEnew, (i) Hy, 1 = T3—T4 where T3 := 1 37, Eyew 1 '®oere) o Enew, 1,
and (iil) max (|| 712, |732) < ||2 32, eres/[|2. Next, we obtain high probability bounds on each
of the terms on the RHS of (C.4) using the Hoeffding corollaries.

Consider ”éZt ere|l2. Let Z; = ee/. (a) Using item 8, conditioned on X ;_1, the
various Z;’s in the summation are independent, for all X; ;1 € I'; ;1. (b) Using items 1,
2, 4, conditioned on X;;_1, 0 X Z; <X b1 w.p. one for all X, 1 € I'j,_1. Here by :=
(KF G 16" Vermew st CHET V)2 () Using items 1,2, 4,0 < L Y, B(Z|X; 1) = bal, by 1=

(K9G (07 Mewe + (G52 (@7)2AT for all X1 € Tjpr.

(™

Thus, applying Corollary 2.3.4 with € = =5,

cCA™

1 / O‘62<2(/\_)2
P(Ha Zetet ”2 < bg+7’Xj7k_1) > 1—nexp(— ) for all Xj,k—l S Fj,k—l (05)
t

8- 242b%
Consider T2. Let Z; := FEneyw ®o(Lief + €Ly )®PoFEpew which is of size ¢ x ¢. Then
2 = éZt Z;. (a) Using item 8, conditioned on Xj;;_1, the various Z;’s used in the sum-
mation are mutually independent, for all X1 € I'; ;. Using items 2 and 3, Epew ®oL; =
Ruew@tnew + Fnew Dyt s and Eyey'®oep = (Ruew’) ' Dpew’es.  (b) Thus, using items 2, 3,
4, 1, it follows that conditioned on Xji_1, ||Z]|2 < 2b3 < 2b3 w.p. one for all Xjk—1 €
1. Here, by := \/LT¢+(K+§§_1\/E%WJQ + V) (Ve mew ks + V¢ v+) and by =
T TR G e T VIR G o + STV CE e + 6TTCE2).
(c) Also, Hl S E(ZXjp—1)]l2 < 2by < 2b, where

by = \/qufr +<k 1/\nowk + \/T¢+(Cj)2/\+ and
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by = Wqﬁ kG 1>‘newk + W¢+(Cj)2/\+. Thus, applying Corollary 2.3.5 with

cCA™
€= %,
cCA™ actC?(\7)?
P(||T2]]2 < 2bs + C \Xjk 1) > 1—cexp(— 32247(241‘2) for all X1 €jr1
3

Consider T4. Let Z; := Eyew 1 ®o(Lie) + 1Ly )P Epew, 1. which is of size (n —c¢) X (n —¢).
Then T4 = 13, Z,. (a) Using item 8, conditioned on Xj;_1, the various Z,’s used in the
summation are mutually independent, for all X, ;1 € ' _1. Using items 2, 3, Epew, | '®o L =
FEnew,1'Dyay . (b) Thus, conditioned on X x_1, || Z¢||2 < 2bs w.p. one for all X1 € T'jx_1.
Here bs := ¢r(()?92 + ¢ v/rend G Venew . This follows using items 2, 4, 1. (c) Also,

123 B(Zi| X h—1)ll2 < 206, bg = ¢ ((F)2AT.

cCA™

Applying Corollary 2.3.5 with € = 55—,

c§/\_ ac?C?(\7)?

32242 - 4b2

P(HT4H2 < 2b6 + | _1) >1-— (n — C) eXp(— ) for all Xj,k—l c Fj,k—l

Consider max(||T2|2, |T4]|2). Since bg > bs (follows because ¢;” ; < 1) and by > bs, so

2420y —\2 2420y —\2
2bg + cgﬁ < 2by + CCA and 1 — (n — ¢) exp(—%) >1—(n—c¢ exp(—%).

Therefore, for all X1 € I'j 1,

cC)\_ ac2C2()\_)2

By union bound, for all X1 € I'; 1,
ac2C2()\_)2
P(max (|| 122, [|T4]|2) < 2b4 + S0 | jk—1) > 1— nexp(—m) (C.6)
Consider ||Bgll2. Let Z; := Eyew ' ®o(Li — er)(Li — €/)®oFEnew which is of size (n —

¢) x ¢. Then By = éZt Z;. (a) Using item 8, conditioned on X, j_1, the various Z;’s
used in the summation are mutually independent, for all X;;_1 € I'j;_1. Using items 2,
3, Enow,J_/cI)O(Lt - et) = Enow,J_,(D*at,* - (I)Oet)a EneW/(I)O(Lt - et) = Rnewat,new + Enew,D*CLu* +
(Riew) ' Dlower. (b) Thus, conditioned on X 1, || Z¢||2 < by w.p. one for all Xj 1 € Tjp_1.

Here b7 := (\/ng(l + ¢+)7* + (/{;_)C]j_lgb—i_\/aynew,k)(\/E'Vnew,k + \/?Cj(l + ﬁ’%j +)7* +

\/ﬁ h Ck 19"V Ymew k). This follows using items 2, 3, 4, 1.

(c) Also, |13 X4 B(Z| X k1) ll2 < bs where by := (v (0" + ———=(s)*({))*(67)?)
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new kK + (C* ) (1 + ¢+ W s ¢+ W s (¢+) ))‘+ for all Xj,k—l S Fj,k—l- Thus,

applying Corollary 2.3.5 with € = 0422 7
C /\_ O[C2 9 )\_ 9
P(|[Bgll2 < bs + C | jk-1) > 1— neXP(—ﬁ(@b;) forall X;,_1 €01 (C7)

Using (C.4), (D.9), (D.10) and (D.11) and the union bound, for any X, ;1 € I'; 41,

ac?(?(\7)? ac? 3 (A7)?

s ) P e )

cCA™
P([[Hkll2 < by + T|Xj7k_1) >1—nexp(—

0402C2()\_)262

—nexp(— 5220202 ) (C.8)
where bg := by + 2by + bg,
12 o+ +13( 442
b= (BBl | gygr, + ((eh)2et)2 + S Dy 2
() NS
+((¢+)2 + L + 14+ ¢+ +¢+ "i+(¢+) )(Cj)2)\+
1 - (¢5)? V- (@2 ¢1— (GH?
((k 15 (* ) new,k + O(C:_7<jf))\ (Cg)

where C'(x;u,v) and O(u,v) are defined in Definition 4.4.13. Using Amewr = A~ and f =

AT /AT, bg+ C<§‘7 < Ao w0ine(GE 1 GFL G fL e€). Using Fact C.2.1 and substituting ] = 0.15,
¢T = 1.2, one can upper bound by, b3 and b; and show that the above probability is lower

bounded by 1 — p.(«, (). Finally, applying Lemma 2.3.1, the result follows. [ |

C.8 Proof of Lemma 4.4.18

proof: Conditions 2, 4 of Theorem 4.3.1 imply that ko, . < /g;s’* = 0.3, K2snew < mgrs’ncw =
0.15, kosp < /%;'S = 0.15, kg < ki = 0.15 and ik < gt = V2. Using Lemma 4.4.10, this

implies that ¢, < ¢ = 1.1735. Using Fact C.2.1, ¢ <1074 ¢ f < 1.5x107%; and ¢¢ < 1074,

1. By definition, (§ = 1. We prove the first claim by induction.

e Base case: For k =1, (7 = fine(1;¢5, (T f, Q) < fine(1;1074,1.5 x 1074,107%)
<0.5985 < 1= (.
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e Induction step: Assume that C,;"_l < C,;"_Q for £ > 1. Since f;,. is an increasing

function of its arguments, ¢;" = finc(G13 G5 G eQ) < fine(Gloi G5 GE S eC) =

Gi1
2. For the second claim, let 0, (z;u, v, w) = %g (é?;w) and 0y (z;u, v, w) = %%.
Then, fine(x;u,v,w) = O04(z;u, v, w)x + Op(x,u, v, w)cC.

e Notice that 6,, 6, are also increasing functions of all their arguments. Thus,
0a (G 13 G G FoeC) < 04(0.5985; 1074, 1.5 x 1074, 10™1) ~ 0.4471 < 0.6 and

Op(G 13 GFL Gy eC) < 0,(0.5985;107%,1.5 x 1074,107%) = 0.1598 < 0.16. Thus,

(]j = 0(1((]:—_1; ij C:_fv CC)(;—_l + 91)((}3—_1; (j) ij? CC)C<
<0.6¢ | +0.16¢C

<0.6"71¢ + (06872 +0.6" 3 - 4+ 1)0.16¢C

0.16¢C

k
= 0. 4 1
o = 065+ 0deC (C.10)

<0.6F +

3. Since Q;" < 0.5985 and gge. is a decreasing function of its arguments, gdec(gj; ¢ ¢ fe€) >

9dec(0.5985; 1074, 1.5 x 1074,107%) > 0.

C.9 Proof of Lemma 4.4.21

proof: By Lemma 4.4.18, C,j defined in Definition 4.4.17 satisfies (];" < 0.6F 4 0.4¢¢ for
all £ < K and gdeC(Clj;C:'_aC:—f; ¢¢) > 0. Thus, we can apply Lemma 4.4.16 and Lemma
4.4.15. By Lemma 4.4.16, P(¢, < (& TS 5—1) = pr(a,¢). By Lemma 4.4.15, P{T, =
Tt and e; satisfies (4.2) for allt € Z; ;. }[I' ;) = 1. Combining these two facts, P(I Sl k1) >
pr(a, Q) forall 1 <k < K.

Since I'j jc holds and since C,j < 0.6% + 0.4¢¢ for all k < K, thus & < ¢ and (i < (;; <
0.6 4 0.4c¢. This is proved in Sec. C.5 (item 4). Using this and applying Lemma 4.4.11, the

last claim follows. [
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APPENDIX D. Proof of the Lemmas in Chapter 5

D.1 Proof of Lemma 5.4.15

The proof follows by using the following three lemmas.

Lemma D.1.1 (Exponential decay of C,j) Assume that all the conditions of Theorem 5.3.1

hold. Let (} = r(. Define the series (1, as in Definition 5.4.3. Then,
1. (6" =1 and (];" <0.6F +0.4c¢C forallk=1,2,... K,
2. the denominator of C,j is positive for all k =1,2,... K.

proof This lemma is the same as Lemma 4.4.18 but with ¢, defined differently. |

Lemma D.1.2 (Sparse recovery, support recovery and expression for e;) Assume that

all conditions of Theorem 5.3.1 hold.

1. If & < ¢ = 1C and Gy < C,j_l < 0.6""1 + 0.4¢C, then for all t € ik, for any

k=1,2,... K,

(a) the projection noise By satisfies ||Byll2 < G v/eTnewk + GV < V0. 728y +
1.06y/¢ < €.

(b) the CS error satisfies ||S,cs — S|z < T€.

(¢c) T, =T,

(@) v satisfies (5.3) and leglls < 615Gy vPrmeuset G V] < 0.18-0.725 /Byt

1.17 - 1.06,/C

2. Forallk =1,2,... K, P(Tt =T, and e; satisfies (5.3) for allt € T; ;| X;,—10) =1 for

all Xj,k—l,O S Fj,k—l,O-
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3. Forallk=1,2,... K, P(T; = T; and e; satisfies (5.3) for all t € Zikll6 k—10) = 1.

proof The first claim is the same as Lemma 4.4.11 but with ¢, defined differently. The proof
follows in an analogous fashion. The second claim follows from the first using Remark 5.4.17.

The third claim follows using Lemma 2.3.1. [ |

Lemma D.1.3 (High probability bound on ;) Assume that all the conditions of Theo-

rem 5.8.1 hold. Let (; =r(. Then, for allk=1,2,... K,
P(Cr < G TS 4—1,0) = Pr(e, Q)

where (,;" is defined in Definition 5.4.3 and pi(c, () is defined in Lemma 4.4.16.

proof Using Lemma D.1.1, (i) (§ =1 and (", < 0.6"~1 + 0.4c¢ and (ii) the denominator of
C,j is positive. Using this and the theorem’s conditions, the above lemma follows exactly as in
Lemma D.1.1. The only difference is that ¢ is defined differently. Also, T'jx := I'j 0. The
proof proceeds by first bounding (j (in a fashion similar to the bound in Lemma D.2.6); using
Lemma D.1.2 to get an expression for e;; and finally using Corollaries 2.3.4 and 2.3.5 to get
high probability bounds on each of the terms in the bound on (. [ |

Lemma 5.4.15 follows by combining Lemma D.1.3 and the third claim of Lemma D.1.2 and

using the fact that

P(TS 4005 k1.0) = P(G < ¢, Ty = Ty and e; satisfies (5.3) for all t € Zi kTS -1.0)

D.2 Lemmas used to prove Lemma 5.4.16

In this section, we remove the subscript 7 at most places. The convention of Remark 5.4.14

applies.

D.2.0.1 Showing exact support recovery and getting an expression for e;

Lemma D.2.1 (Bounding the RIC of ®;) The following hold.

1. 64(®0) = K2(P,) < K2, +2(,
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2. 5s(q)k) - Hg([p* pnew,k]) < Kg(p*) + ﬁg(pnew,k) < 527* + 2(* + ("is,new + '%s,ka + C*)2 fOT’
k=1,2.. K

proof The above lemma is the same as the last two claims of Lemma D.2.1. It follows using

Lemma 3.3.2 and some linear algebraic manipulations. [ |

Lemma D.2.2 (Sparse recovery, support recovery and expression for e;) Assume that

the conditions of Theorem 5.3.1 hold.
1. For allk =1,2,...9+1, Xj g -1 € I'j g r—1 tmplies that

(a) G < ¢ =71C, (rk < c(, [|[PrPjl2 < (r+ )¢,
(b) 8,(Pr) < 0.1479 and o < &+ := 1.1735
(c) for anyt € fj7k,
i. the projection noise B := (I — P(t_l)P(’t_l))Lt satisfies || Bell2 < V/C,
ii. the CS error satisfies HS*MS — Stlle < 7VC,
iii. Ty = Ty,
. e satisfies (5.3) and ||ei]lo < ¢TV/C.

2. Forallk=1,2,...9+1, P(T;, = T, and e, satisfies (5.3) for all t e fj,k | X kp—1)=1

for all Xj,K,k—l S Fj,K,k—l-

3. Forallk=1,2,...0+41, P(Ty = T} and e, satisfies (5.3) for all t e Zin TS k1) = 1.

proof
Claim 1-a follows using Remark 5.4.17. Claim 1-b) follows using claim 1-a) and Lemma

D.2.1. Claim 1-c) follows in a fashion similar to the proof of Lemma 4.4.11. The main difference

and the fact that for ¢t € I, () = Pg, and v/ < VA2/(r +¢)3. Claim l-c-ii) uses c-i),
V¢ < € (defined in the theorem), das(Pr) < 0.1479, and Theorem 2.1.1. Claim 1-c-iii) uses

is that everywhere we use ®xL; = ®xPja; and [|[PxPjll2 < (r + ¢)¢. Claim 1-c-i) uses this

c-ii), the definition of p, the choice of w and the lower bound on Sy, given in the theorem.
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Claim 1-c-iv) uses claim c-iii) and Remark 5.4.11. To get the bound on ||e;||2 we use the first

expression of (5.3), ¢x < ¢T :=1.1735, and /¢ < \/72/(r + ¢)3.

Claim 2) is just a rewrite of claim 1). Claim 3) follows from claim 2) by Lemma 2.3.1.

D.2.1 A lemma needed for bounding the subspace error, Ek

Lemma D.2.3 Assume that Cy < & ¢ for k' =1,--- .k —1. Then
L |[Dgerill2 = |Wr-1Gaerkll2 < r¢.
2. |G aet G actr’ — GaetkGlyeyll2 < 2r¢.

3.0 < V1=12% < 0y(Dy) = 0i(Rg) < 1. Thus, |Dyllz = |Rll2 < 1 and |D; ||z =

IR l2 < 1/v1 =122

22
4- HDundet,k/EkH2 = HGundet,k/Ek||2 < Sl

Vi-r2¢2’
proof The first claim essentially follows by using the fact that Gl,--- ,Gk_l are mutually
orthonormal and triangle inequality. Recall that ¥y = (I — Gdet,kéfiet,k)- The last three
claims use this and the first claim and apply Lemma 2.2.4. The last claim also uses the

definition of Dy, and its QR decomposition. [ |

D.2.2 Bounding on the subspace error, fk

Lemma D.2.4 (Bounding fk+) If

finc (gmax ) hmax)
EminC

fdec(gma)wilmax) - >0 (Dl)

then fdec(gk,izk) >0 and élj < (.

proof Recall that fin.(.), faec(.) are defined in Definition 5.4.3 and fk+ = %. Notice that

fine(.) is a non-decreasing function of §, h, and fz.(.) is a non-increasing function. Using the

definition of gmax, Amax, Cmin given in Assumption 5.1.1, the result follows. [ |
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Remark D.2.5 If we ignore the small terms of fine(.) and fgec(.), the above condition sim-

+ 4t5 + 4+7 ~
plifies to requiring that iaed g‘{’i’iﬂi’ed} fmax < v Since Gmax > 1, the first term of the

numerator is the largest one. To ensure that this condition holds we meed /{;e to be wvery
small. However, as explained in Sec D.2.3, if we also assume denseness of Dy, i.e. if we
assume kKg(Dy) < /{;D for a small enough /{;D, then the first term of the numerator can be

replaced by maX(3RIeRID¢+§maX,H;‘:e(b—l—ilmax). This will relax the requirement on k., e.g.

now ki, =k}, = 0.3 will work.

Lemma D.2.6 (Bounding (;.) If Amin(Ar) — Amax(Ar. 1) — [[Hxll2 > 0, then

G < ~ Hﬂkﬂg _
" Amin(Ak) — Amax(Ak, 1) — [[Hell2

(D.2)

proof Recall that Ay, flk, 1, Hj are defined in Definition 5.4.6. The result follows by using the
fact that (p = [|(I — GrG})Djxlle = [|(I — GrGy)ExRill2 < (I — GrG})Eyl2 and applying

Lemma 2.2.1 with £ = E;, and F = Gk |

Lemma D.2.7 (High probability bounds for each terms in the Ek bound and for fk)
Assume that the conditions of Theorem 5.5.1 hold. Also, assume that P(I' 1) > 0. Then,

for all1 <k <49j,
1. PQmin (Ag) > Mg (1 —r2¢2 — 0.10)[TS g 1) > 1 = p1(&, ¢) with p1(&, () given in (D.6).

2. Pmax(Ak, 1) < Ay (i + 72 f + 0108 k1) > 1 — pal@, Q) with a(@,¢) given in
(D.7).

3. P([Hill2 < Ag fine(Gr: i) [T 1) = 1= Pa(@, Q) with p3(@, ) given in (D.12).

4- P()\mln(Ak) - )\max(lek,J_) - H,’:[kH2 > /\];fdec(gky ﬁk) |F§,K,k—1) > ﬁ(dy C) =1 _ﬁl(da C) -
ﬁQ(&a C) - ﬁ3(d7 C)

5. 1f faee(Grs hie) > 0, then P(Gp < {5 1€ 4 1) = B(6,¢)

proof Recall that fine(.), faec(.) and élj are defined in Definition 5.4.3. The proof of the first

three claims is given in Sec D.2.3. The fourth claim follows directly from the first three using
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the union bound on probabilities. The fifth claim follows from the fourth using Lemma D.2.6.

Lemma D.2.8 (High probability bound on CNk) Assume that the conditions of Theorem
5.3.1 hold. Then,

P (e < & TS k1) = 5(6,Q)

proof This follows by combining Lemma D.2.4 and the last claim of Lemma D.2.7. |

D.2.3 Proof of Lemma D.2.7

1 1
proof We use = >, to denote = Zteij,k'
For t € Tjy, let apy := Gji'Ly, arder = Gaet s’ Lt = [Gj1,-+ Gjr—1]'Ly and @y undet =
Gundet k' Lt = [Gj 41+ Gjﬂgj]/Lt. Then a; := P;Lt can be split as a; = [a;dct a;k a;undct]’.
This lemma follows using the following facts and the Hoeffding corollaries, Corollary 2.3.4

and 2.3.5.

1. The statement “conditioned on r.v. X, the event £° holds w.p. one for all X € T'” is
equivalent to “P(E¢|X) =1, for all X € T'”. We often use the former statement in our

proofs since it is often easier to interpret.

2. The matrices Dy, Ry, Ei, Dget ks Dundet,k, Yr—1, ®x are functions of the r.v. X; g 1.
All terms that we bound for the first two claims of the lemma are of the form é Zteij,k Zy
where Z; = fi(X kr—1)Yef2(Xj kk—1), Yz is a sub-matrix of a;a} and fi(.) and fa(.)
are functions of X g 1. For instance, one of the terms while bounding Amin(Ay) is

1 / /
= > Rragpag ' Ry

3. Xj g k-1 is independent of any a; for ¢ € fj,k , and hence the same is true for the
matrices Dy, Ry, E, Daet k> Dundet ks Yi—1, Pr. Also, a;’s for different ¢ € fj,k are mu-
tually independent. Thus, conditioned on X; k1, the Z;’s defined above are mutually

independent.
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4. All the terms that we bound for the third claim contain e;. Using the second claim of
Lemma D.2.2, conditioned on Xj i 1, e; satisfies (5.3) w.p. one whenever X, g1 €
I'j i k—1. Conditioned on X; g 1.1, all these terms are also of the form é Zteij’k Zy with
Z; as defined above, whenever X i1 € I'j g —1. Thus, conditioned on X i 1, the

Zy’s for these terms are mutually independent, whenever X; i1 € I'j g 1.

5. By Remark 5.4.17, X, -1 € I'j k-1 implies that ¢, < r(, G < cw(, forall K =
1,2,...k—1, (x < < e, (iv) dx < ¢ (by Lemma D.2.2); (v) [|[@xPjll2 < (1 + )¢

and (vi) all conclusions of Lemma D.2.3 hold.

6. By the clustering assumption, A, < Amin(E(azgar k")) < Amax(E(argacs’)) < Af;
)\max(E(at,detat,det/)) < >\+ = /\+; and >\max(E(at,undetat,undet/)) < )\2—4_1-

Also, Amax(E(aza)) < AT.

7. By Weyl’s theorem, for a sequence of matrices By, Amin(>; Bt) = >y Amin(B¢) and

Amax(z:t Bt) § Zt )\max(Bt)

Consider zzlk = é Yo B/, L,L;/V;,_1E. Notice that E},/V;,_1L; = Rkat,k“‘Ek/(Ddet,kat,det
+ Dundet kGt undet)- Let Zy = Rpay pay i’ Ry and let Yy = Ryay g (ar det’ Ddet k' +at undet’ Dundet k') Ek+

/ I/
Ek(Ddet,kat,det + Dundct,kat,undct)at,k Rk . Then

! 1
A= =2+ 2> Y, (D.3)
@ t « t

Consider %Zt Zy = éZt Riaipac i’ Ri'. (a) As explained above, the Z;’s are condition-

ally independent given X, i r—1. (b) Using Ostrowoski’s theorem and Lemma D.2.3, for all

Xk k-1 €K k-1,

1
Amin (E( Z Zi| X Kk k—1)) = )\min(Rka Z E(at rar ") Ry')
t

t

Q| =

1
> )\min(RkRk/))\min(a > E(ayrars’))
t

> (1=r*C*)A,

(c) Finally, using ||Rkll2 < 1 and [|aik|l2 < v/@7s, conditioned on X g x-1, 0 < Zp = 21

holds w.p. one for all X; k11 € I'j g x—1.
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Thus, applying Corollary 2.3.4 with € = 0.1¢(A™, and using ¢, < r, for all X g1 €

T Kk k-1,
P (Ami (lzz)>(1—7"2(2)/\_—01{A‘|X— ) > 1— Gpex (_5‘762
min a - t) k . § K k—1) = L €XP 8(5k7$)2
G- (0.1¢A7)?

Consider Y; = Riar i (at det’ Ddet i’
+atundet’ Dundet k) Er + B, (Dact k@t det + Dundet,kt,undet )@k’ Ri'. (a) As before, the Yy’s are
conditionally independent given X i x—1. (b) Since E[a;] = 0 and Cov|a;] = A; is diagonal,
E(é > Vi X k1) = 0 whenever X g1 € I'j k x—1. (c) Conditioned on X g r—1, [|Yz|l2 <
2v/Ery2r¢(1 + \/12—2(2) < 2r2¢y3(1 + \/%) < 2(1+ \/%) < 2.1 holds w.p. one for
all Xk k-1 €1 kk—1. This follows because X; g x—1 € I'j g k-1 implies that || Dgetrll2 < r¢,

| Ek' Dundet k|2 = [|Ex'Gundet k|2 < i Thus, under the same conditioning, —bI <Y; <

bl with b = 2.1 w.p. one. Thus, applying Corollary 2.3.4 with e = 0.1{A™, we get

@(0.1¢A7)?
8(4.2)2

1
P(Amin(g > V) > =01 X k1) = 1 — rexp(— ) for all X k1 €L xp-1
t
(D.5)
Combining (D.3), (D.4) and (D.5) and using the union bound, P(Amin(Ar) > Ay (1-72¢%)—

0-24/\_|Xj,K,k—1) >1 —}51(6&, C) for all Xj,K,k—l S Fj,K,k—l where

a-(0.1¢A7)? @(0.1¢A7)?
syt ) T e 8(4.2)2 ) (D6)

p1(@, ) :=rexp(—
The first claim of the lemma follows by using A;’ > A~ and applying Lemma 2.3.1 with
X=Xjgr—1and C =T k1.

Consider /Lw_ = é Dot EkJ_/\IIk_lLtLt/\Ilk_lEkJ_. Notice that

By, 1" Vs_1L = By, 1" (Daet k1, det + Dundet kGtundet)- Thus, Ag | = 157, Z; with
Zy = Ej. 1" (Ddet kt,det + Dundet, k@ undet ) (Ddet, kt,det + Dundet, k0¢,undet) Ek, 1 which is of size
(n—¢) x (n—¢). (a) As before, given X i 1, the Z;’s are independent. (b) Conditioned
on Xjgr-1,0 =2 = ry2I w.p. one for all Xjkk—1 € jrr-1 (c) E(é >t Zel Xk g—1) =

()\;:_H + 7"2(2)\+)I for all Xj,K,k—l S Fj,K,k—l-
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Thus applying Corollary 2.3.4 with € = 0.1{A™ and using ¢ > Cuin, We get
P (Amax(Ar, 1) < Moy + 72N + 0.1 X gpm1) = 1= pa(@, €) for all Xj g p—1 € Tj k1

where
@(0.1¢A7)2

o) (D.7)

ﬁ2(d7 C) = (Tl - Emin) eXP(—

The second claim follows using A, > A™, f:= AT/A7, hy = Ak+17/Ax” in the above expres-
sion and applying Lemma 2.3.1.
Consider the third claim. Using the expression for Hj, given in Definition 5.4.6, it is easy

to see that

- - - - 1 -
Hillz < max{[| Hillz, [y, Lll2} + [|Bellz < [l = > eed |l + max(||T2l|a, [|T4]|2) + || Brll2
t

(D.8)

with 72 := 2 3, B/ Uy _y(Lee)/+e, Ly ) V1 B, and T4 == 1 57, By, " Wp_1(Lye)/+€,' L) Vy_1 By, |
The second inequality follows by using the facts that (i) Hy, = T1 — T2 where

T1:= L5, B/ 1ere)/Vy_1 By, (ii) Hy, | = T3-T4dwhere T3 := 15, By /U _qere/Vy_1 By, 1,
and (iii) max(||T1]2, 1T3]2) < |12 5, erer’ -

Next, we obtain high probability bounds on each of the terms on the RHS of (D.8) using
the Hoeffding corollaries.

Consider ||+ 37, ere,/[|2. Let Z; = ese;’. (a) As explained in the beginning of the proof, con-
ditioned on X i r—1, the various Z;’s in the summation are independent whenever X; g 11 €
I'j kk—1. (b) Conditioned on Xj g1, 0 = Z; < by w.p. one for all X; g1 € I'j g1
Here by := ¢7°C. (c) Using |®xPjlla < (r +¢)¢, 0 = LS B(Z|X e p1) < bal, by =
(r 4 )22t for all X g1 € Tjrpo1.

Thus, applying Corollary 2.3.4 with e = 0.1(A™,

a(0.1¢A7)?

8. b2 ) for all X; rp—1 € Kx k-1
1

1 _
P(”E Zetet'Hg < by +0.1¢AN | X g p—1) > 1 —nexp(—
t
(D.9)
Consider T2. Let Z; := E,'Vy_1(Lie)/ + e;Ly')¥y_1E), which is of size ¢ x ¢,. Then

T2 = éZt Z;. (a) Conditioned on X K k-1, the various Z;’s used in the summation are
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mutually independent whenever X g x—1 € I'j g x—1. (b) Notice that Ey'Uy_1L; = Rpayr +
By (Daet 0t et + Dundet, kt,undet) and B/ Uy_ye; = (R DiIn[(Px )y, (P i) 1]~ 1 @k Piay.
Thus conditioned on X g r—1, || Z¢]|2 < 2b3 w.p. one for all X, g1 € I'j g r—1. Here, b3 :=

1_\/?2(2 ¢ 4. This follows using H(R,;l)’Hg <1/V1—12C% |ler]l2 < ¢TV/Cand || ELWg_1 L2 <

[ Lell2 € /s (c) Also, || 255, E(Zi| Xk k—1)|l2 < 2ba where by := kg o(r+ )T (Af +r{AT +

7‘2C2 )\_,’_ )
Vasreias!
Thus, applying Corollary 2.3.5 with € = 0.1¢A™, for all X; 1 € I'j g -1,
- ~ @(0.1¢A7)?
P(HT2H2 < 2bg + 01()\ |Xj,K,k—1) >1—c exp(_%)
T3

Consider T4. Let Z; := Ey, | "WUj_1(Lie)/ + e, L) V1 Ey,, ;. which is of size (n—¢) X (n—¢cj).
Then T4 = ézt Z;. (a) conditioned on X g 1, the various Z;’s used in the summation
are mutually independent whenever X g1 € I'j g p—1. (b) Notice that Ej 'y L, =
Ey. 1" (Ddet,k0t,det + Dundet,k@tundet)- Thus, conditioned on Xj i p—1, [|Z¢]l2 < 2b5s w.p. one
for all X;xr—1 € Tjkr—1. Here bs := /r(¢pTy.. (c) Also, for all X;gr—1 € Tk k-1,
115 E(Z X ko p—1)ll2 < 206, b = ks e(r + )¢t (Af, + r¢AT). Applying Corollary 2.3.5

with € = 0.1{A™, for all Xj’KJf_l S Fj,K,k—la

- a(0.1C0 )2
P4l < 2b+ 0100 X, pm1) 21— (n — &) exp(~ LA
32 - 4bz
~ 5&(0.1()\_)2
>1- (n - Cmin) eXp(—i)
32 4072

Consider max(||T2||2, ||T4]|2). Since bs = bs and by > bg, so 2bg + € < 2by + €. Therefore,

for all X i r—1 € 1K k-1,

- ~ a@(0.1¢A7)?
P(||T4]l2 < 2bs + 01N | X k1) > 1 — (n— ck)exp(—%)
e
By union bound, for all X g r—1 € I'j x k1,
- @(0.1¢A7)?
P (max(||72]|2, || T4]|2) < 2bs + 0.1¢A™ | X g p-1) > 1 — nexp(_%) (D.10)
]

Notice that if we also introduce an extra denseness coefficient xs p := max; maxy, ks(Dy),

~ —\2
then P([| T2y < 2ks.pbs + 0.1CA™ | Xk ho1) > 1 — & exp(—%). Thus,



104

P (max (|| T2z, ||T4]2) < 2max(ks pba, bs) + 0.1CAT| X g p1) = 1 — nexp(—%). This
would help to get a looser bounds on gmax and ﬁmax in Theorem 5.3.1.

Consider || By|l2. Let Z; := Ep " Wr_1(Li—ei)(Li' —ei') Uy _1 By, which is of size (n—é) x é.
Then Bj, = é > Z;. (a) conditioned on X k x—1, the various Z;’s used in the summation are
mutually independent whenever X, k-1 € I'j kx—1. (b) Notice that Ey "Us_1(L — e;) =
E) 1" (Ddet 1t det + Dundet, k0t undet — Vi—1€¢) and Ey' Uy _1 (L —e;) = Riar i+ Ex’ (Ddet k0t det +
Duyndet k0t undet — Yi—1€¢). Thus, conditioned on Xj g p—1, ||Z¢]l2 < by w.p. one for all
Xjkp-1 € Tjrp—1. Here by := (Vry. + ¢"V0)% (0) |12 S E(Z] Xk p-1)]l2 < bs for all
X kk—1 €1 k-1 where

r2¢2 It
m k+1

P2 4 2(r + OrCrsedt + (r+ )22 TN

b8 = (7‘ + C)C"Qs,egb-i_/\lj + [(T‘ + C)(’{S,eqb-i_ + (T‘ + C)C/{s’e

Thus, applying Corollary 2.3.5 with e = 0.1(A™,

a(0.1¢A7)?

P (| Bxl2 < bs + 0.1¢A | X kk—1) > 1 —nexp(— 2317
YT

) for all Xj,K,k—l S Fj,K,k—l
(D.11)

Using (D.8), (D.9), (D.10) and (D.11) and the union bound, for any X; g r—1 € I'j g k-1,
P([[Hkll2 < by + 0.20A7| X ke p-1) = 1 — p3(&,C)

where bg := by + 2by + bg and

ae? ae? ae?

o) Freplgg) tnew-5s

P3(a, () »=nexp(— ) (D.12)

with by = ¢+2¢, by = V1o, br = (Vi + ¢TV/O)2 Using A > A, f = AT/A-,
gk == Af /A, and hy = /\L_l//\;, and then applying Lemma 2.3.1, the third claim of the

lemma follows. [ |

D.3 Proof of Lemma D.2.3

proof
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. The first claim follows because ||Dget kll2 = |Vi—1Gaet kll2 = [¥r—1[G1G2 - Gr_1]|l2 <
S W 1Grllz < S 19k Grllz = 52 < Y21 @ ¢ < r¢. The first
inequality follows by triangle inequality. The second one follows because Gl, o G

are mutually orthonormal and so ¥y_; = sz 1([ Gk2 G’ L)

. By the first claim, ||(I — Gdot,kééet7k)Gdot7k|]2 = || U4—1Gaetkll2 < r¢. By item 2) of
Lemma 2.2.4 with P = G et 1 and P= Gdet,ka the result ||Gdet,kGdet,k/_édet,kégct’k‘|2 <

2r( follows.

. Recall that Dy, eh EL Ry is a QR decomposition where Fj is orthonormal and Ry is
upper triangular. Therefore, o;(Dy) = o0;(Ry). Since |[(I — Gdot’kéaet&)Gdet’ng =
|Uh_1Gaetkll2 < 7¢ and G),Ggetr = 0, by item 4) of Lemma 2.2.4 with P = Gqet k,

p = édet,k and Q = Gk, we have \ 1— 7’2C2 S O’Z((I — édet,kééet7k)Gk) = O'Z(Dk) § 1.

. QR - K
. Since Dy, = EL Ry, so HDundet,klEkH2 = ‘|Dundet7k/DkRk 1||2 = HGundetvk/\I’;ﬂ—l\Pk_leRk 1”2
= HGundot,k,\I’k—leR];”b = ”Gundct,lekRizl‘b = ||Gundet k' Ex|2. Since Ej, = DkR,gl =
(I — Gaet uGlio 1) G Ry,

|Guundet,k Exll2 = |Gundet i’ (I — Gaet ;kGiaet 1) G Ry 2

< ||Gundet7k/(1 — Gdemké:iot,k)GkHﬂl/m)
= ||Gundet,k/édet7kééot7ka ||2(1/m)

By item 3) of Lemma 2.2.4 with P = Gqet ;s P = Gdet,k and @ = Gundet,k, We get
| Gundet, i Get kll2 < r¢. By item 3) of Lemma 2.2.4 with P = Gaet r and Q = Gy, we

22
get HGdot kaHQ < TC Therefore HGundet k Ek||2 - ||Ek Gundet kH2 > \/147‘—2(2
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